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Abstract Synchronous DataFlow Graphs (SDF in short) is a simple model of com-
putation introduced for the description of Digital Signal Processing Applications.
This formalism is today widely used to model embedded parallel applications. This
chapter aims at presenting a panorama of theoretical results and practical applica-
tions in connection with cyclic scheduling problems. We first recall that the exe-
cution of a SDF can be seen as a set of cyclic dependant tasks. The structure of
precedence constraints, important dominance properties and simplifications of the
SDF are then presented. For the special case of uniform precedence graph, periodic
schedule are dominant and the maximum throughput can be polynomially evaluated.
Main results on the resource constrained problem are presented, followed by a more
recent problem issued from sensor networks. In the general case, the existence of
a polynomial-time algorithm to evaluate the maximum throughput of a SDF is a
challenging question. However, the determination of a periodic schedule of mini-
mum period is a polynomial problem, and many authors limit their study to this class
of schedule to express optimization problems as the total buffer minimization or to
evaluate the latency of a real-time periodic system.

1 Introduction

This chapter addresses cyclic scheduling problems issued from the control of data
flows in computers, embedded systems or sensor networks. Although in various
context, parts and data may induce the same theoretical scheduling problems, we
focus here on specific models and constraints. We point out analogies with produc-
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tion scheduling as well as differences and show the main basic results of the field,
following the introduction on cyclic scheduling given in [39], Chaps. 5, 6 and 8.

Dealing with data flows instead of manufacturing process means that tasks/jobs
represent computation and/or data transmission. Precedence constraints are here
induced by data dependencies: a job can be processed only when its input data,
produced or carried by another task, is available. Notice that in a manufacturing
process, a part is usually transformed, assembled, but remains in the system, although
a computation task may create or delete data. Precedence constraints may also be
defined when a limited memory constraint is considered. Indeed, a job Ji that has to
write a data in a full memory or buffer has to wait that another one, say Ji , frees place,
inducing then a precedence relation from executions of Ji to Jj . These constraints are
frequently considered in embedded systems for which the overall available memory
is limited.

Computations are done by physical components that, from a scheduling point
of view are similar to usual processors or machines in production process though
parallel processors or more complex resources from RCPSP problems are usually
used [3]. However, energy saving may induce unusual constraints on the scheduling
process, in particular grouping of tasks processed by the same component, in order
to avoid too many on/off.

We consider in this chapter a finite set of jobsJ = {Ji , 1 ≤ i ≤ n}which com-
municate data following a Synchronous DataFlow Graph formalism. Synchronous
DataFlow Graph (SDF in short) is a simple model of computation introduced by
Lee and Messerschmitt [29] for the description of Digital Signal Processing Appli-
cations. In this context, SDF or extensions were considered to model H263 Encoder
[9], anMP3 playback [36] or a Reed-Solomon decoder [5]. The SDF obtained do not
exceed here more than eight actors. SDF associated to an application may also be
generated automatically using a DataFlow language [22, 40]. The number of actors
for real-life applications ranges up to 600. The size of the instances encountered in
this new generation of embedded systems is significantly larger than before as they
express increasingly higher levels of concurrency.

Each jobs of a fixed SDF has to be executed repeated infinitely. Thus, checking the
feasibility of a SDF or evaluating its maximum throughput can be seen has a cyclic
scheduling problem. One of the aim of this chapter is to investigate the relationship
between cyclic scheduling problems and Dataflow problems. The main questions
that these two communities have explored are the following:

• Schedulability: does a feasible infinite schedule exist?
• Evaluation of the maximum throughput: what is the structure and the performance
of a schedule that maximizes the throughput?

• Performance of a periodic schedule: what is the optimal cycle time of a schedule
with a specific periodic structure?

• Memory optimization: what is the minimum amount of memory to reach feasibil-
ity? or a given cycle time?

We propose in next sections, a panorama of theoretical results developed for
dataflow models in connection with cyclic scheduling problems. Section2 is ded-



Cyclic Data Flows in Computers and Embedded Systems 5

icated to the presentation of the SDF model. Basic results about the precedence
constraints and the normalization are recalled, leading to the definition of a feasible
schedule and its normalized average cycle time. Two small examples, namely a loop
parallelization problem and the modelling of periodic data transfer for a real-time
system are presented in Sect. 3. Section4 presents some basic results and optimiza-
tion problems for the special case of uniform precedence graph, which is particular
important class of SDFs. Section5 is dedicated to the presentation of basic math-
ematical properties on SDF and two important optimization problems. Section6 is
our conclusion.

2 Synchronous DataFlow Graphs

This section presents some basic definitions and results on Synchronous Dataflow
Graphs. Section2 introduces the general model and the repetition vector. Next sub-
section recalls that a SDF models an infinite set of precedence relations between the
successive executions of the jobs. Section2.3 presents the normalization of a SDF.
This transformation will be useful to study the schedulability and the determina-
tion of a periodic schedule in Sect. 5. We lastly presents some common criteria and
scheduling policies.

2.1 General Model

Let us consider a set of n jobsJ = {J1, . . . , Jn}with processing times {p1, . . . , pn}
to be repeated many times. For Ji ∈ J , <Ji , k> denotes the kth occurrence of Ji .
Jobs are usually supposed to be totally or partially non-reentrant, i.e. two successive
executions of a job may not overlap or for all n > 0, <Ji , n + 1> starts at least one
time unit after <Ji , n> starts.

Jobs can exchange data using FIFO (First-In First Out) queues. Each FIFO has
exactly one input job Ji and one output job Jj and is thus modelled by an arc
a = (Ji , Jj ). Arcs are usually bi-valued by two strictly positive integers u(a) and
v(a) with the assumptions that:

1. u(a) data (or tokens) are stored in the FIFO at the completion of each execution
of Ji ;

2. v(a) data are removed from the FIFO before each execution of Jj . If there is not
enough data, the job cannot be executed and must wait for them.

Let A be the set or arcs. M0(a) for each arc a ∈ A is a non negative integer corre-
sponding to the initial number of data in the associated buffer. These values can
be fixed at the beginning, or may be variable for some optimization problems.
A Synchronous DataFlow Graph (in short SDF) is then a tri-valued multi-graph
G = (J , A, u, v, M0). Let C (G) denotes the set of circuit of G.
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a ∈ A u(a) v(a) M0(a)

a1 = (J1,J3) 1 3 0
a2 = (J3,J2) 2 1 1
a3 = (J1,J2) 2 3 1
a4 = (J2,J1) 3 2 3
a5 = (J4,J1) 3 2 5
a6 = (J2,J4) 1 1 0

Fig. 1 A Synchronous Data Flow graph G
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Fig. 2 First executions of the earliest schedule of the SDF pictured by Fig. 1

A schedule is a function s : J × N
� → R

+ such that s(Ji , k) is the starting time
of<Ji , k>. A schedule is feasible if at any instant the number of tokens in any FIFO
is non negative.

Consider for example the SDF of n = 4 jobs J = {J1, J2, J3, J4} depicted by
Fig. 1. We also suppose that p1 = 1, p2 = 2, p3 = 1 and p4 = 2. Figure2 presents
the first executions of the earliest schedule of the SDF of Fig. 1.

Let us define the weight of any circuit c of G by W (c) = Πa∈c u(a)

v(a)
. Note that,

if W (c) > 1, the number of data items stored in the FIFO will increase as far as
the jobs are executed. In the contrary, if W (c) < 1, this numbers tends to 0, leading
to a deadlock. These situations correspond to design flaws and such graphs can be
dismissed. Thus, all studies are restrained to unitary graphs for which the weight
of every circuit c is 1, i.e., ∀c ∈ C (G), W (c) = 1.

Suppose that, at time instant t , Ji was executed ni times, with ni > 0 and that Jj
was executed n j times with n j > 0. Then, the total number tokens at t stored in the
buffer associated to arc a equals M0(a) + u(a)ni − v(a)n j . Thus, we observe that if
ni = k × v(a) and n j = k × u(a), the number of tokens in the queue equals M0(a).
More formally, the following theorem is proved in [29]:

Theorem 1.1 (Repetition vector) Suppose that G is a unitary SDF. Then, there exists
an integer vector N ≥ 1n such that or for every arc a = (Ji , Jj ) ∈ A, the equality
u(a) × Ni = v(a) × N j holds. Then, the graph is feasible iff each job Ji ∈ J can
be executed at least Ni times. Moreover, once each job is executed exactly Ni times
(if it is possible), the systems returns in its initial state, ı.e the current marking of the
buffers equals its initial value.
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J1 1 2 3 4 5 6 7
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Fig. 3 Precedence relations between first executions of J1 and J2 and the arc a = (J1, J2) with
u(a) = 2, v(a) = 3 and M0(a) = 1. Jobs J1 and J2 are supposed to be re-entrant

We can check that our example pictured by Fig. 1 is unitary. The equations verified
by the repetition vectors are N1 = 3N3, 2N3 = N2, 2N1 = 3N2, N2 = N4 and 3N4 =
2N1. The smallest integer solution is then N1 = 3, N2 = 2, N3 = 1 and N4 = 2
(Fig. 3).

2.2 Precedence Constraints Associated to a SDF and Useful
Tokens

Aprecedence constraint between executions<Ji , ni> and<Jj , n j>with (ni , n j ) ∈
N

�2 expresses that <Jj , n j> cannot be executed before the completion of <Ji , ni>.
Munier [34] proved that each arc a = (Ji , Jj ) is equivalent to an infinite set of
precedence relations between the successive executions of Ji and Jj defined the
following theorem. A proof can also be found in [32].

Theorem 1.2 (Precedence constraints associated with a FIFO queue) Let Ji and Jj
be two re-entrant jobs. A FIFO queue a = (Ji , Jj ) ∈ A with initially M0(a) tokens
models a precedence relation between the ni th execution of Ji and the n j th execution
of J j iff

u(a) > M0(a) + u(a) · ni − v(a) · n j ≥ max{u(a) − v(a), 0}.

For example, let us consider the arc a = (J1, J2) with u(a) = 2, v(a) = 3 and
M0(a) = 1. The inequality of Theorem1.2 becomes

2 > 1 + 2 · ni − 3 · n j ≥ 0.

The couples of indexes (n1, n2) such that there exists a precedence relation due to a
are then {(1 + 3k, 1 + 2k) : k ∈ N} and {(3 + 3k, 2 + 2k) : k ∈ N}.

A useful initial marking is such that, for any arc a = (Ji , Jj ), M0(a) is a mul-
tiple of gcd(u(a), v(a)). A corollary of Theorem1.2 is that useful initial markings
are dominant [32, 33]. Moreover the initial marking M0(a) of a may be replaced
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by
⌊

M0(a)

gcd(u(a),v(a))

⌋
× gcd(u(a), v(a)) without any influence on the precedence con-

straints associated to a. Thus, we only consider useful initial markings.

2.3 Normalization

Let us assume that a SDF G = (J , A, u, v, M0) is a unitary graph. A SDF is said to
be normalized if there exists a positive integer vector Z = (Z1, . . . , Zn) such that,
for any arc a = (Ji , Jj ) ∈ A, u(a) = Zi and v(a) = Zi . Marchetti and Munier [32,
33] proved the following theorem:

Theorem 1.3 (Normalization) If G is a unitary SDF then, there exists an integer
vector Z ≥ 1n such that, for any arc a = (Ji , Jj ), Zi × v(a) = Z j × u(a). It follows
that the normalized SDF G ′ built from G by setting, for any arc a = (Ji , Jj ), u′(a) =
Zi , v′(a) = Z j and M ′

0(a) = M0(a) × Zi
u(a)

generates the same set of precedence
constraints as G.

Theorem1.3 can be seen as a corollary of Theorem1.1. Indeed, if the repetition vector
N is given, we can get the normalization vector by setting M = lcm(N1, . . . , Nn)

and for any job Ji , Zi = M

Ni
. In the following we only consider normalized SDF.

For example, Fig. 4 presents the normalized SDF G ′ associated with the SDF
G shows by Fig. 1 and its initial marking. We get M = lcm(2, 3) = 6 and thus
Z1 = M

3 = 2, Z2 = M
2 = 3, Z3 = M = 6 and Z4 = M

2 = 3.

2.4 Uniform Precedence Graphs

A SDF G is said to be uniform if for any arc a = (Ji , Jj ), u(a) = v(a) = 1. The
corresponding inequality of Theorem1.2 becomes 1 > M0(p) + ni − n j ≥ 0, and

J1

J2

J3J4

2

6

6

3

2

33

2
3

2

3

3

a ∈ A M0(a)

a1 = (J1,J3) 0
a2 = (J3,J2) 3
a3 = (J1,J2) 1
a4 = (J2,J1) 3
a5 = (J4,J1) 5
a6 = (J2,J4) 0

Fig. 4 Normalized graph G ′ associated with G
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Fig. 5 Expansion of the
graph composed by two non
re-reentrant jobs J1 and J2
and the arc a = (J1, J2) with
u(a) = 2, v(a) = 3 and
M0(a) = 1

J11 J21 J31

J12 J22

(1,0) (1,0)

(1,1)

(2,0)

(2,1)

(1,0) (1,0)

thus n j − ni = M0(a). In this case, the corresponding set of precedence constraints
between executions of Ji and Jj verifies:

∀n > 0
(
s(Ji , n) + pi ≤ s(Jj , n + M0(a))

)
.

Observe that in this case, pi > 0 and M0(a) ≥ 0.
However, uniform precedence graphs can be defined more generally as in [35].

Indeed, in the more general case, the two integer values associated to any arc
a = (Ji , Jj ) may be negative. A uniform precedence graph is then defined as a
bi-valued oriented graph G = (J , A, �, h). The length and the height of an arc are
respectively function defined as � : A → Z and h : A → Z. The precedence relations
associated to any arc a = (Ji , Jj ) are then defined by:

∀n ≥ max{1, 1 − h(a)} (
s(Ji , n) + �(a) ≤ s(Jj , n + h(a)

)
.

Several authors [32, 33] have observed that the precedence relations induced by
any unitary SDF can be expressed using a uniform precedence graph for which each
job Ji is duplicated Ni times. This transformation, called the expansion of the graph,
allows to consider all the algorithmic tools developed for uniform precedence graphs
to SDF, and thus was extensively used.

Itsmain drawback is that the size of the expanded graph is not polynomial andmay
be huge for real-life applications. Indeed, its total number of vertices equals

∑n
i=1 Ni

and its number of arcs is around
∑

a=(Ji ,J j )∈A min(Ni , N j ). The consequence is that
the methods developed for uniform precedence graphs are not efficient for these
instances. However, as we will see in Sect. 5.1, partial expansions may be considered
to develop efficient exact algorithms for the throughput evaluation (Fig. 5).

2.5 Criteria

Several criteria may be considered to evaluate a feasible schedule s. The most com-
mon one is the average cycle time of s, which is the inverse of the throughput. More



10 C. Hanen and A. Munier-Kordon

formally, the average cycle time of job Ji for a schedule s is the mean time interval
between two executions of Ji :

λs
i = lim

k→ +∞
s(Ji , k)

k
.

The normalized average cycle time of s can be defined then as

λs = max
Ji∈J

λs
i

Zi
.

Another common criteria of a schedule is the latency L s . Roughly speaking,
the latency is the maximum delay between a stimulation and the answer of the
system. The SDF G must be without circuits. The latency of the entire system is
the maximum time gap from a data input of a system to a connected outcome. This
criteria is particularly important for real-time systems to measure the worst-case
reaction time of a system.

2.6 Scheduling Policies

A schedule s is said to be K-periodic if there exists for any job Ji a period wi and
an integer Ki such that, for n sufficiently large, s(Ji , n + Ki ) = s(Ji , n) + wi . Ki is
the of Ji , while wi is its period. Note that

λs
i = wi

Ki
.

Moreover, if G is strongly connected, the normalized average cycle time is

λs = wi

Ki Zi
.

The most common scheduling policy consists on executing the actors as soon as
possible (asap in short) which maximizes the throughput. An asap schedule always
consists of two stages [34]. The first one is an initialization phasewhich is necessarily
finite and possibly null. A K-periodic steady state phase follows. The periodicity
factor of job Ji verifies Ki = α × Ni with α ∈ N

�.
The earliest schedule depicted by Fig. 2 is K -periodic. Values wi , Ki and λs

i are

depicted by Table1. The normalized average cycle time equals λs = 11

6
.

Themain drawback of the asap schedule is that its description is not of polynomial
size. Indeed, values of the repetition vector are not polynomial and may be huge.
Many authors (see as example [8, 31]) restrict their study to periodic schedules in
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Table 1 Parameters of the earliest schedule of Fig. 2

Ji wi Ki λsi Zi

J1 11 3
11

3
2

J2 11 2
11

2
3

J3 11 1 11 6

J4 11 2
11

2
3

order to get efficient algorithms. The structure of periodic schedules of a SDF is
presented in Sect. 5.2.

3 Modelling Examples

Two usual applications for which SDF and uniform graphs are particularly suitable
are presented in this section. The first one concerns a loop parallelization. It has
been studied since the early 90s [13, 20, 21, 38] and the introduction of parallel
computers. Most of computation time is indeed spent in loops, so that the good use
of parallelism allowed by the architecture is crucial. Our second example shows that
communications between real-time periodic jobs following Liu and Layland model
[30] can be expressed using a particular normalized SDF. This modelling can be used
to evaluate the whole latency of the system.

3.1 Loop Parallelization

Let us describe on an example how a task system associated to the execution of a
loop on a specific architecture can be modeled by a uniform task system, provided
that enough resources are available.

Assume that arrays a, b are stored in the memory of a computer, and consider the
C loop depicted in Fig. 6.We describe the jobs associated with assembly instructions.
We assume that all instructions are processed by pipelined units, that can start a new
instruction at each time unit, while the execution time till the end of an operation is
2 for additions, 6 for multiplication, and 4 for memory operations (load and store).

Figure7 shows the uniform constraints induced by the loop semantic as well as
the architecture (assuming here unlimited number of functional units). The partial
reentrance is modelled by the loops around each job with label (1, 1). Although
interleaving the iterations is allowed, the storage of a[i] in the memory at iteration i ,
i.e job <J9, i>, must precede the load of a[i] at iteration i + 3 (Job <J3, i + 3>).
Thus the arc (J9, J3) has � = 4 and h = 3.Uniform constraints can alsomodel the use
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for (i= 3; i< n; i++){
b[i] = a[i−3]+ c;
a[i] += b[i] ·d;

}

J1 J2 J3 J4 J5 J6 J7 J8 J9
address a[i] address b[i] load a[i-3] add c store b[i] mult d load a[i] add a[i] store a[i]

Fig. 6 A C loop and its associated jobs

J1 J3 J4 J5

J7 J9 J2

J8 J6

(1,1) (1,1) (1,1) (1,1)

(1,1) (1,1) (1,1)

(1,1) (1,1)

(2,3)

(0,0)

(4,0)

(4,0) (6,0)

(2,0)

(2,0)

(2,0)

(4,3)(2,0) (0,2)(2,0)

Fig. 7 A uniform graph modeling a loop. Arcs are labelled with (�, h)

of a limited number of buffers. For example, we can assume here that the successive
address of a[i] are stored in a buffer of size 3, so that at most three executions of J3
can start without starting J1 and J1 can start only if a register is free, i.e. if J3 started.
This is modeled by the arcs (J1, J3) and (J3, J1) with values (2, 3) and (0, 0).

When dealing with loop execution on parallel architectures, it is necessary to
build a compact schedule, that can be easily described by a finite set of instructions.
Hence in this field most authors considered strictly periodic schedules, where all jobs
have the same period λ. Figure8 shows an optimal periodic schedule for the graph,
computed with the techniques described in Sect. 4.1.

3.2 Periodic Data Transfers for a Real-Time System

Let us consider a set of jobs based on the model of Liu and Layland [30]. Each job
Ji is characterized by a period Ti , a processing time Ci , a deadline Di , and a release
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J3 J4 J3 J4 J3 J4 J3

J2 J5 J2 J5 J2 J5

J1 J7 J1 J7 J1

J6 J6 J6

J8 J9 J8

core with = 6

Fig. 8 An optimal periodic schedule

Table 2 Parameters of jobs
J1, J2 and J3

Ji ri Ti Ci Di

J1 0 30 10 20

J2 0 20 10 10

J3 0 40 5 20

date ri . The nth occurrence of Ji can be processed if and only if its execution start
date s(ti , n) is superior or equal to its release date

ri + (n − 1)Ti ≤ s(Ji , n).

and its execution end date cannot exceed its deadline

s(Ji , n) + Ci ≤ ri + (n − 1)Ti + Di .

Suppose for example that job Ji needs data from job Ji . We consider that the nth
execution of Ji writes a unique data at time ri + (n − 1)Ti + Di and that the nth
execution of Jj reads a unique data at time r j + (n − 1)Tj . The data are not stored
in a FIFO queue, but in a unique memory. Thus, task Jj may read several time the
same data if its period Tj < Ti .

For example, consider 3 jobs J1, J2 and J3 which parameters are shown in Table2.
We assume that J1 sends data to J2 and that J2 sends data to J3. Figure9 presents the
relations between jobs. For example,<J2, 2> is reading a data from<J1, 1>, while
<J2, 4> is reading a data from <J1, 2>. The data considered by <J2, 3> comes
from <J1, 1>, the arcs is omitted by transitivity, since <J2, 2> precedes <J2, 3>.

The question is to compute efficiently the latency of the system. The first problem
is then to characterized couples of integers (ni , n j ) ∈ N

�2 such that <Jj , n j> reads
a data from <Ji , ni>.

By studying the lifetime of the data, Khatib et al. [28] observed that the relations
between the executions of communicating jobs corresponds to precedence relations
of a unitary SDG built following Theorem1.4:
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J3

J2

J1
0 30 60 90 120 150

0 20 40 60 80 100 120 140 160

0 40 80 120 160

Fig. 9 Communications between successive executions of jobs J1, J2 and J3

Theorem 1.4 Let Ji and Jj be two periodic jobs such that Ji communicates with
J j . The set of communicating instances of jobs Ji and Ji corresponds to precedence
relations of an arc a = (Ji , Jj ) of a normalized SDF with Zi = Ti , Z j = Tj and

M0(a) = Tj + α − T �
a with T �

a = gcd(Ti , Tj ) and α =
⌈
ri−r j+Ci

T �
a

⌉
× T �

a .

Thus, the corresponding SDF is composed by two arcs a1 = (J1, J2) and a2 =
(J2, J3) with Z1 = 30, Z2 = 20, Z3 = 40 and the initial markings M0(a1) = 10 and
M0(a2) = 40. Note that the latency of the graph equals 60. It corresponds to the path
<J1, 3>, <J2, 5>, <J2, 6> and <J3, 4>. Section5.4 is dedicated to the evaluation
of the latency of the SDF extracted from a real-time system.

4 Uniform Precedence Graphs

Some fundamental basic results on uniform precedence graphs are firstly recalled.
We then introduce a generic technique, called decomposed software pipelining, that
was used by several authors to solve periodic scheduling problems with resource
constraints and to get approximation results. We finally present constraints recently
introduced to handle energy saving in sensor networks and we mention some com-
plexity results.

4.1 Basic Results

Let consider thatG = (J , A, �, h) is a uniformprecedence graphG. If no additional
resource constraint is considered, the schedulability, the evaluation of the maximum
throughput and the performance of a periodic schedule are polynomially solvable.

These questions were initially considered for non-negative uniform case [14], i.e.,
for any arc a, �(a) > 0 and h(a) ≥ 0. These results were extended in [35] for any
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integer values. For the sake of simplicity, we mention here the main results for the
case where G is strongly connected. General case can be found in [15, 35].

Let C +(G) (Resp. C −(G)) be the set of circuits c of G with h(c) > 0 (Resp.
h(c) < 0). For any circuit μ ∈ C (G), let L(μ) = Σa∈c�(a) and H(μ) = Σa∈ch(a).
Let also define the two ratios:

λ+(G) = max
μ∈C +(G)

L(μ)

H(μ)

λ−(G) =
⎧⎨
⎩

min
μ∈C −(G)

L(μ)

H(μ)
if C −(G) 	= ∅

+∞ otherwise

A circuitμ ∈ C +(G) is critical if L(μ)

H(μ)
= λ+(G). The critical circuit of the graph

depicted in Fig. 7 is the circuitμ = (J3, J4, J6, J8, J9, J3) and its value equals
L(μ)

H(μ)
=

λ+(G) = 18
3 = 6.

A schedule s is said to be strictly periodic if there is a constant λ such that
∀Ji ∈ J ∀k > 0

(
s(Ji , k) = si + (k − 1)λ

)
. λ is the average cycle time of s, also

called its period. First point of Theorem1.5 deals with the schedulability. Second
point concerns the the evaluation of the maximum throughput while the third point
is about the performance of a periodic schedule:

Theorem 1.5 ([35, 39]) Let G be a uniform strongly connected task system.

1. G is feasible if and only λ+(G) ≤ λ−(G) and there is no circuit μ in C (G) with
H(μ) = 0 and L(μ) > 0.

2. If G is feasible, its minimum average cycle time is λ+(G) and the asap schedule
is K−periodic.

3. If G is feasible, there exists an optimal strictly periodic schedule s with λs =
λ+(G)

4. Checking feasibility, computing the optimal cycle time and the optimal strictly
periodic schedule can be done in polynomial time according to graph algorithms.

Dasdan et al. [18] have experimentally tested several algorithms to compute the max-
imum cost to time ratio, which is exactly our problem here. Notice that a fixed value
λ ∈ [λ+(G), λ−(G)] iff there is no valued positive cycles in the graph G valued by
Vλ(a) = �(a) − λh(a) for any arc a. Checking for a positive cycle in a graph can
be done in polynomial time using Bellman–Ford algorithm [16]. Howard’s algo-
rithm, which is supposed to be the most efficient for the problem, although pseudo-
polynomial in the worst case, increases a lower bound b of λ+(G) until the critical
circuit is reached or an infeasibility is detected. Another efficient and polynomial
approach is a parametric path algorithm with complexity O(n4) [2, 27].

Figure10 shows the graph of Fig. 7 valued by Vλ for λ = 6. First execution times
si ∈ J of a feasible strictly periodic schedule of period 6 are also reported.
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Fig. 10 Graph of Fig. 7
valued by Vλ for λ = 6. First
execution times si ∈ J of a
feasible periodic schedule of
period 6 are reported in the
squares
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4.2 Decomposed Software Pipelining and Resource
Constrained Problems

As seen in Sect. 3.1, loop parallelization induces a uniform task system. The archi-
tecture on which the loop is executed induces additional resource constraints. From
the simple case of parallel processors [24, 25] to the more complex case of RCMSP
(resource-constrained modulo scheduling problem), two main approaches have been
investigated, in order to find an optimal strictly periodic schedule. Although it can
be easily proved that periodic schedules are not dominating schedules, their simple
formulation make them very easy to implement and thus often used in loop paral-
lelization context.

Firstly the ILP formulations, for example in [3, 19, 20] combining classical ILP
formulations of resource constraints (either time-indexed or not), and linear expres-
sion of uniform constraints. In [3], several models are described and experimentally
compared. The second approach, known as decomposed software pipelining (DSP)
is based on the decomposition of the cyclic scheduling problem into two phases,
retiming and compaction, the first one is related to the uniform task system, and the
second to non cyclic resource constrained scheduling. In particular, several approx-
imation algorithms have been proposed, based on this ideas [6, 10, 13, 21]. Finally,
in [3], a hybrid approach combining shifting and ILP has been investigated.

In this section we describe the decomposed software pipelining technique and
summarize the approximation results.

DSP relies on the notion of retiming. The main interest of this technique is to
transform a set of uniform constraints into a set of usual precedence constraints,
so that the remaining problem is an acyclic scheduling problem with resource con-
straints.

The intuition behind retiming is that while dealing with periodic schedules, the
real iteration number of a job occurrence is not so important. Consider an occur-
rence <Ji , k>, which corresponds to the (k)th execution of the first instance of Ji .
It can also be interpreted as the (k + ri )th execution of Ji (ri ) whose first occurrence
is <Ji ,−ri>. The height of precedence relations are then changed: if there is a
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uniform constraint a = (Ji , Jj ) labelled by (�(a), h(a)), then s(Ji (ri ), k) + �(a) ≤
s(Jj (r j ), k + r j + h(a) − ri ). So the value r j + h(a) − ri is the height of a new
uniform precedence relation between Ji (ri ) and Jj (r j ).

Definition 1.1 A legal retiming associates to each job Ji an integer value ri so that:

r : J → Z, ∀a = (Ji , Jj ) ∈ A
(
r j + h(a) − ri ≥ 0

)
.

Now considering a legal retiming, if r j + h(a) − ri = 0 then <Ji (ri ), k> pre-
cedes <Jj (r j ), k> for enough large integer k. So that the precedence relations
induced by the uniform constraint is now within an iteration of the shifted jobs. Oth-
erwise,<Ji (ri ), k> precedes an occurrence<Jj (r j ), k ′>with k ′ > k which belongs
to a next iteration. Hence for these new generic operations (Ji (ri ))1≤i≤n , the first iter-
ation fulfills the non cyclic precedence relations given by a graph calledGr computed
from G by keeping only the arcs a = (Ji , Jj ) for which r j + h(a) − ri = 0.

Several ideas have been investigated to find a legal retiming for nonnegative
uniform task systems. Notice first that a retiming can always be found from any
strict periodic schedule s fulfilling the uniform constraints.

Let s be a strict periodic schedule with period λ. For any job Ji , si can be uniquely
decomposed with respect to the period: si = ti + λ.qi , with 0 ≤ ti < λ and qi is an
integer. (ti ){Ji∈J } is called the core of the periodic schedule, and (qi ){Ji∈J } is the
shift of the periodic schedule.

The shift (qi ){Ji∈J } is a feasible retiming. This property was used by Gasperoni
and Schwiegelsohn [21] by finding the shift of an optimal periodic schedule assum-
ing unlimited resources. Figure11 shows the graph Gr considering the retiming
associated with the shift of the optimal schedule depicted in Fig. 8.

In [13], where using retiming for loop shifting is formalized, the authors consider
two optimizations, with polynomial graph algorithms:

• the length of the longest path in Gr minimization
• the number of arcs in Gr minimization, so as to reduce the number of precedence
constraints for loop compaction.

J1 J3 J4 J5

J7 J9 J2

J8 J6

4

2

2

1 0 0 1

1 2 4

2 1

0 1 2 3 4 5 6 7

ALU1 J8 J6 J1 J2 J4

ALU2 J3 J5 J9 J7

MEM J3 J5 J9 J7

core with = 8

Fig. 11 Retiming graph Gr , with r shown above the nodes and periodic schedule with resource
constraints
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The idea behind DSP approach is to choose a particular retiming r , and then use
an algorithm to get a schedule (ti ){Ji∈J } of Gr , fulfilling the resource constraints to
get a periodic schedule of the original problem.

This relies on the following result:

Theorem 1.6 If r is a feasible retiming, and (ti ){Ji∈J } is a schedule fulfilling the
non cyclic precedence constraints of Gr and the resource constraints, then there
exists a periodic schedule s whose core is (ti ){Ji∈J } and whose shift is (ri ){Ji∈J }.

Figure11 shows a construction of a core for our example, assuming that arithmetic
operations are performedonone of the two availableALU’s,whilememory jobs (load
and store) use one ALU and one memory controller at the same time. The makespan
of the schedule (ti ){Ji∈J }, combined with the observation of precedence constraints
crossing the core lead to the computation of a period λ in polynomial time [3]. For
our example λ = 8.

From this an interesting special case can be noted: if G has no circuit (except
the ones due to the non-reentrance hypothesis for jobs), then it is always possible
to get a feasible retiming r so that Gr has no arcs. Thus at the compaction step,
only independent jobs have to be considered. Hence if the underlying non cyclic
scheduling problem is easily solvable for independent tasks then the DSP approach
provides an optimal periodic schedule. This occurs for example in cyclic shop-like
problems (open shop, job-shop) if, unlike in [37], no limitation on the completion
time of an iteration, or on the interleaving between iterations is given.

List scheduling algorithms are the most used heuristics for scheduling with prece-
dence and resource constraints. Efficiency of these algorithms in practice is well
known. Moreover usually a worst case performance guarantee can be determined in
most resource context, from the parallel processors to RCPSP settings where a job
may require several units of different resources during its execution.

Using such algorithms at the compaction step leads to a worst case ratio on the
periodic schedule. This has been considered for parallel processors [17, 21] and
extended to RCPSP in [6].

4.3 Energy Saving or Other Resource Dependent Constraints

In this section we consider problems issued from sensor networks, and in particular
the scheduling problems induced by the IEEE 802.15.4/ZigBee network. Here the
jobs represents data communications. Now, in real networks, while dealing with
periodic schedules, the period is quite long with respect to the processing times of
jobs. Moreover, the resources involved in the communication must be awaken to
perform the jobs during each period. To avoid energy loss due to many in and out
of the resources, it can be interesting to group jobs using the same resource as much
as possible, so that the resource is awaken during a short interval once per period.
In the context of periodic schedules, this will induce constraints on the core of the
schedule, regardless the occurrence number of the concerned jobs.
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Fig. 12 An example of the tree T and two flows, and the associated uniform graph

Let us nowpresent amodel of data-flows inspired by theZigBee norm, introducing
grouping constraints. This work is issued from [1, 23]. We consider a tree T , whose
nodes represent the clusters and whose edges represent the logical links between
them. We then consider a collection of flows. Each flow f is defined by a copy of
a subtree of T , oriented as an in-tree, and represents the communication of data
along the communication links of T from source nodes of the flow to the unique
sink. For flow f , if node i belongs to the sub-tree of f , then we denote, by J if , the
communication task associated to node i in flow f . Figure12 shows an example of
a tree consisting of seven clusters and two flows.

An iteration of each flowwill start at each period.Moreover, the energy constraints
of the ZigBee standard consider that each cluster should be active once in each period.
So tasks J if for all flows f passing through node i belong to group i , which should
be grouped in the period.

Of course, if we do not limit the time of delivery for each flow, then the periodic
scheduling problem can be handled in polynomial time by considering a retiming
that lead to independent jobs. However, if we wish to achieve a good response time,
we need to fix some time limits. We assume here that for each flow f the number of
periods crossed by f froma source until its delivery should be less than a given integer
p f . The experiments with a scheduling tool [1], which enables system designers
to configure all the required parameters of the IEEE 802.15.4/ZigBee cluster-tree
WSNs, illustrate the efficiency of the model.

Moreover, this model induces for each flow a representation of the constraints
induced by the data flow by a uniform graph:

1. The nodes of G are for each flow the tasks J if .

2. If there is a communication link J if → J j
f in the underlying sub-tree, then (J if , J

j
f )

is an arc of G with h value 0.
3. If J if is the sink of the flow f and J j

f is a source, there is an arc from J if to J j
f

with h(J if , J
j
f ) = p f + 1.
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Fig. 13 A core of a grouped
periodic schedule—grouped
jobs are shown by colors
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J22 J32

J52 J42 J61

J41 J72

Figure12 depicts the graph associated to the two flows, considering p1 = p2 = 1.
Consider now a uniform task systemG, and assume that each job has a group label

ki ∈ {1, . . . , K }. A periodic schedule is said to be grouped if the tasks of the same
group are executed close to each other in the core. This notion can be expressed by
different means, but we can choose the simplest way here, where each group is to be
scheduled as a single super-task in the core schedule. In the context we consider here,
the period is usually large with respect to the processing times so we can consider
that the complexity induced by the schedule of the jobs inside a super-task is not
worth. As we consider here feasibility questions, we assume in the following that
the super-task has a unit processing time, but the same results can be obtained by
considering sum or max of the processing times of the grouped jobs.

Though the ZibBee feasibility question turns out in the following question: Given
a uniform precedence graph G and group labels of the tasks, does a grouped periodic
schedule of G exist? We call theUGF (Uniform Grouped Feasibility), this decision
problem.

One can easily see that for some instances no grouped periodic schedule exists. If
we consider our example assuming p1 = p2 = 0 thismeans that the first execution of
all jobs have to be scheduled during the first period. As <J 2

1 , 1> precedes <J 3
1 , 1>

for the execution of the first flow, and <J 3
2 , 1> precedes <J 2

2 , 1> for the second
flow, and as J 2

1 , J 2
2 (resp. J 3

1 , J 3
2 ) belong to the group of node 2 of the tree (resp.

node 3), we get a contradiction. Figure13 shows a core of a grouped schedule for the
example of Fig. 12. We prove in [23] that the general UGF problem is NP-Complete,
but the specificity of the tree underlying communication path for the ZigBee problem
lead to a polynomial algorithm, based on the use of decomposed software pipelining,
which proves its efficiency in practice in [1].

In [26] the authors explore a weaker way of considering grouping in a uniform
task system by introducing precedence constraints with arbitrary latencies on the core
schedule, called core constraints. Unfortunately, they prove that even if no additional
resource constraints is assumed, and if unit processing times are considered, deciding
the existence of a periodic schedule is also NP-complete.
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5 Synchronous Data Flows

This section aims to present several important theoretical results on normalized SDF.
The feasibility and the evaluation of the minimum normalized average cycle time
are two challenging problems for which the complexity is unknown. Section5.1
presents some algorithms to answer these two questions. Section5.2 is dedicated
to characterization of a periodic feasible schedule of minimum period, leading to a
polynomial time algorithm to compute it. This characterization is considered to opti-
mize the total buffers capacity under aminimumperiod constraint in Sect. 5.3. Lastly,
Sect. 5.4 is dedicated to the computation of the latency for a real-time application
which communications between tasks are modelled using a SDF.

5.1 Feasibility and Evaluation of the Minimum Normalized
Average Cycle Time

Let us suppose that G = (J , A, u, v, M0) is a normalized SDF. G is feasible (or
live) if there exists an infinite feasible schedule. Following Theorem1.1, the simplest
way to test the feasibility is to execute the jobs as soon as possible until each job Ji
is executed at least Ni times. If it is possible, G is live.

The main drawback of this method is that values Ni are not polynomial and may
be quite huge for real-life systems. From a theoretical point of view, the complexity
of checking the feasibility of a SDF remains unknown. However, a simple sufficient
condition of feasibility was proved by Marchetti ans Munier [32, 33].

Theorem 1.7 (Sufficient condition of feasibility of a SDF) Let G be a normalized
SDF. If, for any circuit c ∈ C (G), the inequality

∑
a∈c

M0(a) >
∑

a=(Ji ,J j )∈c

(
Z j − gcd(Zi , Z j )

)

is true, then G is feasible.

Checking this condition requires to label each arc of a = (Ji , Jj ) of the SDF by
V (a) = Z j − gcd(Zi , Z j ) − M0(a) and testing that the sum of the labels of each
circuit remains strictly negative. As example, Fig. 14 pictures the SDF from Fig. 1
with arcs a = (Ji , Jj ) valued by V (a). This graph has nos positive or null valued
circuits, thus G is feasible.

Checking the existence of positive circuits can be done using a two steps polyno-
mial time algorithm: the first step consists on checking the non existence of positive
or null valued circuits using Bellman–Ford algorithm [16]. A depth-first search algo-
rithm applied only to critical arcs allows to check the non existence of null-valued
circuits.
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Fig. 14 SDF G from Fig. 1
with arcs a = (Ji , J j ) valued
by V (a) =
Z j − gcd(Zi , Z j ) − M0(a)
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Munier [34] proved that the earliest schedule of a SDF is K-periodic. Thus, the
simplest way to evaluate the minimum normalized average cycle time is to compute
the earliest schedule until the convergence of the normalized average cycle time.
Another way is to compute the expansion of the graph, and determine its average
cycle time. The main drawback of these two methods is that they are not polynomial,
and thus not efficient whenever Σn

i=1Ni is important.
Bodin et al. [11] have proved that, for any integer vector of n components X ≥ 1n

an expansionGX (which is a uniform precedence graph) ofG can be defined. For any
arc a = (Ji , Jj ), arcs of GX between the duplicates of Ji and Jj models a superset
of precedence constraints between Ji and Jj . They also show that dominant values
for the computation of the minimum normalized average cycle can be achieved for
the vector set {X ∈ N

n : ∀i ∈ {1, . . . , n} (Xi divides Ni)}. These expansions can be
used to get upper-bounds of the minimum normalized average cycle.

Algorithm1 was also developed by Bodin et al. [12] to compute the minimum
normalized average cycle time by expanding only jobs of the successive critical
circuits. Although non polynomial, this algorithm allows to evaluate quickly this
value for industrial instances of large size.

Algorithm 1: Computation of the minimum normalized average cycle time
Require: A normalized SDF G = (J , A, u, v, M0).
Ensure : Normalized minimum average cycle time λ(G) of G.

1 Set M = (Z1, . . . , Zn),
∀i ∈ {1, . . . , n} (Ni = M

Zi
);

2 Set X = 1n ,
GX the corresponding expanded graph,
c a critical circuit of GX ;

3 while every job Ji of c is not expanded Ni times do
4 Set Xi = Ni for every job Ji of c;
5 Update GX and a critical circuit c of GX ;

6 Let λ(c) be the average cycle time of GX ,

λ(G) = λ(c)
X1

;
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5.2 Existence and Computation of a Periodic Schedule of
Minimum Average Cycle Time

We show in this section that the determination of a feasible periodic schedule
of minimum period is a polynomial problem for a normalized SDF. A schedule
s is periodic if for any job Ji , there exists wi ∈ Q

�+ with ∀n > 1(
s(Ji , n) = s(J1, 1) + (n − 1)wi

)
. Benabid et al. [7] have proved Theorem1.8 that

characterizes periodic schedules.

Theorem 1.8 Let G be a normalized strongly connected SDF. For any periodic
schedule s, there exists a rational λs ∈ Q

�+ such that for any job Ji ,
wi
Zi

= λs . More-
over, the precedence relations associated with any place a = (Ji , Jj ) are fulfilled by
s iff

s(Jj , 1) − s(Ji , 1) ≥ pi + λs(Z j − M0(a) − gcd(Zi , Z j )).

λs is then the average cycle time of s.

Since length pi > 0 for any job Ji , there exists a periodic schedule for G iff for
any circuit c ∈ C (G), the inequality

∑
a=(Ji ,J j )∈c(Z j − M0(a) − gcd(Zi , Z j )) < 0

holds, which is exactly the condition of feasibility of Theorem1.7. If this condition
is true, the minimum average cycle time λs can then be computed by finding crit-
ical circuits of the graph G1 with the same structure of G and for which each arc
a = (Ji , Jj ) is bi-valued by (pi , M0(a) + gcd(Zi , Z j ) − Z j ).

Consider for example the bi-valued graph G1 pictured by Fig. 15 and associated
with the graph G of Fig. 1. The critical circuit of G1 is c = (J1, J3, J2, J1) with ratio
λ(c) = 1+2+2

−4+3+2 = 5. Thus the minimum normalized average period of a periodic
schedule is λs = 5.

5.3 Optimization of the Total Buffers Capacity Under a
Minimum Period Constraint

SDF can be considered to model data exchanges [29] for streaming applications.
Jobs correspond here to programs that are repeatedly executed. Arcs are associated to

Fig. 15 SDF G from Fig. 1
with arcs a = (Ji , J j )
bi-valued by (pi , M0(a) +
gcd(Zi , Z j ) − Z j )
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J2

J3J4

(1,−4)

(2,3)

(1,−1)(2,2)

(1,4)

(2,0)
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Ji Jj Ji J j
Zi Z j

Zi Z j

Z jZi

a= (Ji,Ji) with bounded capacity F(a)
M0(a) ≤ F(a)

a1 = (Ji,Ji) and a2 = (Jj,Ji)
M0(a1) =M0(a) andM0(a2) = F(a)−M0(a)

Fig. 16 Transformation of an arc e with a capacity bounded by F(a) into a coupe of arcs with no
capacity constraint

buffers. The total amount ofmemory needed to execute an application is an important
criteria for the designers due to the cost of the memories. Thus, the minimization
of the total buffers capacity under a minimum period constraint is an important
bi-criteria optimization problem.

The capacity F(a) of an arc a is themaximum number of tokens that can be stored
simultaneously in the buffer corresponding to a. First at all, Marchetti and Munier
proved in [31] that the capacity of a buffer may be modelled using a backward arc as
follows by studying the precedence relations induced by this capacity constraints.

Theorem 1.9 Any arc a = (Ji , Jj ) initiallymarked by M0(a)with a capacity limited
by F(a) ≥ M0(a) may be replaced by a couple of arcs (with no limited capacity)
a1 = (Ji , Jj ) and a2 = (Jj , Ji )with M0(a1) = M0(a) and M0(a2) = F(a) − M0(a)

(see Fig.16).

Let Gs = (J , As, u, v, M0) be the SDF associated to G for which each arc a
with a limited capacity is replaced by a couple of arcs (a1, a2). For any arc a, we
denote by θ(a) > 0 the size needed to store one unique data in a. The size of a is
then F(a) × θ(a) and the total size is thus

F =
∑
a∈A

θ(a)F(a) =
∑
a∈As

θ(a)M0(a)

The optimization problem addressed here is to find an initial marking M0(a), a ∈ As

such that the total size of the memories
∑

a∈As
θ(a)M0(a) is minimum, while there

exists a schedule with a normalized average cycle time at most equal to K .
Since there is no polynomial algorithm to compute the feasibility and theminimum

average cycle time of a SDF, we do not know if this problem belong toN P . Several
authors limit their study to periodic schedules in order to get around this problem.
In this case, the optimization problem can be expressed easily using the following
Integer Linear Program Π(K ):
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minimize(∑
a∈As

θ(a)M0(a)
)

subject to⎧⎪⎪⎨
⎪⎪⎩

∀a = (Ji , J j ) ∈ As
(
s(J j , 1) − s(Ji , 1) ≥ pi − K (M0(a) + gcd(Zi , Z j ) − Z j )

)
∀a = (Ji , J j ) ∈ As

(
M0(a) = ki, j · gcd(Zi , Z j )

)
∀a = (ti , t j ) ∈ As

(
ki, j ∈ N

)
∀Ji ∈ J

(
s(Ji , 1) ≥ 0

)

If the initial marking is not fixed, Marchetti and Munier proved in [31] that this
problem isN P-complete even if G is a uniform precedence graph with F(a) = 1
for every arc. Benazouz et al. [8] developed a 2-approximation ratio algorithm for
the general case. The idea of this algorithm is first to solve the associated relaxed
linear program. An approximated solution is then built using a classical rounding
technique.

5.4 Evaluation of the Latency for Real-Time Systems

Consider a normalized SDF G without circuits issued from a set of real-time Jobs
which are communicating as described in Sect. 3.2. The problem is to evaluate effi-
ciently the latency of the system. Latency is a measure of the response time of the
system, it is thus fundamental for real-time systems.

Let us define themaximum (Resp.minimum) latencyLmax (Resp.Lmin) between
two connected jobs Ji and Jj as the maximum (Resp. minimum) duration between
the end of an execution of <Ji , ni> and the start of an execution of <Jj , nJ> such
that there is a precedence relation from<Ji , ni> to<Jj , nJ>. Theorem1.10 proved
by Khatib et al. [28], expresses the minimum and the maximum latency between two
periodic communicating jobs:

Theorem 1.10 The maximum and the minimum latencies between a couple of peri-
odic jobs (Ji , Jj ) such that Ji communicates data to J j are

Lmin(Ji , Jj ) = r j − ri + α − Ci

and
Lmax (Ji , Jj ) = r j − ri − max{0, Ti − Tj } + α − T �

a + Ti − Ci

with T �
a = gcd(Ti , Tj ) and α =

⌈
ri−r j+Ci

T �
a

⌉
× T �

a .

Consider for example the two communicating jobs J1 and J2 from Fig. 9.We get α =
10, T �

a = 10,Lmin(J1, J2) = 0 andLmax (J1, J2) = 10. The delay between the end
of<J1, 1> and the beginning of<J2, 1> equals 0 and corresponds toLmin(J1, J2).
The delay between the end of <J1, 2> and the beginning of <J2, 1> equals 10 and
corresponds toLmax (J1, J2).
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The latency of the entire system is a time gap from a data input of a system to a
connected outcome. The worst-case latency is then the longest time gap between the
input Job executions and output Job executions of a system.

The exact evaluation of the latency can be obtained by computing an expanded
valued graph [28]. Each vertex Ji is duplicated Ni times. Arcs correspond to relations
between executions and are valued by the exact latency between the corresponding
executions following Theorem1.10. This method is clearly not polynomial and is
not efficient for large repetition vectors.

Now, let Gmax = (J ∪ {s, d}, Am,w) be the graph built from the SDF G as
follows.

• Let a = (Ji , Jj ) be an arc of G with T �
a = gcd(Ti , Tj ). An arc e = (Ji , Jj ) is built

for Gmax with

w(e) =
⎧⎨
⎩

⌈
Ci
T �
a

⌉
T �
a + Ti − T �

a if Ti ≤ Tj⌈
Ci
T �
a

⌉
T �
a +

⌈
Ti
Tj

⌉
Tj − T �

a otherwise

• For any job Ji without predecessor, add the arc e = (s, Ji ) with w(e) = 0; for any
job Ji without successor, add the arc e = (Ji , p) with w(e) = Di .

Khatib et al. [28] proved that an upper bound of the maximum latency can
be computed by evaluating the longest paths of Gmax . On the same way, a lower
bound of the maximum latency can be computed by evaluating the longest paths of
Gmin = (J ∪ {s, d}, Am,w′) defined as follows:

• For any arc e ∈ Am corresponding to an arc a = (Ji , Jj ) ∈ A, w′(e) =
⌈

Ci
T �
a

⌉
T �
a .

• For any job Ji without predecessor, add the arc e = (s, Ji ) with w′(e) = 0; For
any job Ji without successor, add the arc e = (Ji , p) with w′(e) = Di

They also experimentally show that the gap between the exact value and the upper
(resp. lower) bound varies between 10 and 15% (resp. 20 and 30%).

Let us consider the real-time system of Sect. 3.2 adding a communication from
J1 to J3. Corresponding graphs Gmin and Gmax are pictured by Fig. 17. The value of
longest paths of these two graphs are respectively equal to 90 and 60.
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Fig. 17 Gmin and Gmax for the real-time system of Sect. 3.2
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6 Remarks and Conclusions

Cyclic scheduling problems arise in many crucial applications of computing and
real time systems. Data transfers and data dependences induce specific precedence
constraints, that have been analyzed and sometimes combined with resource con-
straints. In this chapter we proposed an insight on the main theoretical tools and
algorithms of the field, and gave the flavor of the most recent questions and results.
Several questions remain open, from complexity to algorithmic issues. We hope that
the readers will further contribute to their solutions.
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