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Preface

The book Connected Health in Smart Cities seeks to provide an opportunity
for researchers, academics, and practitioners to explore the relationship between
connected health techniques, theoretical foundations, essential services, and recent
advances of solutions to problems, which may arise in a variety of problem domains
of connected health in a smart city context. This book can serve as a repository of
significant reference material.

This book aims to report the theoretical foundations, fundamental applications,
and the latest advances in various aspects of connected services in health, more
specifically the state-of-the-art approaches, methodologies, and systems in the
design, development, deployment, and innovative use of multisensory systems,
platforms, tools, and technologies for health management for the success of smart
cities ecosystem.

The title of each of the book chapters is self-explanatory and a good hint to what
is being covered. The overview of each chapter is as follows:

Chapter “Image Recognition-Based Tool for Food Recording and Analysis:
FoodLog”—Maintaining food consumption and habits and analyzing food records
is indispensable for the well-being of the citizen in a smart city context. To this end,
FoodLog, a smart phone-based image recognition tool, is used for food recording
and analysis from digital food image through image recognition or searching.
FoodLog’s application can be used for the management of food-related data of the
athletes or sports activities. This chapter also has better insights related to improved
health for healthy diet selection to control various diseases.

Chapter “A Gesture Based Interface for Remote Surgery”—At present, specially
equipped vehicles or air-lifting to nearest hospitals/clinics is not affordable for the
citizens in emergency cases or inadequate for areas with a large population that
is remote from emergency surgical services. These vehicles can only serve a few
patients or citizens every day. In this situation, there is a need for remote surgical
services by skilled surgeons. Considering the above facts, this chapter discusses
the application of gesture-based interactive user interfaces in performing remote
endovascular surgery. The conducted experiments in the chapter demonstrate the
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vi Preface

feasibility of the approach and also the accuracy of the robotic controller at the base
of the catheter, before it enters an artery.

Chapter “Deep Learning in Smart Health: Methodologies, Applications,
Challenges”—Today, deep learning is one of the emerging theoretical foundations
of connected health that can support healthcare professionals to find out the hidden
opportunities in healthcare data and its pattern to assist doctors in order to have
better analysis for improved health care for the citizens of smart cities. Keeping the
above benefits in mind, this chapter presents very good insights of how deep learning
techniques can be used for smart health data analysis, processing, and prediction. It
also discusses about the emerging applications of deep learning techniques in smart
health from cancer diagnosis to health status predictions.

Chapter “Emotional States Detection Approaches Based on Physiological Sig-
nals for Healthcare Applications: A Review”—Emotional health is one important
consideration for improving citizens’ quality of life and well-being in the smart
cities. With these issues in mind, this chapter discusses existing emotional state
approaches using machine and/or deep learning techniques, the most commonly
used physiological signals in these approaches, and existing physiological databases
for emotion recognition and highlights the challenges and future research directions
in this field. It also discusses about how to incorporate accurate emotional state
detection wearable applications (e.g., patient monitoring, stress detection, fitness
monitoring, wellness monitoring, and assisted living for elderly people) within the
smart cities so that it can aid to alleviate mental disorders, stress problems, or mental
health.

Chapter “Toward Uniform Smart Healthcare Ecosystems: A Survey on Prospects,
Security, and Privacy Considerations”—Security and privacy consideration is of
paramount importance in the connected healthcare applications for the citizens’
safety and well-being in smart cities. To this end, this chapter explores the latest
trends in connected healthcare applications along with enabling technologies (e.g.,
sensing, communication, and data processing) and solutions (e.g., low-power short-
range communication, machine learning, and deep learning) that might be driving
forces in future smart health care. It reports the latest cyber-attacks and threats,
which could be major vulnerabilities and weaknesses of the future smart healthcare
ecosystem. It concludes with the proposed solutions and their associated advantages
and disadvantages of each solution and analyzes their contribution to the overall
security as an integral part of the connected healthcare system.

Chapter “Biofeedback in Healthcare: State of the Art and Meta Review”—
This chapter begins by discussing the scope of utilizing biofeedback technology in
smart healthcare systems. It presents a brief history of biofeedback technology and
highlights the sensory technology in biofeedback systems by presenting the different
types of sensors and their features. Recent research of biofeedback-based healthcare
systems will be explored by presenting a range of applications in different fields.
A set of challenges/issues that affect the deployment of biofeedback in healthcare
systems will be discussed.

Chapter “Health 4.0: Digital Twin for Health and Well-Being”—With the
advances in wearable computing, smart living, and communication technologies,
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personalized healthcare technology has entered a new era of healthcare industry
to provide personalized proactive and preventive care in real time without being
in close proximity. Digital Twins is an emerging technology to revolutionize
healthcare and clinical processes. A digital twin virtualizes a hospital to have more
personalized care. This chapter gives an overview of the existing literature and aims
to provide an overview of existing literature on digital twins for personal health
and well-being—key terminologies, key technologies, key applications, and the key
gaps.

Chapter “Incorporating Artificial Intelligence into Medical Cyber Physical Sys-
tems: A Survey”—The emerging Medical Cyber-Physical Systems (MCPS) can
revolutionize our connected healthcare system with high-quality, efficient, and
continuous medical care for citizens of smart cities by providing remote patient
healthcare monitoring, accelerate the development of new drugs or treatments,
and improve the quality of life for patients who are suffering from different
medical conditions, among other various applications. This chapter starts with
the general description of the MCPS components and then discusses (1) how
multisensory sensor devices and body sensor networks can assist in healthcare
data acquisition, aggregation, and preprocessing and (2) how machine intelligence
algorithms process the medical data from the previous steps to facilitate monitoring
through connected healthcare systems and make self-directed decisions without
much involvement of healthcare staff in a secure way to preserve the privacy of
the citizens of smart cities.

Chapter “Health Promotion Technology and the Aging Population”—One of
the important aspects for the success of connected health is the use of emerging
healthcare technologies, which are of paramount importance in connected health
services to the aging population in cities to improve the quality of care. To this end,
this chapter provides an overview of assisted technologies and a survey of how the
technology can be used to affect the elderly population to integrate healthier habits
into their lives. The variety of accessible technologies allows individuals to use them
in conjunction for their desired outcomes.

Chapter “Technologies for Motion Measurements in Connected Health
Scenario”—The proactive and efficient care is one of the utmost requirements for
connected health or technology-enabled care (TEC) in smart cities. For such care,
smart sensing technology-based wearable solutions are essential for human motion
tracking, rehabilitation, and remote healthcare monitoring. In such a context, this
chapter presents an unobtrusive sensing solution (e.g., the Internet of Things (IoT)-
enabled sensing) based on key enabling technologies with the aim of providing
human motion measurement accompanied by motion measurement-related research
and open issues. Finally, it demonstrates how the human motion measurements in
motion tracking can contribute to the remote health monitoring system based on
IoT and publish/subscribe communication paradigm.

Chapter “Healthcare Systems: An Overview of the Most Important Aspects
of Current and Future m-Health Applications”—With the increasing number of
aging population and the widespread use of mobile devices and communication
technologies, citizens in smart cities would like to access the connected health
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service from anywhere at any time. In this respect, the mobile health care (m-
healthcare) can provide affordable care for people in a convenient, accessible, and
cost-effective manner. This chapter reports an overview of a generic m-Health
application along with its main functionalities and components. The use of a
standardized method for the treatment of a massive amount of patient data is
necessary to integrate all the collected information resulting from the development
of m-Health devices, services, and applications. To this end, this chapter discusses
about the requirements of a standardization in healthcare, which is supported by
related international and European healthcare projects.

Chapter “Deep Learning for EEG Motor Imagery-Based Cognitive Healthcare”—
Owing to the massive amounts of complex healthcare data being produced in
environments, such as smart cities, deep learning and cognitive capability are
necessary to the idea of connected health. Deep learning-based cognitive systems
can help various stakeholders, such as medical experts, healthcare professionals, and
patients to develop insights into medical data that can help improve health care and
provide a better quality of life to smart city residents. Hence, this chapter leverages
deep learning techniques for understanding MI EEG data. The improvement in
classification accuracy for motor imagery can help impart cognitive intelligence to
machines and enable smart city residents to control the environment through sensors
attached to their heads. This chapter proposes novel techniques for cross-subject
accuracy and achieves outstanding improvement that can usher in new concepts
about these complex brain signals.

The target audience of this book includes researchers, research students, and
health practitioners in digital health. The book is also of interest to researchers
and industrial practitioners in healthcare industry and smart city. We would like
to express our great appreciation to all the contributors, including the authors,
reviewers, and Springer staff, for their kind support and considerable efforts in
bringing this book to reality.

We hope that the chapters from this book will serve as a repository of significant
reference material and contribute to the roadmap of emerging use of services,
techniques, and technologies for connected healthcare in smart cities.

Ottawa, ON, Canada Abdulmotaleb El Saddik
Riyadh, Saudi Arabia M. Shamim Hossain
Ottawa, ON, Canada Burak Kantarci
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Image Recognition-Based Tool for Food
Recording and Analysis: FoodLog

Kiyoharu Aizawa

Abstract While maintaining a food record is an essential means of health manage-
ment, there has long been a reliance on conventional methods, such as entering text
into record sheets, in the health medicine field. Food recording is a time-consuming
activity; hence, there is a need for innovation using information technology. We
have developed the smartphone application “FoodLog,” as a new framework for
food recording. This application uses digital pictures and is supported by image
recognition and searches. It is available for general release. In this paper, we present
an overview of this framework, the data statistics obtained using FoodLog, and the
future prospects of this application.

Keywords Food recognition · Image processing · Text search · Visual search

1 Food Recording Tool Using Analysis: FoodLog

We have developed and constructed a system, known as FoodLog, as a technical
platform to record and utilize daily consumption data using multimedia information
[1]. Although there are many tools to record details of the food consumed daily, the
vast majority of these involve the input and output of text. Although there is much
effort required for input, the records generated cannot be intuitively understood
with just a single glance. The greatest distinguishing characteristic of FoodLog
from existing tools is that it supports image recognition and searches through
image-based recordings. Additionally, an important advantage of images is that the
records can be perused and grasped with just a single glance. Initially, this was
developed as a web-based system; now, this system has also been developed as a
smartphone application [2, 3]. The functionality has gradually been expanded. The
smartphone version released in 2013 supported image searches; since June 2016, an

K. Aizawa (�)
Department of Information and Communication Engineering, The Faculty of Engineering,
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2 K. Aizawa

Fig. 1 Outline of FoodLog supported by food recognition and search

Fig. 2 Screenshots of FoodLog app. (a) Diary view, (b) food records, and (c) energy view

update supports image recognition as a method of record entry (image recognition
is currently limited to the iPhone version).

An overview of the current functionality is shown in Fig. 1. A representative
screenshot of the application’s functionality is shown in Fig. 2. This framework
supports record input based on image recognition and searches; notably, keywords
are input with text only when image support is insufficient, significantly reducing the
effort required to input data. The typical input procedures performed are described
as follows:

1. The user photographs the food.
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2. On inputting the record, the user starts up the FoodLog app. The FoodLog
application automatically distinguishes between various images and presents the
food photos from the album. Indeed, it is also possible to manually select the
images from the album.

3. The users specify the food area in which they would like to record the presented
food photo.

4. Automatic recognition of the food occurs, and the top 20 food items are
presented in terms of probability. Additionally, an image search is conducted
simultaneously on the individual history, and the top 20 consumed food items
are presented in descending order of similarity.

5. If there is a desired item in the presented list, it is selected and the quantity is
specified. This step completes the recording.

6. If a food item close to the desired item is included in the presented list (for
example, a hamburger instead of a cheeseburger), an associative search is
performed; then, the presented list is updated, and if the desired item appears, that
item is selected and the quantity is specified. These steps complete the recording.

7. In case the desired item has still not appeared in the list, you can enter a keyword
and update the candidate list; also, at the location of the desired item, this entered
information is selected and the quantity specified. These steps complete the
recording.

8. In case the target food item cannot be found with image or text search, you
can describe the food name in free text as a newly appearing item; once this
information is entered, it will be available for future searches.

It is not necessary to perform steps 1 and 2 at the same time. It is my personal
practice to first take the picture and enter the record later. The photo is an essential
mnemonic while inputting the record at a later time.

In case of the app screenshot shown in Fig. 2, (a), (b), and (c) show a list
of the food records in calendar format, the record content of the individual food
pictures, and a format in which just the calories are superimposed on the images.
Furthermore, Fig. 3(a) and (b) shows the food area specified on the screen when
entering the food records and a display of the recognition results, respectively. In
the published version, this includes the detailed nutritional values of approximately
2000 foods that are typically found in Japan; of these details, only the calories
are displayed. Datasets, with detailed nutritional values can, where necessary, be
switched to those with high variation. At present, there are approximately 400 food
items that have a high number of record registrations that can be detected. The
number of food items detected can be easily increased through data quantity, without
affecting the performance of the recognizer device. Using associative searches, this
app searches a total of about 2000 typical foods based on similarity of food name,
nutritional value, or recipe [4].

FoodLog is used by Diabetics [5]; notably, this app is under investigation at
Tokyo University as a self-diagnostics tool for diabetes. It is also being used in
the application Gluco Note, which Tokyo University is also evaluating [6].
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Fig. 3 Screenshots of FoodLog app. (a) Food area specified on the screen and (b) the list of
candidates by image recognition

2 Trends Visible from FoodLog Data: (1) Frequent Foods

Since the implementation of the FoodLog application in 2013, more than 200,000
users have uploaded at least one photo, and 6 million food items have been recorded
so far. The variation in food names registered by the users themselves has greatly
exceeded expectations, evidenced by the fact the number of unique food names has
exceeded 250,000 items.

Owing to the fact that there is a wide variety of food names registered by all users,
it is necessary to summarize these appropriately to produce meaningful statistics.
For example, we want to consider “yogurt” and “plain yogurt” as the same food
item. To achieve this, we had to perform normalization processing on the recorded
names using compression representation [7]. Specifically, (1) the respective foods
are broken down into vocabulary words, (2) food names are selected from similar
vocabulary words, a vocabulary graph is generated, and (3) representative food
names are set based on the collections of shortest path vocabulary words.
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Fig. 4 Top 100 frequent food records of all users of FoodLog

Fig. 5 Top 100 frequent food records of a particular user for its 6 weeks

We analyzed data trends using the first year of data (∼1 million items) generated
by the FoodLog application. The representative food names that appear frequently
among the users are shown in Fig. 4. The frequently occurring items for all users
are food names that are very familiar to all users. At the top of the list, names such
as “baked” and “boiled” appear; however, because baked items and boiled items are
overcompressed in the automatic processing for the normalization process, names
of the cooking methods also appear.

In contrast to this, the same processing performed in relation to 6 weeks of data
for a particular user is shown in Fig. 5, and this displays the order of frequency of
records for just a single user. It is highly evident that this is very different to the
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trend for all users, which is very interesting. These food trends for individual users
can be intuitively grasped.

3 Trends Visible from FoodLog Data: (2) Food Frequency
Temporal Changes

The amount of food records greatly depends on the degree to which the user likes
food. Food itself is also greatly influenced by seasonal factors and specific events.
Additionally, consumption of newly emerging food items may increase as a result
of mass media advertising.

We attempted to investigate changes in food frequency over time using the
records recorded by FoodLog. Using the record frequency of food in FoodLog as
an indicator, we used the ratio of the number of people that recorded a specific
food item among all people who recorded consumption for that day. For reference
purposes, we also investigated changes over time using search words on Google
(Google Trend). Although Google Trend can intuitively grasp social concerns, the
granularity of food is coarse; hence, while looking at the top 500 items in terms of
frequency in FoodLog, only ∼300 of these could be surveyed. Among these 300,
there will always be words included that are not necessarily limited to food; thus,
there is no certainty that they are expressing a particular interest in food. However,
from ∼300 items, frequency changes in 42 of the food names demonstrated a strong
correlation (≥0.7) between FoodLog and Google Trend. From these, we selected
items of particular interest and demonstrated fluctuations over 3 years, as shown in
Fig. 6. Each of these was normalized to a maximum value of 1 within the period.

For all four examples in Fig. 6, trends of interest in terms of frequency trends
in FoodLog records or Google search terms are extremely similar. Figure 6(a) and
(b) are examples in which the frequency trends change considerably depending on
the season or events. (a) Yudofu (boiled bean curd) appears frequently during winter,
while (b) fried chicken peaks appear only during Christmas. In contrast to this, natto
(fermented bean curd) in Fig. 6(c) is a food eaten daily, and its consumption, for
both indices, gently increases over the period of approximately 3 years. (d) Chicken
salad only became well known at the end of 2013, and from that point on exhibited a
rapidly increasing trend for both indices. The fact that is interesting about (c) and (d)
is that they are both health-oriented food items. In this manner, compared to Google,
FoodLog, despite having a significantly small user base, is a tool that can be used
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Fig. 6 Temporal changes of frequency of food records. (a) Yudofu (湯豆腐): Highly seasonal
changes. (b) Fried chicken: Highly event-dependent changes. (c) Natto (納豆): Growing trend of
a dairy food. (d) Salad Chicken: Growing trend of newly appearing food. It started widely selling
in November 2013 at Seven Eleven Stores

to look at food-related fluctuations in detailed categories. Among these, items that
relate to the interests of all users match with similar information from Google to a
significantly higher degree.
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Fig. 6 (continued)

4 Conclusion

In this chapter, we presented an overview of our research and development of
FoodLog as a tool to record information concerning food consumption in which
the use of images is maximized. Additionally, from an analysis of the recorded data,
we introduced examples of visualized food trends, both overall and individual, and
changes over time for the frequency of food consumption over long periods.

As a tool, FoodLog is still in the developmental stage and we would like it to be
increasingly convenient. For example, it would be useful if it could create a record
by just inserting the picture, without the need to specify the food area. In actual fact,
great efforts are being made in research and development for this purpose, and many
innovations are planned for the interface in the next version of FoodLog.

The trends seen from the data in this paper, as demonstrated in the two examples,
show its importance not only as a tool for recording but also as a platform
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for analyzing food records. Food surveys, which traditionally have taken months
from data collection to publication, can be produced in real time through the use
of FoodLog. Additionally, based on data from a large number of users, we are
addressing the task of estimating records over a long period based on only few
days’ data for a particular user [8]. In addition, for FoodLog’s application in the
fields of self-management for health and dietary purposes, its functionality is also
being expanded for the management of food-related data and information from other
activities of sports athletes.
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A Gesture-Based Interface for Remote
Surgery

Irene Cheng, Richard Moreau, Nathaniel Rossol, Arnaud Leleve,
Patrick Lermusiux, Antoine Millon, and Anup Basu

Abstract There has been a great deal of research activity in computer- and robot-
assisted surgeries in recent years. Some of the advances have included robotic hip
surgery, image-guided endoscopic surgery, and the use of intra-operative MRI to
assist in neurosurgery. However, most of the work in the literature assumes that all
of the expert surgeons are physically present close to the location of a surgery. A
new direction that is now worth investigating is assisting in performing surgeries
remotely. As a first step in this direction, this chapter presents a system that can
detect movement of hands and fingers, and thereby detect gestures, which can
be used to control a catheter remotely. Our development is aimed at performing
remote endovascular surgery by controlling the movement of a catheter through
blood vessels. Our hand movement detection is facilitated by sensors, like LEAP,
which can track the position of fingertips and the palm. In order to make the
system robust to occlusions, we have improved the implementation by optimally
integrating the input from two different sensors. Following this step, we identify
high-level gestures, like push and turn, to enable remote catheter movements. To
simulate a realistic environment we have fabricated a flexible endovascular mold,
and also a phantom of the abdominal region with the endovascular mold integrated
inside. A mechanical device that can remotely control a catheter based on movement
primitives extracted from gestures has been built. Experimental results are shown
demonstrating the accuracy of the system.
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Keywords Gesture recognition · Remote control of catheter · Endovascular
surgery

1 Introduction

Despite the increasing popularity of computer- and robot-assisted surgeries, there
is still a need for remotely performing surgical tasks. At present, it is difficult to
perform surgeries in remote locations. Very often patients in emergency situations
need to be driven long distances in specially equipped vehicles or airlifted to
nearest hospitals. These emergency transportations are not only very expensive
but are also very demanding on fragile patients resulting in a negative effect on
their chance of survival. Also, these special transportations are far from guaranteed.
For example, the STARS air ambulance in Alberta, Canada, needs to hold several
fundraising lotteries every year to support their operating costs. Furthermore, the
air ambulance can only serve a few clients every day. While an ad hoc solution
like this is somewhat functional for a sparsely populated region with low demand,
it is completely inadequate for areas with large population that are remote from
emergency surgical services. According to a report from the Fraser Institute entitled
“The Effect of Wait Times on Mortality in Canada,” over a 16 -year period surgical
wait times have led to over 44,000 deaths in an advanced country like Canada
with a relatively small population. This fact can give us some insight into the very
positive effect remote surgeries can have at a global level, if skilled surgeons could
collaborate from around the world.

With the above discussion in mind, in this chapter we discuss the application of
gesture-based interactive user interfaces in surgery. This new technology, which will
provide touch-free environments for interaction with 3D medical data, will improve
both the ease of use and efficiency of a number of medical devices and procedures.
Despite the large increase in popularity of touch-based devices, such as the iPad
and other tablet computers, in recent years, interaction with these devices remains
limited to physically touching the screen. There are many scenarios, particularly
in healthcare, where the ability to control a device through touch-free mechanisms
offers a significant advantage. During medical scans and procedures, for example,
a touch-free user interface will help (1) decrease the risk of spreading infection
by reducing the need for the device operator to touch potentially contaminated
surfaces; (2) eliminate the need for an extra assistant to help view and interact with
image data; (3) improve ergonomic conditions for a medical technician by removing
the need to concurrently use one hand for a medical probe and the other to operate
a computer keyboard; and (4) give surgeons the ability to leave a surgical room and
still be able to interact with a surgical procedure without touching any contaminated
surface.

A specific application area is Endovascular surgery, which is a type of Minimally
Invasive Surgery (MIS), designed to access target regions of the human body
through blood vessels [1, 2]. While endovascular surgery is being increasingly
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deployed to replace classical surgery for improving recovery time and patient safety,
there are still challenges to sustain a safe environment for patients as well as
doctors. Ongoing research aims at reducing surgery time, and minimizing exposure
to radiation. Currently, medical personnel require heavy cumbersome protective
clothing which, nevertheless, can cover only part of the body. The ability to perform
a surgery while keeping some distance from sources of radiation will improve the
safety of surgeons and medical staff. In addition, the ability to interact with medical
devices through gestures will increase patient safety by reducing the potential for
contamination.

Several studies have examined active endoscopes and the effective control of
catheters [3–5]; while the impact of stiffness of surgical manipulators was discussed
in [6]. However, how to control a catheter using only gestures has not been addressed
before.

Endovascular surgery has become a very important part of the therapeutic arsenal
for the treatment of vascular diseases, such as abdominal aortic aneurysms [7].
These techniques are part of mini-invasive surgery and related to a decreased
immediate postoperative morbidity and mortality. Yet, all these benefits are balanced
by an additional cost and several challenges still remain.

Endovascular surgery exposes the patient and medical staff to a significant
amount of radiation during the procedure [8]. Repetitive exposures to radiation
increase the risk of cancer [9] and other diseases, such as cataract and skin injuries
[10]. Thus, the ability to keep the surgeon and the staff distant from radiations
without any loss of efficiency during the procedure is highly desirable in future
endovascular surgeries.

Avoiding contact between the surgeon and the patient also reduces the risk of
per-operative contamination. Stent-graft [11] infections are rare but associated with
high morbidity and mortality rates [12]. Aortic stent-graft infections require, in most
of the cases, the surgical explantation of the stent-graft [13].

From another perspective, gesture-based interactive user interfaces for surgery
could be used for training of junior surgeons. The role of simulators in medical
training is becoming more and more important [14–16]. Using such simulators,
junior surgeons would be able to reproduce preoperative gestures during a surgical
simulation, improve their skills before performing surgery on real patients, and have
their learning evaluated through objective metrics.

2 Materials and Methods Used in Our System

There are various steps involved in our overall system to access the feasibility of
using gestures to conduct or assist remotely in a surgery. These include:

• Extracting blood vessels from CT and identifying arteries
• Planning a path to follow during endovascular surgery
• Detecting hand movements and interpreting gestures; and
• Robotically controlling a catheter based on gestures performed remotely.
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Fig. 1 Various steps in endovascular surgical planning: (a) A low contrast CT slice in axial view
with the aorta inside the rectangle; (b) artery neighborhood detected using the OSIRIX software;
(c) 3D segmentation using initialization of livewires followed by using the Turtleseg software; (d)
medial axis generated inside the artery 3D model; and (e) artery phantom: with optimal path chosen
by a surgeon for catheter navigation

The novelty in this work is in the last two areas mentioned above. However,
we will briefly outline some of our work in the first area as well. We extracted
the blood vessel and the medial axis (the curve in the middle that is equidistant
from all sides) using several segmentation techniques. We used a new scale-space
skeletonization algorithm for robust 3D medial axis extraction. Our algorithm is
adaptive and can adjust the scale so that both narrow and wide regions of a blood
vessel can be processed accurately. Figure 1 describes some of the methods related
to preprocessing the medical image data that have been developed by us over the
past few years. These include enhancing segmentation algorithms to extract blood
vessels and arteries; skeletonization to find the path close to the center of the blood
vessels; and designing and fabricating a phantom representing the actual arteries in a
CT scan to allow surgical training. Details on some of these procedures are available
in our earlier publication in [17, 18].

Endovascular surgery has become a very important part of the therapeutic arsenal
for the treatment of vascular diseases, such as abdominal aortic aneurysms [7].
These techniques are part of mini-invasive surgery and related to a decreased
immediate postoperative morbidity and mortality. Yet, all these benefits are balanced
by an additional cost and several challenges still remain.

Endovascular surgery exposes the patient and medical staff to a significant
amount of radiation during the procedure [8]. Repetitive exposures to radiation
increase the risk of cancer [9] and other diseases, such as cataract and skin injuries
[10]. Thus, the ability to keep the surgeon and the staff distant from radiations
without any loss of efficiency during the procedure is highly desirable in future
endovascular surgeries.

Avoiding contact between the surgeon and the patient also reduces the risk of
per-operative contamination. Stent-graft [11] infections are rare but associated with
high morbidity and mortality rates [12]. Aortic stent-graft infections require, in most
of the cases, the surgical explantation of the stent-graft [13].
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Fig. 2 A hand gesture tracked interface for controlling an ultrasound workstation

From another perspective, gesture-based interactive user interfaces for surgery
could be used for training of junior surgeons. The role of simulators in medical
training is becoming more and more important [14–16]. Using such simulators,
junior surgeons would be able to reproduce preoperative gestures during a surgical
simulation, improve their skills before performing surgery on real patients, and have
their learning evaluated through objective metrics.

Figure 2 shows our work on detecting gestures being used for controlling the
user interface of an ultrasound workstation. In the system we developed, the hand
gestures that can be used to adjust the gain, brightness, zoom, and other parameters
on the display shown in the figure without the fingers touching the screen.

Our hand gesture detection system uses the LEAP motion sensor. However, there
are several challenges in situations with high occlusion. Many skeletal hand pose
estimation techniques follow particle-filter approaches, which can get trapped in a
local minimum due to inadequate visible data to resolve ambiguity. Incorrect pose
may be identified as long as the hand pose remains static. Traditional approaches
like the Kalman Filter [5] may not be adequate because the distribution of noise is
similar for correct vs. incorrect detection scenarios [20]. Also, for fast movements
of the fingers, tracking angular velocities of the fingers to predict future positions
may not work.

We address the issues raised by occlusion using multiple sensors that are strate-
gically placed with different viewing angles. We process the skeleton information
provided by the Leap motion sensor instead of depth maps. The skeleton information
consists of a collection of points with lines, representing a simplified version of
the human skeleton of the hand. This type of data is easier to process than 3D
depth information that may be available from other sensors, because of the limited
amount of data that needs to be considered. Alternative strategies were considered to



16 I. Cheng et al.

Fig. 3 Summary of our recent work in [19]. Using multiple sensors, we can reduce the effect of
occlusion. For example, for the pair of images on the left, both of the sensors can detect the open
hand pose. However, for the pair of images on the right, one sensor detects the pinch pose while the
other incorrectly detects an open hand. Intelligently combining the results from the two sensors, it
is possible to correctly detect the pinch gesture on the right

Fig. 4 Various hand poses used to compare performance against ground truth

determine the best way of combining (or fusing) data from multiple sensors. Figure
3 shows some results of our approach implemented in real time.

To determine the accuracy of our approach, we used a flexible hand phantom as
shown in Fig. 4. Various alternative approaches were compared, including (1) Single
Sensor, (2) Averaging of Multiple Sensors, (3) Sensor Confidence, (4) Weighted
Fusion, and (5) Our Intelligent Fusion Approach. These results are shown in Fig.
5. It can be seen that our results are closest to the best possible if a person already
knows which sensor to use.

Following the recording of gestures, we need to control the movement of a
catheter potentially at a location that is distant from where the gestures were
captured and analyzed. There are at least two scenarios where this approach is
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Fig. 5 Comparison of various approaches for hand pose estimation

very valuable. First, creating some distance between a surgeon and a patient in an
operating room would reduce, if not eliminate, surgeons being exposed to radiation
from intra-operative X-rays during surgery. At present, surgeons need to wear
protective clothing with lead barriers to reduce radiation exposure. This type of
clothing is heavy and uncomfortable, and still does not eliminate exposure to the
face, arms, and legs. The second utility of our approach lies in surgeons being
available to perform an emergency surgery even from a remote location. This will
support greater access to patients who are unable to travel to a limited number of
specialized urban centers that have surgical facility available.

We designed and built an electromechanical system for precise computerized
control of a catheter. Our device consists of a motorized XZ Table that can move in
two directions, coupled with two conveyor belts. The velocities of the two conveyors
can be controlled through a computer or if necessary by a remote joystick. The
guidewire is placed in between the two conveyor belts. The XZ Table is connected
to one of the conveyors, while the other conveyor is fixed. By moving the two
conveyors, we can move the guidewire backward or forward, while rotations of
the guidewire can be realized through radial movements of the XZ Table. Figure 6
shows the composition of the electromechanical system built by us for controlling
a catheter.

In order to determine the precision of our system we built an artery phantom. The
phantom was designed by segmenting the arteries of an actual patient from the CT
scans captured before a surgery. Figure 7 demonstrates our system. On the left, the
mechanical system and the joystick are shown. On the right, the artery phantom is
shown connected to the mechanical system. Inside the artery phantom, the catheter
being controlled electronically can be seen.
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Fig. 6 Our system for controlling catheter movements

Fig. 7 Moving a catheter electronically into an artery phantom

3 Results in a Simulated Environment

We have already conducted experiments to verify our proposed methodology. Hand
gestures were recorded and processed at the University of Alberta, Canada, using
the Leap motion sensor. From these recordings, the primitives of the hand gestures
were automatically extracted. Finally, these primitives were transmitted to Lyon,
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Fig. 8 Various stages of movement of the catheter based on remotely detected hand gestures

France, where they were used to remotely control a catheter. Figure 8 shows the
position of the catheter at various stages of the process. Part of the endovascular
phantom is not tied up in Fig. 8 so that the catheter can be seen more clearly.

Figure 9 compares the expected trajectory of the catheter with its actual
trajectory. The blue line is based on Gesture Detection and the red line is based
on the actual trajectory. The position was measured at the output of the robotic
controller.
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Fig. 9 Comparison of expected trajectory and actual trajectory of a catheter

4 Discussion

The current experiments verify the feasibility of our approach and also the accuracy
of the robotic controller at the base of the catheter, before it enters an artery.
However, the accuracy of the position and orientation, relative to the desired ones,
at the tip of the catheter are still unknown. Additional errors can be encountered at
the tip of a catheter resulting from unexpected bending and twisting. To correct for
such distortions, we need to incorporate tracking methodologies at the tip; this could
be done through visual (camera) feedback for testing the accuracy in a simulation.
In the long term, we will also measure the accuracy of magnetic trackers in getting
position and orientation feedback at the tip of a catheter. We also plan to conduct
tests on laboratory animals to determine the feasibility of the approach in a real
surgery.

5 Conclusion and Future Work

Despite significant achievements in computer- and robot-assisted surgery in recent
years, limited advancements have been made in remotely conducting surgeries. In
addition, the use of gestures rather than complex robotic tools to acquire input
during conducting a surgery has been rarely considered. Taking these observations
into account, we proposed a new direction of gesture-based interfaces for remote
surgery. The description in this chapter outline preliminary work demonstrating the
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feasibility of the approach in performing remote endovascular surgery. However,
there are many hurdles to overcome to realize a prototype even for this specific
application. Some of the future tasks to build a functional prototype include
obtaining accurate location and orientation information on the tip of a catheter
inside blood vessels using magnetic sensors; providing feedback to a remote surgeon
possibly through haptic and tactile means; and graphical interfaces preferably with
light wearable glasses to allow more mobility.

Acknowledgements The financial support from Alberta Innovates and INSA, Lyon, France in
conducting this research is gratefully acknowledged.
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Deep Learning in Smart Health:
Methodologies, Applications, Challenges

Murat Simsek, Alex Adim Obinikpo, and Burak Kantarci

Abstract The advent of artificial intelligence methodologies pave the way towards
smarter healthcare by exploiting new concepts such as deep learning. This chapter
presents an overview of deep learning techniques that are applied to smart health-
care. Deep learning techniques are frequently applied to smart health to enable
AI-based recent technological development to healthcare. Furthermore, the chapter
also introduces challenges and opportunities in deep learning particularly in the
healthcare domain.

Keywords Predictive analytics · Deep learning · Smart health ·
Medical imaging

1 Introduction

Urban and regional planning is an aspect of human endeavor that has expanded
as man improves in knowledge and understanding. This expansion has seen
tremendous improvement in the way and manner humans move about within and
outside their immediate vicinity. This success was no doubt assisted by tools used
for proper town planning of which maps and other location positioning services are
part of. The need to constantly get the best within our community and outside our
community has led to the improvement of the tools used for location positioning and
other factors that contribute to a better-planned city [32]. This constant improvement
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was helped and continuously being helped by improved technological output.
Digitalization of our cities is seeing daily improvement with the aid of powerful
devices embedded with sensors for data acquisition, environmental monitoring,
digital transportation, health improvement, easy access to amenities and facilities,
and overall service provision for everyone within the city. A digital city is more
often than not called a smart city. A smart city has various components which are
all interlinked with improved technology and the need to provide quality services to
its citizenry [15]. One of this components is smart health.

Smart health is the use of high technological devices for improved and quality
health delivery. In other words, it contains the use of smart devices, electronic health
monitoring gadgets, web services all connected(or not) to a data hub where positive
inferences could be made about an individual’s health status or a community’s health
status. The ubiquitousness of smart health has made its development a welcome
change; this coupled with the ever-growing production of technological tools has
seen the demand for smart health applications go up in recent years. As an example,
an individual could check his or her blood pressure with his or her mobile devices
thanks to the embedded sensors and applications found on these devices [7]; it is
also possible to check the weather or climate readings of an area within a city
and to know which part of the city to avoid if the weather is not suitable for your
health [41]; a medical professional can check his or her patients health condition
using the application both of them share with the purpose of advising the patients
should any emergency occurs and so on. These examples are just a few of the
many advantages smart health has to offer and with the increase in technological
advancements, better devices are being produced to cope with the demands of the
smart health industry. These devices not only serve as health tools but they also serve
as good data acquisition tools, in which case the generated data could be processed
and useful inference can be made in the long run. This also makes Smart Health
applications integral parts of smart cities development. However, for smart health
to be a successful element within a smart city, it ought to be able to measure up to
the level of growth when compared to other aspects of a smart city. In other words,
smart health needs to advance with technology just like the other components of
a smart city. For this to work, processing of a smart health dataset would require
proper and improved techniques; this is somewhat becoming a research hurdle as
the datasets are generated by different devices with various operating capabilities
thus leading to datasets with varying output type and format. The question now
becomes; how do we process these datasets effectively and efficiently considering
the volume and format of these generated data in order to achieve the goals of smart
health? To provide answers to this question and others like it, different methods
were developed and proposed by various data scientists. These methods would
further metamorphous into much broader techniques, the most popular of them
being machine learning.

Machine learning (ML) is the ability of a machine to learn from inputs with
the goal of producing powerful algorithms for decision making. With advancing
technologies, comes different learning ways by which a machine learns. This
learning evolution has led to the development of more sophisticated tools like
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deep learning, extreme learning, etc. These tools have proven to be better to keep
up with the aspect of new technological developments than conventional machine
learning techniques. In fact, deep learning (one of the new tools) has a wide range of
applications in smart health, specifically bioinformatics [36], medical imaging [18],
disease prediction and analysis [40] to mention but a few. In the next section, we
will talk about the improvement of the deep learning that is the next generation of
machine learning.

2 Evolution of Deep Learning

The dataset generated by devices requires some form of processing for it to be
useful. This processing was done using techniques that include the conventional
machine learning algorithms. There two major types of machine learning algo-
rithms; Supervised learning algorithm, where an input data with labeled responses
are fed to the machine and the machine predicts the output (Support vector
machines, decision trees, etc.); and unsupervised learning algorithms, which groups
the input data into different classes or clusters based on certain characteristics (for
example, K-means, DBScan, etc.). Machine learning algorithms use the features
within a dataset to teach the machine how to identify patterns or specific characters
like handwriting and speech [38]. The usefulness of machine learning algorithms
in certain fields, for example, health care [51], computer vision [25], and so on [6],
made them the “go to” tools for data processing and analysis. However, due to the
increase in volume of datasets and the unstructured nature of data, these machine
learning algorithms tend to face limitations in achieving the desired results. These
and many other shortcomings lead to the development of a more computationally
intensive and powerful learning technique called deep learning.

Deep learning algorithms have been described as a set of algorithms that think
like the human brain [45]. A deep learning algorithm divides the dataset into layers
and learn each layer, one by one, more like a “Divide and conquer” approach to
problem solving. Deep learning techniques are gaining relevance as the year goes
by due to the ease in which deep learning algorithms tackle problems in relative
shorter time while consuming less memory. The development of deep learning was
a gradual process borne out of the need to develop a machine that can deliver faster
and work with high level of dimensions. This urge was given a boost when in 1958,
Rosenblatt invented “perceptron.” Hence, the first Artificial Neural Network (ANN)
emerged and more development was begun [43]. The goal is to model the machine
to think like the human brain and learn on its own. ANNs were used to do tasks that
ordinarily could have been difficult for the computer without certain defined rules.
However, as the year went by, improvements were needed to help the early invention
keep up with the changing trend in computation. One of these improvements was
introduced by Ivakhnenko [24] where he developed an algorithm for supervised
deep feed-forward network; in this algorithm, layers grow incrementally, then
trained using regression analysis and trimmed using validation sets to give effective
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output. Then in 1970, Linnainmaa developed the back propagation technique which
is considered as the backbone of deep learning. Fukushima [17] while building
his deep neocognition architecture introduced and added weights to convolutional
neural networks. This created a gradient-based deep learning algorithms. All these
were done in order to find a better way to train multiple layered network. To
further expand on previous stated techniques, LeCun et al. [29], combined the back
Propagation (BP) algorithm with a deep neural network in his research on hand
written zip code recognition which proved successful. This further led to other
useful ways to properly train a multilayered perceptron and further develop deep
learning algorithm as seen in [3, 11, 19, 20, 46]. These historical developments of
deep learning can be summed up into two major characteristics of deep learning. The
first characteristic is the ability to discover hidden structures within large datasets
using the back propagation algorithm which tells a machine how it should handle
its parameters used in the computation of a layer and its successor. This argument
sometimes lead to deep learning been termed as an example of representation
learning. Another characteristic is deep learning adjust to unforeseen circumstances
even if it has no knowledge of the rule governing such problems before hand. This is
a necessary characteristic since the machine cannot be trained with loose data. Loose
data occurs when proper problem description cannot be delivered to the machine
thus leading to inadequate data that could have helped the machine make meaningful
inference.

Deep learning is an effective tool in all fields through these two properties,
especially healthcare. The diverse applications of deep learning in healthcare have
evolved over the years and would be discussed in details in subsequent sections of
this chapter. However, deep learning methods in healthcare mainly discussed in the
following section.

3 Deep Learning-Based Methods

The following subsections will mention about the various type of deep learning
methods that are mostly applied on smart health technologies. Fundamental nota-
tions which are required to understand mathematical relations in the remaining part
of the section can be seen in Table 1, which has been adopted from [39].

3.1 Deep Feed-Forward Networks

Deep feed-forward primarily aims to approximate a function f ∗ by defining
a mapping y = f (x, θ) which learns the value of θ in order to get a best
approximation. To get the final value of y, several iterations are done within the
layers. A typical feed-forward neural network consists of three fundamental layers.
The input layer and the output layer should equal to the dimension of the input
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Table 1 Basic notations used in the chapter

Notations Definition

x Samples

y Outputs

v Visible vector

h Hidden vector

q State vector

W Matrix of weight vectors

M Total number of units for the hidden layer

wij Weights vector between hidden unit hj and visible unit vi

ti Signals

aik Mixing weights

Sj Binary state of a vector

s
q
i Binary state assigned to unit i by state vector q

Z Partition factor

bj Biased weights for the j -th hidden units

ai Biased weights for the i-th visible units

zi Total i-th inputs

vi Visible unit i

w2
kj Weight vector from the k-th unit in the hidden Layer 2 to the j -th output unit

w1
ji Weight vector from the j -th unit in the hidden Layer 1 to the i-th output unit

W 1
ji Matrix of weights from the j -th unit in the hidden Layer 1 to the i-th output unit

E(q) Energy of a state vector v

σ Activation function

Pr(q) Probability of a state vector q

E(v, h) Energy function with respect to visible and hidden units

pdf (v, h) Probability distribution with respect to visible and hidden units

(A(n(t |m))) Entropy of the posterior

space and output space of the model. The hidden layer can be single or multiple
according to the complexity of the model. Training process is required to ensure
that f (x) matches f ∗. In this case every sample in x has an accompanying attribute
in y ≈ f ∗ (x). In order to get the better approximations of f ∗ (x), the algorithm
develops and uses the hidden layers. The hidden layers are the iterative computations
which are done before the final result is sent to the output layer.

Mathematically, a basic feed-forward network with single hidden layer can be
described in Eq. (1). Let y1, . . . , yk, ..yM be M outputs for N dimensional input x

and H1 the number of neurons in the single hidden layer, then general output yk

could be given as follows:

yk(x,w) = σ

⎛
⎝

M∑
k=1

w
(2)
kj

H1∑
j=1

σj

(
N∑

i=1

w
(1)
j i xi

)
+ w

(1)
j0

⎞
⎠ + w

(2)
k0 (1)



28 M. Simsek et al.

Fig. 1 Basic feed-forward network with single hidden layer

where w
(2)
kj and w

(2)
k0 are weights associated with output layer; w

(1)
j i and w

(1)
j0 are

weights associated with hidden layer. Nonlinear modeling can be possible through
nonlinear activation function σ .

Deep feed-forward network in Fig. 2 has more hidden layer than basic feed-
forward network in Fig. 1. Number of hidden layer H can be shown in Fig. 2. The
more hidden layer provides more processing capability for Deep Networks.

3.2 Linear Factor Models

Given a latent variable h and a real variable x, and if

h ≈ p(h) (2)

Then we can define a linear model as Eq. (3).

x = wp(h) + b + noise (3)

where p(h) is a factorial distribution, b is the bias, and w is the weight, and the
noise is independent over all dimensions and Gaussian dependent.

Equation (3) is the base linear factor model where other forms will be derived
from as we will see in later subsections.
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Fig. 2 Deep feed-forward network with H number of hidden layers

3.2.1 Probabilistic Principal Component Analysis (PCA)

The first variant of the linear factor model is the PCA. In order to utilize Eq. (3), the
PCA allows the noise variation to occur when approximating the latent variable h

before the real valued variable x is observed. That is,

h ≈ N(h; 0, I ) (4)

With variables xi assumed to be conditionally independent with respect to h, we
get the following:

x ≈ N(x; b,WWT + ψ) (5)

In this case, x is a multivariate normal random variable, ψ is the covariant
matrix given as ψ = diag(σ 2). We can define σ 2 as per-variable variance and it
is represented in vector form [σ 2

1 + σ 2
2 + . . . + σ 2

n ]T . Substituting this into Eq. (4)
and adjusting the initial model equation (5), we obtain

x ≈ N(x; b,WWT + σ 2I ) (6)

Equation (6) is the model for the PCA and WWT + σ 2I is the covariance of the
variable x. Decomposing Eq. (6) further gives

x = Wh + b + σz (7)

where z ≈ N(z; 0, σ I ) is the introduced Gaussian noise.
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3.2.2 Independent Component Analysis (ICA)

The second variant of linear factor models is the ICA. The ICA divides observed
signals into many independent non-Gaussian parts, then fuse them to become the
observed/input data.

Suppose, we have T signal divided into T = (t1, . . . , tn)
T and a random vector

x given as x = (x1, . . . , xm)T , then the input data can be of the form

xi = ai,1t1 + . . . + ai,ktk + . . . + ai,ntn (8)

where ai,k is the mixing weights.
Now, if we let x1, x2, . . . , xm be the set of binary variables from m monitors with

a corresponding y1, y2, . . . , yn of n sources, then we have

xi = ∨n
j=1(gij ∧ yi), i = 1, 2, . . . , m (9)

where ∨ is Boolean “OR” and ∧ is Boolean “AND.” Equation (9) is called the binary
ICA model and the monitors and sources are in binary form.

3.3 Autoencoder

An autoencoder [22, 49] is a fully connected neural network which consists of three
layers such as input, hidden, and output. The autoencoder can be decoupled into two
separate parts: an encoder h = f (x) and a decoder r = g(h), both sharing the layer
which is often referred to as base vector as depicted in Fig. 3. If the autoencoder
successfully learns to place g(f (x)) = x everywhere, then it becomes irrelevant

Fig. 3 Autoencoder network
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because autoencoders are usually made just to be able to copy the original a bit but
not perfectly. They are viable tools for dimensionality reduction, feature learning,
and generative modeling.

There are various types of autoencoders which will be described briefly:

• Undercomplete Autoencoders: have a smaller dimension for hidden layer com-
pared to the input layer. This helps to obtain important features from the data.
Objective function in Eq. (10) minimizes the loss function by penalizing the
g(f (x)) for being different from the input x. Objective is to minimize the loss
function by penalizing the g(f (x)) for being different from the input x.

L = |x − g (f (x))| (10)

where L is the loss function.
• Regularized Autoencoders: This kind of autoencoder trains any type of architec-

ture by choosing the code dimension and other properties based on the complex
nature of the dataset to be modeled [4]. The regularized autoencoder uses a
loss function most times to give the model a leeway in exploiting other encoder
properties rather than limiting itself to just the ability to copy inputs to outputs.

• Sparse Autoencoders: have hidden neurons greater than input neurons. Sparsity
constraint is introduced on the hidden layer which is to prevent output layer
exactly copy to input data. They can still discover important features from the
data. The sparse autoencoder’s training requirement involves the imposition of
a sparsity penalty �(h) on the hidden layer h, together with the reconstruction
error equation (11).

L = |x − g (f (x))| + �(h) (11)

Again, sparse autoencoders are sometimes used to learn features during a
classification task.

• Denoising Autoencoder: is a stochastic autoencoder as a stochastic corruption
process to set some of the inputs to zero [49]. Denoising refers to intentionally
adding noise to the input before providing it to the network. Denoising autoen-
coders minimizes the loss function equation (12) between the output node and
the corrupted input x̃ which is obtained by adding noise to the input.

L = |x̃ − g (f (x))| (12)

• Contractive Autoencoders: is another regularization technique like sparse autoen-
coders and denoising autoencoders. It can be considered to have a robust learned
representation which is less sensitive to small variation in the data. Robustness
of the data representation is ensured by applying Frobenius norm of the Jacobian
matrix as a penalty to the loss function [42]. This penalty for the hidden layer
is calculated with respect to input. Once penalty term in Eq. (11) is changed
by Eq. (13), then Eq. (14) is used as Frobenius norm in Eq. (13). Hence, loss
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function can be obtained by changing the Eq. (11).

�(h) = λ
∥∥Jf (x)

∥∥2
F

(13)

∥∥Jf (x)
∥∥2

F
=

∑
ij

(
ahj (x)

∂xi

)2

(14)

In this case, the penalty �(h) is called the Frobenius norm.
The contractive autoencoders are trained to discourage any form of perturba-

tion of their input values, so they try to map the neighborhood of input values
into a much smaller neighborhood of output values.

3.4 Convolutional Neural Network (CNN)

Convolutional Neural Net is a more powerful deep learning technique to improve
the performance for current visual recognition tasks [1, 12]. CNN’s structure can
be determined in terms of the size, quality, and type of dataset. They are neural
networks that use mathematical convolutions besides general matrix multiplications.
CNNs consist of multiple receptive layers that process portions of the input image.
The outputs of CNNs are arranged in such a way that it creates some form of
overlapping in the input area, in order to obtain a higher-resolution representation
of the original image. The same procedure is run for every layer that is present in
the network. Moreover, the goal of CNNs is to learn data-specific kernels instead of
predefined kernels.

3.4.1 CNN Architecture

CNNs will utilize a series of convolutions and pooling operations during which the
features are detected. The fully connected layers will work as a classifier using these
extracted features. All operations in CNN are summarizes in Fig. 4. It is worthy to
note that though, any CNN might have a few amount of convolutional layers coupled
with pooling layers, it is optional for it to have fully connected layers.

• Convolutional Layer: Convolution is one of the main building blocks of CNNs.
The convolution is used for the mathematical combination of two functions and
the result is a function as well. The convolution is executed by sliding the filter
over the input. A matrix multiplication is performed for every location and sums
the result onto the feature map. The convolutional layer has a m × m × r input
image, where m is the height and width of the image and r is the number of
channels. It has k filters (or kernels) and size of each is n × n × q. n in this case,
is smaller than the image dimension. q could either be the same as the amount
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Fig. 4 Architecture of a CNN

of channels r or it might be smaller for every kernel. The filters’ size leads to
connected structures where each structure is linked with the image to constitute
k feature maps of size m − n + 1.

• Pooling Layer: After a convolution layer, a pooling layer is commonly added
between CNN layers. The main function of pooling layer is to reduce the
dimensionality to satisfy lower the number of parameters and computation in
the network. Hence, the training time is reduced and it can be possible to
control overfitting. Pooling layer sub-samples their input by applying a maximum
operation to the result produced by each filter or kernel. One major property of
pooling is to generate a fixed size output matrix that is required for classification.
The most favorite pooling is max pooling, which takes the maximum value in
each window.

• Fully Connected Layer: After the convolution and pooling layers, the last part is
required to be fully connected regular Neural Network to classify input images.
Neurons in a fully connected layer are connected to the activation functions in
the previous layer.

3.5 Deep Belief Network (DBN)

The DBN consists of stochastic binary unit layers where each connected layers have
some weight. The DBN has multiple layers of latent variables that is connected
between layers [21, 23]. Though with these connections amongst layers, there exists
no visible connections amongst units that are within a particular layer. Again, the
DBN learns to do a new construction of its inputs, and thereafter train them for
classification tasks. One important feature of the DBN is that, they are learned
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one particular layer per time using the greedy scheme. The DBN has the following
properties:

• When learning the generative weights, a layer by layer approach is used which
determines how each variable in a layer depends on variables in another layer
that is above it.

• After learning each latent variable, their values are inferred using a single pass
which begins with an observed data in the least layer.

Furthermore, suppose, we have the visible units v, the hidden units, h that are
conditionally independent, the weights W , that is learned by a restricted Boltzmann
machine, then the probability of generating a visible vector v, is

p(v) =
∑
h

p(h\W)p(v\h,W) (15)

where p(h\W) is the prior distribution over hidden vectors and p(v\h,W) is the
posterior distribution over visible vectors.

In one sense, if a DBN has just one hidden layer, it is called a restricted
Boltzmann machine (RBM). In this case using a constructive divergence method,
we can train the first RBM which subsequently leads to the training of DBN after
certain number of iterations.

3.6 Boltzmann Machine (BM)

BM is a symmetrically connected network of neuron-like units (Fig. 5) that make
binary stochastic decisions [2]. The learning algorithms of BMs allow them to fully
discover useful and important features that portrays complex regularities in datasets.
BMs are mostly used to solve search and learning problems.

To get a better understanding, assume a unit i has an opportunity to always update
its binary state at any given time; it computes its total input as seen in Eq. (16),
below.

zi = bi +
∑
j

sjwij (16)

where wij refers to the connection weight between units i, j , and sj is 1 if j is on
or 0 when j is off. The probability that unit i comes on is given as

Pr(si = 1) = 1

1 + e−zi
(17)
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Fig. 5 Boltzmann network

Now, if each unit is updated sequentially, the network in the probability of a state
vector v can be obtained in Boltzmann distribution as follows:

Pr(q) = e−E(q)

∑
u e−E(u)

(18)

where E(q) is the energy of state vector q and defined as

E(q) = −
∑

i

s
q
i bi −

∑
i<j

s
q
i s

q
j wij (19)

where s
q
i refers to the binary state assigned to unit i by state vector q.

Should any of these connections weights be selected in a way that the energies of
each state vectors represent their costs, then we can view the stochastic nature of a
BM as a means of exiting from an inappropriate local optima while it continues its
search for low-cost solutions.

When learning a BM, it can be done with the hidden units or without them. There
are special cases or types of BM, out of which two are highlighted below.

Mean Field Boltzmann Machines. This kind of BM uses mean field units which
possesses deterministic values between 0 and 1, and they are used to compute the
main value for a unit’s state based on the current states of the other units.

High-order Boltzmann machines.In this type, the structure and the rule for
learning encourage the use of energy functions that are complicated.
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3.7 Restricted Boltzmann Machines (RBM)

In an RBM, there exists layers of visible and hidden units with intraconnections
within these layers (that is, no hidden-hidden nor visible-visible connections) [22,
28].

With the hidden units (h) being independent conditionally on the visible (v)

vector, the unbiased samples from 〈sisj 〉data can be obtained in one single step.
In order to take samples from 〈sisj 〉model requires a number of iterations with
alternating activities between updating the hidden units and the visible units in
parallel times [44].

Mathematically, the energy function of an RBM with hidden and visible units
consisting of W = (wij ) (where W is the matrix of weights) associated with the
connection between hidden unit hj and visible unit vi , can be written as

E(v, h) = −
∑

i

aivi −
∑
j

bjhj −
∑

i

∑
j

viwi,j hj (20)

with a probability distribution of

pdf (v, h) = 1

Z
e−E(v,h) (21)

After learning is finished for one hidden layer, the activity vectors of the hidden
units can be treated as “data” to train another RBM. This particular computation
can be repeated as many times as possible in order to learn as many hidden layers
as needed. After learning many hidden layers, the entire network can be seen as a
single but multi-layered generative model where additional hidden layers contribute
to the improvement of the lower bound (Fig. 6).

Learning hidden layers one at a time has been seen as a very efficient way to learn
and understand deep neural networks that possess multiple hidden layers with quite
a number of weights. The learning might be unsupervised but the highest features
are generally useful for classification purposes.

3.8 Variational Autoencoders (VAE)

These autoencoders use learned approximations to make inference. They are trained
mainly using gradient-based methods. To obtain a sample from an already built
model, the VAE chooses a sample t from the distribution pmodel(t) and runs it
through a generator network g(t). After which, the random variable m is chosen
randomly from the distribution pmodel(m; g(t)) = pmodel(m|t). While training is
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Fig. 6 Restricted Boltzmann
network

going on, the generated approximate inference network n(l) is used to derive t

while pmodel(m|t) becomes the encoder of the network. In other words a VAE could
be trained properly if the variational lower bound D(n) that is associated with the
random variable m is maximized such that

D(n) = Et≈n(t |m)logpmodel(t, m) + A(n(t |m)) (22)

where A(n(t |m)) refers to the entropy of the posterior.
If n is a Gaussian distribution with an additive noise added to its predicted mean

value, then a maximum entropy value would increase the value of the standard
deviation of the noise. Another way of saying this is, the entropy value allows the
variational posterior to place a steep probability mass function on a number of t

items which would have produced m rather than reducing it to just a point estimate
of the most probable value.

While some approaches to VAE infer the value of n through an optimization
algorithm, the main goal however is to train any parametric encoder to produce
parameters of n. Thus, if t is a continuous variable, then carrying out a back
propagation on the samples of m will give a gradient with respect to the encoder(θ ).

One important feature with the VAE is that it is very possible to train a combined
parametric encoder and generator network function, thus giving the model the
ability to learn a predictable coordinate system which the encoder captures.
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3.9 Auto-Regressive (AR) Model

An auto-regressive (AR) model is utilized to predict future characteristics based on
past values. AR is also used for forecasting when there is some correlation between
values in a time series and the values [27, 35]. Since AR requires past data to model
the behavior, the name auto-regressive is related to “self.” The process is very similar
to a linear regression of the data in the current series opposing one or more past
values in the series.

The AR process is a stochastic process, which has degrees of uncertainty or
randomness built in. The randomness means that AR might be able to predict future
trends accurately in terms of past data, but this accuracy is never going to get %100.
Generally, the process can be close enough to the desired response. AR models are
also called conditional models or Markov models.

An AR(p) model is an auto-regressive model where specific lagged values of yt

are used as predictor variables. The value for “p” is called the order. AR(1) indicates
the first-order auto-regressive process. The response in a first-order AR process at
some point in time t is related only to time delayed response. The high order AR
process is related to the corresponding time delayed response data. AR(p) model
formulation is given as follows:

yt = δ + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + At (23)

where At is white noise and ϕ indicates constant values. Moreover yt−1 indicates
the first-order time delayed response.

δ in (24) is seen in (23).

δ =
(

1 −
p∑

i=1

φi

)
μ (24)

where μ is the process mean.

3.10 Nonlinear Auto-Regressive (NAR) Neural Networks

Nonlinear auto-regressive (NAR) neural networks are mostly suitable for prediction
and forecasting [14, 16]. The output of NAR neural network is generated by
regarding different ordered delayed outputs. Hence previous output data are used for
prediction of the future output. Nonlinear activation functions provide a nonlinear
relationship between time delayed data and the current time output. The structure of
NAR neural network can be seen in Fig. 7.
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Fig. 7 Auto-regressive
Neural Network (ARNN)

4 Applications

Health care systems are being revolutionized due to rapid growth in technology.
The applications of various technological innovations have contributed immensely
to the growth of quality healthcare delivery. As stated in Sect. 1, the growth of
smart health can be attributed to the ever-growing ecosystem in the technological
space. And as this growth increases, comes the burden of specialization in terms
of proper algorithms for problem solving; ability to synchronize the data acquired
with the intended technique for data analysis; how and when to use a particular
technique; what techniques should be used for effective results, amongst many
others. These are some of the many problems plaguing the smart health industry.
However intimidating these problems might seem, research has been conducted
to provide up-to-date solutions to these problems. Most research was conducted
according to various themes in the industry which includes but not limited to data
acquisition, data processing, data analytics, and learning techniques. That said, for
any meaningful progress to be made, there is always a base case. The base case
for smart health care is a 2-prong one: data acquisition and data analytics. Data
acquisition can occur in various forms with different output format. This often leads
to data heterogeneity when various devices are used to acquire data for experimental
purposes. The format of the acquired data determines what kind of techniques that
would be used for analytics. Deep learning, one of the tools used for data analytics
has proven to be an effective tool due to its accuracy, runtime, and usage with almost
any kind of data. Deep learning can make classify, cluster, and predict possible
by getting signals, or structures in datasets. When deep network is trained, it can
be used for prediction about the data. The prediction error of it can be measured
regarding with the training set. What’s more is that deep learning has a range of
applications in the smart health industry. In this section of the chapter, we shall be
looking at a few applications of deep learning techniques in smart health. These
applications shall be discussed based on three health categories; bioinformatics,
medical imaging, and predictive analytics.
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4.1 BioInformatics

Bioinformatics is one area in the health industry that has been receiving lots
of attention in recent years. This is not far-fetched since the health industry is
currently experiencing massive digitization and the utilization of this massive
technological growth is evident. Deep learning techniques are being used widely
in the bioinformatics area of health care. Specific cases are summarized as follows.
Understanding protein structures is a key research topic in the medical area. This is
due to the fact that protein structures are key components in the understanding of the
functions of proteins. The authors in [36] proposed a deep learning technique called
sparse autoencoder for sequence-based determination of the distance between two
neighboring cα atoms represented by the angles between Cαi−1 −Cαi −Cαi+1 (θ )
and Cαi − Cαi + 1 (τ ). They believed that accurate predictions of these angles can
appropriately give a more accurate distance. Also, the predicted α and τ values
could be used to construct local structures with good accuracies. In the same
vein, the authors in [5] show that DNA- and RNA- binding proteins sequence
specificities can be derived from experimental data. They called this approach
“DeepMind.” This method uses the convolutional neural network for training the
acquired data and then used back propagation to compute the derivative of all
parameters that are in the model. The result obtained from Deepmind was better
than other methods used in this particular application area. Also, Lee and Yoon
[30] used a deep learning-based technique-restricted Boltzmann machines to predict
protein secondary structure. The demand for protein secondary structure predictions
is on the increase in the protein discovery sphere of bioinformatics. The authors
generated multiple layers for the intended network from a dataset of 1230 protein
chains, used the RBM for training, analysis, and prediction. The outcome of the
prediction was evaluated using the SOV scoring functions. Their proposed method
generated a result of 80.7% accuracy when tested with an independent test dataset.
In their work, Leung et al. [31] used deep neural network to create a model that
can predict splicing patterns in individual tissues as well as individual differences
found in splicing patterns across tissues. Zhang et al. [52] with a view to model the
structural binding for RNA-binding proteins used a deep learning framework. The
developed learning framework constructed a representation for the specificities of
the RNA-binding proteins and also predict new binding sites within the RNA being
studied. Motivated by the need to accurately recognize gene expressions, the authors
in [9] used D-GEXT (feed-forward neural network-based technique) to determine
the expressions of certain target genes. The result from this experiment showed
that D-GEX outperforms other methods by 6.57%. Aside gene classifications and
expressions, deep learning is also being used in cancer research. Specifically, to
enhance diagnosis of cancer, Fakoor et al. [13] proposed a method that is based
on two deep learning techniques (principal component analysis and autoencoder).
Their proposed method was able to detect and classify cancer types accurately
from different cancer datasets. In similar vein, Danaee et al. [10] used the stacked
denoising autoencoder for feature extraction and classification of cancer types from
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high dimensional gene expression dataset with a view to accurately detect cancer.
Again, a deep learning-based model was proposed by Wei et al. [50] for breast
cancer image classification. The deep learning technique used for this research was
convolutional neural network where class and sub-class labels of breast cancer are
labeled in such a way that the distance between features in breast cancer images are
restricted within a certain threshold. This method produced a classification accuracy
of 97%. Similarly, Liu et al. [34] developed “XmasNet” a convolutional neural
networks-based classification technique for prostate cancer identification.

4.2 Medical Imaging

While deep learning has a presence in bioinformatics, its presence is also found
in medical imaging. Over the years, scientist and health care professionals have
been seeking for new ways to process and analyze medical images properly and
in a timely manner. And since deep learning surfaced, various deep learning-
based techniques have been developed. These techniques have produced results
that have outperformed the traditional image processing techniques. A case specific
example is the use of deep learning algorithm for the detection of melanoma (a
deadly form of skin cancer). In order to detect this tumor, the algorithm learns
more about the features of the disease from a dataset containing medical images
and makes appropriate predictions. Similarly, Li et al. [33] developed a method
based on deep learning (CNN) for the detection of mitotic cells from pathological
slides. This is done by first creating a deep segmentation of the mitosis region
and there after designing a deep detection network for the localization of the
mitosis region. The results from this showed a better F-score when compared to
other methods. Aside tumor detection, deep learning is also being used to track
tumor growth and development by generating probability heat maps which provides
various information on the shape, size, density, and location of tumors [47]. In [48],
the authors used deep learning-based technique called the stacked autoencoder to
identify and categorize organs in MRI images from unlabeled and unstructured
dataset. This they did with the hope of developing a working technique for organ
identification within abnormal datasets. This technique achieved an accuracy of
96%. In order to be able to detect diabetic retinopathy early, Gulshan et al.
[18] developed a deep learning algorithm that detects diabetic retinopathy early
using images in the retinal fundus photographs. The deep learning algorithm used
was the CNN and it had an accuracy of 97% in detecting this deadly case of
diabetes. For brain lesion segmentation, Kamnitsas et al. [26] proposed a CNN-
based technique to overcome earlier computational burden experienced during brain
lesion segmentation; this technique is 11 layers deep and has proven to be an
effective scheme when run on the MRI dataset of patients with brain injuries and
brain tumors. Using non-medical image database, the CNN was used to identify
various types of pathologies present in chest X-ray images; the idea was to use the
algorithm/result to prove that deep learning could be applied to databases that are
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all non-medical and still produce useful results and this experiment yielded a 93%
accuracy [8].

4.3 Predictive Analytics

Predictive analytics is the use of past data coupled with some computations or
analytical tools to predict an event. In the medical case, it is the use of a medical
history or health care history to predict the outcome of an event. Predictive analytics
has been an ongoing activity in recent years as successful prediction can help avoid
adverse health condition of a patient or help reduce the effect of an outbreak. Various
techniques have been employed in predictive analytics, of which deep learning is
one of them. Some of the applications of deep learning in this aspect of health care
are highlighted in the following sentences. Miotto et al. [37] proposed a method
called Deep Patient, which used denoising autoencoder for deep feature learning
and EHR data extraction with the view to properly facilitate clinical prediction
of patients’ health status. In similar vein, Pham et al. [40] developed DeepCare
whose sole purpose is to read medical records and make predictions of future
health outcomes. DeepCare uses long short-term memory for this purpose. Both
Deep Patient and DeepCare showed a high performance rate with regard to disease
predictions.

Table 2 shows a summary of the major applications of deep learning and their
associated techniques.

Table 2 A summary of deep learning applications in smart health

Smart health theme Deep learning technique used

Bioinformatics Protein Structure prediction Sparse autoencoder [36]

CNN [5]

RBM [30]

Gene expression DNN [31, 52]

Feed-forward network [9]

Cancer detection and identification PCA,Autoencoder [13]

Denoising autoencoder [10]

CNN [34, 50]

Medical imaging Tumor detection CNN [33, 47]

Brain lesion CNN [26]

Organ Identification Stacked Autoencoder [18, 48]

Predictive analytics Patients health prediction Denoising autoencoder [37, 40]

Auto-regressive NN [16]
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5 Challenges in Deep Learning

Deep learning algorithms require huge amount of data to enable them perform
excellently. The more perfection you want; the more data you will need to feed
to the machine to enable the algorithms produce models that are powerful enough
for your needs. This is mostly the bane of deep learning. And with big data comes
the huge amounts of parameters required to get the deep learning algorithm properly
tuned. In most cases, this huge amount of data is not available and whenever they
are, it is mostly not enough as such, researchers are expected to augment the learning
process through approximation.

Another challenge is the issue of overfitting. This is usually common in neural
networks where there is a huge difference in the error that occurs when training a
dataset and that which occur when a new dataset is introduced. This is an issue since
the reason a model is being trained is to be able to perform well when it is used on
a new dataset rather than the one it was developed with.

Again, deep learning usually requires huge resource deployments for it to
perform excellently well. That is, the more powerful your computing resources
are, the more likely you are to get a more effective result from the deep learning
algorithm. Aside computing resources, you would also require a huge amount
of storage capabilities to train models effectively. Also, deep learning algorithm
requires more time to train a dataset than the usual machine learning techniques.

Furthermore, deep learning algorithms are problem specific. That is, when a
model is trained for a particular problem, it is usually difficult to tweak it for another
kind of problem. This lack of flexibility is an issue because, it would lead to a waste
of time to retrain and redevelop a new model for a seemingly similar problem.

6 Conclusion

Deep learning is proving to be an emerging and usable technique in smart health
processing and applications. Even with its challenges, its use has been widely
accepted in smart health.In the beginning of this chapter, we discussed briefly the
emergence of smart city and its links to smart health. We also talked about the
link between smart health and machine learning in the introductory section of this
chapter. The recent transition from machine learning to deep learning was also
discussed in Sect. 2, where we briefly highlighted the deep learning development
timeline and evolution. Then, we introduced the basic deep learning techniques
(feed-forward networks, autoencoders, linear factor models, convolutional neural
networks) that are been used in smart health along with their major formulations.
Furthermore, we highlighted the applications of deep learning techniques in smart
health from cancer diagnosis to health status predictions. These applications were
divided along the lines of bioinformatics, medical imaging, and predictive analytics.
Lastly, the challenges of deep learning were discussed in the last section of this
chapter.
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Emotional States Detection Approaches
Based on Physiological Signals for
Healthcare Applications: A Review

Diana Patricia Tobón Vallejo and Abdulmotaleb El Saddik

Abstract Mood disorders, anxiety, depression, and stress affect people’s quality of
life and increase the vulnerability to diseases and infections. Depression, e.g., can
carry undesirable consequences such as death. Hence, emotional states detection
approaches using wearable technology are gaining interest in the last few years.
Emerging wearable devices allow monitoring different physiological signals in
order to extract useful information about people’s health status and provide feedback
about their health condition. Wearable applications include e.g., patient monitoring,
stress detection, fitness monitoring, wellness monitoring, and assisted living for
elderly people, to name a few. This increased interests in wearable applications
have allowed the development of new approaches to assist people in everyday
activities and emergencies that can be incorporated into the smart city concept.
Accurate emotional state detection approaches will allow an effective assistance,
thus improving people’s quality of life and well-being. With these issues in
mind, this chapter discusses existing emotional states’ approaches using machine
and/or deep learning techniques, the most commonly used physiological signals
in these approaches, existing physiological databases for emotion recognition, and
highlights challenges and future research directions in this field.
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1 Introduction

Negative emotional states changes affect physical health. They can be originated
by several conditions such as depression, stress, mood disorders, drug addiction,
and anxiety, thus affecting people’s quality of life and well-being. Healthcare
applications can aid to alleviate these consequences providing feedback for ther-
apies, treatments, and prevention by means of monitoring, detecting, and analyzing
physiological and emotional state information about people’s health status [1].
Burgeoning technologies and applications allow these healthcare applications to
occur. Internet of Things (IoT) incorporated within the smart city concept allows
that “the things” (i.e., sensors and actuators) can interact between them and send
physiological information in real time for complete health assistance. Thus, citizens
can be monitored in their everyday activities in order to assist them with health
situations. The big picture of this application is depicted in Fig. 1. The user will
wear biomedical sensors to monitor physiological signals. That information will be
sent to a central device (or server) to be processed and analyzed. Then, the results
of this analysis will provide information about actions or treatments to take in order
to improve the citizen’s health condition.

The use of wearable technology has been increasing in the last few years.
The global analyst firm, CCS insight Ltd, indicates that the wearable market is

Fig. 1 Envisioned proposed application
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increasing from 84 million units in 2015 to 245 million units in 2019. This is due to
the so-called quantified-self applications, where users are interested in monitoring
their physiological signals by themselves without requiring a health practitioner,
unless there is an emergency about a disease condition [2]. Consequently, wearable
technology applications can contribute to reducing healthcare costs and providing
quality healthcare services.

On the other hand, according to the World Health Organization (WHO), the
population aged over 60 years will increase from 12% in 2015 to 22% in 2050,
thus pressing for effective and accurate wearable-based applications for senior
people. Hence, cost-saving healthcare applications where elderly people can be
safe, independent, and move freely are required [3]. Thereby, assisted living
applications will allow independency and a healthier lifestyle. This can be achieved
not only for elderly people but also for people suffering from diseases, stress [4],
requiring treatments, or therapies, as well as those looking for improving their
well-being [5]. Stress, e.g., has been identified as a risk factor for depression,
anxiety, gastroesophageal reflux, hypertension, and coronary disease [6]. Healthcare
applications can aid to control and reduce health problems related to high levels of
stress. In [7], e.g., a platform was proposed to assist learners in stressful educational
activities. Changes in physiological signals associated with stress are detected to
further recommend learners to relax through ambient sensors. The learners perceive
recommended actions in terms of light, sound, or vibration at a relaxation breath rate
in order to maximize learning engagement. Consequently, learners’ physiological
states are controlled by regulating breathing. Another example of stress detection
is presented in [8]. Emotional state detection was performed for drivers suffering
from tiredness and stress. Four emotional states such as concentration, tension,
tiredness, and relaxation are identified in real-world driving situations. These
emotional states are identified using a body sensor network (WBSN) to be integrated
into a vehicular onboard unit, where emergency messages are transmitted to other
vehicles, emergency services, or roadside units in order to avoid fatal accidents.

Emotional states are connected to physical health. Hence, the importance of
measuring emotional state changes. This has been a field of interest for the affective
computing research. Emotional states are detected using hardware and software
technologies [6]. The main goal is to design innovative human interaction models,
where the human and the system can interact in a natural manner through multi-
modal human communication [9]. Affective computing has two main branches such
as detection and recognition, and simulation of emotional states in computers [6].
Emotional states can be recognized through physiological sensors since emotions
induce physiological changes (e.g., heartbeat and respiration increase with fear
[1]). Hence, emotional states detection systems can help users to enhance their
experience, motivate toward a certain goal, and model human behaviors [10].

The terms affect and emotion have been used in affective computing interchange-
ably [11]. Psychologists describe affect as the experience of emotion [12] in terms of
discrete categories (in a language daily life [9]) of basic emotions such as happiness,
sadness, fear, anger, disgust, and surprise [1]. Researchers in [13, 14] studied this
basic emotions description, where it is indicated that humans perceive emotions in
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Fig. 2 Two-dimensional model comprising arousal and valence [17]

the same way that facial expressions. Other emotions such as frustration and stress
have been studied in [6]. Human behavior is influenced by physiological changes
due to emotional states. These physiological changes are divided into categories
such as arousal and valence [6, 15]. Arousal is linked to the autonomic nervous
system (ANS) and allows the evaluation of valence through physiological sensors.
Discrete emotion recognition systems are based on a representation in 2D dimension
[9, 16], where it is simplified in classifications such as two class (positive vs.
negative and active vs. passive) as depicted in Fig. 2 [17]. Thus, the 2D dimension
corresponds to evaluation and activation, which reflect the main characteristics
of emotion. The evaluation dimension measures human feelings from positive to
negative (i.e., valence). The activation dimension, in turn, measures if humans take
actions under an emotional state from active to passive (i.e., arousal) [9]. A 3D
model was suggested in [18], where attention–rejection was additionally added to
the 2D model as shown in Fig. 3. These tendencies have been associated with stance
dimension (e.g., fear associated with the action of flight, and anger associated with
the action of fight [17]).

In [19], it was reported that positive emotions help to recover from aftermath
caused by negative emotions, thus supporting the theory that negative emotions
induce the organism to escape from homeostasis, while positive emotions bring the
organism to return to homeostatic levels [17]. Thus, ANS activity provides reliable
indications about emotional state changes [20]. It allows exploring the correlation
between mood disorders and neurobiological and psychophysiological factors [21].
Researches have shown how ANS changes according to valence and arousal. Those
are the two main dimensions of the affect model known as circumplex model of
affect (CMA) [22]. Some approaches have provided evidence that the accuracy
of arousal discrimination is higher than valence discrimination. The reason could
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Fig. 3 Three-dimensional model comprising arousal, valence, and stance [17]

be that arousal corresponds to discharge in ANS activities and can be measured
directly (e.g., from sweat gland and blood pressure). Valence, in turn, requires cross-
correlated ANS reaction analysis [17].

Machine and/or deep learning (DL) approaches can contribute to scenarios
where human interpretation is difficult, and facilitate the diagnosis or health issues
detection by reducing the uncertainty in the process of decision [23]. These
approaches will allow the integration of several physiological signals that monitor
people’s health status for the emotional detection task. The information collected
by the sensors is sent to a server to be processed and analyzed. As a result, users
will obtain a feedback about their health status based on the outcomes from the
emotional state detection approach. Those outcomes are used to guide the users
to take actions in order to improve their well-being and quality of life, as well
as to detect emergency events that need assistance from a health practitioner.
Given the importance of emotional states detection in improving well-being, this
chapter pretends to give an overview about existing machine and/or DL approaches
for emotional state detection using physiological signals and highlights current
challenges and possible research directions in this field. Therefore, questions that
arise are (1) Which approaches are used to detect people’ emotional states using
physiological signals? (2) Are the existing approaches able to detect correctly
people’s emotional states to improve their quality of life and well-being?

The rest of this chapter is organized as follows: Sect. 2 presents the most
commonly used physiological signals for the emotional state detection task, Sect.
3 summarizes some existing machine and/or DL approaches for emotional state
detection, Sect. 4 surveys available emotional state detection databases, and Sect. 5
discusses the challenges and futures research directions in this field.
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2 Used Physiological Signals for Emotional State Detection

Existing low-cost wearable biological sensors in the market allow detecting physi-
ological signal changes induced by emotions [1]. These sensors give the possibility
to monitor humans’ emotions anywhere at any time in order to detect biological
patterns that reflect emotional states changes [11]. They can be integrated in
everyday activities in watches, T-shirts, and shoes [24], and are able to monitor
different conditions in healthcare applications [25, 26]. A combination of several
biological sensors (i.e., multimodal approach) has presented better performance
for emotion recognition than only one biological sensor (i.e., unimodal approach)
[7]. That combination aids to alleviate the uncertainty in the raw signals [11]. The
importance of physiological signal monitoring lies in the central and autonomic
nervous system (ANS) is responsible for several reactions of emotions and regulates
stress and anxiety [27]. Consequently, many of these reactions can be observed
by analyzing the physiological signals’ behavior. Typical employed physiological
signals for emotional state recognition are explained to follow and summarized in
Table 1.

• Electroencephalogram (EEG): This signal corresponds to the brain activity
measured by electrodes on the scalp. It shows the voltage fluctuations resulting
from the ionic current within the neurons. The EEG signals are divided into
four frequency rhythms. Delta waves corresponding to frequencies below 4 Hz
that have the highest amplitude (about 250–325 μV) and slowest rhythms.
Theta waves that are between 4 Hz and 8 Hz with greater amplitudes. Alpha
waves are between 8 and 12 Hz resulting from relaxed and alerted stages.
Finally, Beta waves are between 14 and 32 Hz or 50 Hz corresponding to
high-frequency rhythms and low voltage [28]. Ongoing brain activity can be
recorded to find the EEG relation with emotional states [29]. It allows monitoring
of different emotional states since physiological manifestations are produced
due to ANS stimulation. For example, stress response that is originated in the
amygdala, is then communicated with the hypothalamus, which further initiates
the ANS response [30]. Hence, the induced potentials between the amygdala and
hypothalamus are recorded at the scalp [31]. EEG features are used to classify
emotional dimensions such as arousal, valence, and dominance (i.e., stance) [11].
Two types of neural activity are attention and meditation. Attention is related
to an increase in Beta waves and indicates alertness [8]. Meditation, in turn,
is related to increases in Alpha waves and indicates relaxation. Studies have
shown that positive emotions such as joy, happiness, and interest are associated
with the left frontal area. Negative emotions such as sadness, fear, and disgust
are associated with the right frontal region [32]. However, EEG signals are
highly contaminated with muscle artifacts generated by muscle contractions, thus
imposing the use of effective EEG denoising techniques.

• Electromyogram (EMG): This signal measures the electrical activity of mus-
cle’s motor units that are controlled by the nervous system. The signals are col-
lected either on the surface or intramuscular. Surface EMG signals are recorded
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Table 1 Summary of used physiological signals for the emotional state detection task

Physiological signal Abbreviation Body measure Measured emotion Limitation

Electroencephalogram EEG Brain activity Stress, joy,
happiness,
interest,
sadness, fear,
disgust

Muscle
artifacts

Electromyogram EMG Electrical
activity of
muscle

Reflect negative
valence
emotions

Presence of
artifacts and
EMG complex
pattern

Electrocardiogram ECG Heart activity Stress,
depression, fear,
sadness, anger,
happiness,
surprise,
disgust, joy,
amusement

Affected by
movement,
respiration,
muscle
artifacts

Electrodermal
activity

EDA, GSR,
SC

Changes in the
skin
conductance,
sweat gland
activity (finger
or wrist)

Engagement,
excitement,
stress, calmness,
boredom,
disengagement

Noise,
artifacts

Photoplethysmography PPG Change of
blood’s
volume in the
tissues over
time

Same as ECG
since heart rate
can be detected

Motion artifact

Respiration RESP Breathing
capture

Stress Artifacts by
body
movement

Skin temperature ST Corporal
temperature

Positive and
negative
emotions
(valence)

Artifacts by
body
movement

using non-invasive electrodes. Intramuscular EMG signals, in turn, use invasive
sensors. Surface EMG measurements are preferred in healthcare applications.
These EMG measurements permit to understand the human body’s behaviors
under pathological and normal conditions [33]. In the emotion recognition field,
this signal has been used to reflect negative valence emotions [11, 34]. However,
the signal analysis is difficult due to artifacts and the EMG complex pattern.
Those artifacts come from electronic equipment and physiological factors.

• Electrocardiogram (ECG): This signal shows the heart activity waveform. It
is one of the most commonly measured physiological signals in wireless body
area networks (WBANs) and wearable applications. According to the Heart and
Stroke Foundation, it is a powerful tool that helps clinicians to diagnose, detect,
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and monitor heart diseases. Beyond diagnosis, ECG signals have been used in
applications such as stress detection, athlete endurance, remote patient mon-
itoring, patient rehabilitation, biofeedback, assisted living, biometrics, fitness,
depression states detection, performance, and wellness monitoring [2]. Heart
rate variability (HRV) is a noninvasive assessment of the ANS in healthy and
patients with cardiac diseases [35]. The ANS is composed of the sympathetic
(prepares the body for action and maintains homeostasis) and parasympathetic
(vagal) systems (stimulates the body for relaxation). The heart rhythm changes
according to the ANS activity. The parasympathetic nervous system is associated
with mental states and physical well-being. Positive emotions are associated
with the increase in the vagal activity, while decreasing in the vagal activity is
associated with mortality, anxiety, cardiovascular disease [36], and depression
[37]. Existing studies have shown the relationship between ECG and emotional
states. For example, in [38] it was reported that emotions such as fear, sadness,
and anger produce higher heart rate (HR) than happiness, surprise, and disgust.
In [39], decreased HRV was associated with happiness, while an increased
HRV was associated with joy and amusement. In addition, stress states can
be monitored examining the ANS activity by analyzing the HR. A stressful
situation induces an increase in the HR. Thus, it allows monitoring how fast
the body responds to stress, how long the stress response lasts, and how fast
the parasympathetic system can act to reduce the stress [6]. Conventionally, 12
electrodes are connected to the body to measure the ECG signal. Nevertheless,
Lead I configuration is the most used in affective computing systems, which only
requires two electrodes [11, 40].

• Electrodermal activity (EDA): This signal is commonly also known as Gal-
vanic Skin Response (GSR) and Skin Conductance (SC). It shows changes in SC
at the surface while an activity is monitored. The SC is based on sweat gland
activity [6]. It is usually measured at the finger and not always requires gel for
conductivity [6]. It is one powerful measure of the ANS neural pathway since it is
controlled directly by the sympathetic branch. An EDA sensor placed on fingers
has been used to identify emotional changes produced by affective sounds in [5].
Higher EDA reactions have been found compared to neutral stimuli in response
to valence stimuli [20]. Other studies have depicted EDA responses generated
by emotional arousal [41, 42]. Higher levels of EDA are associated with higher
levels of arousal and indicate a user more engaged, excited, or stressed. Lower
levels of EDA, in turn, are related to calmness, boredom, or disengagement
and indicate lower levels of arousal [8]. In addition, some research works have
shown measurements at the wrist to be highly correlated to the finger. This
helps to improve wearability in healthcare applications [43, 44]. Stress detection
approaches use skin measurements since they provide an easy setup. High-stress
situations activate the gland causing resistance to current flow and affecting the
skin conductivity. In [17], it was found that SC is linearly correlated with arousal
changes while listening to music.

• Photoplethysmography (PPG): This signal measures the change of blood’s
volume in the tissues over time. The skin is illuminated through a pulse oximeter
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to measure the light absorption. A light-emitting diode (LED) is radiated toward
the skin and received the reflected light from the photodetector [45]. The PPG
signal periodicity is similar to the ECG due to blood goes to the capillary vessels
at every beat of heart [45]. Thus, the heart rate can be estimated from PPG
signals. The physiological analysis of PPG signals is known that is the result of
the interaction between autonomic, respiratory, and cardiovascular systems [46].
The PPG measurement technique is also used to measure blood volume pressure
(BVP), thus allowing the detection of the two phases of cardiac cycle, i.e., systole
and diastole. In every heartbeat, the blood is pushed from the ventricles to the
aorta. This produces a pressure wave that travels from the heart to the peripherals
vessels. That flow depends on arterial properties such as elasticity, stiffness, or
thickness. Since the blood pressure depends on the arterial properties, it can give
information about the status of the cardiovascular system [47].

• Respiration (RESP): The signal can be measured using noninvasive sensors
such as piezoelectric sensors, linear variable differential transformers, strain
gauges, and respiratory inductive plethysmographs to capture breathing [48].
The piezoelectric sensor, e.g., composed of a crystal that when compressed or
stretched, it generates a voltage [49]. The respiration signal can be affected by
nervous system, cardiovascular system, and excretory system, thus providing an
indication of failure of those systems [48]. The respiration rate reflects arousal
[11, 50] and its activity can be an indication of stress. Physical stress results
in ventilation as a response to the ANS activity [50]. In the hyperventilation
process, more CO2 leaves the body causing reductions in O2 delivery. These lead
to physiological alterations that have been usually sensed from ECG and EEG
directly [6].

• Skin temperature (ST): It carries information about the autonomic nervous
system. The sympathetic system activation will conduct to vasoconstriction in
the extremities, which will produce lower extremity temperatures [51]. Several
studies have reported changes in the skin temperature with the emotion. For
example, in [11] was reported that skin temperature has valence information.
In addition, higher skin temperatures for low-intensity negative emotions were
reported in [52] compared to low-intensity positive emotions.

Several approaches for emotional states detection based on physiological signal
monitoring have been proposed. A platform for helping learners to control stress
was developed in [7]. Physiological signals such as temperature, SC, and ECG were
collected to identify users’ needs. Feedback messages are generated in order to
guide the user to relax using ambient sensors (e.g., light, sound, and vibration).
Thus, the platform guides the learner to breathe slowly when high levels of stress
are detected. EDA signals were used in [53] to quantify the sympathetic activation
in bipolar patients, thus supporting the hypothesis about a relationship between
pathological mood states and autonomic dysfunctions. SC and EMG were found
to be linearly correlated with arousal change in [17]. In addition, it was found that
ECG and RESP features are dominant for valence differentiation. Inter beat interval
(IBI) HRV metric was studied to predict workload in [54], where IBI measures
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the variability between consecutive R waves in the ECG in milliseconds. In [55],
emotional states were modeled as a combination of arousal and valence according
to the circumplex model. It was reported that affective sounds produce emotional
states changes reflected in the ANS dynamics. Therefore, although physiological
signals are highly affected by noise and artifacts due to user’s movement and
present difficulty to allow extracting emotional patterns, they are less affected
by environmental noise and permit to analyze the user’s state in real time. One
advantage is that physiological signals are not caused by unnatural emotions or
social masking [56] (e.g., smile during negative emotional state). In addition,
information can be continuous gather from users, which is convenient for the so-
called poker face users that “hide” their emotional state. In this specific case,
audiovisual recording systems cannot detect the emotional changes [17].

3 Machine and/or DL Approaches for Emotion Recognition
Based on Physiological Signals

This section presents a summary of the machine and/or DL approaches for
emotional states recognition using physiological signals. Several machine learning
methods such as support vector machines (SVM), neural networks (NN), linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA) classifiers, k-
nearest neighbors (kNN), decision trees, hidden Markov models, and Fisher linear
projection have been employed [1, 10]. On the other hand, DL is a burgeoning
technique based on artificial neural networks (ANN) and is a potent machine
learning tool for artificial intelligence (AI). Convolutional Neural Networks (CNNs)
have impacted the field of health informatics [23]. They have been used for
object recognition in images, as well as for facial expression recognition [57].
Deep Neural Networks (DNNs) are able to learn novel features and patterns in
supervised and unsupervised ways [23]. Perceptron is a proposed NN for binary
classification and inspired in how the biological neuron works. It consists of an
input layer connected to an output node as depicted in Fig. 4. This connection
emulates a biochemical process (i.e., information processed by the brain through
interconnected neurons) through and activation or transfer function and few weights.
Thus, the perceptron learns to classify patterns separable linearly by changing the
weights [23]. Representative approaches that use machine and/or DL techniques
using physiological signals are described next and summarized in Table 2.

EEG signals have been commonly used in affective computing applications.
For example, emotional states recognition during music listening was presented in
[29]. SVM was employed to classify emotional states such as joy, anger, sadness,
and pleasure. An averaged classification accuracy of 82.29 ± 3.06% was found.
Feature extraction methods for emotion recognition is explored in [62]. The authors
compare available feature extraction methods using machine-learning techniques for
feature selection. QDA with diagonal covariance estimates was used. Experimental
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Fig. 4 Representation of a perceptron for binary classification

results showed that multivariable feature selection techniques performed slightly
better compared to univariate methods. Feature extraction methods such as Higher
Order Crossings (HOC), Higher Order Spectra (HOS), and Hilbert-Huang Spectrum
(HHS) outperformed the common power spectral bands. In addition, it was reported
preference locations over parietal and center-parietal lobes. EEG was employed
for music preference such as “like” and “dislike” in [68]. The authors evaluated
four classifiers in the complete dataset (user-independent), i.e., k-NN, SVM,
QAD, and Mahalanobis. An accuracy of 86.52 ± 0.76% was achieved using k-
NN classifier and HHS-based feature vectors. Beta and gamma bands showed to
contain emotional arousal information. Multilayer perceptron (MLP) and SVM were
evaluated for EEG-based emotion recognition in [29]. The implemented MLP has
an input layer, a hidden layer with a sigmoid function (neural excitation), and an
output layer (i.e., four neurons corresponding to joy, anger, sadness, and pleasure)
as depicted in Fig. 5. The number of neurons in the input and hidden layer varied
according to the used feature type, which were derived from electrodes located near
the frontal and the parietal lobes. The backpropagation algorithm was used within
the network layers to adjust the weight coefficients. MLP obtained a classification
accuracy of 81.52% compared to 82.29% using SVM.

Even though EEG signals carry relevant emotional states information, other
physiological signals have been collected along with EEG to better characterize
users’ emotions. For example, physiological signals such as EEG, ECG, EDA, and
RESP were collected in [8] to detect emotions in real time such as concentrated,
tension, tired, and relaxed. The authors propose an architecture to detect emotions
using body sensor networks (BSN) and logistic regression. The proposed architec-
ture can be communicated from a vehicle to emergency services, and vehicular ad
hoc networks (VANETs) in order to improve the driver’s experience and prevent car
accidents. A kappa index of 0.5455 and a level of agreement of 0.7186 were found.
Pictures from the International Affective Picture System (IAPS) are used in [63] to
discriminate among pleasant, unpleasant, high arousal or low arousal, by collecting
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Fig. 5 Multilayer perceptron implemented in [29] for emotion recognition

EEG signals along with EDA signals. A data mining approach was combined
with a distance-based classification algorithm named Mahalanobis metric. C4.5
decision tree algorithm was employed to differentiate valence dimension. After,
the gender and valence information are input to the Mahalanobis distance classifier
to divide the data into high and low arousal. The success recognition average rate
was 77.68% to discriminate the four emotional states. Game difficulty is adapted
according to player’s emotion in [59]. EEG signals, questionnaire responses, and
peripheral signals (i.e., EDA, BVP, RESP, and ST) of players playing Tetris at three
different levels are collected such as (1) boredom (low pleasure, low pressure, low
arousal, and low motivation; (2) engagement (higher arousal, higher pleasure, higher
motivation, and higher amusement); and (3) anxiety (high arousal, high pressure,
and low pleasure). LDA and QDA were employed in this study. Experimental
results showed an accuracy of 63% after fusing the EEG and peripheral signals,
thus showing the importance of adapting the game according to player’s emotions
to preserve the player’s engagement.

ECG is a primary signal for feature extraction in the emotional recognition field.
By quantifying emotions, actions can be taken in order to improve the coordination
of the ANS system, thus potentially helping to improve people’s quality of life.
Several approaches have been proposed based on ECG signals features. Emotional
states elicited by affective sounds are analyzed through the cardiovascular dynamics
in [55]. Emotions are classified into four different levels of arousal (intensity) and
two levels of valence (unpleasant and pleasant). HRV features are extracted and the
Leave One Subject Out (LOSO) procedure was applied to the training set, whereas
quadratic discriminant classifier (QDC) was applied to the test set. The study
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suggested that ANS measures such as mean HRV, standard deviation (std), root
mean squared (RMSSD), triangular index, spectral measures, and Lagged Poincare
plots (LPP) are the most reliable HRV metrics to identify emotional states induced
by affective sounds. Experimental results showed an accuracy of 84.72% for valence
dimension and 84.26% for arousal dimension. A fuzzy-based model technique using
the HR is proposed in [54] to remove uncertainties from the modeling problem.
To this end, a finite-mixture model was used to analyze the uncertainties in order
to adapt a workload model to the physiological conditions of a subject. Thus, the
fuzzy-based tool can be used in real-world scenarios in the presence of uncertainties.
Four workload situations were evaluated: (1) manual mode with open workplace; (2)
manual mode with glove box; (3) partial automation mode; and (4) full automation
mode. The method achieved an accuracy of R2 = 0.7144 compared to R2 = 0.4627
with a Bayesian regularization NN. Depressive states for bipolar patients were
characterized using an MLP in [21]. HRV assessment was used to characterize the
status of bipolar patients. Relevant pictures were used for emotional stimuli. Linear
and nonlinear features were estimated to further be used as inputs of an MLP in order
to discriminate between depressive and euthymic states. The MLP was trained using
a supervised learning method. In the training phase, the artificial function of the
artificial neurons is calculated for each data record. The backpropagation algorithm
is employed to the resulting error between inputs and outputs to adapt the weight
of a generic neuron. The MLP has a response (i.e., Boolean vector) that represents
the activation function of an output neuron. The implemented MLP has three layers
such as input (i.e., seven neurons), hidden (i.e., five neurons), and output layers
(i.e., two neurons, each of them corresponding to the two classes to recognize).
Experimental results showed an accuracy of 99.56% for euthymia and 99.98% for
depression states.

Skin responses such as sweating, vasomotor, and piloerection are responses
induced by emotional states. Hence, EDA signals reflect activity within the sympa-
thetic system of the ANS and measures changes in sympathetic arousal associated
with emotion and attention [44, 58, 70]. A framework based on EDA recordings
and clustering algorithms is proposed in [20] to discern arousal and valence levels.
Affective sounds from the International Affective Digitized Sound System (IADS)
database are used for emotion stimuli. Three levels of arousal (i.e., neutral, low,
medium, and high) and two levels of valence (i.e., positive and negative) were eval-
uated. The authors employed a multivariate pattern recognition analysis followed by
LOSO and k-NN classifier. The experimental results showed a recognition accuracy
of 84% for valence and 77.33% for arousal. EDA signals have been analyzed along
HR to classify arousal (excited-bored) and valence (happy-unhappy) states in [61].
It was found that both signals are predictive of arousal states, while HR is predictive
of valence. The objective of this study was to develop a computational algorithm
for patient emotional classification using nursing robots in medical service. Wavelet
analysis was used to effectively extract features from the physiological signals. A
machine learning algorithm using NN structures was developed to classify patient
emotional states in real time during the interaction with the robot. The classification
accuracies result for arousal and valence are between 73 and 82%. Another approach
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using these two signals is presented in [10]. A comparison between Classification
and Regression Tree (CART), C4.5 classification, and random forest classification
algorithms was performed to predict emotions of regret and rejoice in a financial
decision context. These changes have been observed when traders experience loss,
or are regretted about their decision. Three methods, namely, binary (i.e., regret
or rejoice), tristate (i.e., only regret, only rejoice, or blended), and tetra state
blended (i.e., only regret, only rejoice, both, neither emotion) were compared to
detect emotions using the HR and EDA. The authors were interested in comparing
accuracies across different types of decision trees since they are better suited
for real-time analysis (less computationally compared to SVMs). Tenfold cross
validation was used to prevent overfitting and for pruning the decision trees. The
comparison using 100 features set showed 67% accuracy for binary rejoice, 44% for
a tristate, and 45% for a tetra state blended models with highest accuracies achieved
by CART. These results were replicated using only three proposed delta features
based on the triphasic cardiac form such as the difference between the maxima
and minima in the anticipatory–parasympathetic, anticipatory–sympathetic, and
parasympathetic–sympathetic phases. Emotional states such as amusement, anger,
grief, and fear were analyzed in [60] for several subjects that watch individually
the same film. A multivariant correlation method (i.e., random matrix theory) is
applied before feature extraction to detect common patterns using HR, EDA, the
first derivate of EDA, and fingertip oxygen saturation (OXY). After correlation
analysis, local scaling dimension (LSD) is applied to characterize the physiological
changes. After, conventional affective features and the LSD affective physiological
features are applied to a random forest to discriminate the different emotional states
plus a baseline state. It was obtained an overall correct rate of 74% for classifying
amusement, anger, grief, fear, and the baseline.

Existing solutions have used EDA and ECG signals along other physiological
signals. For example, in [58], the authors addressed the efficacy of emotion
detection using several classification techniques on three physiological signals
such as ECG, EMG, and EDA, as well as their combinations. A number of
classification approaches and feature selection techniques using naturalistic emotion
physiological dataset were evaluated. Eight emotion states such as boredom,
confusion, curiosity, delight, flow/engagement, surprise, and neutral were evaluated.
The experimental results showed a better emotion recognition performance for k-
NN (kappa = 0.42, F1 = 0.82), and Linear Bayes Normal Classifier (LBNC)
(kappa = 0.34, F1 = 0.70). Additionally, single channel ECG, EMG, and EDA,
as well as three-channel multimodal models were more diagnostic for emotion
recognition. The agitation detection for dementia patients was addressed in [66].
The detection of agitation is a significant aid for caregivers of dementia patients.
Physiological signals such as HR, EDA, and ST were monitored. Two SVM
architectures based on a confidence measure are proposed such as confidence-based
SVM and confidence-based multilevel SVM. The proposed method obtained an
accuracy of 91.4% compared to 90.9% achieved with the traditional SVM. Negative
emotions such as sadness, fear, surprise, and stress have been identified in [56].
EDA, ECG, ST, and PPG were recorded. The study used audio–visual clips for
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emotional stimuli and five machine learning algorithms for classification such as
LDA (one of the linear models), CART of decision tree model, Self Organizing Map
(SOM) of NN, Naïve Bayes of probability model, and SVM of nonlinear model.
Experimental results showed an accuracy of 100% for SVM, 84% for CART, 76.2%
for Naïve Bayes, 51.2% for SOM, and 50.7% for LDA.

A DL algorithm to extract relevant features from EDA and BVP has been
proposed in [57]. It can handle discrete and continuous signals and consists of con-
volutional layers to extract significant features from the raw data, which bypasses
the need for manual ad hoc feature extraction. Emotional states such as relaxation,
anxiety, excitement, and fun were analyzed from players of a 3D game. The
algorithm consists of a deep model that comprises a multilayered CNN to extract
the relevant features to further feed a single-layer perceptron (SLP) to predict the
affective states. Denoising auto-encoders were used to train the CNN. Then, the SLP
is trained using backpropagation in order to map the CNN outputs to the affective
values. It was found that the fusion between skin conductance and BVP with
DL techniques outperforms standard and automatic feature extraction techniques
(i.e., statistical features) across all the analyzed affective states. Another approach
using these two signals as well as EMG was explored in [69]. A mental trainer
experiment was conducted to select stable features for individual emotional states
across several situations. Two rounds were run, finding useful physiological features
classification in both rounds (70.1%) compared to other features that performed only
in the first round (53%). Emotional states of the valence-arousal-dominance (VAD)
model were induced such as negative valence/high arousal/low dominance (NHL)
and positive valence/low arousal/high dominance (PLH). Feedforward ANN with
two hidden layers was employed for classification. EDA along with EMG and PPG
signals was employed to detect emotional states from video clips in [64]. A detector
focus on affective events in real time was proposed. It captures affective events and
associates them a binary valence (positive or negative). Multiple modalities to build
complex rules using Gaussian Process Classifiers (GPCs) are used. Experimental
results showed around 80% accuracy for event detection, and between 80% and
90% accuracy for binary valence prediction.

RESP signals have shown to reflect emotional states. However, they are affected
by motion artifacts, thus limiting reliable affective state detection. Hence, a method
to extract Emotion Elicited Segments (EESs) from RESP signals is proposed
in [65]. Emotional changes such as love, sadness, joy, anger, and fear were
extracted. The EESs segments contain reliable information to determine accurately
the affective state of a subject. To extract the EESs segments, Mutual Information-
Based Emotion Relevance Feature Ranking based on the Dynamic Time Warping
Distance (MIDTW) is applied, as well as a Constraint-based Elicited Segment
Density (CESD) analysis. The segment-based emotion analysis was evaluated using
k-NN method, and the Probabilistic Neural Network (PNN) method. A leave-
one emotion-one-person-out cross-validation method was implemented in the two
methods. The advantage of using segment-based analysis lies in noise can be
eliminated more effectively from the RESP signal. Experimental results showed
an accuracy performance of 88%. RESP signal along with EMG, ECG, and EDA
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Fig. 6 Block diagram of the scheme of emotion-specific multilevel dichotomous classification
(EMDC) proposed in [17]

were analyzed in [17] for emotional changes. Musical induction propitiated real
emotional changes. Four emotional states were classified using extended linear
discriminant analysis (pLDA), (1) positive/high arousal, (2) negative/high arousal,
(3) negative/low arousal, and (4) positive/low arousal. The authors developed
an emotion-specific multilevel dichotomous classification (EMDC) scheme and
compared its performance with multiclass classification using the pLDA. The block
diagram of the proposed scheme is depicted in Fig. 6. Experimental results showed
correct classification ratio (CCR) of 95% for subject-dependent (i.e., three subjects)
and 70% for subject-independent (features from all subjects were merged and
normalized) classification.

Another approach is presented in [67]. An automatic multiclass arousal/valence
classifier was implemented. Physiological signals such as ECG, EDA, and RESP
were collected while affective states were induced using images gathered from
IAPS. The sets of images have five levels of arousal dimension and five levels of
valence dimension, including a reference level in both dimensions. Experimental
results showed an accuracy greater than 90% for emotion recognition when
nonlinear features are extracted. Such accuracy was achieved after 40-fold cross-
validation steps for both dimensions and using a QDC classifier. The authors
compared several classifiers such as LDC, Mixture of Gaussian (MOG), k-NN,
Kohonen Self Organizing Map (KSOM), MPL, and QDC, where QDC showed
better performance.

4 Available Databases for the Emotion Recognition Task

At present, few available databases use physiological signals for emotional state
detection. They use emotional stimulus such as video, images, and situations
to induce emotional changes. The emotional states have been categorized using
the dimensional labeling as depicted in Figs. 2 and 3. Table 3 shows a list of
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available databases for emotional state recognition, which describes the number
of subjects, the recorded physiological signals, the employed stimulus, and the
detected emotional states. The interested reader can refer to the respective reference
for complete information about the databases.

5 Challenges and Future Research Directions

The development of cheaper and less intrusive physiological methods has become
the physiological signals important in real-world applications [58]. The use of
these signals for the emotional detection task can solve issues suffered by other
methods [38]. Video capture for facial expression recognition using computer vision
techniques can be problematic in free environments; movement and gesture analysis
are highly influenced by noise; speech analysis is not useful in situations where the
user is silent and is affected by noise [27]; and facial expression and speech signals
can be faked [78]. The physiological signals are collected through noninvasive
sensors attached to the user’s body and are relatively free from privacy concerns
(compared to camera-based applications) [27]. They are less susceptible to social
masking compared to face and voice since they are spontaneous and less controllable
reactions [78], which is important for applications such as deception detection
and autism treatment [58]. However, burgeoning applications using physiological
signals and machine and/or DL techniques have raised a number of challenges that
need to be addressed. Some of the most pressing are mentioned as follows:

• Physiological data collection and physiological patterns: Recordings from
physiological signals are still invasive since the users have to be in contact with
electrodes for some kind of signals. Those electrodes affect the measurement due
to they are highly susceptible to motion artifacts. Even though several researches
have been conducted using several measures to identify emotions, it has been
highlighted in [58] that too many measurements could incur in interference to
the users and not be favorable for practical applications. In addition, although
physiological analysis is robust (not controllable by the user), one disadvantage
is the signal variance across and within users. The development of independent
emotional detection systems is a nontrivial problem [27]. Researches have tried
to build user-independent models to generalize to new users. However, this is
challenging since physiological patterns differ from user to user and depend on
the situation [40]. Those models are built using physiological data from multiple
users that is expected to generalize to novel subjects. The advantage is that user-
specific calibration is not required, but the challenge relies on different subjects
will have different physiological patterns for the same emotion. Physiological
signals differ from user to user and from situation to situation [17]. Consequently,
a trade-off between precision and generalization is essential [58].

• Data availability: In DL applications, a big amount of label data is required to
train the network. This is not always achieved in healthcare applications. The
training phase can be time consuming if the application does not count with
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high computational resources. In addition, learning models can be affected by
convergence issues and overfitting [23]. On the other hand, several emotional
detection systems present their results based on experimental methods that induce
emotions artificially. However, it is not clear if similar accuracies would be
performed in naturalistic scenarios [79]. Existing datasets for emotional states
stimulations such as IAPS and IADS are commonly used. However, those
datasets provide standardized methods to classify the physiological information.
The subjects have to think about what they feel, thus occurring in an inherent
bias. Hence, real-life emotions can be more difficult to detect because they
can be ambiguous and originated unconsciously in self-reported methods [10].
Obtaining the ground truth of physiological signals is a critical problem in
emotional state research. The emotions cannot be felt or perceived directly from
the raw data, which leads difficulties in data annotations. Hence, a universal
dataset is difficult to collect [17]. The fact that different databases use a different
experimental setup makes difficult to compare results across several approaches.
The collection of several physiological signals from a large number of subjects
is challenging [11]. Hence, there is a need of publicly available databases that
allow to produce results that can be comparable for approaches using different
databases.

• Data preprocessing: Additional signal processing is necessary to attenuate
the noise in physiological signals. The signals may include random artifacts
(stationary signals) being problematic for processing methods such as Fast
Fourier Transform (FFT). To overcome this limitation, wavelet transform has
been used to analyze transients, nonstationary, and time-varying phenomena [59].
In approaches based on DL, the raw input data cannot be used directly in many
applications. A preprocessing, or normalization is required before training, which
also requires more resources and human expertise. In addition, the configuration
of hyper parameters, size, and number of filters in CNN is a blind process
that requires a correct validation [23]. Therefore, for practical applications, it is
necessary to build miniaturized noninvasive sensors with built-in denoising filters
in order to improve the signal quality and reduce the preprocessing computational
cost [17].

• Feature extraction: Unsupervised learning has been used for feature extraction,
clustering, or dimensionality reduction [23]. Ad hoc feature extraction techniques
require a parameter tuning phase in the training process to provide suitable set of
features [57]. However, this parameter tuning phase can affect the performance
of the application, thus imposing reliable techniques for feature extraction. It is
a challenging task to identify which physiological signals are more diagnostic of
emotional states [58], as well as it is difficult to map the physiological patterns
onto specific emotions [17].

• Feature selection: A main issue in emotion recognition from physiological
signals is to identify the reliable features to discriminate emotions. Feature
selection methods allow extracting the most suitable feature subset from available
features for a specific task, thus avoiding overfitting and redundancy. The
three different selection methods for feature selection are wrapper, filter, and
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embedded. Wrapper consists in using predictive models to assign a score to
each feature subset. A model is trained with each subset to be then tested on
the rest of the dataset. According to the performance, a score is assigned to
each subset, being chosen the subset with the best score. In filter methods,
in turn, measurement metrics such as mutual information and inter-/intra-class
distance from a dataset are used to score the subsets. Finally, the embedded
methods select the feature subset at the same time that the model construction.
Several feature subset selection algorithms have been proposed in the literature,
including genetic algorithm (GA), sequential forward selection (SFS), sequential
floating forward selection (SFFS), sequential backward selection (SBS), n-best
individuals, perceptron, Fisher projection, principal component analysis (PCA),
and genetic feature selection, to name a few [17, 57]. Analysis of variance
(ANOVA) and linear regression are the most used common tools to identify the
most relevant features for emotional state detection. However, these approaches
assume that the physiological signals and the emotional states have a linear
relationship [61]. The assumption is that DL can extract reliable feature sets
compared to features extracted through automatic selection since they do not
guarantee an optimal convergence for the model. The advantage is DL can be
applied directly to the raw data in any signal type (not limited to discrete signals)
since some techniques require discrete signals (data mining techniques [80]).
Furthermore, DL can reduce signal resolution across their architectures more effi-
ciently compared to Hidden Markov Models and Dynamic Bayesian Networks.
However, ANN has been considered as black boxes, which makes difficult the
interpretation of the learned model. Therefore, appropriate visualization method
for these kinds of networks is required in order to interpret neural network-based
features [57].

• Classification methods: Even though there is a large number of classifiers
employed for emotion recognition based on physiological signals, there is not
a consensus about which of these algorithms is more reliable for a particular
emotional state recognition application [70]. The best classification method
strongly depends on the characteristics of the dataset. This argument was
reinforced in [17] with a comparative study performed over 20 different machine
learning algorithms evaluated on real datasets. Linear classifiers have shown
to perform successfully in emotion recognition classification [17]. The training
data in classification algorithms constrains their performance. They use different
models for the data. For example, k-NN algorithm is useful for nonlinear
boundaries between classes and require large datasets to be accurate. In addition,
decision trees require large datasets for a good performance. One limitation for
SVMs is that they require a very careful parameter selection. Lastly, the Naïve
Bayes classifier assumes independency between features, which is not achieved
in physiological signals taken from the same user [70].

• Emotional representation models: The main issues in emotional state detection
applications are representation, detection, and classification of users’ emotions
[1]. Emotion description models based on discrete categories (i.e., happiness,
sadness, fear, anger, disgust, and surprise) have a precise mapping between the
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sensed data and the emotional models. However, those discrete categories do
not represent individuals’ everyday activities [1]. It is not easy to model human
emotions since all humans express their emotions in a different way. The discrete
model can be problematic because of blended emotions cannot be represented
effectively in those discrete categories. Hence, multiple dimensions or scales can
be used to classify emotions such as continuous scales (e.g., pleasant–unpleasant,
attention–rejection) [17, 78]. The use of a 2D space to represent emotions can
carry loss of information. Some emotions cannot be distinguished (e.g., fear and
anger) or lie outside the space (e.g., surprise). Hereafter, a special training is
required to use that dimensional labeling [9].

• Existing healthcare applications: They record and analyze patients’ physiologi-
cal signals to monitor patients’ mobility, and assist them in emergency situations.
However, those solutions focus only on medical healthcare aspects and not in
users’ emotional states. More research is needed in this aspect since there are
evidences that emotions could influence users’ physical health [1]. A simple
system to classify automatically users’ emotional states is still missing [20].
Existing solutions in emotional state detection have been done in controlled
environments. That detection in an uncontrolled environment is challenging.
Hence, several different emotion-related sources need to be combined to improve
accuracy [81]. It is required suitable technology that aids to reduce healthcare
cost and improves the quality of healthcare services. Technology that helps in
how to define, detect, model, and represent emotional states of people, and
then use that information to improve the healthcare systems is needed [1]. In
addition, emotional states detection approaches that interpret and analyze human
emotions without users’ intentions are required. It is essential to implement
human-centered designs instead of computed-centered designs. Human-centered
designs must detect users’ affective behavior to interact with them based on
that behavioral information [9]. Those approaches have to be accurate, robust
to artifacts, and adapt to practical applications [17].

• Integration within smart cities: Emerging Internet of Things (IoT) and big
data technologies have opened doors for the building of smart cities. IoT is an
extension of the existing internet where many things (i.e., sensors and actuators)
are connected to the Internet using machine to machine (M2M) architectures,
artificial intelligence (AI), wireless sensor networks (WSN), and semantic
technologies [82]. Smart cities make the traditional networks more flexible and
sustainable through the use of technology in order to benefit the citizens. They
consist of smart components in terms of infrastructure, transportation, health,
technology, and energy [83]. Smart healthcare applications within the smart cities
are necessary to meet the needs of the citizens. Connected physiological sensors
will allow monitoring in real time the citizens’ health condition anywhere. Hence,
the incorporation of accurate emotional states detection systems within the smart
cities will allow improving the quality of life and well-being, thus addressing
mental health problems through event detection, and providing feedback for
therapies, and treatments. However, to this end, it is required to address several
IoT and smart cities challenges such as network heterogeneity, where it is
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required to guarantee the coexistence among several networks (e.g., WLAN,
Bluetooth, ZigBee), security and privacy issues, quality of service (QoS) require-
ments, trust, social acceptance, development of intelligent signal processing and
sensing algorithms, standardization for interoperability, development of wireless
technologies, and to guarantee energy efficiency, to name a few.

6 Conclusion

This chapter discusses the importance of emotional state detection from physiolog-
ical signals in order to improve quality of life and well-being from citizens that can
be implemented into the smart city concept. It shows relevant works on this area,
as well as some used databases in this study. The importance of this topic lies in
the fact that mental health is an important factor of health condition. It has been
shown that negative emotions can carry undesirable health problems or even death.
Consequently, the incorporation of accurate emotional state detection applications
within the smart cities will aid to alleviate mental disorders, stress problems, or
mental health. The things (i.e., sensors and actuators) connected to Internet will
allow monitoring in real-time physiological signals from citizens and detect on time
any anomaly and take actions in order to prevent or control health situations. It was
found several works using machine and/or DL techniques that address this research
topic. However, several issues are still under study to make these applications
more trustworthy and efficient to detect events and prevent undesired consequences.
In addition, several challenges have to be addressed in order to implement these
emotional detection systems within the smart cities.
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Toward Uniform Smart Healthcare
Ecosystems: A Survey on Prospects,
Security, and Privacy Considerations

Hadi Habibzadeh and Tolga Soyata

Abstract A plethora of interwoven social enablers and technical advancements
have elevated smart healthcare from once a supplemental feature to now an
indispensable necessity crucial to addressing intractable problems our modern
cities face, which range from gradual population aging to ever surging healthcare
expenses. State-of-the-art smart healthcare implementations now span a wide array
of smart city applications including smart homes, smart environments, and smart
transportation to take full advantage of the existing synergies among these services.
This engagement of exogenous sources in smart healthcare systems introduces a
variety of challenges; chief among them, it expands and complicates the attack
surface, hence raising security and privacy concerns. In this chapter, we study the
emerging trends in smart healthcare applications as well as the key technological
developments that give rise to these transitions. Particularly, we emphasize threats,
vulnerabilities, and consequences of cyberattacks in modern smart healthcare
systems and investigate their corresponding proposed countermeasures.

Keywords Privacy · Security · Wearable sensors · Access control ·
Authentication

1 Introduction

With the world slowly recovering from the last economic recession in 2007 [1, 2],
which occurred in parallel with the gradual population aging and the prevalence of
chronic diseases such as osteoarthritis and diabetes in epidemic proportions [3, 4],
smart healthcare—often portrayed as a panacea for improving healthcare quality and
reducing its ever-increasing expenses—has been recently gaining unprecedented
momentum. Further driven by impressive breakthroughs in the Internet of Things
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(IoT) and smart city technologies, smart healthcare (or alternatively electronic
health or e-health) has shown massive potential to bring continuous, real-time, and
personalized health services to masses, thereby substantially decreasing the burden
of already under-staffed healthcare centers [5]. Indeed, the proliferation of a wide
array of e-health services ranging from clinical-grade [6, 7] to fitness [8, 9] to
logistical and infrastructure [10, 11] applications is a testament to the growth of
this field.

The interplay of these social impetuses and technological advancements has now
paved the way for the emergence of next-generation implementations, where health-
care services are not merely restricted to continuous monitoring of physiological
parameters. Instead, they operate in tandem with non-healthcare aspects of a smart
city—such as smart homes and smart environments [12]—to provide comprehensive
care. This transition is transpiring in a broader context and outside the locus of smart
healthcare. For example, in a future smart city, a wearable remote ECG monitoring
system [13] can automatically contact emergency units at the onset of a heart attack.
Then, an autonomous defibrillator ambulance [14] can be dispatched to help the
patient. Traffic status can be manipulated to minimize ambulance travel time [15],
thereby increasing the survival chance of the patient. Although this simple scenario
falls under the smart healthcare umbrella (judging by its purpose), it involves
other smart city services such as smart transportation. Additionally, considering the
proliferation of smart electric vehicles, this scenario indirectly engages the smart
grid [16]. Such a unified single IoT infrastructure is yet to be realized, however,
recent developments in the IoT signal its beginnings.

This transition introduces numerous challenges and opportunities. It renders
smart healthcare an even more interdisciplinary field, where the effectiveness
of implementations hinges on a close cooperation among engineers, physicians,
patients, city authorities, businesses, etc. Establishing such a communication among
healthcare constituents, however, has become a major obstacle against its progres-
sion [17]. Furthermore, inflating the sphere of e-health substantially increases the
breadth and complexity of the attack surface, which poses serious security and
privacy concerns, particularly, considering the gravity of the task, which involves
citizens’ safety and well-being. The latter case has recently become more alarming
in the aftermath of increasing attacks that target critical healthcare infrastructure
such as hospitals [18]. The extent and intensity of these breaches, often conducted
for extortion purposes, have created an aura of distrust and skepticism between
smart healthcare and its users. Neglecting these apprehensions can indeed delay
the widespread acceptance of smart healthcare.

We dedicate this study to security and privacy considerations of these emerging
smart healthcare applications. To this end, we first investigate the latest trends
in smart healthcare applications in Sect. 2 to see how the most recent research
works in the literature take advantage of existing symbiotic relationship among
e-health and various aspects of modern smart cities. We then analyze the overall
structure of such services and discuss the underlying technical developments that
have fueled this transition in Sect. 3. We study these enablers from the standpoint
of sensing, communication, and data processing and elaborate on how emerging
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technologies such as crowd-sensing, non-dedicated sensing, low-power short-range
communication, machine learning, and deep learning solutions are driving smart
healthcare toward its bright future. These nascent technologies, however, introduce
security concerns. We review these vulnerabilities in Sect. 4 by discussing the latest
attacks and threats against real-world implementations. Protecting smart healthcare
applications from these ever-increasing threats and vulnerabilities requires a holistic
approach. To this end, Sect. 5 provides a summary of some of the most prevalent
attacks that target in-field individual components of smart healthcare along with
their common countermeasures. Section 6 focuses on approaches that aim to protect
the entirety of the system, particularly by providing services such as access control,
authentication, and authorization. Sections 7 and 8 provide a discussion of existing
unresolved challenges and concluding remarks, respectively.

2 Smart Healthcare Applications

Increasing public awareness about the importance of personalized, continuous,
and efficient healthcare, coupled with recent breakthroughs in the IoT arena has
made the scene ready for the emergence of a diverse range of smart healthcare
applications. A substantial number of proposed services aim to provide a decision-
support framework for physicians and specialists, thereby helping them with disease
prevention, diagnosis, and therapy [19]. Such clinical-grade applications involve
accurate data acquisition and processing that must comply with stringent procedures
and standards enforced by specialized organizations such as American Diabetes
Association (ADA) [20, 21] and American Heart Association (AHA) [22, 23]. Con-
sidering that these strict requirements can become prohibitive for many investors
and researchers, a parallel branch of smart healthcare oriented toward non-clinical
applications is gaining momentum. These services often include noninvasive mon-
itoring devices such as smartwatches and wristbands to help users keep track of
their activities, to promote healthier lifestyles. Alternatively, a wide variety of non-
clinical applications are designed to provide continuous care for elderly and people
with disabilities. Finally, instead of providing real-time and personalized healthcare,
the third category of e-health aims to facilitate communication among healthcare’s
multiple constituents, including patients, physicians, specialists, hospitals’ staff, and
emergency units. In this section, we study smart healthcare applications under these
three categories: (i) Clinical, (ii) Non-clinical, and (iii) Logistical applications.

As discussed in Sect. 1, the boundaries among these applications are narrowing.
Investors and researchers must become cognizant of numerous challenges and
complications this integration of a wide variety of smart city services poses. We
discuss the significance of this in Sect. 3. This transition also introduces various
security and privacy concerns. For example, a hardware-level attack to a smart
healthcare device by an insider not only compromises health related private data but
can also endanger the entire network, leaving the home network and other smart city
services (such as smart home devices) vulnerable to cyberattacks [24]. We elaborate
on major security and privacy concerns in Sections 5 and 6.
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2.1 Clinical-Grade Healthcare Applications

Measuring major physiological parameters in clinical settings is traditionally
conducted by trained staff and personnel via typically expensive and invasive mon-
itoring systems. Although accurate—which is a fundamental requirement in these
applications—traditional methods fail to provide continuous monitoring, which is
becoming increasingly more relevant to the prevalence of chronic diseases [25].
Furthermore, measurements conducted in controlled environments of hospitals and
laboratories do not sufficiently reflect patients’ actual physical status in their day-
to-day life. Numerous smart healthcare systems are proposed to address these
requirements. The outputs of these services are directly used by physicians and
specialists for prevention, diagnosis, and therapy purposes, which highlights the
strict accuracy and reliability requirements of clinical smart healthcare. Unfor-
tunately, however, noninvasive, inexpensive, and real-time monitoring does not
yield high sensing accuracy. A part of these shortcomings can be offset by the
utilization of advanced preprocessing and data processing techniques, which are
now an integral component of every smart healthcare system. Nonetheless, as even
occasional failures (false negatives) can lead to catastrophic outcomes, clinical-
grade monitoring systems notoriously suffer from high false positive rates [26]. We
provide more details on smart healthcare data processing in Sect. 3.3.

A large portion of clinical-grade smart healthcare applications uses continuous
monitoring to detect specific events. Specifically, given the increasing share of
heart failures, a wide range of applications targeting cardiovascular diseases (CVD)
are proposed in the literature. For example, the authors in [27] propose a cloud-
based ECG monitoring system that assists with diagnosing cardiovascular diseases
by classifying heart activity into normal, premature, ventricular contractions, and
other. The classification is carried out by a 30-neuron artificial neural networks
(ANN) based on QRS complex features. In a telemonitoring scenario, processed
information can be transmitted to a physician to assist them with decision making.
This is, however, a non-trivial task as the sheer size of information collected in real-
time continuous systems can readily inundate physicians and specialists. Effectively
representing processing results has been subject to extensive research [28–30]. For
example, a novel “QT-Clock” is presented in [31] that can summarize ECG data
collected in a 24-h interval, facilitating prolonged QTc diagnoses considerably.

Although valuable, continuous sensing alone is insufficient in many cases, as a
wide array of chronic diseases (such as diabetes) can only be contained through
exhaustive adaptations in daily lifestyle. For such scenarios, comprehensive smart
healthcare services have been developed to facilitate patient-physician collabora-
tion, control their diet and medicine intake, and potentially recommend physical
activities [32]. Aside from normal monitoring, such systems must analyze the
environment and detect patients’ activities, while meeting the requirements and
recommendation of specialized groups. Data pertaining to patient progress and
alerts indicating a critical event can be shared in real-time with a physician to
provide telemonitoring [32]. Some IoT-based healthcare systems even involve



Toward Uniform Smart Healthcare Ecosystems: A Survey on Prospects,. . . 79

automatic medicine administration, thereby ensuring perfect scheduling and exact
dosage without requiring patient’s diligence. An implantable example of such
devices is implemented in [33]. In spite of its invasive implantation, such methods
can increase patients’ comfort in long-run (particularly, as opposed to traditional
glucose monitoring that involves taking blood samples by finger sticking). We
further discuss advantages and disadvantages of such methods in Sect. 3.1.

2.2 Non-clinical Healthcare Applications

Clinical-grade applications inherently entail extreme accuracy and reliability, as
even occasional errors can bring about grave consequences. Many researchers and
investors prefer to explore new horizons of smart healthcare free of these stringent
requirements and standards. Furthermore, developing applications for the entire
population (healthy and non-healthy) provides further investment motivation by
promising a larger market. These major enablers have stimulated the emergence
of non-clinical applications, which mostly focus on improving users’ lifestyles.
Relatively looser regulations in non-clinical applications directly translate to cost
reduction and improved noninvasiveness—both of which are integral requirements
for these applications. This field has received substantial momentum with the
advancement of smart portable devices such as smartphones, smartwatches, and
smart glasses. Despite their rather casual implementations, the contribution of this
branch of healthcare to prevention, diagnoses, and rehabilitation of diseases must
not be underestimated. In this section, we review notable example developments in
this field.

A typical non-clinical smart healthcare application involves wearable sensors that
collect data on a variety of physiological and environmental parameters. Sensors
can take different forms depending on target applications and their requirements.
For instance, textile wearable sensors worn around feet and ankles transmit inertia
measurements over Bluetooth Low Energy (BLE) to a smartphone; where Support
Vector Machine (SVM) algorithm classifies user’s gait as either normal or foot
drop [34]. Achieving accuracies between 71% and 98%, such an application can
expedite rehabilitation process [35]. Indeed, as discussed earlier, the new generation
of the smart healthcare applications employ various aspects of smart city to improve
their usability. An example of such an application is provided in [8], where a combi-
nation of participatory sensing and existing sensing infrastructure in environmental
monitoring, air quality monitoring, and smart transportation is used to suggest a
suitable exercise route. By considering pollution, traffic, the difficulty of the terrain,
ultraviolet (UV) radiation index, and temperature, the proposed application uses
collaborative filtering (CF) to classify routes into three categories (danger, caution,
idle) based on the physical status and health condition of the user. An ambient
assisted living (AAL) targeting outdoor activities of the elderly and people with
disability is developed in [36]. The proposed system is based on crowed-sensing
and assists users with navigation, finding urgent health attention, providing help
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while afflicted with confusion, and routine tasks such as making calls and passing
across streets. It can also classify user’s status into various categories including OK,
Fallen, Wandering, Risk of Getting Lost, etc. This example clearly shows how the
implementation of an effective modern smart healthcare application can extend to
not only multiple smart city infrastructures but also various social considerations.

Not all the non-clinical application focus on continuous personalized monitoring.
Particularly, the prevalence of new technologies such as virtual reality (VR)
and augmented reality (AR) has resulted in a variety of rehabilitation services.
Particularly, VR-based video games proposed in [37] and [38] provide affordable
home-based setups to accelerate rehabilitation of stroke patients with impaired arms.
This directly translates to significant cost reduction by minimizing the involvement
of trained personnel and special equipment.

2.3 Logistical and Infrastructure Healthcare Applications

Ubiquitous smart healthcare has created the “big data” problem, where transmission,
storage, and processing of a large amount of data pose multiple challenges. Parallel
to data acquisition research, many have redirected their focus to address these
big data-related challenges, thereby completing the puzzle of the uniform smart
healthcare ecosystem. For example, multi-agent systems (MAS) based on semantic
comprehension can facilitate data sharing among various hospitals [39], even when
the size of stored information and its distribution increases. However, in addition
to its sheer size, the large number of stakeholders in smart city ecosystems also
poses various challenges. An effective infrastructure is required to share data
among patients, hospitals, insurance companies, pharmacies, and emergency units.
Although cloud-based implementations are typically considered the natural choice
in these scenarios, they raise genuine security and privacy concerns. Encryption and
watermarking are proposed to protect data transfers to and from cloud servers [40].
We detail smart healthcare security considerations in Sections 5 and 6.

In addition to data sharing, some smart health applications aim to increase the
efficiency of hospitals by introducing the smart hospital concept. An example of
such system is developed in [41]. The system embodies a diverse range sensing
nodes such as RFID tags, smartphones, and wireless sensor networks (WSNs) to
collect information regarding the location and progress of each patient as well as
their major biomarkers. The developed system allows patients with both registration
and follow-up and helps them navigate within the building. Implementing such a
smart environment in hospitals can reduce waiting time and costs while increasing
the quality of provided services. Additionally, some applications can merely focus
on facilitating face-to-face interaction between patients and physicians [17], which
can be particularly of assistance to the elderly and people with disability, as they
cannot make frequent visits to hospitals.

Some government agencies monitor social networks for early detection of
outbreaks. This solution can effectively reduce the costs of expensive existing
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methods (which mostly rely on a network of physicians and pharmacies) and help
with detecting outbreaks in their early stages, thereby substantially increasing the
chances of its containment. Particularly, detecting seasonal influenza outbreaks via
social networks seems to be quite effective [42]. Multiple examples of similar works
are provided in [43], which discusses the application of the artificial intelligence to
the data collected from social networks for computing the health status of the society
(e.g., via prediction of outbreaks, measuring the efficacy of countermeasures, etc.).

2.4 Summary

Smart healthcare applications can be categorized into (i) clinical, (ii) non-clinical,
and (iii) logistical and infrastructure applications. Clinical-grade services aim to
assist healthcare stakeholders with prevention, diagnoses, therapy, and rehabilitation
of various diseases. Non-clinical applications target personal healthcare to promote
a healthier lifestyle. Logistical applications mostly focus on hospital automation
and facilitate patient-physician collaboration. The dissimilarities in scopes of these
applications diversify their requirements and priorities. Table 1 summarizes the

Table 1 A comparison of smart healthcare major branches: (i) clinical, (ii) non-clinical, and (iii)
logistical and infrastructure applications

Application
Priorities
(high to low) Example services

Clinical High-accuracy Glucose monitoring [44]

(Sect. 2.1) Robust security Respiration monitoring [45]

Privacy protection Hypertension monitoring [46]

Non-invasive

Low-cost

Non-clinical Non-invasive Diet control [47]

(Sect. 2.2) Low-cost In-home rehabilitation [37]

Privacy protection Stress monitoring [48]

Robust security

High-accuracy

Logistical Robust security Smart hospital [49]

(Sect. 2.3) Privacy protection Medical data sharing [50]

High-accuracy Telemedicine [51]

Non-invasive

Low-cost

This table contrasts the priorities and characteristics of each category. Priorities are listed based
on decreasing importance for each category. For example, clinical-grade devices aim to provide
high accuracy, even if that increases their costs and invasiveness. In contrast, non-clinical fitness
services can decrease accuracy in favor of lower cost and lower invasiveness. Example Services
lists some of the example implementations of each application
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idiosyncrasies of each category. Particularly, the importance of five underlying
characteristics of such systems is investigated: accuracy, security, privacy, non-
invasiveness, and expense. For example, many clinical applications can trade off
expense to increase accuracy. In contrary, the expense is the main criterion for many
commercialized and non-clinical services (hence its priority is set to high in the
table).

3 System Architecture

Despite its relatively short record, smart healthcare (as a subcategory of smart city
and IoT) has been subject to profound changes. The early implementation of smart
health was mostly centered around three components: Data acquisition and sensing,
data concentration and aggregation, and data processing, storage, and visualization.
Closest to the user, data acquisition involves a diverse range of sensing devices
that collect raw data on user’s multiple biomarkers. Due to stringent requirements
on noninvasiveness, battery life, and ease-of-use (including weight and size), these
sensing devices are incapable of providing intense computing. More importantly,
these sensors oftentimes operate as stand-alone devices, implying that they do not
have access to the entire acquired data. The most expedient solution is to outsource
calculations to computationally-capable servers, where demanding data processing
algorithms and long-term data storage can be provided free of the constraints
sensing devices face. Direct cloud access, however, is typically far beyond the
capabilities of sensing devices. This problem is typically circumvented through
a hierarchal implementation, where an intermediary component bridges the gap
between data acquisition and the cloud. This conduit provides transparent cloud
connectivity via local wireless personal area networks (WPANs) and wireless body
area networks (WBANs), thereby substantially removing communication burden
from sensors. An abstract depiction of this architecture is shown in Fig. 1.

This classic architecture of smart healthcare sufficiently addresses application
requirements. Particularly, hierarchal implementation is proven to be effective
against system’s large scale, rapid, and constant data generation, and extreme
(and growing) heterogeneity. The cloud-based implementation also ensures deep
value, where invaluable information can be revealed by combining data from
multiple sources (data fusion). The backbone of this architecture, therefore, remains
applicable to new-generation smart health applications as well; however, recent
developments in the IoT field have resulted in significant modifications in imple-
mentation details. For example, the emergence of smart portable devices has
introduced the mobile-health (m-health, as opposed to electronic-health or e-health)
concept, where new sensing platforms such as the participating and non-dedicated
sensing [52] have revolutionized the data acquisition component. Furthermore, as
discussed in Sect. 2, smart healthcare is growing beyond its traditional definition.
Similar evolution is transpiring in other smart city applications. These developments
portend a uniform IoT ecosystem. Considering the functionality, this ecosystem
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Fig. 1 Functionality of the smart healthcare infrastructure can be thought of as having three cat-
egories: (i) Data Acquisition involves dedicated and non-dedicated sensing to collect information
about users and their surrendering environment, (ii) Data Concentration performs rudimentary data
processing and bridges the local network with the cloud, and (iii) Data Processing stores, analyzes,
and visualizes the data over an either distributed or non-distributed platform. The results are shared
with various participants including physicians, insurance companies, pharmacies, etc

can be structured based on a four-component model. An infrastructure component
gathers raw data and transfers them to the cloud for processing. Utility component
provides application-specific services for parochial services such as smart health,
smart transportation, AQ monitoring, etc. Social development component conflates
individual applications to provide social services such as comprehensive healthcare,
education, and entertainment [12]. Finally, security and privacy components must
be spread over all building blocks of the system to ensure its robustness against cyber
threats and security flaws. An abstract representation of this paradigm is depicted
in Fig. 2. In the rest of this section, we study each component of smart healthcare
in details and investigate how recent developments in smart city arena have affected
its implementation. A thorough and complete review of the most recent advances in
the smart city system architecture can be found in [53].
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Fig. 2 A demonstration of state-of-the-art smart healthcare applications. Such systems encompass
four components: (i) Infrastructure involves sensing, communication, and processing platforms,
(ii) Utility employs the infrastructure toward parochial smart city applications, (iii) Social
Development ensures interoperability among stand-alone applications, hence taking advantage of
existing synergies, (iv) Security and Privacy protects the entire system from privacy leaks and cyber
threats

3.1 Data Acquisition and Sensing

This component of the smart healthcare architecture embodies a variety of sensing
devices, which aim to provide continuous, noninvasive, accurate, and inexpen-
sive raw data acquisition of physiological and environmental parameters. These
strict requirements coupled with a harsh deployment environment pose various
restrictions on sensor weight, cost, size, and computational and communication
capabilities. Hence, limited resource availability is the major consideration in data
acquisition design and implementation. Similar to other aspects of smart healthcare,
data acquisition component has been subject to gradual evolution. As explained
in [3], the first generation of smart health sensing typically revolved around data
acquisition from a limited number of sensors such as electrocardiogram (ECG)
patches and pulse oximeters. It was soon discovered that data fusion in a multi-
sensory setting can effectively reveal hidden information at the expense of increased
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computational complexity (a trade-off worth making especially in the cloud-based
architecture with abundant resources) [54, 55]. The recent generation of data acqui-
sition implementations are centered around the same premise, however, they incor-
porate non-traditional sources of data such as patients’ historical records, research
results, and laboratories experiments [56]. Although this approach further compli-
cates the challenges regarding the big data management, it adds substantial value to
applications’ performance, as systems tend to evince emergent characteristics.

Multiple enablers have fueled these developments in data acquisition. Advances
in solid-state physics and VLSI design have increased the computational capability
of smart sensors while reducing their power dissipation. In the meantime, recent
breakthroughs in material sciences have resulted in the emergence of bio-compatible
and flexible printed circuit boards (PCBs) [57]. Complementary to these, novel
energy harvesting solutions have remarkably mitigated the limited power availabil-
ity, thereby improving sensors’ noninvasiveness and accelerating the emergence of
perpetual data acquisition [58–60]. Finally, smart healthcare sensing has received
significant momentum with the proliferation of smart portable devices and novel
solutions such as crowd-sensing and non-dedicated data acquisition [52].

Being the backbone of data acquisition component, sensors are typically imple-
mented in three forms: ambient sensors, wearable sensors, and implantable sensors.
Ambient sensors can collect users’ information from a distance, which minimizes
their invasiveness. Cameras are the most common type of ambient sensors. When
used with powerful image processing techniques, camera-based solutions can be
applied to a wide spectrum of applications. For example, the system proposed
in [61] uses smartphones’ embedded cameras to capture changes in ambient light
intensity caused by breathing-induced body movements. These changes can be
processed to reveal information about tidal volume and respiration rate. Indeed, this
approach is substantially less invasive and more cost-efficient than standard clinical
methods such as trained personal observation, Doppler radars, and spirometry.
However, cameras are susceptible to the noise induced by other light sources,
suffer from a limited line of sight, and raise privacy concerns [62]. This has
motivated some researchers to investigate RF-based sensors as a strong candidate for
ambient sensing. Various studies show that users’ movements caused by falling [63],
respiration [64], and heartbeats [65] interfere with RF signals (particularly, Received
Signal Strength (RSS) indicator). RF sensors address many limitations of cameras,
however, the filed is still in its fledgling state and many proposed solutions are tested
in highly controlled environments.

Wearable sensors must remain in close proximity of users’ bodies. Some may
require direct contact with the skin, while others may not. For example, the authors
in [66] propose a cuffless wearable sensor for blood pressure monitoring based
on photoplethysmograph (PPG) signals captured by pulse oximeters. Clearly, the
proposed system excels clinical approaches, which involve trained physicians and
sphygmomanometer—and require patients to wear a cuff around their arm—in
terms of ease-of-use and continuous data acquisition. Pulse oximeters are typically
worn at the fingertips, which can become cumbersome in the long-term use. A
study conducted in [67] shows that when coupled with advanced image processing
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techniques, built-in cameras of smartphones can also be employed to capture PPG
signals. Furthermore, conducted studies in [68] and [69] prove the applicability
of pulse oximeters to blood oxygen saturation monitoring applications. Other
commonly used wearable sensors include dry and non-contact ECG patches [70]
and Inertial Measurement Units (IMUs), which include multi-axis accelerometers,
gyroscopes, and force sensors [71].

Once implanted within the body, in-vivo sensors can collect data and administer
medicines accurately, without requiring any intervention from users. In spite of their
invasive installation process, in-vivo sensors outperform their wearable alternatives
in terms of ease-of-use in long-term operation. For example, an implantable device
capable of glucose monitoring and injecting insulin is proposed in [33] for diabetic
patients. The device can operate for 180 days after insertion when performing
data measurements every 2 min. Limited power availability is the bane of in-
vivo sensors. A study conducted in [72] proposes an implantable blood pressure
monitoring system that is powered by RF backscattering; hence it can operate for
an extended period. However, the sensor includes a wearable pair that continuously
transmits wireless power to the device. Table 2 summarizes our discussion about
most commonly used sensors in smart healthcare data acquisition.

Table 2 Sensors used in smart healthcare data acquisition component can be categorized into
ambient, wearable, and implantable devices

Advantages and

Type disadvantages Example applications

Ambient
sensors

⇑ Minimal invasiveness
⇑ Cost-efficient
⇓ Limited accuracy
⇓ Privacy concerns
⇓ Interference
susceptibility

Respiration monitoring (camera) [61]
Blood oxygen monitoring (camera) [73]
Fall detection (RF) [63]
Heart beat monitoring (RF) [65]
Respiration monitoring (WiFi) [64]

Wearable
sensors

⇑ High flexibility
⇑ Cost-efficient
⇑ Non-invasive
⇓ Security concerns
⇓ Limited accuracy
⇓ Uncomfortable

BP monitoring (pulse oximeter) [74]
Muscle activity monitoring (textile) [75]
Seismocardiography (accelerometer) [76]
Electrocardiography (ECG) [77]
Fall detection (IMU) [71]

In-vivo
sensors

⇑ High accuracy
⇑ Comfortable
⇓ Invasive
⇓ Limited battery life
⇓ Uncomfortable

Glucose monitoring (abdominal
tissue) [33]
BP monitoring (femoral artery) [72]

Ambient sensors are typically used for casual fitness-related applications. Wearable sensors can
be used for both clinical and non-clinical purposes, while implantable (in-vivo) sensors are most
suitable for clinical applications due to their unmatched accuracy
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3.2 Data Concentration and Aggregation

Data concentration and aggregation component facilitates cloud access by creating
a virtual conduit between in-field sensors and the cloud. Breaking the distance
between these two components and placing the data concentrator close to sensing
devices transfer the communication burden from sensors to the concentrator.
Therefore, concentrators are typically provisioned to be relatively resourceful—
sometimes grid-connected—computers that are not constrained with limitations
of field devices. This approach is readily implementable, as a single concentrator
can cater to many sensors. A concentrator establishes a short-range wireless with
sensors, over which filed devices can upload their data and receive command and
control messages from the cloud. Once a communication link is established, a
concentrator provides three fundamental services to its associated sensor nodes:
preprocessing and aggregation, protocol adaptation, and cloudlet services.

Radio Access Technologies (RATs) Establishing a connection between sensors
and the concentrator faces the typical challenges of IoT and smart city communi-
cation. The power availability limitation is the main setback. Data is also highly
heterogeneous; an application might involve multi-media, text-based, scalar, and
real-time data, with each type demanding a specific quality of service management.
Furthermore, as many smart healthcare applications are event-based (such as fall
detection, heart attack prediction, etc.), the network traffic is highly bursty and
unpredictable. Finally, security and privacy considerations are also of utmost
importance. When combined with 3Vs (veracity, volume, and velocity) of the smart
city communication [78], satisfying these requirements entails many challenges. A
variety of WBAN and WPAN protocols are proposed in the literature. However,
ZigBee, Bluetooth Low Energy, and WiFi have received the widest adoption.
ZigBee (developed by ZigBee Alliance [79]) has for long been considered the de
facto standard for WPAN implementations, due to its low complexity, acceptable
reliability, low energy consumption, and decent data rate and range (≤250 kbps
and ≤100 m). This standard, however, suffers from multiple shortcomings. First,
the performance of ZigBee deteriorates with the number of nodes [80]. More
importantly, as ZigBee operates in the same frequency band as WiFi and due to
its relatively lower transmission power, the standard is known to evince poor WiFi
compatibility [81]. This can become a prohibitive limitation considering the ever-
increasing popularity of WiFi. These limitations have inclined some researchers
toward IEEE 802.11 (WiFi) standard, which provides remarkable throughput and
unmatched ubiquity. Nonetheless, WiFi is not originally designed for smart city
dense networks. Its performance decreases with the network density. Additionally,
WiFi consumes orders of magnitude more energy than its low-power alternatives.
BLE [82] is indeed the shining star of smart healthcare applications. It can provide
relatively high data rates (≤2 Mbps) and decent coverage (≈ 70 m) [83]. In addition
to its high energy efficiency (study conducted in [84] shows that a small coin
battery can power a BLE-powered sensor for about a year in an activity recognition
application), the popularity of BLE can be mostly attributed to its unparalleled
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ubiquity, as many portable devices such as smartphones, laptops, and smartwatches
shipped with embedded BLE compatibility. BLE, however, cannot be configured
in the mesh topology, which limits its scalability and arises security and privacy
concerns [85].

Expected to be available in 2020, the fifth generation of mobile communication
(5G) promises a low-delay (less than 1 ms), long-range, low-energy (90% reduc-
tion in comparison to 4G), high-rate (up to 10 Gbps), and resilient connectivity
for smart city applications [86]. The 5G’s ability to provide diverse QoS and
Quality of Experience (QoE) management coupled with its compatibility with
both massive Machine Type Communication (mMTC) and Ultra-Reliable Low
Latency Communication (URLLC) [87] promises great opportunities to dovetail
smart healthcare and other smart city applications. To these, we should also add
features such as impressive mobility support (500 kmph) [88], Device to Device
communication [89, 90], and Licensed-Assisted Access (LAA) [91], all of which
are critical to cross-application comprehensive healthcare services. Overall, taking
into the account the close ties of cellular networks with smart cities [92], the share
and importance of such RATs in the smart healthcare is expected to grow.

Data Preprocessing and Aggregation Two inherent characteristics of smart
healthcare communication motivate data preprocessing and aggregation. First, the
dense deployment of sensors often results in duplicates or values that are in the close
vicinity of each other. For example, built-in accelerometers of a user’s smartwatch
and smartphone typically measure and report the same value, which implies some
degrees of redundancy. The other contributing factor can be associated with event-
based nature of many healthcare applications, where all the sensors deployed in an
application generate a tide of data upon occurrence of an event. In these scenarios,
having multiple sensors that report the same event represents redundancy. The
data preprocessing and aggregation component aims to reduce long-range com-
munication burden by detecting and reducing these redundancies. This, however,
requires this component to perform basic calculations on raw data (such as max,
min, mean, and average), which inexorably increases the energy consumption of the
node. However, as communication is notably more demanding than computation—
in terms of energy consumption—data aggregation can lead to a notable reduction
in the overall power dissipation. Similarly, rudimentary data preprocessing can be
applied to raw data to eliminate outliers and erroneous samples. Particularly, if the
resource availability of the concentrator allows it, early event detection techniques
and feature extraction methods can result in major reductions in network traffic.
The data aggregation and preprocessing introduce multiple challenges. For example,
whether the energy consumption reductions caused by aggregating are enough to
offset computation power demand remains dependent on the application. Multiple
models, however, are proposed in the literature to evaluate these trade-offs [93].
Furthermore, aggregating faulty samples with normal ones can vitiate veracity of
measurements, as one corrupt recording can contaminate the entire sample [94].

Cloudlet A new approach to hierarchal smart healthcare involves deployment of
relatively powerful machines in the close vicinity of field devices [95]. Often termed
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as cloudlet, these machines can execute complicated data processing algorithms,
offer extensive long-term data storage, and manage network operation [96], thereby
minimizing the dependence of the application on the cloud [97]. This architecture
improves various aspects of the application. For example, reducing the physical
distance among sensors, users, and servers increases various aspects of QoS.
Additionally, cloudlet-based applications can resume their operation in the absence
of Internet connectivity, thereby providing offline services.

3.3 Data Processing: Structure and Algorithms

Sophisticated data analysis algorithms form the engine that drives smart healthcare
toward once-unimaginable boundaries. These algorithms, nonetheless, are demand-
ing and require access to a vast pool of data gathered from various sources—some
of it is even not part of smart healthcare sphere, e.g., AQ data, traffic status, social
networks, etc. This naturally calls for cloud-based implementations. We dedicate
this section to major characteristics of this cloud-based architecture, studying not
only the implementation but also various services it offers.

Structure and Framework Centralized cloud-based servers are the mainstream
approach for data processing; they can well satisfy the ever-increasing demand
of reliable computation by providing resourceful, always-on, flexible, scalable,
and affordable (by benefiting from economy of scale) data processing and storage
platforms. It is important to acknowledge that the term centralized is used loosely in
this context, as almost all cloud-based servers are structured by an interconnection of
a multitude resourceful machines (sometimes, physically distant from each other).
However, as such services are typically offered by the same entity (Cloud Service
Provider (CSP)) under the same policy, we consider them as centralized units (as
opposed to massively distributed m-health services). CSP and the administration
that controls a smart healthcare application can be the same entities, which yields
to a private cloud implementation. In contrary, it is often more affordable to lease a
public server form third-party CSPs, which share their resources with a multitude of
subscribers. This, however, poses various security and privacy concerns [98]. The
list of public CSPs, which customers can choose from is ever growing, as now the
major tech companies provide their own processing services, including the Google
Cloud IoT platform [99], Microsoft Azure IoT [100], Amazon AWS [101], and
IBM Watson IoT [102] to name a few. These services not only provide a hardware
platform for hosting data storage and processing but also offer off-the-shelf data
analytics algorithms, visualization tools, and a spectrum of APIs for controlling
end-devices; hence paving the way for the softwarization of the data plane [103].
Finally, for applications that require a middle-ground, hybrid implementations can
be suggested, where sensitive data are stored and processed in private servers while
demanding algorithms and long-term storage of the bulk of data are outsourced to
public servers [104].



90 H. Habibzadeh and T. Soyata

Alternatively, the diffusion of computationally capable smart portable devices,
such as smartphones and smartwatches, gives rise to nascent m-health architecture,
where computations are offloaded to a large number of distributed, heterogeneous
devices. By putting volunteering individuals in charge of the communication and
processing, the m-health substantially depresses operating costs while giving rise
to flexibility and scalability of the system (epically when paralleled with non-
dedicated sensing [52]). Multiple drawbacks, however, can be associated with this
implementation. Aside from complications of incentivizing individuals, security and
privacy considerations must also be addressed. Furthermore, the high entropy in
device properties and stochastic nature of the network make it substantially difficult
to guarantee the availability of the system [105]. Further curbing the applicability
of distributed approaches, not all data processing algorithms are executable in a
massively parallel fashion.

Machine Intelligence Software Core Whether distributed or centralized, public or
private, the cloud must provide two fundamental services (aside from data storage):
(i) data analytics and (ii) data visualization.

Data analytics refers to machine learning [106] and deep learning algorithms that
extract valuable information from the pile of apparently unrelated raw data, thereby
facilitating decision making by performing the descriptive, diagnostic, predictive,
and prescriptive analysis. The data processing component must deliver these
services while meeting the 5Vs (Veracity, Volume, Velocity, Variety, and Value) [78]
requirements of IoT applications. Additionally, considering the gravity of the task—
which directly affects the well-being of users—the machine intelligence must
deliver exceptional accuracy (particularly in terms of low false-negatives) as well
as immunity to noise [107]. Once such a platform is established, invaluable services
can be provided to users. For example, the study conducted in [108] uses Support
Vector Machine (SVM) to categorize voices recorded by numerous sensors such
as smartphones and voice recorders with the objective of detecting Parkinson’s
Diseases (PD) in early stages (as PD causes speech impairments). Multiple features
such as lowest and highest frequencies, jitter, perturbation, and amplitude are
used for the classification. The SVM is executed by a centralized server, which
shares the processing results with a physician. Being incorporated with other smart
city services, the server can also collect traffic information to facilitate access
and expedite emergency response when required. The system proposed in [109]
uses cameras to capture head images, from which various features such as head
movements, blinking rate, and facial expressions are extracted. These features are
then combined with data obtained from user’s usage of social networks to classify
their mood into three separate states [109]. Using logistic regression, the authors
achieve an accuracy of almost 90%. Aiming to improve the efficiency of emergency
rooms, the authors of [110] propose an RFID-based patient localization technique
based on k-means and Random Forest. Using this hybrid approach, they report an
accuracy of 98%, showing the efficacy and robustness of hybrid and hierarchal
implementations. These example data analytics applications clearly accentuate the
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integral role of machine intelligence in the consolidation of smart healthcare with
other smart city applications.

In response to the growth of the m-health, many research works in the literature
have investigated the distributed implementation of data analytics [111–113]. Par-
ticularly, clustering solutions evince great potential for distributed implementations.
Nonetheless, such approaches negatively affect various aspects of the system,
with the communication plane typically receiving the brunt of the performance
degradation, as distributed algorithms heavily rely on data exchange among nodes.
Finally, once processed, the information must be output to participants in forms
of recommendations, action control, and particularly, visualization. An effective
approach to the latter is rife with myriad complications. First, the massive size
of the extracted information calls for data abstraction and summarization. For
example, the study conducted in [31] proposes a novel visualization solution for
condensing 24-h heart rate data into a simple graph, helping physicians detect
Long QT (LQT) syndrome. Second, various participants of the e-health system seek
different information; therefore, data visualized for (say) patients differ substantially
from those prepared for physicians. These two requirements necessitate a hierarchal
and personalized presentation.

4 Smart Healthcare Vulnerabilities

Aside from its myriad advantages, the diffusion of smart healthcare (and IoT in
general) in various dimensions of our healthcare system brings about multiple
detrimental side effects. Particularly, by increasing the attack surface, this transition
leaves security, safety, and privacy of the users vulnerable to cyberattacks. The
extent of these vulnerabilities ranges from security flaws in individual smart devices
to weaknesses in underlying infrastructures such as hospitals. For example, in 2017,
Food and Drug Administration (FDA) issued a warning regarding the suscepti-
bility of pacemakers and cardiac devices to intrusion and privacy breaches [114].
Fortunately, no specific attack exploiting these flaws was reported; nonetheless,
considering the gravity of these devices to patients, such security threats cause
genuine concerns and retard proliferation of smart healthcare devices.

Further adding to the security and privacy concerns, an increasing number
of attacks are now targeting underlying health infrastructures. For example, in
2017, attackers used a ransomware to cut access to computers in a hospital in
Los Angeles [115]. The hospital regained access only after paying $17,000 to
the attackers. Although this incident did not directly threat hospitalized patients,
it interfered with the admittance of new patients to the emergency center. Even
more unsettling, in the same year, the so-called WannaCry ransomware affected
UK’s National Health Services (NHS), which led to “massive shutdowns and
inconveniences to the country’s health care infrastructure” [116]. Similar extortion-
oriented attacks have been reported across the globe [117], including a $55,000
ransom attack to a hospital in Greenfield, Indiana in 2018 [114]. Indeed, the
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interwoven structure of smart healthcare further exacerbates the situation, as the
dispersion of even seemingly insignificant data can create security considerations.
For example, it is known that fitness-related data can reveal sensitive information
pertaining to military zones [118].

Considering the smart healthcare’s inflating sphere of influence, it can be
expected that the frequency and extent of such attacks continue to increase for the
foreseeable future. This can depress the social acceptance of such applications and
impede the prevalence of smart healthcare and its many advantages. Consequently,
a massive amount of effort has been undertaken to strengthen the security and
privacy aspects of this domain. These efforts can be subsumed under technical and
non-technical (social) categories. The former involves applying security preserving
techniques to different components of the architecture shown in Fig. 2, while
the latter includes regulations passed by policymakers to legally oblige system
developers to protect the privacy and security of their users. Health Insurance
Portability and Accountability Act (HIPAA) and the European Data Protection
Directive 95/46/EC [119] are the most eminent examples of such regulations. In
this chapter, we focus on the former category.

The underlying contributing factor to security and privacy vulnerabilities of smart
health can be ascribed to the service-oriented design approach of developers, who
oftentimes neglect the security aspects of their systems to expedite the development
and employment process. Still being its infancy, many smart healthcare products
and services—whether commercial or not—are developed somehow as proof-of-
concept prototypes to assess the feasibility of new ideas and evaluate their social
acceptance. Furthermore, unlike performance metrics such as battery life, memory
size, and physical dimensions, the security and privacy metrics are difficult to
quantify and advertise [120]. This leaves some producers reluctant to heavily invest
in these areas. It is, therefore, not surprising to see that many of these products regard
security and privacy as features rather than an integral part of the system [121].

Although the maturity of IoT coupled with the rising awareness about secu-
rity (fueled by recent attacks) has mitigated this problem to some extent, older
vulnerable devices entail long-lasting repercussions by adding to the security
heterogeneity of the system. The security heterogeneity is a multi-faceted problem
that substantially complicates the fulfillment of a protective initiative. Following
the preceding discussion, one aspect of this non-uniformity can be associated
with the amalgamation of the older generation and insecure devices with newer
(typically) secure ones. By creating weak links, this provides adversaries with the
opportunity to exploit vulnerabilities of the former group to compromise the entire
network. From another perspective, this heterogeneity evinces itself in data and user
access requirements [122]; some data are inherently more sensitive than others.
For example, video and audio-based information are more prone to attacks than
air quality parameters. Nonetheless, when fused together, even unimportant data
can disclose critical information about users [118]. User non-uniformity implies
that a complex smart healthcare system involves numerous stakeholders from
patients to their physicians to insurance companies to emergency units. These users
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require various levels of data access, which often change dynamically based on the
context [123]. Indeed, managing these heterogeneities is an onerous task.

Addressing these intricate security and privacy considerations in the smart city
must be carried out in accordance with the limited resource availability of smart
sensors, implying that many existing sophisticated techniques are not applicable
to smart healthcare applications. This adds another dimension to the security and
privacy problem, where these requirements must be met without adversely affecting
the experience of the user. This dimension is sometimes referred to as Quality of
Protection (QoP) [124]. Additionally, aside from intentional cyberattacks, smart
health applications must also offer higher reliability, resilience, and self-healing
features. Finally, even devices with robust security mechanisms may fail to protect
users’ data, unless both users and system administrators meticulously enforce secu-
rity recommendations [120]. Increasing the awareness among various stakeholders
is, therefore, critical to any holistic security framework.

The standardization of security and privacy protection mechanisms poses yet
another challenge in securing smart healthcare services. Currently, the available
solutions are highly fragmented, as a universal standard is yet to be adopted. This
fragmentation occurs in each service of the smart city (including smart healthcare)
but the problem will be more pronounced in entangled future ecosystems that
involve a wide variety of smart city services. Indeed, the emergence of higher-level
security services provided by CoAP, DTLS, IPSec, etc. can partially abate these
concerns. Nonetheless, interoperable access control, identification, authentication,
and trustworthiness assessment are yet to emerge. The major policymakers and
standardization groups are aware of these shortcomings and have undertaken various
efforts to standardize IoT security (e.g., ITU-T Y.2060, Y.2066, Y.2067, Y. 2075,
etc. [125]). Particularly, ITU-T Y.2075 and ITU-T H860 target smart healthcare
applications, the former defines the requirements for e-health monitoring, while the
latter regulates multimedia data exchange [126].

Any effective protective solution must overcome the aforesaid challenges to
satisfy various requirements that are subsumed under the general term, security,
including [127, 128]:

– Confidentiality protects data against privacy leaks, eavesdropping, and unautho-
rized access.

– Availability implies that data must be made available to authorized users at their
behest with least amount of delay possible.

– Data integrity detects and amends data manipulations, either intentional (caused
by adversaries) or unintentional (caused by networking errors) ones.

– Interoperability facilitates authorized information sharing among various partic-
ipants of the healthcare system.

– Identification limits the data access to the authorized users.
– Authorization verifies the legitimacy of data and users.
– Data loss immunity enables the system to recover to its original state after a

partial loss of data.
– Privacy cuts access to the data for the irrelevant users.
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Smart healthcare applications are particularly vulnerable to identity-based
attacks. Unfortunately, traditional PIN-based authentication techniques are proven
to be inadequate in many applications considering that (i) smart healthcare
ecosystems involve a large number of stakeholders and (ii) many users are elderly,
who might not easily remember their credentials. Various solutions are proposed to
relax this requirement (e.g., using RFID tags [129]). In addition to identity-based
threats, many smart healthcare systems are vulnerable to service attacks (Denial
of Service), which can result in catastrophic consequences [130]. The following
sections provide a more detailed study of some of the major threat models in smart
healthcare applications.

5 Security and Privacy of Field Devices

As discussed in Sect. 4, regarding security and privacy protection mechanisms as
supplementary features is the underlying cause of many existing vulnerabilities.
Instead, security must be incorporated in the early phases of the design process as an
integral component of the system. Furthermore, because it is the weakest link that
determines the overall robustness of the system, any attempt to ensure security and
protect privacy must include all components of the system. This latter consideration,
however, is typically neglected, as developers often focus on the security of the
communication and omit other components.

Cryptography is the backbone of the security and privacy protection in the sens-
ing and communication planes. Particularly, taking advantage of its simplicity, many
smart sensors are equipped with built-in Advanced Encryption Standard (AES)
accelerators [131]. In case a more robust encryption is required, algorithms that
use Elliptic Curve Cryptography (ECC), such as Elliptic Curve Digital Signature
(ECDSA), can be employed. ECC security matches RSA, however, utilizing smaller
keys renders it less resource demanding. ECDSA, however, involves complicated
verification procedures, which shifts the computation burden to the cloud side [132].
These cryptography-based approaches can well improve device security against a
wide variety of software-based attacks. However, they are oftentimes ineffective
against hardware and side channel attacks. Additionally, many of these solutions
are susceptible to attacks carried out by insiders [133].

5.1 Common Threats and Proposed Solutions

This section analyzes some of the major threats and the proposed solutions
for ensuring security and privacy of field devices, by focusing on sensing and
communication components. Instead of targeting the entirety of the system, most
of the vulnerabilities studied in this section correspond with the system’s individual
components or at most aim at the underlying data collection network (as opposed
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to enforcing access control, identification, and authentication that involve higher-
level component of the system (e.g., cloud), which are discussed in Sect. 6). The
relative parochial scope of these threats, however, does not translate to ineffec-
tiveness. Although we have separated the solutions and threats into two sections,
a comprehensive security package must be uniformly spread over all levels.

Node capture involves insider adversaries tampering a node in the network,
oftentimes through hardware changes (including uploading code through debugging
pins or soldering hardware pieces to the device). Therefore, it requires physical
access to the device. Once compromised, the adversary can read the memory content
of the captured node, make it generate false data, or gain full control over its
operation, which allows them to perform insider attacks targeting the entire network.
Firmware verification—particularly hardware-based solutions that rely on Trusted
Platform Modules [134]—and limiting access to debugging pins can provide some
degree of immunity to such attacks [135].

Node replication is based on secret key information gained from captured nodes,
which allows the adversary to insert multiple compromised nodes into the network
mimicking the identity and credentials of the captured device. Replicated nodes
(imposters) can generate wrong data, perform selective packet forwarding, and
conduct sinkhole attacks [128]. Typically, location-based solutions, where neighbors
of a node attest its legitimacy are used for detecting imposters. Network mobility and
colluding replicas, however, can render these solutions rather impotent. More robust
approaches, such as token exchange based on Artificial Immune System (AIS) can
mitigate these problems [136].

Injection attacks involve adversaries uploading malicious firmware to the device
(code injection) or tampering with nodes to generate incorrect data (data injection).
The former can be mitigated by checking the validity of the firmware, whereas the
latter is typically detected by “estimators” [133]. An estimator contrasts the values
generated by a senor with the expected values. A substantial and persistent deviation
from expected values indicates an attack. The efficacy of such solutions, however, is
limited when adversaries have some familiarity with the network and the expected
values. More sophisticated estimators based on Kalman filter and machine learning
solutions are proposed in the literature to address these limitations [137, 138].
Injection attacks are particularly common in smart healthcare applications. For
example, the study conducted in [139] shows the susceptibility of BLE (arguably,
the most prevalent communication in smart healthcare applications) to these attacks.

Side channel attacks are carried out by inspecting parameters such as execution
time, power consumption, and cache access patterns to gain information about
sensitive information (e.g., secret keys). Side channel attacks can then render
software-based encryption techniques rather ineffective. Decreasing the correlation
between the key size and computations (such as Montgomery’s multiplication [140])
as well as randomizing calculations [141] can substantially improve the immunity
of the system against side-channel attacks [131].

Jamming is a well-known type of Denial of Service (DoS) attacks, which targets
system’s availability. To achieve this, adversaries use jammer devices to generate
random RF signals that intentionally cause interference with data transmission,
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thereby decreasing the Signal-to-Noise Ratio (SNR). The complexity of jamming
attacks increases with the knowledge of the adversaries about the network, which
allows them to adjust their attack to the network’s reaction. Countervailing jamming
in such scenarios often involves game theory-based solutions that aim to detect
an equilibrium between adversary’s actions and network reactions [142]. Such
solutions, however, typically take a toll on sensors’ computational load and their
energy consumption demands.

Denial of sleep (DoSL) is a link layer variant of DoS attacks. In DoSL, the
adversary exploits security flaws to create packet collision, message overhearing,
and idle listening to increase the energy consumption of smart sensors. Additionally,
these attacks can be carried out simply by sending consecutive Request to Send
(RTS) messages. DoSL accelerates battery drain. Knowing that battery replacement
in many WSNs is cost prohibitive, this can lead to imminent shut down of such
networks [143]. Securing the network against DoSL typically revolves around
authentication and anti-replay mechanisms [144].

Vampire attacks reduce networks’ expected lifetime by gradually draining sen-
sors’ batteries. Two aspects differentiate this attack from DoSL and resource
exhaustion attacks; first, it typically targets long-term availability of the network and
second, it exploits vulnerabilities of the network layer. Particularly, the malicious
nodes generate and transmit packets that require higher-than-average routing and
processing (e.g., by creating loops or establishing longer routes), hence increasing
the power dissipation of the network. Vampire attacks can be mitigated by loop
detection routing algorithms and optimal route re-computation as well as clean slate
sensor routing protocols [145].

Black hole is a network layer DoS attack, where a malicious node exploits
vulnerabilities in routing protocols such as Ad-hoc On-demand Distance Vector
(AODV) and Dynamic Source Routing (DSR) to broadcast a fake shortest path to
a destination. Eventually, this results in all the packets generated by the network to
be redirected to the compromised node. The malicious device can then drop these
packets (black hole attack) or forward a select number of them (selective black hole
attack). Various solutions are proposed in the literature to countermeasure black
hole attacks including sending data through multiple paths and establishing trusted
routes based on the packet delivery ratio. Such solutions, however, increase power
demand of the system and add to its complexity [146].

Man-in-the-middle, or equivalently manipulation [147], describes (typically)
network layer data manipulation attacks, where an adversary alters data traveling
from its source to destination. Particularly, joining procedure of new devices to the
network is known to be susceptible to such attacks [148]. This is indeed a major
challenge for smart healthcare systems as their dynamism implies frequent inclusion
and exclusion of devices, providing adversaries ample opportunities to compromise
the data. Network robustness against man-in-the-middle attacks can be increased by
employing data encryption techniques (either symmetric or asymmetric), network
layer authentication, and digest algorithms [149].
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5.2 Specificities of Smart Healthcare Applications

A majority of the vulnerabilities discussed in Sect. 5.1 are inherited from IoT-based
nature of modern smart healthcare applications. In addition to these vulnerabilities,
there still exists a wide range of security concerns that directly stem from immanent
characteristics of smart healthcare. Particularly, extent and diversity of smart health-
care systems are proven to be the root cause of many such threats. A practical health-
care system likely relies on users conventional smart devices such as smartphones
and smartwatches to collect and relay data. These devices forward information to
the cloud using a heterogeneous communication network that involves home and
public WiFi as well as cellular communication. This creates ample opportunity for
adversaries to compromise the system. For example, many smart existing services
revolve around Android-powered devices. The conducted studies in [150] show
how adversaries can steal critical information from these devices using screen-shot
attacks. Additionally, it is known that WiFi and ZigBee (two most commonly-used
communication technologies in WBAN) can be compromised using man-in-the-
middle, DDos, and replay attacks [151]. Therefore, due to this heterogeneity,
providing end-to-end security is oftentimes augmented by employing higher-level
encryption (e.g., Constraint Application Protocol (CoAP) [152] in the application
layer and IPSec and Datagram Transport Layer Security (DTLS) [153] in the
transport layer). Lower level security solutions are also available. For example, IPv6
over Low power Wireless Personal Area Network (6LoPAN) uses AES to provide
authentication and confidentiality (by adjusting the Auxiliary Security Header).
Although effective, many of these solutions substantially increase power demand
of existing healthcare devices. There are some existing works in the literature that
aim to address this limitation by outsourcing demanding computations of these
algorithms to more resourceful devices such as gateways [154].

5.3 Summary

This discussion of a select number of cyberattacks clearly shows their diversity,
which evinces itself in terms of exploited vulnerabilities (hardware and software),
adversaries intentions (e.g., crippling the network or stealing data), targeted layers
(e.g., physical, link, and network), scale and possible repercussions. Emerging
sensing and processing paradigms such as crowd-sensing and edge-processing fur-
ther complicate smart healthcare security equation by adding additional unknowns
such as participant trustworthiness [155]. Table 3 summarizes our discussion about
crypto-level security concerns in smart healthcare applications.
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6 Access Control, Identification, and Authentication

The diffusion of cloud-based computing in smart healthcare systems explicitly
implies a separation between data’s host (where data is processed and stored) and
their generators (users). Considering that cloud-based servers are typically owned
and controlled by third-party entities, such separation causes genuine security and
privacy concerns. Furthermore, taking advantage of economies of scale, cloud
resources are shared among various applications and services, which increases
incidents of privacy leakage and provides more opportunities for adversaries to
compromise the system’s security. In addition to protecting data against the threats
discussed in Sect. 5, an impervious security system cannot be established without
overcoming cloud security challenges.

A comprehensive protecting solution must be spread over all functionality of the
cloud [156]: data processing, data retrieval, and data storage. The first requirement
can be satisfied by Fully Homomorphic Cryptography (FHC) techniques, which
allow computation on encrypted data [157, 158]. FHC, however, is computationally
complex even for powerful cloud-based servers. Ensuring security of data during
retrieval and storage is typically addressed by identification, authorization, and
access control mechanisms. Scale, dynamism, and complexity of healthcare systems
render many traditional solutions impractical. Hence, this field calls for innovative
solutions, which we investigate in detail in this section.

6.1 Access Control

Traditional access control mechanisms (based on RSA, AES, and IDEA) are
developed to provide secure one-to-one data sharing, which makes them suitable
for classic applications such as file transfer and email exchange. The requirements
of modern smart healthcare platforms, however, differ significantly from these tra-
ditional services, which involve a large number of participants with highly dynamic
access privileges, which change with roles, time, location, etc. [159]. Indeed, multi-
ple copies of data can be created to implement more resilient data sharing paradigms
based on the traditional techniques; nonetheless, the sheer scale of the smart health-
care renders such approaches impractical. Attribute-Based Access Control (ABAC)
can satisfy this requirement. Based on Attribute-Based Encryption (ABE, also called
Fuzzy Identity-Based Encryption) [160], ABAC utilizes users’ attributes (e.g., loca-
tion, profession, affiliation, etc.) to create private keys. Therefore, the combination
of various attributes allows fine-grained access control management. For example,
the authors in [161] develop a cloud-based framework for ABE-based personal
health record sharing that manages access control among various owners and users
(including patients, physicians, family members, pharmacies, etc.). The proposed
solution also provides attribute revocation (a user’s access to a record must be ter-
minated as soon as their attributes change) and relies on honest but curious servers.
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6.2 Identification and Authentication

A robust authentication mechanism must ensure protection against a multitude of
attacks including eavesdropping, online and offline password guessing, spoofing,
man-in-the-middle, replay, and dictionary attacks. Even a single vulnerability
against one of these threats suffices to undermine the overall efficacy of the authen-
tication mechanism. This comprehensiveness inexorably entails hybrid solutions,
as developing a non-hybrid solution capable of satisfying all these requirements
is proven to be cumbersome. Additionally, authentication techniques must comply
with immanent characteristics of eHealth cloud, particularly its distributed and
multi-server implementation [162], while offering simple and secure account
recovery as well as system restoration after disasters and breaches [163].

Traditionally, the authentication is carried out using passwords, which can always
be stolen and guessed (especially low-entropy ones). Alternatively, two-factor
authentication can address some of these concerns, where in addition to passwords,
users must insert a smart card to verify their identity. This prevents passwords
guessing, stealing, and sharing, as there is only a single card per user. This
remote-access identity-based verification mechanism, however, is still susceptible to
eavesdropping, password guessing, and smart key stealing [164]. Addressing these
limitations, emerging biometrics-based solutions use physiological parameters (e.g.,
fingerprints, facial features, etc.) to identify and authenticate users. Additionally, in
response to nascent trends in the digital health domain, such as socialization of
smart objects [165] and their interplay with social media [166], biometrics-based
solutions can now authenticate users based on their behavioral patterns including
their use of social networks [167] and handwriting [168]. These two approaches
are also referred to as hard and soft biometrics-based authentication [169]. Strong
protection can be maintained by a hybrid utilization of both the behavioral and
biometrics-based authentication, as opposed to replacing one with the other.

Maximizing the security robustness of smart healthcare systems, various three-
factor authentication mechanisms, based on passwords, smart cards, and biometrics
have been proposed in the literature. Utilizing strong encryption mechanism such
as RSA, ECC, and Hash function (ECC is typically preferred due to its strong
protection and small key size) under the hood, the three-factor authentication can
provide immunity against a variety of attacks including guessing, eavesdropping,
intercept, replay to name a few [170]. Aside from its many advantages, three-
factor authentication is rather a complicated system, which impedes its widespread
proliferation among the elderly and disabled. Both groups are major participants in
healthcare systems. This calls for alternative approaches that are user-friendly and
independent from peripheral devices such as smartphones and card readers. To this
end, various ambient sensors (e.g., cameras and RFID) can extract users’ biometrics
to authenticate them, thereby creating a naked environment, where interactions
between users and the environment take place directly and continuously [171].
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6.3 Data Trustworthiness

The system’s heterogeneity coupled with a large number of stakeholders in a
typical smart healthcare application introduces an extra dimension in data security
and privacy: data trustworthiness. Intentional (by adversaries) and unintentional
(e.g., by faulty devices) incidents can inject fallible data in smart healthcare
applications. Due to the gravity of the task, it is necessary to evaluate and assess
the trustworthiness of the collected data. This problem is particularly emphasized
in crowd-sensing applications. Two key factors determine data trustworthiness.
The first one is ascribed to the accuracy of the sensors (typically embedded into
participants’ smart devices), while the second is typically associated with their
reputation [172]. Social Network-Aided Trustworthiness Assurance (SONATA) is
a notable solution to evaluate data trustworthiness in a crowd-sensing applica-
tion [173]. In this solution, a community of participants that perform the same
sensing task is used to evaluate trustworthiness through a voting-based approach,
dynamically. The study conducted in [174] uses a similar approach, however, the
authors further increase the reliability of the voting process by increasing the voting
clout of a group of selected trustworthy participants.

Aside from the preceding discussion, the recent incidents regarding the privacy
violation of users by some of the major services providers have also added a new
aspect to trustworthiness in IoT and smart healthcare systems. In fact, many users
and system administrators now prefer to sever their reliance on third-party service
providers. This has inexorably motivated the emergence of decentralized solutions.
Particularly, block-chain services are expected to play a significant role for securely
storing medical records on a distributed platform. Existing research has proven the
efficacy of block-chain technology in protecting users’ privacy and security [175].

7 Future Directions and Open Issues

Although the current smart healthcare services are fragmented and disjoint, the
newest trends and developments in IoT and the smart city hint at an imminent
fusion of services and applications into a unified ecosystem. Multiple trends fuel
this unification including (but not limited to) the prevalence of smart wearables
and crowd-sensing platforms, the emergence of electric vehicles and smart home
services, the growth of machine learning and deep learning algorithms, the advance-
ments of cloud and fog computing, etc. To these, one should also add societal
developments such as the global aging population, increasing technology-awareness
in eastern and southern Asia, as well ever increasing market dominance of some
technology giants. Establishing such an ecosystem, however, is contingent upon
guaranteeing interoperability among myriad components of smart cities, which for
years has been the bane of IoT-based services.
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There are multiple emerging technologies that can facilitate interoperability in
the context of smart healthcare and the smart city. For example, 5G has the potential
to overcome the fragmentation in communication technologies, particularly, consid-
ering its intrinsic compatibility with existing common Radio Access Technologies
(such as WiFi) using the Licensed Assisted Technology (LAA) [176]. When coupled
with the profusion of smart wearable devices, it is not unreasonable to imagine that
BLE/5G will be the de facto approach for short and long range communication,
respectively.

Equivalently impressive is the evolution of the blockchain technology, which
simultaneously addresses the security concerns and the challenges regarding the
data storage and sharing in smart healthcare services. Additionally, this technology
can pave the way to further the adoption of fog computing, which is yet another
major pillar for future smart healthcare ecosystem. Despite its increasing popularity,
however, the adoption of blockchain technology faces various challenges including
ensuring the interoperability among different blockchains, protecting the security
of the data when at least 50% of the network is compromised, and evaluating the
trustworthiness of information [177].

In addition to the aforementioned challenges, standardization and security remain
the main deterrence against the growth of smart healthcare ecosystem. Although
multiple efforts have been undertaken to standardize data communication, sensing,
storage, and processing are often get neglected, which negatively impacts the
integration of services in these levels. The unification of smart healthcare services
with each other, as well as sundry smart city applications, also exacerbates security
and privacy concerns as it complicates the existing attack surface. Unfortunately,
many major stakeholders fail to properly incorporate a comprehensive security
protection system in their designs (perhaps because in some cases companies
short-term financial interests are in contrast with their customers or maybe privacy
and security features are not as advertisable as performance metrics). Despite the
remarkable advancements in communication component, preserving security and
privacy for effectively sharing and processing information still remains the major
hindrance against the proliferation of ubiquitous smart healthcare.

8 Summary and Concluding Remarks

Despite their relatively short life, fledgling smart healthcare systems have evolved
from simple monitoring services with a limited number of sensors to now compli-
cated multi-faceted and multi-dimensional systems, that are interwoven seamlessly
with various aspects of our lives in the post-ICT era. This article is dedicated to
unraveling major enablers that have contributed to this transition, spanning from
technical breakthroughs to their security and privacy repercussions. Emphasizing
the convergence of various smart city applications into a unified ecosystem and
focusing on the security and privacy ramifications of such trends, we study modern
smart healthcare systems from the standpoint of the following aspects:
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(i) Application, where we investigate existing works to show how clinical grade,
fitness-related, and infrastructure applications are evolving and merging to
form a unified healthcare ecosystem.

(ii) Architecture, where we discuss underlying technical advances that have fueled
the evolution of the smart healthcare. We explain how the maturity of sensing
devices has made available to our disposal a wide spectrum of inexpensive,
resourceful, noninvasive, and bio-compatible sensors. To this, we should
add viable alternatives such as crowd-sensing, which substantially reduce
the expenses of large-scale sensing platforms. Additionally, we detail the
contribution of emerging low-power and high-rate communication such as
BLE to a reduction in communication expenses. Furthermore, we provide an
analysis of the critical role of machine learning and deep learning algorithms
in the realization of the smart healthcare ecosystem.

(iii) Vulnerabilities, where we examine the most recent cyberattacks targeting
actual implementations to identify major vulnerabilities and weaknesses of
smart healthcare applications.

(iv) Crypto-level security, where we detail security flaws of the sensing and
communication components of the smart healthcare, with an emphasis on less
conventional hardware and software attacks carried out by insiders.

(v) System-level security, where we address the vulnerabilities of the cloud, myr-
iad challenges it faces in quest of protecting users’ security and privacy, as well
as the proposed solutions and their associated advantages and disadvantages.

Our study concludes by arguing that nothing more than security and privacy
considerations blocks the path toward the realization of the future healthcare
ecosystem. This concern can only be mitigated by implementing security protection
mechanisms as an integral part of the system, added to the design in early stages,
and spread uniformly over every single component of the system.
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Biofeedback in Healthcare: State
of the Art and Meta Review

Hawazin Faiz Badawi and Abdulmotaleb El Saddik

Abstract This chapter consists of five main sections. It begins by discussing the
scope of utilizing biofeedback technology in healthcare systems. Then, it presents
a brief history of biofeedback technology and previous reviews. The second section
highlights the sensory technology in biofeedback systems by presenting the different
types of sensors and their features. The third section explores recent research of
biofeedback-based healthcare systems by presenting a range of applications in
different fields combined with the utilized sensors. The fourth section discusses
the challenges and issues that affect the deployment of biofeedback in healthcare
systems. The last section concludes this review.

Keywords Biofeedback · Healthcare · Systems · Applications · Sensors · State
of the art · Classification · Challenges

1 Introduction

Promoting health and well-being is one of the major goals of preventive healthcare
research. Biofeedback considers a promising and accepted method in this field
[1]. It aims to promote well-being and help to prevent and treat physiological and
psychological diseases. It has been recognized by many medical institutions and
Mayo Clinic [2] is one of them. It defines biofeedback as “a technique you can use
to learn to control your body’s functions, such as your heart rate. With biofeedback,
you’re connected to electrical sensors that help you receive information (feedback)
about your body (bio).” Also, Mayo Clinic [2] lists a set of physical and mental
diseases that can be managed by biofeedback, which highlights its importance,
and discusses how biofeedback is a safe technique. Therefore, this technique can
be utilized outside clinics and hospitals to benefit patients and healthy individuals.
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The incredible evolution in the wearable technologies opens doors for developing
biofeedback systems that enhance individuals’ awareness about their health.

The following subsections provide a historical background of the biofeedback
technique and discuss the previous reviews.

1.1 Biofeedback Techniques: Background

Historically, this technique has been used extensively for thousands of years in
various forms such as yoga and other meditation practices [1]. In 1969, the term
“biofeedback” was introduced at the first annual meeting of the Biofeedback
Research Society as the acquiring of biological feedback using electrical instru-
ments [3].

The biofeedback techniques evolved and currently classify as “Clinical Biofeed-
back” and “Ubiquitous Biofeedback.” Clinical biofeedback was coined in 1975
[4] and defined as “a type of operant conditioning wherein, with the help of a
trained therapist, an individual can learn to control specific physiological functions
by changing the thoughts and perceptions that produce them” [1]. Thus, the
clinical biofeedback requires a clinical setup and a coach to help the patients in
understanding their physiological functions. Some of the early clinical biofeedback
experiments found in [5, 6]. According to the Mayo Clinic, biofeedback technique
is recognized as a complementary medicine for many physical and mental health
illnesses such as anxiety or stress, asthma, and headache [2].

In contrast to the clinical biofeedback, Ubiquitous Biofeedback (U-Biofeedback)
was coined in 2014 [1] and defined as “a system that utilizes software tools to
provide continuous and long term management of physiological processes. Such
systems are typically part of the user environment or worn on the subject’s body.
They do not require the user to attend clinical sessions in order to benefit from
biofeedback techniques.” Thus, the U-Biofeedback provides a huge advantage for
people to track their health status conveniently. Some examples of the developed U-
Biofeedback systems are systems for stress management in [1, 7], physical activity
advisory system in [8], the respiratory biofeedback system in [9], sleep management
system in [10], and the diet advisor system in [11].

Continuous evolution of sensors encouraged healthcare researchers to develop
novel biofeedback systems. They vary in their purposes from sensing respiratory
systems [12], and body motion [13], to provide biofeedback training [14]. Further
discussion of biofeedback systems and the utilized sensors is provided in Sects. 2
and 3.
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1.2 Biofeedback Technology: Previous Reviews

Researchers have been keen to review the related literature since the emergence of
biofeedback concept. Research in [15] is one of the initial reviews on biofeedback
training. It discusses the clinical applications in which biofeedback training proves
its efficiency. It started by presenting the cases where the biofeedback training is
well-accepted, which are muscle retraining, elimination of subvocal speech while
reading and elimination of tension headaches. Then, it discussed the cases where the
biofeedback training shows promising results but have not been proved yet. They are
elimination of cardiac arrhythmias, lowering blood pressure, and reducing seizure
frequency. It concluded by listing the cases where the results are not sufficient to
draw conclusions from the available evidence.

The book in [16] is the first comprehensive review on biofeedback-related
literature. According to [17], this book includes 2292 citations referred to different
biofeedback training research such as those on human and animal work, cybernetics
and control systems, and EEG and consciousness.

In addition to generic reviews, many research focus on reviewing specific
areas of biofeedback applications in healthcare. For example, the review in [18]
discusses the prediction of biofeedback performance in EMG biofeedback studies.
It starts by investigating the efficiency of using the locus of control in predicting
performance in different biofeedback cases. Then, it shows the results and issues
of this usage in EMG biofeedback. Another review in [19] discusses the case
of utilizing temperature biofeedback in migraine treatment. It identifies the three
required skills in the biofeedback training to optimize self-control in clinical
sessions. It concludes by stating that the findings of using this type of biofeedback
for migraine treatment are not encouraging and further improvements are needed.
The review in [20] discusses the efficacy of biofeedback in minimizing chronic pain.
It reviews a collection of research that recommends biofeedback training as one of
the psychological techniques in pain management.

With the beginning of the millennium, many reviews present the promising
results of utilizing biofeedback as an alternative treatment for various diseases
such as addictive disorders [21], anxiety disorders [22], temporomandibular disorder
[23], eating disorders [24], and headache disorders [25]. Recent reviews emphasize
positive findings for more diseases such as Bladder Bowel Dysfunction [26],
Tinnitus [27], Parkinson’s Disease [28], chronic constipation [29], and anxiety and
depression [30].

A collection of recent reviews is shown in Table 1. We collected them by running
the following query in Scopus [31], which resulted in 66 reviews:

TITLE-ABS-KEY (“Biofeedback” AND “Healthcare” AND “Literature” OR
“Review”).

Table 1 shows the review title, publishing year, the review type in terms of having
the “biofeedback” as major topic of the review, where it is mentioned in the title,
abstract and author keywords, or minor, where it is mentioned in one of them,
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Table 1 Summary of biofeedback-related literature reviews

Author Biofeedback Health
Review title—reference Year Title Abstract keywords Major Minor condition

Digital technology and
mobile health in behavioral
migraine therapy: A
narrative review—[32]

2018 � � Behavioral
migraine
therapy

A cross-sectional review of
the prevalence of integrative
medicine in pediatric pain
clinics across the United
States—[33]

2018 � � Pediatric pain

Immersion of virtual reality
for
rehabilitation—Review—
[34]

2018 � � Rehabilitation

The effectiveness of
biofeedback therapy in
managing bladder bowel
dysfunction in children: A
systematic review—[26]

2018 � � � � Bladder
bowel
dysfunction
in children

Feedback-based treatments
for eating disorders and
related symptoms: A
systematic review of the
literature—[24]

2018 � � � Eating
disorders
(EDs) and
EDs-related
symptoms

Systematic review of
biofeedback interventions
for addressing anxiety and
depression in children and
adolescents with long-term
physical conditions—[30]

2018 � � � � Anxiety and
depression

EULAR revised
recommendations for the
management of
fibromyalgia—[35]

2017 � � Fibromyalgia

Psychological therapy for
people with tinnitus: A
scoping review of treatment
components—[27]

2017 � � Tinnitus

Biofeedback treatment of
chronic constipation: Myths
and misconceptions—[29]

2016 � � � � Chronic
constipation

Post-stroke hip fracture in
older people: A narrative
review—[36]

2016 � � Post-stroke
hip fracture

Fecal incontinence: A
review of current treatment
options—[37]

2016 � � Fecal
incontinence

(continued)
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Table 1 (continued)

Author Biofeedback Health
Review title—reference Year Title Abstract keywords Major Minor condition

The integrative
management of PTSD: A
review of conventional and
CAM approaches used to
prevent and treat PTSD
with emphasis on military
personnel—[38]

2015 � � Post-traumatic
stress disorder
(PTSD)

Conservative management
for postprostatectomy
urinary incontinence—[39]

2015 � � � Urinary
incontinence

Inducible laryngeal
obstruction during exercise:
Moving beyond vocal cords
with new insights—[40]

2015 � � Inducible
laryngeal
obstruction
during
exercise

Non-surgical treatment of
urinary incontinence—[41]

2015 � � Urinary
incontinence

Dystonia—[42] 2014 � � Dystonia
A review of the clinical
evidence for
complementary and
alternative therapies in
Parkinson’s disease—[28]

2014 � � Parkinson’s
disease

A systematic review of
neurofeedback as a
treatment for fibromyalgia
syndrome symptoms—[43]

2014 � � � � Fibromyalgia
syndrome

Outcomes in non-surgical
management for bowel
dysfunction—[44]

2014 � � Bowel
dysfunction

The role of anorectal
investigations in predicting
the outcome of biofeedback
in the treatment of faecal
incontinence—[45]

2013 � � � � Faecal
incontinence

Stress management
techniques in the prison
setting—[46]

2013 � � Stress in
prison

Nonpharmacologic,
complementary, and
alternative interventions for
managing chronic pain in
older adults—[47]

2013 � � Chronic pain
in older adults

Biomedical risk assessment
as an aid for smoking
cessation—[48]

2012 � � Smoking
cessation

Interventions for improving
coordination of reach to
grasp following stroke: A
systematic review—[49]

2012 � � Stroke
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thus it discussed as an intervention or alternative method, and the health condition
discussed in the review.

This amount of reviews reflects the high interest of utilizing clinical biofeedback
in the healthcare field, which is one of the motivations to conduct this state-of-the-art
meta review.

2 Biofeedback and Sensory Technologies

Sensors are the backbone of the biofeedback-based healthcare systems that aim to
manage physical and mental health issues. This section provides an overview of
them followed by the state-of-the-art sensory technologies utilized in biofeedback-
based healthcare systems.

2.1 Sensors Overview

The developed sensory technologies and wireless communications play a critical
role in healthcare systems. They can facilitate the patient’s treatment and promote
individuals well-being toward a healthy lifestyle. By continuous monitoring of
vital signals, biofeedback-based personal healthcare systems represent a convenient
solution for coexisting with many chronic diseases such as cardiac disorders,
hypertension, and diabetes.

Nowadays, sensors represent the borders between the physical objects in real
world and their digital twins in the virtual world. In fact, they characterize the
digital twin according to the characteristics list of digital twin in [50]. They can
be defined as “a device that converts a physical phenomenon into an electrical
signal” [51]. Different types of sensors have been utilized extensively in healthcare
systems, where they are often called biosensors. Their capabilities are improving
continuously due to their critical role in biofeedback training. This improvement
includes physical and technical aspects of the sensor such as size and accuracy of
the collected data. Thus, leading companies compete to develop high-quality sensors
and related products in terms of accuracy, reliability, and user-friendly design.
Philips [52] and General Electric [53] are examples of companies develop sensory
products for clinical biofeedback. Regarding the U-Biofeedback, many products
exist, which utilize single or multiple sensors, to be used in U-Biofeedback systems
as a source of data. Wearable technologies produced by different companies such
as Garmin watches [54], Fitbit trackers [55], and Oura rings [56] are equipped
with various sensors such as ECG, accelerometer, and body temperature sensors.
Such products provide a huge amount of personalized data which is a key factor
in biofeedback-based healthcare systems. Historically, EMG and EEG sensors are
examples of initially utilized sensors in the clinical biofeedback systems [57].
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Different quality parameters are used to evaluate sensors in healthcare systems
because they vary in accordance with their function whether it is a simple function
or a complex one. Size, weight, shape, fabricating materials, battery life, and porta-
bility are examples of physical parameters. One of the most important parameters
is sampling rate, which can be defined as the number of electrical signals samples
that are taken per time unit and measured by Hertz (Hz) [58]. Other parameters that
are used to evaluate biosensors are [59] invasiveness, obtrusiveness, and mobility.
Invasiveness is a parameter that is used to determine sensor’s ability to perform its
function with or without the need of intrusion in patient’s skin. Obtrusiveness is the
parameter that is used to determine whether the design of a sensor is obtrusive or not
and therefore will affect the patient’s appearance or not. Mobility is the parameter
that is used to determine sensor’s ability to function in different locations and under
different circumstances.

Thus, sensors could be classified based on the quality parameters, the operating
method either as wire or wireless sensors, and their function in accordance to the
application field such as biosensors in the medical field, and mechanical sensors
in industrial field [51]. The following subsection discusses biosensors that track
involuntary organs and blood systems in a human body.

2.2 Involuntary and Blood Sensors

We proposed these names to provide common classes that can adopt the biosensors
used for tracking physical features of a human body such as involuntary organs and
blood circulation. This will also facilitate the classification of existing and newly
developed sensors in the healthcare field. Figure 1 shows the biosensors that belong
to each class. They are explained by stating the function, the types (if exists), and
the state of the art.

Sensors

Involuntary Blood

ECG EEGEMG Blood 
Glucose

Blood 
Pressure

Pulse 
Oximetry

Fig. 1 The proposed classification and the sensors under each class
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2.2.1 Involuntary Sensors

This class includes sensors that are used to monitor and measure the electrical pulses
resulted from the contraction and relaxation of involuntary organs in the human
body, which are heart, muscles, and brain.

ECG Sensors
ECG (Electrocardiograph) is a graphical record of the heart electrical activity that
is used by healthcare providers to assess the heart status and diagnose diseases if
exist [60, 61]. ECG sensors, which called electrodes, are attached to specific parts
of patient’s skin (e.g., chest, arms, and legs) to monitor and record the electrical
impulses that are resulted from continuous cycle of contraction and relaxation of
cardiac muscle [60, 61]. A typical ECG signal is illustrated in Fig. 2 [62].

The ECG function can be explained through three main stages (Fig. 3), which are
collecting, converting, and transmitting ECG signals. In short, analog ECG converts
to its digital equivalent using Analog to Digital Converter (ADC) to be processed
and transmitted to a peripheral device for diagnostic purposes. Figure 3 depicts the
working method of ECG sensors abstractly.

Nowadays, there are many types of ECG devices and can be classified in several
ways. One way is to classify ECG devices as a Standard ECG and Continuous
ECG [63]. This classification is based on the number of electrodes and the ECG
signal sampling duration. Another way is classifying ECG devices based on the
transmitting way of ECG signals from sensors to monitoring device, which is
often located in healthcare provision area (e.g., hospitals and clinics). Based on
this concept, there are wired ECG sensors and wireless ECG sensors. Wireless
ECG monitoring systems use various communication technologies to transmit ECG
signals such as those systems mentioned in [63–66]. Also, the materials used in ECG
electrodes manufacturing lead to the presence of new classification of ECG sensors.
It is “wet” and “dry” ECG sensors [64]. Many leading companies worldwide

Fig. 2 A typical ECG signal, source [62]
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Fig. 3 The three main stages of ECG function

dedicated their efforts to manufacture reliable ECGs such as Philips [67], Ericsson
[68], Schiller [69], General Electric [70], and Nokia [71].

There are many quality parameters that characterize each device. The most
important parameters for this type of sensors are number of leads in each device,
type of electrodes in term of “wet” or “dry” in addition to the general parameters
mentioned in Sect. 2.1.

The increased number of victims due to the cardiovascular diseases motivated
many research groups worldwide to improve ECG technology. Some research focus
on designing smart ECG sensors such as [72–74] while others focus on enhancing
the ECG operating environment such as improving the networks used for connecting
wireless ECG sensors [63]. The research in [72] focused on developing a wireless
ECG smart sensor to detect life-threatening events. It proposed a smart sensor
that provides, at a very low cost, sufficient functionality to give indication of life-
threatening events to the first responders. The research in [73] also developed
a wireless ECG system for continuous event recording and communicating to a
clinical alarm station. This system is designed for arrhythmia diagnostic purposes
and worked by transmitting ECG signals to a Hand Held Device (HHD) and then
to a remote Clinical Alarm Station (CAS) in emergency cases. The research in
[74] focused on a wireless Tele-Home-Care system and developed a wearable
ECG recording system for continuous arrhythmia monitoring. It aims to provide
freedom of movement for patients while they are under continuous monitoring.
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Other researches that aim to support the freedom of movement for the patients are
found in [62, 64]. The system in [64] is an ultra-wearable, wireless, low power while
the system in [62] is a novel wearable ECG monitoring system based on Active-
Cable and intelligent electrodes for ubiquities healthcare.

Regarding the improvement of ECG surrounding environments, there are many
research groups that focus on medical sensor networks including the transmission
of ECG signals between sensors and diagnosing stations, ECG signals processing,
and ECG electrodes. One of the pioneer groups [63] focused on enhancing medical
sensor networks. They developed a combined hardware and software platform for
medical sensor networks, called CodeBlue. They used it to develop several wireless
medical sensors including ECG [63]. Their motivation was the urgent need for
reliable medical sensor networks, which offer a high degree of security, a wide range
of data rates, node mobility, and support multicast routing topologies. Regarding
the ECG signals transmission, researchers in [75] designed and developed an ECG
sensor that transmits medical data to a cell phone where they are displayed and
stored. The Bluetooth is used to achieve this task and provide continuous monitoring
of a patient heart anywhere cellular coverage is available. Considering the ECG
signals processing, there is a research group that developed an open-source ECG
analysis software to reduce the duplication of efforts for developing basic beat
detection and classification software. The developed open-source QRS software has
sensitivities and positive productivities close to 99% [76].

Some research groups focused on defining a unified format for the processing
and storage of digital ECG recordings. The system in [77] is an example of such
research. They developed a multi-manufacturer ECG viewer based on SCP-ECG
standard. Regarding the ECG electrodes, researchers in [78] compared between wet,
dry, and insulating bioelectric recording electrodes. Three main points motivated
them: the inconvenient use of an electrolyte, the toxicological concerns with
electrolyte gels, and the performance limitations of wet electrodes. They concluded
that the performance of dry and insulating electrodes is better than wet one.

Many leading companies focused on manufacturing improved ECG sensors such
as Philips [67], SHILLER [69], and General Electric [70] provide many types of
ECG sensors that are classified based on patient situation and location.

EMG Sensors
EMG sensor is used to capture and measure electrical signals generated by
contraction and relaxation of muscles such as skeletal muscles [60]. It is one of
the sensors that are commonly involved in the Body Area Network. Also, EMG
sensors have a critical role in nerve conduction studies due to the strong relationship
between muscles and neuron systems [60]. In fact, nerve cells control body muscles
by sending electrical impulses, which cause specific reaction from each muscle
[60]. Consequently, abnormal reactions of the body muscles considered as a direct
indicator of nerves and muscles disorders [60] such as balance abnormalities. In
addition, EMG signals used to analyze the biomechanics of human or animal
movement, in addition, to control or mimic a human gait for artificial equipment
manufacturing [79].



Biofeedback in Healthcare: State of the Art and Meta Review 123

EMG electrodes have three different types, which are surface electrodes, intra-
muscular electrodes, and needle electrodes that are utilized in surface EMG
(SEMG), wire EMG, and needle EMG techniques, respectively [58, 80]. Each
technique provides specific information that plays an important role in particular
applications. For example, information provided by SEMG can be used in many
applications such as ergonomics, rehabilitation, sport, and geriatric medicine [80].

Usually, EMG electrodes made from traditional disposable metallic and needed a
specific glue to be placed upon the targeted muscle [81]. EMG sensors continuously
improved to be in a compact size, wireless, noninvasive [82], and wearable such as
EMG garments [81].

Regarding the functionality, EMG sensors adopt a similar method to those in
ECG and EEG sensors [81]. The sampling rate is the main quality parameter that
is used to evaluate EMG performance, which differs if the rectification performed
prior to sampling and storing data or not [58]. Rates of 50–100 Hz are sufficient if
rectification is performed while 800 Hz is the minimal rate required in the opposite
case [58]. Other quality parameters differ based on electrode type [58]. For example,
the quality parameters of surface electrodes are electrode material, size, shape, use
of gel or paste, inter-electrode distance, electrode location, and orientation upon the
muscle.

Many research groups dedicated their efforts to improve EMG sensors due to
their critical role in electromyography and kinesiology. One of the well-known
contributions is the “Standards for Reporting EMG Data,” which was developed
by Dr. Roberto Merletti, endorsed by the International Society of Electrophysiology
and Kinesiology (ISEK) in 1999 and published in the Journal of Electromyography
and Kinesiology (JEK) [58]. Also, the European Community has three different
projects on SEMG [80].

In general, research efforts classify into two trends: one trend focuses on
dealing with the issues and limitations related to EMG sensors such as large size
and necessity of wires, while another trend focuses on improving EMG sensors
capabilities to develop useful applications. Projects in [82, 83] are examples of the
first trend while projects in [84–87] are examples of the second trend.

EEG Sensors
EEG sensor is used to detect and monitor signals within the human brain [60]. It is
one of the sensors that is commonly involved in the Body Area Network. It performs
its function by attaching small electrodes at multiple locations on the human’s scalp
[60]. The potential difference between the signal electrode placed on the scalp and a
reference electrode is calculated and a conductive paste is used to minimize noises
[88]. Then, the brain’s electrical signals sensed by these sensors are processed in a
similar way to ECG.

EEG sensors have three main types: routine EEG, continuous EEG, and ambu-
latory EEG (AEEG). Routine EEG typically monitors the patient’s brain waves for
20 min, which is often not sufficient for reflecting the actual state of diagnostic
disorder such as epilepsy [89]. To overcome this disadvantage, the continuous
EEG is proposed as a standard. However, it requires clinical admission, which is
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expensive and takes the patient away from the home convenience [89]. To overcome
these disadvantages, the ambulatory EEG is invented as a tool that monitors the
patient status at home [89]. It has several advantages such as continuous recording
up to 72 hours in addition to reasonable cost and ease of use [89].

Regarding the quality parameters of EEG, the sampling rate is the main one in
addition to the size, weight, and the portability. The International Federation in
Electroencephalography and Clinical Neurophysiology defined a standard called
the 10–20 electrode placement system. It states that the range of sampling rate is
100–200 Hz and 128 Hz is the typical value [88]. This standard also determines the
electrode names with correspondence to their locations on the scalp [88].

Many research dedicated the efforts to improve EEG sensors, especially the
AEEG. Researchers in [90] focused on limited battery issue in AEEG. They
started by stating the main drawbacks that still exist even after AEEG usage. The
huge amount of data resulted from continuous recording, and a large number of
required wires are examples of these drawbacks. They affect battery life, neurologist
time, increases AEEG weight, and reduces its portability [90]. Therefore, the
researchers suggested the wireless AEEG as a solution for the last drawbacks
[90]. Also, they compared three different techniques of data reduction in order
to overcome limited battery constraint. The techniques are: reduce the quality of
the recording, use compression algorithms on the row data, and discontinuous
recording [90]. They aim to determine the suitable technique by checking if the
technique reduces the analysis time, sensitivity percentage, and data reduction
percentage. They concluded that the third technique is the most suitable one to
produce proper data for transmission and analysis purposes in addition to save
battery life. Also, they recommended to use the online selection technique to save
transmission and analysis time in case of long-term recording [90]. After this study,
this research group introduced a real-time data reduction algorithm in [91] based on
discontinuous recording technique. The basic idea of this algorithm is discarding
the non-interesting part of EEG recording through the online transmission and
only the potential part is saved for diagnosing purposes [91]. They applied this
algorithm on an EEG dataset that contains 982 expert marked events in 4 days
of data. The results show that 90% of events can be recorded correctly even with
50% of data reduction [91]. The goal behind this algorithm is to have direct, low
power, and hardware implementation with reduced data, which in turn can be used
in different BAN applications [91]. Also, they aimed to enhance EEG sensors to
be wearable [92]. Another research focused on developing a Data-Driven Decision
Support System (DSS) for EEG signals acquisition and parallel elaboration by
proposing AmI-GRID environment [93]. The proposed environment can be utilized
in many medical applications and will increase efficiency, accuracy, knowledge, and
speed of explanation processes of EEG signals [93]. Also, it represents the main
characteristics of Data-Driven DSS, which are improved patient safety, improved
quality of care, and improved efficiency in healthcare delivery [93]. Figure 4 shows
the different types under each involuntary sensor.
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2.2.2 Blood Sensors

This class includes sensors that are used to monitor and measure blood medical
properties, which are blood glucose, blood pressure, and oxygen concentration in
the bloodstream.

Blood Glucose Sensors
Blood glucose (BG) sensor is one of the most important sensors in healthcare area. It
is used to monitor the glucose concentration, which is also called blood sugar [60],
in the bloodstream. In fact, BG sensor plays a critical role in monitoring diabetics
who are vulnerable to dangerous diseases such as eye and skin diseases.

BG sensors are classified mainly into invasive and noninvasive sensors. Invasive
sensors measure glucose level by placing a blood drop from a patient’s finger on a
strip that contains chemicals sensitive to the glucose in the blood sample [94]. Then,
an optical meter (glucometer) is used to analyze the blood sample and display a
numerical result [60]. For healthy people, this result ranges between 3.5 and 6.1 mM
[95].

A noninvasive BG sensor is invented to meet the need for monitoring the glucose
level in diabetics continuously without the pain associated with the traditional
method. Researchers and developers utilized the available technologies such as
infrared technology and optical sensing to develop this type of sensors [60]. A
comprehensive study of noninvasive blood glucose measurement (NIGM) sensors
with assessments of the technologies used to develop them are shown in [96].
The technologies used for continuous and noninvasive monitoring of glucose
concentration include Radio Frequency (RF) [97, 98] and spiral designs inspired
from ring resonators [99]. They rely on the fact that detected change in the electrical
properties of the blood is a result of a change in the glucose level in the blood, which
can be used as an indicator of this level [100]. Another study [101] of NIGM sensor
is developed based on analyzing the spectroscopic measurements. It proved that BG
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concentration is one of the parameters that can be predicted from the spectroscopic
data resulted from mathematical modeling. In this study, the NIGM sensor uses
three different models: two internal models to improve accuracy of measuring BG
and one to improve robustness [101].

The study in [95] uses Near Infrared (NIR) absorption spectroscopy technique to
measure BG by implanting a miniaturized optical BG sensor. It works by sensing
the change of photon absorption in the blood after metabolism, which reflects
the glucose concentration variations. One of the important challenges that face
implantable sensors is the availability of sufficient power source in a reasonable
size. One of the promising solutions is the technology that converts the thermal
energy in human body into electrical power that can be used to operate such sensors
[95].

Some studies suggested analyzing the breath of patient to determine BG level
such as the study in [102]. It proposed a method to prove this fact with an error
margin of 20.13% due to the small number of people participated in the experiment.
The noninvasive measurement is performed by analyzing the acetone existing in the
exhaled breath with the support of electronic nose system that is based on quartz
crystal microbalance (QCM) sensors [102]. Their role in this system is to sense
the low-level concentration of acetone and then compare the obtained data with the
BG value [102]. The researchers believed that this method is a promising relief for
diabetics who need to take the blood samples frequently per day [102].

Also, researchers in [99] proposed a novel sensor configuration to measure BG
concentration using microwave measurement techniques. They choose a single-
spiral microstrip sensor, which operates in the microwave frequency range. They
provided results that support the feasibility of this method as a significant, robust,
and economical solution for the challenges of noninvasive measurements [99].

From the previous overview, we can notice that there are several quality
parameters for BG sensors. Sensor’s shape, fabricating materials, technology in use,
energy source are some of these quality parameters in addition to sampling rate like
other types of sensors.

Blood Pressure Sensors
Blood pressure (BP) sensor is one of the noninvasive sensors that play a significant
role in a body area network and in the healthcare field in general. It is used to
monitor and measure the systolic and diastolic human blood pressure, which is the
main cause behind several dangerous diseases [60].

BP sensors can be classified into two main categories: invasive and noninvasive
sensors. Invasive sensors are implanted inside the patient’s body while noninvasive
sensors are not. The noninvasive sensors can be classified into two types: cuff-based
and cuff-less sensors. Cuff-less sensor provides a high degree of free movement
for patients. Unlike the Cuff-less sensor, the cuff-based sensor requires specific
positions to provide accurate blood pressure readings and it is based on oscillometric
technology.

Many technologies have been utilized to manufacture BP sensors. For example,
researchers in [103] used piezoelectric technology with a specific transistor to model
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a BP sensor due to its ability to detect the sounds and pressure, which are the
required parameters to measure BP. Another example is the usage of Fabry–Perot
Interferometers (FPI) technology to develop a BP sensor due to its sensitivity to
changes in the length of optical path [104]. Researchers in [104] developed a fiber
optic pressure sensor that is also a noninvasive, cuff-based BP sensor and the initial
results were promising.

Researchers in [105] developed an actual wearable, cuff-less noninvasive blood
pressure (NIBP) sensor. It is a lightweight, compact, unobtrusive, and miniaturized
sensor. They used the photoplethysmographic (PPG) technology to develop this
sensor that provides the blood pressure readings regardless of the patient posture
[105]. They achieved this feature by using MEMS accelerometers to perform the
task in a stable and reliable way [105].

Another work [106] developed a new approach to measure the four components
of blood pressure, which are systolic blood pressure (SBP), diastolic blood pressure
(DBP), mean arterial pressure (MAP), and Pulse Pressure (PP) by using a radial
artery tonometry pressure sensor combined with a Korean traditional medical
concept [106]. They estimated the BP by evaluating many parameters such as
Applied Pressure (AP) and elasticity of wrist tissue.

Researchers in [107] developed a new approach that offers continuous moni-
toring based on the Pulse Arrival Time (PAT) in addition to analyze the impact
of posture on the PAT measure [107]. They declared the importance of context
information about body posture and physical activities to interpret PAT measure-
ments in unconstrained scenarios [107]. In contrast, researchers in [108] developed
a method for continuous sensing of the blood pressure regardless of patients posture.
They stated that the accuracy and calibration of this sensor depend on two points: a
true anatomical model of the patient and an ability to eliminate noise resulted from
movements that are not related to heartbeat [108].

Research in [109, 110] are good examples of efforts toward developing invasive
BP sensors. In [109], researchers developed an invasive system that consists of an
implant, which consists of a sensor chip and a telemetric unit; and an external reader
station. The system provides energy to the implant wirelessly [109]. The initial
results were promising in term of sensor calibration for those who need continuous
and long-term monitoring [109]. Researchers in [110] also developed a system for
invasive BP using the PTT concept for measuring the BP completely inside the
body. The developed system avoids the risk of thrombosis because the sensor system
installed around the artery [110]. The initial results were satisfactory and they open
new horizons for advancement in invasive BP measurements.

Many research efforts dedicated to develop noninvasive continuous BP moni-
toring systems, such as [111] and [112]. In [111], researchers used CMOS-based
tactile sensor for continuous noninvasive cuff-less BP measuring by developing a
novel monolithic sensor. In a similar way, researchers in [112] developed a method
for continuous non-disturbing monitoring of BP by deployment of two different
sensors: a novel magnetoelastic skin curvature sensor and standard ECG electrodes.
They declared the ability of developed method to determine the qualitative assess-
ment of the BP.
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Pulse Oximetry
Pulse oximetry is one of the most used sensors in the healthcare area known as
SpO2. It is used to measure the arterial oxygen saturation in the individual’s blood in
addition to three more parameters, which are heart rate, respiration rate, and arterial
carbon monoxide “saturation” [113].

In general, pulse oximetry sensors can be classified as invasive and noninvasive
sensors. The invasive sensors are used for long-term and continuous monitoring.
The researchers in [113] developed a new ear sensor for mobile, continuous,
and long-term pulse oximetry called Circumcision Pulse Oximetry. They chose
the ear canal to implant the sensor because it considered a stable environment
against intensive movements and acceleration. They compared this new principle
for invasive pulse oximetry with the principles of noninvasive pulse oximetry, which
are reflectance and transmission principles [113]. By this design, they overcame the
mobility constraints and satisfied the three requirements to develop optimal sensors,
which are invisibility, unobtrusiveness, and mobility [113]. Also, they listed some
examples of medical applications where the mobile pulse oximetry can be utilized.
They are sleep apnea, obstructive disease, and asthma monitoring in addition to
other useful applications such as mobile SaO2 monitoring for firefighters and
extreme mountain climbers. Another research in [114] proposed a novel long-term
implantable pulse oximetry system. It works by wrapping an optical transparent
elastic cuff directly around an arterial blood vessel.

The noninvasive pulse oximetry is known as a small clip, which contains the
sensor, attached to the individual’s finger, earlobe, or toe [60]. It can be worn in
many other forms such as a ring [56], a wrist bracelet [55], or an adhesive patch
[115]. This sensor works by emitting a light signal that passes through the skin.
Based on the light absorption of oxygenated hemoglobin and the total hemoglobin
in atrial blood, the result is expressed as a percentage of oxygenated hemoglobin
to the total amount of hemoglobin [60]. Researchers in [115] developed a portable
real-time wireless pulse oximetry system. They reduced the size and cost by using
ZigBee wireless technology. The sensor node of this system worn on the wrist and
fingertip. The results of using this system for in-home patients were satisfactory
in terms of comfortable in daily life [115]. Researchers in [116] also developed
a similar wearable reflectance system that is worn on the wrist and fingertip with
extra feature, which is low-power consumption. Fingertip pulse oximetry has the
main disadvantage, which is the possibility of fatal infections due to reusing it
with many patients where it contacts the skin directly with low level of sterilization
[117]. To overcome this, the researchers in [117] introduced a polymer-based pulse
oximetry sensor as a disposable sensor. It is a lightweight, flexible, robust, and
recyclable sensor to minimize the chances of infections among patients with lower
cost than thoroughly decontaminating procedure. Researchers in [118] presented
a design and an implementation of a finger ring sensor. The developed sensor is
embedded in a ring that fits any finger, which provides comfortable wearing in
addition to perfect results for sleep monitoring. It detects the sleep apnea syndrome
(SAS) successfully and helps in enhancing sleep quality [118]. Researchers in [119]
presented a prototype of the adhesive patch sensor. They developed a multisensory
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Blood Sensors

Blood Glucose 
(BG) Sensors 

Blood Pressure 
(BP) Sensors

Invasive 
(Implantable)

Non-Invasive Invasive 
(Implantable)

Non-Invasive

Pulse Oximetry 
Sensors (SpO2)

Invasive 
(Implantable)

Non-Invasive

Cuff-based

Cuff-less

Fig. 5 Blood sensors classification and types

chip embedded in the adhesive patch for measuring temperature and the pulse
oximetry parameters.

In addition, many research show how the pulse oximetry sensor can be used to
measure oxygen saturations from many positions on the body such as using it at
the sternum [120, 121], the esophagus [122]. Other medical applications use pulse
oximetry for ill babies and children in emergency cases [123]. This sensor is also
used for nonmedical applications such as using it for fingerprint anti-spoofing [124].
Figure 5 shows the different types under each blood sensor.

3 Biofeedback-Based Healthcare Systems

This section presents some examples of existing systems and classifies them in
light of the biofeedback classification as the clinical or ubiquitous biofeedback.
Reviewing the literature shows that the existing systems can be classified according
to their usage as clinical or well-being usage. Figure 6 shows the suggested
classification of biofeedback healthcare systems.

Biofeedback 
Healthcare Systems

Clinical Usage Well-being Usage

General Training 
Systems

Specific Training 
Systems

Physical well-being 
Systems 

Psychological well-
being Systems ………..…

Fig. 6 Suggested classification of biofeedback healthcare systems
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Under clinical usage, systems can be classified as general training systems or
specific for chronic diseases. Under well-being usage, systems can be classified as
systems for physical or psychological well-being. These two classes represent 2
out of the 11 fundamental dimensions used to define wellness [125]. Therefore,
more classes can be added to represent systems developed under the remaining
dimensions, as illustrated in Fig. 2.

General training systems under clinical usage are the early developed
biofeedback-based healthcare systems such as [15]. Some of them are patented
systems such as [126] and [127]. Many specific training systems have been
developed for chronic diseases management or treatment. Some examples are
systems developed for respiratory training such as [12, 128–130], migraine and
headache such as [19, 25], addiction [21], heart and brain diseases [130, 131],
psychiatric rehabilitation and mental health therapy [132, 133], fibromyalgia [43],
autism [134], evaluating medication response [135], and cerebral palsied [136].
Training or treating the stress-related disorders is one of the most areas where
biofeedback training used extensively. Urinary incontinence, which is treated by
pelvic floor muscle (PFM) training [137], psoriasis [138], posttraumatic stress
disorder [133], and stress in obese patients [139] are examples of these disorders.

Systems under well-being usage refer to the biofeedback-based healthcare
systems developed for personal use and not for clinical. They are example of
personal healthcare systems used to increase individuals’ awareness about their
health statuses [140]. They aim to motivate their users to improve their well-being
by providing real-time results often combined with advices and recommendations.
Such systems rely on wearable sensory technologies to perform their functions and
represent a promising solution for healthcare [141]. Authentication is an important
feature in these systems and has been considered by several research and patents
[142].

According to [125], physical wellness refers to the active and continued effort
to maintain an optimum level of physical activity, focus on diet, and make healthy
lifestyle choices including self-care. This definition determines the four main factors
of physical wellness or well-being, which are physical activity, nutrition, self-care,
and healthy lifestyle actions. The physical well-being literature could be classified
in accordance with these factors.

Many systems have been developed to track the physical activity level of
their users such as adults, elderly people, and athletes. Several patents have been
registered to support these systems such as [143], [144], and [13]. Some examples
of recent research are for athletes [145], adults [8], and elderly people [146]. A
collection of systems developed to track and improve physical activity levels in
addition to promote healthy lifestyles are presented in Table 2. They aim to increase
users’ awareness of their activity level or provide them with advice to increase their
physical activity level. For each system, Table 2 shows the targeted users, source of
input, the type of output, and feedback type.

Examples of systems developed under other physical well-being factors are the
diet advisory system for children in [11] as an example of nutrition factor, the
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research in [155, 156] as examples of self-care, and the biofeedback systems in
[157–161] as examples of healthy lifestyle actions.

Most of the biofeedback healthcare systems under psychological well-being
usage focus on stress management, and related issues such as anxiety and depres-
sion. One of the early research [162] discussed the role of biofeedback training
in the treatment of functional disorders including anxiety and depression. Another
research shows how the EEG sensors can be utilized in the biofeedback treatment
of anxiety disorders [22].

These biofeedback-based systems aim to increase users’ awareness about their
psychological status toward minimizing stress level [158] and enhancing emotional
feelings [163, 164] and mood [165]. Many researchers developed games to achieve
this goal such as the biofeedback serious game for stress management in general [7],
or during gameplay [166]. Also, biofeedback games have been utilized in stressful
tasks [167] and critical decision-making situations [168].

Many researches discuss the role of biofeedback systems in stress management
for various age groups and from different perspectives such as the research in [30]
that discuss utilizing biofeedback to address anxiety and depression in children and
adolescents. Different sensors have been utilized to monitor stress such as using
EMG to recognize facial gesture for stress monitoring [169] and PPG sensors to
assess stress level in a real-time manner. VR biofeedback system in [170] and the
respiratory biofeedback app in [171] are examples of using PPG sensors. Also,
biofeedback systems have been used to manage stress while performing professional
tasks such as teaching [172]. Currently, many researches consider predicting stress
as a proactive procedure to minimize stress effects such as research in [173].

4 Challenges and Future Directions

Reviewing the literature emphasizes many issues and challenges facing the utiliza-
tion of biofeedback in healthcare. Most of the research highlighted the issues and
challenges facing the clinical biofeedback while limited number of studies tackled
the U-Biofeedback challenges.

For the clinical biofeedback, some studies discussed the challenges in general
while others investigated them for specific diseases. The research in [174] is one
of the early studies that discussed the clinical biofeedback in general. It presents
the theoretical and practical issues for utilizing biofeedback as a therapy. It shows
that patient motivation is one of the main challenges because the commitment to the
biofeedback treatment sessions is critical for their success. A combined behavioral-
biological model is proposed in this research to predict if the intended biofeedback
training will be clinically significant for a given patient. This study proves that the
biofeedback training works effectively for patients having acute organ damage. It
also highlights the importance of using cognitive and somatic mediators to support
self-regulation. The research in [175] is another example of studies that discussed
the issues of therapeutic biofeedback in general.
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Many studies discussed the challenges in biofeedback applications for specific
diseases such epilepsy [176], recurrent headache [177, 178], cardiovascular disor-
ders [179], cerebral palsy [180], dysphonia [181], and chronic pain [20]. In addition,
some studies highlight the issues associated with a specific population such as the
study in [182] that presents the issues of utilizing clinical biofeedback training
with children, and specific biofeedback training such as EEG alpha feedback
training [183]. Also, a recent study [184] discusses the challenges of utilizing
Group Biofeedback (GBF) beside its advantages for chronic diseases management.
Another recent study presents healthcare professionals opinions about the benefits
and challenges of using biofeedback and wearable technology for orthopaedic
rehabilitation [185].

Although the U-Biofeedback overcomes several challenges of clinical biofeed-
back such as patient commitment for the training sessions, clinical setup, and
coach presence, reviewing the literature pointed out some issues and challenges
face its utilization. The technical issues of biofeedback sensors such as battery life
and communication quality are some of the major challenges in U-Biofeedback
applications. The accuracy of collected data and application’s ease of use are other
examples of these challenges. Recent studies [186, 187] discussed these challenges
in sport biofeedback applications. Researchers in [186] explained the challenges
related to sensors, processing, communication technologies, and devices, whereas
researchers in [187] focused on communication and processing as the main issues
toward developing high-performance real-time biofeedback systems. Another study
discussed the challenges in real-time biofeedback motion tracking and processing
[188].

Thus, the challenges-related research in U-Biofeedback shows the interest of
effective utilization of biofeedback technology in sport, which opens doors for
further studies in this area. It also highlights the need to discuss the challenges
that face the U-Biofeedback applications for personal well-being such as weight
management and quit smoking.

5 Conclusion

This chapter discussed utilizing biofeedback technology in the healthcare field. It
started with a brief history of this technology including both types clinical and
ubiquities biofeedback, followed by a list of previous reviews. Then, it presented
the various types of biosensors including their types, features, and functions. A
classification of biofeedback-based healthcare systems according to their usage is
proposed as clinical and well-being systems. A wide range of existing systems of
both classes is presented. Finally, the challenges and issues facing the deployment of
biofeedback-based healthcare systems are discussed. Challenges of using biofeed-
back applications in sports are addressed recently in the literature.
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Health 4.0: Digital Twins for Health
and Well-Being
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Roberto Alejandro Martinez Velazquez, and Abdulmotaleb El Saddik

Abstract With the increasing prevalence in the use of wearables, social media,
smart living, and personalized recommender systems for consumer health, it
becomes imperative to converge these technologies to provide personalized, context
driven, proactive, and preventive care in real time. Digital Twins are a convergence
technology and involve making a digital replica of any living or nonliving entity. At
present, Digital Twins are extensively used in Industry 4.0 where Digital Twins help
in optimizing the performance of machines by proactive and predictive maintenance.
This chapter gives an overview of the existing literature and aims to provide an
overview of existing literature on Digital Twins for personal health and well-being—
key terminologies, key applications, and key gaps.

Keywords Digital Twins · Personal health · Well-being · Convergence ·
Wellness · Artificial intelligence

1 Introduction

Industry 4.0 is the current trend of automating manufacturing using sensors,
actuators, intelligent prediction softwares, and data visualization. The hallmark
of Industry 4.0 is data visualization using advanced 3D modelling and predictive
analytics, using data from the sensors, providing proactive information on the health
of a machine. Digital Twins is the technology at the heart of industry 4.0 and El
Saddik has defined Digital Twins as “a convergence technology, which promises
to bridge the gap between real and virtual” [1]. Another feature of the Digital
Twins is value creation for the customer through product life cycle management
once the product is out of the factory, thus pushing the manufacturing industry
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from a mass to customized manufacturing mindset. This essentially means industry
4.0 is making manufacturing personal, customized, and putting the customer at
the heart of production. This very shift, from mass manufacturing to consumer-
centric manufacturing is what Health 4.0 can learn from. At present, there is no
consensus on the definition of Health 4.0. However, drawing from the principles of
Industry 4.0, Health 4.0 can be defined as shift from mass and reactive healthcare
to personalized and proactive healthcare. Therefore, the Digital Twins becomes the
technology, which holds the promise to deliver Health 4.0.

1.1 Health and Well-Being Definitions

There is no one universal definition of health. In fact, there are four main schools of
thought on the definition of health:

1. Medical Model of Health Definition: Popular around the 1920s, health is defined
as a “A state characterized by anatomic, physiologic and psychologic integrity;
ability to perform personally valued family, work and community roles; ability
to deal with physical, biologic, psychological and social stress” [2].

2. Holistic Model of Health Definition: In 1946, World Health Organization (WHO)
definition, “A state of complete physical, mental and social well-being and not
merely the absence of disease or infirmity” is the most commonly used definition
of health [3].

3. Wellness Model of Health Definition: Promoted by the WHO definition was “The
extent to which an individual or group is able to realize aspirations and satisfy
needs, and to change or cope with the environment. Health is a resource for
everyday life, not the objective of living; it is a positive concept, emphasizing
social and personal resources, as well as physical capacities” [4]. For the purpose
of this chapter, the wellness definition of health is used as a reference.

4. Ecological Definition of Health: In the mid-1990s, there was a push toward
an ecological definition of health and an ecological definition is “A state in
which humans and other living creatures with which they interact can coexist
indefinitely” [5].

In addition, it is relevant to this chapter to also mention the definitions of well-
being and wellness.

1. Well-being: “A good or satisfactory condition of existence; a state characterized
by health, happiness, and prosperity; welfare” [6].

2. Wellness: The state of being in good health, especially as an actively pursued goal
[7]. Wellness is hence an active process through which people become aware of,
and make choices toward, a more successful existence [8]. The National Wellness
Institute promotes six dimensions of wellness: emotional, occupational, physical,
social, intellectual, and spiritual [8].
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1.2 Parameters for Health and Well-Being

As we can see that there is a wide range of definitions on health which cover
the different aspects of health and health is multidimensional. We curated a
comprehensive list of parameters which help in determining the health and well-
being of a person. This list is made using the four definitions of health, and
consists of physical, lifestyle, mental, socioeconomic, and contextual factors, which
determine the health and well-being of a person. World Health Organization [9],
Ottawa Charter of Health Promotion [10], and Wikipedia [11–13] were used to
populate this list. The purpose of this list is to showcase the complexity of individual
health and well-being. This list is for informational purpose only and should be used
for any form of diagnostic or prognostic purpose by individuals or organizations.

1. Physical health parameters: Generics, history of illness or diseases (past or
present or family), vital signs—heart rate, temperature, blood pressure, respi-
ratory rate, laboratory profile (blood, urine, stool tests), radiology and imaging
(X-rays, scans), etc.

2. Lifestyle parameters: Diet, sleep, exercise, stress, quality of life, sexual health.
3. Mental and psychological health parameters: Consciousness, orientation (in time,

place, and person), personality, attitude, emotions, mood, mental health illness,
addictions, emotional intelligence, decision-making skills, resilience, relation-
ships (personal and professional), job satisfaction, meaningful life, thought
patterns, beliefs, and motivation.

4. Socioeconomic parameters—Education, income, housing, employment, and
workplace conditions.

5. Gender parameters—Gender identity and sexual orientation.
6. Contextual parameters—Location (home, work), leisure and entertainment pref-

erences, hobbies, environment quality (air, water, noise, radioactivity, built),
neighborhood (walkability, safety, access to grocery), access to health system,
life expectancy in the country of residence, peace and security in the country of
residence, well-being index, quality of life index, social justice, and equity.

7. Cultural parameters—Religion, language, gender roles, and culturally distinct
traditions.

1.3 Digital Transformation in Health

Personal health or consumer health informatics is a subdomain of biomedical and
health informatics and is defined as “the study, development, and implementation of
computer and telecommunications applications and interfaces designed to be used
by health consumers” [14, 15]. The field of consumer health informatics started
25 years ago with the vision that one day, the end users or the patients will be in
charge of their own health [15]. Scientific information in the field of consumer
health informatics has grown significantly over the past 25 years and there has
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Table 1 Summarizing the digital transformation of web, industry, and health

Version Web Industry Health

1.0 Read only web [16] Mechanization, water
power, and steam
power [17]

Printed health
information

2.0 The writing and participating
web [16]

Mass production,
assembly line, and
electricity [17]

Online communities,
social media,
patient-generated
content, and
wearables [18]

3.0 The semantic executing web
[16]

Computer and
automation [17]

Personalized
health-related
information [19]

4.0 Mobile web—Connects all
devices in the real and virtual
world in real time [16]

Cyber physical
systems and Digital
Twins [17]

Virtualization and
personalization [20]

Table 2 Design principles
for Health 4.0 [21, 22]

Sr. No. Health 4.0

Principle 1 Interoperability
Principle 2 Virtualization
Principle 3 Decentralization
Principle 4 Real-time capability
Principle 5 Service orientation
Principle 6 Modularity
Principle 7 Safety, security, and resilience

been an evolution of consumer health with the evolution of the World Wide Web.
The evolution of World Wide Web from 1.0 to 4.0 has brought about evolution of
industry from Industry 1.0 to 4.0 and now this effect is spilling over to Health and
we are seeing a momentum toward Health 4.0. Table 1 provides a synopsis of this
digital transformation.

In the book, “Health 4.0: How Virtualization and Big Data are Revolutionizing
Healthcare,” the authors have laid the design principles of Health 4.0 and these are
heavily borrowed from the principles of Industry 4.0 [21, 22]. They defined Health
4.0 as “Health 4.0 is progressive virtualization in order to enable the personalization
of health and care next to real time for patients, professionals and formal and
informal carers.” Table 2 summarizes the design principles for Health 4.0.

2 Digital Twins

2.1 Defining Digital Twins

In a white paper by Deloitte, “Industry 4.0 and the Digital Twins technology,”
the authors have identified Digital Twins as the anchoring technology for
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Industry 4.0 [23]. In his paper, “Digital Twins: A Convergence of Multimedia
Technologies, El Saddik has defined Digital Twins as “Digital replications of
living as well as non-living entities that enable data to be seamlessly transmitted
between the physical and virtual worlds.” According to El Saddik, “Digital
Twins facilitate the means to monitor, understand, and optimize the functions
of all physical entities and for humans provide continuous feedback to improve
quality of life and well-being” [1]. The concept of Digital Twins in depicted in
Figure 1.

2.2 Digital Twins for Health and Well-Being

Digital Twins (DT) technology plays a fundamental role in shaping the future of
healthcare. Personal Digital Twins is a data-driven technology that reflects the health
status of individuals inferred from the continuously collected data. It represents a
priceless source that can be utilized in a triangular fashion: preventive healthcare,
medical healthcare, and effective communication between DTs.

DT for preventive healthcare will enhance people’s awareness about their
health through the biofeedback features, and help them take the right action by
means of personalized recommendations among others. Medical healthcare is also
enhanced by the DT concept in terms of enabling health institutions and health-
related organization to provide smart health services and telemedicine. Figure 1
illustrates the convergence of technologies to bring about the realization of the DT
concept.

Fig. 1 Digital Twins Multimedia Ecosystem for health and well-being
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2.3 Digital Twins Characteristics

The following Digital Twins characteristics are derived from [1]:

1. Unique Identifier: To communicate with its twin
2. Sensors: To replicate the senses of the real twin, i.e., sight, hearing, taste, smell,

and touch
3. Artificial Intelligence: To make fast and intelligent decisions on behalf of the real

twin
4. Communication: To interact in near real-time with the environment, real twins,

and/or other Digital Twins
5. Representation: To interact with real twin or other twins, virtual representation

can be in the form of 3D avatar, hologram, or even a humanoid social robots
6. Trust: To carry out sensitive tasks and decision-making of the real twin
7. Privacy and Security: To protect the identity of its twin as well as its privacy

3 Health Through Digital Twins

In Sect. 1 of this chapter, we had mentioned the different parameters for health and
well-being and these different parameters for health can be considered as different
pieces of the puzzle, which help construct the entire story of a person’s health and
well-being. The physical and mental parameters of a person’s health help assess the
current status of an individual’s body and mind whereas the lifestyle parameters
are contributing factors to a person’s current health status. The lifestyle parameters
are influenced by social, cultural, economic status, and context of an individual
and thus there exist interdependencies of multiple parameters, which determine the
health of a single individual. Therefore, we cannot simply tell an individual to make
a health behavior change or resolve a health condition without understanding the
completely understanding all the parameters of health. Since these many parameters
are measured through different methods (such as wearables, social media, and
laboratory tests), there becomes a need to converge the different data points of a
person in one place. Apart from converging the data in one place, it also becomes
imperative to help a user make use of the data and thus comes in the need for
analytics and feedback for health and well-being.

Apart from this based on the geography of a person, the Digital Twins can help in
grocery shopping, consumption of fresh fruits and vegetables, help increase walking
in the neighborhood based on walkability and temperature of neighborhood and also
suggest walking groups through different social media or group activity platforms.
Thus, the Digital Twins not only used body parameters to help make a decision for
behavioral change but also considers the social and contextual factors.

Thus, a Digital Twins is made from the convergence of multimedia technologies
involving big data, predictive analytics, visualization techniques, cybersecurity, and
communications. The Digital Twins can be as simple as one sensor or one body
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parameter or can be as complex as a complete human body from genomic to gross
body level. Since human beings are not just their biological bodies but also their
physical and social environments, contextual factors become very important in
designing a Digital Twins for health and well-being. Once the anatomy of a Digital
Twins is understood, it is important to understand its physiology or functionality.
The main function of the Digital Twins is to communicate with its real twin or with
other Digital Twins (which may be possible in the near future) and help make the
best decisions based on the complete set of parameters. We have illustrated this
concept through three different case studies.

4 Case Studies

4.1 DT for Heart Care

Most heart-related diseases can be avoided only by leading a healthy life. There are
risk factors associated with these diseases, alcohol consumption, obesity, smoking,
sedentary lifestyle, and poor diet are the main factors. By reducing these risk factors
or even suppressing them, the individual can significantly reduce the chances of
being affected by any of these diseases.

With Digital Twins you can promote a healthy lifestyle as a strategy to prevent
heart diseases. Digital Twins collects data from different BAN type of sensors,
for example, an accelerometer, GPS, or a smartwatch that monitors heart rate and
galvanic response. The AI module can use machine learning to estimate the level of
physical activity for the real twin on a daily basis. From this estimation, the real twin
receives recommendations on different activities outdoors or indoors to participate
according to personal preferences or physical condition in the real twin.

Digital Twins knows everything about its real counterpart, based on caloric
consumption, weight, clinical data, and/or biological signals obtained from different
sensors, it can also detect situations related to obesity, alcohol, or tobacco consump-
tion for which it can help the real twin to reduce or suppress effectively based on
your personal preferences. This is how Digital Twins can also act as a persuasive
system that supports the user to reduce or even eliminate the risk factors associated
with heart disease and ultimately, prevent them. Take obesity, for example, since the
Digital Twins knows about food consumption preferences, what the real twin likes
or dislikes it can recommend the best meal plan that is best suited for the real twin
along with a set of exercises and activities that are more adequate to the physical
state of the real twin.
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4.2 DT and Emotions

Digital Twins is the enabling technology that facilitates the means to monitor,
understand, and provides continuous feedback to improve quality of life and well-
being. Thus, a Digital Twins can consider a solution to enhance mood to enhance
the quality of life and emotional well-being. The Digital Twins for emotional well-
being system is a closed loop feedback system in which information taken from the
human body is translated into a language perceivable by any of the human senses.
The loop begins with human sensory information from the body. The physiological
signals are then interpreted and converted to a recognizable emotion state. Feedback
is provided to the individual through recommendations while monitoring the user
behavior and action tendency. If the quality of service is not satisfied, then the
system will loop back to the matching process to recalculate the feedback. Once the
biofeedback information is consumed by the human brain, a change in the mental
state will occur, which will cause a change in the human physiological state. The
cycle then starts again.

The primary goal of Digital Twins system for emotional well-being should
include tracking, assist, remind, intervene, and reinforce learning. A biofeedback
loop can allow users to see their bodily reactions in real time, and assist users in
finding both the positive and the negative stressful patterns in their behavior. While
opportune moment detection helps provide just-in-time interventions as needed.
Then, reinforce learning helps to learn the user preferences.

4.3 DT for Sport

The Digital Twins has many applications related to health and well-being, among
which is sport. Indeed, Digital Twins can help improve tremendously the quality of
sport both by giving the athletes access to automated training as well as by giving
them the benefit of personalized feedback during and after the training.

Indeed, the DT can allow athletes to work out even in the absence of the coach
but following his/her recommendations. We suggest here an application of the DT
in sport, where we show that how athletes can benefit from it. We used sensors as
the DT data source and actuators as DT representation to give feedback to the real
twin who is here the athlete. The DT replaces temporarily the coach by helping the
athlete follow his/her recommendations without the coach’s presence.

We studied the case of training for soccer sprinting. As sensors, we used the smart
insoles [24] in order to collect pressure point data and send it to the DT storage. The
DT was configured by the coach for each athlete following their level, then the DT
sends notifications to the athletes to inform them of the availability of a new training
set for them. The athlete can start their sprint training at their own preferred time,
during which the DT accompanies them with tracking and feedback. The feedback is
delivered through haptic armbands that signal to the athlete when to start sprinting
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and when to switch to periods of recovery for the duration recommended by the
coach. After the training is completed, the DT makes it available to the coach (and
the athlete) by means of visualizations in the form of graphs and feet heatmaps
showing the results of the training that the coach can analyze and provide the next
training recommendation based on the athlete performance. We performed a pilot
study with three soccer athletes who reported that the DT for sport proved very
useful for them. They rated it at an efficiency of eight out of ten and declared that
they would adopt it to facilitate their sprint training.

The Digital Twins system can also automate the performance analysis using
artificial intelligence, and act as a coach assistant, providing him/her with suggested
athlete recommendations and waiting for the coach’s approval before notifying the
athlete of the training outcome and next steps.

5 Conclusion

Digital Twins bring about the promise to help improve the health and well-being of
individuals, provided they are able to get their trust and provide data privacy. Some
challenges exist among which delivering a high degree of personalization, which is
context aware, culturally apt, matching user’s lifestyle, and preferences. Our current
interest is the study of role of incentives to self-health behaviors and links them to
create a well-being economy or to initiate dialogue for a well-being economy. In
the end, we need consumer evangelism and participation in use and scale of digital
technologies for personal health and well-being.
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Incorporating Artificial Intelligence
into Medical Cyber Physical Systems:
A Survey

Omid Rajabi Shishvan, Daphney-Stavroula Zois, and Tolga Soyata

Abstract Medical Cyber Physical Systems (MCPSs) prescribe a platform in which
patient health information is acquired by the emerging Internet of Things (IoT)
sensors, pre-processed locally, and processed via advanced machine intelligence
algorithms in the cloud. The emergence of MCPSs holds the promise to revolution-
ize remote patient healthcare monitoring, accelerate the development of new drugs
or treatments, and improve the quality-of-life for patients who are suffering from
various medical conditions among other various applications. The amount of raw
medical data gathered through the IoT sensors in an MCPS provides a rich platform
that artificial intelligence algorithms can use to provide decision support for either
medical experts or patients. In this paper, we provide an overview of MCPSs and
the data flow through these systems. This includes how raw physiological signals are
converted into features and are used by machine intelligence algorithms, the types
of algorithms available for the healthcare domain, how the data and the decision
support output are presented to the end user, and how all of these steps are completed
in a secure fashion to preserve the privacy of the users.

Keywords IoT · Cloud computing · Sensors · Physiological signals · Machine
learning · Cyber-physical systems

1 Introduction

The rapid emergence of IoT devices in conjunction with advances in computational
capabilities have led to a growing interest of MCPSs in both research and com-
mercial fields [1]. With applications spanning from general areas such as fitness
tracking and personal health [2] to more technical fields such as remote health
monitoring and medical decision support systems [3, 4], MCPSs have emerged as an
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effective technology that can not only improve general medical practice [5] but also
create new business opportunities [6]. These systems consist of a network of sensors
worn on the body of patients and gather physiological and environmental signals;
these signals are first pre-processed at a location that is close to the acquisition
source, and transmitted to either a private or public cloud. A private cloud is
owned directly by a Healthcare Organization (HCO), while a public cloud is rented
from cloud service providers, such as Amazon EC2. The primary purpose of the
cloud is to execute a set of machine intelligence algorithms and provide decision
support to healthcare professionals (e.g., doctors and nurses). In addition to the
previously gathered corpus of relevant information, MCPSs use the acquired data to
train machine intelligence algorithms and make inferences regarding the potential
medical conditions of a patient based on his/her physiological data.

These aforementioned emerging clinical and personal healthcare applications
both benefit from devices that acquire medical data and process them with varying
degrees of intelligence; in this way, an MCPS is not limited to IoT devices, but
any sensory device, coupled with a platform that can run the decision support
algorithms.

Given the sensitive nature of the personal medical information, measures must
be taken within the MCPS to remain in compliance with confidentiality laws that
protect personal health information. For example, Health Information Privacy and
Accountability Act (HIPAA) laws in the USA [7] have strict restrictions requiring
that medical information can only be released to authorized users. This privacy
issue is especially important if the HCO uses public infrastructures as a computation
platform where the hardware is shared with multiple unknown users.

In this chapter, an overview of an MCPS and the artificial intelligence algorithms
that are used in it are presented. Specifically, in Sect. 2, the general structure of
an MCPS is described. In Sect. 3, the data acquisition component of the MCPS
is described. Details of the decision support process are presented in Sect. 4, in
which the algorithms are studied based on their goals. Sections 4.1 through 4.4
describe these goals, including knowledge discovery, classification, regression,
and sequential decision-making, respectively. Section 5 is where visualization is
elaborated on, which is an important stage of the decision support process. Issues
surrounding data privacy and security are discussed in Sect. 6. Section 7 discusses
the challenges and open issues in incorporating artificial intelligence in MCPSs, and
summary and concluding remarks are provided in Sect. 8.

2 Medical Cyber-Physical Systems

One of the most promising applications for an MCPS is real-time, long-term health
monitoring [6, 8]. The general structure of an MCPS consists of multiple com-
ponents as shown in Fig. 1. The data acquisition, aggregation, and pre-processing
layer gathers all relevant and necessary information through wearable sensors in a
Wireless Body Area Network (WBAN), environmental sensors, and other external
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Fig. 1 An overview of different components of a MCPS. The raw data is acquired from body-
worn sensors. After a pre-processing phase, the signals are aggregated and transferred to the cloud,
where they are processed by machine intelligence algorithms. The outcomes of the algorithms are
then presented to the users in the form of visualization, decision support suggestions, or alerts. All
of these steps are subject to security measures to ensure that the data is kept secure and private

sources of data such as the Internet. This data is then aggregated, and features are
extracted and transmitted to the cloud for use by machine intelligence algorithms.
These algorithms yield outcomes that can be then used for decision support or
visualization purposes. All of these components are subject to privacy guidelines
to ensure the security and privacy of the data that is traveling within the MCPS. We
discuss these layers in more detail in the sections to follow.

2.1 Data Acquisition, Aggregation, and Pre-processing

Data acquisition is the first component of an MCPS, which gathers physiological
and ambient signals, primarily through WBAN sensors but also sensors deployed in
the environment. This component also aggregates the data, performs the necessary
pre-processing, and transmits the resulting data to the cloud. This transmission is
usually done through conventional communication links such as 3G, 4G, or 5G
networks [9, 10] or other emerging communication links such as the communication
links provided by Low Power Wide Area Network (LoRaWAN) protocol [11]. Note
that this data can either be in raw format (cf. Sect. 3.1) or represented by a set of
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features that is extracted from it (cf. Sect. 3.2). The format of the data depends on
many factors, such as the application, the bandwidth of the data connection, or the
system’s power supply limits. We will discuss this component further in Sect. 3.

2.2 Decision Support Using Machine Intelligence

The decision support component of an MCPS is responsible for the analysis of the
data to detect informative patterns. Depending on the application, the goal of this
layer may be to find novel patterns in the input data (Sect. 4.1), classify the input
data into a limited number of classes (Sect. 4.2), provide an estimate for given input
data (Sect. 4.3), or provide a suggestion for a decision-making task (Sect. 4.4).

2.3 Data Visualization

It is vital that data is reported in a format comprehensible to both medical profes-
sionals and patients. This includes all acquired data, decision support suggestions,
and emergency alerts. Medical data gathered through sensors is typically too volu-
minous for the human brain to process [12], which in turn necessitates the generation
of informative summaries. It is essential that these summaries highlight sections of
data that require attention without sacrificing accuracy; this can significantly reduce
human errors and ensure efficient diagnosis. Section 5 discusses data visualization
in depth.

2.4 Data Privacy

All personal medical data in the USA is protected under the HIPAA regulations [7].
Through its transition between the components of an MCPS, personal medical
data should be treated in such a way that its integrity remains intact without
compromising the patient’s privacy. This requires special provisions during the
design of an MCPS, such as encrypting data and enforcing restricted access to
personnel. Section 6 provides detailed explanation on data privacy and security.

3 Data Acquisition, Aggregation, and Pre-processing

Machine intelligence algorithms are used by MCPSs to generate desired outcomes
based on a variety of different data. In this section, the different stages of the data
acquisition, aggregation, and pre-processing process are discussed along with the
different types of data used.
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3.1 Raw Data

WBAN sensors collect and communicate (through wireless protocols such as IEEE
802.11ah [13], WirelessHART [14], Bluetooth Low Energy (BLE) [15, 16], and
ZigBee [17]) a variety of raw medical data including but not limited to data
from respiration sensors, heart-rate monitors, blood pressure, glucose, and oxygen
saturation monitoring sensors, and muscle activity sensors [1]. Note that other
ambient sensors such as environmental temperature, location, and sound may be
useful for some applications. These signals are usually gathered with relatively
high sampling frequency and are prone to environmental noise, whether induced
by patients’ movements or by other electrical devices in the vicinity [18]. As a
result, redundant information is included in the raw data that can be omitted without
losing any valuable information. Thus, direct transmission of raw data to the next
layer of the system can not only waste valuable bandwidth, but also expend battery
resources in mobile devices that operate under severe energy constraints. To address
both drawbacks, features are extracted from raw data to retain information that is
useful for decision support and visualization.

3.2 Features

The process during which features are extracted from raw data is studied in Sect. 3.3.
These features are presented as variables, which are used as an input to machine
intelligence algorithms or the visualization system. Section 3.4 studies generic
(application-independent) features (such as the average of the signal), which can
be used in almost any application, although application-specific features (such as
certain time intervals of an electrocardiogram (ECG)), as studied in Sect. 3.5, can
have a much better representative power.

3.3 Feature Extraction

Feature extraction [19] can be accomplished via different dimensionality reduction
techniques that extract the most statistically significant information from raw data.
Common feature extraction methods include

– Principal Component Analysis (PCA) is a technique for dimensionality reduc-
tion that transforms a collection of correlated data to a collection of uncorrelated
data points. PCA is widely used in the literature; for example, authors in [20]
detect sensorineural hearing loss in Magnetic Resonance Imaging (MRI) images
by transforming these images into features through wavelet decomposition and
dimensionality reduction via PCA.
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– Kernel PCA (KPCA) is based on PCA and uses pre-defined kernel functions,
such as polynomial or Gaussian functions, to perform non-linear data transfor-
mation. For example, authors in [21] use kernel PCA to reduce 700 features to
only 5 features, which are then used to assess depressive symptoms in different
individuals.

– Canonical Correlation Analysis (CCA) is a method for analyzing the cor-
relation between two different multivariate inputs. In [22], authors develop a
hybrid brain-computer interface smart glass that is used for controlling electronic
devices. They use CCA as part of their system to find the most similar
Electroencephalograph (EEG) recordings and classify the user’s action based on
that.

– Multidimensional Scaling (MDS) is a dimensionality reduction method that
transforms data points into a lower dimension, while maintaining the Euclidean
distance between the data points. For example, authors in [23] use MDS as part
of their process for daily activity recognition among subjects in which the data is
presented as a matrix and MDS is used to convert them to a lower dimensional
space that makes classifying the activity matrix easier.

– Artificial Neural Networks (ANNs) can be structured in such a way that they are
able to extract features from the raw data. For example, autoencoders are a type
of ANNs that take a high-dimensional signal as an input, convert them to a signal
with lower dimension, and reconstruct the original signal from the converted
signal. This lower dimensional data provides efficient feature reduction [24].
An example application of ANNs is presented in [25], where the authors use
deep belief networks in an emotion recognition scheme in which the network
extracts features from high dimensional audio and video input signals. Another
application is discussed in [26], where authors build a fall detection system
that utilizes frequency modulated radars. They use an autoencoder to extract
features from the data and show that it improves the performance as compared to
conventional methods such as PCA.

3.4 Application-Independent Features

In many applications, features extracted from raw data are very generic and do
not depend on the application of interest. As a result, they can be extracted from
a variety of medical data and should be interpreted based on the context of the
application. The features can be categorized as: temporal, spectral, and cepstral.
Temporal and spectral features are extracted from the time and frequency domain of
a signal respectively, while cepstral features are extracted based on the changes in a
signal’s spectral bands.
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3.4.1 Temporal Features

Statistical information of data, ranging from its mean and median to kurtosis and
different percentiles, are typical examples of temporal features that may reveal
useful information. Frequently, temporal features on their own are sufficient to
accurately summarize a variety of data. For example, in [27], temporal features such
as the mean of maxima and the mean of minima from acceleration and heart rhythm
signals can adequately and accurately detect the patients’ physical activity. Another
application is presented in [28], where the median frequency among other temporal
features is extracted from skin conductance, ECG, and electromyogram (EMG) sig-
nals and used to detect mental stress among people. More complex temporal features
(e.g., Lempel-Ziv complexity, Hermite polynomial expansion (HPE) coefficients,
central tendency measure) can be extracted from the data by applying advanced pro-
cessing algorithms. For example, authors in [29] use both central tendency measure
and Lempel-Ziv complexity of SpO2 signals for real-time detection of sleep apnea.

3.4.2 Spectral Features

In addition to temporal features, analyzing the signals in the frequency domain can
also provide useful information about their characteristics. Some of the features in
this domain include power of the signal in various frequency bands, phase angle, and
the spectral entropy. An example application of spectral features is discussed in [30],
where EEG signals are analyzed. By using features such as dominant frequency and
normalized spectral entropy, an epilepsy application is developed.

3.4.3 Cepstral Features

Cepstral features have proven to be useful for removing disturbance in the data
induced by uncontrollable parameters such as sensor displacement. The cepstrum
of a signal is the inverse Fourier transform of the logarithm of the spectrum of
the signal. Cepstral features have been used for respiration problems detection
from breath sound recordings [31], detecting heart rhythm arrhythmia from ECG
recordings [32], and sound signal classification for assistive technologies for hearing
impaired patients [33].

3.5 Application-Specific Features

Each biomarker signal has its own unique characteristics that can be extracted as
features with high information content. For example, in an ECG recording (depicted
in Fig. 2), some specific features with high information content are the RR interval
and the QT interval [34]. Furthermore, it is sometimes useful to fuse together
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Fig. 2 A simplified example
of an ECG waveform
showing two consecutive
heartbeats. The QT and RR
intervals are indicated in the
plot
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simple features such as the RR and QT intervals in order to create more informative
features. For instance, a corrected form of QT values is calculated by normalizing it
with respect to the RR value:

QTcB = QT√
RR

(1)

Another example of an application-specific feature is the power of an EEG signal in
different bandwidths such as between 0.5 and 4 Hz (Delta wave) and 7.5 and 12.5
Hz (Alpha wave).

3.6 Feature Selection

Even though a large set of features can be extracted, not all of them are necessarily
useful for machine intelligence algorithms. In practice, features must bear useful
information and low redundancy, while at the same time, they need to be fast to
process, to avoid burdening system performance [35]. Feature selection techniques
can be used to select only the subset of features that contribute the most to the
success of the entire system. Some feature selection methods that are commonly
used are

– Sequential Backward Selection (SBS) starts by using all available features and
sequentially eliminates the features that have minimal impact on system perfor-
mance (e.g., accuracy). In [36], authors use SBS to select the most important
features from all available time-domain and frequency-domain features to enable
accurate sleep apnea detection using pulse oximeters.

– Sequential Forward Selection (SFS), unlike SBS, starts with an empty set of
features and incorporates the features that have the maximum effect on the system
performance in every step. An example application of SFS is provided in [37],
where the authors develop a wearable glove system to detect stress events in
drivers. They use SFS to select only the features that achieve satisfactory level of
accuracy in proposed system.
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– Sequential Forward Floating Selection (SFFS) combines SBS and SFS tech-
niques; at each step, it dynamically adds or removes a variable number of
features. This approach starts with forward selection and then employs backward
selection. An example application of SFFS is discussed in [38], where authors
use SFFS to select the features for their proposed cognitive ability evaluation
scheme. They use SFFS on a set of 33 features and show that it selects certain
features more frequently while it completely ignores some other features.

– Correlation-Based Feature Selection (CFS) selects the subset of features that
have the highest correlation with the output classes, yet they are not correlated to
each other. In [39], authors detect epileptic seizures using EEG signals and use
an improved version of CFS to select the best features from different domains
including time and frequency. They show that CFS is able to maintain accuracy
with a reduced number of features.

– Genetic Algorithms (GA) optimize a problem by searching among possible
solutions using natural selection-based techniques. An initial set of solutions is
identified, from which the best options are selected. These selections are then
modified through mutations, converging to the optimal solution. An example
application of using GA for feature selection is discussed in [40], where
evolution-based algorithms select the best features from EEG signals for emotion
recognition. Another example is provided in [41], where authors use GA to select
ECG features for cardiac disease classification.

4 Decision Support

One of the most important functions of an MCPS is to provide decision support to
aid in clinical diagnosis or personal health monitoring. Decision support systems
transform the results of machine intelligence algorithms (i.e., output values) into
appropriate formats that facilitate the understanding of patients and medical experts.
There are various types of decision support including but not limited to providing an
alert (e.g., warning for low blood sugar), estimating the likelihood of a disease (e.g.,
a developing arrhythmia), or displaying an intuitive visualization of the acquired
signals over a long-term observation period (e.g., Holter ECG monitoring).

Decision support systems can be categorized by their respective goals as
follows:

– Knowledge discovery: Knowledge discovery algorithms aim to identify pre-
viously unknown relations in data. Applications such as data clustering and
anomaly detection fall under this category. We will elaborate on this category
in Sect. 4.1.

– Classification: Classification algorithms work with datasets with known input-
output relations and their output can be categorized into a limited number of
classes. We will provide more details on this category in Sect. 4.2.
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– Regression: Regression algorithms work with continuous outputs, as we will
study in Sect. 4.3.

– Sequential decision-making: Sequential decision-making algorithms are used
when a task requires automated decisions to be made over time in order to
improve performance; we will provide more details on this category in Sect. 4.4.

4.1 Knowledge Discovery

Algorithms in this category aim to discover relations in a dataset with unlabeled
data, i.e., data points with no previously known input/output relationships. Cluster-
ing and anomaly detection are typical and most common tasks related to knowledge
discovery. Clustering involves grouping similar data points together, using tech-
niques such as K-means, hierarchical clustering, and probabilistic clustering models
also known as mixture models. On the other hand, anomaly detection focuses on
identifying data points that do not conform to expected patterns when compared to
other data points in a dataset. It is important to note that many anomaly detection
algorithms are based on clustering algorithms that identify data points which do not
belong to any major cluster.

Clustering and anomaly detection have been applied to a variety of healthcare
applications including but not limited to healthcare insurance fraud, discovering
unknown drug interactions, tracking epidemics, and estimating survival rates.
In [42], authors employ outlier detection techniques to detect insurance frauds
in health insurance claims. Specifically, they calculate the proportion of claims
of fraudulent versus non-fraudulent providers, and show that fraudulent providers
tend to file claims related to certain health issues more often. In [43], authors
use mixture models to cluster patients into different mortality rate groups based
on their physiological data gathered in Intensive Care Units (ICUs). Clustering
techniques are also successful in producing trajectories of physiological data over
time based on patients’ individual clusters. For instance, the authors in [44] use
an hierarchical clustering algorithm to detect the severity of three disease types
(i.e., Crohn’s disease, cystic fibrosis, down syndrome) based on lab test results.
Even though patients diagnosed with Crohn’s disease and cystic fibrosis can be
successfully clustered based on the severity of their disease, this is not the case
for down syndrome patients. The last observation is attributed to limited quantity
of data. A similar application is discussed in [45], where K-means is employed
on medical and mood data collected from chronic obstructive pulmonary disease
(COPD) patients to track their symptoms over time and monitor the progression of
their disease.

Association rule mining is another typical example of knowledge discovery,
where the goal is to identify relations between variables in a dataset. For example,
authors in [46] employ association rule mining on the FDA adverse event reporting
system database to detect drug pairs that are associated with increased blood glucose
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Table 1 Confusion matrix Predicted condition

Actual condition Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

levels. They are able to show that a potential candidate for elevated blood glucose
levels is a (previously unknown) drug combination of Paroxetine and Pravastatin,
and a clinical trial verifies their findings.

4.2 Classification

In many datasets, the output values have a limited number of possibilities (i.e.,
classes), which implies that the output values are already divided into subgroups.
A classification algorithm determines which subpopulation (class) each input value
belongs to. The results of classification algorithms, specially the ones with binary
outputs, can be presented in a confusion matrix as shown in Table 1. Based on
these definitions, other metrics such as accuracy, F1-score, and the Area under
receiver operating characteristic curve (AUC) are defined and used to describe the
performance of classifiers. For example, accuracy is defined by Eq. (2) and F1-score
is defined by Eq. (3) while AUC is defined by plotting the graph of true positive
rate vs. false positive rate and calculating the area under its curve. For all of these
metrics, the closer their value to “1”, the better the classifier.

Accuracy = TP + TN

TP + FP + FN + TN
(2)

F1-score = 2TP

2TP + FP + FN
(3)

An example classification application is described in [47], where the authors
classify patients into one of two sub-populations, (i) patients with sleep apnea, and
(ii) without apnea. Such a classification, in which there are only two possible output
values is termed binary classification. Their classification scheme is a linear integer
model that takes input features such as age, sex, smoking condition, and snoring
during sleep. The authors report an AUC value of 0.785. Another classification
application is presented in [48], where the authors take the ECG recordings of
patients and detect whether they have long QT syndrome [34, 49] or not. They
extract features such as the heart rate from the ECG data and feed them into
multiple classification algorithms such as Support Vector Machines (SVMs), k-
nearest neighbors, and AdaBoost. They are able to achieve accuracies higher than
70% using SVMs with radial basis function.
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In [50], authors take histopathological images and classify gliomas (a type of
cancer) into two classes: (i) low-grade glioma and (ii) high-grade glioma. They
process the images and divide them into separate segments, where for each segment
a cell-count profile is created. A decision tree algorithm is then applied to the cell-
count profiles, which identifies the glioma as a low-grade or a high-grade one with
80% accuracy. Another work in [51] uses retinal images to detect Retinopathy of
prematurity, a cause of blindness among children. They manually prepare a mask
for the vessels in the images, fit splines into these masks, and extract feature from
these splines. SVM classifiers are used to classify these vessel features into healthy
and abnormal cases, where they achieve ≈95% accuracy in this task.

The work presented in [52] uses data gathered through smartphones for the
purpose of remote health monitoring and physical activity classification. Authors
take smartphone accelerometer data and extract features such as mean, standard
deviation, and the peaks of the measurements from the signal. By using these
features in a decision tree algorithm, they are able to classify multiple physical
activities of the subjects, including {sitting, walking, going up or down the stairs,
cycling}, with more than 80% accuracy. Authors in [27] also investigate activity
recognition with an SVM classifier. They gather ECG and accelerometer data and
extract time and cepstral features from these two signals. By fusing these two sets
of features, they are able to distinguish nine physical activities with accuracies as
high as 97.3%.

A study that uses mobile phone data in addition to wearable sensors is conducted
in [28], where authors recognize stress among the participants in the study. Data for
the study is gathered through a wrist sensor that has an accelerometer and measures
skin conductance and mobile phone usage. They combine this information with a
user survey that includes information about their mood, tiredness, and alcoholic
and caffeinated beverage intake. Authors classify subjects as {stressed and not-
stressed} with accuracy as high as 87.5%.

In [53], authors build a sleep apnea monitoring system that classifies the subjects
based on their ECG signals. Participants undergo a sleep study, in which their ECG
measurements are recorded; they are able to detect respiratory movements from
these recordings in addition to extracting both time-based features and spectral
features from the signals. By using an SVM classifier, they are able to achieve
accuracies between 85% and 90% in sleep apnea detection. Authors in [54] build
a non-intrusive mental-health tracker system. The system gathers features such as
subject’s head movement, heart rate, eye blinks, pupil radius, and facial expressions
through a webcam and records other features that include the interactions of the
subject with the computer and the content that the user views. Using this input data,
they are able to classify subjects’ emotion as positive, neutral, and negative with an
AUC of 0.95.

Some classification applications include a large amount of data with high com-
plexity, causing traditional feature extraction and classification techniques to fail
providing acceptable results. Deep neural networks (DNNs), such as convolutional
neural networks (CNNs) or recurrent neural networks (RNNs), have shown to be
successful in classifying these cases. For example, in [25], authors use stacked
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autoencoders for feature extraction in an emotion recognition application. Since the
input data includes video and audio data, authors use both conventional features and
features extracted via deep belief networks to classify the emotion through an SVM
classifier. They show that features extracted automatically through a DNN improve
the classification accuracy of the SVM.

CNNs are one of the most commonly used DNNs for classification, due to their
structure being able to capture both local and global features in multimedia inputs
such as images or videos. Authors in [55] use CNNs to detect mitosis in breast
cancer histology images. Their network is able to label image pixels as mitosis
or non-mitosis, which results in a classification with an F1-score of 0.8. In [56],
authors propose a CNN for gland segmentation in histology images. This work is
able to detect benign and malignant glands; they report that under their segmentation
scheme, extracted glands have less than 50 pixels of Hausdorff distance to the real
ones. Another work that uses image inputs is presented in [57], where authors detect
damage to retina due to diabetes in retinal fundus photographs. Their work is able
to achieve an AUC of 0.99 in its classification task.

In [58], authors use a CNN with 1 dimensional input to classify different types of
heart beat arrhythmia in ECG recordings. They develop a network that takes 5 min
of each person’s ECG in addition to multiple general heartbeat samples and train a
personalized CNN to detect 5 types of arrhythmia. The network shows successful
performance with accuracies as high as 99% in certain tasks. The work presented
in [59] uses both CNNs and RNNs to annotate chest X-ray images with proper
description. The CNN part of the paper is responsible to analyze the X-ray images
and detect abnormalities in them. The output of the CNN is then fed to the RNN to
produce appropriate annotations for the images to describe them, such as “normal”
or “cadiomegaly/light.” They show their work is able to annotate the images within
acceptable range.

4.3 Regression/Estimation

In many applications, output data can take any value in a continuous range,
rather than belonging to discrete groups or classes. In this case, the application is
formulated as a regression or estimation problem, where the goal is to generate a
continuous–valued output (contrary to a discrete output as done in classification
discussed in Sect. 4.2) based on a set of input data.

An example regression application is discussed in [60], in which a robust heart
rhythm estimation algorithm is proposed to combat false alarms in ICU caused
by noise induced by the environment. The authors develop an estimation approach
based on the Kalman filter [61, 62] that estimates the heart rate of an ICU patient
from ECG and arterial blood pressure sensors and show that the proposed approach
works well even when more noise is artificially added to the data. In [63], a
disease trajectory prediction system is designed to predict the course of a disease
in the future based on some initial patient medical data. The authors show that the
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proposed system can provide accurate prognosis at a personal level. The authors
in [64] study the problem of prognosis of a disease in patients by focusing on the
course of diabetes in diabetic patients. Their goal is to predict the possibility of a
patient needing emergency care in the future. To this end, they consider lab tests,
the list of the drugs that the patient uses, diagnoses, and other input features that
are processed and selected by techniques such as filtering or PCA. They report
the probability of a patient needing an emergency care in the future in addition to
predicting their future lab test results. They show that their techniques are effective
by reporting concordance indexes as high as 0.67.

A regression problem that focuses on drug discovery is discussed in [65]. The
authors use DNNs with various inputs, including molecule structures of different
drugs, that output on-target or off-target activities. They compare the performance
of DNNs with other methods such as random forests with respect to the prediction of
activities, and show that the former methods outperform the latter ones by improving
the squared Pearson’s correlation coefficient between the predicted activities and
the observed ones from 0.42 to 0.5. In [66], the authors focus on the problem of
estimating user fatigue through DNNs. They collect data from muscle and heart
activity sensors, accelerometers, and a brain–computer interface that collects EEG
signals. These signals are then provided as input to a DNN, which estimates the
physical load of the participants and their physical fatigue.

4.4 Sequential Decision-Making

Sequential Decision-Making (SDM) models are typically used in medical appli-
cations to monitor and/or improve the medical process by estimating the task of
interest as well as controlling any related variables. Example of sequential decision-
making models are Markov Decision Processes (MDPs), Partially Observable
Markov Decision Processes (POMDPs), and Multi Armed Bandits (MABs).

An example application of such models is discussed in [67, 68], where a
WBAN [68] consisting of sensors such as accelerometers and ECGs, in addition
to a mobile phone, is used for physical activity recognition. The system uses a
POMDP model to select the best sensing strategy to achieve two different goals:
(i) infer the physical activity of the individual accurately, and (ii) prolong mobile
phone battery lifetime. The authors are able to show that the POMDP approach
can lead to up 64% energy savings while losing only 10−4 in activity detection
accuracy. Another application of sequential decision-making models is described
in [69], where a video camera tracks the movements of patients with dementia to
assist them with a handwashing task. To estimate the severity of dementia in patients
and provide assistance in this task, a POMDP formulation is adopted, which decides
when to intervene in the handwashing task. The model can do nothing and let the
individual finish their task, provide cues such as task description to the individual,
or call the caregiver.
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In [70], a stress reduction system is introduced that uses a contextual MAB
formulation to detect the relationship among different interventions to cope with
stress and their outcome on different individuals for a given context. The data for
the model comes from different sensors such as GPS, accelerometer, calendar, etc.
in addition to other information gathered from the individual including personality
traits and self-reports. The system evaluation shows that the participants in the
study show lower symptoms related to depression. Another study that uses MAB
approaches is presented in [71], where a personalized physical activity recommen-
dation system is modeled as a MAB problem, which monitors the activities of
individuals and provides suggestions to the users at different times for a healthier
lifestyle. In [72], the authors develop a drug sensitivity prediction system that
considers expert inputs to improve the efficacy of prescribed drugs for a given
individual. The prediction refers to the effect of different drugs on patients with
blood cancer and the features come from the genomic features of the cancer cells.
To enhance the prediction, an expert provides an opinion to the prediction algorithm
based on the genomic features, but the sheer number of features limits the feasibility
of this input as the expert cannot provide an opinion on thousands of features. To
address this issue, the authors use a MAB formulation to learn from the expert inputs
and take their opinion only on the features that are considered the most important.
This scheme improves the prediction accuracy by 8%.

5 Visualization

A vital part of a decision support system is presenting the important and necessary
information to the users of the system in an intuitive format. A highly-effective
way of achieving this goal is through data visualization that shows all relevant
information in addition to machine-intelligence-based annotations for parts of data
that require extra attention from the users. Visualization techniques vary based
on both the application and the target users; for example, to provide feedback to
medical experts, a system may need to include higher precision data with all the
relevant medical information, while a lower level of technicality is sufficient for
visualizing data for patients.

Despite the importance of proper data visualization and the benefits that it
provides for the users, existing visualization techniques in the medical scientific
disciplines are somewhat limited [73]. To date, several medical data visualization
techniques have been introduced, which vary in complexity ranging from simple
tables or bar graphs to advanced interactive multidimensional plotting systems. The
focus of these techniques has been mostly on the data that are gathered through
clinical visits. Visualization for MCPS data is more challenging due to the long
duration of data acquisition and high dimensionality.

Traditional visualization techniques include lists, tables, graphs, charts, tress,
pictograms, and formats to show spatial data [74] and causal relations within data
elements. These formats present all information without removing any essential part
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Fig. 3 A sample QTcB clock showing the calculated QTcB values of subject s30771 in [75]
available in the PhysioBank database [76]. The plot shows the QTcB value for the entire recording
duration and the highest value of QTcB is shown on the graph

and highlight the most important parts of the data. For example, the case shown in
Fig. 3 is a 24-h visualization of a patient’s ECG data [34, 49], where a “clock”
shows the QTcB (Eq. (1)) value of a patient throughout the recording period. This
visualization technique is designed to designate the top of the clock as midnight
(00:00) and the bottom of it as noon (12:00) to visualize the entire 24-h recoding
of the patient’s ECG by using a single clock. The radial dimension of the clock
(i.e., from the inside to the outside) represents the values of QTcB at a given time;
the inner entries are colored green and represent “healthy” QTcB values (300–
420 ms), whereas the values closer to the outer edges are colored red and represent
“abnormal” QTcB values (500–600 ms). This visualization allows a cardiologist to
view a patient’s entire 24-h ECG recording period at a quick glance, which allows
them to view 20–30 patient’s Holter recordings within a negligible amount of time
and identify the health conditions of each patient rapidly; this eliminates the need to
search through traditional ECG recordings, which are printed on paper.

Multiple other techniques are proposed for plotting ECG data for different
purposes. For example, authors in [77] develop an interactive ECG visualization
system built on top of the research presented in [34], where multiple panels allow
the medical professionals to plot different parts of the data with higher precision or
show various statistical distributions related to the data. Another study that targets
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long-term ECG recordings is presented in [78], where heartbeats are shown in
different clusters and the clusters with fewer members represent the heart beats with
arrhythmia.

One of the main categories of visualization techniques involves presenting data
to individuals who are self-tracking their health, physical fitness, and lifestyle.
A rich body of work depends on self-logged information from users in addition to
physical tracking devices to provide a visual feedback to them [79–82]. Many novel
approaches are used for the feedback mechanism such as making data sculptures
form the information [83], displaying them through abstract art [84], or even
feedback for self-monitoring through edible chocolate [85].

Many of the proposed visualization schemes treat professional medical personnel
as audience too. For example, hGraph [86] and its dependent programming libraries
(like the one introduced in [87]) depict a summary of user activity, blood pressure,
sleep, and in-clinic data and are dedicated to medical data visualization. Other
systems such as Open mHealth [88] provide visualization as part of their overall
architecture. Some other frameworks such as TimeLine [89] focus on visualizing
only electronic health records and do not incorporate data from user activity in their
figures. OpenICE [90] is another open platform for MCPS, which incorporates data
visualization for vital signs of patients; it color-codes the vitals as being normal, not
normal, and severely out of range.

PhysioEx is introduced in [91], which analyzes the streams of medical data and
plots the duration, frequency, and trajectory of different events in the stream through
a temporal intensity map. In the study presented in [92], a tele-rehabilitation system
is designed that gathers patient activity through mobile sensors and visualizes them
remotely for the care-giver for a better understanding of whether the patients adhere
to their rehabilitation program or not and how their rehabilitation is progressing
through time. A system that is implemented in ICU settings is proposed in [93],
where all ICU data is shown and are accompanied by some notifications such as
empty medication. Testing of this system shows that task completion times for
nurses is significantly decreased and their situational awareness is increased.

There are many available tools that are used for creating these visualizations
which are created by different companies. Plotly1 provides different visualization
tool libraries that are compatible with programming languages such as R, Python,
and Java. AnyChart2 also provides a data visualization platform that can create
various forms of charts as well as real-time data streams. Tableau3 is another tool
that is widely used for creating visualizations. IBM Watson analytics4 also provides
a visualization kit for healthcare that can be used in R and Python programming
languages through APIs. Some other widely used tools include software provided

1https://plot.ly/.
2https://www.anychart.com/.
3https://www.tableau.com/.
4https://www.ibm.com/watson/uk-en/health/.

https://plot.ly/
https://www.anychart.com/
https://www.tableau.com/
https://www.ibm.com/watson/uk-en/health/
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by Sisense,5 Microsoft Power BI,6 Qlikview,7 and SAP Lumira.8 Note that these
tools are not necessarily limited to healthcare applications and can be used to create
visualizations in various industries.

6 Privacy

In the US, Health Insurance Portability and Accountability Act (HIPAA) [7]
mandates the assurance of medical data privacy at every component of an MCPS.
Security of an MCPS, whether concerning the general security of the system [8] or
security of its specific components, has been addressed in the literature extensively
and is an ongoing developing research topic.

Attacks on an MCPS can be categorized as either active or passive. Active attacks
aim at accessing secret information by deviating from the security protocols, while
a passive adversaries follow the security protocols, yet are able to access restricted
information. The security layer of an MCPS should ensure that both of these types
of threats are made ineffective in all layers of the system [8]. A general modeling
of threats is presented in [94], where authors categorize the stakeholders in an
MCPS and build trust and threat models based on them throughout the system.
They categorize different potential threats such as confidentiality, integrity, and
availability of data in different sections of the system such as the communication
links and the software/hardware platform and list the possible remedies that may
prevent these threats from inflicting damage on the system.

The study in [95] investigates the idea of integrating forensic principles into the
design of an MCPS, which gives the HCO a means to investigate the intruders in
case its MCPS is compromised. Their idea does not necessarily stop adversaries
from intruding the system, but provides a means for detecting them after their attack.
The authors discuss a forensic-by-design framework for an MCPS by breaking
it down into different components such as risk assessment, forensic readiness
principles, security and privacy requirements, relevant legislations and regulations,
medical and safety requirements, and software and hardware requirements in
addition to providing forensic-readiness testing criteria.

In addition to conventional privacy measures, there has been a growing interest
in using machine intelligence algorithms to ensure the security of an MCSP. For
example, authors in [96] develop an ANN-based intrusion detection system for an
MCPS. The idea behind their system is to find anomalies in data access patterns
and potentially deny access to a user request with an anomalous request for data.
Based on this idea, the authors develop an evolving ANN that decides if an incoming

5https://www.sisense.com/.
6https://powerbi.microsoft.com/en-us/.
7https://www.qlik.com/us/.
8https://saplumira.com/.

https://www.sisense.com/
https://powerbi.microsoft.com/en-us/
https://www.qlik.com/us/
https://saplumira.com/
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request is normal or an attack; if it is classified as an attack, the request is sent to
another ANN to classify the specific type of the attack. Another study presented
in [97] uses machine learning algorithms for unusual behavior detection within a
healthcare organization network. Their system monitors data access patterns in a
computer network and detects anomalous behavior and is able to enhance system
performance through feedback given to it by security analysts. Their work includes
a visualization phase that helps identify the most valuable nodes for a potential
attacker.

7 Future Directions, Open Issues, and Challenges

Incorporating Artificial Intelligence (AI) in MCPSs is still in its infancy with
numerous possibilities for further advances in this area. As the amount of accu-
mulated medical data increases, concurrently with the increasing computing power
and storage capability of cloud platforms, AI-powered MCPSs will undoubtedly
influence the medical field increasingly. While the rich datasets will help improve
the accuracy of AI-based algorithms, it will facilitate the collection of much larger
quantities of data. This positive feedback cycle will eventually allow the testing
of more sophisticated—and data-hungry—algorithms that were not feasible to test
previously.

Personalization of the algorithms is also another topic of interest. As the
deployment of MCPSs becomes more mainstream, each individual will have a more
detailed personal medical history. Designing AI algorithms that are adaptable to a
given individual and providing their analysis based on specifics of one’s medical
history is an open issue which has to be studied further.

Security of an MCPS and keeping medical records private during the processing
of medical data is one of the most important challenges that should be considered in
all layers of an MCPS. This may lead into the emergence of AI algorithms that can
be coupled with advanced encryption schemes, such as homomorphic encryption
to keep the medical data secure at all times, even if the algorithm is executed on a
public cloud server.

Another challenge associated with MCPSs is the power consumption of the
sensors in the data acquisition layer. Although power consumption of the layers
that are connected to the grid are minimally affected from this constraint, layers
that operate on batteries impose severe limits to the design of an MCPS. This
power consumption constraint manifests itself both in the first layer, where the
battery-operated sensors acquire the data, and the battery-operated pre-processing
layer, where the nodes process data at the local nodes and all of the local and even
long-range communication links are powered by batteries. Designing a system that
maximizes the battery life is crucial in an MCPS.

Adaptability of algorithms with newer types of data is another aspect that can
be studied. As newer sensors are developed and novel methods of sensing are
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introduced that can be used in everyday situations, the acquired signal from these
new sensors may be different than the traditional signals. Making the algorithms
adapt to newer—and more advanced—sensors is another topic of interest.

8 Summary and Concluding Remarks

In this paper, we review different aspects of MCPSs and elaborate on incorporating
artificial intelligence into them. We outline the general structure of an MCPS,
which consists of multiple components. These components are (i) data acquisition,
aggregation, and preprocessing, (ii) data processing and decision support, and (iii)
visualization and user interaction.

Component (i) is responsible for acquiring patient data, extracting features from
this data, aggregating it, and preparing it for transmission into the cloud. We provide
a set of algorithms that enable the extraction of features from raw data. Table 2
provides a list of this set of algorithms.

Component (ii) includes the machine intelligence algorithms that process the
summarized data from the previous component to prepare it for presentation to the
end user. We discuss a rich set of machine intelligence algorithms that reside in this
component and categorize them based on their goal. These goals are categorized into
knowledge discovery, classification, regression, and sequential decision-making.
Examples of algorithms falling into each of these categories are also presented.
A summarized list of these algorithms is shown in Table 3.

The final component (iii) is the interface between the machine intelligence and
healthcare professionals. We discuss different techniques on providing feedback to
the users through data visualization with example applications. We also study the
issues that relate to the privacy and security of the personal medical data that is being
processed by the MCPS; we provide information about system-level and crypto-
level mechanisms that ensure data security and privacy.

Table 2 Algorithms used in data acquisition, aggregation, and pre-processing components

Component stage Algorithms, methods, and mechanisms

Feature extraction Principal Component Analysis (PCA)

Kernel PCA (KPCA)

Canonical Correlation Analysis (CCA)

Multidimensional Scaling (MDS)

Artificial Neural Networks (ANNs)

Feature selection Sequential Backward Selection (SBS)

Sequential Forward Selection (SFS)

Sequential Forward Floating Selection (SFFS)

Correlation-based Feature Selection (CFS)

Genetic Algorithms (GA)
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Table 3 Algorithms used in the decision support component, broken down by goal

Algorithmic goal Algorithms, methods, and mechanisms

Knowledge discovery K-Means

Hierarchical Clustering

Probabilistic Clustering

Classification Support Vector Machines (SVM)

k-Nearest Neighbor

Decision Tree

AdaBoost

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Regression/estimation Kalman Filters

Linear/Nonlinear Regression

Deep Neural Networks (DNNs)

Sequential decision-making Markov Decision Processes (MDPs)

Partially Observable MDPs (POMDPs)

Multi Armed Bandits (MABs)
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55. D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer
histology images with deep neural networks, in International Conference on Medical Image
Computing and Computer-assisted Intervention (Springer, Berlin, 2013), pp. 411–418

56. H. Chen, X. Qi, L. Yu, P.A. Heng, DCAN: deep contour-aware networks for accurate gland
segmentation (2016). Preprint arXiv:1604.02677

57. V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan,
K. Widner, T. Madams, J. Cuadros, et al., Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22),
2402–2410 (2016)

58. S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D
convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)

59. H.C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, R.M. Summers, Learning to read
chest X-rays: recurrent neural cascade model for automated image annotation (2016). Preprint
arXiv:1603.08486

60. Q. Li, R.G. Mark, G.D. Clifford, Robust heart rate estimation from multiple asynchronous
noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29(1), 15 (2007)

61. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1),
35–45 (1960)

62. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng.
83(1), 95–108 (1961)

63. P. Schulam, S. Saria, A framework for individualizing predictions of disease trajectories by
exploiting multi-resolution structure, in Advances in Neural Information Processing Systems
(2015), pp. 748–756

64. H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M.S. Kohn, S. Ebadollahi, M. Rosen-
Zvi, Toward personalized care management of patients at risk: the diabetes case study, in
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (ACM, New York, 2011), pp. 395–403

65. J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for
quantitative structure–activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)

66. Y. Gordienko, S. Stirenko, Y. Kochura, O. Alienin, M. Novotarskiy, N. Gordienko, Deep
learning for fatigue estimation on the basis of multimodal human-machine interactions (2017).
Preprint arXiv:1801.06048



Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey 177

67. D.S. Zois, M. Levorato, U. Mitra, Energy-efficient, heterogeneous sensor selection for physical
activity detection in wireless body area networks. IEEE Trans. Signal Process. 61(7), 1581–
1594 (2013)

68. U. Mitra, B.A. Emken, S. Lee, M. Li, V. Rozgic, G. Thatte, H. Vathsangam, D.S. Zois,
M. Annavaram, S. Narayanan, M. Levorato, D. Spruijt-Metz, G. Sukhatme, KNOWME: a
case study in wireless body area sensor network design. IEEE Commun. Mag. 50(5), 116–
125 (2012)

69. J. Hoey, C. Boutilier, P. Poupart, P. Olivier, A. Monk, A. Mihailidis, People, sensors, decisions:
customizable and adaptive technologies for assistance in healthcare. ACM Trans. Interactive
Intell. Syst. 2(4), 1–36 (2012)

70. P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, J. Hernandez,
PopTherapy: coping with stress through pop-culture, in Proceedings of the 8th International
Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2014),
pp. 109–117

71. M. Rabbi, M.H. Aung, T. Choudhury, Towards health recommendation systems: an approach
for providing automated personalized health feedback from mobile data, in Mobile Health
(Springer, Berlin, 2017), pp. 519–542

72. I. Sundin, T. Peltola, M.M. Majumder, P. Daee, M. Soare, H. Afrabandpey, C. Heckman,
S. Kaski, P. Marttinen, Improving drug sensitivity predictions in precision medicine through
active expert knowledge elicitation (2017). Preprint arXiv:1705.03290

73. D. Chou, Health it and patient safety: building safer systems for better care. JAMA 308(21),
2282–2282 (2012)

74. A.A. Bui, W. Hsu, Medical data visualization: toward integrated clinical workstations, in
Medical Imaging Informatics (Springer, Berlin, 2010), pp. 139–193

75. F. Jager, A. Taddei, G.B. Moody, M. Emdin, G. Antolič, R. Dorn, A. Smrdel, C. Marchesi,
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Health Promotion Technology
and the Aging Population

Ophelia John and Pascal Fallavollita

Abstract In an effort to improve the quality of care for any population, technology
is integrated into the healthcare system. Different types of technologies can aid
in health promotion through prevention, education, and monitoring techniques.
Prevention methods are becoming more common with older adults to assist with
their activities of daily living as well as to support them in learning and remembering
healthy behaviors. The willingness to adopt a new technology is key to successfully
modifying behavior and what hinder the outcome are issues of competency as well
as access.

The purpose of this book chapter is to use empirical studies to review the
types of health technology used with the older population, as well as the overall
level of success on their behaviors. Once the research question was defined, an
inclusion and exclusion criterion was used to select the peer-reviewed articles.
Various studies that fulfilled the predefined criteria were used. Data was extracted
from 39 articles for the evaluation of the different health technologies and their
uses.

mHealth and phones are the most popular type used for health promotion, as it is
present in 36% of the articles evaluated. Other successful and popular types of tech-
nology used were websites and modules (26%), as well as monitoring technology
(23%). In all of the studies, the elderly population was able to successfully use the
technology, indicating that the adoption of new technology is possible at any age.
Technology can be used to affect the elderly population to integrate healthier habits
into their lives. The variety of accessible technologies allows individuals to use it in
conjunction for their desired outcomes.
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1 Introduction

In the USA, with similar projections for Canada, it is estimated that approximately
21% of the population will be 65 years or older by the year 2040 [1]. This growing
population will require formal or informal continuing care to combat frailty, chronic
conditions, and other outcomes associated with aging [2]. A longitudinal study on
elderly people in Manitoba found that those who are institutionalized or cohabiting
with individuals, other than their spouse, are less likely to be healthy [3]. The
populations that are living independently are able to better manage their own health,
yet the dependent populations require additional resources to make healthcare more
comprehensive and accessible to them [3]. At the present state, there are inadequate
healthcare workers trained to care for the complex care that is required for the older
adults [1].

In Canada, there are healthcare policy initiatives that focus on the prevention
of chronic disorders and the promotion of healthy aging. These initiatives help
with reducing the healthcare costs associated with treatment [4]. The cost of poor
health affects both the government and the ill individual. If the elderly population
does not have adequate funding, the demand for prescription drugs decreases and
as a result the demand for physician visits increases [5]. Financial stability is
required during retirement since poor health is more frequent among seniors who
lack financial security [6]. The cost of treating health conditions can be a financial
burden on the elderly. As such, an emphasis on health promotion is required to aid
in the prevention of chronic diseases. Web-based wellness programs may decrease
healthcare costs and encourage the use of preventative services [7].

The increased use of health promotion technology on the elderly population is
a solution to the growing need for support from this age group. The 10 differ-
ent types of technologies identified in the literature review are mHealth/phones,
website/modules, monitoring technology, health games/computer, internet, text
messaging, assistive technology, virtual coaching, exercise simulations, and tablets.
The most popular types of technology from the papers included mHealth/phones
(14), website/modules (10), and monitoring technology (9).

The types of technologies used vary greatly, as some are not intended solely
for health promotion. For example, the use of a Smartphone is incorporated in
many of the studies but the cell phone’s primary use is not for health promo-
tion. Alternatively, “exergames,” exercise-simulation games, are an example of
technology that is exclusive to health promotion [8]. Exercise simulations make
adults more likely to participate in physical activity [8]. The technology used was
selected to accommodate the senior population, therefore, there was no need to
personalize any of the technology. Another popular type of universal technology
is the use of reminders and messaging to motivate adults to increase physical
activity [9]. The messages were successful whether or not they were personalized
for the participant’s needs [9]. As long as the participant finds the technology or
the information it is delivering interesting, the use of universal technology is able to
modify their behavior [10].
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2 Method

Major databases were searched for peer-reviewed articles from 2007 to 2017. Of the
articles found, the 39 that fulfilled the inclusion criteria were evaluated for the types
of technology and their success at modifying behavior in seniors. The objective was
to find different types of health promotion technology.

2.1 Inclusion and Exclusion Criteria

Key terms were used in the initial search to identify articles surrounding the topics
of “health promotion,” “technology,” and “behaviour.” Articles were used if they
identified a specific type of health technology as well as if the technology was
tailored for the elderly population. In this systematic review, a senior is defined
as over the age of 50 years.

3 Results

The systematic review of 39 peer-reviewed articles demonstrated the 10 different
types of technology used for health promotion.

3.1 Assistive Technology

Assistive technology in the form of tools, aids the senior by modifying an
activity to suit the extent of their mobility or cognitive skills. Devices that record
messages, sensors, and tracking devices are all examples of assistive technology
used to promote health in individuals with dementia. In men and women with
dementia, memory aids are useful at helping them maintain their independence
[11]. Automated pill dispensers that beep when it is time to take a pill and recorded
messages for appointments are successful examples used to maintain the health of
older adults and increase their quality of life [11].

3.2 Exercise Simulations

Exercise simulations encourage movement and muscular stress in a controlled area.
These technologies allow for fun workouts in the home independent of a large space
or the weather [12]. This technology can promote activity through the interaction
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of monitoring technologies, including balance boards and game consoles, and
the applications/games. This technology can include the use of virtual reality to
immerse the participant in the game. Virtual reality is successful at promoting
healthy habits by engaging seniors in an interactive exercise regime. These exercise
simulations are not limited to the location of an individual and can provide a safe
and entertaining option for physical activity [8] (Fig. 1).

3.3 Health Games/Computer Applications

Health Games/Computer Applications encourage activity through the education or
entertainment of an individual. Participants are able to keep track of their level of
activity and therefore make conscious decisions to increase it. A recurring barrier to
the use of this technology is the attitude of others and the assumption that the seniors
do not know how to use the technology [14]. Accepting that the technology is
usable to the senior population will increase the frequency of use for this population
[14]. These games and applications provide an interactive experience for the user
allowing them to learn comfortably at their desired pace [15].

3.4 Internet

Internet access is used as a supporting technology. Access to the Internet provides
the seniors with the ability to do their own health research independent of a
caregiver. The benefits of Internet access extended to both seniors and their
caregivers. Caregivers to seniors with Internet access had improved mental health
compared the caregivers to seniors without Internet access [16]. Participants in a
study were taught about healthy aging and interventions that would impact their
future [17]. This method followed a social-cognitive model and after an online
assessment the web-based tool provided information as well as skills and motivation
to make lasting changes [17]. It is estimated that more than 50% of the American
seniors 65 and older use the Internet or email so [11]. The increasing popularity and
accessibility of the Internet present an opportunity to engage the senior population
in new health promotion tactics.

3.5 mHealth and Phone Lines

mHealth and phone lines allow seniors to use their cell phone to access different
health promotion initiatives, including health reminders. It also includes automated
telephone chats to encourage and regulate health behavior. Typically, mHealth is
developed for individuals with symptoms of chronic diseases, however, a study in
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2014 used the technology in a novel way as a method of reducing risk factors for
lifestyle-related chronic conditions [18]. The new method was used, in conjunction
with exercise, to prescribe changes to a sedentary lifestyle [18]. A limitation of
implementing mHealth was the associated cost by providing the participants with
the technology [18]. When this technology is partnered with monitoring technology
it increases physical activity [18].

3.6 Monitoring Technology

Monitoring technology includes Smartphone, blood pressure monitors, glucometers,
sensors for movement, and pedometers [18]. These technologies will feedback
information to an application or individual to help them make informed health-
related decisions. The importance of monitoring technology was a significant factor
for modifying behaviors in seniors [19]. This was highlighted when trying to
change the behavior of seniors aged 65–95 years with the use of cholesterol tests
[19]. Qualitative data demonstrated that the role of a health condition motivates
older adults to improve their diet and exercise patterns. Monitoring technology can
illustrate the degree of severity of their condition as well as reveal the results their
lifestyle changes have made to their condition [19]. Both gradual and abrupt changes
can be tracked using monitoring technology. The most common form of monitoring
technology was the pedometer. It was used to track everyday physical activity and
promote an increase in walking.

3.7 Tablets

Tablets facilitate teaching by providing access to modules and internet-based
applications. Additionally, this form of technology provides a platform for virtual
coaching [20]. Tablets are used as a supplementary tool alongside other types of
technology. This electronic device is favored over laptops or desktops due to the
convenience of its ease of transport. Tablets assist in teaching the senior population
[20]. A barrier to its increased use is the assumption that the senior population
cannot incorporate this technology into their lifestyles [15].

3.8 Text Messaging

Text messaging is an effective way to quickly and consistently send fixed reminders
to the patients to encourage them to exercise or follow a certain diet. A study in
2016 demonstrated that the effectiveness of this intervention was not based on an
interactive component as there was no requirement to reply to daily text messages
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[21]. Several unique messages were developed for the intervention that always
contained an instruction to exercise and a statement of praise [21]. The frequency
in weekly exercise was higher in individuals who received SMS texting than those
who did not and the effects of the text messaging lasted 12 weeks after it ceased
[21].

3.9 Virtual Coaching

Virtual coaching can be either automated or in person. Having a motivational coach
increases participation in physical activity. A study in 2013 used a pedometer to
track the physical activity of sedentary older adults who received an Embodied
Conversational Agent (ECA) and a control [20]. After participating in the ECA
intervention, the participants walked significantly more than the control group [20].
The ECA intervention uses a tablet to simulate a face-to-face conversation with an
animated character [20]. The daily session varied each time but always included a
greeting, social chat, a check-in, and a tip [20]. The use of a virtual coach provides
the same level of success in behavior modification as an in-person coach without
requiring the financial investment of training.

3.10 Websites/Modules

Websites/modules have specific learning objectives that are universally presented
to the audience. These modules can be used as a means to educate the elderly
population on either new technologies or behavior modification [22]. The use of
this type of technology is dependent on the use of an electronic device, such as a
tablet or computer, and access to the Internet. In seniors aged 65–75 years, the use
of modules required self-regulation and without adequate participation, changes in
physical activity would be affected [23] (Table 1).

4 Discussion

Health technology has the potential to promote a healthy lifestyle for seniors. These
types of technology save on costs as they do not require a trained individual to
administer the education. The helpfulness of person-to-person interactions is over-
estimated as the impact does not always warrant the investment of training the health
professional. For instance, heart failure patients in Finland were assigned more
follow-up visits in addition to telephone checkups but there was no significance
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Table 1 The frequency of technologies in reviewed articles

Type of technology Articles Total

mHealth/phones [14, 18, 21, 24–34] 14
Website/modules [20, 22, 23, 25, 27, 33, 35–38] 10
Monitoring technology [18–20, 23, 26, 39–41] 9
Health games/computer [14, 15, 31, 42, 43] 5
Internet [16, 17, 29, 37, 44] 5
Text messaging [21, 38, 45–47] 5
Assistive technology [10, 11, 26, 48] 4
Exercise simulation [8, 12, 40] 3
Virtual coaching [20, 29, 49] 3
Tablet [10, 20] 2

Source: Developed for this study

in the improvement of health post-surgery compared to those without additional
follow-ups [24]. Automated telephone counseling has the same effect in motivating
the elderly population as counseling by trained educators [49]. In a study with
218 adults, automated telephone chats were as effective as the human-delivered
interventions [34].

Another benefit to using technology for health behavior modification is that their
benefits can be seen when using more than one type at a time. In the majority of
studies, multiple technologies are incorporated into a method instead of using a
single-type technology. The impact of technology can be enhanced with the use
of more than one form per intervention. When a senior use monitoring technology
to keep track of their level of physical activity throughout the day, the amount of
activity can be increased with targeted text messaging or virtual coaching via the
Internet or their phones to encourage them to do more [21].

5 Conclusion

Approximately 47% of seniors in the USA have access to the Internet [50]. A basic
set of skills are required to get the full use of technology, including accessing the
Internet and the ability to run applications on different software [26]. In order to
accommodate the senior population and ensure different types of technology are
being used properly for health promotion they need to be modified to the age group.

Further research is required on the success of the long-term effects of newly
adopted health technology.



Health Promotion Technology and the Aging Population 187

Study Highlights
What was already known on the topic:

• Health technology can be used for primary prevention of disease by
promoting healthy behaviors.

What the study added to our knowledge:

• There are 10 effective categories of health technology that can be used in
health promotion to modify senior’s behaviors.

• The different categories can be used successfully in combination or as a
standalone.
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Technologies for Motion Measurements
in Connected Health Scenario

Pasquale Daponte, Luca De Vito, Gianluca Mazzilli, Sergio Rapuano,
and Ioan Tudosa

Abstract Connected Health, also known as Technology-Enabled Care (TEC),
refers to a conceptual model for health management where devices, services, or
interventions are designed around the patient’s needs and health-related data is
shared in such a way that the patient can receive care in the most proactive and
efficient manner. In particular, TEC enables the remote exchange of information,
mainly between a patient and a healthcare professional, to monitor health status, and
to assist in diagnosis. To that aim recent advances in pervasive sensing, mobile, and
communication technologies have led to the deployment of new smart sensors that
can be worn without affecting a person’s daily activities. This chapter encompasses
a brief literature review on TEC challenges, with a focus on the key technologies
enabling the development of wearable solutions for remote human motion tracking.
A wireless sensor network-based remote monitoring system, together with the main
challenges and limitations that are likely to be faced during its implementation is
also discussed, with a glimpse at its application.

Keywords Motion measurements · Connected health · Body area sensor
network · IMU · Healthcare

1 Introduction

Healthcare challenges get increasingly complex due to the growing and aging pop-
ulation, the rising cost of advanced medical treatments and the severely constrained
health and social care budgets. In such scenario, TEC is capable of providing cost-
effective solutions such as telehealth, telecare, and telemedicine with the aim of
providing care for people in convenient, accessible, and cost-effective manner.
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One of the most challenging features of Connected Health is related to human
motion measurements. Over the last few years, several motion tracking systems
and techniques have been developed in order to allow clinicians to evaluate human
motion across several biometric factors or obtaining accurate postural information
about sport athletes. Recent developments in human motion tracking systems,
mainly due to the modern communication capabilities, led to a number of exciting
applications in Connected Health scenarios, in particular in the fields of medical
rehabilitation and sport biomechanics.

In recent years, medical motor rehabilitation relevance grew fast as the average
population age increased, along with a surge of chronicle diseases and accidents,
as those related to sport activities. The ultimate goal of rehabilitation process,
which includes several stages, should be to fully recover from temporary motor
impairments, or to enhance the life quality of patients with permanent motor
disorder by aiming at the highest possible level of independence [1].

In the rehabilitation of motor dysfunctions, a key role is played by the Range
Of Motion (ROM) measurements whose evaluation constitutes the basis of the
therapist’s work. ROM is defined as the amount of movement through a particular
plane, expressed in degrees, that can occur in a joint. Figure 1 depicts a flexion
exercise apt to determine the ROM for elbow. Most times ROM measurements are
carried out under subjective scrutiny of therapists who rely on their own sensitivity
and expertise about visual analysis of human body and palpation of the concerned
regions. The adoption of electronic measurement methods in rehabilitation offers the
outstanding advantage of automatic measurements that allow to assist qualitative
analysis of therapists with objectively measured quantities. Moreover, combining
measurements via electronic instrumentation with the wide area networks set
rehabilitation activities free of space and time constraints.

One of the fields where the automatic measurement of ROM could provide
significant improvements in the treatment process and in the cost reduction of such

Fig. 1 Range of motion for elbow joint
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treatment is home rehabilitation. Basically, home rehabilitation allows a patient
to undergo treatment without the need to reach a specialized center. Apart from
minimizing inconvenience and cost of commuting, a patient that has been given
the opportunity of carrying out rehabilitation activities while staying at home is
likely to show motivation and make progress thanks to the more comfortable
conditions he/she enjoys. Moreover, avoiding for patient to share space, equipment,
and therapists’ attention with other people in a crowded center implies longer, and
thus more effective, sessions. Ultimately, helping to improve the quality of treatment
mainly means helping make recovery faster, which has a direct impact on the costs
for healthcare systems [2].

Another emerging field that involves automatic human motion measurement
techniques, often simply called motion tracking techniques, for studying biome-
chanical parameters of the human movement is sport biomechanics. In this context,
the development of accurate activity monitoring techniques is performed to gain
a greater understanding of the athletic performance. As an example, real-time
monitoring of load and tiredness of athletes during their training sessions is
important in order to maximize performance during competitions, as well as being
important for the health of the athletes. Activity monitoring also plays an important
role in injury prevention and rehabilitation. Due to the nature of sport activities, any
monitoring device should be small and unobtrusive as possible.

Recent advancements in communication and network technologies have made
possible the remote monitoring of motion tracking systems, both for home reha-
bilitation and sport applications. Authors in [3] describe a remote environment
for athletes’ training and support. By means of wireless sensors, the system
provides the visualization to a remote advisor about runners’ conditions, providing
feedback functions to them by using kinematic feature of arm swing. A conceptual
representation of a remote monitoring system for home healthcare in a Connected
Health scenario is shown in Fig. 2. Small sensors, unobtrusively worn on designed
clothing or accessories, are used to gather physiological and movement data.
Sensors are placed according to the clinical application of interest. For instance,

Fig. 2 Conceptual representation of a remote monitoring system for home healthcare in a
Connected Health scenario
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sensors for human motion measurements could be deployed on the body parts
involved in a rehabilitation treatment. Wireless communication is enabled to stream
health-related information to a mobile phone or an access point, forwarding them to
a Remote Monitoring Center (RMC) via Internet. Warning situations are detected
via dynamic data processing algorithms and an alert message is sent to an emergency
center to provide immediate assistance. Caregivers and family members are alerted
in case of an emergency but could also be notified in several situations when the
patient requires assistance.

Despite the proven benefits of the remote monitoring systems relying on body-
worn sensors like those described above, there are considerable open challenges that
need to be addressed before such systems can be adopted on a large scale. These
challenges include not only technological barriers, such as interoperability across
different platforms and security issues but also serious cultural barriers such as the
dislike of the use of medical devices for home-based clinical monitoring [4].

Some of the aforementioned technical challenges have already been dealt with
satisfactorily, some others are being faced and some others are still under study.
This chapter presents some solutions to those challenges focusing on a remote
measurement system designed for motion tracking in home rehabilitation field that
can be adopted for sport biomechanics and can easily be extended to other remote
health applications. The main challenges will be presented first, than the available
technologies, their lacks, and some possible solutions will be discussed in the next
sections. In particular, Sect. 2 provides an overview of key sensing technologies
enabling the development of wearable solutions for human motion tracking and
remote monitoring systems. Although the most common enabling technologies
can be classified as sensing and communication hardware, the influence of signal
processing and software technologies can be significant when designing a remote
monitoring system for home healthcare. Of course, the role of such technologies
depends on the specific application case. Therefore, the chapter presents a case
study from the choice of the sensors to the architecture design and implementation
to the communication and usage optimization. In Sect. 3, a remote monitoring
system capable of bringing a real-time 3D reconstruction of human posture is
described. Section 4 deals with the problems of realizing such system relying on
a standard wireless network. Section 5 shows an example of the application of
advanced software technologies to improve the scalability and the communication
performance of the remote monitoring system. Finally, Sect. 6 draws conclusions.

2 Key Enabling Technologies

Systems for human motion tracking and remote monitoring consist of three main
blocks: (1) the sensing hardware to collect motion data; (2) the communication
interface (both hardware and software) to gather data coming from sensing devices
and relay them to a RMC, and (3) dynamic data analysis algorithms to extract
clinically relevant information from motion data.
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The advancements of sensors based on MEMS (Micro Electro-Mechanical
Systems) technology, and in particular of inertial sensors have enabled a huge
development of instruments and systems for motion tracking, in particular for
applications in the fields of healthcare, rehabilitation, and biomechanics. MEMS
inertial sensors have been recently used to design personal and body area motion
measurement systems to continuously monitor the patients during the rehabilitation
treatment. Monitoring allows the doctors to be aware of the patient’s progress, as
well as to collect data for biofeedback systems, where the patient’s motivation can
be increased by looking at his/her results [5]. MEMS inertial sensors are usually
composed of a 3-axial accelerometer, able to measure the static acceleration, and a
3-axial gyroscope, able to measure the angular rate, to form an Inertial Measurement
Unit (IMU). Often such sensors are combined with a 3-axial magnetometer, able to
measure the Earth magnetic field. In this case, the sensor unit takes the name of
MARG (Magnetic, Angular Rate, and Gravity).

The values measured by the different sensors need to be combined to obtain
an estimation of the orientation of the unit. Although, in order to obtain the
orientation, just the 3-axial accelerometer and the 3-axial magnetometer would
be needed, it is useful to merge the measurements from such sensors with those
from the gyroscope, with the aims of reducing the noise on the accelerometer and
magnetometer readings, and of compensating for the gyroscope offset, that causes
a drift of the orientation estimation. Moreover, the magnetometer is often prone to
disturbances coming from external magnetic fields and ferromagnetic materials in
the environment.

A motion capture suit composed of inertial sensors has been presented in [6].
The suit has been specifically introduced for home and hospital rehabilitation, with
the aim of providing real-time support to health assessment by supplying motion-
related quantities. The embedded sensors communicate with a personal computer
via CAN bus at 1 Mb/s. In their latest revision, authors replaced CAN interface with
a Bluetooth module.

Sensor nodes must be noninvasive to be accepted by the patient, and they have
to avoid restraining the movements that the patient does in normal conditions,
otherwise the measurement results will be altered by the system itself. For this
reason, wireless technologies have been recently adopted in many health applica-
tions because of the flexibility offered by reduced wiring, which gets costs lower
and patient more friendly to instruments he/she has to interact with. Furthermore,
wireless equipment is usually based on low-power consumption technologies
enabling long-term monitoring. A review of wireless-based solutions for health
applications is available in [7].

Authors of [8] experimented with a wireless system using an accelerometer to
monitor vital signs of people staying at home. Post analysis unveiled that different
types of human movements (i.e., walking, falling, jumping, and so forth) generate
different patterns in acceleration data, and that information can be used to recognize
abnormal activities and warn against them. Patients with Parkinson disease were
monitored during everyday activities to evaluate their in-home mobility [9]. To
capture the whole-body motor function and identify movement patterns in scripted
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and unscripted tasks, inertial units were attached to body parts and communicated
with a laptop computer in the range of action. Results obtained with principal
component analysis showed a wide variability across tasks for several subjects, and
within subjects for each task. IMUs have also been integrated into consolidated
equipment accompanying rehabilitation treatment, like those applied to forearm
crutches being used in lower limb rehabilitation [10] to sense the force applied
by patient, the crutch tilt and the handle grip position. These parameters have
been proven to deeply affect the recovery rate, thus, monitoring them and giving
biofeedback can help the patients to adjust their crutch walking to the proper way.

Several studies can be found in the literature addressing the use of wireless
IMUs in sport applications. The speed and energy expenditure of athletes over
ground running can be obtained through the use of wearable accelerometers [11].
Authors in [12] combined a suite of common, off-the-shelf, sensors with body
sensing technology and developed a software system for recording, analyzing,
and presenting sensed data sampled from a single player during a football match.
Readings are gathered from heart rate, galvanic skin response, motion, respiration,
and location using on-body sensors.

Although they are not the most accurate instrument to track human movements
[13], wireless IMUs have long turned out comfortable for home rehabilitation
applications, as they can work under the most common circumstances, without
any particular constraint on lighting or space. Many approaches to motion tracking
have been introduced over the years based on wearable motion sensors, whose
measurements have mostly been validated against well-known camera-based sys-
tems with markers. A wearable wireless sensor network able to keep track of arm
motion in sagittal plane was proposed in [14]. Two nodes, equipped with a biaxial
accelerometer, were used as inclinometer and sensed the orientation of the upper
and lower arm while extending and flexing the limb. The angle estimate error due to
misalignment of nodes along the arm was modeled, and a calibration to determine
accelerometer offsets was carried out by mounting the sensor on a high-precision
rotary motor. Furthermore, system accuracy was evaluated by making the motor
produce swinging motion with different oscillation speeds.

Motion tracking applications by means of wearable systems most often employ
multiple sensors typically integrated into a Body Area Sensor Network (BASN).
An example of this technology is the motion tracking system described in [15, 16].
The described home rehabilitation system produces, by means of a BASN, ROM
measurements for patients performing rehabilitation exercises. A set of wireless
nodes (or motes) constitutes a wearable device that keeps track of orientation
produced by different body segments. Given a joint to monitor, both of the involved
limb segments are equipped with a mote embedding an IMU, so that the ROM is
determined from the absolute orientation of two motes. The primary functions of
the sensor nodes in a BASN are (1) to unobtrusively sample motion signals and (2)
to transfer relevant data to a personal gateway by means of a wireless connection.
A personal gateway, implemented on a smartphone or a personal computer, sets up
and controls the BASN, transferring health-related information to the RMC through
the Internet.
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The availability of mobile telecommunication networks (e.g., GRPS, 3G, 4G)
allows pervasive user monitoring when he/she is outside the home environment.
During the last few years, several communication standards for low-power wireless
communication have been proposed in order to fulfill three main requirements:
(1) low cost; (2) small size of transmitter and receiver devices; and (3) low-
power consumption. The recent developments of IEEE 802.15.4 (ZigBee) and
IEEE 802.15.1 (Bluetooth) have the major focus on increasing network throughput.
Moreover, network lifetime has a greater importance in BASNs since devices are
expected to perform over long periods of time [17].

The large amount of data gathered using wearable systems for user’s status
monitoring has to be managed and processed in order to derive clinically relevant
information. Signal processing, data mining, and pattern recognition are examples
of data analysis techniques that enable remote monitoring applications that would
have been otherwise impossible. Although an exhaustive discussion of the various
data processing algorithms used to process and analyze wearable sensor data is
outside the scope of this chapter, one cannot emphasize enough the fact that
data processing and analysis techniques are an integral part of the design and
development of remote monitoring systems based on wearable technology.

3 A Remote Monitoring System for Home Rehabilitation

An example of joint adoption of the key technologies introduced in the previous
section can be found in [18], proposing an integrated wireless system gearing toward
the human motion tracking in home rehabilitation. The study described in [18]
deals with the design and implementation, from scratch, of a remote monitoring
system allowing the real-time 3D reconstruction of the patient’s motion. The key
contribution of the proposal, in addition, to help improving treatment conditions
and to reduce healthcare costs, lies in producing outputs that can be evaluated both
qualitatively and quantitatively by an operator. The system has been designed in
order to reduce costs, as well as occupancy, of home-side instrumentation. In such a
scenario, a subject in treatment may stay at home performing rehabilitation exercises
while wearing small motion sensors, which are included in a BASN. Of course,
nothing prevents the same system from being used also within the rehabilitation
centers, where many patients could be contemporarily accommodated.

Being properly strapped to the body segments of interest, the sensor nodes
provide information about their own respective motions. Through a network
connection, sensed data are delivered to a dedicated server (Posture Reconstruction
Server—PRS), housed at the RMC, that processes the raw measurements to
determine the corresponding human posture. The evolution of human body part
orientation and posture in time is afterwards stored in a database so that the motor
behavior can be replayed for post analysis. The patient’s motor behavior is projected
at the RMC on a 3D digital representation.
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Fig. 3 System architecture of the human motion tracking system proposed in [18]

By interacting with a ROM analysis graphical user interface, the clinical staff
can watch, without leaving the workplace, the movements of several subjects
under analysis as they are executed at the same time. Augmenting the observation
experience of physiotherapists with objective ROM measurements may stand for
an unprecedented way to evaluate functional recovery, both between and within
subjects.

The components of the remote monitoring system are detailed in the following
subsections (Fig. 3).

3.1 Body Area Sensor Network

The proposed BASN (Fig. 4) includes as many sensor nodes as body segments
to track, in addition to a gateway node. Each sensor node is responsible for
providing the data needed to determine the absolute orientation in the space of the
body segment. All the motes taking part in the BASN are Zolertia Z1 modules,
having the size of 34.40 × 57.00 × 11.86 mm3, and transmitting data via IEEE
802.15.4 interfaces to the gateway node. Each of them is programmed with TinyOS,
and equipped with a 9 degrees of freedom IMU. Such an IMU comprises three
sensors connected by I2C bus to a Texas Instruments© MSP430 microcontroller:
a 3-axis accelerometer measuring linear acceleration with 12-bit resolution, a
3-axis gyroscope measuring angular rates with 16-bit resolution, and a 3-axis
magnetometer sensing the magnetic field with 16-bit resolution, all being sampled
at 50 Hz along the same local reference system. Apart from size and weight of motes
being limited, the fact that the whole communication relies exclusively on wireless
technology goes a long way toward getting the usage as tidy and comfortable as
possible. Consequently, the patients may enjoy more mobility than wearing a wired
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Fig. 4 Body area sensor network

measurement system, which may play an essential role in motivating patients. The
gateway node consists of a mote, wirelessly receiving data from sensor nodes,
that is attached via USB to a Raspberry Pi, a very cheap banknote-sized single-
board computer, having TCP/IP capabilities and being connected to the power grid.
The single-board computer, equipped with a 32-bit ARM 700 MHz processor and
512 MB RAM, gathers and handles raw sensed data from IMUs that are then
streamed to the PRS via Real-time Transport Protocol (RTP).

3.2 Posture Reconstruction Server

The PRS, housed in the RMC, is a processing unit that is in charge of three different
functions: (1) it handles raw sensed data from several BASNs to obtain absolute
orientation of single body segments and, as a result, the whole body orientation
and posture of multiple patients tracked at once; (2) it runs a Real Time Streaming
Protocol (RTSP) server offering to the users the possibility of controlling the 3D
representation playback; and (3) it operates a database storing the patient’s posture
as it evolves in time, thus making up a sort of personal motor history. The PRS
represents a powerful resource that allows both for offline analysis of progresses
made by a given subject over time and for comparison of quantities concerning the
same rehabilitation stage in a given treatment from different patients. The RTSP
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server can be required by the user to stream either “live” playback, directly from a
BASN, or some content stored in the database.

3.3 ROM Analysis Software

The software application for posture and ROM analysis runs at the physician’s
workstation and offers several analysis interfaces to the medical staff by interacting
with the PRS. For example, patient reports including data and statistics on current
treatment can be composed and displayed by the software upon accessing the history
database in the PRS. Intra-subject analyses can be conducted by aggregating data
from that source as well. The digital reconstruction of human posture is realized by
means of a free 3D engine. The application can be set to feed the animation either
with the data from one of the operating BASNs (real-time playback), or with stored
posture information (delayed playback). It is worth adding that the operator is given
the possibility of defining a set of joint angles he/she is interested to watch. The 3D
animated model can be observed in Fig. 5 while set for measuring right upper limb
motion. In this way, while the 3D animation is going on, objective quantities about
those angles are displayed in virtual labels. The labels also show the maximum
value reached since the therapy session has started, giving highly valuable support
for immediate ROM assessment.

Fig. 5 A screenshot from the 3D animation of the right upper limb in action. The joint under
analysis is the blue node in the screen
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Fig. 6 Stages of real-time processing to animate the 3D reconstruction

3.4 Stages in Processing the Measurement Signals

Figure 6 outlines the stages that the real-time 3D reconstruction goes through, from
home to the RMC. At the first stage (a), the movements produced by the patient
are captured by the IMUs, whose raw data are collected and sent by the gateway to
PRS. Subsequently (b), the PRS filters the compensated sensor outputs to determine,
in real time, the orientation of the several body segments in the Earth’s coordinate
frame. The segment orientations are then combined to compute relative orientations
and joint angles for reconstructing the posture of the subject (c). In the final stage
(d), limb orientation and posture feed the ROM analysis application running on
clients that show a 3D real-time animated model representing the patient. A therapist
working at the rehabilitation center can finally observe from his/her workstation the
movements as they are executed, maximizing productivity by observing multiple
subjects at once.

3.5 Quaternion-Based Processing

Avoiding to engage them in any orientation computation lets the nodes of the BASN
spend most of their working time in low power consumption mode, thus preserving
battery life. Therefore, the PRS turns raw sensor data into body segment orientation
and posture.

The orientations are expressed with quaternions q ∈ R
4 as representations based

on Euler angles (i.e., pitch, roll, and yaw) suffer well-known singularity problems
[19]. Although angular rates produced by a 3-axis gyroscope suffice to sense move-
ments in the three planes, bias drift affecting the measurement prevents the accuracy
necessary in human motion tracking applications. This is why the adopted algorithm
uses data from accelerometer and magnetometer to estimate and compensate the
gyro drift. On the other hand, external acceleration and magnetic disturbance usually
make outputs from those two sensors noisy. To tackle these problems, step b of Fig.
6 is carried out by a quaternion-based implementation of extended Kalman filter
[20]. Before an orientation estimation might be produced by a filter, a quaternion
corresponding to each set of accelerometer (a) and magnetometer measurements
(m) ym = [a m]T should be computed. This is done by the Factored Quaternion
Algorithm (FQA) [21], which offers good performance by avoiding to compute
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trigonometric functions. Moreover, since magnetic disturbance might be remarkable
in indoor environments such as home and medical settings, the adoption of FQA
is significant for the application as it limits the influence of magnetometer and,
consequently, of disturbance to one plane of motion. The computed quaternion,
along with angular rate from gyroscope, represents the input of the Kalman filter.
Relative orientation quaternions necessary to the 3D representation are obtained
at step c of Fig. 6 from global coordinate orientations through a reference system
conversion. For example, let qu and qf be, respectively, the quaternions providing
the absolute orientations of the upper arm and forearm segments, then qu

f is the
forearm orientation expressed in the upper arm’s local reference system and is given
by:

qu
f = q∗

u

⊗
qf (1)

where
⊗

is the quaternion multiplication and q∗
u represents the conjugate of qu.

Relative quaternions are also used to determine the joint angles that the operator
requires to measure. For example, elbow joint angle θ can be expressed as pitch
angle of the forearm segment in the upper arm’s reference frame, that is:

θ = arcsin (2wy − 2xz) (2)

with qu
f = [ w x y z ]T .

4 Orientation Estimation in BASN Affected by Packet Loss

In order to achieve battery life extension, leading commitment in designing a BASN,
a node is generally equipped with a low-power radio transceiver implementing IEEE
802.15.4 communication [22]. After all, extended battery life comes at a price: the
less power is used, the lower is the communication reliability, meaning that the
probability of packet loss may be significant. In most of wireless sensor network
applications, communication occurs once in a while and retransmission is a viable
way to overcome losses. Unfortunately, the strict time constraints on sampling,
processing, and sending in real-time systems do not allow to broadcast once again a
packet supposed to be not delivered. This happens any time a processing task cannot
be postponed due to the needs for immediate feedback to provide. For instance,
augmented reality applications have to adapt their outputs according to the change
of spatial position and orientation as it happens [23].

In those cases, the only action one can take to face loss is to deal with it:
loss tolerance countermeasures must aim at the reduction of the relative effects on
the system outputs. Packet loss in real-time motion tracking applications basically
results in a temporary decrease of the sampling rate, whose value is essential
to capture a subject’s movement adequately. In particular, for remote monitoring
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systems like the one described in the previous section, it can seriously harm the
capability of the system to provide the user with accurate real-time measurements
(e.g., a 3D model in motion tracking may happen to pose incorrectly). The problem
is even bigger in applications with tens of nodes jointly working to trace the whole-
body motion.

The problem of tracking and reconstructing the subject’s movements can be
modeled as the problem of finding out the spatial orientations, at any given time, of
each of the segments the body is composed of. Theoretically, two main approaches
are possible in order to estimate an orientation: either integrating the angular rates
or referring to the projections of the Earth’s gravity and magnetic field onto the
sensor frame. In the former case, estimation relies exclusively on gyroscope data,
in the latter accelerometer and magnetometer measurements are used as the inputs.
Integrating angular rates means keeping an internal state (stateful) relying on the
history of gyroscope data, while one sample of acceleration and magnetic field
suffices to find orientation (stateless). In practice, both approaches, when working
separately, fail to come up with a result being fit to represent human motion
accurately. Gyroscope data are affected by bias that changes unpredictably in time,
leading to an integration error that drifts remarkably in a few seconds. On the other
hand, accelerometer and magnetometer data are basically noisy, and so are the
resulting orientations, in addition, to suffering from interference caused by external
acceleration and magnetic perturbations.

Every time a packet gets lost, a gap in the history of angular rates some of the
body segments of the 3D model fall behind the actual movement, and in some cases
awkward postures may show up. Figure 7 shows the ideal humerus pitch angle
obtained when a loss occurs after 40 s, against the humerus pitch angles produced
by single-frame algorithm (red line) and data-fusion algorithm (blue line). As can
be seen, the ideal pitch angle grows linearly with time, while single-frame trajectory
gets back on its track reacting to the same loss faster than what happens for data-
fusion trajectory. A trade-off has to be found between choosing single-frame or
data-fusion algorithms that could cause lower orientation accuracy and/or better loss
resilience. In order to deal with that problem, a method based on the interpolation of
quaternions computed by two algorithms, as depicted in Fig. 8, has been proposed
in [24].

Having two unit quaternions representing rotations, an intermediate rotation
can be found by interpolating them. Linear interpolation is not the best solution
since a rotating joint is expected to move along a smooth curve. Spherical Linear
IntERPolation (SLERP) is defined as a linear interpolation performed on the surface
of a unit sphere, used in the field of computer graphics to obtain smooth motion.
Analytically, let qA and qB be two unit quaternions, θ be the rotation angle, and
μ ∈ [0, 1] be a real scalar value, the SLERP resulting from

qC = SLERP (qA, qB,μ) = sin (1 − μ) θ

sin θ
qA + sin μθ

sin θ
qB (3)
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Fig. 7 Humerus pitch angle trajectories

Fig. 8 Interpolation between data-fusion and single-frame quaternion

carries out a spherical interpolation between qA and qB by an amount μ, with qC

determined as a point along the circle arc on the surface of the unit sphere.
Early experiments have been carried out and their results have been presented

in [24]. The sensor platform used in experiments consists of the same Zolerzia Z1
described above. The raw data have been organized in 6-sample packets, collected
by a personal computer from a sensor via wired serial communication in order
to get continuous lossless sequences of samples. These sequences then have been
artificially injected with several profiles of loss, so as to create artificial lossy sample
sequences and analyze the algorithm performance under different conditions of
network reliability. In order to assess effects not only on the single node orientation,
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but also on joint angle measurement, sequences from two adjacent nodes have been
acquired. In particular, raw data related to a 90◦ arm extension have been acquired
and the pitch angles of humerus and forearm have been analyzed. The raw data
sequence of the humerus trajectory has been injected with a loss of four packets
right after 80 samples.

Figure 9a reports the performance of the data-fusion algorithm proposed in [24].
It can be seen that the occurrence of packets loss results in humerus pitch angle
(red line) different from forearm one (blue line). As reported previously, this results
in a growing elbow joint angle (black line). Moreover, the slow convergence rate
causes a considerable deviation of the elbow joint angle for more than 2 s (about
100 samples), which is not desirable in human motion capture. The noisy single-
frame orientations are shown in Fig. 9b to reduce the upper bound of elbow joint
error below 20◦, even though they return trajectories being unacceptably jerky. The
performance of the interpolation method is shown in Fig. 9c, where the error of
elbow joint angle reaches 10◦ for about 1 s only. It is worth remarking that these

Fig. 9 (a) Trajectories produced by data fusion deviate remarkably from real motion due to loss.
(b) Single-frame algorithm produces jerky trajectories. (c) Interpolation algorithm preserves the
smoothness and limits the maximum deviation
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early results seem to confirm that quaternion interpolation is a viable way to reduce
the packet loss effects.

5 Remote Health Monitoring Systems and IoT

The example shown above follows a general paradigm based on a three-layer
architecture. The first layer of the architecture is composed of the sensing nodes of
the BASN. Each mote receives initialization command and responds to queries from
its coordinator, also called gateway. The network nodes continuously sample and
process raw information, sending data to the gateway. The operative frequencies for
sampling, processing, and communicating are established according to the nature
of the application. The second layer is the gateway that interfaces the BASN
sensor nodes and communicates with services at top level. Typically, the gateway is
responsible for the following tasks: (1) sensor node registration (number and type of
sensors), (2) initialization (e.g., specify sampling frequency and operational mode),
and (3) setup of secure communication. Once the network is configured, the gateway
manages the BASN, taking care of channel sharing, time synchronization, data
retrieval, and processing. At top level, a wide area network of several computers
receives user’ electronic health data and provides several services, such as data
storage, user authentication, data pattern analysis, and recognition of serial health
anomalies.

In addition to technology for data collecting, storage and access, healthcare-
related information analysis and visualization are critical components of remote
health monitoring systems [25]. Dealing with huge amount of data often makes their
analysis quite frustrating and error prone from the clinician point of view. A solution
for the aforementioned challenges can be found in data mining and visualization
techniques [26]. The integration of Internet of Things (IoT) paradigm into remote
monitoring systems can further increase intelligence, flexibility, and interoperability
[27]. A device adopting the IoT scheme is uniquely addressed and identifiable
anytime and anywhere through the Internet. IoT-based devices in remote health
monitoring systems are not only capable of sensing tasks but can also exchange
health information with each other. As exemplified in [28], IoT-enabled remote
monitoring systems are able to provide services such as automatic alarm to the
nearest emergency center in the event of a critical accident for a supervised patient.

A paradigm that breaks the rigid layered architecture shown above can be helpful
when human motion of multiple users is simultaneously monitored by multiple
observers. In such cases, a solution that takes advantages from the IoT and the
Publish-Subscribe communication paradigm has been proposed in [29]. According
to this last paradigm, the information produced by users, also known as publishers,
is delivered to one or multiple observers, as a function of their interests. To this aim,
the user labels the information with a topic before publishing it. The subscription
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Fig. 10 Architecture of the remote health monitoring system based on IoT and Publish/Subscribe
communication paradigm

of the interest to a certain topic enables the observers, also called subscribers, to
receive notification when publications on such topic occur.

In Fig. 10, a different architecture of the remote health monitoring system
based on IoT and Publish/Subscribe paradigms is shown. It is made of several
Motion Tracking Sub-systems, devoted to acquire measurement information about
the body segments of a single user (i.e., the BASNs described previously) and
several Measurement Presentation Sub-systems, devoted to display the results to the
clinicians. Among them the communication is ensured by software modules called
publishers, subscribers, and broker. Differently from traditional human motion
tracking systems, in the proposed one: (1) many Motion Tracking Sub-systems
operate simultaneously and (2) each Motion Tracking Sub-system does not send the
measurement information directly to the Measurement Presentation Sub-system but
to the publisher. The publisher, once received the measurement information, labels
it with a topic, e.g., the identification number of the subject being monitored and
sends it to the broker by means of Internet. The broker reads the label of the received
measurement information and sends it, using Internet, to further the subscribers that
have previously declared their interest in that topic. Each subscriber operates in two
successive phases: (1) it declares its interest by sending a message with the topic in
which it is interested to the broker, and (2) it receives the measurement information
in which it is interested from the broker and sends them to the Measurement
Presentation Sub-system.

In the proposed solution, the human motion measurements coming from several
Motion Tracking Sub-systems are published onto topic-based channels. A topic can
refer to measurement information concerning a single user, multiple users, a body
part of one or more users. Subscribers express their interest in one or more topics
and then receive all information published to such topic.

In order to manage the information delivery, the Message Queue Telemetry
Transport standard (MQTT) protocol has been selected. It was designed for
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networks with low bandwidth and high-latency, as in the case of Internet. The
reduced size of header and payload in MQTT messages makes it useful for the
transmission of data in a real-time mode. Further advantages of using MQTT relate
to hiding the implementation details about networking aspects and to confine the
difficulties in the data recruitment only to a topic identification. In this way, different
subscribers can easily access data from different publishers. To this aim, MQTT
makes use of different components, as described in the following:

• The publisher software module: (1) Creates a message, (2) labels the message
with a topic, and (3) sends the message to the broker.

• The subscriber software module: (1) Subscribes to receive messages that it is
interested in, (2) unsubscribes to remove a request for messages, and (3) receives
from the broker the messages labeled with the topic in which it is interested in.

• The broker software module routes the messages from publishers to subscribers
according to each message label and the topic in which each subscriber is
interested in.

The novelty of such a paradigm lies in the fact that a client will no longer need
to contact the server periodically to check new data availability. Instead, the server
sends the specific data requested by the client, as soon as it has them available.

The performance of the previously described remote health monitoring system
has been evaluated by considering the one-way delay from publisher to subscriber.
In order to characterize such packet delays in the IoT scenario, multiple instances of
MQTT publishers and subscribers have been executed providing multiple message
flows from publisher to broker and from broker to subscriber. Figure 11 depicts
the architecture of the test bench. Several instances of MQTT publishers have been
executed on a dedicated computer (PC#1 in Fig. 11). One instance of the MQTT
broker has been running on a further computer (PC#2 in Fig. 11). Several instances
of MQTT subscribers have been executed on another computer (PC#3 in Fig. 11).
Finally, a delay measurement system has been installed on a further computer (PC#4
in Fig. 11), in order to analyze the network traffic. It consists of an open-source
network analyzer tool, Wireshark, able to capture network packets in real time,
filtering them, and displaying the acquired information in human-readable format. It
is worth noting that the packets are time stamped by Wireshark having as reference
the same clock, i.e., the one of PC#4. This solution avoids the use of protocols to
synchronize the clock of the PC sender and the clock of the PC receiver in order
to evaluate the packet delay [30]. All computers in the test bench are connected
together to a network hub. This choice allows to capture each packet as soon as it is
sent by PC#1 and PC#2 and then to consider the behavior of the broker as function
of the message flows, only. In the test scenario of this preliminary experimental
analysis, a computer has been used for all the publishers and a further computer
for all the subscribers. This does not happen in actual applicative scenario, where
a dedicated machine is typically used for each publisher and subscriber. The usage
of a single computer, however, represents a worst case, for two main reasons: (1)
all the publishers/subscribers, share the same computational resources, and (2) the
messages sent by all the publishers are queued to the same network interface.
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Table 1 Packet delays with respect to multiple publishers and subscribers [29]

# Publisher # Subscriber Max. (ms) Min. (ms) μ (ms) σ (ms)

1 1 14.54 0.01 0.08 0.96
1 3 13.45 0.01 0.05 0.63
3 3 13.29 0.01 0.41 2.05
5 5 55.33 0.01 9.98 7.47
5 10 24.53 0.01 3.61 4.48

10 5 21.16 0.01 5.29 4.40
10 10 20.49 0.01 7.38 6.28

Table 1 shows the results of the experimental test bench considering differ-
ent numbers of message flows produced by the publishers and received by the
subscribers. As expected, the values of mean and standard deviation increase by
increasing the number of message flows. No strict requirements are needed about
the end-to-end delay, as the streaming is one way from the Motion Tracking Sub-
systems to the Measurement Presentation Sub-system. About the delay variation,
requirements are related to the capability of a jitter buffer of removing such
variation. This can be easily done until values of the variation in the order of 50 ms,
therefore, the obtained results, reporting a maximum standard deviation of less than
8 ms, are fully acceptable for the 3D movement reconstruction application.

6 Conclusions

Driven by the widespread adoption of information and mobile communication
technologies for health-related applications, the healthcare system could see a
radical changing from current professional centric healthcare system to a distributed
networked and mobile healthcare system. In such a context, the pervasive access
to health-related data will be essential for diagnosis and treatment procedure
in healthcare system. Wearable sensors, particularly those equipped with IoT
capabilities, are the key players of such challenge. In this chapter, an unobtrusive
sensing solution based on MEMS technologies with the aim of providing human
motion measurement has been presented, together with motion measurement related
research field and open issues. In particular, technological solutions related to
packet loss in wireless networks, network scalability, and remote control in existing
network infrastructures have also been discussed. It is easy to imagine extending
the type and number of measurements by embedding other kinds of sensors in the
wireless motes, like EMG electrodes and force sensors, in order to monitor and
process vital signs related to motor activity.
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Healthcare Systems: An Overview
of the Most Important Aspects of Current
and Future m-Health Applications

Giovanna Sannino, Giuseppe De Pietro, and Laura Verde

Abstract This chapter explores the most relevant aspects in relation to the out-
comes and performance of the different components of a healthcare system with
a particular focus on mobile healthcare applications. In detail, we discuss the six
quality principles to be satisfied by a generic healthcare system and the main
international and European projects, which have supported the dissemination of
these systems. This diffusion has been encouraged by the application of wireless
and mobile technologies, through the so-called m-Health systems. One of the main
fields of application of an m-Health system is telemedicine, for which reason we
will address an important challenge encountered during the realization of an m-
Health application: the analysis of the functionalities that an m-Health app has
to provide. To achieve this latter aim, we will present an overview of a generic
m-Health application with its main functionalities and components. Among these,
the use of a standardized method for the treatment of a massive amount of patient
data is necessary in order to integrate all the collected information resulting from
the development of a great number of new m-Health devices and applications.
Electronic Health Records (EHR), and international standards, like Health Level
7 (HL7) and Fast Healthcare Interoperability Resources (FHIR), aims at addressing
this important issue, in addition to guaranteeing the privacy and security of these
health data. Moreover, the insights that can be discerned from an examination of this
vast repository of data can open up unparalleled opportunities for public and private
sector organizations. Indeed, the development of new tools for the analysis of data,
which on occasions may be unstructured, noisy, and unreliable, is now considered
a vital requirement for all specialists who are involved in the handling and using of
information. These new tools may be based on rule, machine or deep learning, or
include question answering, with cognitive computing certainly having a key role to
play in the development of future m-Health applications.
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Keywords Electronic health records · Mobile apps · Security privacy ·
Physiological signals

1 e-Health and the Requirements of a Healthcare System

The term e-Health [1] indicates the use of Information and Communication
Technology (ICT) to provide a healthcare service. During recent decades, a series
of e-Health applications have been designed and developed, ranging from Health
Information Systems (HIS) and EHRs to wearable and portable monitoring systems
and telemedicine services.

Governments, non-governmental organizations (NGOs), and international devel-
opment organizations are working to improve health outcomes through better
national health systems. One of the six building blocks for a strong national health
system, according to the World Health Organization (WHO), is the use of an
HIS. A well-functioning HIS will provide timely and relevant information about
health outcomes and the performance of the components of the health system
[2]. Therefore, it is necessary to search for solutions to improve data availability
and accessibility [3]. Additionally, the development of tools and systems that can
help healthcare workers become more efficient and effective is crucial in order to
compensate for health personnel shortages [4].

According to [5], a healthcare system must satisfy six quality principles,
schematized in Fig. 1, to provide high-quality healthcare, namely:

• Safety: The healthcare delivered should be as safe for the patient in the health
care facility as it would be in her/his own home.

Fig. 1 The six quality
principles that a healthcare
system must satisfy
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• Effectiveness: The current state of scientific knowledge in relation to healthcare
should be applied and should set the standard for the delivery of care.

• Efficiency: The healthcare service should, as far as possible, be cost effective,
and any excessive waste should be eliminated from the system.

• Timeliness: Patients should experience the fewest possible delays and the shortest
possible waiting times in relation to their access to the healthcare service.

• Patient-centeredness: The system of care should, as far as possible, be focused
on the patient, putting her/him in control and respecting her/his preferences.

• Equitableness: All unequal treatment and any disparities in healthcare provision
should be eliminated.

1.1 International and European Healthcare Projects: A Review

The design and development of e-health applications have been supported by
appropriate International and European healthcare projects. Numerous international
and national projects are, in fact, investigating and promoting new ICT solutions
to affect a paradigm shift in healthcare services, whereby patients are increasingly
empowered to take control of the healthcare service they receive. In relation to the
European Community’s Seventh Framework Programme (FP7), the funded projects
include 339 focusing on Hypertension (HT) (mostly related to medical issues and
practices) and 1413 on applications for disease management.

In the following section, we will provide a brief summary of some of the most
representative projects of each category:

• HEARTCYCLE (www.heartcycle.eu) aims to provide a closed-loop disease
management service for both Heart Failure (HF) and Coronary Heart Disease
(CHD) patients, possibly also afflicted by comorbidities such as HT, diabetes,
and arrhythmias. This objective will be achieved through the multi-parametric
monitoring and analysis of vital signs and other measurements.

• HATICE (www.hatice.eu) aims to develop an innovative, interactive Internet
intervention platform targeted at enhancing the treatment of cardiovascular dis-
eases in the elderly. The application will be evaluated by means of a randomized
controlled trial with the objective of investigating whether the onset of new
cardiovascular disorders and cognitive decline can be delayed or prevented.

• PRIMA-EDS (www.prima-eds.eu) aims to optimize the treatment of elderly
patients with a combination of chronic diseases and the concurrent use of multi-
ple medications. PRIMA-EDS provides an electronic tool to assist physicians to
take advantage of the best evidence available.

• NAAN (www.hu.edu.eg/node/180) aims to define the most active elements of
two specific plant extracts and to determine whether, in terms of their mechanism
of action, they have potential applications either as antihypertensive or as
antidiabetic drugs.

http://www.heartcycle.eu
http://www.hatice.eu
http://www.prima-eds.eu
http://www.hu.edu.eg/node/180
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• ICT4DEPRESSION (www.ict4depression.eu) provides an innovative mobile
solution for the treatment of depression by using mobile phones and web-based
technologies.

• MOVINGLIFE (www.moving-life.eu) aims to consolidate and disseminate the
use of mobile e-Health solutions targeted at supporting lifestyle changes. To
contribute to the achievement of this objective, MOVINGLIFE has delivered
roadmaps to guide technological research, implementation practice, and policy
support.

• EU-MASCARA (www.eu-mascara.eu) aims at enhancing, by means of the
analysis of a panel of biomarkers, the accurate prediction of cardiovascular risk,
and the diagnosis of cardiovascular diseases.

• SmartHealth 2.0 aims at realizing a technological system that implements an
innovative model of healthcare based on a digital, open, modular, and scalable
architecture.

• CHRONIOUS aims at providing a smart wearable platform, based on multipara-
metric sensor data processing, for the monitoring of patients afflicted by a chronic
disease and based in a long-stay residential setting.

• eHealthNet (www.ehealthnet.it) aims at enhancing the interoperability neces-
sary for communication and interconnection with any existing health systems,
focusing on technologies for remote monitoring and telemedicine, knowledge
technologies, and technologies for predictive medicine.

• SHARE is focused on the development of a Decision Support System (DSS)
for the early detection of cardiovascular events that, if not recognized at an
early stage, may lead to the onset of more severe cardiovascular conditions in
hypertensive patients.

• Standing Hypotension is focused on modeling physiological signals to prevent
secondary adverse events (e.g., falls) in patients suffering from HT and other
metabolic diseases.

• EMBALANCE is focused on the realization of a DSS and related supporting
tools such as Virtual Physiological Human (VPH) models, monitoring solutions,
and Human–Computer Interaction (HCI) methods for data management in
relation to balance disorders.

• Monica Healthcare (www.monicahealthcare.com) is a university spin out com-
pany devoted to developing innovative wearable devices for fetal heart rate
monitoring using Electrocardiography (ECG) with the goal of facilitating glob-
ally accessible obstetric services at home and in the hospital.

• MATCH is a research project aimed at developing methods and tools for the
early stage Health Technology Assessment (HTA) of healthcare technology and
particularly for personalized interventions and home monitoring. One of the main
activities of the MATCH project has been the development of methods and tools
for user need elicitation in relation to early stage HTA and for the design of
healthcare technologies.

• HYPERGENES (http://www.hypergenes.eu) is a research project aimed at iden-
tifying genes responsible for essential HT and target organ damage, through
the use of a whole genome association/entropy-based approach. The plan is,

http://www.ict4depression.eu
http://www.moving-life.eu
http://www.eu-mascara.eu
http://www.ehealthnet.it
http://www.monicahealthcare.com
http://www.hypergenes.eu
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first, to develop an integrated disease model, taking the environment into
account, by means of an advanced bioinformatics approach, and, secondly, to
test the predictive ability of the model in terms of the accurate identification of
individuals at risk. Two of the partners in this project are also partners in our
present proposal.

• EuResist (http://www.euresist.org/) is a research project funded within the Euro-
pean Community’s Sixth Framework Programme (FP6), aimed at building a DSS
for the treatment management and prediction of the human immunodeficiency
virus (HIV). The EuResist network GEIE manages the EuResist Integrated Data
Base (EIDB) and the EuResist treatment response prediction engine, a data-
driven system that has the function of predicting the response to any combination
drug therapy prescribed for a patient with a given viral genotype.

2 m-Health: Emerging Healthcare Solutions

The development of new and advanced e-health solutions has been stimulated and
facilitated by the application of wireless and mobile technologies. Nowadays, we
are experiencing an unprecedented increase in the number of users of smartphones
and Internet technologies, while the price of devices and services is in constant
reduction. This provides new opportunities to support healthcare delivery by means
of mobile technology, a phenomenon referred to as m-Health.

m-Health solutions have been defined by the WHO as “the use of mobile devices,
such as mobile phones, patient monitoring devices, personal digital assistants (PDA)
and wireless devices, for medical and public health practice” [6]. As such, they can
contribute to the achievement of universal health coverage, facilitating the access to
care, improving care delivery, empowering patients through targeted messaging, and
collecting real-time data to optimize resources and decision-making [7]. As a result,
health programs are exploring ways of harnessing mobile technology to achieve
these objectives, while reducing healthcare costs.

For m-Health to assume a fully integrated role in healthcare, it must be provided
in a way that gives patients and providers’ confidence that patient privacy will be
protected and the confidentiality and security of patient information will be assured.
The data need to be credible and consistent, and collected and stored securely in
a trusted electronic health record with managed access for patients, caregivers,
and healthcare professionals [8]. Smartphones, tablets, and other mobile devices
are already being used to collect and transmit individual and aggregate data from
points of collection to centralized HISs. Indeed, m-Health is becoming an important
strategy for the delivery of health services and for the collection, reporting, analysis,
and use of data in near real time.

However, the mobile devices used effectively in healthcare may also be used for
personal activities such as calling, texting, playing games, taking photos, browsing
the web, sending e-mails, and accessing social media. Such activities may take
place through personal telephone services and Internet transmission systems that are
vulnerable to viral attacks and other security risks that could lead to data breaches.

http://www.euresist.org/


218 G. Sannino et al.

While some smartphones and tablets have as much power as computers, they
may not be as well maintained and secure. Without proper security safeguards, the
personal use of mobile devices and the sharing of devices with other people (such
as family and friends) could jeopardize the quality, security, and confidentiality of
any health data.

Nonetheless, the use of m-Health solutions has spread rapidly. In fact, while in
2000 there were fewer than [1] one billion subscriptions, by 2011 WHO officials
were proclaiming that mobile technology for health has the potential to transform
the face of service delivery across the globe [8, 9]. Indeed, the functions of m-Health
span many of the components of a healthcare system:

• Client education and behavior change communication
• Sensors and point-of-care diagnostics
• Registries/vital events tracking
• Data collection and reporting
• Electronic health records
• Electronic decision support
• Provider-to-provider communication
• Provider work planning and scheduling
• Provider training and education
• Human resource management
• Supply chain management
• Financial transactions and incentives.

Data generated from these functions could contribute to a country’s national HIS.
Four types of mobile phone solution are already in use for the effective operation of
an HIS: Interactive Voice Response (IVR), plain text SMS (Short Message Service),
locally installed applications on handsets and SIM cards (data storage cards), and
browser-based applications [10]. Many countries and organizations are testing ways
in which m-Health can extend the reach of Internet-based HISs to mobile devices.
Health systems are transitioning from paper-based systems to the real-time reporting
of routine health data by health workers [11]. This involves the use of mobile
devices such as phones or PDAs to collect data, which are then transmitted to a
server that aggregates them across many sites and levels. Such aggregated data can
be accessed on a computer program or web-based application that enhances data
analysis across many variables. For example, DHIS [12], an open-source health
management information system used in more than 40 countries, has options to
adopt mobile extensions so that local health workers can report data into the system.

3 m-Health for Telemedicine

m-Health solutions are widely used in the telemedicine service, thereby consider-
ably improving the quality of the care process. Telemedicine can be defined as the
provision of healthcare remotely by means of a variety of telecommunication tools,
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including telephones, smartphones, and mobile wireless devices, with or without a
video connection. The use of telemedicine is expanding rapidly, with the potential
to affect a complete transformation in the means and quality of the delivery of
healthcare for millions of people. The advances and achievements of telemedicine,
to date, have been considered in a number of recent reviews [13–16].

Currently, three interconnected trends are influencing the development of
telemedicine, each representing a significant shift in emphasis. First, there seems to
a change of interception from merely increasing access to healthcare to enhancing
convenience and, ideally, reducing cost. Secondly, the expansion of telemedicine is
being accompanied by the aim of addressing not only acute diseases but now also
episodic and chronic conditions. Thirdly, telemedicine is enabling a transformation
in location, moving care from hospitals and clinics to the home, obviously with the
support of mobile devices.

The principle objective of telemedicine, from the viewpoint of the patients, is
to increase levels of access to care [17]. In such terms, it has already achieved
considerable success, extending healthcare to population groups, and in respect
of particular conditions, where previously no treatment was available. Examples
include the provision of tele-healthcare programs to people in the military, prisons,
and rural locations [18].

However, the objective is not only to increase healthcare access, but also
to transform the character and effectiveness of the delivery. In such terms, the
Internet is revolutionizing the provision of healthcare [19] in much the same way
as has been the case with respect to service delivery in the travel, retail, and
financial services sectors. Many healthcare organizations, from prestigious public
institutions to recently established small businesses, are now offering low-cost
virtual examinations available throughout the day and night, often at a cost of less
than $50 for each appointment, for the most common and troublesome conditions.
By way of comparison, it should be considered that patients often have to wait,
sometimes for a considerable time, to secure even a short appointment with a general
or specialist doctor (the average delay has been estimated at 20 days [20]), and the
average duration of the appointment experience, including travelling and waiting
times, 2 hours [21]. Bearing in mind, also, that there is always a significant emphasis
on reducing costs, telemedicine must be regarded as an essential development,
considering that it is expected, in the near future, to have the capacity to deliver
intensive services to the 20% of the population who account for 80% of healthcare
expenditure [22].

A second significant trend in current telehealth development relates to the
adoption of telemedicine in the management and treatment of chronic and acute
conditions. In fact, advanced wireless and mobile technologies, comprising the
ability to store a vast repository of information on a mobile device, can be exploited,
in combination with radio-enabled watches and a grid of body sensors, in the
areas of health promotion and maintenance, and illness detection and prevention,
as suggested in [23–27]. Such solutions envisage the storage, and updating as
necessary, of all a patient’s relevant medical information on her/his mobile device,
including critical information such as blood group, allergies, heart rate, and existing
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Fig. 2 A generic
telemedicine m-Health
application

medical conditions, as shown in Fig. 2, thereby facilitating the provision of
personalized healthcare monitoring and management, and providing vital data,
which can be easily accessed to ensure that the correct medical care is administered
in any medical emergency.

In reality, telehealth applications were first introduced in relation to the treatment
of acute conditions, such as trauma and stroke [28]. The first significant example,
Telestroke, was established in 1999, involving the provision of acute stroke care
to a patient in an emergency department, by means of fibrinolytic therapy (a
tissue plasminogen activator), with the assistance of a remote neurologist. In just
15 years, Telestroke has become an established telemedicine company, a major care
provider for patients with stroke. More recently, telehealth has expanded, through
the application of different care models, including school visits by medical assistants
[29], video calls [30], telephone calls [17], and online algorithms [31], to encompass
the treatment of episodic conditions, such as sinusitis. Interest in telehealth has been
increasing rapidly for many chronic conditions, the treatment of which accounts for
80% of healthcare expenditure [32]. It is envisaged that in the future there will be
a shift in development, a transition from the predominantly conversational features
of current models to advanced versions that include rich data transfer from remote
monitoring, delivered through the use of wearable sensors and mobile diagnostic
systems, such as electrocardiograms. Such models will comprise the education
and monitoring of patients, supported by frequent virtual and in-person visits from
physicians, nurses, therapists, and social workers.

Finally, an important third telehealth trend will involve the shift in the location
of care provision away from the hospital or other medical institution. The first
telemedicine applications delivered care to patients in establishments such as
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hospitals and day surgery clinics, which frequently required expensive technological
systems and on-site clinical or technical support. The increased availability of
broadband and portable diagnostic technologies means that telemedicine is now
moving into the home. For people with chronic conditions, including elderly
patients, who are essentially homebound, the patient’s home is fast becoming a
patient-centered medical environment, with the provision of treatment, even for
acute conditions such as stroke and pneumonia, provided by means of video
examinations either in the house or in the ambulance. Providing healthcare to
patients in clinics or at home, or simply over the telephone, mirrors the trend in a
sector such as banking, where the Internet and automatic cash machines have moved
financial services away from the bank lobby onto the customer’s mobile device.

3.1 Requirement Analysis for m-Health Applications

A crucial aspect in the realization of an m-Health application is the analysis of
its requirements. To achieve this aim, we have investigated the functionalities that
an m-Health app has to provide, by means of an overview of a generic m-Health
application, depicted in Fig. 3. In particular, an m-Health application is composed
of a series of sensors that are worn by a patient with the objective of monitoring
her/his vital signs, including the electrical activity of the heart (by ECG), blood
pressure (BP), respiration rate (RR), and temperature. Each device may be designed
for the measurement of only one particular vital sign, such as temperature, or for
several. Such devices can have two different kinds of transmission: push or pull.
In the first case, the vital sign is continuously monitored and the monitoring data
are transmitted by the device on the expiry of a given sampling period. On the
contrary, in the second case, the vital sign is measured by the device only after an
explicit command received by the patient of the monitoring application; therefore,

Fig. 3 Overview of a generic m-Health application
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the monitoring data are sent only after an explicit request. Besides the monitoring
sensors, we can find a monitoring application, which can run on a desktop machine,
and also nowadays on a mobile device such as a tablet or smartphone.

In Fig. 3, we can see all the components that constitute a generic m-Health
application:

• The Device Communication Interface (DCI): This has the duty of collecting
the monitoring data coming from a certain monitoring sensor. Since monitoring
sensors differ from each other in terms of the communication protocol and
data format adopted, we can have as many DCIs as there are sensors deployed
on the patient. Alternatively, there may be a more sophisticated design that
uses the adapter design pattern, shown in Fig. 4. The communication details
for interacting with a given sensor are wrapped within an adapter, which is
masked from the rest of the application by a proper interface. In this way, the
communications with the sensors are transparently managed by the application
and new sensors can be inserted without changing the application code but only
by adding new adapters.

Fig. 4 Adapter Pattern applied for the acquisition of the monitoring data
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• The Signal Acquisition and Processing (SAP) unit: This is the component that
can apply additional processing operations to the data received from the DCI
component, such as normalization or spike removal.

• The Remote Communication Interface (RCI): This is useful to provide a remote
communication. An m-Health application, in fact, can be a stand-alone, but in
most cases it is positioned on the Internet for a series of different reasons.
For example, the monitoring data may have to be sent to a remote doctor for
telemedicine or a remote Hospital Management System for the remote assistance
of patients. Alternatively, the m-Health application can be controlled remotely by
means of a web portal. In all these cases, the m-Health application has to provide
remote communication.

Such processed data can be given to:

• A Data Visualization (DV) component: This contributes to the accurate presen-
tation of the data to the user. A concrete example is a chart of the ECG signal.

• A Persistent Memory (PM): This stores and reuses processed data for future
operations. To integrate data coming from several patients, it is necessary to store
these data according to the guidelines of an opportune format standard. An HER
is an organized collection of health data that facilitates this integration by using
appropriate standards, as discussed in the following subsection.

• A Central Processing Unit (CPU): This is useful for the further processing of the
data to achieve the function of the m-Health application. During its operational
phase, the CPU can retrieve the data stored in the PM, and use DV to present to
the user the outcome of its elaborations. As a concrete example, let us consider a
monitoring application for a cardiac patient. The CPU continuously receives the
ECG signal, from which it can detect any possible abnormal heart behavior by
verifying if the current heart rate is below a given threshold or by comparing the
current ECG with previous ones to check for possible degradations.

• A User Interaction Interface (UII): An m-Health application has to include the
possibility for the user to derive its logic; therefore, we can find a UII, which
may, or may not, be a Graphical User Interface (GUI), for the collection of inputs
and choices from the user, and the passing of these to the CPU that will adapt its
behavior as a result.

3.2 m-Health and Electronic Health Records

m-Health solutions offer healthcare professionals the opportunity to have instant
access to a wide range of sources of clinical information such as the patient’s
medication history or test results. An EHR is the keystone of a medical information
system, constituting an organized and systematic collection of the patient’s health
information electronically. The connection between an EHR and an m-Health
solution is an important development in the advance of mobile healthcare.
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On the one hand, mobile healthcare apps have a greater number of abilities and
resources to draw from, thereby improving the efficiency of the system. On the other,
with the vast array of new devices and applications to gather data on patient health,
physicians and medical professionals have been confronted with massive amounts of
data and little time to analyze and incorporate them into treatment plans. Physicians
generally see time spent on administrative tasks as time taken away from the contact
time available to be spent with patients. The technological infrastructures within
hospitals and other medical facilities have not been standardized, and, therefore, the
staffs have found it difficult to integrate the data coming from different departments
on individual patients, let alone incorporate the new data coming from health devices
external to their specific healthcare organization. EHRs are aimed at addressing
the former demand, whereas start-ups have begun to emerge to satisfy the latter
requirement.

Improvements to the service could be achieved by linking it to an EHR at the
Information Management Center (IMC) in order to facilitate the delivery of a higher
level of integrated care for the patient. For example, the EHR could, with the
patient’s informed consent, store and share her/his contact records. Medical staff
would also be able, again with the patient’s informed consent, to access her/his
historical records in accordance with the Health Level 7 (HL7) v3.0 standard, or the
emerging Fast Healthcare Interoperability Resources (FIHR) standard [33]. Such a
facility would undoubtedly enhance the ongoing care management for the patients
and would provide, in addition to traditional face-to-face contact, an alternative
communication route between the patients and the medical staff. Additional services
could also be integrated, such as the Remote Monitoring already described. This
development mirrors the evolution seen in the general mobile industry, where further
services have progressively been added on the foundation of the initial service
baseline. Mobile technology commenced with voice and SMS services, but then
progressed to encompass other facilities, such as email delivery, cameras, and the
vast array of application-based services. A possible connection between mobile apps
and an EHR is presented in Fig. 5.

If a patient has a personal health record (PHR), this can be shared with her/his
clinical specialists. It will contain an aggregated summary of the EHR information
deriving from different hospital and other clinical appointments and, where relevant,
statistical information deriving from personal systems, such as health, wellness, or
fitness apps. Even in its present configuration, this is an indispensable service since it
can provide access to medical information in an unified format, expedient when the
user may not be able to attend a face-to-face appointment or maybe seeking medical
advice in a nonemergency context. Such an availability of data, at any time and in
any place, will obviously be especially significant in areas where large sections of
the community only have limited access to healthcare provision.

The interaction between the hospital information and EHR systems will certainly
facilitate the realization of many of the benefits envisaged for a digital health
solution. However, the design and implementation of such a hospital information
service–EHR connectivity, which is fully interoperable and integrated, including
semantic exchanges of information with locations internal and external to a single
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Fig. 5 Connection between a mobile app and an EHR

hospital, is a complex and arduous task. The realization of such a service requires the
evaluation and, in some cases, redesign of clinical workflows, with the replacement
of any existing paper-based or electronically siloed workflows, to enable an
appropriate definition of the features of the different system interfaces, so allowing
their effective integration.

The aim of such integration is to ensure that hospital clinicians are supported by
the most advanced information systems, rather than hindered in the delivery of their
main responsibility, the provision of care. On the assumption that this is permitted
by local regulations, the application of standards in the development of this system
presents the possibility of linking the data contained within both the regional and
national HISs to enhance and extend the service, so providing a wider coverage.
This development could also allow patients to access their own health information
through a web portal, without having to rely on the more traditional means of access,
i.e., telephone contact with a trained call center operator or member of staff at a
local health service center. The FHIR standard, which is currently becoming more
widely used, maybe more expedient in relation to the provision of access via a
web portal since this standard has been designed to be more suitable for web-based
applications.

3.3 Security and Privacy

The development of wireless communication and biosensor technologies has
resulted in numerous benefits for mobile healthcare. However, as has already been
indicated in the previous paragraphs, there are many anxieties in relation to security
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and privacy that have to be resolved in order to protect the user’s information in
any m-Health system. Smartphone and m-Health applications may be vulnerable
to a vast array of security threats. Certainly, information security has not emerged
as a new concept only with the development of m-Health systems. The particular
drawback in this case, however, is that the most attractive characteristic of these
devices, their mobility, also constitutes the greatest challenge in relation to the
protection of the data stored on such devices or accessed with them.

According to the Health Insurance Portability and Accountability Act
(HIPAA),“privacy” is defined as the respect for an individual’s personal health
information by limiting its use and disclosure to third parties, while “security”
entails the physical protection of health information stored or transmitted
electronically [34]. Keeping in mind the constant development of technology in
relation to the capture and transmission of data, security plans, and procedures
must be incorporated within m-Health solutions in order to provide protection for
the patient’s privacy and guarantee the security of the healthcare data. Breaches of
protected data can only be minimized by the adoption of robust security protocols,
involving encryption at all data points and multifactor authentication programs.

One promising technique that has achieved positive results in terms of improving
a system’s security is moving target defense (MTD) [35]. MTD’s mode of operation
is centered on the continuous randomization of a system’s configuration in order
to render any attack more expensive and reduce the prospects of successful strike.
Eldosouky and Saad [36] used an MTD security framework in relation to an m-
Health system, in which secret keys were used to encrypt data sent from the device
to the gateway while a public key was used to encrypt data sent from the gateway
over the Internet. Ferebee et al. [37], instead, proposed a security framework that
exploits biometric parameters and the system history and context to identify any
anomalies. Additionally, they made use of correlation networks to contextualize the
sensed biometric values with the values of other related parameters.

In summary, it is clear that a variety of techniques have been used with the aim
of protecting the collection and transmission of a patient’s data. It is necessary
to consider such techniques during the development and design of an m-Health
application in order to minimize any possible damage that might be inflicted on
the patients’ data and any intrusions that might be made.

4 Toward the Next Generation of m-Health Cognitive Apps

Big Data is fast becoming one of the hottest topics at the cutting edge of research
in several different fields including information management, data analytics and,
indeed, healthcare. During the last decade, various different types of data have been
coming to prominence, including unstructured data deriving from social networks,
streaming data, and online publications, and massive data generated by sensors
from the physical world. All such data are starting to outpace traditional forms of
structured data, and certainly, this trend will continue with even faster growth in
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the future. Moreover, the insights that can be discerned from an examination of this
vast repository of data can open up unparalleled opportunities for public and private
organizations. Data, indeed, is now considered one of the most valuable resources
in the contemporary environment, and, as data collection and delivery is expected
to continue to develop at an even faster rate, the increasing prominence of data
management will certainly maintain a significant influence in the determination of
trends in business and society.

In the area of macroeconomics, the last century has seen a rapid expansion
of the service sector, which now contributes more than 80 percent of the gross
domestic product of many modern economies. Knowledge-based services are one
of the major elements of this business sector. Knowledge work, which is the
foundation of knowledge-based service growth, will be completely transformed
with the emergence of big data. The value of businesses in the future will be
increasingly determined by the extent to which such organizations empower their
knowledge workers to exploit the advantages deriving from big data. Knowledge
workers who possess such skills will have the potential to be considerably more
effective in the management of data than they have ever been previously.

However, new tools will be necessary to extract the insights deriving from
modern big data, which is generally unstructured, noisy, and unreliable. These
new tools cannot be constructed from the same manually specified rule-based
symbolic computing techniques that have allowed us to manage the clean, structured
data, which have been predominant to date. Such new tools will employ machine
learning and will interact with the user in a more natural way, furnishing evidence-
based explanations of candidate insights. Knowledge represented explicitly will
itself become big data, and its exploitation will bring to light both conventional
and innovative insights. These new knowledge systems, which learn and interact
naturally with the user, are referred to as knowledge work cognitive systems. As
a representative case, IBM’s Watson Business Unit is currently engaged with its
clients in the development of a family of systems that are capable of learning and
interacting naturally in a variety of different domains.

In the future, cognitive systems will advance beyond simple question answering
to provide support for the discovery of insights concealed in big data, e.g., in the vast
repositories of scientific literature, reasoning with the evidence to confirm or refute
the topics of discussion, advancing beyond textual data to encompass images and
videos. In the near future, cognitive systems are expected to be able to assist us in
the completion of complex tasks in almost every work environment, from business
to education, and including, significantly in this context, healthcare. Knowledge
workers in almost every field of application will have the tools, the cognitive
assistants, to enable them to penetrate and interpret huge amounts of data, thereby
solving complex problems and creating new ideas. For example, a physician will be
able, with the help of a cognitive system, to connect information about a patient’s
genome and clinical history with the repository of experimental literature, in order to
obtain an improved diagnosis of a medical problem or alternative treatment options.
Likewise, an educator will be able to enhance the learning experience by linking
educational content to an individual’s needs and goals or, as another example,
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a business leader will be able to extract insights like demand patterns, product
acceptance, and competitive differentiators within markets to inform tactical and
strategic business decisions. Indeed, almost all knowledge-based professions will
be able to benefit from this development in a similar fashion.

However, as we advance into this new era, anxieties will be expressed in relation
to cybersecurity, privacy, and other important social considerations. Since malicious
attacks can strike very rapidly, understanding how to react immediately in order to
prevent severe damage to the system is a major challenge. Additionally, there is
a constantly increasing divergence between the capability enabled by technology
and the social and economic value that can be derived from it. Expressed in basic
terms, it remains the case that educational and training institutions cannot provide
appropriately trained knowledge workers in sufficient number and at sufficient
speed in order to enable businesses and other organizations to exploit these new
technologies immediately and effectively. To a great extent, this is a consequence of
the fact that the development cycle of a technological innovation, and its subsequent
diffusion throughout the economy, is now realized in a number of months rather
than years. Moreover, the transformation is not only rapid but dramatic. As in every
other new era of technological innovation, like, e.g., the industrial revolution, the
advances introduced in the current age of the Internet are having a massive impact
on the world, leading to, in addition to increases in productivity, a redefinition of
occupations, with new professions being created and others becoming obsolete.

Cognitive computing will certainly have a significant influence on all the
knowledge-based professions, including the healthcare environment. In this specific
field, such advances will enable and enhance the coordination and organization of
complex information useful for medical diagnosis and treatment [38]. As a concrete
example, machine learning techniques and artificial neural networks will be able
to provide invaluable support for the early detection of specific diseases through
the identification of possible risk factors and determinist symptoms by means of an
easy, fast, and portable m-Health application [39], as shown in Fig. 6.

5 Conclusions

Nowadays, the application of mobile tools and technologies is, more than ever, a key
driver for innovation and development of a new way to provide a healthcare service.
By promoting patient centricity and a redefinition of the patient role in clinical
studies, as well as enhancing data collection or real-time remote monitoring, m-
Health strategies are opening doors for huge advancements in the healthcare sector.

In this chapter, we presented the main functionalities and components of an
m-Health solution, able to monitor or support the correct diagnosis of specific
pathologies. Among these, the connection between m-Health systems and the great
amount of patient data is fundamental for the development of mobile healthcare.
This connection is realized by using appropriate international standards, such as
Health Level 7 or Fast Healthcare Interoperability Resources. As well as, it is
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Fig. 6 An example of a
cognitive app

necessary to consider such techniques during the development and design of an
m-Health application in order to minimize any possible damage to the privacy and
security of patient.

In the next future, Artificial Intelligence and advanced algorithms will represent
valid support to early detection of specific diseases. Their integration in m-Health
systems provides a safer, faster, and more reliable support for monitoring and
diagnosis of pathologies.
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Deep Learning for EEG Motor
Imagery-Based Cognitive Healthcare

Syed Umar Amin, Mansour Alsulaiman, Ghulam Muhammad,
M. Shamim Hossain, and Mohsen Guizani

Abstract Electroencephalography (EEG) motor imagery signals have recently
gained significant attention due to its ability to encode a person’s intent to perform
an action. Researchers have used motor imagery signals to help disabled persons
control devices, such as wheelchairs and even autonomous vehicles. Hence, the
accurate decoding of these signals is important to brain–computer interface (BCI)
systems. Such motor imagery-based BCI systems can become an integral part of
cognitive modules that are increasingly being used in smart city frameworks. How-
ever, the classification and recognition of EEG have consistently been a challenge
due to its dynamic time series data and low signal-to-noise ratio. Deep learning
methods, such as the convolution neural network (CNN), have achieved remarkable
success in computer vision tasks. Considering the limited applications of deep
learning for motor imagery EEG classification, this work focuses on developing
CNN-based deep learning methods for such purpose. We propose a multiple-CNN
feature fusion architecture to extract and fuse features by using subject-specific
frequency bands. CNN has been designed with variable filter sizes and split
convolutions for the extraction of spatial and temporal information from raw EEG
data. A feature fusion technique based on autoencoders is applied. Cross-encoding
technique has been proposed and is successfully used to train autoencoders for a
novel cross-subject information transfer and augmenting EEG data. This proposed
method outperforms the state-of-the-art four-class motor imagery classification
methods for subject-specific and cross-subject data. Autoencoder cross-encoding
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helps to learn subject invariant and generic features for EEG data and achieves more
than 10% increase on cross-subject classification results. The fusion approaches
show the potential of applying multiple CNN feature fusion techniques for the
advancement of EEG-related research.

Keywords Motor imagery EEG classification · Deep learning · Convolution
neural network · Multi-CNNs feature fusion

1 Introduction

Brain–computer interfaces (BCIs) [1–3] provide a mode of communication between
the human brain and external devices [4]. BCI systems do not need action or
muscular activity for communication [5], instead, a subject uses brain activity to
communicate with external devices [6, 7]. Such systems can help patients with
various types of motor disabilities [6, 7]. Electroencephalography (EEG)-based
cognitive systems are being used in smart city applications for imparting human
intelligence and cognitive behavior to such frameworks [8, 9].

A BCI system functions by reading and identifying different brain activity
patterns produced by users, then translates these patterns into the desired commands.
Most BCI systems rely on classification techniques [4] to identify brain activity
patterns. The classification process involves automatic extraction of underlying
features and then estimating the corresponding class for brain activity [5]. The
noninvasive scalp EEG [10] is an easy and inexpensive technique for recording
brain activity. EEG signals are recorded by using multiple electrodes placed on
specific scalp areas. The signals have high temporal resolution in the millisecond
range and are thus still impossible to decode even with the latest imaging techniques,
such as computed tomography (CT) or magnetic resonance imaging (MRI). These
properties make EEG an important area for research and diagnosis related to brain
functions and disorders. Motor imagery tasks produce brain oscillations in specific
brain areas. These oscillations are observed, in particular, frequency bands, such
as alpha, beta, and gamma, and are subject-dependent characteristics. During motor
imagery, band power changes for frequency components from single frequency band
or multiple bands and varies from subject to subject, and thus active frequency bands
for MI tasks are subject specific [11].

Motor imagery (MI) signals [12, 13] have recently attracted considerable interest
due to its flexibility and its usefulness in discriminating various brain activations. MI
EEG signals are brain activities recorded when the subject imagines or intends to
perform actions such as hand or leg movements. MI EEG signals are produced in the
brain’s sensorimotor cortex area as a response to imagining or thinking tasks [11]
and have been utilized by researchers to discriminate between different oscillatory
brain activations for different tasks.

MI EEG-based BCIs have used machine learning to build systems that help
stroke patients [14], epilepsy patients [15], and people with paralysis [16] to
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communicate and control external devices, such as wheelchairs and robots [13].
However, as motor imagery has limited spatial resolution, low signal-to-noise ratio
(SNR), and dynamic characteristics, the extraction of relevant features is a crucial
step in developing a successful BCI system. These issues and the large amount of
noise in EEG data lead to difficulties in analyzing brain dynamics and classifying
such data. Although conventional machine learning methods have successfully
classified MI EEG data to a certain extent, good decoding accuracy has not been
attained with handcrafted features. The recent success of deep learning methods
has driven researchers to apply them to EEG classification. Automated features
can produce better performance than handcrafted features. Deep learning models
have achieved state-of-the-art results in different areas such as image and speech
classification [17, 18]. For example, convolution neural networks (CNN) have the
ability to find robust spatial features from images [19]. Recurrent neural networks
(RNN) can extract temporal features better than other networks in applications, such
as video and speech classification [20]. Networks, such as autoencoders, are suitable
for unsupervised feature learning [21].

Recent studies have employed different deep learning techniques for automated
feature extraction from EEG data [22–25]. Few EEG public datasets are available,
and most of these datasets have limited sizes. Deep learning models may have
millions of parameters that typically require huge training data, and thus applying
them to small datasets is difficult. For this reason, limited research has been
conducted on deep networks in this area. However, techniques, such as transfer
learning, have provided researchers a way to use deep networks by pretraining on
large datasets and then fine-tuning for small datasets. These techniques increase
performance and reduce training time for deep models [26]. Deep Belief Networks
(DBN) and CNN with transfer learning have been used for EEG and functional
MRI (fMRI) datasets with a comparatively limited number of training samples [27].
Hence, deep learning models pretrained on similar EEG datasets could help increase
decoding performance. However, the increased accuracy achieved by using deep
learning models in fields, such as image or speech processing, is not evident in the
case of EEG. Therefore, further research is necessary in this area.

Many variations in CNN have been effectively used for image classification. One
variation is fusing multiple CNN streams for feature aggregation and improving
accuracy. Different CNNs can specialize in extracting various spatial and temporal
features, and network architecture and depth affect the performance and accuracy
of a CNN. During the course of training, different convolution layers can extract
features at different levels of abstraction. Initial layers learn local features, and
end layers learn global features. CNN with different depths and filter sizes can
extract different features. CNN has been applied for MI EEG classification, but
the obtained improvement in accuracy is limited. The EEG signal is time-series
data with multiple channels and low SNR and is difficult to interpret because of its
nonstationary nature.

Feature fusion and multiple CNN architectures have not been explored for EEG
data. In this paper, the proposed method reports performance improvement for
MI data, showing that convolution features depend on CNN depth and filter size.
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These features can be combined for the development of a robust EEG classification
system. Transfer learning and pretraining can help alleviate issues of limited data
and overfitting for the improvement of EEG decoding accuracy.

When designing an EEG-based automated classification system, several chal-
lenges related to EEG characteristics and classification techniques should be
considered.

• EEG signal is nonstationary and has low SNR due to the presence of artifacts,
such as muscle movement or eye blinking.

• EEG is recorded with multiple electrodes and thus highly dimensional. Limited
training data and high dimensionality can render classification techniques to
overfit the data.

• Classification of motor imagery signals is not easy due to the uncertainty of the
exact time at which a subject performs a brain activity. Motor imagery is a purely
mental task, so only the subject is aware of the exact time he performs the activity.

• The availability of public EEG datasets is limited, and thus the application of
deep learning-based methods, which need a large amount of training samples, to
EEG classification is extremely challenging.

• The class discriminative band power features for motor imagery tasks are
present in different frequency bands for each subject. Therefore, cross-subject
classification becomes increasingly complex.

Machine learning algorithms highly depend on patterns and features extracted
from EEG data. Hence, with robust features, a machine learning technique can
achieve good accuracy. However, as previously pointed out, various conventional
machine learning methods have not obtained good decoding accuracy with hand-
crafted features. Thus, handcrafted features are inadequate for decoding EEG data.
Therefore, the main motivation of this thesis is to improve the classification accuracy
for MI EEG-based BCI systems.

Current classification techniques have reported results achieved on subject-
specific data, as the EEG signal varies highly from subject to subject and even from
session to session. The extraction of robust and generic features that do not depend
on individual subjects and sessions is another motivation for this thesis.

Temporal information present in the EEG signal is neglected by most machine
learning algorithms [28]. These complexities and challenges in EEG feature extrac-
tion and classification led to the use of deep learning methods, more precisely CNN,
in this study. CNN has the ability to learn robust feature representations by using
convolutions and can be designed to adapt to the temporal information and subject-
independent characteristics of the EEG signal. Limited availability of public EEG
datasets and the risk of overfitting on such small datasets prompted the use of
pretraining and transfer learning techniques for deep learning, which have achieved
good results in other domains but have not been tested for MI EEG datasets.

Deep learning-based techniques have achieved state-of-the-art performance in
many image and speech processing applications [17, 18]. These techniques have the
unique capability to extract features from data in a hierarchical manner. However,
research using deep learning for EEG classification and, especially, motor imagery
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signals remain limited. CNN has already achieved similar accuracy as compared
with conventional machine learning techniques. As CNN has the ability to find
robust features from signals, such as images [19], a properly designed CNN can
extract temporal and spatial features from EEG signals.

CNN feature fusion models have led to improvements in performance accuracy
for various domains but have not been applied to EEG classification. Another
motivation for this study is the performance of CNN with different depths and
filters for MI EEG classification. Shallow and deep CNN [28–32] can provide good
performance when tested with different filter sizes and for different EEG frequency
bands. Different CNNs can specialize in extracting various spatial and temporal
features, and the network architecture and depth affect its performance and accuracy.

2 EEG Signal Processing

EEG is a typically noninvasive electrophysiological technique for recording electri-
cal brain activity [10]. Such electrical activity occurs due to the firing of neurons in
specific brain areas as a result of the processing taking place inside the brain. The
noninvasive EEG, sometimes referred to as scalp EEG, is an easy and inexpensive
method in which multiple electrodes are placed on the scalp. The spatial resolution
of the EEG signal indicates the spatial adjacency of electrodes, whereas temporal
resolution indicates sampling frequency or the frequency at which data are recorded.
In general, 21–64 electrodes are used for clinical or research purposes, but more can
be added (up to 256 electrodes) to increase spatial resolution. EEG is a multichannel
time series characterized by high temporal resolution in the millisecond range and
is still impossible to decode with the latest imaging techniques, such as CT or
MRI. However, EEG has low spatial resolution. Despite this, EEG remains an
important tool for research and diagnosis related to brain function and disorders.
EEG is preferred for BCI systems over other noninvasive imaging techniques, such
as fMRI and magnetoencephalography (MEG), because it does not require costly
instruments or does not require the patient to be stationary. Other noninvasive
imaging techniques, such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG), require patients to be stationary and are carried
out using costly and large-scale equipment.

A sample EEG recording done using multiple electrodes is shown in Fig. 1.
The electrodes are placed on the scalp according to fixed positions. EEG output
is typically measured in microvolts and it is a nonstationary time series having low
SNR. Figure 2 shows the standard 10–20 system for electrode placement which uses
21 electrodes on particular locations on the scalp. EEG signals that record brain
response to external stimuli or events are called Event-related potentials (ERP).
Motor imagery is EEG signals recorded while the subject imagines the movement
of various body parts, which can help BCI systems to find the subject’s intent.

Researchers are also interested in the spectral or frequency content of the EEG
signal. EEG signal is composed of several frequency bands. These frequency bands

https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Motor_imagery
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Fig. 1 Example of EEG recording

and spatial distribution of the electrodes are associated with different activities and
states of the brain. The frequency bands exhibit distinct changes in amplitude during
different tasks. The alpha band shows increase in amplitude when eyes are closed
[5]. Table 1 shows different EEG frequency bands and their respective ranges.

Motor imagery and other similar activities which exhibit event-related phenom-
ena show frequency-specific changes which consist of power decrease or increase
in particular frequency bands during this EEG activity. This increase in power is
called event-related desynchronization (ERD), and the decrease is called event-
related synchronization (ERS) [11]. It is also observed that this energy decrease
caused by MI task takes place in mu band (8–12 Hz) and energy increase can be
observed in the beta band (13–31 Hz) [11]. MI tasks such as left- and right-hand
movement show ERD and ERS in the right and left of the motor cortex area of the
brain, respectively. Research has also shown that MI tasks also cause brain activity
changes in the lower gamma band (32–40 Hz) [5]. ERD and ERS are observed in
some frequency components from single frequency band or in multiple bands and
which differ from subject to subject showing that the active frequency bands for MI
tasks are subject specific [11].



Deep Learning for EEG Motor Imagery-Based Cognitive Healthcare 239

Fig. 2 International 10–20 system showing electrode positions on the scalp for 21 electrodes

Table 1 EEG Frequency
bands

Band Frequency (Hz)

Delta <4
Theta 4–7
Alpha 8–15
Beta 16–31
Gamma >32
Mu 8–12

Therefore Alpha, beta, and gamma frequency bands can be utilized to extract
band power features, which could help in discriminating MI tasks. Unfortunately,
the scalp EEG measurement method makes it susceptible to a number of noise
artifacts such as electrocardiographic signals from the heart, electromyographic
signals from muscle movement, or the eyes blinking, and tongue movement. These
artifacts together with other noise from the environment or recording instruments
make EEG analysis and its classification very difficult. However, recent research
has demonstrated that machine learning and deep learning techniques can extract
relevant EEG features and produce meaningful results.

3 MI EEG Classification

Motor imagery is defined as the mental process in which a subject simulates
or rehearses a movement or an action without being executed [28]. Imagining
hand, feet, or tongue movements without moving them is an example of MI. This

https://en.wikipedia.org/wiki/Delta_wave
https://en.wikipedia.org/wiki/Theta_wave
https://en.wikipedia.org/wiki/Alpha_waves
https://en.wikipedia.org/wiki/Beta_wave
https://en.wikipedia.org/wiki/Gamma_wave
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process is widely used in MI-based BCI, neurological rehabilitation, and in research
related to the investigation of brain activity, such as cognitive psychology and
cognitive neuroscience [29]. The corresponding brain activity is most profound in
the supplementary motor area and the primary motor cortex area of the brain. MI-
based BCI systems have been developed to help disabled patients control devices,
such as wheelchairs, or move the cursor on a screen [13–16].

In MI-based BCI systems, the subject is shown a cue on a screen and asked to
perform the MI task shown. While the task is performed, the BCI system records the
subject’s brain activity, but the system cannot determine when exactly the subject
starts imagining the task. Hence, the MI task is controlled only by the subject, which
makes EEG interpretation quite difficult. Differences between the trials of the same
subject may occur, and sometimes the subject may be unable to perform MI task.
This occurrence is known as BCI illiteracy [29].

Most of the MI EEG classification systems based on machine learning techniques
employ band-pass filters for time-domain filtering and spatial filters for spatial-
domain filtering of the EEG signal. Then, feature extraction techniques are used to
find and represent significant patterns in the filtered EEG signals. Feature selection
techniques then determine the best feature subsets from the extracted features.
Finally, the features are used for training a classifier.

In literature, different types of features have been proposed to represent EEG
signals [30], and signals with band power and time point features are the most
common. The power or energy of the EEG signal for a particular frequency band
in a particular channel is represented by band power features, which are averaged
over a time window (normally 1–2 s). These features exploit the oscillatory activity
of the brain that is in the form of EEG amplitude changes. Band power features
are extensively used for motor imagery BCI systems and for decoding mental tasks.
Time point features are used for decoding Event-Related Potentials (ERP)-based
BCI systems. ERP are time-domain amplitude changes in EEG signals that are
time-locked to an event or stimulus [30]. Time point features are formed by the
aggregation of all EEG samples for all channels. These features are extracted after
the filtering and down-sampling of EEG signals.

Several studies have extracted band power and time point features after spatial
filtering [31], which combines EEG signals from different electrodes and thereby
increases the SNR as compared with that of the original EEG signal from each
electrode. Using supervised learning to obtain spatial filters is the most common
approach and has shown the best accuracy among all conventional feature extraction
methods. Common spatial patterns (CSP) [31] are the most popular spatial filters
obtained by using a supervised learning approach.

The CSP algorithm [31] uses amplitude changes observed when subjects per-
form MI tasks. In this algorithm, spatial filters are used to determine the linear
transformations of electrodes with variances that can be used to discriminate left
or right MI signals. The selected electrodes are spatially filtered, and the energy
of selected electrodes is divided by the energy of all electrodes. This value acts
as representations or features for the EEG data and can be used by support vector
machine (SVM) to achieve good performance after dimension reduction [32]. The

https://en.wikipedia.org/wiki/Neurological_rehabilitation
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CSP algorithm converts time-series EEG signals into a single value and ignores
the temporal information in the signal. Another study extended the CSP algorithm,
and the Filter Bank CSP algorithm (FBCSP) [10] was proposed using a linear
combination of electrodes and frequency information present in the signal. The
FBCSP algorithm is based on filter banks that are multiple band-pass frequency
filters. The EEG signals pass through these band-pass filters and are converted
into multiple frequency bands, from which CSP energy features are extracted. By
using a feature selection algorithm, features are then selected with discriminative
frequency bands and supplied to the SVM for classification. The temporal-spatial
discriminative features help increase performance for MI classification. Among the
machine learning-based MI classification algorithms, FBCSP has achieved the best
performance. Other researchers have attempted to extend and improve the CSP
algorithm.

Apart from the CSP-based algorithm, other popular algorithms for MI classi-
fication have achieved good performance. One such approach is the Riemannian
geometry (RG), which uses data, apart from spatial CSP features, in the channel
covariance space to classify EEG signals [28]. The RG algorithm employing
subspace optimization has achieved good accuracy for MI EEG classification.

All the conventional machine learning algorithms for MI EEG classification and
feature extraction discussed above have employed handcrafted features. Although
these approaches and features are effective, the accuracy of motor imagery clas-
sification still requires improvements. Therefore, we investigated deep learning
techniques to improve performance and find features that are more robust than
handcrafted features.

4 Deep Learning for Motor Imagery Classification

EEG signals are recorded with multiple channels with a high sampling rate that
accounts for its high dimensionality. A correlation exists between channels and low
SNR due to the presence of artifacts and noise. Inspired by the success of deep
learning models in numerous fields, many researchers have successfully applied
deep learning models for EEG classification. Different methods for EEG data
representation and dimensionality reduction have been proposed to prepare data
at inputs to these models. Researchers have attempted to automatically extract
temporal and spatial features from EEG signals. Multiple restricted Boltzmann
machines that extract robust features from many EEG datasets have been proposed
[32]. CNN has been a popular choice for analyzing spatial features and classifying
EEG signals [23, 28] and has been used with RNN [32] to extract multidimensional
features for capturing cognitive events from MI signals. CNN and autoencoders
are used [22] in emotion recognition using EEG signals. Other researchers convert
EEG signals into images and topological maps before they send the signals as
inputs to deep learning models. A CNN and Long Short-Term Memory (LSTM)-
based model was proposed and employed the Fourier transform of the EEG signal
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to represent them as scalp topological maps [33]. The resulting images act as
inputs to the combined CNN and LSTM model. Novel image representations and
the extraction of temporal features with the RNN model helped provide a good
performance. A new set of features was proposed by combining spatial, spectral,
and temporal information in EEG data. Another study [34] converted EEG signals
into images by utilizing short-time Fourier transform (STFT), using a two-class
public dataset with three EEG channels; the authors used mu and beta band features
using CNN and stacked autoencoder (SAE) for MI classification. A CNN-based
model was proposed for P300 EEG signal classification [35], which could extract
temporal and spatial features by performing the first convolution spatially for all
EEG channels and then the second convolution across time-samples for the entire
EEG recording. This CNN structure is usually employed for the classification
of steady-state visually evoked potentials (SSVEP). CNN is also used to extract
features from raw EEG signals for music imagery classification [36]. In another
paper, a convolutional autoencoder (CAE) was used for the same task, and a
cross-trial and similarity constraint encoding method was proposed for subject-
independent EEG music imagery classification [36]. These encoding techniques can
be used for transfer learning and help train deep networks with limited EEG data.
The CNN model is trained on log-energy features extracted from each frequency
band. Raw EEG is used as input for deep and shallow CNN architectures for MI
EEG decoding and visualization [37]. The study shows how to crop trials into small
inputs to increase training data and accuracy. Similarly, recent CNN advancements
are employed to achieve competitive accuracy for MI EEG classification.

The studies mentioned above have used various conventional machine learning
and deep learning methods for motor imagery classification and decoding. Although
deep learning methods have recently achieved state-of-the-art results for this task, a
substantial improvement in accuracy similar to that achieved for image and speech
processing has not been attained. Given that the maximum subject-specific accuracy
is still less than 75%, and cross-subject accuracy is approximately 40% in public
MI datasets [2], new inventions and architectures related to CNN are necessary for
further improvement.

5 Multilayer CNN Feature Fusion for Motor Imagery
Classification

This section describes the multilayer CNN feature extraction and fusion method
proposed in this thesis. The CNN architecture, pretraining, extraction of convolution
features, and weight-based feature fusion are discussed. Similarly, we present the
experiments conducted, results obtained for MI EEG classification, and visual
analysis of the features.
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5.1 Input Representation

Most EEG datasets are recorded in many sessions for each subject, and each session
consists of many trials. In subject-specific training and testing, each EEG data set
supplied to the CNN model consists of labeled trials that belong to a given subject i.
The data sets can be represented as Di = {(

X1, y1
)
, . . . ,

(
XNi , yNi

)}
where Ni

is the number of trials for each subject i. Each labeled trial j is a time segment
of the EEG recording belonging to one of the K classes for motor imagery tasks.
The EEG input for trial j is in the form of a matrix, Xj ∈ R

E. T, where E and T
denote the electrodes and time steps recorded for each trial, respectively. The output
produced for each trial j is mapped onto one of the class labels yj, which in our case
corresponds to one of the imagined motor imagery tasks: left hand (class 1), right
hand (class 2), both feet (class 3), and tongue (class 4).

Different input representations for EEG have been used to supply input to the
CNN. One approach is to transform EEG recordings into topographic images in a
time series. The scalp surface is flattened and voltage recordings are used to form
a power spectrum, which then acts as inputs for the CNN [33]. The relevant EEG
patterns are global and do not possess hierarchical composition in space [37]. EEG
signals have been shown to correlate over multiple time scales. Hence, this study
employs EEG representation, so that the CNN is able to automatically extract global
spatial and temporal patterns from the EEG signal. The EEG signal is represented
in the form of a 2D array with time steps across electrodes.

Electrode voltage has been used over the flattened scalp surface to convert EEG
signals to topographical time-series images [38]. However, the conversion may
result in the loss of important information and features. Evidence has shown that
EEG signals are correlated to time scales that involve modulation in time [39].
Furthermore, CNN has recently achieved good accuracy for EEG data represented
as 2D input with time-samples across channels [37].

5.2 CNN Architecture

The CNN architecture of the proposed method is inspired by popular CNN in
computer vision, such as AlexNet [17]. A basic architecture is selected for the design
of a CNN that can extract generic features from EEG data [28–30]. Our method
has four blocks of convolutional- and max-pooling layers and a fully connected
softmax classification layer at the end, as shown in Fig. 3. Compared with three-
channel (RGB) image input, EEG signals have multiple channels; thus, the first
convolution layer is split into two convolutions for the handling of a large number
of channels. One-dimensional convolution and split convolution strategy have been
successfully used for decoding many types of EEG [37, 40]. Without activation
function in between, these two convolutions act like one logical convolution.
Splitting the first convolution operation in this manner enables the division of the
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Fig. 3 Deep CNN architecture

Fig. 4 (a) and (b) The first convolution operation split into two parts. (a) In the first part,
convolution is performed across time steps. (b) In the second part, convolution is performed across
all channels

linear transformation into temporal and spatial convolutions. The first part captures
temporal features using filters for each channel, and the second part extracts spatial
features for all channels similar to the CSP spatial filter. Split convolution shows
better performance than normal convolution. The EEG input is in the form of 2D
array with samples stored in time steps across channels (electrodes). Figure 4 shows
the first convolution layer.

CNN has achieved good results on signals with a natural hierarchical structure,
such as images. Initial convolution layers learn edges and boundaries for objects,
and later convolution layers learn more complex object shapes. Pooling layers
reduce the dimensions of the convolution features and thereby inducing translational
invariance in the CNN. In this progressive manner, CNN can automatically learn
hierarchical features layer by layer.

CNN consists of multiple convolutional layers composed of filters or kernels.
These filters are convolved with the input signal. Stride is the parameter that deter-
mines the number of filter convolutions with the input. The output for convolution
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operation, which is a set of kernel or feature maps, can be expressed by Eq. (1)
below.

yi′j ′ =
n∑

i,j=0

wijxi+i′,j+j ′ (1)

where yi′j ′ is the feature map produced at the position i
′
j
′

of the input vector; wij
is the kernel or filter matrix element; xi+i′,j+j ′ is the input spatial region element;
i, j denote the row and column index of the filter’s current elements pair; and n
denotes the number of filter elements. Exponential linear units are used as activation
function, as shown in Eq. (2):

f (x) = x for x > 0 and f (x) = ex − 1 for x ≤ 0 (2)

Multilayer CNNs with different filter sizes and depths are designed and fused
for the acquisition of robust features. CNN provides good results for particular
frequency bands for each subject, indicating that the most active frequency bands for
motor imagery tasks are subject specific. Thus, we used different frequency bands
for different CNNs. The EEG signal is band-pass filtered into the frequency band
with a range of 0–40 Hz.

The proposed methods comprise multilayer CNNs fused with an autoencoder,
and collectively named as model CNN-A. In the first phase, each CNN is pretrained
individually on the HGD [37]. In the second phase, these pretrained models are
trained on the target BCID [41] dataset. After the training phases are complete, the
CNN features are concatenated and passed as input to an autoencoder for fusion.
The autoencoder-based fusion model is then trained separately with the combined
CNN features. A softmax activation function layer is used as a classifier on top of
the autoencoder fusion model, and the resulting networks are then fine-tuned for the
acquisition of the output class labels for MI tasks. The architectural details for the
different CNNs used are provided in Table 2.

Table 2 Structure of CNNs
used for feature fusion

CNN-shallow CNN-deep

Conv (30 × 1, 50 filters) Conv (10 × 1, 50 filters)
Conv (1 × 22, 50 filters) Conv (1 × 22, 50 filters)
Max Pool (3 × 1, stride 3) Max Pool (3 × 1, stride 3)
Dense (1024) Conv (10 × 1, 100 filters)
Softmax (4 classes) Max Pool (3 × 1, stride 3)

Conv (10 × 1, 100 filters)
Max Pool (3 × 1, stride 3)
Conv (10 × 1, 200 filters)
Max Pool (3 × 1, stride 3)
Dense (1024)
Softmax (4 classes)
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With the need to test different CNN design strategies, multiple CNNs are
created and tested with a different number of layers and different filter size. The
study started with a CNN with a single convolution, pooling block, and a dense
classification layer at the end. The number of convolution and pooling blocks is
increased until the performance of the models degrades. As shown in literature,
most of the successful studies using CNN or other deep learning models for EEG
classification have shallow architectures [28–32] and few models that have one or
two layers [37, 40]. A deep CNN [37] was implemented to act as a baseline and to
compare results with this model, because this study is so far the best deep learning
technique available for MI EEG classification.

MI recordings have multiple channels that range from 3 to 128, thus this strategy
is useful in the management of multisource inputs. As previously explained, in this
strategy, the first convolution operation is performed on each channel or across some
time-samples, and the second convolution is conducted for all the channels, one
sample at a time. The resulting effect is a convolution across all input channels
for a number of samples. The MI data is fed to the CNN as a 2D array with
the channels as rows and time-samples as columns. The split convolution favors
this representation. The first convolution across time-samples can learn temporal
features, and the second convolution across channels is better adept to learn spatial
features.

Overfitting on small training datasets can be prevented through pretraining. HGD
is a large MI dataset created under controlled recording conditions and therefore
contains minimum noise. HGD is recorded with 128 electrodes from 20 healthy
subjects and consists of 880 trials in the training set and 160 trials in the test set.
Given that the training data available are larger than the BCID dataset, HGD is an
excellent resource for pretraining deep learning models.

5.3 Training

Two techniques are often used for training systems on EEG datasets. EEG data is
usually recorded in multiple sessions. Hence, one session is placed in the test set,
and all the rest are placed in the training set. In this way, the system is tested on
sessions that it has not seen before but belongs to the same subject. This within-
subject training is preferable as the EEG signal is dynamic, and testing across
subjects provides poor accuracy. The other training technique involves subject-to-
subject information transfer. One subject serves as the testing set, and all the rest act
as a training set. This process is repeated for all users. This cross-subject training
technique is more challenging, and the evaluation is more robust and generalized.
We used both techniques to train and test our proposed deep learning method.

The EEG data is cropped using a 2 s sliding window and then fed to the CNNs.
Cropped training forces the CNN to learn generic EEG features rather than learn
features specific to a trial or subject [37].
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Convolutions are followed by nonlinearity, max-pooling, and dense layer with
softmax. Performance improves when batch normalization and dropout are used.
Exponential linear units (ELU) are used as the activation function. The number and
sizes of filters and strides for each CNN model are provided in Table 2. Minibatch
stochastic gradient descent is used for optimizing CNN parameters. The softmax
function produces probability scores for each class. Batch normalization technique
contributes to performance enhancement.

Any increase in performance is determined by gradually increasing the
convolution-pooling blocks. CNNs with one, two, three, and four blocks show
improved learning capabilities for specific filter sizes and frequency bands. The
filter size and numbers are varied across models until the best combination is
obtained for each CNN.

Using more than four convolution-pooling blocks results in continuous perfor-
mance degradation, and thus CNNs with more than five blocks are not used in
this fusion method. This observation is aligned with other studies that use CNN
architectures with few layers for EEG decoding [28–30]. Deeper CNNs and residual
networks with very deep architecture are not suitable, as no research has achieved
good EEG decoding accuracy with them [37].

CNN with one convolution-pooling block (CNN-shallow) and four convolution-
pooling blocks (CNN-deep) show reasonable performance with particular filter
sizes. An initial filter size of 30 × 1 is used for CNN-shallow and 10 × 1 for CNN-
deep. Shallow CNNs using larger filter size may be effective at learning specific
temporal and spatial features, such as FBCSP, whereas the deep CNNs may be
suitable for extracting generic EEG features. This study investigated whether fusing
the features from these different CNNs improves classification accuracy.

6 Multilayer CNN Feature Fusion

In this study, a fusion method is proposed to combine CNNs for EEG classification.
One-layer CNN [37] has been used and have achieved similar results as reported
by the FBCSP method. CNN with more number of layers has been proposed to
achieve good decoding accuracy [37]. In this study, a fusion method using MLP and
autoencoders is used to fuse CNNs. Different CNN architectures may be effective
in extracting different types of EEG features. Hence, their fusion can help build
generic features for EEG decoding. Feature fusion for CNNs has not been evaluated
for EEG classification. EEG data is time-series recording that has multiple channel
sources, low SNR, and a nonstationary nature, and thus extracting relevant features
is a challenging task. Using multi-CNN feature fusion, this study aims to uncover
generic and robust features to improve EEG classification accuracy.

Feature fusion is conducted using two different architecture autoencoders. These
networks have been utilized for fusion and feature extraction [37]. The CNNs are
pretrained on the HGD dataset, and then fused by removing their final softmax clas-
sification layer and concatenating the features with a linear layer. This architecture
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Fig. 5 Multilayer CNNs fusion

Autoencoder (AE)

CNN features     

Fig. 6 Feature fusion model

of a multilayer CNN method is shown in Fig. 5. The multilayer CNNs method
is now trained on the BCID dataset through the within-subject and cross-subject
training approaches. A ninefold cross-validation scheme is used as a cross-subject
scheme, data from eight subjects are trained, and the remaining one subject is
validated. The resulting multilayer CNN features from the concatenation layer are
fed to the autoencoder. The network is then trained and fine-tuned on the combined
feature vector, and the output is sent to the softmax layer for the acquisition of the
probability score for the MI classes. The overall fusion architecture is provided in
Fig. 6.

7 Cross-Encoding with Autoencoders

An autoencoder is used as a fusion model. The CNN feature set is fed to the input
layer of the autoencoder and then passed through the fully connected hidden layer
for the reconstruction of the same input feature set at the output layer. The hidden
layer has a lower number of neurons, as depicted in Fig. 6 [23], and the output layer
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has the same number of nodes as the input layer in order to reconstruct its own
inputs. The hidden layer acts as a bottleneck that removes redundancy and learns
the most important features required to reconstruct the input. The autoencoders
act as an unsupervised learning technique. During training, input x is mapped
to the hidden layer during the encoding stage, and the hidden layer z output is
mapped to the output layer to reconstruct the input during the decoding stage.
After an unsupervised autoencoder training, supervised fine-tuning is conducted
for the simultaneous training and optimization of network parameters with the
backpropagation algorithm [21].

In this study, we aim to learn discriminative features that can be used by a
classifier to distinguish between the different motor imagery tasks for EEG data.
Individual differences always exist between subjects and between recording sessions
even when the EEG is recorded in controlled environments and optimal settings.
These differences increase the difficulty of combining recordings from different
subjects for the identification of general patterns in EEG signals. This problem
can be addressed by taking the average over many very short trials so that the
differences cancel each other out. However, EEG recording is a tiring and time-
consuming activity. Therefore, this strategy is infeasible. Hence, we devise an
alternative strategy to determine signal patterns from the raw EEG data that are
stable across subjects and represent generic EEG characteristics.

Many studies utilized autoencoders for learning CNN features [34] and achieved
improvements over CNN classification. In the present study, autoencoders are used
for fusion and learning of the combined feature vector. The concatenated feature is
fed to the autoencoder to learn generic EEG features. The autoencoders model has
100 hidden nodes, which show good learning capability. The cross-trial encoding
scheme is used according to previous autoencoder training approaches [42]. Autoen-
coders are trained for within-subject and cross-subject features. In within-subject
training, the autoencoder is forced to reconstruct another trial belonging to another
session from the same subject and class instead of simply trying to reconstruct same
input trial when fed with a combined CNN feature set from a particular session and
class for a subject. If there are nC trials for a particular class C, thenn2

C pairs of input
and target trials can be constructed for the autoencoder training. In this manner, the
autoencoder increases the training samples and learns robust and generic underlying
characteristics for the EEG data. In the cross-subject training, the autoencoders
are given features belonging to one subject and are forced to reconstruct features
belonging to any other subject for the same class. Subsequently, a softmax layer is
used for the identification of class labels for the reconstructed output features. In this
manner, the autoencoder provides better performance for within-subject and cross-
subject testing. Cross-encoding autoencoders in this way leads to adaptations that
reflect individual differences between subjects and provides common representation
across subjects. Similar to an autoencoder, the training objective here is to minimize
a reconstruction error. Therefore, this is an unsupervised training with the only
difference is that we have paired trials based on their class labels. The distance used
is based on the dot product for reconstruction error. In cross-subject training, the
trials are paired within subjects and then trained with trial pairs across subjects. In
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Fig. 7 Cross-encoding with
autoencoders

this process, the autoencoder is enabled to adapt to differences between the subjects
by conducting the training across all pairs of trials across subjects and using the best
weight for each subject. This cross-encoding scheme is depicted in Fig. 7.

By using the multilayer CNNs feature fusion approach, we are able to utilize
CNNs that vary in filter size and number of layers. This approach can extract
different convolutional features at different levels. CNNs have achieved good EEG
decoding accuracy [37, 43] with different depths of convolution layers and filter
sizes. Therefore, in this work, not only CNNs with different depths and different
filter sizes but also fused features from these CNNs are used in the construction of
a comprehensive feature vector.

8 Experiments and Results

Deep CNN model [37] is selected as a baseline for the evaluation of our proposed
multilayer CNNs fusion methods. This CNN method shows best results for EEG
classification [34, 44]. The deep CNN model [30] is implemented in PyTorch,
and the model is tested on the BCID dataset. The comparison between the overall
accuracy of our proposed methods with that of other methods is shown in Table
3. The proposed MCNN method outperforms other methods on BCID and HGD.
Our method achieved 74.1% accuracy for subject-specific training and testing on
the BCID dataset. Individual pretrained CNNs are tested, and the results show that
the fusion methods improve performance, as shown in Table 4.

Table 3 Subject-specific classification results obtained for the BCID and HGD datasets

Methods Description Accuracy (BCID) Accuracy (HGD)

Ang et al. [40] Filter Bank CSP 68.0% 91.2%
Tabar et al. [34] 1D CNN with SAE 70.0% –
Lawhern et al. [44] CNN with depth and

separable convolutions
69.0% –

Schirrmeister et al. [37] CNN with cropped training 72.0% 92.5%
Proposed method CNN-A 74.1% 94.0%
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Table 4 Classification results for CNNs with different number of Convolution-Pooling Blocks
layers with a corresponding convolution filter size

Models Conv-filter size Accuracy (BCID) Accuracy (HGD)

CNN-shallow 30 × 1 73.7% 89.1%
CNN-deep 10 × 1 72.8% 92.8%

Table 5 Cross-subject classification results for the BCID and HGC datasets

Methods Description Accuracy (BCID) Accuracy (HGD)

Ang et al. [40] Filter Bank CSP 38.0% 65.2%
Lawhern et al. [44] CNN with depth and

separable convolutions
40.0% –

Schirrmeister et al. [37] CNN with cropped training 41.0% 69.5%
Sakhavi et al. [45] Temporal features with

FBCSP and CNN
44.4% –

Proposed method CNN-A 53.2% 77.7%

One of the major contributions of this paper is cross-subject classification
improvement. The CCNN method with cross-encoding technique provides cross-
subject EEG classification results that are better than those reported in literature.
This study is the first to investigate the effects of cross-trial autoencoder training,
which showed state-of-the-art performance, as shown in Table 5. Cross-trial auto
encoding not only helped us increase the training set manifolds but also helped
autoencoders learn generic EEG features that are not subject specific. The proposed
method achieved over 10% accuracy improvement for cross-subject classification in
contrast to state-of-the-art deep learning models.

9 Conclusion

This study proposed a novel method for deep feature learning from MI EEG record-
ings that address issues and challenges for this domain. Multilayer CNN feature
fusion method for fusing features from different CNN layers and architectures were
proposed. Then, we used a cross-encoding technique to determine the difference
between individual subjects and trials and to apply the network to stable and com-
mon patterns across subjects. The results obtained by the proposed methods prove
that CNNs with different architectures, depths, and filter sizes have overwhelming
effect on accuracy and can extract different feature representations that can be
fused to improve classification accuracy. Using pretrained CNNs can help improve
feature learning and training on small-sized datasets. The cross-encoding approach
used for autoencoders can help improve cross-subject classification. The proposed
methods can learn a general representation of EEG signals that aid cross-subject
classification. Experimental results conducted on different challenging datasets
confirm the superiority of the proposed fusion methods as compared with state-of-
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the-art machine learning and deep learning methods for EEG classification. The
proposed method has been evaluated for both subject-specific and cross-subject
classification on challenging public dataset.

This method can be used as a cognitive system in a smart city environment to
help stakeholders communicate and control devices using motor imagery signals.

For future work, we aim to further refine CNN models and fusion methods
to improve within-subject and cross-subject classification accuracy. We intend to
determine robust features that allow our methods to be used as part of advanced
BCI systems.
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