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Abstract. MicroRNAs (miRNAs) are short RNA sequences actively involved
in post-transcriptional gene regulation. Such miRNAs have been discovered in
most eukaryotic organisms. They also seem to exist in viruses and perhaps in
microbial pathogens to target the host. Drosha is the enzyme which first cleaves
the pre-miRNA from the nascent pri-miRNA. Previously, we showed that it is
possible to distinguish between pre-miRNAs of different species depending on
their evolutionary distance using just k-mers.
In this study, we introduce three new sets of features which are extracted from

the precursor sequence and summarize the distance between k-mers. These new
set of features, named inter k-mer distance, k-mer location distance and k-mer
first-last distance, were compared to k-mer and all other published features
describing a pre-miRNA. Classification at well above 80% (depending on the
evolutionary distance) is possible with a combination of distance and regular k-
mer features.
The novel features specifically aid classification at closer evolutionary dis-

tances when compared to k-mers only. K-mer and k-mer distance features
together lead to accurate classification for larger evolutionary distances such as
Homo sapiens versus Brassicaceae (93% ACC). Including the novel distance
features further increases the average accuracy since they are more effective for
lower evolutionary distances. Secondary structure-based features were not
effective in this study. We hope that this will fuel further analysis of miRNA
evolution. Additionally, our approach provides another line of evidence when
predicting pre-miRNAs and can be used to ensure that miRNAs detected in
NGS samples are indeed not contaminations. In the future, we aim for automatic
categorization of unknown hairpins into all species/clades available in miRBase.
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1 Background

Dysregulation of gene expression often defines a disease and microRNAs (miRNAs)
are post-transcriptional regulators strongly influencing protein abundance. Mature
miRNAs (18–24 nt in length; single stranded) are produced from precursor miRNAs
(pre-miRNAs) which are excised from nascent RNA (Erson-Bensan 2014). While
miRNAs are described for large parts of the phylogenetic tree, the molecular pathway
for plants and animals may have evolved independently (Chapman and Carrington
2007). Both, however, share that pri-miRNAs are transcribed, hairpins (pre-miRNAs)
are cleaved from them and that the mature miRNA is incorporated into a protein
complex which performs the targeting with the mature sequence as a key element.
MicroRNAs have been described for a variety of species ranging from viruses (Grey
2015) to plants (Yousef et al. 2016). Due to involved experimental detection mecha-
nisms, there is reliance on computational approaches to detect miRNAs and many
approaches have been developed (Yousef et al. 2006; Allmer and Yousef 2012; Saçar
Demirci and Allmer 2014). Many such approaches are based in machine learning and
these, with few exceptions (Dang et al. 2008; Yousef et al. 2008; Khalifa et al. 2016),
perform two class classification. MicroRNAs and microRNA targets are collected in
databases like miRTarBase (Hsu et al. 2014), TarBase (Vergoulis et al. 2012), and
MirGeneDB (Fromm et al. 2015) which generally depend on miRBase (Kozomara and
Griffiths-Jones 2011) which is the main collection of all miRNAs.

Hundreds of features have been proposed (Saçar Demirci and Allmer 2013) for the
parameterization of pre-miRNA sequences. Saçar Demiric et al. (2017) and miRNAfe
(Yones et al. 2015) implemented almost all of the published features categorized into
sequence, structural, thermodynamic, probabilistic based ones or a mixture of these
types which can further be normalized by other features like stem length, number of
stems, or similar. The tool, izMiR, evaluated the previously published approaches in
terms of their selected feature sets (Saçar Demirci et al. 2017).

Short nucleotide sequences (k-mers) have been used early on for the machine
learning-based ab initio detection of pre-miRNAs (Lai et al. 2003). Additionally, we
have recently conducted studies to answer the question whether the pre-miRNA
sequence (ignoring the secondary structure) can be differentiated among species and
may, therefore, contain a hidden message that could influence recognition via the
protein machinery of the miRNA pathway. We further investigated whether there is a
consistent difference among species taking into account their evolutionary relationship.

In order to answer these questions, we established random forest machine learning
models using two class classification with the positive class being pre-miRNAs from
one species/clade and the negative pre-miRNAs from a different species/clade (Yousef
et al. 2017a) and found that distantly related species can be distinguished on this basis.
In another recent study (Yousef et al. 2017b), we corroborated on this approach and
introduced information-theoretic features but found that k-mers were sufficient for this
type of analysis. Here, we have established novel features based on k-mers and
compare the performance results with other type of features. The new k-mer distance
features perform slightly better (on average *1%) than k-mer features and is slightly
less effective (on average *0.6%) when compared to selected features from all
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categories. Combining the k-mer distance with the simple k-mer feature sets does not
improve performance. However, the novel features are more successful for closer
evolutionary distances. In conclusion, the usage of the novel k-mer distance feature set
can be encouraged in future studies aiming to differentiate among species based on
their miRNAs. In the future, we aim to further analyze the importance of the location of
k-mers within a miRNA and the distance among k-mers in order to find a biological
interpretation and we will establish an automated categorization system which will
place pre-miRNA candidates into their clade/species of origin.

2 Methods

2.1 Parameterization of Pre-miRNAs

Recently, we have shown that k-mers are sufficient to allow categorization of pre-
miRNAs into their species of origin (Yousef et al. 2006). Here we use k-mer features as
described in (Yousef et al. 2006). In addition to k-mers we use inter k-mer distance
where for each k-mer we find its first occurrence in the sequence and then calculate its
distance to each k-mer’s terminal occurrence in the sequence including the subject k-
mer. The sum of these distances computes the overall score which is further normalized
by the length of the sequence. Another novel set of features is the k-mer first-last
distance which is the distance between the first occurrence and last occurrence of a k-
mer within the pre-miRNA sequence. The distance is normalized to the length of the
pre-miRNA sequence. Finally, we introduce the k-mer location distance which con-
cerns the average of k-mer distances between locations (dl = dl/|loci|). If the k-mer is
not found in the sequences the value will be -1 and if it appears only once the value of
its feature will be 0. For comparison we also include known secondary structure based
features: (1) Number of Base Pairs, Number of Bulges, (2) Number of Loops,
(3) Number of bulges with length i (i = 1 to 6), (4) Number of bulges with length
greater than 6, (5) Number of loops with length I, i = 1 to 6 (odd number capture
asymmetric loops), and (6) Number of loops with length greater than 6. A KNIME
workflow (Berthold et al. 2008) was created to extract those features using the sec-
ondary structures obtained from the mirBase (Griffiths-Jones 2010).

The data consists of information from 15 clades. The sequences of Homo sapiens
were taken out of the data of its clade Hominidae. The process of removing homology
sequences (keeping just one representative) consisted of combining all clades and
Homo sapiens sequences into one dataset and then applying the USEARCH (Edgar
2010) to clean the data by removing similar sequences. The USEARCH tool clustered
the sequences by similarity. From each cluster, one representative was chosen to form a
new dataset with non-homologous sequences. The new dataset was then broken into
clades without similar sequences between each pair of clades. Cleaning the data
ensured that the results were accurate. The following clades and species from miRBase
were used: Hominidae, Brassicaceae, Hexapoda, Monocotyledons (Liliopsida),
Nematoda, Fabaceae, Pisces (Chondricthyes), Virus, Aves, Laurasiatheria, Rodentia,
Homo sapiens, Cercopithecidae, Embryophyta, Malvaceae, Platyhelminthes.
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Following the study of (Yousef et al. 2017a), we used the random forest
(RF) classifier implemented by the platform KNIME (Berthold et al. 2008). The
classifier was trained and tested with a split into 80% training and 20% testing data.
Negative and positive examples were forced to equal amounts using stratified sampling
while performing a 100-fold Monte Carlo cross-validation (MCCV) (Xu and Liang
2001) for model establishment. For each established model, we calculated a number of
statistical measures like the Matthews’s correlation coefficient (Matthews 1975), sen-
sitivity, specificity, and accuracy for evaluation of model performance. All reported
performance measures refer to the average of 100-fold MCCVs.

3 Results and
Discussion

We have previously shown that
k-mers may be sufficient to
allow the categorization of
miRNAs into species (Yousef
et al. 2017b). For this study, we
selected pre-miRNAs of a
number of species and/or clades
to analyze the ability of three
new set of features to aid the
categorization of pre-miRNAs
into their species/clades (see
Methods). The selected data
represents a range of clades at
various evolutionary distances
to ensure comprehensive testing.
For each pair of species/clades
we trained a classifier. We
compare k-mer features and all
published features with our new
feature sets (Table 1).

In summary, secondary structure based features are not as successful when used for
categorizing pre-miRNAs into species/clades. Using all published features is as suc-
cessful as using the best 100 from k-mer and k-mer distance features selected by
information gain. K-mer location distance feature is most successful among the k-mer
distance features with similar accuracy as using k-mers alone.

Table 1. Summary of the pair-wise classification
results. Yellow shades indicate lower accuracy
while red shades show higher accuracy.
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Viruses 0.85 0.84 0.86 0.86 0.86 0.86 0.86 0.74

Monocotyledons 0.81 0.80 0.83 0.81 0.81 0.81 0.83 0.72

Fabaceae 0.82 0.80 0.83 0.81 0.81 0.81 0.82 0.72

Embryophyta 0.85 0.84 0.87 0.86 0.87 0.86 0.87 0.79

Brassicaceae 0.85 0.83 0.86 0.85 0.85 0.85 0.87 0.80

Malvaceae 0.84 0.83 0.85 0.83 0.84 0.84 0.86 0.79

Platyhelminthes 0.82 0.81 0.83 0.82 0.82 0.82 0.85 0.68

Nematoda 0.84 0.82 0.85 0.83 0.83 0.83 0.85 0.73

Hexapoda 0.82 0.80 0.83 0.81 0.82 0.82 0.84 0.69

Pisces 0.81 0.79 0.82 0.81 0.81 0.81 0.82 0.69

Aves 0.81 0.78 0.81 0.80 0.80 0.80 0.81 0.69

Laurasiatheria 0.85 0.84 0.87 0.86 0.86 0.86 0.88 0.82

Roden a 0.80 0.77 0.80 0.79 0.79 0.79 0.81 0.70

Hominidae 0.77 0.76 0.78 0.77 0.77 0.77 0.78 0.67

Homo sapiens 0.78 0.77 0.79 0.78 0.78 0.78 0.79 0.69

Cercopithecidae 0.77 0.76 0.78 0.77 0.77 0.77 0.79 0.69

Average 0.82 0.80 0.83 0.82 0.82 0.82 0.83 0.73
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4 Conclusions

Here we conducted experiments using a novel transformation of the k-mer features
used to parameterize pre-miRNAs for machine learning. Three k-mer distance features,
inter k-mer, k-mer first-last, and k-mer location distance were examined and compared
to regular k-mer and most published features for pre-miRNA parameterization.

In general, categorization is better for more distant species/clades. The ability of k-
mer features to perform accurate categorization at larger evolutionary distances con-
firms our previous observation (Yousef et al. 2017a, b). K-mer inter and k-mer location
distance perform similar to k-mer alone while their combination followed by selection
of the best 100 features using information gain leads to a slight increase in average
accuracy of 1%. We selected parameters describing the secondary structure of pre-
miRNAs in order to understand their contribution for categorization and found that they
are on average about 10% less accurate (Table 1). This finding supports the conser-
vation of structure over the conservation of sequence. In conclusion, k-mer and k-mer
distance features together lead to accurate categorization for larger evolutionary dis-
tances such as Homo sapiens versus Brassicaceae (93% ACC). Including the novel
distance features further increases the average accuracy since they are more effective
for lower evolutionary distances; while using secondary structure-based features is not
as effective. We hope that this will fuel further analysis of miRNA evolution. Addi-
tionally, our approach provides another line of evidence when predicting pre-miRNAs
and can be used to ensure that miRNAs detected in NGS samples are indeed not
contaminations. In the future, we aim for automatic categorization of unknown hairpins
into all species/clades available in miRBase.
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