
Coordination of Cyclic Motion Processes
in Free-Ranging Multiple Mobile Robot
Systems

Elzbieta Roszkowska

Abstract We consider aMultipleMobile Robot System (MMRS) viewed as a group
of autonomous robots sharing a common 2D motion space. Each robot performs a
mission that requires it to travel a number of times along a specific, independently
planned closed path. The robots operate asynchronously and are able to control their
motion with path-following algorithms that allow each of them to correctly perform
its mission when alone on the stage. When sharing the motion space, the robots must
refine their motion strategies in order to avoid collisions, through modification of
their paths, velocity profiles or both. Following our earlier contributions, we rep-
resent MMRS as a class of RAS (Resource Allocation System) that abstracts in a
discrete form the motion space and the motion processes of the robots. A model
of the feasible dynamic behavior of the robot system is then obtained by mapping
the distinguished RAS into a DFSA (Deterministic Finite State Automaton) that
ensures collision avoidance among the robots. Based on this model, we formulate
the deadlock avoidance problem, discuss its complexity, and demonstrate relevant
algorithms to solve it. Finally, we propose a control architecture that implements the
described control logic and combines it with the priority control, thus receiving a
flexible controller for MMRS.

1 Introduction

The use of a mobile robot team in place of one robot substantially increases the
performance of many robotic applications, including those related to transport, area
searching, search and rescue, interplanetary exploration, extraction of minerals, or
agriculture and forestry. A key issue in the design of such systems is to coordinate
the movement of a number of robots operating in the same workspace. Regardless

E. Roszkowska (B)
Department of Cybernetics and Robotics, Faculty of Electronics, Wrocław University
of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-372 Wrocław, Poland
e-mail: elzbieta.roszkowska@pwr.edu.pl

© Springer Nature Switzerland AG 2020
W. Bożejko and G. Bocewicz (eds.), Modelling and Performance Analysis
of Cyclic Systems, Studies in Systems, Decision and Control 241,
https://doi.org/10.1007/978-3-030-27652-2_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27652-2_5&domain=pdf
http://orcid.org/0000-0002-0675-9830
mailto:elzbieta.roszkowska@pwr.edu.pl
https://doi.org/10.1007/978-3-030-27652-2_5

88 E. Roszkowska

of their tasks, the robots must be able to effectively share a common area in order to
prevent the mutual disruption of traffic and effectively pursue their missions.

The prevailing approach to modeling Multiple Mobile Robot Systems (MMRS)
consists in the abstraction of the dynamics of the robots in time, and considering the
problem of the robots’ coordination over time. Earlier works mostly concentrated on
motion planning with respect to collision avoidance and performance optimization.
According to [17], two categories of approaches to these problems—centralized and
decoupled—can be distinguished as opposite ends of the spectrum of solutions. A
centralized approach typically constructs a path in a composite configuration space,
which is formed by theCartesian product of the configuration spaces of the individual
robots, e.g. [1]. A decoupled approach typically generates paths for each robot inde-
pendently, and then a coordination diagram is used to plan a collision-free trajectory
along the paths, e.g. [3]. Most often the problem of collision-free motion planning
is decomposed into two subproblems: path planning and trajectory planning. Path
planning finds geometric paths that do not intersect static obstacles, and trajectory
planning determines how fast each robot must move along its path to avoid collision
with others.

However, the control of a multiple robot system based solely on motion plan-
ning has a significant shortcoming. At the robot coordination level, the realization
of motion plans is an open-loop control policy, based on deterministic time func-
tions. Such a control is very sensitive to the system randomness, which, given the
autonomous and asynchronous operation of the robots, makes the eventual applica-
bility of these open-loop control plans highly questionable.

Therefore, more contemporary solutions use algorithms that calculate robot coor-
dination decisions online, taking into account dynamicmodels of the robots and infor-
mation about their current state. Two concepts representative for this approach are
Reciprocal Collision Avoidance [16] and the Potential Fields [4]. However, although
very effective locally, these methods cannot be easily adapted for the synthesis of the
required global system behavior. The continuous-time abstraction used to describe
a single robot, when applied to a multiple robot system yields solutions that are not
scalable and do not capture the asynchronous character of the robot cooperation. In
view of the above, a promising approach is the hybrid control concepts that combines
a DES-based (Discrete Event System) supervisory control logic with a CTS-based
(Continuous Time System) robot motion control. While various aspects of this type
of approach have been recently considered, e.g., [5–8, 10], few works provide for-
mal methodologies that are adaptable to changes in problem settings and guarantee
the correct and efficient operation of MMRS in the entire domain of their model
definition.

In this chapter, we consider a group of mobile robots, whose operation will be
viewed as a set of cyclic robot motion processes concurrently executed in a shared
area. A practical example of such a system can be a FlexibleAssembly System (FAS),
in which all of the parts that are needed to make one assembly are kitted on one pallet
and routed on vehicles through the work stations until complete. The components
are palletized into kits and finished assemblies removed from the pallets in a kitting
station (KS). An assembly vehicle is dedicated to a pallet from the moment when

Coordination of Cyclic Motion Processes … 89

it picks the pallet up in the KS to the moment when it returns to the KS. After the
vehicle drops the finished assembly off, it picks up the next pallet containing another
kitted assembly to be built, or if there are no new jobs that require service, remains in
the zone adjacent to the KS. The zone is big enough to accommodate all the vehicles,
and this is where they park when the system is shut down. Preparation of the kits in a
warehouse can also be done by mobile robots visiting the relevant storing area, and
abstracted by cyclic processes.

The objective of this work is to present the DES-based framework for the coordi-
nation of mobile robots sharing a common 2D motion space, proposed in [12, 15],
show its application to the supervisory control of cyclic robot motion processes,
and discuss its implementation in a centralized or a distributed controller. The fol-
lowing section describes the control problem for MMRS, gives the assumptions and
requirements defining the sought solution. Section 3 explains the assumed discretiza-
tion scheme of the continuous robot motion space and motion processes. Section 4
describes the RAS (ResourceAllocation System) abstraction of concurrent processes
[13] and their application to identifying specific classes of MMRS. A model of the
feasible dynamic behavior of the robot system is then obtained by mapping the dis-
tinguished RAS into DFSA (Deterministic Finite State Automaton) that ensures
collision avoidance among the robots. Based on this model, the subsequent section
deals with the deadlock avoidance problem, discusses its complexity, and provides
relevant algorithms to solve it. Finally, Sect. 6 concentrates on the control architec-
ture implementing the developed control logic, and the last section concludes this
research.

2 Problem Statement

We consider a Multiple Mobile Robot System (MMRS) viewed as a group of
autonomous mobile robots sharing a 2D space. Each robot performs a mission that
requires it to travel multiple times along a specific closed path. The path of each robot
is planned independently,without taking into account anypositional constraints intro-
duced by the paths of other robots. The robots operate asynchronously and are able to
control their motion with path-following algorithms that allow each of them to cor-
rectly perform its mission when alone on the stage. When sharing the motion space,
the robots must refine their motion strategies in order to avoid collisions, through
modification of their paths, velocity profiles or both.

The objective of the MMRS control is to ensure that the operation of the system
is correct and efficient. The notion of correctness relates to a qualitative criterion
and requires that each robot be able to perform its mission without colliding with
other robots. That is, depending on the state of other robots, the path of a robot may
be re-planned and/or the robot may have to slow down or even come to a stop and
wait until the situation changes and it can safely resume further travel. Thus, the
correct control must also ensure for each robot, the possibility to resume its travel
after a break, i.e., eliminate from the MMRS behavior such phenomena as deadlocks

90 E. Roszkowska

and robot starvation. The induced modifications of the robot trajectories inevitably
cause an increase of their mission completion time, thus impact MMRS performance
measures, whose values can vary depending on the employed conflict resolution
policies. Consequently, there are two main questions driving the development of the
MMRS control.

1. How to modify dynamically the initially assumed motion control of the robots so
that:

a. in a finite time interval, all the robots will have accomplished their missions,
b. at each moment of this time interval, the areas occupied by any given pair of

robots are disjoint.

2. How to induce, within the admissible (i.e. observing requirements (1.a) and (1.b))
robot concurrent operation, efficient MMRS behavior.

As can be noticed, the control satisfying requirements (1.b) and (1.a) ensures,
respectively, collision-free and deadlock-free (free of both physical and logical dead-
locks) concurrent motion of the robots. Requirement (2) implies the need of a flexible
model of MMRS control that leaves room for the optimization of system efficiency
and of tools to carry it out. To achieve realization of these postulates, we employ a
modular control system, whose subsequent synthesis steps will be discussed in the
sequel.

3 Discrete Representation of MMRS

We start from a continuous representation of MMRS. The system consists of a set of
mobile robots A = {A1, . . . An} that share a finite planar workspaceWS ⊂ R2 with
the XY coordinate system. Each robot Ai ∈ A is represented by a disk with radius
ai , and its path pi is viewed as a curve in WS that is given by a pair of functions
pi (l) = (xi (l), yi (l)) ∈ R2, l ∈ [0, l̄i] ⊂ R.

The tessellation of the robot motion space that leads to a discrete abstraction of
their motion can take place in many different ways. Here, similar to [12], we assume
a simple tesselation scheme provided by a grid of horizontal and vertical lines spaced
at a distance d ≥ 2ρ and centered at the origin of a coordinate system, (x, y), that is
superimposed on the motion plane. The resulting cells will be denoted by W =
{w[i, j] : i ∈ {−I , . . . ,−1, 0, 1, . . . , I }, j ∈ {−J , . . . ,−1, 0, 1, . . . , J }}, where
−I , I , −J , and J are taken large enough to encompass the entire areaU , that sup-
ports the robot motion. Then, given a point (x, y) ∈ U and a cell w[i, j], we define:

(x, y) ∈ w[i, j] ⇐⇒ (i − 1) · d ≤ x ≤ i · d ∧ (j − 1) · d ≤ y ≤ j · d

The size d of the grid, that defines the length of the cell edges, should be selected by
considering the efficiency criteria mentioned above. In general, a smaller value of d

Coordination of Cyclic Motion Processes … 91

Fig. 1 Motion space
partition (solid line) and
regions of constant cell
occupation (dashed line)

can accommodate a larger number of robots, and therefore, can lead to a higher space
occupancy, but at the same time, it will lead to more disruption of the robot travels
by the superimposed resource allocation process, and possibly to more congested
traffic and longer delays.

In the sequel, we shall say that a robot (with its disk) centered at (xc, yc) occu-
pies cell w[i, j] iff its disk overlaps the cell, i.e., there exists (x, y) ∈ w[i, j] with
||(x, y) − (xc, yc)|| ≤ ρ, where || · || denotes the Euclidean norm. A graphical illus-
tration of this concept is given in Fig. 1. More specifically, the adopted tesselation is
defined by the grid of the solid horizontal and vertical lines, and the mobile robots
are depicted by the grey disks in it. As can be noticed, a robot can occupy one cell
(as in the case of A1), two neighboring cells (as in the case of A2), three neighboring
cells (as in the case of A3), or four neighboring cells (as in the case of A4).

Moreover, for the considered tesselation scheme, the subset of cells occupied by
a mobile robot that is located at (xc, yc) is effectively determined by the relative
positioning of (xc, yc) with respect to another partitioning of the motion plane, that
is induced by the original tesselation scheme and the robot geometry. In Fig. 1, this
induced partitioning is depicted by the dashed lines. If the disk center of a robot is
located in one of the circles then the robot occupies all four adjacent cells (as in the
case of A4). a robot occupies three cells if it is centered in any region that is the
difference between any circle and the square that describes it (as in the case of A3).
Next, a robot occupies two cells if its center lies in a rectangle located along the
tesselation line (as in the case of A2). And finally, a robot occupies one cell if it is
centered in the square located in the middle of the cell (as in the case of A1).

The above characterized tesselation, depicted in Fig. 1 by the dashed lines, par-
titions robot paths into maximal segments of constant cell occupation. That is, the
subset of cells occupied by the robot centered at any of point of a given segment is
the same, and it is different from the set of cells occupied by the robot in the sectors
preceding and succeeding the considered one. Consequently, it is convenient to view
the set of cellsW as the set of MMRS resources, and abstract the motion process of a
robot as a sequence of stages, each of which requires for its execution a specific sub-

92 E. Roszkowska

0 1

1

2

2

3

10p1

11p1

9p1

0p2
1p2

2p2

3p2

4p2

5p2
6p27p28p2

9p2

10p2

11p2
12p2 13p2

1p12p1
3p1

0p1

4p1 8p1-

A1

A2

_

4p1

4p1

5p1

6p1 7p1
8p1 9p1

8p1

3p1

Fig. 2 Example paths of two mobile robots and the corresponding resource allocation profiles that
are defined by the path partitioning into maximal segments with the same cell occupation. The right
part of the figure details the profile obtained for robot A1

Table 1 The resource allocation induced by the path segmentation of Fig. 2

(a) Robot 1

Stage No. Required resources

0 ∅
1 w[1, 1]
2 w[0, 1],w[1, 1]
3 w[0, 1]
4 w[0, 0],w[0, 1]
5 w[0, 0],w[0, 1],w[1, 1]
6 w[0, 0],w[0, 1],w[1, 0],w[1, 1]
7 w[0, 0],w[1, 0],w[1, 1]
8 w[0, 0],w[1, 0]
9 w[1, 0]
10 w[1, 0],w[1, 1]
11 w[1, 1]

(b) Robot 2

Stage No. Required resources

0 ∅
1 w[1, 0]
2 w[1, 0],w[2, 0]
3 w[2, 0]
4 w[2, 0],w[2, 1]
5 w[2, 1]
6 w[1, 1],w[2, 1]
7 w[1, 1]
8 w[0, 1],w[1, 1]
9 w[0, 1]
10 w[0, 1],w[0, 0]
11 w[0, 0]
12 w[0, 0],w[1, 0]
13 w[1, 0]

set of resources W ′ ⊂ W . An example partitioning of two paths is demonstrated in
Fig. 2. Path p1 of robot A1 consists of twelve (maximal) segments p01–p

11
1 , and path

p2 of robot A2 consists of fourteen such segments, p02–p
13
2 . Also, Table 1 specifies

the cells occupied by the two robots at the various stages of their route.

Coordination of Cyclic Motion Processes … 93

4 Collision Avoidance in MMRS

The discrete representation of the motion space and robot paths, discussed in the pre-
vious section, makes it possible to viewMMRS as a sub-class of Resource Allocation
Systems (RAS) [13], called FREE-RANGE-RAS [12] and defined as follows.

Definition 5.1 A FREE-RANGE-RAS is defined as a 4-tuple Φ = (R,C,P, D)

such that:

1. R = {R1, . . . , Rm} = W is the set of system resources, representing the set of
cells.

2. C : R → Z
+ is the resource capacity function that defines the maximal number

of robots that can occupy each particular cell at a time.
3. P = {P1, . . . , Pn} is the set of processes, representing the motion of each partic-

ular robot Ai along its path. Each process Pi is characterized by an ordered set of
stages Ξi = {Ξi1, . . . , Ξi,l(i)} corresponding to the motion of robot Ai (observed
through its disk center) along the consecutive segments of its path.

4. D : ⋃n
i=1 Ξi → 2R is the resource requirement function that defines the resources

D(Ξi j) = Di j required by every process Pi to execute its each particular stage
Ξi, j .

5. The sets of stages Ξi , i = 1, . . . , n, and function D arise from a geometrical
system. That is, there exists a set of planar paths p, which can be divided into
segments pi j , j = 1, . . . , l(i), traversing the cells so that they induce function D.

Moreover, we will distinguish two sub-classes of FREE-RANGE-RAS, namely
FREE-RANGE-k-RAS, where k ∈ Z

+, and FREE-RANGE*-RAS.

Definition 5.2 A FREE-RANGE-k-RAS is a FREE-RANGE-RAS in which the
capacity of each cell R ∈ R is C(R) = k.

Definition 5.3 A FREE-RANGE*-RAS is a FREE-RANGE-RAS in which for all
i = 1, . . . , n, j = 1, . . . , l(i), | Di j |∈ {1, 2}. That is, no robot ever occupies more
than two cells at a time, which is equivalent to that no robot’s path overlaps any
corner square of the tesselation grid.

A 4-tuple Φ = (R,C,P, D), specifies the parameters of a particular MMRS and
gives its static abstraction. A dynamic model of MMRS can be developed using
the formalism of the Deterministic Finite State Automaton (DFSA) [2], defined as
follows.

Definition 5.4 A deterministic finite state automaton (DFSA) is a 6-tuple G =
(S, E, Γ, f, s0, SM), where:

• S is the (finite) set of states.
• E is the (finite) set of events.
• Γ : S → 2E is the active-event function. Event e ∈ E can occur in state s ∈ S iff
e ∈ Γ (s).

94 E. Roszkowska

• f : S × E → S is the (partial) transition function, defined for pairs (s, e) such
that e ∈ Γ (s). s ′ = f (s, e) returns the state that results from the occurrence of
event e in state s.

• s0 ∈ S is the initial state of G
• SM ⊆ S is the set of marked states

The above DFSA starts its operation from state s0. In each state s ∈ S, an event e
can only occur if the state transition function f () is defined for the pair (s, e), i.e., if
e ∈ Γ (s). In that case, we say that event e is enabled in state s. The occurrence of
event e in s results in a new state s ′ = f (s, e), which can be changed subsequently
by the occurrence of event e′ that is enabled in state s ′, and so on. In order to capture
state transitions arising from strings of events, the state transition function f can be
inductively extended to S × E∗ by the following assumptions:

∀s ∈ S
(
f (s, ε) ≡ s

)

∀s ∈ S ∀u ∈ E∗ ∀e ∈ E
(
f (s, ue) ≡ f (f (s, u), e)

)

In the above equations, ε denotes the empty string, and E∗ denotes the set of all
strings that can be constructed with the elements of the set E ∪ {ε}. Moreover, it is
implicitly assumed that the involved single-step transitions correspond to the enabled
events, i.e., to the state-event pairs for which the original function f is defined;
otherwise, the extended version of f is undefined on the corresponding state-string
pair. Furthermore, we say that state s ∈ S is reachable from state s0 if there exists
string u ∈ E∗ such that function f (s, u) is defined; the set of all states reachable
from s is called the reachability set of s and denoted by Re(s). A special case of
such sets, Re(s0), is called the reachability set of the DFSA G. Using the discussed
formalism, a dynamic model of a particular MMRS can be obtained by the following
mapping of its specification Φ into DFSA.

Definition 5.5 The DFSA G(Φ) = (S, E, Γ, f, s0, SM) abstracting the feasible
dynamics of a FREE-RANGE-RAS Φ = (R,C,P, D) is defined as follows:

1. The state set S consists of all vectors s = (s1, s2, . . . , sn) ∈ Z
n such that:

a. ∀i ∈ {1, . . . , n} (
0 ≤ si ≤ l(i)

)
,

b. ∀R ∈ R
(
a(s, R) = |{si : R ∈ Di,si }| ≤ C(R)

)
.

Each component si of s indicates the current stage of process Pi (the motion
process of robot Ai). In particular, si �= 0 indicates that robot Ai is in the si -th
path segment of its route, and si = 0 indicates that robot Ai is located off the
shared space (thus holding no resource R ∈ R), where it ends one cycle of its
travel and starts another. For each R ∈ R, a(s, R) indicates the number of units
of resource R that are allocated in state s.

2. The event set E = {ei : i = 1, . . . , n}, where for every i = 1, . . . , n, ei represents
the transition of robot Ai to its next stage.

Coordination of Cyclic Motion Processes … 95

3. For each pair (s, ei), the state transition function returns the new state s ′ =
f (s, ei), whose components s ′

k , k = 1, . . . , n, are given by:

s ′
k =

{
(sk + 1) mod (l(k) + 1) if k = i

sk otherwise

4. Function f () is defined for a pair (s, e) iff e ∈ Γ (s), where the set of feasible
events Γ is defined by Γ (s) ≡ {e ∈ E | s ′ = f (s, e) ∈ S}.

5. The initial state s0 = 0, which corresponds to the situation where all the robots
are in their private space and therefore, all the system resources are free.

6. The set of marked states SM is the singleton SM = {s0}, and it expresses the
requirement for complete process runs.

If Φ ∈ FREE-RANGE-1-RAS, that is, if the capacity of all cells is C(Ri) = 1 then
the above defined DFSA model enforces mutually exclusive occupation of the cells
by the robots and, consequently, their collision-free motion. Otherwise, that is, if for
some cell Ri , C(Ri) > 1 then still no collisions can occur among robots that have
been allocated disjoint sets of cells, but an additional local coordination system is
needed to prevent internal collisions of the robots within each cell Ri . Such a system
can be based on a DES model, obtained by further discretization of the cell, creating
a local FREE-RANGE-1-RAS, or employ some of the reactive collision avoidance
methods, e.g., based on the potential field [9].

5 Deadlock Avoidance in MMRS

The operation of theMMRSmodelG(Φ), ensuring the disjointmotion of the robots’
disks, satisfies Requirement (1.b) defined in Sect. 2. However, Requirement (1.a) is
not satisfied, as the reachability set of G(Φ) can contain states s that are not safe,
i.e., such that the initial state s0 is not reachable from s.

To observe this, consider again the example of two robots and their path seg-
mentation, depicted in Fig. 2, and the resource requirements induced by this path
segmentation, given in Table 1. Let us assume that Φ ∈ FREE-RANGE-1-RAS,
that is, the capacity of the cells is 1. Next notice that in the initial state event
sequence u = e1, e2, e2, e1, e2, e2, e1, e2 is feasible and drives the system from state
s0 = [0, 0] to state s1 = f (s0, u] = [3, 5]. Then two state transitions are feasible: to
state s2 = f (s1, e1) = [4, 5] and to state s3 = f (s1, e2) = [3, 6]. State s2 = [4, 5] is
safe, as the initial state s0 can be reached from it by completing first the cycle of
robot A1 and then completing the cycle of robot A2. In state s3 = [3, 6] only two
event sequences are feasible: u′ = e1, e2 and u′′ = e2, e1, and both drive the system
to state s4 = f (s3, u′) = f (s3, u′′) = [4, 7], which is a deadlock as Γ (s4) = ∅. No
event is feasible in s4 because for its next stage, robot A1 requires resource w[1, 1],
which is held by robot A2, and robot A2 requires resource w[0, 1], which is held by
robot A1.

96 E. Roszkowska

In order to enforce the correct operation of G(Φ), it is necessary to introduce
a supervisor that extends the feasible-event function Γ (s) to a more restrictive
admissible-event function. The supervisor disables the occurrence of some state tran-
sitions and thus constrains the behavior of MMRS so that for each admissible event
sequence, there exists its admissible extension driving the system to the initial state.
This makes the system reversible, hence deadlock-free, and allows each process to
repeat its cycle any arbitrary number of times.

The optimal, i.e., the least restrictive supervisor should accept an event e ∈ E in
state s ∈ S if and only if e ∈ Γ (s) (event e is enabled in state s) and the next state
s ′ = f (s, e) is safe. Thus, any algorithm to check these conditions must solve the
following problem.

Safety problem: Given a FREE-RANGE-RAS Φ = (R,C,P, D), a safe state
s ∈ R(s0) and an enabled event e ∈ Γ (s), find out whether or not state s ′ = f (s, e)
is safe.

As demonstrated in [11], the Safety problem is NP-complete even if addressed to
any of the sub-classes of RAS, FREE-RANGE-k-RAS, k ∈ Z

+. On the other hand,
there exists a polynomial algorithm solving the safety problem for systems Φ ∈
FREE-RANGE*-RAS, in which the capacity of each resource R ∈ R is C(R) > 1
[15]. The high complexity of the first group of problems implies that practically only
sub-optimal solutions of the safety problem can be considered in FREE-RANGE-
RAS. Such algorithms ensure the reachability of the initial state, but not necessarily
in the least restrictive way.

From the viewpoint of the control synthesis for MMRS, most useful appear two
of the sub-classes of FREE-RANGE-RAS, each of which has its pros and cons. The
first class, FREE-RANGE-1-RAS, assumes that no more than one robot at a time can
be present in each particular cell, thus no further local coordination is required. How-
ever, the supervisory control employs a sub-optimal algorithm, which is in general
overly restrictive and may have some negative impact on the efficiency of the sys-
tem. The second class, FREE-RANGE*-2-RAS, allows for a maximally permissive
supervisor, so no unnecessary event disabling ever happens. Yet, it imposes some
constraints on the shape of the paths, which should omit the corner squares of the
tesselation structure. Also, as more than one robot can be present in a cell at a time,
an additional control is needed to ensure then their collision-free motion. Such a
coordination is, however, fairly simple, as the maximal number of robots in a cell is
limited to two. In the following we present two supervisors for the two distinguished
models, as proposed in [12, 15], respectively.

5.1 Deadlock Avoidance in FREE-RANGE-1-RAS

In these systems, the reversibility of G ′(Φ) can be enforced by constraining the
reachability space Re(s0) of G(Φ) to the subspace of p-ordered states Re′(s0) ⊆
Re(s0). The definition of such states, given below, uses the notion of a private stage

Coordination of Cyclic Motion Processes … 97

of process Pi , Ξiq , which means that the resources required at this stage, Di,q , are
not required by any other process in order to complete their cycle and reach back
their initial state.

Definition 5.6 In system G(Φ), state s = (s1, . . . , sn) is p-ordered iff there exists
an order on the set of robots A , p : A → {1, 2, . . . , n} that satisfies the follow-
ing condition: ∀i, j s.t. p(A j) > p(Ai), ∀k = si ..qi , Dik ∩ Djs j = ∅, where qi is
the smallest number s.t. qi ≥ si and stage Ξiqi is private, if such a number exists.
Otherwise qi = 0.

Less formally, a state s is p-ordered iff there exists an order of the robots such that no
robot with higher order occupies any of the cells that lie on the way of a robot with
a lower order to its nearest private stage. A procedure checking whether or not this
property is observed by a particular state of a particular system G(Φ) is presented
in Algorithm 1.

Algorithm 1. The function testing the p-ordered property of states in FREE-
RANGE-1-RAS
Input : Parameter Φ describing the RAS, state s ∈ S.
Output: True if the state is p-ordered, false otherwise.

1 Function p-ordered(Φ, s) : bool
2 A ←− P;
3 occupied ←− ∅;
4 for i = 1, . . . , n do
5 occupied ←− occupied ∪ Disi ;
6 qi ←− minpriv(i, si); remain[Ai] ←− ⋃qi

j=si
Di, j ;

7 repeat
8 A ′ ←− A ;
9 for Ai ∈ A do

10 if remain[Ai] ∩ occupied = Disi then
11 A ←− A \ {Ai };
12 occupied ←− occupied \ Di,si ;

13 if A = ∅ then
14 p-ordered ←− T RUE ;
15 else
16 p-ordered ←− FALSE ;

17 until A ′ = A ∨ A = ∅;

As in the above algorithm, the operations on the set A are O(n) complex, the
complexity of the whole function is O(n2), which qualifies it for online applications.
It is also not hard to notice the following property.

98 E. Roszkowska

Property 5.1 In system G(Φ), the final state can be reached from any state s that
is p-ordered.

Proof The condition defining the p-ordered state provides the robots Ai , i = 1..n,
with the ability to progress one-by-one, in the order given by p(Ai), to their respective
closest private stages Ξ

qi
i . Since then no robot occupies a cell that can be required

by any other robot on its way to complete the cycle, the robots can one by one reach
back their initial state. �

Definition 5.7 A p-controlled MMRS G ′(φ) is a restriction of DFSA G(Φ) =
(S, E, Γ, f, s0, SM) obtained by:

• substituting the feasible-event functionΓ (s) by admissible-event functionΓ ′(s) =
{e : e ∈ Γ (s) ∧ s ′ = f (s, e) is p-ordered}, and

• substituting the transition function f with f ′ such that f ′(s, e) = f (s, e), but it
is only defined for admissible pairs (s, e), i.e., such that e ∈ Γ ′(s).

The following theorem proves that G ′(Φ) is reversible and thus its operation
satisfies Requirement (1.a).

Theorem 5.1 In a p-controlled MMRS G(Φ), the initial state s0 is reachable from
each state s reachable from the initial state s0.

Proof Based on Definition 5.7, each state reachable in a p-controlled G(Φ) is p-
ordered. Thus, by Property 5.1, the theorem holds. �

5.2 Deadlock Avoidance in FREE-RANGE∗-2-RAS

Since in this class of models the robot paths omit the square corners of the tesselation
grid, themotion process of each robot consists of a sequence of stages that correspond
alternately to the travel in a cell and the transition from one cell to the next one. At
a stage of the latter type, a robot occupies both cells, yet it eventually passes to
a stage of the former type and its disk no more occupies the previous cell. Thus,
from the viewpoint of deadlock avoidance, the transitions between the cells can be
considered as transient states, and FREE-RANGE∗-2-RAS can be viewed as a system
of processes, whose each stage Ξi j requires a single resource D(Xii j) = Di j ∈ R.

The supervisor defined for this class ofMMRScontrolmodels employs a graphical
representation of a state that has the form of resource allocation graph.

Definition 5.8 The resource allocation graph representing a state s ∈ S of G(Φ) is
a graph F(s) = (V, H) such that:

• The set of vertices is defined by the extended set of resources V = R ∪ {R∞},
where R∞ is a dummy resource of infinite capacity allocated to each process
Pi ∈ P at its stage Ξi0.

Coordination of Cyclic Motion Processes … 99

Algorithm 2. The function testing the safety of state transition s ′ = f (s, ei) in
FREE-RANGE∗-2-RAS.
Input: Parameter Φ describing the RAS, state s, and the index i of the process, whose

potential advancement to the next stage is considered in the context of the safety of
the resulting state s′.

1 Function sa f e(Φ, s, i) : bool
2 if si = l(i) then
3 return true

4 if a(s, Disi+1) = |{sk : Dk,sk = Disi+1 }| = 0 then
5 return true

6 s′ ←− f (s, ei);
7 if ∃t = R1, R2, . . . , Rq , q ≥ 1, such that R1 = Disi+1 and Rq = R∞ or

a(s′, Rq) = |{s′
k : Dk,s′k = Rq }| < 2 then

8 return true

9 return false

• The set of edges is defined by the set of robot processes H = P . The edge (cor-
responding to process) Pi goes from vertex R ∈ R to vertex R′ ∈ R iff , at state s,
process Pi has been allocated resource R and for its next stage it requires resource
R′. Edge Pi goes from vertex R ∈ R to vertex R∞ iff si = l(i), i.e., at state s,
process Pi executes the last stage of its cycle, Ξi,l(i). Edge Pi goes from vertex
R∞ to a vertex R ∈ R iff si = 0, that is, process Pi is in its initial state.

The following theorem [14] provides a property that allows the construction of a
maximally permissive supervisor.

Theorem 5.2 Consider aRASΦ ∈ FREE-RANGE∗-2-RAS, aDFSAG(Φ), a reach-
able safe state s, and an event ei such that the next state s ′ = f (s, ei) is defined.
Then, state s ′ is safe iff in the graph F(s ′), there exists a path t = R1, R2, . . . , Rq,
q ≥ 1, from resource R1 = Disi+1 , to a resource Rq ∈ V that in state s ′ is allocated
to fewer processes than its capacity.

It is clear that the restriction of any DFSA G(Φ), Φ ∈ FREE-RANGE∗-2-RAS,
to G ′(Φ) obtained by substituting function Γ (s) with function Γ ′(s) = {e : e ∈
Γ (s) ∧ s ′ = f (s, e) is safe} yields a model of MMRS that is reversible and max-
imally permissive, i.e., it captures all the trajectories of G(Φ) that reach the initial
state and no state s ∈ Re(s0) from which the initial state is not reachable.

When verifying the safety condition, there is no need to construct graph F(s ′),
from scratch at each state change s ′ = f (s, e), as it can be directly obtained by a small
update of F(s)—removing one edge and adding another. Moreover, it is possible to
distinguish two special cases of state s when the safety condition holds: (i) si = l(i),
as then Disi+1 = R∞ and its capacity is infinite, and (ii) resource R1 = Disi+1 is not
allocated to any process in state s. Thus, checking the safety of a state transition can
be done with the function specified in Algorithm 2. The most complex part of the

100 E. Roszkowska

calculations is testing the existence of the required path in graph F(s ′), which can
be done with, e.g., the depth first search, that has the O(|V | + |H |) computational
complexity.

6 Implementation of the MMRS Control Logic

The logic described in the previous sections can be implemented both in a centralized
and distributed manner. In the former case, all the robots communicate with the
central RAS controller. In the latter case, each robot is equipped with a local RAS-
controller, a higher control level that interacts with its lower control level in the
same way as in the centralized case, but, additionally, it has to communicate with
other robots in order to be aware of their state. The specifics of the distributed
implementation of the FREE-RANGE-RAS based control can be found in [15],
whereas here we focus on the common features of both approaches.

6.1 Interaction of Robots with Their RAS-Controller

The interaction of the robots and the RAS-controller is event-based, as depicted in
Fig. 3. The controller generates only one type of events, nexti , i = 1, . . . , n, which
is a permission for robot Ai to proceed to the next path segment. Having received
this message, the robot confirms it with the acki signal. Next, each robot Ai informs
the controller about the occurrence of three types of events, api , cpi , and rpi , cor-
responding to reaching three types of characteristic points on its path: ap, cp, and
rp.

• Event api is generated when robot Ai passes an approach point ap, which signals
that Ai is approaching its next stage. These points are distinguished at the end
of the path segments pi j such that the transition to the next path segment pi, j+1

requires allocation of additional resources Di, j+1 \ Di j �= ∅.
• A critical point cp is set at a safe-braking distance from the end of each path
segment pi j in which appears point ap. If by arriving at point cp, robot Ai has
not received the signal nexti , it generates event cpi and starts decelerating. At the

Fig. 3 Interaction of the
RAS-controller with a robot

Coordination of Cyclic Motion Processes … 101

Fig. 4 Two exemplary paths with their characteristic points

arrival of signal nexti , which can occur after the robot has come to the standstill
or is still decelerating, it accelerates again and proceeds to the next section.

• A release point rp is set at the border of two path segments pi j and pi, j+1 such
that Di, j+1 ⊂ Di j . On passing a point rp, robot Ai generates event rpi to inform
the controller that it can deallocate from the robot the resources Di j \ Di, j+1.

An example of a robot path with its characteristic points is given in Fig. 4. If a
path segment pi j is very short, in particular if it is equal or shorter than the safe-
braking distance, then such a segment can be merged with the next segment pi, j+1

or the previous stage pi, j−1, creating a process stage that requires the union of the
resources required by both stages, Di j ∪ Di, j+1 or Di, j−1 ∪ Di j , respectively. In the
right part of Fig. 4, three path segments preceding the robotweremerged: the segment
between the dashed horizontal and vertical line, the segment between the vertical
line and the ‘square’, and the segment between the ‘square’ and the ‘circle’. The
resulting path segment starts in cell [w[0, 1] at the cross of the path with the dashed
horizontal line, ends in cell w[0, 1] at the cross of the path with the ‘circle’, and its
resource requirement is {w[0, 0],w[0, 1],w[0, 1],w[1, 1]}. All these cells should be
allocated before the robot crosses the horizontal line, so one pair of points ap and
cp is sufficient. There is no need, however, to merge the symmetric path segments
in cell w[0, 1], between the ‘circle’ and the ‘square’, and between the horizontal
and vertical lines, as the resources are only released here. Since no new resource
allocation is needed, there is no risk that the robot will have to brake, thus there is
no lower limit on the path segment length.

6.2 Priority Control

The decisions made by the RAS controller concern the selection of events that will
be activated in a particular state through signals nexti . To make such decisions,
the controller must follow the state of the robots, updating it at the occurrence of

102 E. Roszkowska

each event that is sent/received to/from any robot. Then it checks the admissibility
conditions established in Sects. 4, 5, and solves the conflicts among the robots using
some priority policy in order to decide which robots should be allowed to continue
theirmotion, andwhich should be temporarily suspended in the casewhen concurrent
operation of all of them is not admissible. By a priority policy we understand an
algorithm that, based on some heuristic priority criterion, selects a subset of events
Δ(s) ⊆ Γ ′(s) such that:

(i) Each pair of events ei , ek ∈ Δ(s) is non-conflict, that is, occurrence of one of
them does not make inadmissible the other. Hence, robots Ai and Ak can transit
to their next sectors concurrently.

(ii) For each event ei /∈ Δ(s), there exists event ek ∈ Δ(s) that is in conflict with
ei , i.e., granting robot Ak the permission to transit to its next sector makes the
transition of robot Ai inadmissible.

The set Δ(s) is recalculated at each state change, and command next is sent to all
robots Ai that have passed their approaching point ap and ei ∈ Δ(s). The algorithms
to calculate Δ(s) can range from simple priority rules to optimization algorithms
based on predicted time parameters of the robot motion, yet, since executed online,
they must feature low computational complexity. Since the proposed RAS controller
can serve both a real MMRS and its simulator, the selection of the most efficient
policy, with respect to an assumed criterion, can be done experimentally.

7 Remarks and Conclusions

Although it is possible to view the operation of a group of mobile robots as a set
of processes sharing common resources, there is a number of features that seriously
differ this system from other systems typically represented by a similar abstraction,
e.g., job shops. The motion processes of the robots and their shared resource—the
motion space are not inherently discrete, but have a continuous character, and when
viewed as a resource sharing system require discretization. The system is deadlock-
prone, and the problem of deciding whether or not a particular resource allocation is
safe in a particular state is NP-complete. The robots operate asynchronously and their
travel time between distinguished points can be only roughly estimated. The actual
time can substantially vary from the initially assumed one. This is due to inaccurate
time calculation based, e.g., on the robot control model as well as possible on-line
modification of its path or velocity profile necessary for collision avoidancewith other
robots. Moreover, vehicle transport systems, are often subordinate to other systems,
e.g., a machining system in a manufacturing plant. That is, the start moments of
particular transport operations depend on the activity of the latter system, which
makes the prediction of the time behavior of the former system still more complex.

All the above features imply the need of a DES-based robot coordination system
that calculates control decisions online, based on the current state of the robots, rather

Coordination of Cyclic Motion Processes … 103

than execution of an offline calculated schedule. The presented work advocates such
an approach.

In this chapter we recaptured our earlier results concerning the supervisory control
synthesis for free-ranging mobile robot systems within the framework of the RAS
model, showed its application to the supervisory control of cyclic robot motion pro-
cesses, and discussed implementation of this concept in a RAS-controller. Currently
we are focused on the development of a MMRS controller employing the presented
theory for a fleet of real mobile robots, which will be followed by experimental
research.

Acknowledgements This work was partially supported by grant no. 2016/23/B/ST7/01441 of the
National Science Center.

References

1. Barraquand, J., Latombe, J.: Robot motion planning: a distributed representation approach. Int.
J. Robot. Res. 10(6), 628–649 (1991)

2. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic
Publishers, Boston (1999)

3. Chang, C., Chung, J., Lee, B.: Collision avoidance of two robot manipulators by minimum
delay time. IEEE Trans. Syst., Man, Cybern. 24(3), 517–522 (1994)

4. Chang, D., Shadden, S., Marsden, J., Olfati Saber, R.: Collision avoidance for multiple agent
systems. In: Proceedings of 42nd IEEE International Conference on Decision and Control,
Maui, HI, USA, 9–12 December 2003, pp. 539–543. IEEE (2003)

5. Cirillo, M., Pecora, F., Andreasson, H., Uras, T., Koenig, S.: Integrated motion planning and
coordination for industrial vehicles. In: ICAPS’14 Proceedings of the Twenty-Fourth Inter-
national Conference on International Conference on Automated Planning and Scheduling,
Portsmouth, New Hampshire, USA, 21–26 June 2014, pp. 463–471. AAAI Press (2014)

6. Claes, D., Tuyls, K.: Multi robot collision avoidance in a shared workspace. Auton. Robot.
42(8), 1749–1770 (2018)

7. Draganjac, I., Miklic, D., Kovacic, Z., Vasiljevic, G., Bogdan, S.: Decentralized control of
multi-AGV systems in autonomous warehousing applications. IEEE Trans. Autom. Sci. Eng.
13(4), 1433–1447 (2016)

8. Ferrera, E., Capitán, J., Castaño, A.R., Marrón, P.J.: Decentralized safe conflict resolution for
multiple robots in dense scenarios. Robot. Auton. Syst. 91, 179–193 (2017)

9. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.
Res. 5(1), 90–98 (1995)

10. Kousi, N., Koukas, S., Michalos, G., Makris, S.: Scheduling of smart intra-factory material
supply operations using mobile robots. Int. J. Prod. Res. 57(3), 801–814 (2018)

11. Reveliotis, S., Roszkowska, E.:On the complexity ofmaximally permissive deadlock avoidance
in multi-vehicle traffic systems. IEEE Trans. Autom. Control. 55(7), 1646–1651 (2010)

12. Reveliotis, S., Roszkowska, E.: Conflict resolution in free-ranging multivehicle systems: a
resource allocation paradigm. IEEE Trans. Robot. 27(2), 283–296 (2011)

13. Reveliotis, S.A.: Real-time Management of Resource Allocation Systems: A Discrete Event
Systems Approach. Springer, New York (2005)

14. Roszkowska, E., Goral, I.: Correct-by-construction distributed control for multi-vehicle trans-
port systems. In: IEEE International Conference on Automation Science and Engineering,
Madison, Wisconsin, USA, 17–21 August 2013, pp. 156–161. IEEE (2013)

104 E. Roszkowska

15. Roszkowska, E., Reveliotis, S.: A distributed protocol for motion coordination in free-range
vehicular systems. Automatica 49(6), 1639–1653 (2013)

16. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle.
IEEE Trans. Robot. 27(4), 696–706 (2011)

17. Valle, S.M.L., Hutchinson, S.A.: Optimal motion planning for multiple robots having indepen-
dent goals. IEEE Trans. Robot. Autom. 14, 912–925 (1998)

	Coordination of Cyclic Motion Processes in Free-Ranging Multiple Mobile Robot Systems
	1 Introduction
	2 Problem Statement
	3 Discrete Representation of MMRS
	4 Collision Avoidance in MMRS
	5 Deadlock Avoidance in MMRS
	5.1 Deadlock Avoidance in FREE-RANGE-1-RAS
	5.2 Deadlock Avoidance in FREE-RANGE*-2-RAS

	6 Implementation of the MMRS Control Logic
	6.1 Interaction of Robots with Their RAS-Controller
	6.2 Priority Control

	7 Remarks and Conclusions
	References

