
Speeding-Up the Dynamic Programming
Procedure for the Edit Distance

of Two Strings

Giuseppe Lancia1(B) and Marcello Dalpasso2

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine,
Via delle Scienze 206, 33100 Udine, Italy

giuseppe.lancia@uniud.it
2 Dipartimento di Ingegneria dell’Informazione, University of Padova,

Via Gradenigo 6/A, 35131 Padova, Italy
marcello.dalpasso@unipd.it

Abstract. We describe a way to compute the edit distance of two strings
without having to fill the whole dynamic programming (DP) matrix,
through a sequence of increasing guesses on the edit distance. If the
strings share a certain degree of similarity, the edit distance can be quite
smaller than the value of non-optimal solutions, and a large fraction
(up to 80–90%) of the DP matrix cells do not need to be computed.
Including the method’s overhead, this translates into a speedup factor
from 3× up to 30× in the time needed to find the optimal solution for
strings of length about 20,000.

1 Problem and Notation

Let Σ be an alphabet and s′, s′′ be two strings over Σ. We can always turn s′

into s′′ through a sequence of three basic operations:

– Deletion of a symbol σ of s′: cost del(σ).
– Insertion of a symbol τ of s′′ into s′: cost ins(τ).
– Substitution of a symbol σ of s′ with a symbol τ �= σ of s′′: cost sub(σ, τ).

The cost of the sequence is the sum of the costs of the individual operations. The
Edit Distance problem calls for computing a sequence of operations of minimum
cost, called the edit distance of s′ and s′′, here d(s′, s′′). We assume the costs are
positive (so that d(s′, s′′)= 0 ⇒ s′ = s′′) and s′ �= s′′, so that d(s′, s′′)> 0. For
convenience, we define sub(σ, σ) := 0 for all σ.

Usually the costs are represented in the form of a substitution matrix, i.e.,
a square matrix of order |Σ| + 1, with 0’s on the diagonal. The last row and
column of the substitution matrix are associated to an extra symbol ‘-’, called
gap, and contain the costs of insertions and deletions.

Some substitution matrices (here called simple) have the property that all
insertions and deletions have the same cost (the indel cost, IND) and all substi-
tutions have the same cost (SUB). For instance the standard substitution matrix
c© Springer Nature Switzerland AG 2019
G. Anderst-Kotsis et al. (Eds.): DEXA 2019 Workshops, CCIS 1062, pp. 59–66, 2019.
https://doi.org/10.1007/978-3-030-27684-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27684-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-27684-3_9

60 G. Lancia and M. Dalpasso

for the edit distance (called ones.mat here) is simple, with IND = SUB = 1.
Another popular simple substitution matrix is used for DNA comparison and
has SUB = 15 and IND = 10: we call this matrix dna.mat. In general, in a sub-
stitution matrix we can assume that sub(σ, τ) < del(σ) + ins(τ) (otherwise no
substitution would ever be made since it can be better mimicked by a deletion
followed by insertion). For a simple matrix this becomes SUB < 2 IND.

The edit distance problem, first investigated by Levenshtein in [5] (and there-
fore also known as Levenshtein distance), is a classic of string-related problems
[3], with main applications in the field of bioinformatics [4]. In this context, Σ
is either the alphabet of the 4 nucleotides or of the 20 amino acids, and the
problem is solved to determine the similarity between two genomic sequences
(i.e., to align them in the best possible way). It is effectively solved via a Θ(nm)
dynamic programming (DP) procedure [2,6], where n = |s′| and m = |s′′|.

The DP procedure is a two-level nested for cycle which fills a table P[·, ·] of
n + 1 rows and m + 1 columns. At the end, the value of a generic entry P[i, j]
with 0 ≤ i ≤ n and 0 ≤ j ≤ m is equal to the edit distance between the prefixes
s′[1, . . . , i] and s′′[1, . . . , j]. The standard code is like this (we assume that P[x, y]
returns +∞ if either x < 0 or y < 0):

P[0,0]:=0
for j := 1 to m do P[0, j] := P[0, j − 1] + ins(s′′[j])
for i := 1 to n do

for j := 0 to m do
P[i,j] := min{P[i, j − 1] + ins(s′′[j]), P[i − 1, j] + del(s′[i]),

P[i − 1, j − 1] + sub(s′[i], s′′[j])}
Hence, d(s′, s′′)= P[n,m]. The corresponding optimal sequence of operations can
be retrieved, for instance, by starting at the cell v := (n,m) and determining
which cell, among the candidates (n,m − 1), (n − 1,m − 1) and (n − 1,m), is
responsible for the value of v; then, set v to be such a cell and proceed back-
tracking in the matrix until v = (0, 0). We say that the cells thus touched are
on an optimal path P ∗ from (0, 0) to (n,m).

Our Goal. In retrospective, once P[·, ·] has been filled and we backtrack along
the optimal path, we see that there are some cells of P[·, ·] whose value is so
large that they could have never been on an optimal path but they have been
computed nonetheless. Ideally, we would have liked to fill P[·, ·] only in the cells
of P ∗, but the knowledge of these cells needs the knowledge of some other cells,
adjacent to them, and these in turn need some other cells, etc., so that it might
look impossible to avoid computing the value of some of the (n+1)(m+1) cells,
since we cannot exclude that any particular cell could belong to P ∗ or have an
effect on P ∗.

Indeed, as we will show, this is not the case and it is possible to determine a
subset of cells (a sort of “stripe” S from (0, 0) to (n,m)) which contains P ∗ and
whose cells can be evaluated without having to evaluate any cell out of S. The
total work to find P ∗ would then depend on |S| rather than being Θ(nm). The
smaller |S|, the better.

Speeding-Up the Dynamic Programming Procedure for the Edit Distance 61

In this paper we outline an iterative procedure to determine such an S,
starting from a tentative small stripe and progressively increasing it until it can
be proved that it is large enough: as shown in the results’ section, the proposed
approach outperforms DP if the strings are similar enough. We must underline
that a recent result [1] shows that, under a strong conjecture similar to the
P �= NP belief, no algorithm of worst-case complexity O((nm)t) with t < 1 is
likely to exist for computing the edit distance. This however does not affect our
result, which is to show that it is possible to have t < 1 in the best-case (while
for Dynamic Programming best and worst case take the same time), or to have
the same complexity as DP but with a better multiplicative constant.

2 Guesses and Stripes

If we reverse s′ and s′′, obtaining r′ and r′′, it is obvious that d(s′, s′′) = d(r′, r′′).
Assume Pr[·, ·] is the DP matrix for d(r′, r′′). Then, in the same way as P[i, j]
represents the edit distance between a length-i prefix of s′ and a length-j prefix
of s′′, we have that Pr[h, q] represents the edit distance between a length-h suffix
of s′ and a length-q suffix of s′′.

To have a consistent indexing between the two matrices, let S[i, j] := Pr[n −
i,m − j]. This way P[i, j] = d(s′[1, . . . , i], s′′[1, . . . , j]) and S[i, j] denotes the
best cost of completing the transformation of s′ into s′′, turning the suffix s′[i+
1, . . . , n] into the suffix s′′[j + 1, . . . , m]. In particular, P[i, j] + S[i, j] denotes the
optimal cost for turning s′ into s′′ given that the prefix s′[1, . . . , i] gets turned
into s′′[1, . . . , j].

Our strategy will aim at calculating only a subset of cells of P[·, ·] but, in
order to do so, we will also need to calculate a subset of cells of S[·, ·].

Let w0 := (0, 0) and w∗ := (n,m) be the upper left and the lower right cell,
respectively. We say that two cells a = (i, j) and b = (u, v), with a �= b, are
consecutive (or adjacent) if 0 ≤ u− i ≤ 1 and 0 ≤ v − j ≤ 1. For two consecutive
cells a and b we define a transition cost γ(a, b) as follows: γ((i, j), (i, j + 1)) :=
ins(s′′[j + 1]); γ((i, j), (i + 1, j)) := del(s′[i + 1]); and γ((i, j), (i + 1, j + 1)) :=
sub(s′[i + 1], s′′[j + 1]).

A path is a sequence (v0, . . . , vk) of cells such that v0 = w0, vk = w∗ and, for
each t = 0, . . . , k − 1, vt and vt+1 are consecutive. A path has length (or cost)
∑k−1

t=0 γ(vt, vt+1). Let OPT be the value of a shortest path, i.e., OPT := P[w∗]
(or equivalently, OPT := S[w0]): we are seeking to determine OPT.

Our approach will require to make a sequence of guesses of the value of OPT,
until we guess right. Given a certain guess τ ∈ R let us define two sets of cells:
M0(τ) := {v : P[v] ≤ τ/2} (the top matrix part) and M∗(τ) := {v : S[v] ≤ τ/2}
(the bottom matrix part).

Claim 1. Let τ ∈ R. If τ ≥ OPT then there exist consecutive cells v ∈ M0(τ)
and u ∈ M∗(τ) such that P[v] + γ(v, u) + S[u] = OPT.

Proof. Let P ∗ = (x0, . . . , xt) be the optimal path, where x0 = w0 and xt = w∗. If
xt ∈ M0(τ) then OPT ≤ τ/2. In this case, each xi ∈ M0(τ) and also each xi ∈

62 G. Lancia and M. Dalpasso

M∗(τ) so the claim is satisfied by taking v = xj and u = xj+1 for any j ≤ t− 1.
Otherwise, let j be the largest index ≤ t − 1 such that xj ∈ M0(τ). Notice that
this implies that P[xj+1] > τ/2. Now, if it were S[xj+1] > τ/2 we would have the
contradiction OPT = P[xj+1] + S[xj+1] > τ ≥ OPT. Therefore, xj+1 ∈ M∗(τ).
By setting v := xj and u := xj+1 we have OPT = P[v] + γ(v, u) + S[u].

Given τ , we call kissing pair any pair of consecutive cells v and u such that v ∈
M0(τ) and u ∈ M∗(τ). If kissing pairs exist, we say that M0(τ) and M∗(τ) kiss,
otherwise they are apart. Let μ(τ) be the minimum value of P[v] + γ(v, u) + S[u]
over all kissing pairs (v, u). The following test gives a sufficient condition for a
guess to be too small.

Claim 2. Let τ ∈ R. If M0(τ) and M∗(τ) are apart then OPT > τ .

Let r′, c′ be the largest row and column touched by M0(τ) and r′′, c′′ the
smallest row and column touched by M∗(τ).

Claim 3. Let τ ∈ R. If (r′′ − r′ > 1) ∧ (c′′ − c′ > 1) then OPT > τ .

The following lemma describes an optimality condition for a guess τ :

Lemma 1. Let τ ∈ R. If μ(τ) ≤ τ , then OPT = μ(τ).

Proof. μ(τ) ≤ τ implies that M0(τ) and M∗(τ) kiss, then there is a path of
length μ(τ), so that OPT ≤ μ(τ). Assume OPT < μ(τ). This implies OPT < τ .
By Claim 1, there is a kissing pair (v, u) such that μ(τ) ≤ P[v]+ γ(v, u)+ S[u] =
OPT < μ(τ), which is a contradiction.

Given a set X of cells, let S(X) be the minimum set of consecutive cells, over the
various rows, which contains all X. That is, if (i, a) is the first cell of X appearing
in row i, and (i, b) is the last, then all cells {(i, a), (i, a + 1), . . . , (i, b)} are in
S(X) and this is true for all rows i containing elements of X. To build M0(τ)
we need to compute P[v] for all v ∈ S(M0(τ)). We will show how to compute
{P[v] : v ∈ S(M0(τ))} in time O(|S(M0(τ))|): similar considerations hold for
M∗(τ). The sets M0(τ) and M∗(τ) are similar to some diagonal “stripes” of
cells: M0(τ) goes down diagonally from the upper-left corner while M∗(τ) grows
diagonally from the lower-right corner. Let us call PART(τ) := M0(τ) ∪ M∗(τ)
this partial DP matrix.

3 The Overall Procedure

For each guess τ , our procedure actually compute only the cells belonging to
PART(τ). Lemma 1 implies that we would like to make the smallest possible
guess which triggers the condition μ(τ) ≤ τ . By Claim 1, we could use as guess
an upper bound UB for OPT. Then, we would compute PART(τ) (this can be
done in time O(|PART(τ)|) and find the kissing pairs (in the same time com-
plexity), obtaining OPT. Unfortunately, O(|PART(τ)|) is significantly smaller
than Θ(nm) only if the upper bound is really tight (ideally, UB
 OPT) and it

Speeding-Up the Dynamic Programming Procedure for the Edit Distance 63

should be computed extremely fast to be competitive with DP: no such quick
and strong bound is known for the edit distance.

We therefore proceed “bottom-up”, starting with a “small”, optimistic guess
LB ≤ OPT (a lower bound, or even τ = 0) and then make a sequence of adjust-
ments, increasing the guess until it is large enough to trigger the condition of
Lemma 1:

1. Set k := 0, τ0 := 0 and compute PART(0)
2. repeat
3. k := k + 1
4. Increase the guess: τk := LB + kΔ
5. Compute PART(τk) from PART(τk−1) by left/right extending each

strip
6. Find the best kissing pair (v, u) in PART(τk)
7. Set μ(τk) := P[v] + γ(v, u) + S[u] (μ(τk) := +∞ if there are no kissing

pairs)
8. until μ(τk) ≤ τk

Step 1 is straightforward: PART(0) consists of two diagonals of 0s, one starting
at w0 and being as long as the longest common prefix of s′ and s′′, the other
one starting at w∗ and being as long as their longest common suffix.

Step 5 is incremental and needs some hints. We focus on updating M0(τk−1)
into M0(τk) (updating M∗ is similar). We can assume, inductively on k, that
for each row i we know the index αk−1(i) of the first element such that P[i, j] ≤
τk−1/2 and the index ωk−1(i) of the last element such that P[i, j] ≤ τk−1/2 (if
there is no such element in row i, then αk−1(i) := m + 1).

In row 0 αk(0) := αk−1(0) = 0, so we only extend row 0 on its right. Starting
at j := ωk−1(0) + 1 we compute all elements P[0, j] and stop as soon as P[0, j] >
τk/2, setting ωk(0) := j − 1. Then, proceeding inductively on i, assume we have
already extended the intervals at rows 0, . . . , i − 1 and are working on row i.
We first extend the interval to the left of αk−1(i). Notice that in the columns
0 ≤ j < αk(i − 1) of row i there can be no entry of value ≤ τk/2, or there
would have been also one in row i − 1, contradicting the definition of αk(i − 1).
Therefore, we start at j := αk(i − 1) and compute the entries P[i, j] from the
adjacent entries [i, j−1], [i−1, j] and [i−1, j−1] (clearly using only those whose
value P[] is known). We stop as soon as j = αk−1(i) (or, if αk−1(i) = m + 1,
we stop at j = ωk(i − 1) + 1). We set αk(i) to be the first j found such that
P[i, j] ≤ τk/2. Now we extend the strip to its right. Starting at j := ωk−1(i) + 1
we keep computing P[i, j] from the known adjacent cells. We stop as soon as all
the adjacent cells are not in M0(τk) and set ωk(i) := j − 1.

Notice how in step 6 the time needed to find the kissing pairs is bounded by
O(min{|M0(τk)|, |M∗(τk)|}) rather than by O(|M0(τk)| × |M∗(τk)|). Indeed,
even if each pair (v, u) is made of an element v ∈ M0(τk) and another u ∈
M∗(τk), to find the kissing pairs it is sufficient to scan all the elements of the
smallest set, and, for each of them, look at the adjacent cells (3 at most) to see
if they belong to the other set. This test can be done in O(1) time. For example,
to check if (x, y) ∈ M0(τk) we first check if αk(x) ≤ y ≤ ωk(x). If that is the
case, P[x, y] is known and we check if it is ≤ τk/2.

64 G. Lancia and M. Dalpasso

Lower Bound and Guess Increment. The procedure we have outlined would
work for any lower bound LB and any increment Δ > 0 (indeed, as soon as τk

becomes ≥ OPT , by Claim 1 we find the optimal path), but its effectiveness
depends on both these parameters. The best fine-tuning should be subject of
further investigations, but we already found a quite good combination.

First we describe the lower bound used, which holds for all simple substitution
matrices. Denote by sL the longest between s′ and s′′ and by sl the shortest. For
each character σ ∈ Σ and string y ∈ Σ∗, let nσ(y) be the number of occurrences
of σ in y. For each symbol σ ∈ Σ we define excess(σ) = max{nσ(sl)−nσ(sL), 0}.
Notice how the largest number of characters σ of sl which could be possibly
matched to identical characters in sL is nσ(sl) − excess(σ).

Claim 4. The following is a valid lower bound to OPT, computed in time O(n+
m):

LB =

(
∑

σ

excess(σ)

)

× SUB +
(|sL| − |sl|) × IND

The proof that this is indeed a bound is omitted for space reasons. In our exper-
iments we have noticed that this bound is quite strong when s′ and s′′ share a
good deal of similarity.

In order to decide the step Δ with which we increase the guess, we opted to
make this step proportional to the starting bound. By some tuning (not reported
for space reasons) we determined that Δ := LB/3 results overall in an effective
procedure which terminates after a small number of iterations.

4 Computational Experiments and Conclusions

To assess the effectiveness of the proposed method we ran some experiments
using an Intel R© CoreTM i7-7700 8CPU under Linux Ubuntu, equipped with
16 GB RAM at 3.6 GHz clock. The programs were implemented in C and com-
piled under gcc 5.4.0.

The problem instances were generated at random with a procedure based
on two probabilities pd and pm, a base string length L, and the alphabet size.
In each random instance, s′ has length L and is randomly generated within the
alphabet, while s′′ is obtained by modifying s′ as follows: each original character
is deleted with probability pd, then, if not deleted, it is mutated (randomly within
the alphabet) with probability pm. In the experiments reported here, we always
used pd = pm =: p, leaving to further investigation the sensitivity to differing
parameters. Clearly, lower values of p lead to more similar strings.

Table 1 reports the experiments run to compare the effectiveness of our
method to the standard DP implementation. As it can be seen, the speedup
is strongly dependant on p, i.e., on the string similarity: the more similar are
the strings, the more effective our method is. However, even with p = 0.2 (i.e.,
the strings are quite dissimilar, differing approximately by 20% both in length
and in contents), the proposed method saves about half time over DP, while it
achieves an average speedup factor of 35× when p = 0.01.

Speeding-Up the Dynamic Programming Procedure for the Edit Distance 65

Table 1. Comparison between our method and DP. Times are in seconds and the
speedup is shown along with the filled percentage of the matrix. The alphabet size is 4.

dna.mat ones.mat

String size 10000 20000 30000 40000 10000 20000 30000 40000 Average

p = 0.01 DP time 2.068 8.304 18.200 32.380 2.060 8.160 18.048 33.032

Our time 0.088 0.236 0.460 0.928 0.068 0.216 0.444 0.884

Speedup 23× 35× 40× 35× 30× 38× 41× 37× 35×
Filled Perc. 1.8% 1.4% 1.2% 1.2% 1.3% 1.2% 1.1% 1.1% 1.3%

p = 0.05 DP time 2.020 8.048 18.480 32.484 2.080 8.220 19.032 32.480

Our time 0.352 1.164 2.848 5.944 0.236 0.868 2.040 4.076

Speedup 6× 7× 6× 5× 9× 9× 9× 8× 8×
Filled Perc. 8.5% 7.4% 7.9% 8.3% 5.7% 5.1% 5.4% 5.7% 6.7%

p = 0.1 DP time 1.992 8.492 17.792 32.088 2.088 7.896 18.060 31.580

Our time 0.552 2.244 5.140 9.236 0.500 2.016 4.276 8.196

Speedup 4× 4× 3× 3× 4× 4× 4× 4× 4×
Filled Perc. 13.9% 14.2% 13.5% 13.7% 12.3% 12.4% 11.9% 12.0% 13.0%

p = 0.2 DP time 1.772 7.548 16.092 28.524 1.780 7.104 15.900 32.976

Our time 1.140 4.528 9.912 18.864 0.996 3.908 8.260 15.456

Speedup 2× 2× 2× 2× 2× 2× 2× 2× 2×
Filled Perc. 30.5% 29.1% 28.4% 28.9% 24.8% 23.8% 23.3% 23.6% 26.6%

5 10 15 20 25
0

2

4

6

Alphabet size

T
im

e
(s
ec
)

Avg. DP
Our: p = 0.2
Our: p = 0.1
Our: p = 0.05
Our: p = 0.01

Fig. 1. Sensitivity of time performance towards the alphabet size as well as the muta-
tion probability of strings, with base size equal to 15000 characters. DP is rather
independent of p, thus we report an average time.

Another preliminary analysis, shown in Fig. 1, regards the sensitivity of the
proposed method to the alphabet size. As can be seen, the performance are gen-
erally getting better with alphabets of increasing size, with a clear dependance
on p.

66 G. Lancia and M. Dalpasso

5 Conclusions and Future Work

This preliminary extended abstract shows a promising approach to calculating
the edit distance between two strings, leaving as future work the analysis of its
performance with different lower bounds (or no lower bound at all), different τ
increments as well writing the most effective code to readily identify and handle
the kissing pairs.

References

1. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

2. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162(3), 705–708 (1982)

3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, 534 p. Cambridge University Press (1997)

4. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms, 456 p.
MIT Press (2004)

5. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and rever-
sals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

6. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453
(1970)

	Speeding-Up the Dynamic Programming Procedure for the Edit Distance of Two Strings
	1 Problem and Notation
	2 Guesses and Stripes
	3 The Overall Procedure
	4 Computational Experiments and Conclusions
	5 Conclusions and Future Work
	References

