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Abstract. Differential privacy is a standard mathematical framework to
quantify the degree to which individual privacy in a statistical dataset is
preserved. We derive an optimal (ε, δ)–differentially private noise adding
mechanism for real-valued data matrices meant for the training of models
by machine learning algorithms. The aim is to protect a machine learning
algorithm from an adversary who seeks to gain an information about the
data from algorithm’s output by perturbing the value in a sample of the
training data. The fundamental issue of trade-off between privacy and
utility is addressed by presenting a novel approach consisting of three
steps: (1) the sufficient conditions on the probability density function of
noise for (ε, δ)–differential privacy of a machine learning algorithm are
derived; (2) the noise distribution that, for a given level of entropy, mini-
mizes the expected noise magnitude is derived; (3) using entropy level as
the design parameter, the optimal entropy level and the corresponding
probability density function of the noise are derived.
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1 Introduction

The data on which a machine learning or a data analytics algorithm operates
might be owned by more than one party and a party may be unwilling to share
its real data. The reason being that an algorithm’s output may result in a leakage
of private or sensitive information regarding the data. Differential privacy [3,5]
is a standard framework to quantify the degree to which the data privacy of

The research reported in this paper has been partly supported by EU Horizon 2020
Grant 826278 “Serums” and the Austrian Ministry for Transport, Innovation and Tech-
nology, the Federal Ministry for Digital and Economic Affairs, and the Province of
Upper Austria in the frame of the COMET center SCCH.

c© Springer Nature Switzerland AG 2019
G. Anderst-Kotsis et al. (Eds.): DEXA 2019 Workshops, CCIS 1062, pp. 108–118, 2019.
https://doi.org/10.1007/978-3-030-27684-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27684-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-27684-3_15


Privacy-Preserving Machine Learning 109

each individual in the dataset is preserved while releasing the algorithm output.
Differential privacy is a property of an algorithm’s data access mechanism and
remains immune to any post-processing on the output of the algorithm. Machine
learning methods such as deep neural networks have delivered remarkable results
in a wide range of application domains. However, their training requires large
datasets which might be containing sensitive information that need to be be
protected from model inversion attack [6] and such issues have been addressed
within the framework of differential privacy [1,14].

The classical approach for attaining differential privacy for a real-valued
function, where the function represents mathematically a machine learning algo-
rithm, is to perturb the function output via adding noise calibrated to the global
sensitivity of the function [4]. Adding of required amount (for attaining a given
level of privacy) of noise would result in a loss of algorithm’s accuracy and thus
it is important to study the trade-off between privacy and accuracy [2,10]. A
general framework to provide utility guarantees for a single count query, subject
to ε–differential privacy, was studied in [11]. A similar study taking a minimax
model of utility for information consumers has been made in [12]. For single
real-valued query function, a staircase-shaped probability density function was
suggested in [8] for an optimal ε–differentially private noise adding mechanism.
The approach was extended to the vector real-valued query function in [7]. For
integer-valued query functions, the optimal mechanisms in (ε, δ)–differential pri-
vacy were studied in [9]. For single real-valued query function, the trade-off
between privacy and utility in (0, δ)–differential privacy was studied in [10].

Despite the fact that random noise adding mechanism has been widely used
in privacy-preserving machine learning via output perturbation, there remains
the challenge of studying privacy-utility trade-off for the algorithms performing
a learning of the models with the matrix data (where e.g. rows corresponds to
features and columns corresponds to samples). The aim is to protect a machine
learning algorithm from an adversary who seeks to gain an information about
the data from algorithm’s output by perturbing the value in an element of the
training data matrix. There is no standard approach to optimally design (ε, δ)–
differentially private noise adding mechanism for real-valued data matrices used
by a machine learning algorithm for the model training purpose. This study fills
this gap by providing a general random noise adding mechanism for real-valued
data matrices such that the mechanism, subject to (ε, δ)–differential privacy of
a machine learning algorithm, minimizes the expected noise magnitude. To the
best knowledge of authors, this is the first study of its kind to provide entropy
based approach for resolving the privacy-utility trade-off for real-valued data
matrices.

2 Sufficient Conditions for Differential Privacy

Consider a dataset consisting of N number of samples with each sample hav-
ing p number of attributes. Assuming the data as numeric, the dataset can
be represented by a matrix, say Y ∈ R

p×N . The machine learning algorithms
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typically train a model using available dataset. A given machine learning algo-
rithm, training a model using data matrix Y, can be represented by a mapping,
A : Rp×N → M, where M is the model space. That is, for a given dataset Y, the
algorithm builds a model M ∈ M such that M = A(Y). The privacy of data
can be preserved via adding a suitable random noise to data matrix before the
application of algorithm A on the dataset. This will result in a private version
of algorithm A which is formally defined by Definition 1.

Definition 1 (A Private Algorithm on Data Matrix). Let A+ : Rp×N →
Range(A+) be a mapping defined as

A+ (Y) = A (Y + V) , V ∈ R
p×N (1)

where V is a random noise matrix with fvi
j
(v) being the probability density func-

tion of its (j, i)–th element vi
j; vi

j and vi′
j are independent from each other for

i �= i′; and A : Rp×N → M (where M is the model space) is a given mapping
representing a machine learning algorithm. The range of A+ is as

Range(A+) =
{A (Y + V) | Y ∈ R

p×N ,V ∈ R
p×N

}
. (2)

We intend to protect the algorithm A+ from an adversary who seeks to gain an
information about the data from algorithm’s output by perturbing the values
in a sample of the dataset. We seek to attain differential privacy for algorithm
A+ against the perturbation in an element of Y, say (j0, i0)–th element, such
that magnitude of the perturbation is upper bounded by a scalar d. The d–
adjacency [13] definition for two real matrices is provided in Definition 2.

Definition 2 (d–Adjacency for Data Matrices). Two matrices Y,Y′ ∈
R

p×N are d–adjacent if for a given d ∈ R+, there exist i0 ∈ {1, 2, · · · , N} and
j0 ∈ {1, 2, · · · , p} such that ∀i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , p},

∣
∣yi

j − y′i
j

∣
∣ ≤

{
d, if i = i0, j = j0
0, otherwise

where yi
j and y′i

j denote the (j, i)–th element of Y and Y′ respectively. Thus, Y
and Y′ differ by only one element and the magnitude of the difference is upper
bounded by d.

Definition 3 ((ε, δ)–Differential Privacy for A+). The algorithm A+ (Y) is
(ε, δ)–differentially private if

Pr{A+ (Y) ∈ O} ≤ exp(ε)Pr{A+ (Y′) ∈ O} + δ (3)

for any measurable set O ⊆ Range(A+) and for d–adjacent matrices pair
(Y,Y′).
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Result 1 (Sufficient Conditions for (ε, δ)–Differential Privacy). The fol-
lowing conditions on the probability density function of noise vi

j ∈ R are suffi-
cient to attain (ε, δ)–differential privacy by algorithm A+ (Definition 1):

∫

Θ

fvi
j
(v) dv ≥ 1 − δ, where (4)

Θ
def=

{

v | sup
d̂∈[−d,d]

fvi
j−d̂(v)

fvi
j
(v)

≤ exp(ε), fvi
j
(v) �= 0, vi

j ∈ R

}

. (5)

Proof. The proof follows an approach similar to that of [13]. Define a set S ⊆
R

p×N as

S = {Y + V | A (Y + V) ∈ O} . (6)

Further, define Si
j ⊆ R as the set of (j, i)–th elements of members in S, i.e.,

Si
j =

{
yi

j + vi
j | A (Y + V) ∈ O}

. (7)

We have

Pr{A+ (Y) ∈ O} = Pr{A (Y + V) ∈ O} (8)
= Pr{Y + V ∈ S} (9)

=
p∏

j=1

N∏

i=1

Pr{yi
j + vi

j ∈ Si
j}. (10)

Considering Y and Y′ as d–adjacent matrices, there must exist an index, say
(j0, i0), at which Y and Y′ differ in value. Equality (10) can be expressed as

Pr{A+ (Y) ∈ O} = Pr{yi0
j0

+ vi0
j0

∈ Si0
j0

}
∏

j,i,j �=j0,i �=i0

Pr{yi
j + vi

j ∈ Si
j} (11)

Now, consider

Pr{yi0
j0

+ vi0
j0

∈ Si0
j0

}
= Pr{yi0

j0
+ vi0

j0
∈ Si0

j0
| vi0

j0
∈ (R \ Θ)} + Pr{yi0

j0
+ vi0

j0
∈ Si0

j0
| vi0

j0
∈ Θ}.(12)

It follows from the d–adjacency that there exists a d̂ ∈ [−d, d] such that

yi0
j0

= y′i0
j0

− d̂.

Thus,

Pr{yi0
j0

+ vi0
j0

∈ Si0
j0

}
= Pr{y′i0

j0
− d̂ + vi0

j0
∈ Si0

j | vi0
j0

∈ (R \ Θ)} + Pr{y′i0
j0

− d̂ + vi0
j0

∈ Si0
j0

| vi0
j0

∈ Θ}

=
∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈(R\Θ)}∩S
i0
j0

f
y

′i0
j0

−d̂+v
i0
j0

(v) dv

+
∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈Θ}∩S
i0
j0

f
y

′i0
j0

−d̂+v
i0
j0

(v) dv. (13)
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Now, we derive upper bounds on both terms at the right hand side of (13). First,
consider

∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈(R\Θ)}∩S
i0
j0

f
y

′i0
j0

−d̂+v
i0
j0

(v) dv

≤
∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈(R\Θ)}
f
y

′i0
j0

−d̂+v
i0
j0

(v) dv (14)

=
∫

R\Θ

f
v
i0
j0

(v) dv (15)

= 1 −
∫

Θ

f
v
i0
j0

(v) dv. (16)

It follows from the definition of Θ, i.e. from (5), that
∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈Θ}∩S
i0
j0

f
y

′i0
j0

−d̂+v
i0
j0

(v) dv

≤ exp(ε)
∫

{y′i0
j0

−d̂+v
i0
j0

| vi0
j0

∈Θ}∩S
i0
j0

f
y

′i0
j0

+v
i0
j0

(v) dv (17)

≤ exp(ε)
∫

S
i0
j0

f
y

′i0
j0

+v
i0
j0

(v) dv (18)

= exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}. (19)

Using (16) and (19) in (13), we have

Pr{yi0
j0

+ vi0
j0

∈ Si0
j0

} ≤ 1 −
∫

Θ

f
v
i0
j0

(v) dv + exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}. (20)

Under condition (4), inequality (20) leads to

Pr{yi0
j0

+ vi0
j0

∈ Si0
j0

} ≤ δ + exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}. (21)

Using (21) in (11), we have

Pr{A+ (Y) ∈ O}
≤ δ

∏

j,i,j �=j0,i �=i0

Pr{yi
j + vi

j ∈ Si
j}

+ exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}
∏

j,i,j �=j0,i �=i0

Pr{yi
j + vi

j ∈ Si
j} (22)
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≤ δ + exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}
∏

j,i,j �=j0,i �=i0

Pr{yi
j + vi

j ∈ Si
j} (23)

= δ + exp(ε)Pr{y′i0
j0

+ vi0
j0

∈ Si0
j0

}
∏

j,i,j �=j0,i �=i0

Pr{y′i
j + vi

j ∈ Si
j} (24)

= δ + exp(ε)Pr{Y′ + V ∈ S} (25)

= δ + exp(ε)Pr{A (Y′ + V) ∈ O} (26)

= δ + exp(ε)Pr{A+ (Y′) ∈ O}. (27)

That is, the condition (3) is satisfied and hence the result is proved.

Remark 1 (Sufficient Conditions for ε–Differential Privacy). The sufficient con-
ditions for ε–differential privacy follow from (4) with δ = 0 as

∫

Θ

fvi
j
(v) dv = 1, (28)

Θ =

{

v | sup
d̂∈[−d,d]

fvi
j−d̂(v)

fvi
j
(v)

≤ exp(ε), fvi
j
(v) �= 0, vi

j ∈ R

}

. (29)

where Θ is defined as in (5). The equality in (28) is due to the fact that the
integral of any probability density function over a subset can’t exceed unity.

3 An Optimal Differentially Private Noise

Result 2 (Minimum Magnitude for a Given Entropy Level). The prob-
ability density function of noise that, for a given level of entropy, minimizes the
expected noise magnitude is given as

f∗
vi
j
(v;h) =

1
exp(h − 1)

exp(− 2|v|
exp(h − 1)

), (30)

where h is the given entropy level. The expected noise magnitude is given as

Ef∗
vi
j

[|v|] (h) =
1
2

exp(h − 1). (31)
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Proof. We seek to solve

f∗
vi
j
(v;h) = arg min

fvi
j
(v)

∫

R

|v|fvi
j
(v) dv (32)

subject to

∫

R

fvi
j
(v) dv = 1 (33)

−
∫

R

log
(
fvi

j
(v)

)
fvi

j
(v) dv = h. (34)

Introducing Lagrange multiplier λ1 for (33) and λ2 for (34), the following
Lagrangian is obtained:

L(fvi
j
, λ1, λ2) =

∫

R

|v|fvi
j
(v) dv + λ1

(∫

R

fvi
j
(v) dv − 1

)

+ λ2

(
h +

∫

R

log
(
fvi

j
(v)

)
fvi

j
(v) dv

)
.

The functional derivative of L with respect to fvi
j

is given as

δL
δfvi

j

= |v| + λ1 + λ2

(
1 + log

(
fvi

j
(v)

))
. (35)

Setting δL/δfvi
j

equal to zero, we have

fvi
j
(v) = exp(−1 − λ1

λ2
) exp(−|v|

λ2
), λ2 �= 0. (36)

Setting ∂L/∂λ1 equal to zero and then solving using (36), we get

fvi
j
(v) =

1
2λ2

exp(−|v|
λ2

), λ2 > 0. (37)

Setting ∂L/∂λ2 equal to zero and then solving using (37), we get the optimal
value of λ2 as

λ∗
2 =

1
2

exp(h − 1). (38)

Using the optimal value of λ∗
2 in (37), the optimal expression for fvi

j
(v) is

obtained as in (30). As λ∗
2 > 0, L is convex in fvi

j
and thus f∗

vi
j

corresponds

to the minimum. Finally, the expected noise magnitude for f∗
vi
j

is given by (31).
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Result 3 (An Optimal ε–Differentially Private Noise). The probability
density function of noise that minimizes the expected noise magnitude together
with satisfying the sufficient conditions for ε–differential privacy is given as

f∗
vi
j
(v) =

ε

2d
exp(− ε

d
|v|). (39)

The optimal value of expected noise magnitude is given as

Ef∗
vi
j

[|v|] =
d

ε
. (40)

Proof. Let h∗ be the entropy of the optimal probability density function of the
noise satisfying the sufficient condition for ε–differential privacy. It follows from
Result 2 that the expression for optimal probability density function is given as

f∗
vi
j
(v;h∗) =

1
exp(h∗ − 1)

exp(− 2|v|
exp(h∗ − 1)

). (41)

Now, we have

sup
d̂∈[−d,d]

f∗
vi
j−d̂

(v;h∗)

f∗
vi
j
(v;h∗)

= exp(
2d

exp(h∗ − 1)
). (42)

Since f∗
vi
j
(v;h∗) satisfies the sufficient conditions (28–29), we have

exp(
2d

exp(h∗ − 1)
) ≤ exp(ε). (43)

That is,

1
2

exp(h∗ − 1) ≥ d

ε
. (44)

The left hand side of (44) is equal to the expected noise magnitude for f∗
vi
j
(v;h∗).

That is,

Ef∗
vi
j

[|v|] (h∗) ≥ d

ε
. (45)

It follows from (45) that the minimum possible value of expected noise magnitude
is equal to the right hand side of (45). The value of h∗, resulting in the minimum
expected noise magnitude, is given as

h∗ = 1 + log
(

2
d

ε

)
. (46)

The value of h∗ is put into (41) to obtain (39). The optimal density function
(39) satisfies the sufficient conditions (28–29) for Θ = R.

Result 3 justifies the widely used Laplacian distribution for ε–differential privacy.
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Result 4 (An Optimal (ε, δ)–Differentially Private Noise). The proba-
bility density function of noise that minimizes the expected noise magnitude
together with satisfying the sufficient conditions for (ε, δ)–differential privacy
is given as

f∗
vi
j
(v) =

{
δDiracδ(v), v = 0

(1 − δ) ε
2d

exp(− ε
d
|v|), v ∈ R \ {0} (47)

where Diracδ(v) is Dirac delta function satisfying
∫ ∞

−∞ Diracδ(v) dv = 1. The
optimal value of expected noise magnitude is given as

Ef∗
vi
j

[|v|] = (1 − δ)
d

ε
. (48)

Proof. It is obvious that the optimal noise density function (39) satisfies the
sufficient conditions (4–5) with Θ = R for any δ ∈ [0, 1] and thus attain (ε, δ)–
differential privacy for any δ ∈ [0, 1]. However, in this case (i.e. when Θ = R

and δ > 0), the lower bound on
∫

Θ
fvi

j
(v) dv in (4) is not tight. Therefore, we

need to derive an optimal density function for (ε, δ)–differential privacy taking
Θ ⊂ R. Let v0 ∈ R be a point which is excluded from R to define Θ, i.e.,

Θ = R \ {v0}. (49)

We extend the solution space for optimization by considering the discontinuous
distributions having an arbitrary probability mass r at an arbitrary point v0.
Let fvi

j

(
v; v0, r, qvi

j
(v)

)
be an arbitrary density function defined as

fvi
j

(
v; v0, r, qvi

j
(v)

)
=

{
rDiracδ(v − v0), v = v0

(1 − r)qvi
j
(v), v ∈ Θ (50)

Here, qvi
j
(v) is an arbitrary density function with a continuous cumulative distri-

bution function and satisfying the sufficient conditions (28–29) for ε–differential
privacy. As qvi

j
(v) is an arbitrary density function, the expected noise magnitude

for qvi
j
(v) must be greater than or equal to the optimal value (40), i.e.,

∫

R

|v|qvi
j
(v) dv ≥ d

ε
(51)

∫

Θ

|v|qvi
j
(v) dv +

∫

{v0}
|v|qvi

j
(v) dv

︸ ︷︷ ︸
=0

≥ d

ε
. (52)

Here, the integral over a single point is equal to zero because of a continuous
cumulative distribution function associated to qvi

j
(v). Thus,

∫

Θ

|v|qvi
j
(v) dv ≥ d

ε
, (53)
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where equality occurs if qvi
j
(v) is equal to (39). Also

∫

Θ

qvi
j
(v) dv =

∫

R

qvi
j
(v) dv −

∫

{v0}
qvi

j
(v) dv (54)

= 1. (55)

Thus
∫

Θ

fvi
j

(
v; v0, r, qvi

j
(v)

)
dv = 1 − r. (56)

For the density function (50) to satisfy condition (4), we must have

1 − r ≥ 1 − δ. (57)

The expected noise magnitude for the density function (50) is given as

Efvi
j

[|v|] (v0, r, qvi
j
(v)) = r |v0|︸︷︷︸

≥0

+ (1 − r)
︸ ︷︷ ︸

≥1−δ

∫

Θ

|v|qvi
j
(v) dv

︸ ︷︷ ︸
≥d/ε

. (58)

It follows immediately that Efvi
j

[|v|] is minimized together with satisfying the

sufficient conditions (4–5) with the following optimal choices for (v0, r, qvi
j
(v)):

v∗
0 = 0, r∗ = δ, and q∗

vi
j
(v) = ε

2d exp(− ε
d |v|). The result is proved after putting

the optimal values into (50).

4 Concluding Remarks

This paper has stated an approach to derive an optimal (ε, δ)–differentially pri-
vate noise adding mechanism for privacy-preserving machine learning. This is
the first study to address the fundamental issue of trade-off between privacy
and utility for matrix-valued query functions. Using noise entropy level as a
design parameter for resolving the privacy-utility trade-off is a novel idea that
would be further explored in our future work to link differential privacy with
information-theoretic machine learning.
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