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Preface

Production systems implementing multi-assortment production, in large quantities,
with slowly changing in time, product mix, manufacture products exclusively in
a cyclic manner. Similar issues also appear in computer systems, for instance—
embedded ones. Modern systems of these types satisfy market demand either by a
uniform production (or processing) in time, whose range varies irregularly according
to market demand, or by cyclic output providing the right mix of assortments/
processes. The latter approach is more economically attractive as it eliminates or
reduces the size of the stored finished goods. In addition, it provides a systematic
inventory replenishment of relatively small amount of goods at suppliers and gen-
erates systematic demand for intermediates, raw materials from deliverers. The
above system also simplifies the process of supply chain management. It also
enables relatively easy detection of defects that may indicate a deterioration of the
quality of the production system parameters and/or manufactured products.
Optimization of the operation of such a system is reduced to minimizing of the cycle
period, for a fixed mixture of tasks (products, processes) in the cycle, which results in
increased system capacity and improvement of machine utilization. Thus, recently,
one can observe a significant increase of interest in the problems of cyclic tasks
scheduling theory. For they are usually important and difficult, mostly NP-hard
problems, from the standpoint of not only theory but also practice.

Cyclic problems are unique and little researched. They belong to a subclass of
scheduling problems, as in fact they relate to the so-called irregular criterion. Cyclic
problems are object of interest primarily due to their strong practical importance
and difficulty in obtaining adequately efficient algorithms solving particular cases
with additional constraints arising from manufacturing practice.

Above-mentioned topics should be of great interest to researchers in computer
science, operations management, production control, as well as practicing managers
and engineers. Featuring a balance between state-of-the-art research and practical
applications, this monograph provides a forum for contributions that cover the main
research challenges related to the cyclic modelling, development and validation of
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concurrently acting distributed production systems and processes. After a strict
review, following scientific findings from researchers around the Europe have been
accepted.

Thebook is divided into four parts. First four chapters consider problemsmodelling
by a graph approach. Chapters “Blockage-Free Route Planning for In-PlantMilk-Run
Material Delivery Systems” and “Coordination of Cyclic Motion Processes in Free-
Ranging Multiple Mobile Robot Systems” deal with cyclic route planning issues.
Chapters “Conflict Avoidance Within Max-Plus Fault-Tolerant Control: Application
to a Seat Assembly System” and “Max-Plus Algebraic Modelling of Cyclical Multi-
assortment Manufacturing System” propose the usage of max-plus algebra for cyclic
systems modelling. Chapter “Incorporating Automatic Model Checking into
GPenSIM” presents Petri nets application for cyclic systems representation.

Chapter “Cyclic Data Flows in Computers and Embedded Systems” of Hanen C.
and Munier-Kordon A. deals with the issue of cyclic DataFlow in computer and
embedded systems. The chosen modelling method is Synchronous DataFlow
Graphs as a simple model of computation introduced for the description of Digital
Signal Processing Applications. The chapter aims at presenting theoretical results as
well as practical applications in context of cyclic scheduling problems.

Chapter “Cyclic Two Machine Flow Shop with Disjoint Sequence-Dependent
Setups” of Bożejko W., Smutnicki C., Uchroński M. and Wodecki M. considers the
problem of cyclic scheduling on two machines with resource constraints for setups,
concerning a single team that can perform setup between operations on a machine.
Such a limitation significantly impedes the considered issue because the solution is
represented here not only by the order of performing jobs, but also by the route
of the setup team, i.e. the order in which the team makes setups of machines. Linear
programming model is proposed, coded in AMPL modelling language and tested in
Gurobi solver.

Chapter “Cyclic Scheduling in the Manufacturing Cell” of Bożejko W.,
Pempera J., Smutnicki C. and Wodeck W. is focused on jobs scheduling performed
by machines and by an operator in automated manufacturing cells that have a large
volume of cyclic production. The purpose of scheduling is to set a cyclical schedule
that minimizes production cycle time. The chapter presents a genuine model of the
considered problem enabling effective determination of cycle time for any sequence
of operations in the cell. There is also an algorithm proposed that determines the
sequence and schedule of jobs minimizing the production cycle time.

Chapter “On Estimating LON-Based Measures in Cyclic Assignment Problem in
Non-permutational Flow Shop Scheduling Problem” of Gnatowski A. and Niżyński T.
deals with Fitness Landscape Analysis, which has provided a variety of new
approaches to analyse problem instances, focusing on Data-Driven approach to
problem-solving. The method proposed is based on Local Optima Networks
methodology—a compact representation of a search space from the perspective of
optimization algorithms. The impact of the number of samples taken, on the
obtained LON metrics for Cyclic Assignment Problem in non-permutational Flow
Shop Scheduling Problem, is analysed. The results suggest a strong relation between
the measure values and sampling effort.
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In chapter “Coordination of Cyclic Motion Processes in Free-Ranging Multiple
Mobile Robot Systems”, Roszkowska E. proposed the control architecture that
implements deadlock/collision avoidance conditions for Multiple Mobile Robot
System (MMRS). Considered problem concerns the cyclic routing of asynchronous
mobile robots sharing a common 2D motion space. A model of the feasible
dynamic behaviour of the robot system is then obtained by mapping the distin-
guished Resource Allocation System (RAS) into a Deterministic Finite State
Automaton (DFSA). Based on this model, a control architecture that implements
the described control logic and combines it with the priority control, thus receiving
a flexible controller for MMRS, is finally proposed.

In chapter “Blockage-Free Route Planning for In-Plant Milk-Run Material
Delivery Systems”, Bocewicz G., Nielsen I. and Banaszak Z. discussed how to
efficiently support routing and scheduling decisions regarding the movement of
vehicles in an in-plant milk-run delivery system. The problem under study, called
the Multi-Trip and Multi-Cycle Pickup and Delivery Problem with Time Windows
and Congestion-Free Traffic, can be viewed as extension of the pickup and delivery
problem with time windows in which multiple tugger trains travel along
closed-loop congestion-free routes in different cycles. To solve this kind of prob-
lem, the recursive constraint satisfaction problem is formulated. Its solution pro-
vides solutions that can minimize both vehicle downtime and the takt time of the
production flow.

In chapter “Conflict Avoidance Within Max-Plus Fault-Tolerant Control:
Application to a Seat Assembly System”, Witczak M., Majdzik P., Lipiec B. and
Stetter R. focused on the flexibility of manufacturing and assembly systems
allowing for more efficient activities aiming at following the dynamically evolving
markets. In that context, proposed max-plus algebra model allows to predict
delivery times of products which are customized to products’ requirements in the
cyclic manufacturing system and finally to evaluate the cost related to the recon-
figuration of the system.

Chapter “Max-Plus Algebraic Modelling of Cyclical Multi-assortment
Manufacturing System” of Stańczyk J. is focused on an analysis of the behaviour
of multi-assortment production systems represented in terms of as Discrete Event
Systems (DES) and modelled through the system state equations in the max-plus
algebra formalism. A number of phenomena that have a direct impact on the
behaviour of systems, such as ending the production of one product or launching, in
an already existing production system, the production of an additional and a new
product are analysed.

In chapter “Incorporating Automatic Model Checking into GPenSIM”,
Davidrajuh R., Skolud B. and Krenczyk D. presented the General-purpose Petri Net
Simulator (GPenSIM) implementing the Activity-Oriented Petri Nets (AOPN)
representation. GPenSIM being a tool for modelling, simulation, performance
evaluation and control of discrete event systems are used to avoid unexpected
failures in large-scale manufacturing systems. Its model checking functions are
illustrated through examples following cyclic production systems.
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In the editors’ intention, this book has a monographic character focusing on
cyclic systems, wherein each chapter has an independent character and it is written
by authors who have a well-established position in the field of issues related to
cyclic systems. It collected in a systematized way significantly broadened results on
the subject of methods of modelling and solving difficult issues of optimization and
manufacturing which appears in IT and control systems. The aim of this book is to
familiarize the reader with the contemporary methodology of cyclic systems
modelling in application to the issues of industrial engineering.

Wrocław, Poland Wojciech Bożejko
Koszalin, Poland Grzegorz Bocewicz
April 2019
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Cyclic Data Flows in Computers
and Embedded Systems

Claire Hanen and Alix Munier-Kordon

Abstract Synchronous DataFlow Graphs (SDF in short) is a simple model of com-
putation introduced for the description of Digital Signal Processing Applications.
This formalism is today widely used to model embedded parallel applications. This
chapter aims at presenting a panorama of theoretical results and practical applica-
tions in connection with cyclic scheduling problems. We first recall that the exe-
cution of a SDF can be seen as a set of cyclic dependant tasks. The structure of
precedence constraints, important dominance properties and simplifications of the
SDF are then presented. For the special case of uniform precedence graph, periodic
schedule are dominant and the maximum throughput can be polynomially evaluated.
Main results on the resource constrained problem are presented, followed by a more
recent problem issued from sensor networks. In the general case, the existence of
a polynomial-time algorithm to evaluate the maximum throughput of a SDF is a
challenging question. However, the determination of a periodic schedule of mini-
mum period is a polynomial problem, and many authors limit their study to this class
of schedule to express optimization problems as the total buffer minimization or to
evaluate the latency of a real-time periodic system.

1 Introduction

This chapter addresses cyclic scheduling problems issued from the control of data
flows in computers, embedded systems or sensor networks. Although in various
context, parts and data may induce the same theoretical scheduling problems, we
focus here on specific models and constraints. We point out analogies with produc-
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4 C. Hanen and A. Munier-Kordon

tion scheduling as well as differences and show the main basic results of the field,
following the introduction on cyclic scheduling given in [39], Chaps. 5, 6 and 8.

Dealing with data flows instead of manufacturing process means that tasks/jobs
represent computation and/or data transmission. Precedence constraints are here
induced by data dependencies: a job can be processed only when its input data,
produced or carried by another task, is available. Notice that in a manufacturing
process, a part is usually transformed, assembled, but remains in the system, although
a computation task may create or delete data. Precedence constraints may also be
defined when a limited memory constraint is considered. Indeed, a job Ji that has to
write a data in a full memory or buffer has to wait that another one, say Ji , frees place,
inducing then a precedence relation from executions of Ji to Jj . These constraints are
frequently considered in embedded systems for which the overall available memory
is limited.

Computations are done by physical components that, from a scheduling point
of view are similar to usual processors or machines in production process though
parallel processors or more complex resources from RCPSP problems are usually
used [3]. However, energy saving may induce unusual constraints on the scheduling
process, in particular grouping of tasks processed by the same component, in order
to avoid too many on/off.

We consider in this chapter a finite set of jobsJ = {Ji , 1 ≤ i ≤ n}which com-
municate data following a Synchronous DataFlow Graph formalism. Synchronous
DataFlow Graph (SDF in short) is a simple model of computation introduced by
Lee and Messerschmitt [29] for the description of Digital Signal Processing Appli-
cations. In this context, SDF or extensions were considered to model H263 Encoder
[9], anMP3 playback [36] or a Reed-Solomon decoder [5]. The SDF obtained do not
exceed here more than eight actors. SDF associated to an application may also be
generated automatically using a DataFlow language [22, 40]. The number of actors
for real-life applications ranges up to 600. The size of the instances encountered in
this new generation of embedded systems is significantly larger than before as they
express increasingly higher levels of concurrency.

Each jobs of a fixed SDF has to be executed repeated infinitely. Thus, checking the
feasibility of a SDF or evaluating its maximum throughput can be seen has a cyclic
scheduling problem. One of the aim of this chapter is to investigate the relationship
between cyclic scheduling problems and Dataflow problems. The main questions
that these two communities have explored are the following:

• Schedulability: does a feasible infinite schedule exist?
• Evaluation of the maximum throughput: what is the structure and the performance
of a schedule that maximizes the throughput?

• Performance of a periodic schedule: what is the optimal cycle time of a schedule
with a specific periodic structure?

• Memory optimization: what is the minimum amount of memory to reach feasibil-
ity? or a given cycle time?

We propose in next sections, a panorama of theoretical results developed for
dataflow models in connection with cyclic scheduling problems. Section2 is ded-
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icated to the presentation of the SDF model. Basic results about the precedence
constraints and the normalization are recalled, leading to the definition of a feasible
schedule and its normalized average cycle time. Two small examples, namely a loop
parallelization problem and the modelling of periodic data transfer for a real-time
system are presented in Sect. 3. Section4 presents some basic results and optimiza-
tion problems for the special case of uniform precedence graph, which is particular
important class of SDFs. Section5 is dedicated to the presentation of basic math-
ematical properties on SDF and two important optimization problems. Section6 is
our conclusion.

2 Synchronous DataFlow Graphs

This section presents some basic definitions and results on Synchronous Dataflow
Graphs. Section2 introduces the general model and the repetition vector. Next sub-
section recalls that a SDF models an infinite set of precedence relations between the
successive executions of the jobs. Section2.3 presents the normalization of a SDF.
This transformation will be useful to study the schedulability and the determina-
tion of a periodic schedule in Sect. 5. We lastly presents some common criteria and
scheduling policies.

2.1 General Model

Let us consider a set of n jobsJ = {J1, . . . , Jn}with processing times {p1, . . . , pn}
to be repeated many times. For Ji ∈ J , <Ji , k> denotes the kth occurrence of Ji .
Jobs are usually supposed to be totally or partially non-reentrant, i.e. two successive
executions of a job may not overlap or for all n > 0, <Ji , n + 1> starts at least one
time unit after <Ji , n> starts.

Jobs can exchange data using FIFO (First-In First Out) queues. Each FIFO has
exactly one input job Ji and one output job Jj and is thus modelled by an arc
a = (Ji , Jj ). Arcs are usually bi-valued by two strictly positive integers u(a) and
v(a) with the assumptions that:

1. u(a) data (or tokens) are stored in the FIFO at the completion of each execution
of Ji ;

2. v(a) data are removed from the FIFO before each execution of Jj . If there is not
enough data, the job cannot be executed and must wait for them.

Let A be the set or arcs. M0(a) for each arc a ∈ A is a non negative integer corre-
sponding to the initial number of data in the associated buffer. These values can
be fixed at the beginning, or may be variable for some optimization problems.
A Synchronous DataFlow Graph (in short SDF) is then a tri-valued multi-graph
G = (J , A, u, v, M0). Let C (G) denotes the set of circuit of G.
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a ∈ A u(a) v(a) M0(a)

a1 = (J1,J3) 1 3 0
a2 = (J3,J2) 2 1 1
a3 = (J1,J2) 2 3 1
a4 = (J2,J1) 3 2 3
a5 = (J4,J1) 3 2 5
a6 = (J2,J4) 1 1 0

Fig. 1 A Synchronous Data Flow graph G

J4
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J2

J1 1 2 3 4 5 6

1 2 3 4
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1 2 3

Fig. 2 First executions of the earliest schedule of the SDF pictured by Fig. 1

A schedule is a function s : J × N
� → R

+ such that s(Ji , k) is the starting time
of<Ji , k>. A schedule is feasible if at any instant the number of tokens in any FIFO
is non negative.

Consider for example the SDF of n = 4 jobs J = {J1, J2, J3, J4} depicted by
Fig. 1. We also suppose that p1 = 1, p2 = 2, p3 = 1 and p4 = 2. Figure2 presents
the first executions of the earliest schedule of the SDF of Fig. 1.

Let us define the weight of any circuit c of G by W (c) = Πa∈c u(a)

v(a)
. Note that,

if W (c) > 1, the number of data items stored in the FIFO will increase as far as
the jobs are executed. In the contrary, if W (c) < 1, this numbers tends to 0, leading
to a deadlock. These situations correspond to design flaws and such graphs can be
dismissed. Thus, all studies are restrained to unitary graphs for which the weight
of every circuit c is 1, i.e., ∀c ∈ C (G), W (c) = 1.

Suppose that, at time instant t , Ji was executed ni times, with ni > 0 and that Jj
was executed n j times with n j > 0. Then, the total number tokens at t stored in the
buffer associated to arc a equals M0(a) + u(a)ni − v(a)n j . Thus, we observe that if
ni = k × v(a) and n j = k × u(a), the number of tokens in the queue equals M0(a).
More formally, the following theorem is proved in [29]:

Theorem 1.1 (Repetition vector) Suppose that G is a unitary SDF. Then, there exists
an integer vector N ≥ 1n such that or for every arc a = (Ji , Jj ) ∈ A, the equality
u(a) × Ni = v(a) × N j holds. Then, the graph is feasible iff each job Ji ∈ J can
be executed at least Ni times. Moreover, once each job is executed exactly Ni times
(if it is possible), the systems returns in its initial state, ı.e the current marking of the
buffers equals its initial value.
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J2

J1 1 2 3 4 5 6 7

1 2 3 4 5

Fig. 3 Precedence relations between first executions of J1 and J2 and the arc a = (J1, J2) with
u(a) = 2, v(a) = 3 and M0(a) = 1. Jobs J1 and J2 are supposed to be re-entrant

We can check that our example pictured by Fig. 1 is unitary. The equations verified
by the repetition vectors are N1 = 3N3, 2N3 = N2, 2N1 = 3N2, N2 = N4 and 3N4 =
2N1. The smallest integer solution is then N1 = 3, N2 = 2, N3 = 1 and N4 = 2
(Fig. 3).

2.2 Precedence Constraints Associated to a SDF and Useful
Tokens

Aprecedence constraint between executions<Ji , ni> and<Jj , n j>with (ni , n j ) ∈
N

�2 expresses that <Jj , n j> cannot be executed before the completion of <Ji , ni>.
Munier [34] proved that each arc a = (Ji , Jj ) is equivalent to an infinite set of
precedence relations between the successive executions of Ji and Jj defined the
following theorem. A proof can also be found in [32].

Theorem 1.2 (Precedence constraints associated with a FIFO queue) Let Ji and Jj
be two re-entrant jobs. A FIFO queue a = (Ji , Jj ) ∈ A with initially M0(a) tokens
models a precedence relation between the ni th execution of Ji and the n j th execution
of J j iff

u(a) > M0(a) + u(a) · ni − v(a) · n j ≥ max{u(a) − v(a), 0}.

For example, let us consider the arc a = (J1, J2) with u(a) = 2, v(a) = 3 and
M0(a) = 1. The inequality of Theorem1.2 becomes

2 > 1 + 2 · ni − 3 · n j ≥ 0.

The couples of indexes (n1, n2) such that there exists a precedence relation due to a
are then {(1 + 3k, 1 + 2k) : k ∈ N} and {(3 + 3k, 2 + 2k) : k ∈ N}.

A useful initial marking is such that, for any arc a = (Ji , Jj ), M0(a) is a mul-
tiple of gcd(u(a), v(a)). A corollary of Theorem1.2 is that useful initial markings
are dominant [32, 33]. Moreover the initial marking M0(a) of a may be replaced
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by
⌊

M0(a)

gcd(u(a),v(a))

⌋
× gcd(u(a), v(a)) without any influence on the precedence con-

straints associated to a. Thus, we only consider useful initial markings.

2.3 Normalization

Let us assume that a SDF G = (J , A, u, v, M0) is a unitary graph. A SDF is said to
be normalized if there exists a positive integer vector Z = (Z1, . . . , Zn) such that,
for any arc a = (Ji , Jj ) ∈ A, u(a) = Zi and v(a) = Zi . Marchetti and Munier [32,
33] proved the following theorem:

Theorem 1.3 (Normalization) If G is a unitary SDF then, there exists an integer
vector Z ≥ 1n such that, for any arc a = (Ji , Jj ), Zi × v(a) = Z j × u(a). It follows
that the normalized SDF G ′ built from G by setting, for any arc a = (Ji , Jj ), u′(a) =
Zi , v′(a) = Z j and M ′

0(a) = M0(a) × Zi
u(a)

generates the same set of precedence
constraints as G.

Theorem1.3 can be seen as a corollary of Theorem1.1. Indeed, if the repetition vector
N is given, we can get the normalization vector by setting M = lcm(N1, . . . , Nn)

and for any job Ji , Zi = M

Ni
. In the following we only consider normalized SDF.

For example, Fig. 4 presents the normalized SDF G ′ associated with the SDF
G shows by Fig. 1 and its initial marking. We get M = lcm(2, 3) = 6 and thus
Z1 = M

3 = 2, Z2 = M
2 = 3, Z3 = M = 6 and Z4 = M

2 = 3.

2.4 Uniform Precedence Graphs

A SDF G is said to be uniform if for any arc a = (Ji , Jj ), u(a) = v(a) = 1. The
corresponding inequality of Theorem1.2 becomes 1 > M0(p) + ni − n j ≥ 0, and

J1

J2

J3J4

2

6

6

3

2

33

2
3

2

3

3

a ∈ A M0(a)

a1 = (J1,J3) 0
a2 = (J3,J2) 3
a3 = (J1,J2) 1
a4 = (J2,J1) 3
a5 = (J4,J1) 5
a6 = (J2,J4) 0

Fig. 4 Normalized graph G ′ associated with G
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Fig. 5 Expansion of the
graph composed by two non
re-reentrant jobs J1 and J2
and the arc a = (J1, J2) with
u(a) = 2, v(a) = 3 and
M0(a) = 1

J11 J21 J31

J12 J22

(1,0) (1,0)

(1,1)

(2,0)

(2,1)

(1,0) (1,0)

thus n j − ni = M0(a). In this case, the corresponding set of precedence constraints
between executions of Ji and Jj verifies:

∀n > 0
(
s(Ji , n) + pi ≤ s(Jj , n + M0(a))

)
.

Observe that in this case, pi > 0 and M0(a) ≥ 0.
However, uniform precedence graphs can be defined more generally as in [35].

Indeed, in the more general case, the two integer values associated to any arc
a = (Ji , Jj ) may be negative. A uniform precedence graph is then defined as a
bi-valued oriented graph G = (J , A, �, h). The length and the height of an arc are
respectively function defined as � : A → Z and h : A → Z. The precedence relations
associated to any arc a = (Ji , Jj ) are then defined by:

∀n ≥ max{1, 1 − h(a)} (
s(Ji , n) + �(a) ≤ s(Jj , n + h(a)

)
.

Several authors [32, 33] have observed that the precedence relations induced by
any unitary SDF can be expressed using a uniform precedence graph for which each
job Ji is duplicated Ni times. This transformation, called the expansion of the graph,
allows to consider all the algorithmic tools developed for uniform precedence graphs
to SDF, and thus was extensively used.

Itsmain drawback is that the size of the expanded graph is not polynomial andmay
be huge for real-life applications. Indeed, its total number of vertices equals

∑n
i=1 Ni

and its number of arcs is around
∑

a=(Ji ,J j )∈A min(Ni , N j ). The consequence is that
the methods developed for uniform precedence graphs are not efficient for these
instances. However, as we will see in Sect. 5.1, partial expansions may be considered
to develop efficient exact algorithms for the throughput evaluation (Fig. 5).

2.5 Criteria

Several criteria may be considered to evaluate a feasible schedule s. The most com-
mon one is the average cycle time of s, which is the inverse of the throughput. More
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formally, the average cycle time of job Ji for a schedule s is the mean time interval
between two executions of Ji :

λs
i = lim

k→ +∞
s(Ji , k)

k
.

The normalized average cycle time of s can be defined then as

λs = max
Ji∈J

λs
i

Zi
.

Another common criteria of a schedule is the latency L s . Roughly speaking,
the latency is the maximum delay between a stimulation and the answer of the
system. The SDF G must be without circuits. The latency of the entire system is
the maximum time gap from a data input of a system to a connected outcome. This
criteria is particularly important for real-time systems to measure the worst-case
reaction time of a system.

2.6 Scheduling Policies

A schedule s is said to be K-periodic if there exists for any job Ji a period wi and
an integer Ki such that, for n sufficiently large, s(Ji , n + Ki ) = s(Ji , n) + wi . Ki is
the of Ji , while wi is its period. Note that

λs
i = wi

Ki
.

Moreover, if G is strongly connected, the normalized average cycle time is

λs = wi

Ki Zi
.

The most common scheduling policy consists on executing the actors as soon as
possible (asap in short) which maximizes the throughput. An asap schedule always
consists of two stages [34]. The first one is an initialization phasewhich is necessarily
finite and possibly null. A K-periodic steady state phase follows. The periodicity
factor of job Ji verifies Ki = α × Ni with α ∈ N

�.
The earliest schedule depicted by Fig. 2 is K -periodic. Values wi , Ki and λs

i are

depicted by Table1. The normalized average cycle time equals λs = 11

6
.

Themain drawback of the asap schedule is that its description is not of polynomial
size. Indeed, values of the repetition vector are not polynomial and may be huge.
Many authors (see as example [8, 31]) restrict their study to periodic schedules in
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Table 1 Parameters of the earliest schedule of Fig. 2

Ji wi Ki λsi Zi

J1 11 3
11

3
2

J2 11 2
11

2
3

J3 11 1 11 6

J4 11 2
11

2
3

order to get efficient algorithms. The structure of periodic schedules of a SDF is
presented in Sect. 5.2.

3 Modelling Examples

Two usual applications for which SDF and uniform graphs are particularly suitable
are presented in this section. The first one concerns a loop parallelization. It has
been studied since the early 90s [13, 20, 21, 38] and the introduction of parallel
computers. Most of computation time is indeed spent in loops, so that the good use
of parallelism allowed by the architecture is crucial. Our second example shows that
communications between real-time periodic jobs following Liu and Layland model
[30] can be expressed using a particular normalized SDF. This modelling can be used
to evaluate the whole latency of the system.

3.1 Loop Parallelization

Let us describe on an example how a task system associated to the execution of a
loop on a specific architecture can be modeled by a uniform task system, provided
that enough resources are available.

Assume that arrays a, b are stored in the memory of a computer, and consider the
C loop depicted in Fig. 6.We describe the jobs associated with assembly instructions.
We assume that all instructions are processed by pipelined units, that can start a new
instruction at each time unit, while the execution time till the end of an operation is
2 for additions, 6 for multiplication, and 4 for memory operations (load and store).

Figure7 shows the uniform constraints induced by the loop semantic as well as
the architecture (assuming here unlimited number of functional units). The partial
reentrance is modelled by the loops around each job with label (1, 1). Although
interleaving the iterations is allowed, the storage of a[i] in the memory at iteration i ,
i.e job <J9, i>, must precede the load of a[i] at iteration i + 3 (Job <J3, i + 3>).
Thus the arc (J9, J3) has � = 4 and h = 3.Uniform constraints can alsomodel the use
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for (i= 3; i< n; i++){
b[i] = a[i−3]+ c;
a[i] += b[i] ·d;

}

J1 J2 J3 J4 J5 J6 J7 J8 J9
address a[i] address b[i] load a[i-3] add c store b[i] mult d load a[i] add a[i] store a[i]

Fig. 6 A C loop and its associated jobs

J1 J3 J4 J5

J7 J9 J2

J8 J6

(1,1) (1,1) (1,1) (1,1)

(1,1) (1,1) (1,1)

(1,1) (1,1)

(2,3)

(0,0)

(4,0)

(4,0) (6,0)

(2,0)

(2,0)

(2,0)

(4,3)(2,0) (0,2)(2,0)

Fig. 7 A uniform graph modeling a loop. Arcs are labelled with (�, h)

of a limited number of buffers. For example, we can assume here that the successive
address of a[i] are stored in a buffer of size 3, so that at most three executions of J3
can start without starting J1 and J1 can start only if a register is free, i.e. if J3 started.
This is modeled by the arcs (J1, J3) and (J3, J1) with values (2, 3) and (0, 0).

When dealing with loop execution on parallel architectures, it is necessary to
build a compact schedule, that can be easily described by a finite set of instructions.
Hence in this field most authors considered strictly periodic schedules, where all jobs
have the same period λ. Figure8 shows an optimal periodic schedule for the graph,
computed with the techniques described in Sect. 4.1.

3.2 Periodic Data Transfers for a Real-Time System

Let us consider a set of jobs based on the model of Liu and Layland [30]. Each job
Ji is characterized by a period Ti , a processing time Ci , a deadline Di , and a release
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J3 J4 J3 J4 J3 J4 J3

J2 J5 J2 J5 J2 J5

J1 J7 J1 J7 J1

J6 J6 J6

J8 J9 J8

core with = 6

Fig. 8 An optimal periodic schedule

Table 2 Parameters of jobs
J1, J2 and J3

Ji ri Ti Ci Di

J1 0 30 10 20

J2 0 20 10 10

J3 0 40 5 20

date ri . The nth occurrence of Ji can be processed if and only if its execution start
date s(ti , n) is superior or equal to its release date

ri + (n − 1)Ti ≤ s(Ji , n).

and its execution end date cannot exceed its deadline

s(Ji , n) + Ci ≤ ri + (n − 1)Ti + Di .

Suppose for example that job Ji needs data from job Ji . We consider that the nth
execution of Ji writes a unique data at time ri + (n − 1)Ti + Di and that the nth
execution of Jj reads a unique data at time r j + (n − 1)Tj . The data are not stored
in a FIFO queue, but in a unique memory. Thus, task Jj may read several time the
same data if its period Tj < Ti .

For example, consider 3 jobs J1, J2 and J3 which parameters are shown in Table2.
We assume that J1 sends data to J2 and that J2 sends data to J3. Figure9 presents the
relations between jobs. For example,<J2, 2> is reading a data from<J1, 1>, while
<J2, 4> is reading a data from <J1, 2>. The data considered by <J2, 3> comes
from <J1, 1>, the arcs is omitted by transitivity, since <J2, 2> precedes <J2, 3>.

The question is to compute efficiently the latency of the system. The first problem
is then to characterized couples of integers (ni , n j ) ∈ N

�2 such that <Jj , n j> reads
a data from <Ji , ni>.

By studying the lifetime of the data, Khatib et al. [28] observed that the relations
between the executions of communicating jobs corresponds to precedence relations
of a unitary SDG built following Theorem1.4:
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J3

J2

J1
0 30 60 90 120 150

0 20 40 60 80 100 120 140 160

0 40 80 120 160

Fig. 9 Communications between successive executions of jobs J1, J2 and J3

Theorem 1.4 Let Ji and Jj be two periodic jobs such that Ji communicates with
J j . The set of communicating instances of jobs Ji and Ji corresponds to precedence
relations of an arc a = (Ji , Jj ) of a normalized SDF with Zi = Ti , Z j = Tj and

M0(a) = Tj + α − T �
a with T �

a = gcd(Ti , Tj ) and α =
⌈
ri−r j+Ci

T �
a

⌉
× T �

a .

Thus, the corresponding SDF is composed by two arcs a1 = (J1, J2) and a2 =
(J2, J3) with Z1 = 30, Z2 = 20, Z3 = 40 and the initial markings M0(a1) = 10 and
M0(a2) = 40. Note that the latency of the graph equals 60. It corresponds to the path
<J1, 3>, <J2, 5>, <J2, 6> and <J3, 4>. Section5.4 is dedicated to the evaluation
of the latency of the SDF extracted from a real-time system.

4 Uniform Precedence Graphs

Some fundamental basic results on uniform precedence graphs are firstly recalled.
We then introduce a generic technique, called decomposed software pipelining, that
was used by several authors to solve periodic scheduling problems with resource
constraints and to get approximation results. We finally present constraints recently
introduced to handle energy saving in sensor networks and we mention some com-
plexity results.

4.1 Basic Results

Let consider thatG = (J , A, �, h) is a uniformprecedence graphG. If no additional
resource constraint is considered, the schedulability, the evaluation of the maximum
throughput and the performance of a periodic schedule are polynomially solvable.

These questions were initially considered for non-negative uniform case [14], i.e.,
for any arc a, �(a) > 0 and h(a) ≥ 0. These results were extended in [35] for any
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integer values. For the sake of simplicity, we mention here the main results for the
case where G is strongly connected. General case can be found in [15, 35].

Let C +(G) (Resp. C −(G)) be the set of circuits c of G with h(c) > 0 (Resp.
h(c) < 0). For any circuit μ ∈ C (G), let L(μ) = Σa∈c�(a) and H(μ) = Σa∈ch(a).
Let also define the two ratios:

λ+(G) = max
μ∈C +(G)

L(μ)

H(μ)

λ−(G) =
⎧⎨
⎩

min
μ∈C −(G)

L(μ)

H(μ)
if C −(G) 	= ∅

+∞ otherwise

A circuitμ ∈ C +(G) is critical if L(μ)

H(μ)
= λ+(G). The critical circuit of the graph

depicted in Fig. 7 is the circuitμ = (J3, J4, J6, J8, J9, J3) and its value equals
L(μ)

H(μ)
=

λ+(G) = 18
3 = 6.

A schedule s is said to be strictly periodic if there is a constant λ such that
∀Ji ∈ J ∀k > 0

(
s(Ji , k) = si + (k − 1)λ

)
. λ is the average cycle time of s, also

called its period. First point of Theorem1.5 deals with the schedulability. Second
point concerns the the evaluation of the maximum throughput while the third point
is about the performance of a periodic schedule:

Theorem 1.5 ([35, 39]) Let G be a uniform strongly connected task system.

1. G is feasible if and only λ+(G) ≤ λ−(G) and there is no circuit μ in C (G) with
H(μ) = 0 and L(μ) > 0.

2. If G is feasible, its minimum average cycle time is λ+(G) and the asap schedule
is K−periodic.

3. If G is feasible, there exists an optimal strictly periodic schedule s with λs =
λ+(G)

4. Checking feasibility, computing the optimal cycle time and the optimal strictly
periodic schedule can be done in polynomial time according to graph algorithms.

Dasdan et al. [18] have experimentally tested several algorithms to compute the max-
imum cost to time ratio, which is exactly our problem here. Notice that a fixed value
λ ∈ [λ+(G), λ−(G)] iff there is no valued positive cycles in the graph G valued by
Vλ(a) = �(a) − λh(a) for any arc a. Checking for a positive cycle in a graph can
be done in polynomial time using Bellman–Ford algorithm [16]. Howard’s algo-
rithm, which is supposed to be the most efficient for the problem, although pseudo-
polynomial in the worst case, increases a lower bound b of λ+(G) until the critical
circuit is reached or an infeasibility is detected. Another efficient and polynomial
approach is a parametric path algorithm with complexity O(n4) [2, 27].

Figure10 shows the graph of Fig. 7 valued by Vλ for λ = 6. First execution times
si ∈ J of a feasible strictly periodic schedule of period 6 are also reported.
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Fig. 10 Graph of Fig. 7
valued by Vλ for λ = 6. First
execution times si ∈ J of a
feasible periodic schedule of
period 6 are reported in the
squares

J1 J3 J4 J5

J7 J9 J2

J8 J6

6 0 4 6

8 14 4

12 6

−16

0

4

4
6

2

2

2

−142 −122

4.2 Decomposed Software Pipelining and Resource
Constrained Problems

As seen in Sect. 3.1, loop parallelization induces a uniform task system. The archi-
tecture on which the loop is executed induces additional resource constraints. From
the simple case of parallel processors [24, 25] to the more complex case of RCMSP
(resource-constrained modulo scheduling problem), two main approaches have been
investigated, in order to find an optimal strictly periodic schedule. Although it can
be easily proved that periodic schedules are not dominating schedules, their simple
formulation make them very easy to implement and thus often used in loop paral-
lelization context.

Firstly the ILP formulations, for example in [3, 19, 20] combining classical ILP
formulations of resource constraints (either time-indexed or not), and linear expres-
sion of uniform constraints. In [3], several models are described and experimentally
compared. The second approach, known as decomposed software pipelining (DSP)
is based on the decomposition of the cyclic scheduling problem into two phases,
retiming and compaction, the first one is related to the uniform task system, and the
second to non cyclic resource constrained scheduling. In particular, several approx-
imation algorithms have been proposed, based on this ideas [6, 10, 13, 21]. Finally,
in [3], a hybrid approach combining shifting and ILP has been investigated.

In this section we describe the decomposed software pipelining technique and
summarize the approximation results.

DSP relies on the notion of retiming. The main interest of this technique is to
transform a set of uniform constraints into a set of usual precedence constraints,
so that the remaining problem is an acyclic scheduling problem with resource con-
straints.

The intuition behind retiming is that while dealing with periodic schedules, the
real iteration number of a job occurrence is not so important. Consider an occur-
rence <Ji , k>, which corresponds to the (k)th execution of the first instance of Ji .
It can also be interpreted as the (k + ri )th execution of Ji (ri ) whose first occurrence
is <Ji ,−ri>. The height of precedence relations are then changed: if there is a
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uniform constraint a = (Ji , Jj ) labelled by (�(a), h(a)), then s(Ji (ri ), k) + �(a) ≤
s(Jj (r j ), k + r j + h(a) − ri ). So the value r j + h(a) − ri is the height of a new
uniform precedence relation between Ji (ri ) and Jj (r j ).

Definition 1.1 A legal retiming associates to each job Ji an integer value ri so that:

r : J → Z, ∀a = (Ji , Jj ) ∈ A
(
r j + h(a) − ri ≥ 0

)
.

Now considering a legal retiming, if r j + h(a) − ri = 0 then <Ji (ri ), k> pre-
cedes <Jj (r j ), k> for enough large integer k. So that the precedence relations
induced by the uniform constraint is now within an iteration of the shifted jobs. Oth-
erwise,<Ji (ri ), k> precedes an occurrence<Jj (r j ), k ′>with k ′ > k which belongs
to a next iteration. Hence for these new generic operations (Ji (ri ))1≤i≤n , the first iter-
ation fulfills the non cyclic precedence relations given by a graph calledGr computed
from G by keeping only the arcs a = (Ji , Jj ) for which r j + h(a) − ri = 0.

Several ideas have been investigated to find a legal retiming for nonnegative
uniform task systems. Notice first that a retiming can always be found from any
strict periodic schedule s fulfilling the uniform constraints.

Let s be a strict periodic schedule with period λ. For any job Ji , si can be uniquely
decomposed with respect to the period: si = ti + λ.qi , with 0 ≤ ti < λ and qi is an
integer. (ti ){Ji∈J } is called the core of the periodic schedule, and (qi ){Ji∈J } is the
shift of the periodic schedule.

The shift (qi ){Ji∈J } is a feasible retiming. This property was used by Gasperoni
and Schwiegelsohn [21] by finding the shift of an optimal periodic schedule assum-
ing unlimited resources. Figure11 shows the graph Gr considering the retiming
associated with the shift of the optimal schedule depicted in Fig. 8.

In [13], where using retiming for loop shifting is formalized, the authors consider
two optimizations, with polynomial graph algorithms:

• the length of the longest path in Gr minimization
• the number of arcs in Gr minimization, so as to reduce the number of precedence
constraints for loop compaction.

J1 J3 J4 J5

J7 J9 J2

J8 J6

4

2

2

1 0 0 1

1 2 4

2 1

0 1 2 3 4 5 6 7

ALU1 J8 J6 J1 J2 J4

ALU2 J3 J5 J9 J7

MEM J3 J5 J9 J7

core with = 8

Fig. 11 Retiming graph Gr , with r shown above the nodes and periodic schedule with resource
constraints
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The idea behind DSP approach is to choose a particular retiming r , and then use
an algorithm to get a schedule (ti ){Ji∈J } of Gr , fulfilling the resource constraints to
get a periodic schedule of the original problem.

This relies on the following result:

Theorem 1.6 If r is a feasible retiming, and (ti ){Ji∈J } is a schedule fulfilling the
non cyclic precedence constraints of Gr and the resource constraints, then there
exists a periodic schedule s whose core is (ti ){Ji∈J } and whose shift is (ri ){Ji∈J }.

Figure11 shows a construction of a core for our example, assuming that arithmetic
operations are performedonone of the two availableALU’s,whilememory jobs (load
and store) use one ALU and one memory controller at the same time. The makespan
of the schedule (ti ){Ji∈J }, combined with the observation of precedence constraints
crossing the core lead to the computation of a period λ in polynomial time [3]. For
our example λ = 8.

From this an interesting special case can be noted: if G has no circuit (except
the ones due to the non-reentrance hypothesis for jobs), then it is always possible
to get a feasible retiming r so that Gr has no arcs. Thus at the compaction step,
only independent jobs have to be considered. Hence if the underlying non cyclic
scheduling problem is easily solvable for independent tasks then the DSP approach
provides an optimal periodic schedule. This occurs for example in cyclic shop-like
problems (open shop, job-shop) if, unlike in [37], no limitation on the completion
time of an iteration, or on the interleaving between iterations is given.

List scheduling algorithms are the most used heuristics for scheduling with prece-
dence and resource constraints. Efficiency of these algorithms in practice is well
known. Moreover usually a worst case performance guarantee can be determined in
most resource context, from the parallel processors to RCPSP settings where a job
may require several units of different resources during its execution.

Using such algorithms at the compaction step leads to a worst case ratio on the
periodic schedule. This has been considered for parallel processors [17, 21] and
extended to RCPSP in [6].

4.3 Energy Saving or Other Resource Dependent Constraints

In this section we consider problems issued from sensor networks, and in particular
the scheduling problems induced by the IEEE 802.15.4/ZigBee network. Here the
jobs represents data communications. Now, in real networks, while dealing with
periodic schedules, the period is quite long with respect to the processing times of
jobs. Moreover, the resources involved in the communication must be awaken to
perform the jobs during each period. To avoid energy loss due to many in and out
of the resources, it can be interesting to group jobs using the same resource as much
as possible, so that the resource is awaken during a short interval once per period.
In the context of periodic schedules, this will induce constraints on the core of the
schedule, regardless the occurrence number of the concerned jobs.
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Fig. 12 An example of the tree T and two flows, and the associated uniform graph

Let us nowpresent amodel of data-flows inspired by theZigBee norm, introducing
grouping constraints. This work is issued from [1, 23]. We consider a tree T , whose
nodes represent the clusters and whose edges represent the logical links between
them. We then consider a collection of flows. Each flow f is defined by a copy of
a subtree of T , oriented as an in-tree, and represents the communication of data
along the communication links of T from source nodes of the flow to the unique
sink. For flow f , if node i belongs to the sub-tree of f , then we denote, by J if , the
communication task associated to node i in flow f . Figure12 shows an example of
a tree consisting of seven clusters and two flows.

An iteration of each flowwill start at each period.Moreover, the energy constraints
of the ZigBee standard consider that each cluster should be active once in each period.
So tasks J if for all flows f passing through node i belong to group i , which should
be grouped in the period.

Of course, if we do not limit the time of delivery for each flow, then the periodic
scheduling problem can be handled in polynomial time by considering a retiming
that lead to independent jobs. However, if we wish to achieve a good response time,
we need to fix some time limits. We assume here that for each flow f the number of
periods crossed by f froma source until its delivery should be less than a given integer
p f . The experiments with a scheduling tool [1], which enables system designers
to configure all the required parameters of the IEEE 802.15.4/ZigBee cluster-tree
WSNs, illustrate the efficiency of the model.

Moreover, this model induces for each flow a representation of the constraints
induced by the data flow by a uniform graph:

1. The nodes of G are for each flow the tasks J if .

2. If there is a communication link J if → J j
f in the underlying sub-tree, then (J if , J

j
f )

is an arc of G with h value 0.
3. If J if is the sink of the flow f and J j

f is a source, there is an arc from J if to J j
f

with h(J if , J
j
f ) = p f + 1.
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Fig. 13 A core of a grouped
periodic schedule—grouped
jobs are shown by colors

J11 J21 J31

J22 J32

J52 J42 J61

J41 J72

Figure12 depicts the graph associated to the two flows, considering p1 = p2 = 1.
Consider now a uniform task systemG, and assume that each job has a group label

ki ∈ {1, . . . , K }. A periodic schedule is said to be grouped if the tasks of the same
group are executed close to each other in the core. This notion can be expressed by
different means, but we can choose the simplest way here, where each group is to be
scheduled as a single super-task in the core schedule. In the context we consider here,
the period is usually large with respect to the processing times so we can consider
that the complexity induced by the schedule of the jobs inside a super-task is not
worth. As we consider here feasibility questions, we assume in the following that
the super-task has a unit processing time, but the same results can be obtained by
considering sum or max of the processing times of the grouped jobs.

Though the ZibBee feasibility question turns out in the following question: Given
a uniform precedence graph G and group labels of the tasks, does a grouped periodic
schedule of G exist? We call theUGF (Uniform Grouped Feasibility), this decision
problem.

One can easily see that for some instances no grouped periodic schedule exists. If
we consider our example assuming p1 = p2 = 0 thismeans that the first execution of
all jobs have to be scheduled during the first period. As <J 2

1 , 1> precedes <J 3
1 , 1>

for the execution of the first flow, and <J 3
2 , 1> precedes <J 2

2 , 1> for the second
flow, and as J 2

1 , J 2
2 (resp. J 3

1 , J 3
2 ) belong to the group of node 2 of the tree (resp.

node 3), we get a contradiction. Figure13 shows a core of a grouped schedule for the
example of Fig. 12. We prove in [23] that the general UGF problem is NP-Complete,
but the specificity of the tree underlying communication path for the ZigBee problem
lead to a polynomial algorithm, based on the use of decomposed software pipelining,
which proves its efficiency in practice in [1].

In [26] the authors explore a weaker way of considering grouping in a uniform
task system by introducing precedence constraints with arbitrary latencies on the core
schedule, called core constraints. Unfortunately, they prove that even if no additional
resource constraints is assumed, and if unit processing times are considered, deciding
the existence of a periodic schedule is also NP-complete.
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5 Synchronous Data Flows

This section aims to present several important theoretical results on normalized SDF.
The feasibility and the evaluation of the minimum normalized average cycle time
are two challenging problems for which the complexity is unknown. Section5.1
presents some algorithms to answer these two questions. Section5.2 is dedicated
to characterization of a periodic feasible schedule of minimum period, leading to a
polynomial time algorithm to compute it. This characterization is considered to opti-
mize the total buffers capacity under aminimumperiod constraint in Sect. 5.3. Lastly,
Sect. 5.4 is dedicated to the computation of the latency for a real-time application
which communications between tasks are modelled using a SDF.

5.1 Feasibility and Evaluation of the Minimum Normalized
Average Cycle Time

Let us suppose that G = (J , A, u, v, M0) is a normalized SDF. G is feasible (or
live) if there exists an infinite feasible schedule. Following Theorem1.1, the simplest
way to test the feasibility is to execute the jobs as soon as possible until each job Ji
is executed at least Ni times. If it is possible, G is live.

The main drawback of this method is that values Ni are not polynomial and may
be quite huge for real-life systems. From a theoretical point of view, the complexity
of checking the feasibility of a SDF remains unknown. However, a simple sufficient
condition of feasibility was proved by Marchetti ans Munier [32, 33].

Theorem 1.7 (Sufficient condition of feasibility of a SDF) Let G be a normalized
SDF. If, for any circuit c ∈ C (G), the inequality

∑
a∈c

M0(a) >
∑

a=(Ji ,J j )∈c

(
Z j − gcd(Zi , Z j )

)

is true, then G is feasible.

Checking this condition requires to label each arc of a = (Ji , Jj ) of the SDF by
V (a) = Z j − gcd(Zi , Z j ) − M0(a) and testing that the sum of the labels of each
circuit remains strictly negative. As example, Fig. 14 pictures the SDF from Fig. 1
with arcs a = (Ji , Jj ) valued by V (a). This graph has nos positive or null valued
circuits, thus G is feasible.

Checking the existence of positive circuits can be done using a two steps polyno-
mial time algorithm: the first step consists on checking the non existence of positive
or null valued circuits using Bellman–Ford algorithm [16]. A depth-first search algo-
rithm applied only to critical arcs allows to check the non existence of null-valued
circuits.
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Fig. 14 SDF G from Fig. 1
with arcs a = (Ji , J j ) valued
by V (a) =
Z j − gcd(Zi , Z j ) − M0(a)

J1

J2

J3J4

4

−3

1−2

−4

0

Munier [34] proved that the earliest schedule of a SDF is K-periodic. Thus, the
simplest way to evaluate the minimum normalized average cycle time is to compute
the earliest schedule until the convergence of the normalized average cycle time.
Another way is to compute the expansion of the graph, and determine its average
cycle time. The main drawback of these two methods is that they are not polynomial,
and thus not efficient whenever Σn

i=1Ni is important.
Bodin et al. [11] have proved that, for any integer vector of n components X ≥ 1n

an expansionGX (which is a uniform precedence graph) ofG can be defined. For any
arc a = (Ji , Jj ), arcs of GX between the duplicates of Ji and Jj models a superset
of precedence constraints between Ji and Jj . They also show that dominant values
for the computation of the minimum normalized average cycle can be achieved for
the vector set {X ∈ N

n : ∀i ∈ {1, . . . , n} (Xi divides Ni)}. These expansions can be
used to get upper-bounds of the minimum normalized average cycle.

Algorithm1 was also developed by Bodin et al. [12] to compute the minimum
normalized average cycle time by expanding only jobs of the successive critical
circuits. Although non polynomial, this algorithm allows to evaluate quickly this
value for industrial instances of large size.

Algorithm 1: Computation of the minimum normalized average cycle time
Require: A normalized SDF G = (J , A, u, v, M0).
Ensure : Normalized minimum average cycle time λ(G) of G.

1 Set M = (Z1, . . . , Zn),
∀i ∈ {1, . . . , n} (Ni = M

Zi
);

2 Set X = 1n ,
GX the corresponding expanded graph,
c a critical circuit of GX ;

3 while every job Ji of c is not expanded Ni times do
4 Set Xi = Ni for every job Ji of c;
5 Update GX and a critical circuit c of GX ;

6 Let λ(c) be the average cycle time of GX ,

λ(G) = λ(c)
X1

;
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5.2 Existence and Computation of a Periodic Schedule of
Minimum Average Cycle Time

We show in this section that the determination of a feasible periodic schedule
of minimum period is a polynomial problem for a normalized SDF. A schedule
s is periodic if for any job Ji , there exists wi ∈ Q

�+ with ∀n > 1(
s(Ji , n) = s(J1, 1) + (n − 1)wi

)
. Benabid et al. [7] have proved Theorem1.8 that

characterizes periodic schedules.

Theorem 1.8 Let G be a normalized strongly connected SDF. For any periodic
schedule s, there exists a rational λs ∈ Q

�+ such that for any job Ji ,
wi
Zi

= λs . More-
over, the precedence relations associated with any place a = (Ji , Jj ) are fulfilled by
s iff

s(Jj , 1) − s(Ji , 1) ≥ pi + λs(Z j − M0(a) − gcd(Zi , Z j )).

λs is then the average cycle time of s.

Since length pi > 0 for any job Ji , there exists a periodic schedule for G iff for
any circuit c ∈ C (G), the inequality

∑
a=(Ji ,J j )∈c(Z j − M0(a) − gcd(Zi , Z j )) < 0

holds, which is exactly the condition of feasibility of Theorem1.7. If this condition
is true, the minimum average cycle time λs can then be computed by finding crit-
ical circuits of the graph G1 with the same structure of G and for which each arc
a = (Ji , Jj ) is bi-valued by (pi , M0(a) + gcd(Zi , Z j ) − Z j ).

Consider for example the bi-valued graph G1 pictured by Fig. 15 and associated
with the graph G of Fig. 1. The critical circuit of G1 is c = (J1, J3, J2, J1) with ratio
λ(c) = 1+2+2

−4+3+2 = 5. Thus the minimum normalized average period of a periodic
schedule is λs = 5.

5.3 Optimization of the Total Buffers Capacity Under a
Minimum Period Constraint

SDF can be considered to model data exchanges [29] for streaming applications.
Jobs correspond here to programs that are repeatedly executed. Arcs are associated to

Fig. 15 SDF G from Fig. 1
with arcs a = (Ji , J j )
bi-valued by (pi , M0(a) +
gcd(Zi , Z j ) − Z j )

J1

J2

J3J4

(1,−4)

(2,3)

(1,−1)(2,2)

(1,4)

(2,0)
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Ji Jj Ji J j
Zi Z j

Zi Z j

Z jZi

a= (Ji,Ji) with bounded capacity F(a)
M0(a) ≤ F(a)

a1 = (Ji,Ji) and a2 = (Jj,Ji)
M0(a1) =M0(a) andM0(a2) = F(a)−M0(a)

Fig. 16 Transformation of an arc e with a capacity bounded by F(a) into a coupe of arcs with no
capacity constraint

buffers. The total amount ofmemory needed to execute an application is an important
criteria for the designers due to the cost of the memories. Thus, the minimization
of the total buffers capacity under a minimum period constraint is an important
bi-criteria optimization problem.

The capacity F(a) of an arc a is themaximum number of tokens that can be stored
simultaneously in the buffer corresponding to a. First at all, Marchetti and Munier
proved in [31] that the capacity of a buffer may be modelled using a backward arc as
follows by studying the precedence relations induced by this capacity constraints.

Theorem 1.9 Any arc a = (Ji , Jj ) initiallymarked by M0(a)with a capacity limited
by F(a) ≥ M0(a) may be replaced by a couple of arcs (with no limited capacity)
a1 = (Ji , Jj ) and a2 = (Jj , Ji )with M0(a1) = M0(a) and M0(a2) = F(a) − M0(a)

(see Fig.16).

Let Gs = (J , As, u, v, M0) be the SDF associated to G for which each arc a
with a limited capacity is replaced by a couple of arcs (a1, a2). For any arc a, we
denote by θ(a) > 0 the size needed to store one unique data in a. The size of a is
then F(a) × θ(a) and the total size is thus

F =
∑
a∈A

θ(a)F(a) =
∑
a∈As

θ(a)M0(a)

The optimization problem addressed here is to find an initial marking M0(a), a ∈ As

such that the total size of the memories
∑

a∈As
θ(a)M0(a) is minimum, while there

exists a schedule with a normalized average cycle time at most equal to K .
Since there is no polynomial algorithm to compute the feasibility and theminimum

average cycle time of a SDF, we do not know if this problem belong toN P . Several
authors limit their study to periodic schedules in order to get around this problem.
In this case, the optimization problem can be expressed easily using the following
Integer Linear Program Π(K ):



Cyclic Data Flows in Computers and Embedded Systems 25

minimize(∑
a∈As

θ(a)M0(a)
)

subject to⎧⎪⎪⎨
⎪⎪⎩

∀a = (Ji , J j ) ∈ As
(
s(J j , 1) − s(Ji , 1) ≥ pi − K (M0(a) + gcd(Zi , Z j ) − Z j )

)
∀a = (Ji , J j ) ∈ As

(
M0(a) = ki, j · gcd(Zi , Z j )

)
∀a = (ti , t j ) ∈ As

(
ki, j ∈ N

)
∀Ji ∈ J

(
s(Ji , 1) ≥ 0

)

If the initial marking is not fixed, Marchetti and Munier proved in [31] that this
problem isN P-complete even if G is a uniform precedence graph with F(a) = 1
for every arc. Benazouz et al. [8] developed a 2-approximation ratio algorithm for
the general case. The idea of this algorithm is first to solve the associated relaxed
linear program. An approximated solution is then built using a classical rounding
technique.

5.4 Evaluation of the Latency for Real-Time Systems

Consider a normalized SDF G without circuits issued from a set of real-time Jobs
which are communicating as described in Sect. 3.2. The problem is to evaluate effi-
ciently the latency of the system. Latency is a measure of the response time of the
system, it is thus fundamental for real-time systems.

Let us define themaximum (Resp.minimum) latencyLmax (Resp.Lmin) between
two connected jobs Ji and Jj as the maximum (Resp. minimum) duration between
the end of an execution of <Ji , ni> and the start of an execution of <Jj , nJ> such
that there is a precedence relation from<Ji , ni> to<Jj , nJ>. Theorem1.10 proved
by Khatib et al. [28], expresses the minimum and the maximum latency between two
periodic communicating jobs:

Theorem 1.10 The maximum and the minimum latencies between a couple of peri-
odic jobs (Ji , Jj ) such that Ji communicates data to J j are

Lmin(Ji , Jj ) = r j − ri + α − Ci

and
Lmax (Ji , Jj ) = r j − ri − max{0, Ti − Tj } + α − T �

a + Ti − Ci

with T �
a = gcd(Ti , Tj ) and α =

⌈
ri−r j+Ci

T �
a

⌉
× T �

a .

Consider for example the two communicating jobs J1 and J2 from Fig. 9.We get α =
10, T �

a = 10,Lmin(J1, J2) = 0 andLmax (J1, J2) = 10. The delay between the end
of<J1, 1> and the beginning of<J2, 1> equals 0 and corresponds toLmin(J1, J2).
The delay between the end of <J1, 2> and the beginning of <J2, 1> equals 10 and
corresponds toLmax (J1, J2).
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The latency of the entire system is a time gap from a data input of a system to a
connected outcome. The worst-case latency is then the longest time gap between the
input Job executions and output Job executions of a system.

The exact evaluation of the latency can be obtained by computing an expanded
valued graph [28]. Each vertex Ji is duplicated Ni times. Arcs correspond to relations
between executions and are valued by the exact latency between the corresponding
executions following Theorem1.10. This method is clearly not polynomial and is
not efficient for large repetition vectors.

Now, let Gmax = (J ∪ {s, d}, Am,w) be the graph built from the SDF G as
follows.

• Let a = (Ji , Jj ) be an arc of G with T �
a = gcd(Ti , Tj ). An arc e = (Ji , Jj ) is built

for Gmax with

w(e) =
⎧⎨
⎩

⌈
Ci
T �
a

⌉
T �
a + Ti − T �

a if Ti ≤ Tj⌈
Ci
T �
a

⌉
T �
a +

⌈
Ti
Tj

⌉
Tj − T �

a otherwise

• For any job Ji without predecessor, add the arc e = (s, Ji ) with w(e) = 0; for any
job Ji without successor, add the arc e = (Ji , p) with w(e) = Di .

Khatib et al. [28] proved that an upper bound of the maximum latency can
be computed by evaluating the longest paths of Gmax . On the same way, a lower
bound of the maximum latency can be computed by evaluating the longest paths of
Gmin = (J ∪ {s, d}, Am,w′) defined as follows:

• For any arc e ∈ Am corresponding to an arc a = (Ji , Jj ) ∈ A, w′(e) =
⌈

Ci
T �
a

⌉
T �
a .

• For any job Ji without predecessor, add the arc e = (s, Ji ) with w′(e) = 0; For
any job Ji without successor, add the arc e = (Ji , p) with w′(e) = Di

They also experimentally show that the gap between the exact value and the upper
(resp. lower) bound varies between 10 and 15% (resp. 20 and 30%).

Let us consider the real-time system of Sect. 3.2 adding a communication from
J1 to J3. Corresponding graphs Gmin and Gmax are pictured by Fig. 17. The value of
longest paths of these two graphs are respectively equal to 90 and 60.

s

J1

J2

J3 p
0

50

50

20

20

Gmax

s

J1

J2

J3 p
0

20

20

20

20

Gmin

Fig. 17 Gmin and Gmax for the real-time system of Sect. 3.2
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6 Remarks and Conclusions

Cyclic scheduling problems arise in many crucial applications of computing and
real time systems. Data transfers and data dependences induce specific precedence
constraints, that have been analyzed and sometimes combined with resource con-
straints. In this chapter we proposed an insight on the main theoretical tools and
algorithms of the field, and gave the flavor of the most recent questions and results.
Several questions remain open, from complexity to algorithmic issues. We hope that
the readers will further contribute to their solutions.
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Cyclic Two Machine Flow Shop with
Disjoint Sequence-Dependent Setups

Wojciech Bożejko , Czesław Smutnicki , Mariusz Uchroński
and Mieczysław Wodecki

Abstract The chapter considers the problem of cyclical jobs scheduling on two
machines with resource constraints often encountered in practice, and concerning
a number of teams that can perform setups of machines between jobs performed. We
are considering a fundamental and most restrictive case with only one setup team.
This limitation significantly impedes the considered issue because the solution is
represented here not only by the order of performing jobs, but also by the route of
the setup team, i.e. the order in which the team makes setups of machines.

1 Introduction

The scheduling problemswith sequence-dependent setups are closely related to solv-
ing the traveling salesman problem (TSP). Therefore, the solution’s properties and
methods of solving for the traveling salesman problem can be easily adapted and used
to develop methods for solving multi-machine problems with sequence-dependent
setup times. Corwin and Esogbue [5] for the two-machine problem and Bellman [3]
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50-372 Wrocław, Poland
e-mail: wojciech.bozejko@pwr.edu.pl

M. Uchroński
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as well as Held and Karp [9] for TSP propose using dynamic programming (TSP
equivalent to single machine scheduling problem with sequence-dependent setups
and makespan criterion Cmax). The problem is strongly NP-hard because it consti-
tutes a generalization on two machines of a single-machine cyclic scheduling prob-
lem with setups, which in turn is the same in terms of the optimized minimum cycle
time with a single-machine non-cyclical problem with theCmax criterion. Mentioned
methods can work with problems of the size n ≤ 15, which is very small. Problems
with a relative small number of tasks can also be solved exactly by the branch and
bound algorithms (B&B,Gupta [7], Gupta andDarrow [8]). However, the calculation
times required for dynamic programming algorithms and B&B are too long, even
for moderate-size problems. In turn, comparison of heuristic methods can be found
in the review paper of Ruiz and Maroto [10], also in parallel versions, Taillard [12],
Bożejko [1], Bożejko et al. [4] and with the use of special properties of the problem,
Bożejko [2], Bożejko et al. [3].

2 Problem Description

The two machine flow shop problem under consideration is generated by practice
and can be formally defined in the following way. We have a set of jobs

J = {1, 2, . . . , n}, (1)

which should be executed cyclically on machines from the set

M = {1, 2}. (2)

Each job i ∈ J consists of two operations, which are executed on a machine by
the time pi, j , j = 1, 2. Additionally, a sequence-dependent setup should be done
between operations i, k ∈ J on a machine j ∈ M in time s j

ik , j = 1, 2. Addition-
ally, there exist only one setup team, which service both machines.

During the execution of tasks, the following technological and sequence con-
straints must be met:

(a) every operation must be performed without interrupting on a dedicated machine,
(b) only one task can be performed on the machine at a time,
(c) between the operations on the machines, there must be setups performed,
(d) the task can start on the second machine if it is terminated on the first machine,
(e) at any time the setup can be performed on one machine only,
(f) each operation and setup is executed sequentially (in successive so-called

MPSes) after the cycle time is completed.

A set of jobs of a single cycle is called an MPS (minimal part set). MPSes are
processed cyclically, one by one. We index successive MPSes by x = 1, 2, . . .. The
problem consists in finding a schedule, which minimizes the cycle time criterion.
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2.1 Solution Representation

The schedule in x thMPS is defined fundamentally by twomatrices, namely (Sx , Px ),
with matrix elements being the real numbers. Precisely, Sx = [Sx

i, j ]m×n , where Sx
i, j

denotes the beginning time moment of execution of job j on i th machine in x th
MPS, j = 1, 2, . . . , n, i = 1, 2, x = 1, 2, . . .. Similarly, Px = [Px

i, j ]m×n , where Px
i, j

denotes the beginning time moment of setup operation after performing job j on i-th
machine in x-th MPS, j = 1, 2, . . . , n, i = 1, 2, x = 1, 2, . . .. We assume that jobs
in following MPSes are performed cyclically, which implies that exists a constant
T , called cycle time, satisfying some preceding constraints, such that

Sx+1
i, j = Sx

i, j + T, Px+1
i, j = Px

i, j + T, i = 1, 2, j = 1, . . . , n, x = 1, 2, . . . (3)

Notice, due to regular replication of MPSes (3), there is enough to find the schedule
(S, P) for any fixed x (e.g. x = 1) and make its shift by x · T , x = 1, 2, . . . on
timeline.

Operating on schedule represented by (S, P) appears rather inconvenient for most
metaheuristic approaches (local search, evolutionary search, etc.) because of troubles
with potential schedule modification. Therefore, we propose to represent the solution
by an equivalent combinatorial object(s), showing only the suitable transformation
from this object to the schedule with their particular properties.

Regarding to S, processing order of jobs in single MPS is represented by a per-
mutation π = (π(1), π(2), . . . , π(n)) on the set J . The set of all permutations
on J we denote by �n . From the definition, jobs in each MPS and jobs on each
machine are executed in the same order. Let us assume for a moment that π is
fixed. Since we have single setup team, then the processing order regarding to P
can be determined by a sequence ω = (ω(1), ω(2), . . . , ω(o)), o = 2n, with some
additional constraints, where ω(i) = (σ (i), τ (i) + 1). Additional constraints are as
follows. The sequence ω has to contain exactly two elements with the same σ(i)
for some i , both of them must differ by τ(i), σ(i) ∈ J , τ(i) ∈ {0, 1}. Element
ω( j) = (σ ( j), τ ( j) + 1) means that setup team realizes setup immediately after
finishing job σ( j) on machine 1 if τ( j) = 0 and on after finishing the same job
on machine 2 if τ( j) = 1. In the Sect. 2.3 we will show that ω can be completely
represented by a binary sequence τ = (τ (1), τ (2), . . . , τ (o)) with some additional
properties.

Cycle time T depends of course on π and ω. The minimum its value for a fixed π

andω, will be calledminimum cycle time and denoted by T (δ), δ = (π, ω). One asks
about the basic method of transforming combinatorial representation of the solution
δ = (π, ω) into cyclical schedule (S, P). Increasing of beginning time moment of a
job execution by multiples of the cycle time, we obtain the beginning moments of
jobs execution in any ofMPSes (commencement of execution of any of the operation
in the consecutive MPS should be increased by the cycle time). Let Φ = �n × Ωo

be a set of solutions representations, where �n is the set of all permutations of
the n-element set J , and Ωo is the set of all binary sequences with the length of o
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containing exactly n zeros and n ones. Therefore, the considered in the work problem
comes down to the determination of solutions (π, ω) ∈ Φ which minimize the value
of the minimal cycle time T (δ), δ = (π, ω).

2.2 Representation of the Route of the Setup Team

The route of the setup team τ represented as binary sequence is an interesting math-
ematical object. Not all the sequences containing n zeros and n ones generate a
feasible solution. It is a sequence in which to the position i th (counting from the left)
there must be situated at most one more than the number of zeroes to the left from
this position. This is due to the fact that the second machine can be setup for a task
that has not yet been done on the first machine, however, it is not possible to setup
the machine “two tasks ahead”—the second machine from the task that has not yet
begun on the first machine cannot be setup. These sequences for small values of n
can be presented in the following way:

n = 1: 2 sequences {01, 10},
n = 2: 5 sequences {0011, 0101, 0110, 10011010},
n = 3: 14 sequences {000111, 001011, 001101, 001110, 010011, 010101, 010110,

011001, 011010, 100011, 100101, 100110, 101001, 101010}.
Catalan numbers, on the other hand, are expressed in the sequence 2, 5, 14, 42, . . .

and the general expression can be represented as

(
(2n)!

n!(n + 1)!
)

.

This leads us to the following lemma.

Lemma 2.1 The number of feasible routes of the setup team for n tasks is equal to
nth Catalan number.

Proof (Transformation to parentheses placement problem) The routes of the setup
team can be represented by binary sequences with a length of 2n, with n zeros and
n ones. These sequences are characterized by the feature that to the i th position,
i = 1, 2, . . . , 2n, counting from the left, there can appear at most one more one than
the number of zeros. It turns out that the number of acceptable sequences corresponds
to the number of placement of parentheses: open (“0”) ones and closed (“1”) ones—
before each of the considered sequences it is enough to add at the beginning—
an artificial “zero” and at the end—an artificial “one”. For example, the allowable
sequences representing the routes of the setup team for n = 2 are {01, 10}. After
adding the artificial zero at the beginning and one at the end, we get the sequences
{0011, 0101} corresponding to correctly placed parentheses: (()) and () (). In turn,
the fact of representing the number of expressions containing n pairs of parentheses
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which are correctly matched as Catalan numbers is commonly known (see Graham,
Knuth, Patashnik [6]). �

2.3 Mathematical Model

For a fixed order of execution of jobs π and setup team route ω (discussed further
in detail), optimum value of cycle time T (δ), can be determined by solving a linear
programming (LP) task. Since LP belongs to P-class in the sense of computational
complexity, this approach implies the first polynomial time algorithm of finding T (δ)

and corresponding schedule (S, P) for the given δ.
To make the required transformation, we expressed listed the above constraints

with respect to singleMPS (called any but common x), allowing us to skip superscript
in (S, P), in the form LP model:

min
S,P,T

T = T (δ) (4)

s.t.

Si,π( j) ≥ Pi,π( j−1) + siπ( j−1),π( j), j = 1, 2, . . . , n, i ∈ M , (5)

Si,π(1) + T ≥ Pi,π(n) + siπ(n),π(1), i ∈ M , (6)

Pi, j ≥ Si, j + pi, j , j = 1, 2, . . . , n, i ∈ M , (7)

S2, j ≥ S1, j + p1, j , j ∈ J , (8)

Pτ( j),σ ( j) ≥ Pτ( j−1),σ ( j−1) + sτ( j)
σ ( j−1),σ ( j), j = 1, 2, . . . , o, (9)

Pτ(1),σ (1) + T ≥ Pτ(o),σ (o) + sτ(o)
σ (o),σ (1), j = 1, 2, . . . , o, (10)

where δ = (π, ω), andω = (ω(1), . . . , ω(o)), ω( j) = (τ ( j), σ ( j)) is the sequence
of the given property, i.e. fulfilling equality

σ( j) =

⎧⎪⎪⎨
⎪⎪⎩

π( j)∑
k=1

τ j if τ j = 0,

π( j)∑
k=1

τ j if τ j = 1,
(11)

where τ j means binary negation of the bit τ j . Describing Eq. (9) one can observe, that
the setup should be made between a job σ( j − 1) and its direct machine successor,
denoted by Succ(σ ( j − 1)). Let us assume, that

σ( j − 1) = π(z), (12)
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for a certain z ∈ {1, 2, . . . , n}. This z can be calculated from the inverse permutation
to π , denoted by π−1:

z = π−1(σ ( j − 1)). (13)

Next, we need a successor of π(z) which is π(z + 1). Inserting (13) in place of z we
obtain the number of successor of σ( j − 1) as

Succ(σ ( j − 1)) = π(z + 1) = π(π−1(σ ( j − 1)) + 1) (14)

and that is why such an index is used in the index of the setup

sτ( j−1)+1
σ( j−1),Succ(σ ( j−1)) = sτ( j−1)+1

σ( j−1),π(π−1(σ ( j−1))+1) (15)

in the Eq. (9).
Referring the above model to the problem limitations (a)–(f) we can describe the

following relationships. Let Ci,π( j) represents the time of finishing of the job π( j)
on the machine i (it is not needed in the LP model, but is usefull for explanation).
The constraint (a) can be written as

Ci,π( j) = Si,π( j) + pi,π( j) i ∈ M , j ∈ J . (16)

It is represented in LP model in the Eq. (7), because the setup after a job must not
begin before Si, j + pi, j which is Ci, j if there are no breaks during jobs execution.

To obtain a feasible solution of the problem, the following inequality must be also
met:

Si,π( j) ≥ Ci,π( j−1) + siπ( j−1),π( j) (17)

meaning the need to perform setups between operations (constraint (c)), and at the
same time constraint (b) prohibiting the performance of two operations simultane-
ously on the samemachine. This constraint is represented in LPmodel by the Eq. (5).
Further

S2,π( j) ≥ C1,π( j), j ∈ J (18)

representing sequencing constraint (d) is modeled by the Eq. (8) in the LP model.
Equation (9) refers to the equation (e) of execution a setup on at most one machine

at any point of time.
In turn condition (f) for jobs cyclicity can be presented in the form of

Cx
i,π(n) + siπ(n),π(1) ≤ Sx+1

i,π(1) i = 1, 2, (19)

so taking advantage of (3)

Sx
i,π(n) + pi,π(n) + siπ(n),π(1) ≤ Sx

i,π(1) + T i = 1, 2. (20)



Cyclic Two Machine Flow Shop with Disjoint … 37

for jobs, which can be derived from Eqs. (5) and (7) and assuming x = 1 (the number
ofMPSwhich is considered does not matter). Equation (10) gives the setups cyclicity
condition.

We are considering the goal function of the minimal cycle time T (δ) = minT∈R T
fulfilling all the above constraints for the solution δ = (π, ω) (representing the order
of executing of π tasks and the route of the setup team ω). The problem is to find
a solution that minimizes the minimal cycle time, i.e. we are looking such δ∗ =
(π∗, ω∗), that

T (δ∗) = min
δ∈Φ

T (δ). (21)

2.4 Representation of the Solution

Let

S = (Si, j ), j = 1, 2, . . . , n, i = 1, 2, (22)

P = (Pi, j ), j = 1, 2, . . . , n, i = 1, 2, (23)

δ = (π, ω), ω = (ω(1), . . . , ω(o)), ω( j) = (τ ( j), σ ( j)), o = 2n, (24)

be sequences of respectively: moments of starting operations on machines S ,
starting times of setups performed by the team setting up P = (Pi, j ), i = 1, 2,
j = 1, 2, . . . , n and the route of the setup team represented by the sequence ω con-
sisted of the sequence of jobs σ directly after which a setup is performed and the
binary sequence τ in which 0 denotes visiting themachine 1 and 1 visitingmachine 2.

The solution to the considered problem is one of three objects:

1. Θ = (S ,P)—pair of jobs and setups beginning time moments,
2. δ = (π, ω)—jobs and setup routes,whereπ is permutationofn-element sequence,

and ω represents setup team route, wherein τ is a binary sequence,
3. graph G—as a network representation of the researched model.

In the further part of the chapter the graph G and the pair (π, ω) will be considered.

3 Graph Model

LetG(δ) = (V, E) for solution δ = (π, ω) be aweighted graphwith weight function
w : E → R. Next, let the set of vertices V = {1, 2, . . . , 8n}, and a set of arcs

E = Eo ∪ Es ∪ Eπ ∪ Eτ ∪ Ev, (25)

where the individual sets of arcs represent:
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Fig. 1 Skeleton of the graph
G(δ)

Eo operations; arcs from Eo are burdened with the value of the duration of i th
operation on the machine j , i.e. pi j ,

Es setups; arcs from Es burdened with the value of the duration of setup from
operation i to operation k on machine j , i.e. s j

i,k ,
Eπ order of execution on the machine (dependent on π ),
Eτ route of setup team (dependent on τ ),
Ev technological order, i.e. the route of tasks between machines 1 and 2.

The procedure for constructing a graph for a given solution with the specified
order π and the route of the setup team σ can be described as follows:

1. construct a “skeleton” based on the order π using all vertices from the set of V
and arcs from the sets of Eo (operations), Es (setups), Eπ (order on the machine)
and Ev (technological order), as in Fig. 1.

2. add the route arcs of the setup team based on the sequence τ according to the
following idea. Let

n1i =
i∑

j=1

τ j (26)

will be the counter as the i th setup is performed on the machine 1, and

n2i =
i∑

j=1

τ j (27)

will be the counter as the i th setup is performed on machine 2 (see Fig. 2).

The procedure of adding arcs from the set Eτ to skeletal graph is presented by
Algorithm1. Horizontal setup arcs are in fact not needed in the algorithm analysis,
so we will skip them in further considerations (the longest paths always goes throw
operations arcs with the weight pi,k) instead of horizontal setup arcs (lines 6 and 9
of the algorithm).

The result of the procedure presented in the form of the Algorithm1 on the graph
from Fig. 1 is the graph presented in Fig. 2. Its computational complexity is O(n) and
determines the complexity of the sequential method of constructing of a graph if it
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Algorithm 1: GraphMake(δ, n, n1, n2) function

Input : solution δ = (π, τ ), variables n, n1, n2;
Output: graph G(δ);

1 Prepare set of vertices V and part of the set of edges (skeleton)
E = Eo ∪ Es ∪ Eπ ∪ Ev which are not dependent on τ , as described in
Sect. 3 and shown in Fig. 1.

2 Eτ ← ∅;
3 for i = 2, 3, . . . , 2n do
4 Consider elements (τ j−1 τ j )
5 if (0 0) then
6 null;

7 if (1 1) then
8 null;

9 if (0 1) then
10 Insert an arc to Eτ between setup n1j−1 on the 1st machine and n2j on the 2nd machine

11 if (1 0) then
12 Insert an arc to Eτ between setup n2j−1 on the 2nd machine and n1j on the 1st machine

13 Prepare cyclic arcs for setup team: insert an arc to Eτ between the last setup on machine
(τ2n + 1) and the first setup on machine (τ1 + 1) with the weight (−T )

14 E ← E ∪ Eτ ;
15 Prepare cyclic arcs for jobs:
16 for i = 1, 2 do
17 Insert an arc to E between the last job executed on machine i and the first job on machine

i with the weight (−T )

18 return G = (V, E)

Fig. 2 Graph G(δ) with cyclic arcs

is remembered in the form of a list of neighborhoods. When the graph is represented
as a neighborhood matrix, the complexity increases to O(n2) due to operating on the
square matrix n × n.

Remark 2.1 The problem of minimal cycle time determination T (δ) comes down to
determine such a T , that the maximal length of a cycle in the graph G(δ) is 0.
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4 Properties

Taking into account the above assumptions of the model, the following statement
can be formulated.

Theorem 2.1 For the given solution δ = (π, ω), ω = (ω(1), . . . , ω(o)), ω( j) =
(τ ( j), σ ( j)), if the binary sequence τ remembered in ω representing the route of
the setup team has to some ith position by one more 1 than number of 0, i.e. the
setup team visits the second machine a by one greater number times the than the
first machine, then there exists such a binary sequence τ ′ representing the route of
the setup team in which to the i th position there are as many 0 as 1 and the value
of the goal function of δ′ = (π, ω′), ω′ = (ω′(1), . . . , ω′(o)), ω′( j) = (τ ′( j), σ ( j)),
meets inequality:

T (δ′) ≤ T (δ). (28)

Proof Let a, b, c, d be earliest time moments of events represented by appropriate
vertices in G(δ), as shown on Gantt chart (Fig. 3), represented by a graph shown in
Fig. 4. For the simplification, the following notion will be used:

s1i,i+1 −→ s1,

s2i+1,i+2 −→ s2,
p1,i+1 −→ p1,
p2,i+1 −→ p2,
p2,i+2 −→ p3.

Let us approximate c and d values before and after the move which considers in
swapping subsequence *10* into *01* of τ (where * means any sequence of binary
digits in which there is the same number of 0 as 1), as shown in Fig. 5. Values after
the move, i.e. removing an arc presented by solid arrow between setups s1 and s2

and an arc represented by dashed one we will denote by c′ and d ′. If we prove, that
c′ ≤ c and d ′ ≤ d it will prove, that the move does not increase value of the goal
function T .

Firstly, let us consider the value of c. Before the move, so in the τ form of *10*,
analyzing 2 paths between a and c and one between b and c we have

c = max{a + s1 + p1, a + p2 + s2 + s1 + p1, b + p2 + s2 + s1 + p1} =

= b + p2 + s2 + s1 + p1. (29)

After the move, so after changing the form of τ into τ ′ of the form *01*, the c value
changes into c′ as follows:

c′ = a + s1 + p1 ≤ b + p2 + s2 + s1 + p1 = c (30)

because b ≥ a (there is an arc from a to b in G(δ)).
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Fig. 3 An example of transforming τ from *10* (a) to *01* (b, c)

Fig. 4 Transforming τ from
*10* to *01*—graph model

Fig. 5 Transforming τ from
*10* to *01*—simplified
graph model



42 W. Bożejko et al.

For the d value, before the move, analyzing 5 paths between a and d and b and d
we have

d = max{a + s1 + p1 + p3, a + p2 + s2 + p3, a + p2 + s2 + s1 + p1 + p3,

b + p2 + s2 + s1 + p1 + p3, b + p2 + s2 + p3} = b + p2 + s2 + s1 + p1 + p3.
(31)

Analyzing the value of the time moment d after the move (denoted as d ′) we have

d ′ = max{a + s1 + p1 + p3, a + s1 + s2 + p, a + p2 + s2 + p3, b + p2 + s2 + p3} ≤

≤ b + p2 + s2 + s1 + p1 + p3 = d. (32)

So from Eqs. (30) and (32) we have that c ≤ c′ and d ≤ d ′, therefore finally we have

T (δ′) ≤ T (δ). (33)

�

Remark 2.2 If pi, j > 0, then the proof of the Theorem2.1 follow us to the Eq. (28)
with strong inequality, that is the minimal cycle time fulfills the inequality

T (δ′) < T (δ). (34)

5 Case Study

A solution δ = (π, τ ) can be naturally represented as a pair of permutation π and
assignment τ . These two object are independent: i.e. there is no need to take under
considerationoneof the themwhile changingother. This implies a two-level approach
to solve the whole problem. Firstly, change permutation (e.g. by a metaheuristics),
secondly—assignment of setups order onto setup team. The second object is depen-
dent of the permutation, because setups are sequence-dependent. However, in same
cases they are independent, what shows the following example.

Example 2.1 Let us consider an instance the considered 2-machine flow shop prob-
lemwith sequence-dependent disjoint setups of i = 3 jobs with the following param-
eters of operations duration pi, j , i = 1, 2, 3, j = 1, 2 and setups duration s j

i,k ,
i, k = 1, 2, 3, j = 1, 2:
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Fig. 6 Gantt chart for the Example—a single MPS

Fig. 7 Cyclic Gantt chart for the Example (2 MPSes)—critical path (red) goes only throw setups

i pi,1 pi,2
1 5 3
2 2 8
3 5 7

s1i,k 1 2 3
1 0 15 15
2 20 0 20
3 17 17 0

s2i,k 1 2 3
1 0 18 18
2 22 0 22
3 21 21 0

We will consider natural (initial) permutation as the jobs order π = (1, 2, 3) and
setup team route τ = (010101), as in Fig. 6 (Fig. 7).

The minimal cycle time T = 113 has been computed with the use of Gurobi1

solver. Both the model (Fig. 8) and the instance data (Fig. 9) have been coded in
AMPL2 modeling language.

The value of the minimal cycle T = 113 and it is the sum of setup times only. We
can notice, that this value does not change if we change the permutation π , because
all the operations are not critical.We can see it in Fig. 7. Critical path goes only throw
the setups, keeping operations non-critical. So, for this assignment τ = (010101) the
permutation does not matter—we will have the same value 113 of the minimal cycle
time for any from 3! = 6 permutations π .

1Mathematical Programming Solver, http://www.gurobi.com/.
2A Mathematical Programming Language, https://ampl.com/.

http://www.gurobi.com/
https://ampl.com/
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Fig. 8 AMPL model
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Fig. 9 AMPL data

6 Computational Experiments

Three simple canonical improvement algorithms have been implemented for test-
ing: local search (LS), iterated local search (ILS) and random search (RS) for the
examined cyclic two machine flow shop with disjoint sequence-dependent setups.
Iterated local search has iteratively repeated the local search procedure starting from
random start solutions. Implementations have been done in C++ language. Compu-
tational experiments were performed on the Bem3 cluster with Intel Xeon E5-2670
(2.3GHz) working under 64-bit CentOS 6.10 (Final) operating system. Thematter of
the research was to check what is the influence of the assignment (setup team route)
onto the value of the goal function. Natural permutation π , π(i) = i , was fixed for
the experiments, so examined procedures change the route (binary sequence τ ) of the
setup team only. The starting point was chosen as τ = 0101 . . . 0101, and it was also
a reference solution in comparison The calculations were performed on test data for
the hybrid flow-shop problem proposed in the work of Ruiz and Stützle [11] limited
to two machines (only the parameters of first two machines and their setups were
taken). In Table1 particular column means:

3Calculations have been carried out using resources provided by Wroclaw Centre for Networking
and Supercomputing (http://wcss.pl), grant No. 096.

http://wcss.pl
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Table 1 Results of computer experiments

Problem n PRDLS tLS[s] PRDI LS tI LS[s] PRDRS tRS[s]
DD_SDST001-010 20 −4.34 0.10 −5.91 0.10 −5.58 0.10

DD_SDST011-020 20 −2.69 0.10 −4.27 0.10 −3.82 0.10

DD_SDST021-030 20 −3.14 0.10 −5.14 0.10 −4.62 0.10

DD_SDST031-040 50 −2.46 0.49 −5.58 0.48 −3.86 0.49

DD_SDST041-050 50 −2.97 0.49 −5.80 0.48 −4.11 0.49

DD_SDST051-060 50 −2.93 0.50 −4.93 0.48 −3.99 0.50

DD_SDST061-070 100 −2.66 1.73 −5.51 1.70 −3.69 1.73

DD_SDST071-080 100 −2.59 1.73 −5.11 1.69 −3.85 1.76

DD_SDST081-090 100 −1.82 1.72 −3.83 1.70 −2.85 1.75

DD_SDST091-100 200 −2.76 6.55 −5.37 6.47 −4.14 6.65

DD_SDST101-110 200 −3.09 6.55 −5.46 6.44 −4.11 6.66

DD_SDST111-120 500 −2.77 43.34 −4.48 42.94 −3.79 43.16

Average −2.85 5.28 −5.11 5.22 −4.03 5.29

• problem—name of the problem instance,
• n—size of the problem instance,
• PRDalg—Percentage Relative Deviation to reference solution given by the for-
mula

PRD = Fref − Falg
Fre f

· 100% (35)

where Fref is reference goal function value (π—natural permutation, τ = 0101 . . .

0101—route of the setup team) and Falg is the result obtained by the exam-
ined local search algorithm operating on binary part of the solution τ , and
alg ∈ {LS, I LS, RS},

• talg [s]—computational time of the examined alg algorithm, where alg has one
of three meanings: LS—local search algorithm, I LS—iterated local search algo-
rithm, and RS—random search algorithm.

Experiments show the possibility of a solution improvement by changing setup
team route—up to over 5% of the minimal cycle time, in the short time—except
n = 500, for which the time of algorithm work reaches over 43 s. The conducted
experiments show the potential of the second level of optimization: local improve-
ment of the assignment (LS), also together with random starting points (ILS), or
random search (RS) alone. As it is visible in the Table1 the best results have been
obtained by iterated local search (ILS) procedure. The natural next step is to imple-
ment effective high-level metaheuristics, which optimizes permutational part of solu-
tion.
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7 Remarks and Conclusions

The problem considered in this chapter is quite new and its cyclical version has not
been analyzed in the literature so far. In this chapter, we proposed amethod of cyclical
modeling based on a graph based on a dual representation: permutation and binary
sequence. Setting up a problem, allowing only one setup at a given time, complicates
the problem quite strongly. A further, natural step is to consider the multi-machine
version of the problem (m > 2) and more than 1 number of setup teams. There is a
great probability that for such a version of the problem—just like for a job shop—the
fractional cycle times appear, which is not yet the case discussed here.
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Cyclic Scheduling in the Manufacturing
Cell

Wojciech Bożejko , Jarosław Pempera , Czesław Smutnicki
and Mieczysław Wodecki

Abstract The chapter is devoted to scheduling of jobs performed by machines and
by an operator in the automated manufacturing cell, which produces parts in large
production batches. The purpose of scheduling is to determine a cyclical schedule
that minimizes production cycle time. The chapter presents the original model of
the problem that enables effective determination of cycle time for any sequence of
operations in the cell.What is more, there was an algorithm proposed that determines
the sequence and schedule of works minimizing the production cycle time.

1 Introduction

Production cells consisting of a sequence of flexible machines are the basis for the
construction of modern production systems. Regular surface (usually in the form
of a rectangle) that they occupy significantly facilitates the design of a sequence of
such cells and designation of communication routes supplying cells with products
for processing. Production sockets can be easily adapted to the production of various
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products. This is done by changing of the configuration of flexible machines, heads
and execution tools or, as a last resort, replacing the entire machine.

Modern automated production cells usually consist of electronically controlled
flexible machines, which due to electronic control can be quickly adapted to the
production of various parts. One of the benefits of connectingmachines to production
cells is reduction of the activities related to material handling. Inside the cell, moving
parts between the machines is usually done by one (or several) robots, while the parts
between the cells are transported by automatic guided vehicles (AGV).

The element that coordinates the performance of technological activities in a fully
automated cell is the robot. Nevertheless, in many areas of production robots are
often replaced by an operator. In particular, this applies to cells in which production
is performed sporadically and requires constant supervision of the employee, or
requires the operator to precisely place a large product in the machine handles, or
the operator performs certain technological steps in a manual manner (e.g. grinding,
precision welding, etc.)

Classical models for scheduling of production tasks seem to be unsuitable for use
in scheduling production cells, as they generally do not take into account the most
important feature of flexible production cells, namely, the interaction between the
transport system (robot, operator) and machines. In addition, there are relatively few
papers in the literature devoted to the cyclic production strategy, which is the basis
for effective control of the automated production cell.

Various variants of robotic production cells are proposed in the literature. These
variants differ in the number and type of robots, the number of different parts
machined in one production takt, time requirements, etc. In the work [5] a robotic
production cell operated by two means of transport is considered. The algorithms
for controlling the production cell supported by many robots with double heads are
proposed in the work [7]. Works [1, 6] are devoted to the scheduling of production
cells in which many different products are made at each production cycle at the same
time.

Cyclic schedulingwith timewindows of production cells has been examined in the
paper [11]. Theoretical results concerning production cells were actually applied in
the industry. In the paper [9] there was proposed an algorithm to support scheduling
in Electroplating Facilities, whereas in [2] there was proposed an exact algorithm to
find minimal number of workers to service the cells in a factory producing car seats.

2 Problem Description

The production cell consists of the input buffer, m machines from the set M =
{1, 2, . . . ,m} and the output buffer. Between the machines there are storage places
(cache) onwhich one can store at most one part, see Fig.1. The processed part is taken
from the input buffer, then is processed on each machine in order according to their
numbering; and eventually the part is placed in the output buffer. The production cell
is operated by one operator. The cell operator performs all the moves of the parts
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Fig. 1 Structure of
manufacturing cell

Input
buffer

Output
buffer

Cache Cache

Machine 1 Machine 3

Machine 2

in the cell, the works of mounting parts on the machines and unloading them from
the machines. In the time of loading and/or unloading the element on the machine
cannot perform technological operations. After unloading the machine, the part is
placed in the storage box or loaded on the next machine if it is empty.

In the production system there must be n identical production tasks performed.
Each task requires processing on each machine. The time of processing of parts
on the k machine is pk > 0. The time lk > 0 of fixing the part on the machine k is
given and the time of its removal uk > 0 from the machine. Fastening parts on the
machine is possible only when it is empty, so immediately after installation there can
be processing of parts on themachine performed. Themachine is blocked by a part (it
cannot process the next part) until the part is removed. During the assembly of parts
on the machine, the time of all activities requiring the presence of the operator before
the actual treatment (not requiring operator’s supervision) is included. In addition
to fastening the parts, there can be adjustments to machine settings, machine start
control, etc. performed. On the other hand, during the unloading period, apart from
the time needed to remove parts from the machine, the total time of activities such as
quality control, removal ofminor defects or putting away the storage field is included.

For each machine pair i, k ∈ {1, . . . ,m} the time consumed for moves of the
operator is given Dik ≥ 0. The transport time from the input buffer to the firstmachine
and the transport time from the last machine to the output buffer are included in the
time of loading the first and unloading the last machine respectively. It has been
assumed that the time in which the operator moves with the product and without the
product (empty) is identical. In the input and output buffer, parts are stored in large
quantities (we assume that their capacity is infinitely large). In other parts of the
cell (machines, storage field) at the moment there may be only one part. There are
three activities performed on each machine: (i) placing the product on the machine,
(ii) processing, (iii) removing of the product from the machine and putting it in the
storage field. Thus, for each task, there should be 3m activities performed on the
machines.
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Fig. 2 Policy of realising activities in cycles x, x + 1, . . . , x + 3 for m = 4

From the manufacturing policy we conclude, that the production cell achieves the
greatest efficiency when in each production takt, on each machine a different part is
made (no machines with outage), i.e. on mth machine there is part 1 made, on the
machine m − 1 part 2, etc. finally on the machine 1 part m. Despite the parts are
identical, we assume hereinafter, that they are indexed by successive integers in the
order of processing. Let us consider the sequence of takts x = c, c + 1, c + 2, . . . for
certain c, see Fig. 2. In the takt x = c machines 1, 2, . . . ,m perform parts denoted
by indexes c, c − 1, . . . , c − m + 1, respectively. In the next takt there are parts with
numbers enlarged by one.

Performing of one part (denoted in Fig. 2 by c) needs m successive takts, thence
without losing generality we can analyse only cycles x = c, c + 1, . . . , c + m − 1,
also for c = 1. The execution of the production takt described above requires the
execution ofm − 1 initial takts, in which 1 tom − 1 parts are processed, respectively.
The schedule for performing activities in these takts will be omitted. The operator
may perform only one activity at a time, therefore it is necessary to determine the
order of performing these activities by the operator.

The cyclic production strategy assumes repeated execution of identical operations
in the same order. The set of works performed in one takt will be called the cyclic
core. In addition, for each pair of corresponding actions in two consecutive cycles,
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the difference in the moments of their start must be identical. This period is called
the cycle time and we will be denoted by the symbol T .

It is easy to note that in every cycle there is performed the last technological
operation of a product, i.e. the production cell leaves one product in each cycle.
Therefore, increasing the productivity of the line can be achieved by reducing the
time of the production cycle.

3 Mathematical Model

Manufacturing of n part in a production cell consisting ofm machines require n · 3m
activities. Let us assume that activities with numbers o j + 1, o j + 2, . . . , o j + 3m,
where o j = ( j − 1) · 3m correspond to processing in the cell of j th part. Activity

o1j,k = o j + 3(k − 1) + 1 corresponds to fixing of j th part on machine k,
k = 1, 2, . . . ,m,

o2j,k = o j + 3(k − 1) + 2 corresponds to processing of j th part on machine k,
k = 1, 2, . . . ,m,

o3j,k = o j + 3(k − 1) + 3 corresponds to removing of j th part from machine k,
k = 1, 2, . . . ,m.

All operations require the machine to be involved, so on the k machine the oper-
ations are performed in the following order

πk = (
o11,k, o

2
1,k, o

3
1,k, o

1
2,k, o

2
2,k, o

3
2,k, . . . , o

1
n,k, o

2
n,k, o

3
n,k

)
, k = 1, 2, . . . ,m. (1)

The cyclic core will be called a set of all activities performed in the 1st production
takt in which the processing of parts is being performed on all machines. This set
consists of the following operations:

C =
m⋃

k=1

{
o1(m−k+1),k, o2(m−k+1),k, o3(m−k+1),k

}
. (2)

It is easy to see that in x th cycle with respect to 1th cycle there are operations
performed with numbers increased by (x − 1) · 3m.

The order of executing core operationsC onmachines can be described as follows:

α = (α1, ..., αm), (3)

where

αk = (
αk(1), αk(2), αk(3)

)
, αk(i) = oi(m−k+1),k, k = 1, 2, . . . ,m. (4)

Notice, α is fixed, is not a decision variable.



54 W. Bożejko et al.

Let C o ⊂ C be a subset of the cyclic core operations that require operators pres-
ence. The set C o is defined as follows

C o =
m⋃

k=1

{
o1(m−k+1),k, o3(m−k+1),k

}
. (5)

Next, let us denote by τ = (
τ(1), τ (2), . . . , τ (2 · m)

)
, τ(i) ∈ C o the order in which

the cell operator performs cyclic core operations.
Let Sx

i (Cx
i ) be the earliest starting (completion) moment of the i th operation

execution in x th cycle. The schedule for performing operations in the production
cell, described by the starting Sx

i and the completionCx
i timemoments, the operation

must meet the following constraints:

Sx
αk (i) ≥ Cx

αk (i−1), i = 2, 3, . . . ,m, k = 1, 2, . . . ,m, x = 1, 2, . . . ,
(6)

Sx+1
αk (1)

≥ Cx
αk (1)−1, k = 2, 3, . . . ,m, x = 1, 2, . . . ,

(7)

Sx
τ(i) ≥ Cx

τ(i−1) + Dτ(i−1),τ (i), i = 2, 3, . . . , 2m, x = 1, 2, . . . ,
(8)

Sx+1
αk (1)

≥ Cx
αk (3), k = 1, 2, . . . ,m, x = 1, 2, . . . ,

(9)

Sx+1
τ(1) ≥ Cx

τ(2m) + Dτ(m),τ (1), x = 1, 2, . . . , (10)

Inequality (6) means that in each cycle, for each part being processed, the starting
moment of the machine cannot be earlier than the completion time of loading by
operator and the moment of start of unloading cannot be earlier than the moment of
finishing the processing. It is easy to notice that processing of a given part on two
consecutive machines takes place in two consecutive cycles. Thus, loading parts on
the kth machine in the x + 1 cycle (action αk(1)) can only start after the completion
of the previous operation (αk(1) − 1) i.e. unloading parts on the previous machine
(k − 1) which is carried out in the previous (x th) cycle. These dependencies are
modeled by the constraint (7). Inequality (8) refers to actions performed by the
operator andmeans that i th action in the order τ can start after the end of the previous
activity performed by the operator plus transport time.

The remaining inequalities (9), (10) model the sequence relations between opera-
tions performed in two consecutive cycles. Inequality (9)means that the first action on
kthmachine (unloading of parts) can only start after the last operation on themachine
has been completed in the previous cycle (unloading the machine). Because of the
lack of possibility to suspend the activities, the moment of their completing is:



Cyclic Scheduling in the Manufacturing Cell 55

Cx
i = Sx

i + li , i = 1, 3, . . . , 3m − 2, x = 1, 2, . . . , (11)

Cx
i = Sx

i + pi , i = 2, 4, . . . , 3m − 1, x = 1, 2, . . . , (12)

Cx
i = Sx

i + ui , i = 3, 6, . . . , 3m, x = 1, 2, . . . . (13)

In addition, cyclic scheduling requires that

Sx+1
i = Sx

i + T, i = 1, ...., 3m, x = 1, 2, . . . . (14)

Ultimately, we want to find the order τ ∗ of performing the action by the operator
such that for pair (α, τ ∗) there is a schedule that meets the inequality (6)–(14) with
the T cycle time the smallest possible. The problem can be decomposed into two
subproblems: the problem of the lower level—the determination of the smallest value
of T for the order τ , the problem of the upper level—finding the order of τ ∗ with the
smallest cycle time.

3.1 Example

Consider a production cell consisting of m = 4 machines. Each task consists of
m = 4 technological operations and a total of 3m = 12 operations performed in the
cell. Activity times are summarized in Table 1. It was assumed that transport times
between stands are to be omitted, i.e. equal to zero.

The cyclic core is in the form:

α = (
(37, 38, 39), (28, 29, 30), (19, 20, 21), (10, 11, 12)

)
, (15)

where operations 37, 38, 39 correspond to processing of the 4th task on the first
machine, operations 28, 29, 30 correspond to processing the 3rd task on the second
machine, operations 19, 20, 21 correspond to machining the 2nd task on the third
machine, while operations 10, 11, 12 correspond to the processing of the 1st task on
the fourth machine. The cell operator performs operations from the core in the order
τ = (37, 28, 39, 19, 30, 10, 21, 12).

The schedule for performing the cyclic core operation is presented in Table 2.
Figure 3 illustrates the schedule for completing 4 cycles with the cycle time T = 31.

Table 1 Times of activities performed in the production cell

Parameters Machines

1 2 3 4

li 1 1 2 2

pi 5 5 14 13

ui 3 2 2 2



56 W. Bożejko et al.

Table 2 A cyclical schedule for performing operations in a production cell

Activity S11 C1
1 S12 C1

2 S13 C1
3 S14 C1

4

Loading 0 1 1 2 9 11 13 16

Processing 1 6 2 7 11 25 16 29

Uploading 6 9 11 13 25 27 29 31

0 10 20 30 40 50 60 70 80 90 100 110 120

Fig. 3 Cyclic schedule for the data from the example

4 Solution Method

Designating a cyclic schedule for the problems of scheduling production tasks is one
of the most difficult challenges for scientists. In these problems, in addition to the
order requirements (characteristic for classical problems), there is a (cycle time)—
the interval between activities belonging to two subsequent cycles required. While
constructing a schedule that meets the order requirements is relatively fast (linear to
the number of operations performed), the minimum value of T requires finding (for
example, by binary search method) such a minimum T for which a schedule meeting
the order requirements can be constructed. In such a case, we get an algorithm over
polynomial determining cycle time for a given sequence of operations in a cycle.
Another way to determine the cycle time is to apply optimization packages that use
methods to propagate constraints. The state of today’s research on cyclical problems
[8] indicates that it is possible to set cyclic schedules only for small problems with
these methods. For larger problems, it is necessary to develop heuristic algorithms
[4]. In recent years, a new method for determining the minimum cycle time with
polynomial complexity has been developed. A description of this method can be
found in the works ([3, 10]). This method can also be used when determining the
cycle time in the production cell. It is enough to build a graph that corresponds to
the order relationships in m production cycles.
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5 Graph Model

Before proceeding with the description of the graph model, we will convert the
inequalities (6), (7) replacing the values of Cx

i with expressions (11)–(13). After
transformation, we get

Sx
αk (i) − (

Sx
αk (i−1) − p′

αk (i−1)

) ≥ 0,

i = 2, 3, . . . ,m, k = 1, 2, . . . ,m, x = 1, 2, . . . ,
(16)

Sx+1
αk (1)

− (
Sx

αk (1)−1 − p′
αk (1)−1

) ≥ 0, k = 2, 3, . . . ,m, x = 1, 2, . . . ,
(17)

Sx
τ(i) − (

Sx
τ(i−1) − p′

τ(i−1)

) ≥ Dτ(i−1),τ (i), i = 2, 3, . . . , 2m, x = 1, 2, . . . ,
(18)

Sx+1
αk (1)

− (
Sx

αk (3) − p′
αk (3)

) ≥ 0, k = 1, 2, . . . ,m, x = 1, 2, . . . ,
(19)

Sx+1
τ(1) − (

Sx
τ(2m) − p′

τ(2m)

) ≥ Dτ(m),τ (1), x = 1, 2, . . . , (20)

where

p′
i = li , i = 1, 3, . . . , 3m − 2, (21)

p′
i = pi , i = 2, 4, . . . , 3m − 1, (22)

p′
i = ui , i = 3, 6, . . . , 3m. (23)

For a given number of production cycles Y , the inequality system (16)–(20) can
be solved by constructing of a directed graph G(α, τ ) = (V, E) with a set of nodes
V and a set of weighted arcs E . The set of nodes consists of 3mY nodes in the form
of i x , i = 1, 2, . . . ,m, x = 1, 2, . . . ,Y . The i x node corresponds to the i operation
performed in the x th cycle and is weighted by p′

i . The set of arcs E consists of 5
subsets:

A(α) =
Y⋃

x=1

m⋃

k=1

{(
αx
k (1), α

x
k (2)

)
,
(
αx
k (2), α

x
k (3)

)}
(24)

F∗ =
Y⋃

x=2

m⋃

k=2

{(
αx
k (1) − 1, αx

k (1)
)}

(25)

arcs from th sets A(α) and F∗ are loaded with a weight equal to zero.

W (τ ) =
Y⋃

x=1

2m⋃

i=2

{(
τ x (i − 1), τ x (i)

)}
(26)
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arc (τ x (i − 1), τ x (i)) ∈ W (τ ) are loaded with a weight Dτ(i−1),τ (i).

A∗(α) =
Y⋃

x=2

m⋃

k=1

{(
αx−1
k (3), αx

k (1)
)}

(27)

arcs from the set A∗(α) are loaded with a weight equal to zero,

W ∗(τ ) =
Y⋃

x=2

{(
τ x−1(2m), τ x (1)

)}
(28)

arc
(
(τ x−1(2m), τ x (1))

) ∈ W ∗(τ ) is loaded with a weight Dτ(2m),τ (1).
It is easy to see that sets A(α) and W (τ ) model the sequence relationships inside

production cycles, while the remaining sets (sets marked with ∗) model the sequence
relations between cycles.

Figure 4 shows the G(α, τ ) graph constructed for the operator’s order τ =
(37, 28, 19, 10, 39, 30, 21, 12). This order describes one of the simplest strategies
for operating a production cell in which the operator first places the parts on the
machines in the order of their numbering, returns to the first machine and unloads
all the machines in the same order.

The G(α, τ ) graph was constructed for m + 1 = 5 cycles. The Fig. 4 showing 4
full cycles and a fragment consisting of nodes corresponding to the first operations
performed on machines in the fifth cycle. The nodes corresponding to the loading
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Fig. 4 Graph G(α, τ )
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and unloading operations were drawn with small circles, whereas the nodes corre-
sponding to the operations performed exclusively by the machine are marked with
large circles with the numbers of operations in the middle. Fragments of the graph
corresponding to the next cycles were framed with a dashed line.

Different types of arcs appearing in the graph were differentiated by the type
of line. Arcs representing technological relations from the sets A(α) and F∗ were
marked with a dotted line, arcs from the set A∗(α) with a thin solid line, whereas
arcs depending on the operator’s order of performing actions (setsW (τ ) andW ∗(τ ))
are marked with a solid line.

Using the commonly known relationship between the longest paths in the graph
that model the sequence relations and the earliest moments of starting operations,
the following theorem can be formulated.

Theorem 1 The order of operations execution by the operator τ is allowed if the
G(α, τ ) graph is an acyclic graph.

For proof, it is enough to note that in the G(α, τ ) graph all nodes are loaded with
positive weights and the arcs have a load of not less than zero. Thus, any cycle in
such a graph has a positive length, which implies no solution of the inequality system
(6)–(10).

Let us denote by Lsx ,t y , x < y the length of the longest path from node sx to
node t y .

Theorem 2 For a permissible sequence of actions performed by the operator τ the
minimal cycle time is equal to

T (α, τ ) = max
2≤y≤m+1

max
1≤k≤m

(
L(αk (1))1,(αk (1))y

y − 1

)
. (29)

The proof of the theorem is analogous to the proof of the theorem found in the
work [10].

Theorem 3 For a given order of τ the exact value of the cycle time can be determined
in time O(m3).

Determining the value of T (α, τ ) from the expression (29) requires the construc-
tion of G(α, τ ) graph consisting of m + 1 cycles. Each cycle has 3 · m nodes, so the
graph consists of 3 · m2 nodes. Further, the graph G(α, τ ) is rare (with the number
of arcs leaving the node not bigger than 4) therefore, we can use the well-known
algorithm for determining the longest paths in DAG with the complexity O(3 · m2)

to determine the length of the longest paths. Finally, the algorithm should be executed
m-times for the source nodes αk(1), k = 1, 2, . . . ,m.
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5.1 Determining of Optimal Order

In real production cells, the operator (robot) usually handles a small number of
machines at the same time. Thus, the number of all possible orders, although it is
2m!, is relatively small for the computing capabilities of modern PCs. Additionally,
having a time-efficient method of determining the cycle time with the computational
complexity O(m3)we decided to use the Brute-force algorithm. In order to speed up
the performance of the algorithm, generating solutions not accepted in an obvious
way i.e. those in which the unloading of the machine was performed before loading
the machine, was prevented. The running time of the algorithm for the number of
machines not more than 5 did not exceed a few seconds.

One of the optimal solutions determined for the data from the example is the order
τ = (19, 10, 28, 37, 30, 39, 21, 11). The cycle time for this order is 20 and it is 2 less
than the cycle time determined for the operator’s simple strategy of acting discussed
in the previous section. The G(α, τ ) graph for this order is shown in Fig. 5.

The schedule for performing production activities for both the simple strategy (the
upper part of the chart) and the optimal strategy (bottom part of the chart) has been
presented in the Gantt chart (see Fig. 6). A critical path is marked with a thick line,
while the numbers indicate the numbers of operations performed by the machine.
The analysis of both charts shows that in both cases the production cells do not work
at full capacity, i.e. in both cases we observe machine downtimes.

In the optimal strategy, the smallest downtime is observed on the machine 3,
it amounts to 2 and is related to the unloading of the fourth machine. In a simple
strategy, this time is by 2 bigger, i.e. the operator, apart from unloading the fourth
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Fig. 6 Cyclic schedule for simple and optimal operator order

machine, must still load machines 1 and 2. From the presented charts, we can read
other important information regarding both strategies. The simple calculations show
that the operator performs activities that together last 15, which is significantly lower
value than the theoretical capacity of the cell which is 18 (see the sum of activities
on the machine 3), so it may seem that the designation of the operator’s schedule
of operations is trivial. Moreover, performing activities in accordance with a simple
strategy, apart from generating a schedule with a longer cycle time, is additionally
burdened with a high risk of its elongation because as many as five operations per-
formed by the operator are critical operations. In the case of an optimal strategy,
these are only three activities.

6 Summary

The chapter presents a new method, based on elements of graph theory, modeling
of a production cell operated by one operator. Based on the graph model, a number
of properties were formulated, which were used to construct an algorithm that sets



62 W. Bożejko et al.

the minimum cycle time for a given sequence of actions performed by an operator
with the complexity of O(m3). In the case of production cells consisting of several
machines, the optimal order of operations by the operator can be determined in a few
seconds on a PC computer by Brute-force algorithms.

The algorithm proposed in the work can be used not only to diagnose reasons
of poor performance but also its improvement in operating production cells, while
designing production cells in manufacturing process of new products, testing new
production diagrams in the cell, etc.
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On Estimating LON-Based Measures
in Cyclic Assignment Problem
in Non-permutational Flow Shop
Scheduling Problem

Andrzej Gnatowski and Teodor Niżyński

Abstract In recent years, Fitness Landscape Analysis (FLA) has provided a variety
of new methods to analyze problem instances, allowing for a better understanding
of the challenges that operations research is facing. Many from the most promising
FLA methods are based on Local Optima Networks (LON), a compact representa-
tion of a search space from the perspective of a optimization algorithms. In order to
obtain a represantative LON, a solution space sampling procedure must be utilized.
However, there is little known about the proper sampling methods—as well as the
minimal ammout of computational effort required to sufficiently sample the space.
In this chapter, we investigate the impact of the number of samples taken, on the
obtained LON metrics for Cyclic Assignment Problem in non-permutational Flow
Shop Scheduling Problem. The sampling process is performed in incremental steps,
until the entire solution space is analyzed. After each step, LONmeasures are calcu-
lated. The results suggest a strong relation between the measure values and sampling
effort.

1 Introduction

The presence in the industry of the manufacturing systems with parallel machines
[4, 5, 24] can be explained both by the need to increase the production capacity
and the growing demand for a diversified final product. With the rapid development
of a computing technology, it has become possible to effectively manage flexible
production systems in which tasks can be performed in many alternative ways. Due
to the unpredictability and relatively large diversification of a production profile, it is
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often necessary to use machines with different parameters, making alternative tech-
nological routes possible. The task of optimizing such complex processes requires
the use of sophisticated models and dedicated algorithms. Therefore, in order to
obtain high-quality solutions, it is necessary to identify not only problem-specific
properties, but also an instance-level ones.

In the paper we investigate one of well-known methods of instance analysis—
Local Optima Networks (LON) analysis, applied to cyclic assignment problem in
non-permutational Flow Shop Problem. LON analysis is a part of a larger methodol-
ogy, Fitness Landscape Analysis (FLA). The main obstacle preventing the practical
application of the said method is the large amount of computational effort necessary
to obtain a representative image of the solution space. The goal of this research is to
examine the impact of solution space sampling on the values of LON measures.

1.1 Production Systems

The concept of cellularmanufacturing combines twoways of organizing a production
system: the one focusing on the most efficient production of a homogeneous product
(product layouts, e.g. production lines) and the one that puts emphasis on the flexible
use of different functionalities of individual production assets (functional layouts, as
in a job shoporFlowShopProblem). Production cells are usually clusters ofmachines
capable of performing various operations. They produce a family of products, sharing
similar technological demands. In the production cells defined in such a way, robots
are often used to transport the manufactured elements between the machines. More
information on cell manufacturing, including the use of robots, can be found in [8].

Cyclic flow shop robotic cells are among the most commonly studied robotic cell
optimization problems. Such cell consists ofm machines and 1, 2 or r robots used to
transport the manufactured elements (jobs) between the machines, where operations
are performed. The production is repeated an infinite amount of times in a cyclic
manner. Since the earliest works, cyclic robotic cell optimization problems have
been divided into two groups [25]: those with one and those with multiple different
product types (jobs) to be manufactured. The one-job variant is the most researched
one. An overview of such problems can be found in [6, 10] and [7]. Depending on the
additional constraints, some of the problems are polynomially solvable. Optimization
in robotic cells with multiple different jobs is often a harder task. Literature review
on this topic can be found e.g. in [9], where single-robot robotic cell was studied.
Both exact (Mixed Integer Programming formulation) and approximate algorithms
(parallel tabu search and genetic algorithm) for the problem were proposed. The
impact of a definition of cyclicity on production efficiency was also examined.
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In this paper, we consider a manufacturing system with one operator (machine) in
each production cell. The system is a hybrid of a cyclic assignment problem [2] and
non-permutational Flow Shop Problem. An example of optimization algorithm for
the problem was shown in [1], where a two-level approach was taken. The operation
to machine assignments were obtained by both approximate and exact algorithms,
whereas the schedules were optimized by a tabu search algorithm.

1.2 Fitness Landscape Analysis

Fitness Landscape (FL) is, for a given instance of a problem, a structured represen-
tation of a solving algorithm search space. By analyzing FL it is possible to grasp
unique properties of the instance, which can be then used, for example, to solve
Algorithm Selection Problem (ASP, see [13]), or to predict how hard it will be for a
given algorithm to find a good solution to the problem.

One of the methods of analyzing FL is to define and calculate specific measures,
characterizing the FL and as a result—an instance. There are many well-known
measures, both problem-specific and generic ones, e.g.: fitness distribution [23],
epistasis [15], ruggedness [30], or neutrality [22]. A comprehensive survey over FL
measures can be found in [11, 14].

Despite the great potential of FL analysis, it is often hard to carry one out, due to
enormous amount of raw data. As a solution to this problem, Ochoa [20] proposed
Local Optima Networks (LON-s). LON provides a compressed representation of
FL, by retaining only the information about local optima. This model has yet been
successfully applied to various optimization problems, such as: QAP [12, 20, 28],
TSP [18, 19], or NK [20, 29].

Because it is not possible to directly build LON for larger-sized instances, a LON
sampling method must be used. Since usually more accurate sampling requires more
calculation, the question naturally arises:What is the minimum computational effort
required to build a LON that is a sufficient representation of the instance?While this
kind of research has already been conducted [19, 20, 26], we believe there is still
much more to be done—FL analysis is often still too computationally demanding to
be practically applicable.

2 Problem Definition

In the paper we investigate a cyclic manufacturing system, researched earlier in
works [1]. This section provides comprehensive description of the problem with
some properties proven.
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2.1 Cyclic Assignment Problem in Production Cell

Let us consider a production cell consisting of multiple machines and a single oper-
ator. In the cell, in fixed time intervals (called cycle time), there are batches of prod-
ucts manufactured. Since the goods can be produced on many different machines, an
operation-to-machine assignment must be devised. Because there is only one opera-
tor in the system, at any time, there can be at most one operation performed. Cyclic
Assignment Problem in Production Cell (CAPPC) is a problem of finding such an
assignment, production schedule and cycle time that the cycle time is minimal.

CAPPCcan be formally defined as follows. There are o operations to be performed
in the production cell, constituting a set O = {1, 2, . . . , o}. The operations must be
performed in the specific order, 1 → 2 → · · · → o, on the machines identified by
the numbers from the setM = {1, 2, . . . ,m} (in this paper, we assume that m = 2).
The operation-to-machine assignment is determined by a tuple

P = (
P(1), P(2), . . . , P(o)

)
,

where P(i), i ∈ O denotes themachine the operation i is to be performed on; andP
is a set of all possible assignments. Each operation i ∈ O must be being performed
uninterruptedly for pP(i)

i time units.Moreover, between each two operations i, j ∈ O
performed one after another on the same machine a = P(i) = P( j), there is an
Uninterruptible setup with the duration of sai, j time units.

Definition 4.1 Minimal Part Set (MPS) is a set of copies of operations from the set
O . MPS-es are numbered by successive natural numbers x = 1, 2, . . . .

MPS-es are performed one after another, potentially an infinite number of times. A
schedule for CAPPC is defined, for each MPS, by a pair of vectors

Sx = (Sx
1 , S

x
2 , . . . , Sx

o ), (1)

Cx = (Cx
1 ,C

x
2 , . . . ,Cx

o ), (2)

where x = 1, 2, . . . is a number ofMPS.A schedule is feasible if and only if, for each
MPS x ∈ N

+, an assignment P ∈ P and a cycle time T , the following constraints
are satisfied:

1. At any time, there can be at most one operation or setup performed.
2. Setups and operations must not be interrupted.
3. Each operation i ∈ O must be performed on the machine P(i) = a for pai time.
4. Between each two operations i, j ∈ O performed in a successive manner on the

same machine a ∈ M , there must be a setup sai, j performed.
5. Each operation must be performed every cycle time T .
6. On each machine, before performing any operation from x + 1th MPS, all the

operations from x th MPS must be finished.

The constraints can be formally defined as
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∀i ∈ O \ {o} ∀x ∈ N
+

(
Sx
i+1x ≥ Sx

i + pP(i)
i + s(P, i + 1)

)
, (3)

∀i ∈ O ∀x ∈ N
+

(
Sx+1
i x = Sx

i + T
)
, (4)

∀i ∈ O ∀x ∈ N
+

(
Cx
i x = Sx

i + pP(i)
i

)
, (5)

∀x ∈ N
+

(
Sx+1
1 x ≥ Cx

o + s(P, 1)
)
, (6)

where s(P, i) is the setup performed before an operation i for a solution P . The
setup time can be calculated from equation

s(P, i) =
{
sP(i)
maxO (P,i) for |O(P, i)| ≥ 1,

sP(i)
max{ j∈O : P(i)=P( j)} otherwise,

(7)

O(P, i) = {
j ∈ O : (

j < i ∧ P(i) = P( j)
)}

. (8)

CAPPC boils down to determining such an assignment, cycle time and acceptable
schedule that the cycle time is minimal. In the context of solving algorithms, such
CAPPC formulationmay be unfavorable, due to the need to determine optimal values
of multiple parameters: P, T, S,C . Therefore, in the further part of this sub-chapter,
it will be shown how to determine the optimal schedule and cycle time for any
assignment—so that the CAPPC can be formulated as the problem of determining
the optimal assignment.

Definition 4.2 Let P ∈ P be a given assignment. Minimal cycle time T (P) is the
minimal value of a cycle time for which at least one feasible schedule exist.

For a given assignment P ∈ P , let us consider a feasible schedule, minimizing
a cycle time T for any MPS x ∈ N

+. From Eqs. (4) and (6), we have

T = Sx+1
1 − Sx

1 ≥ Cx
o + s(P, 1) − Sx

1 . (9)

Now, the value of the right side of the inequity (9)must be determined. Let Sx
i (P), i ∈

O , be the earliest time an operation i can be started. Then,

Sxi (P) = Sxi−1(P) + pP(i−1)
i−1 + s(P, i) =

= Sxi−2(P) + pP(i−2)
i−2 + s(P, i − 1) + pP(i−1)

i−1 + s(P, i) =
= Sx1 + pP(1)

1 + pP(2)
2 + · · · + pP(i−1)

i−1 + s(P, 2) + s(P, 3) + · · · + s(P, i) =

= Sx1 +
i−1∑

j=1

pP( j)
j +

i∑

j=2

s(P, j). (10)

Defining Cx
i (P) in an analogous way to Sx

i (P) and substituting Eq. (10) into Eq. (5)
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Cx
i (P) = Sx

i + pP(i)
i =

= Sx
1 +

i−1∑

j=1

pP( j)
j +

i∑

j=2

s(P, j) + pP(i)
i =

= Sx
1 +

i∑

j=1

pP( j)
j +

i∑

j=2

s(P, j). (11)

Therefore, for any given P ∈ P

T ≥ Cx
o (P) + s(P, 1) − Sx

1 =
o∑

j=1

(
pP( j)
j + s(P, j)

)
, (12)

and thus, a minimal cycle time T (P) equals

T (P) =
∑

j∈O

(
pP( j)
j + s(P, j)

)
. (13)

Equation (13) allows us to rewrite CAPPC into the problem of finding any assign-
ment P∗ ∈ P , that a minimal cycle time T (P∗) is minimal

P∗ ∈ arg min
P∈P

{
T (P)

}
. (14)

2.2 CAPPC in Non-permutational FSP

The considered problem is a non-permutational Flow Shop Problem (FSP) with
CAPPC-cells instead of the machines (CFSPPC). In FSP, there is a set of jobsJ =
{1, 2, . . . , n} to be performed. Each jobs consists of q operations to be performed in
a predefined order

(i − 1)q + 1 → (i − 1)q + 2 → · · · → iq,

on the machines
1 → 2 → · · · → q,

constituting a setQ = {1, 2, . . . , q} (here the machines are replaced by the produc-
tion cells). The order in which the operations are performed in the cells is determined
by a n-tuple

π = (π1, π2, . . . , πq), (15)

where
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πi = (
πi (1), πi (2), . . . , πi (n)

)
, i ∈ J , (16)

is the order of operations performed in cell i .

Lemma 4.1 Let π be, for a given CFSPPC instance, the order in which the oper-
ations are to be performed, and Ti—the minimal cycle time of the CAPPC instance
constructed from the operations πi (1), πi (2), . . . , πi (q). Then

T = max{Ti : i ∈ Q}

is the minimal cycle time of the CFSPPC instance for π .

Proof We will prove that (*) there is at least one feasible schedule for T and (**)
there is no feasible schedule for any T ′ < T . Let i Sx

j and
iCx

j denote, respectively,
the moment an operation j + (i − 1)q is started and the finished, according to an
optimal schedule for the CAPPC instance created from cell i . We will prove (*) by
showing that schedule

Sx =
(

1Sx
1,

1Sx
2, . . . , 1Sx

n,

T + 2Sx
1, T + 2Sx

2, . . . , T + 2Sx
n,

...
...

. . .
...

(n − 1)T + q Sx
1, (n − 1)T + q Sx

2, . . . , (n − 1)T + q Sx
n

)
,

(17)

Cx =
(

1Cx
1,

1Cx
2, . . . , 1Cx

n,

T + 2Cx
1, T + 2Cx

2, . . . , T + 2Cx
n,

...
...

. . .
...

(n − 1)T + qCx
1, (n − 1)T + qCx

2, . . . , (n − 1)T + qCx
n

)
,

(18)

is feasible. From the assumptions, the schedule Sx ,Cx , satisfies the CAPPC con-
straints because

∀i ∈ Q (Ti ≤ T ). (19)

Now, let us show that the schedule also preserves the technological order,

∀i ∈ J ∀ j ∈ {
(i − 1)q + 1, (i − 1)q + 2, . . . , iq

} (
Cx

j ≤ Sx
j+1

)
. (20)

Let k = ( j − 1) mod n + 1 and l = 
 j/n�. Then
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Cx
j = (k − 1)T + kCx

l ≤ (k − 1)T + k Sx
1 + T =

= kT + k Sx
1 =

= kT + k+1Sx
1 ≤ kT + k+1Sx

l =
= Sx

j+1, (21)

which proofs (*). The proof of (**) is trivial. Assume that T ′ < T and there exist a
feasible schedule for T ′. Then, there also exist a feasible schedule for a cell

i ∈ argmax
j∈Q

Tj ,

for T ′. It leads to a contradiction, since T ′ < T = Ti and Ti is the minimal cycle
time for that cell. �

Based on Lemma 4.1, any instance of CFSPPC can be divided into q independent,
one-cell optimization subproblems. As shown in [1], such approach can be used
to devise an efficient heuristic algorithm. Therefore we will study more closely
the properties of the one-cell CFSPPC (referred to later as Cyclic Assignment and
Scheduling Problem in Production Cell, CASPPC).

2.3 Cyclic Assignment and Scheduling Problem in
Production Cell

Since in CASPPC there is only one cell (as shown in Fig. 1), the order of operation
performance can be described by a single tuple

π = (
π(1), π(2), . . . , π(n)

)
, n = o, (22)

instead of a tuple of tuples, defined in Eqs. (15) and (16). Let Π be the set of all
possible orders of operations. CASPPC is a problem of finding such π ∈ Π , P ∈ P
and T , that at least one feasible schedule exists and the cycle time isminimal. Because
operations can be renumbered, the formulation can be simplified into finding such
π and P that the minimal cycle time Tπ (P) of the instance of CAPPC constructed
by the π is minimal. In [1] a polynomial-time exact algorithm was proposed for
CAPPC, allowing to further narrow the search space

π∗ ∈ argmin
π∈Π

{
min
P∈P

{
Tπ (P)

}}
, (23)

since
min
P∈P

{
Tπ (P)

}
(24)

can be calculated in O(o3) for m = 2.
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Fig. 1 Cyclic production cell

3 Local Optima Networks

Local Optima Network (LON) is a compact representation of a Fitness Landscape,
further embedding the properties of search algorithms. In this section we will intro-
duce some basic concepts regarding both FL and LON.

3.1 Definitions

FL describes a solution space of a problem from the perspective of a local search
algorithm. Work [27] defines FL as a triple (S, V, f ), where:

S is a solution space. In the researched problem S = Π , |Π | = (n − 1)!.
V is a neighborhood function, V : S → P(S), whereP(S) is a powerset of S. The

definition of the neighborhood is taken from [1].
f is an objective (fitness) function, f : S → R. In the researched problem

f (π) = min
P∈P

{
Tπ (P)

}
.

Based on the notation introduced above, LON can be formally defined is a directed
graph (N , E), where N is a set of nodes and E is a set of edges. Each node from N
represents a local minimum, i.e. such solution π ∈ Π , that

∀π ′ ∈ V (π)
(
f (π ′) ≥ f (π)

)
. (25)
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Therefore
N =

{
π ∈ Π : ∀π ′ ∈ V (π)

(
f (π ′) ≥ f (π)

)}
. (26)

Ochoa et al. [20] proposed two definitions of edges for LON: basin-transition and
escape edges. In this paper we have chosen basin-transition edges as their weights
can be computed easier. This definition is also used e.g. in [3, 20]. Edge (π ′, π ′′)
exists in E if and only if π ′′ can be obtained by applying kick operator (here the
operator is defined as applying a randommove twice) to the solution π ′, followed by
a steepest descend algorithm run. This procedure mimics diversification strategies
used in heuristic algorithms. Let g : Π → Π be a function assigning to any π ∈ Π

a result of the steepest descend algorithm (shown in Algorithm 1) and

V k(π) =
⋃

π ′∈V (π)

V (π ′), (27)

a set of solutions obtained by applying all possible kick operators to π . Then, the set
E can be defined as

Algorithm 1: Steepest descend algorithm for CASPPC
Input : Initial solution πini t ∈ Π

Output: Local minimum π ∈ Π

1 π ′ ← πini t ;
2 repeat
3 π ← π ′;
4 Vmin ← arg min

π ′∈V (π)
f (π ′);

5 Sort elements from Vmin in lexicographic order and put the first element in π ′;
6 until f (π) > f (π ′);
7 return π

E =
{(

π ′, π ′′) : π ′ ∈ N ∧ π ′′ ∈ {
g
(
π

) : π ∈ V k
(
π ′)}

}
. (28)

A weight d of an edge (π ′, π ′′) represents the probability of transition from solution
π ′ to π ′′ by a local search algorithm, while trying to escape the local minimum π ′.
The weight function is defined as

d
((

π ′, π ′′)
)

=
∣∣{π ∈ V k

(
π ′) : g(π) = π ′′}∣∣
∣
∣V k

(
π ′)∣∣ . (29)

Since weights correspond to the probabilities, no weight can be larger then one

∀ε ∈ E
(
d(ε) ≤ 1

)
, (30)
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and the sum of weights of edges originating from any node equals one

∀π ′ ∈ N

⎛

⎝
∑

π ′′∈{π :(π ′,π)∈E}
d
((

π ′, π ′′)
)

= 1

⎞

⎠. (31)

3.2 LON Measures

Local Optima Networks can be be described by various measures. In this paper we
investigate some well-known ones:

• assortativity—measure of nodes preferences to be connected to nodeswith similar
parameters, based on o [17]. Let π ∈ N be a LON node. Then, following variants
of node parameter x were tested:

– assortativity-in—a number of incoming edges

xin(π) = |{(π ′, π ′′) ∈ E : π ′′ = π}|; (32)

– assortativity-out—a number of outgoing edges

xout(π) = |{(π ′, π ′′) ∈ E : π ′ = π}|; (33)

– assortativity-total—a sum of a number of outgoing and incoming edges

xtotal(π) = xin(π) + xout(π); (34)

– assortativity-bin—a size of a node attraction basin

xbin(π) = |π ′ ∈ Π : g(π ′) = π |; (35)

– assortativity-of—an objective function of the node

xof(π) = Cmax (π). (36)

Formally, the assortativity is defined as:

A =
∑

i ei,i − ∑
i

(∑
j ei, j

∑
j e j,i

)

1 − ∑
i

(∑
j ei, j

∑
j e j,i

) , (37)

where ei, j is the fraction of edges connecting nodes of types i and j , e.g. such
edges (π ′, π ′′) ∈ E , that x(π ′) = i and x(π ′′) = j .
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• global clustering (transitivity)—a measure indicating the likeliness that if edges
(a, b) and (b, c) exist, the edge (a, c) also exists. Nodes a, b, c constitute a triangle.
Clustering can be formally defined [16] as

C = 3 × number of triangles

number of triples
, (38)

where “triple” denotes a node with edges running to an unordered pair of other
nodes. The computational complexity of the implementation equals O(|N |〈k〉2).

• average shortest path to optimum—the average shortest path length from every
node to the closest global optimum.

• minimum as percent—the percentage ratio of LON nodes with the minimum
value of the objective function (global optima)

O =

∣∣∣∣argmax
π∈N Cmax (π)

∣∣∣∣

|N | · 100% (39)

The implementation for measures was provided by graph-tool library [21].

4 Computational Experiments

Analyzing the entire FL for the instance of a larger size is impossible in practice.
Therefore, samplingmethods are used, which—in principle—allow to create a repre-
sentative “snapshot” of the solution space. The need to determine how such procedure
affects the obtained information is obvious. For this purpose, we will generate com-
plete FLs of small-sized instances, calculate the exact values of the measures, and
then simulate sampling procedure.

4.1 Experimental Setup

The experiments were conducted on random instances, of the sizes ranging from 6
to 9 operations. For each size, 30 instances were generated. The FLs of the instances
were sampled in steps, called snapshots. For a given instance, in a snapshot Sc,
exactly Sc percent of solutions (selected randomly) from the entire search space are
considered. In order to quantify the impact of sampling the search space on the values
of LONmeasures, a relative measure deviation concept is introduced. Let Mi (Sc) be
a value of the relative measure deviation of a measure i , for a snapshot Sc:

ΔMi (Sc) = Mi (100%) − Mi (Sc)

Mi (100%)
. (40)
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For each measure and instance, relative measure deviations were calculated for snap-
shots Sc = 5, 10, . . . , 95%.

4.2 Results

In this section, results of computational experiments (presented in Figs. 2, 3, 4, 5, 6,
7, 8 and 9) will be presented and discussed.

Assortativity-in

First, we will describe the data gathered on assortativity-in. The relative deviations of
the considered measure values, for different snapshots and instance sizes, are shown
on Figs. 2 and 3.

For the smallest instances with n = 6 (shown on Fig. 2a), the median deviation of
the measure remains between 0 and 1. It starts with the value close to 0, when only
5% of solution space is sampled (Sc = 5%). Then, when Sc = 10%, there is sudden
change of value to 1, with a gradual decrease afterwards, until reaching values close
to 0 by Sc = 45%. This predictable behaviour can be observed to even greater extent
for larger instances. The interquartile range is relatively large (more than 2 standard
deviations) for small Sc, and decreases with the increasing percentage of solution
searched. For Sc = 15%, . . . , 60%, the range stabilizes at about 1 relative deviation,
then a next drop can be seen. Empirical distributions of the measure deviations
have different shapes—some are similar to a normal distribution, while other are
of a significant skewness (seen as long, asymmetric whiskers). The data is rather
heterogeneous, multiple outliers are present, ranging up to 6–10 relative deviations
from 0.

For the instances with n = 7 operations (Fig. 2b), the most obvious difference is
lower median measure deviations, while the trend of decreasing its value with the
increase of Sc remains. The number of outliners, although lower, is still significant.
The deviation empirical distributions is, again, similar to normal, with occasional
larger skewtness.

The next analyzed figure, Fig. 3a, shows the relative deviation of assortativity-
in measured for the instances of the size of n = 8. The median deviation is further
decreased, with a very clearly visible downward trend. The same downward tendency
can be observed for the measure deviation variance. The trend of decreasing both
measure deviation median and variance continues for the instance size n = 9 (shown
on Fig. 3b).
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Fig. 2 Relative assortativity-in deviation for different snapshots



On Estimating LON-Based Measures … 77

Fig. 3 Relative assortativity-in deviation for different snapshots



78 A. Gnatowski and T. Niżyński

Other Measures

We will not present such detailed description of the experiments performed for the
other metrics (Figs. 5, 6, 7, 8 and 9). The changes in the deviations of metrics, such
as: assortativity-out, assortativity-total, assortativity-of, global clustering, average
shortest path to optimum or minimum as percent are similar to the ones described for
assortativity-in. However, several abnormalities are worth noting. For assortativity-
of and instance size n = 6 (Fig. 4a), the outliners, especially for small snapshots,
lie much further from 0, then for any other measure. Therefore, this measure proved
to be susceptible to the undersampling issues for smaller problem sizes. Another
interesting observation can be made for the average shortest path to optimum for
n = 6 (Fig. 4b). Theoutliners for this experiments tend to assumecommon, “discrete”
values. It is a result of a small instances size and therefore—LONs to be measured
are small graphs with relatively short paths possible.

Discussion

The experiments carried out indicate, that the variability of the values of the mea-
sures is not only related to Sc, but also to the size of the instance. As the size of
instance increases, for a fixed Sc, the variance decreases. This fact suggests, that the
computational effort necessary to obtain the value of a measure with a given error
tolerance increases more slowly than the size of the solution space. Nevertheless,
the determination of whether the polynomial relation used, among others, in [12], is
sufficient for a problem with exponential solution space, requires further research.

In addition to the significant variability of the measure, the average deviation
of the measure is non-zero (for most measures the value is undervalued). Hence,
the expected value of measure value is influenced not only by the specificity of the
instance itself (intentional behavior), but also by the computational effort to sample
the solution space. This dependence seems to differ from measure to measure and
is especially evident for larger instance sizes (and therefore—for the experiments
with more samples taken). Specifying the form of this dependency could allow for
applying an appropriate amendment and unbiased measure estimation.

5 Remarks and Conclusions

The paper examines the impact of sampling the solution space on the values of
selected measures used in fitness landscape analysis. The examined measures proved
to be susceptible to insufficient sampling effort. With the increasing of the number
of samples, not only their variance but also the expected value changed.

The results obtained relate only to instances of a small size, hence the natural
next step in the research will be experiments for the instances of sizes found in
benchmarks (such as, for example, Taillard instances). An interesting challenge is to
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Fig. 4 Examples of interesting anomalies in the proposed metrics values
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Fig. 5 Boxplots of assortativity-of and different instance sizes

Fig. 6 Boxplots of assortativity-in and different instance sizes
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Fig. 7 Boxplots of assortativity-out and different instance sizes

Fig. 8 Boxplots of assortativity-bin and different instance sizes
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Fig. 9 Boxplots of average shortest paths to closest local optimum and different instance sizes

determine the scale of variability of the measures, both in the context of a constant
and a variable computational effort—potentially leading to unbiased estimation of
the measure values, with minimal computational effort.

Acknowledgements The chapterwas partially supported by theNational ScienceCentre of Poland,
grant OPUS number DEC 2017/25/B/ST7/02181.
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Coordination of Cyclic Motion Processes
in Free-Ranging Multiple Mobile Robot
Systems

Elzbieta Roszkowska

Abstract We consider aMultipleMobile Robot System (MMRS) viewed as a group
of autonomous robots sharing a common 2D motion space. Each robot performs a
mission that requires it to travel a number of times along a specific, independently
planned closed path. The robots operate asynchronously and are able to control their
motion with path-following algorithms that allow each of them to correctly perform
its mission when alone on the stage. When sharing the motion space, the robots must
refine their motion strategies in order to avoid collisions, through modification of
their paths, velocity profiles or both. Following our earlier contributions, we rep-
resent MMRS as a class of RAS (Resource Allocation System) that abstracts in a
discrete form the motion space and the motion processes of the robots. A model
of the feasible dynamic behavior of the robot system is then obtained by mapping
the distinguished RAS into a DFSA (Deterministic Finite State Automaton) that
ensures collision avoidance among the robots. Based on this model, we formulate
the deadlock avoidance problem, discuss its complexity, and demonstrate relevant
algorithms to solve it. Finally, we propose a control architecture that implements the
described control logic and combines it with the priority control, thus receiving a
flexible controller for MMRS.

1 Introduction

The use of a mobile robot team in place of one robot substantially increases the
performance of many robotic applications, including those related to transport, area
searching, search and rescue, interplanetary exploration, extraction of minerals, or
agriculture and forestry. A key issue in the design of such systems is to coordinate
the movement of a number of robots operating in the same workspace. Regardless
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of their tasks, the robots must be able to effectively share a common area in order to
prevent the mutual disruption of traffic and effectively pursue their missions.

The prevailing approach to modeling Multiple Mobile Robot Systems (MMRS)
consists in the abstraction of the dynamics of the robots in time, and considering the
problem of the robots’ coordination over time. Earlier works mostly concentrated on
motion planning with respect to collision avoidance and performance optimization.
According to [17], two categories of approaches to these problems—centralized and
decoupled—can be distinguished as opposite ends of the spectrum of solutions. A
centralized approach typically constructs a path in a composite configuration space,
which is formed by theCartesian product of the configuration spaces of the individual
robots, e.g. [1]. A decoupled approach typically generates paths for each robot inde-
pendently, and then a coordination diagram is used to plan a collision-free trajectory
along the paths, e.g. [3]. Most often the problem of collision-free motion planning
is decomposed into two subproblems: path planning and trajectory planning. Path
planning finds geometric paths that do not intersect static obstacles, and trajectory
planning determines how fast each robot must move along its path to avoid collision
with others.

However, the control of a multiple robot system based solely on motion plan-
ning has a significant shortcoming. At the robot coordination level, the realization
of motion plans is an open-loop control policy, based on deterministic time func-
tions. Such a control is very sensitive to the system randomness, which, given the
autonomous and asynchronous operation of the robots, makes the eventual applica-
bility of these open-loop control plans highly questionable.

Therefore, more contemporary solutions use algorithms that calculate robot coor-
dination decisions online, taking into account dynamicmodels of the robots and infor-
mation about their current state. Two concepts representative for this approach are
Reciprocal Collision Avoidance [16] and the Potential Fields [4]. However, although
very effective locally, these methods cannot be easily adapted for the synthesis of the
required global system behavior. The continuous-time abstraction used to describe
a single robot, when applied to a multiple robot system yields solutions that are not
scalable and do not capture the asynchronous character of the robot cooperation. In
view of the above, a promising approach is the hybrid control concepts that combines
a DES-based (Discrete Event System) supervisory control logic with a CTS-based
(Continuous Time System) robot motion control. While various aspects of this type
of approach have been recently considered, e.g., [5–8, 10], few works provide for-
mal methodologies that are adaptable to changes in problem settings and guarantee
the correct and efficient operation of MMRS in the entire domain of their model
definition.

In this chapter, we consider a group of mobile robots, whose operation will be
viewed as a set of cyclic robot motion processes concurrently executed in a shared
area. A practical example of such a system can be a FlexibleAssembly System (FAS),
in which all of the parts that are needed to make one assembly are kitted on one pallet
and routed on vehicles through the work stations until complete. The components
are palletized into kits and finished assemblies removed from the pallets in a kitting
station (KS). An assembly vehicle is dedicated to a pallet from the moment when
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it picks the pallet up in the KS to the moment when it returns to the KS. After the
vehicle drops the finished assembly off, it picks up the next pallet containing another
kitted assembly to be built, or if there are no new jobs that require service, remains in
the zone adjacent to the KS. The zone is big enough to accommodate all the vehicles,
and this is where they park when the system is shut down. Preparation of the kits in a
warehouse can also be done by mobile robots visiting the relevant storing area, and
abstracted by cyclic processes.

The objective of this work is to present the DES-based framework for the coordi-
nation of mobile robots sharing a common 2D motion space, proposed in [12, 15],
show its application to the supervisory control of cyclic robot motion processes,
and discuss its implementation in a centralized or a distributed controller. The fol-
lowing section describes the control problem for MMRS, gives the assumptions and
requirements defining the sought solution. Section 3 explains the assumed discretiza-
tion scheme of the continuous robot motion space and motion processes. Section 4
describes the RAS (ResourceAllocation System) abstraction of concurrent processes
[13] and their application to identifying specific classes of MMRS. A model of the
feasible dynamic behavior of the robot system is then obtained by mapping the dis-
tinguished RAS into DFSA (Deterministic Finite State Automaton) that ensures
collision avoidance among the robots. Based on this model, the subsequent section
deals with the deadlock avoidance problem, discusses its complexity, and provides
relevant algorithms to solve it. Finally, Sect. 6 concentrates on the control architec-
ture implementing the developed control logic, and the last section concludes this
research.

2 Problem Statement

We consider a Multiple Mobile Robot System (MMRS) viewed as a group of
autonomous mobile robots sharing a 2D space. Each robot performs a mission that
requires it to travel multiple times along a specific closed path. The path of each robot
is planned independently,without taking into account anypositional constraints intro-
duced by the paths of other robots. The robots operate asynchronously and are able to
control their motion with path-following algorithms that allow each of them to cor-
rectly perform its mission when alone on the stage. When sharing the motion space,
the robots must refine their motion strategies in order to avoid collisions, through
modification of their paths, velocity profiles or both.

The objective of the MMRS control is to ensure that the operation of the system
is correct and efficient. The notion of correctness relates to a qualitative criterion
and requires that each robot be able to perform its mission without colliding with
other robots. That is, depending on the state of other robots, the path of a robot may
be re-planned and/or the robot may have to slow down or even come to a stop and
wait until the situation changes and it can safely resume further travel. Thus, the
correct control must also ensure for each robot, the possibility to resume its travel
after a break, i.e., eliminate from the MMRS behavior such phenomena as deadlocks
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and robot starvation. The induced modifications of the robot trajectories inevitably
cause an increase of their mission completion time, thus impact MMRS performance
measures, whose values can vary depending on the employed conflict resolution
policies. Consequently, there are two main questions driving the development of the
MMRS control.

1. How to modify dynamically the initially assumed motion control of the robots so
that:

a. in a finite time interval, all the robots will have accomplished their missions,
b. at each moment of this time interval, the areas occupied by any given pair of

robots are disjoint.

2. How to induce, within the admissible (i.e. observing requirements (1.a) and (1.b))
robot concurrent operation, efficient MMRS behavior.

As can be noticed, the control satisfying requirements (1.b) and (1.a) ensures,
respectively, collision-free and deadlock-free (free of both physical and logical dead-
locks) concurrent motion of the robots. Requirement (2) implies the need of a flexible
model of MMRS control that leaves room for the optimization of system efficiency
and of tools to carry it out. To achieve realization of these postulates, we employ a
modular control system, whose subsequent synthesis steps will be discussed in the
sequel.

3 Discrete Representation of MMRS

We start from a continuous representation of MMRS. The system consists of a set of
mobile robots A = {A1, . . . An} that share a finite planar workspaceWS ⊂ R2 with
the XY coordinate system. Each robot Ai ∈ A is represented by a disk with radius
ai , and its path pi is viewed as a curve in WS that is given by a pair of functions
pi (l) = (xi (l), yi (l)) ∈ R2, l ∈ [0, l̄i ] ⊂ R.

The tessellation of the robot motion space that leads to a discrete abstraction of
their motion can take place in many different ways. Here, similar to [12], we assume
a simple tesselation scheme provided by a grid of horizontal and vertical lines spaced
at a distance d ≥ 2ρ and centered at the origin of a coordinate system, (x, y), that is
superimposed on the motion plane. The resulting cells will be denoted by W =
{w[i, j] : i ∈ {−I , . . . ,−1, 0, 1, . . . , I }, j ∈ {−J , . . . ,−1, 0, 1, . . . , J }}, where
−I , I , −J , and J are taken large enough to encompass the entire areaU , that sup-
ports the robot motion. Then, given a point (x, y) ∈ U and a cell w[i, j], we define:

(x, y) ∈ w[i, j] ⇐⇒ (i − 1) · d ≤ x ≤ i · d ∧ ( j − 1) · d ≤ y ≤ j · d

The size d of the grid, that defines the length of the cell edges, should be selected by
considering the efficiency criteria mentioned above. In general, a smaller value of d
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Fig. 1 Motion space
partition (solid line) and
regions of constant cell
occupation (dashed line)

can accommodate a larger number of robots, and therefore, can lead to a higher space
occupancy, but at the same time, it will lead to more disruption of the robot travels
by the superimposed resource allocation process, and possibly to more congested
traffic and longer delays.

In the sequel, we shall say that a robot (with its disk) centered at (xc, yc) occu-
pies cell w[i, j] iff its disk overlaps the cell, i.e., there exists (x, y) ∈ w[i, j] with
||(x, y) − (xc, yc)|| ≤ ρ, where || · || denotes the Euclidean norm. A graphical illus-
tration of this concept is given in Fig. 1. More specifically, the adopted tesselation is
defined by the grid of the solid horizontal and vertical lines, and the mobile robots
are depicted by the grey disks in it. As can be noticed, a robot can occupy one cell
(as in the case of A1), two neighboring cells (as in the case of A2), three neighboring
cells (as in the case of A3), or four neighboring cells (as in the case of A4).

Moreover, for the considered tesselation scheme, the subset of cells occupied by
a mobile robot that is located at (xc, yc) is effectively determined by the relative
positioning of (xc, yc) with respect to another partitioning of the motion plane, that
is induced by the original tesselation scheme and the robot geometry. In Fig. 1, this
induced partitioning is depicted by the dashed lines. If the disk center of a robot is
located in one of the circles then the robot occupies all four adjacent cells (as in the
case of A4). a robot occupies three cells if it is centered in any region that is the
difference between any circle and the square that describes it (as in the case of A3).
Next, a robot occupies two cells if its center lies in a rectangle located along the
tesselation line (as in the case of A2). And finally, a robot occupies one cell if it is
centered in the square located in the middle of the cell (as in the case of A1).

The above characterized tesselation, depicted in Fig. 1 by the dashed lines, par-
titions robot paths into maximal segments of constant cell occupation. That is, the
subset of cells occupied by the robot centered at any of point of a given segment is
the same, and it is different from the set of cells occupied by the robot in the sectors
preceding and succeeding the considered one. Consequently, it is convenient to view
the set of cellsW as the set of MMRS resources, and abstract the motion process of a
robot as a sequence of stages, each of which requires for its execution a specific sub-
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Fig. 2 Example paths of two mobile robots and the corresponding resource allocation profiles that
are defined by the path partitioning into maximal segments with the same cell occupation. The right
part of the figure details the profile obtained for robot A1

Table 1 The resource allocation induced by the path segmentation of Fig. 2

(a) Robot 1

Stage No. Required resources

0 ∅
1 w[1, 1]
2 w[0, 1],w[1, 1]
3 w[0, 1]
4 w[0, 0],w[0, 1]
5 w[0, 0],w[0, 1],w[1, 1]
6 w[0, 0],w[0, 1],w[1, 0],w[1, 1]
7 w[0, 0],w[1, 0],w[1, 1]
8 w[0, 0],w[1, 0]
9 w[1, 0]
10 w[1, 0],w[1, 1]
11 w[1, 1]

(b) Robot 2

Stage No. Required resources

0 ∅
1 w[1, 0]
2 w[1, 0],w[2, 0]
3 w[2, 0]
4 w[2, 0],w[2, 1]
5 w[2, 1]
6 w[1, 1],w[2, 1]
7 w[1, 1]
8 w[0, 1],w[1, 1]
9 w[0, 1]
10 w[0, 1],w[0, 0]
11 w[0, 0]
12 w[0, 0],w[1, 0]
13 w[1, 0]

set of resources W ′ ⊂ W . An example partitioning of two paths is demonstrated in
Fig. 2. Path p1 of robot A1 consists of twelve (maximal) segments p01–p

11
1 , and path

p2 of robot A2 consists of fourteen such segments, p02–p
13
2 . Also, Table 1 specifies

the cells occupied by the two robots at the various stages of their route.
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4 Collision Avoidance in MMRS

The discrete representation of the motion space and robot paths, discussed in the pre-
vious section, makes it possible to viewMMRS as a sub-class of Resource Allocation
Systems (RAS) [13], called FREE-RANGE-RAS [12] and defined as follows.

Definition 5.1 A FREE-RANGE-RAS is defined as a 4-tuple Φ = (R,C,P, D)

such that:

1. R = {R1, . . . , Rm} = W is the set of system resources, representing the set of
cells.

2. C : R → Z
+ is the resource capacity function that defines the maximal number

of robots that can occupy each particular cell at a time.
3. P = {P1, . . . , Pn} is the set of processes, representing the motion of each partic-

ular robot Ai along its path. Each process Pi is characterized by an ordered set of
stages Ξi = {Ξi1, . . . , Ξi,l(i)} corresponding to the motion of robot Ai (observed
through its disk center) along the consecutive segments of its path.

4. D : ⋃n
i=1 Ξi → 2R is the resource requirement function that defines the resources

D(Ξi j ) = Di j required by every process Pi to execute its each particular stage
Ξi, j .

5. The sets of stages Ξi , i = 1, . . . , n, and function D arise from a geometrical
system. That is, there exists a set of planar paths p, which can be divided into
segments pi j , j = 1, . . . , l(i), traversing the cells so that they induce function D.

Moreover, we will distinguish two sub-classes of FREE-RANGE-RAS, namely
FREE-RANGE-k-RAS, where k ∈ Z

+, and FREE-RANGE*-RAS.

Definition 5.2 A FREE-RANGE-k-RAS is a FREE-RANGE-RAS in which the
capacity of each cell R ∈ R is C(R) = k.

Definition 5.3 A FREE-RANGE*-RAS is a FREE-RANGE-RAS in which for all
i = 1, . . . , n, j = 1, . . . , l(i), | Di j |∈ {1, 2}. That is, no robot ever occupies more
than two cells at a time, which is equivalent to that no robot’s path overlaps any
corner square of the tesselation grid.

A 4-tuple Φ = (R,C,P, D), specifies the parameters of a particular MMRS and
gives its static abstraction. A dynamic model of MMRS can be developed using
the formalism of the Deterministic Finite State Automaton (DFSA) [2], defined as
follows.

Definition 5.4 A deterministic finite state automaton (DFSA) is a 6-tuple G =
(S, E, Γ, f, s0, SM), where:

• S is the (finite) set of states.
• E is the (finite) set of events.
• Γ : S → 2E is the active-event function. Event e ∈ E can occur in state s ∈ S iff
e ∈ Γ (s).
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• f : S × E → S is the (partial) transition function, defined for pairs (s, e) such
that e ∈ Γ (s). s ′ = f (s, e) returns the state that results from the occurrence of
event e in state s.

• s0 ∈ S is the initial state of G
• SM ⊆ S is the set of marked states

The above DFSA starts its operation from state s0. In each state s ∈ S, an event e
can only occur if the state transition function f () is defined for the pair (s, e), i.e., if
e ∈ Γ (s). In that case, we say that event e is enabled in state s. The occurrence of
event e in s results in a new state s ′ = f (s, e), which can be changed subsequently
by the occurrence of event e′ that is enabled in state s ′, and so on. In order to capture
state transitions arising from strings of events, the state transition function f can be
inductively extended to S × E∗ by the following assumptions:

∀s ∈ S
(
f (s, ε) ≡ s

)

∀s ∈ S ∀u ∈ E∗ ∀e ∈ E
(
f (s, ue) ≡ f ( f (s, u), e)

)

In the above equations, ε denotes the empty string, and E∗ denotes the set of all
strings that can be constructed with the elements of the set E ∪ {ε}. Moreover, it is
implicitly assumed that the involved single-step transitions correspond to the enabled
events, i.e., to the state-event pairs for which the original function f is defined;
otherwise, the extended version of f is undefined on the corresponding state-string
pair. Furthermore, we say that state s ∈ S is reachable from state s0 if there exists
string u ∈ E∗ such that function f (s, u) is defined; the set of all states reachable
from s is called the reachability set of s and denoted by Re(s). A special case of
such sets, Re(s0), is called the reachability set of the DFSA G. Using the discussed
formalism, a dynamic model of a particular MMRS can be obtained by the following
mapping of its specification Φ into DFSA.

Definition 5.5 The DFSA G(Φ) = (S, E, Γ, f, s0, SM) abstracting the feasible
dynamics of a FREE-RANGE-RAS Φ = (R,C,P, D) is defined as follows:

1. The state set S consists of all vectors s = (s1, s2, . . . , sn) ∈ Z
n such that:

a. ∀i ∈ {1, . . . , n} (
0 ≤ si ≤ l(i)

)
,

b. ∀R ∈ R
(
a(s, R) = |{si : R ∈ Di,si }| ≤ C(R)

)
.

Each component si of s indicates the current stage of process Pi (the motion
process of robot Ai ). In particular, si �= 0 indicates that robot Ai is in the si -th
path segment of its route, and si = 0 indicates that robot Ai is located off the
shared space (thus holding no resource R ∈ R), where it ends one cycle of its
travel and starts another. For each R ∈ R, a(s, R) indicates the number of units
of resource R that are allocated in state s.

2. The event set E = {ei : i = 1, . . . , n}, where for every i = 1, . . . , n, ei represents
the transition of robot Ai to its next stage.
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3. For each pair (s, ei ), the state transition function returns the new state s ′ =
f (s, ei ), whose components s ′

k , k = 1, . . . , n, are given by:

s ′
k =

{
(sk + 1) mod (l(k) + 1) if k = i

sk otherwise

4. Function f () is defined for a pair (s, e) iff e ∈ Γ (s), where the set of feasible
events Γ is defined by Γ (s) ≡ {e ∈ E | s ′ = f (s, e) ∈ S}.

5. The initial state s0 = 0, which corresponds to the situation where all the robots
are in their private space and therefore, all the system resources are free.

6. The set of marked states SM is the singleton SM = {s0}, and it expresses the
requirement for complete process runs.

If Φ ∈ FREE-RANGE-1-RAS, that is, if the capacity of all cells is C(Ri ) = 1 then
the above defined DFSA model enforces mutually exclusive occupation of the cells
by the robots and, consequently, their collision-free motion. Otherwise, that is, if for
some cell Ri , C(Ri ) > 1 then still no collisions can occur among robots that have
been allocated disjoint sets of cells, but an additional local coordination system is
needed to prevent internal collisions of the robots within each cell Ri . Such a system
can be based on a DES model, obtained by further discretization of the cell, creating
a local FREE-RANGE-1-RAS, or employ some of the reactive collision avoidance
methods, e.g., based on the potential field [9].

5 Deadlock Avoidance in MMRS

The operation of theMMRSmodelG(Φ), ensuring the disjointmotion of the robots’
disks, satisfies Requirement (1.b) defined in Sect. 2. However, Requirement (1.a) is
not satisfied, as the reachability set of G(Φ) can contain states s that are not safe,
i.e., such that the initial state s0 is not reachable from s.

To observe this, consider again the example of two robots and their path seg-
mentation, depicted in Fig. 2, and the resource requirements induced by this path
segmentation, given in Table 1. Let us assume that Φ ∈ FREE-RANGE-1-RAS,
that is, the capacity of the cells is 1. Next notice that in the initial state event
sequence u = e1, e2, e2, e1, e2, e2, e1, e2 is feasible and drives the system from state
s0 = [0, 0] to state s1 = f (s0, u] = [3, 5]. Then two state transitions are feasible: to
state s2 = f (s1, e1) = [4, 5] and to state s3 = f (s1, e2) = [3, 6]. State s2 = [4, 5] is
safe, as the initial state s0 can be reached from it by completing first the cycle of
robot A1 and then completing the cycle of robot A2. In state s3 = [3, 6] only two
event sequences are feasible: u′ = e1, e2 and u′′ = e2, e1, and both drive the system
to state s4 = f (s3, u′) = f (s3, u′′) = [4, 7], which is a deadlock as Γ (s4) = ∅. No
event is feasible in s4 because for its next stage, robot A1 requires resource w[1, 1],
which is held by robot A2, and robot A2 requires resource w[0, 1], which is held by
robot A1.
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In order to enforce the correct operation of G(Φ), it is necessary to introduce
a supervisor that extends the feasible-event function Γ (s) to a more restrictive
admissible-event function. The supervisor disables the occurrence of some state tran-
sitions and thus constrains the behavior of MMRS so that for each admissible event
sequence, there exists its admissible extension driving the system to the initial state.
This makes the system reversible, hence deadlock-free, and allows each process to
repeat its cycle any arbitrary number of times.

The optimal, i.e., the least restrictive supervisor should accept an event e ∈ E in
state s ∈ S if and only if e ∈ Γ (s) (event e is enabled in state s) and the next state
s ′ = f (s, e) is safe. Thus, any algorithm to check these conditions must solve the
following problem.

Safety problem: Given a FREE-RANGE-RAS Φ = (R,C,P, D), a safe state
s ∈ R(s0) and an enabled event e ∈ Γ (s), find out whether or not state s ′ = f (s, e)
is safe.

As demonstrated in [11], the Safety problem is NP-complete even if addressed to
any of the sub-classes of RAS, FREE-RANGE-k-RAS, k ∈ Z

+. On the other hand,
there exists a polynomial algorithm solving the safety problem for systems Φ ∈
FREE-RANGE*-RAS, in which the capacity of each resource R ∈ R is C(R) > 1
[15]. The high complexity of the first group of problems implies that practically only
sub-optimal solutions of the safety problem can be considered in FREE-RANGE-
RAS. Such algorithms ensure the reachability of the initial state, but not necessarily
in the least restrictive way.

From the viewpoint of the control synthesis for MMRS, most useful appear two
of the sub-classes of FREE-RANGE-RAS, each of which has its pros and cons. The
first class, FREE-RANGE-1-RAS, assumes that no more than one robot at a time can
be present in each particular cell, thus no further local coordination is required. How-
ever, the supervisory control employs a sub-optimal algorithm, which is in general
overly restrictive and may have some negative impact on the efficiency of the sys-
tem. The second class, FREE-RANGE*-2-RAS, allows for a maximally permissive
supervisor, so no unnecessary event disabling ever happens. Yet, it imposes some
constraints on the shape of the paths, which should omit the corner squares of the
tesselation structure. Also, as more than one robot can be present in a cell at a time,
an additional control is needed to ensure then their collision-free motion. Such a
coordination is, however, fairly simple, as the maximal number of robots in a cell is
limited to two. In the following we present two supervisors for the two distinguished
models, as proposed in [12, 15], respectively.

5.1 Deadlock Avoidance in FREE-RANGE-1-RAS

In these systems, the reversibility of G ′(Φ) can be enforced by constraining the
reachability space Re(s0) of G(Φ) to the subspace of p-ordered states Re′(s0) ⊆
Re(s0). The definition of such states, given below, uses the notion of a private stage
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of process Pi , Ξiq , which means that the resources required at this stage, Di,q , are
not required by any other process in order to complete their cycle and reach back
their initial state.

Definition 5.6 In system G(Φ), state s = (s1, . . . , sn) is p-ordered iff there exists
an order on the set of robots A , p : A → {1, 2, . . . , n} that satisfies the follow-
ing condition: ∀i, j s.t. p(A j ) > p(Ai ), ∀k = si ..qi , Dik ∩ Djs j = ∅, where qi is
the smallest number s.t. qi ≥ si and stage Ξiqi is private, if such a number exists.
Otherwise qi = 0.

Less formally, a state s is p-ordered iff there exists an order of the robots such that no
robot with higher order occupies any of the cells that lie on the way of a robot with
a lower order to its nearest private stage. A procedure checking whether or not this
property is observed by a particular state of a particular system G(Φ) is presented
in Algorithm 1.

Algorithm 1. The function testing the p-ordered property of states in FREE-
RANGE-1-RAS
Input : Parameter Φ describing the RAS, state s ∈ S.
Output: True if the state is p-ordered, false otherwise.

1 Function p-ordered(Φ, s) : bool
2 A ←− P;
3 occupied ←− ∅;
4 for i = 1, . . . , n do
5 occupied ←− occupied ∪ Disi ;
6 qi ←− minpriv(i, si ); remain[Ai ] ←− ⋃qi

j=si
Di, j ;

7 repeat
8 A ′ ←− A ;
9 for Ai ∈ A do

10 if remain[Ai ] ∩ occupied = Disi then
11 A ←− A \ {Ai };
12 occupied ←− occupied \ Di,si ;

13 if A = ∅ then
14 p-ordered ←− T RUE ;
15 else
16 p-ordered ←− FALSE ;

17 until A ′ = A ∨ A = ∅;

As in the above algorithm, the operations on the set A are O(n) complex, the
complexity of the whole function is O(n2), which qualifies it for online applications.
It is also not hard to notice the following property.
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Property 5.1 In system G(Φ), the final state can be reached from any state s that
is p-ordered.

Proof The condition defining the p-ordered state provides the robots Ai , i = 1..n,
with the ability to progress one-by-one, in the order given by p(Ai ), to their respective
closest private stages Ξ

qi
i . Since then no robot occupies a cell that can be required

by any other robot on its way to complete the cycle, the robots can one by one reach
back their initial state. �

Definition 5.7 A p-controlled MMRS G ′(φ) is a restriction of DFSA G(Φ) =
(S, E, Γ, f, s0, SM) obtained by:

• substituting the feasible-event functionΓ (s) by admissible-event functionΓ ′(s) =
{e : e ∈ Γ (s) ∧ s ′ = f (s, e) is p-ordered}, and

• substituting the transition function f with f ′ such that f ′(s, e) = f (s, e), but it
is only defined for admissible pairs (s, e), i.e., such that e ∈ Γ ′(s).

The following theorem proves that G ′(Φ) is reversible and thus its operation
satisfies Requirement (1.a).

Theorem 5.1 In a p-controlled MMRS G(Φ), the initial state s0 is reachable from
each state s reachable from the initial state s0.

Proof Based on Definition 5.7, each state reachable in a p-controlled G(Φ) is p-
ordered. Thus, by Property 5.1, the theorem holds. �

5.2 Deadlock Avoidance in FREE-RANGE∗-2-RAS

Since in this class of models the robot paths omit the square corners of the tesselation
grid, themotion process of each robot consists of a sequence of stages that correspond
alternately to the travel in a cell and the transition from one cell to the next one. At
a stage of the latter type, a robot occupies both cells, yet it eventually passes to
a stage of the former type and its disk no more occupies the previous cell. Thus,
from the viewpoint of deadlock avoidance, the transitions between the cells can be
considered as transient states, and FREE-RANGE∗-2-RAS can be viewed as a system
of processes, whose each stage Ξi j requires a single resource D(Xii j ) = Di j ∈ R.

The supervisor defined for this class ofMMRScontrolmodels employs a graphical
representation of a state that has the form of resource allocation graph.

Definition 5.8 The resource allocation graph representing a state s ∈ S of G(Φ) is
a graph F(s) = (V, H) such that:

• The set of vertices is defined by the extended set of resources V = R ∪ {R∞},
where R∞ is a dummy resource of infinite capacity allocated to each process
Pi ∈ P at its stage Ξi0.
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Algorithm 2. The function testing the safety of state transition s ′ = f (s, ei ) in
FREE-RANGE∗-2-RAS.
Input: Parameter Φ describing the RAS, state s, and the index i of the process, whose

potential advancement to the next stage is considered in the context of the safety of
the resulting state s′.

1 Function sa f e(Φ, s, i) : bool
2 if si = l(i) then
3 return true

4 if a(s, Disi+1 ) = |{sk : Dk,sk = Disi+1 }| = 0 then
5 return true

6 s′ ←− f (s, ei );
7 if ∃t = R1, R2, . . . , Rq , q ≥ 1, such that R1 = Disi+1 and Rq = R∞ or

a(s′, Rq ) = |{s′
k : Dk,s′k = Rq }| < 2 then

8 return true

9 return false

• The set of edges is defined by the set of robot processes H = P . The edge (cor-
responding to process) Pi goes from vertex R ∈ R to vertex R′ ∈ R iff , at state s,
process Pi has been allocated resource R and for its next stage it requires resource
R′. Edge Pi goes from vertex R ∈ R to vertex R∞ iff si = l(i), i.e., at state s,
process Pi executes the last stage of its cycle, Ξi,l(i). Edge Pi goes from vertex
R∞ to a vertex R ∈ R iff si = 0, that is, process Pi is in its initial state.

The following theorem [14] provides a property that allows the construction of a
maximally permissive supervisor.

Theorem 5.2 Consider aRASΦ ∈ FREE-RANGE∗-2-RAS, aDFSAG(Φ), a reach-
able safe state s, and an event ei such that the next state s ′ = f (s, ei ) is defined.
Then, state s ′ is safe iff in the graph F(s ′), there exists a path t = R1, R2, . . . , Rq,
q ≥ 1, from resource R1 = Disi+1 , to a resource Rq ∈ V that in state s ′ is allocated
to fewer processes than its capacity.

It is clear that the restriction of any DFSA G(Φ), Φ ∈ FREE-RANGE∗-2-RAS,
to G ′(Φ) obtained by substituting function Γ (s) with function Γ ′(s) = {e : e ∈
Γ (s) ∧ s ′ = f (s, e) is safe} yields a model of MMRS that is reversible and max-
imally permissive, i.e., it captures all the trajectories of G(Φ) that reach the initial
state and no state s ∈ Re(s0) from which the initial state is not reachable.

When verifying the safety condition, there is no need to construct graph F(s ′),
from scratch at each state change s ′ = f (s, e), as it can be directly obtained by a small
update of F(s)—removing one edge and adding another. Moreover, it is possible to
distinguish two special cases of state s when the safety condition holds: (i) si = l(i),
as then Disi+1 = R∞ and its capacity is infinite, and (ii) resource R1 = Disi+1 is not
allocated to any process in state s. Thus, checking the safety of a state transition can
be done with the function specified in Algorithm 2. The most complex part of the
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calculations is testing the existence of the required path in graph F(s ′), which can
be done with, e.g., the depth first search, that has the O(|V | + |H |) computational
complexity.

6 Implementation of the MMRS Control Logic

The logic described in the previous sections can be implemented both in a centralized
and distributed manner. In the former case, all the robots communicate with the
central RAS controller. In the latter case, each robot is equipped with a local RAS-
controller, a higher control level that interacts with its lower control level in the
same way as in the centralized case, but, additionally, it has to communicate with
other robots in order to be aware of their state. The specifics of the distributed
implementation of the FREE-RANGE-RAS based control can be found in [15],
whereas here we focus on the common features of both approaches.

6.1 Interaction of Robots with Their RAS-Controller

The interaction of the robots and the RAS-controller is event-based, as depicted in
Fig. 3. The controller generates only one type of events, nexti , i = 1, . . . , n, which
is a permission for robot Ai to proceed to the next path segment. Having received
this message, the robot confirms it with the acki signal. Next, each robot Ai informs
the controller about the occurrence of three types of events, api , cpi , and rpi , cor-
responding to reaching three types of characteristic points on its path: ap, cp, and
rp.

• Event api is generated when robot Ai passes an approach point ap, which signals
that Ai is approaching its next stage. These points are distinguished at the end
of the path segments pi j such that the transition to the next path segment pi, j+1

requires allocation of additional resources Di, j+1 \ Di j �= ∅.
• A critical point cp is set at a safe-braking distance from the end of each path
segment pi j in which appears point ap. If by arriving at point cp, robot Ai has
not received the signal nexti , it generates event cpi and starts decelerating. At the

Fig. 3 Interaction of the
RAS-controller with a robot
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Fig. 4 Two exemplary paths with their characteristic points

arrival of signal nexti , which can occur after the robot has come to the standstill
or is still decelerating, it accelerates again and proceeds to the next section.

• A release point rp is set at the border of two path segments pi j and pi, j+1 such
that Di, j+1 ⊂ Di j . On passing a point rp, robot Ai generates event rpi to inform
the controller that it can deallocate from the robot the resources Di j \ Di, j+1.

An example of a robot path with its characteristic points is given in Fig. 4. If a
path segment pi j is very short, in particular if it is equal or shorter than the safe-
braking distance, then such a segment can be merged with the next segment pi, j+1

or the previous stage pi, j−1, creating a process stage that requires the union of the
resources required by both stages, Di j ∪ Di, j+1 or Di, j−1 ∪ Di j , respectively. In the
right part of Fig. 4, three path segments preceding the robotweremerged: the segment
between the dashed horizontal and vertical line, the segment between the vertical
line and the ‘square’, and the segment between the ‘square’ and the ‘circle’. The
resulting path segment starts in cell [w[0, 1] at the cross of the path with the dashed
horizontal line, ends in cell w[0, 1] at the cross of the path with the ‘circle’, and its
resource requirement is {w[0, 0],w[0, 1],w[0, 1],w[1, 1]}. All these cells should be
allocated before the robot crosses the horizontal line, so one pair of points ap and
cp is sufficient. There is no need, however, to merge the symmetric path segments
in cell w[0, 1], between the ‘circle’ and the ‘square’, and between the horizontal
and vertical lines, as the resources are only released here. Since no new resource
allocation is needed, there is no risk that the robot will have to brake, thus there is
no lower limit on the path segment length.

6.2 Priority Control

The decisions made by the RAS controller concern the selection of events that will
be activated in a particular state through signals nexti . To make such decisions,
the controller must follow the state of the robots, updating it at the occurrence of
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each event that is sent/received to/from any robot. Then it checks the admissibility
conditions established in Sects. 4, 5, and solves the conflicts among the robots using
some priority policy in order to decide which robots should be allowed to continue
theirmotion, andwhich should be temporarily suspended in the casewhen concurrent
operation of all of them is not admissible. By a priority policy we understand an
algorithm that, based on some heuristic priority criterion, selects a subset of events
Δ(s) ⊆ Γ ′(s) such that:

(i) Each pair of events ei , ek ∈ Δ(s) is non-conflict, that is, occurrence of one of
them does not make inadmissible the other. Hence, robots Ai and Ak can transit
to their next sectors concurrently.

(ii) For each event ei /∈ Δ(s), there exists event ek ∈ Δ(s) that is in conflict with
ei , i.e., granting robot Ak the permission to transit to its next sector makes the
transition of robot Ai inadmissible.

The set Δ(s) is recalculated at each state change, and command next is sent to all
robots Ai that have passed their approaching point ap and ei ∈ Δ(s). The algorithms
to calculate Δ(s) can range from simple priority rules to optimization algorithms
based on predicted time parameters of the robot motion, yet, since executed online,
they must feature low computational complexity. Since the proposed RAS controller
can serve both a real MMRS and its simulator, the selection of the most efficient
policy, with respect to an assumed criterion, can be done experimentally.

7 Remarks and Conclusions

Although it is possible to view the operation of a group of mobile robots as a set
of processes sharing common resources, there is a number of features that seriously
differ this system from other systems typically represented by a similar abstraction,
e.g., job shops. The motion processes of the robots and their shared resource—the
motion space are not inherently discrete, but have a continuous character, and when
viewed as a resource sharing system require discretization. The system is deadlock-
prone, and the problem of deciding whether or not a particular resource allocation is
safe in a particular state is NP-complete. The robots operate asynchronously and their
travel time between distinguished points can be only roughly estimated. The actual
time can substantially vary from the initially assumed one. This is due to inaccurate
time calculation based, e.g., on the robot control model as well as possible on-line
modification of its path or velocity profile necessary for collision avoidancewith other
robots. Moreover, vehicle transport systems, are often subordinate to other systems,
e.g., a machining system in a manufacturing plant. That is, the start moments of
particular transport operations depend on the activity of the latter system, which
makes the prediction of the time behavior of the former system still more complex.

All the above features imply the need of a DES-based robot coordination system
that calculates control decisions online, based on the current state of the robots, rather
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than execution of an offline calculated schedule. The presented work advocates such
an approach.

In this chapter we recaptured our earlier results concerning the supervisory control
synthesis for free-ranging mobile robot systems within the framework of the RAS
model, showed its application to the supervisory control of cyclic robot motion pro-
cesses, and discussed implementation of this concept in a RAS-controller. Currently
we are focused on the development of a MMRS controller employing the presented
theory for a fleet of real mobile robots, which will be followed by experimental
research.

Acknowledgements This work was partially supported by grant no. 2016/23/B/ST7/01441 of the
National Science Center.
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Blockage-Free Route Planning for
In-Plant Milk-Run Material Delivery
Systems

Grzegorz Bocewicz , Izabela Nielsen and Zbigniew Banaszak

Abstract In this chapter, two kinds of intertwined decisions regarding themovement
of vehicles in an in-plant milk-run delivery system are considered: routing decisions,
which determine the set of sequences of stations visited by each tugger train, and
scheduling decisions, which plan congestion free movement of the tugger trains. The
problem under study, called the Multi Trip and Multi Cycle Pick-up and Delivery
Problem with Time Windows and Congestion Free Traffic, can be viewed as an
extension of the pick-up and delivery problem with time windows in which multiple
tugger trains travel along closed-loop congestion-free routes in different cycles. A
declarative model of the investigated milk-run delivery principle makes it possible to
formulate a vehicle routing and scheduling problem the solution to which determines
the route, the time schedule, and the type and number of parts that the different trucks
must carry to fulfill orders from various customers/recipients. Due to the requirement
of congestion-free milk-run traffic, a scheduling period slicing principle allowing to
synchronize cyclic flows of different periods is applied. Its implementation, resulting
in a cyclic schedule composed of quasi cyclic sub-schedules, implies a recursive
formulation of a well-known constraint satisfaction problem. The goal is to find
solutions that canminimize both vehicle downtime and the takt time of the production
flow. Computer experiments illustrate the possibility of using the present approach
in real-life systems.
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1 Introduction

In this chapter, we consider a new class of problem, dubbed the Multi Trip and
Multi Cycle Pick-up andDelivery Problemwith TimeWindows and Congestion Free
Traffic (MTMC-PDPTW-CFT), which generalizes a pick-up and delivery problem
with time windows in which multiple tugger trains follow their multiple closed-loop
and congestion-free routes in different cycles. In this context, taking into account the
limited number of vehicles (tugger trains) and their capacity constraints as well as
the time windows constraining congestion free execution of the pick-up and delivery
operations, a corresponding milk-run planning problem can be seen as a special case
of the well-known hard combinatorial optimization vehicle routing problem [7, 18].

The goal of milk-run planning is to minimize the number of tugger trains required
to perform the services, via minimizing cycle time [10]. Of course, in a general case,
the problem in which cyclic transport routes linking workstations and/or production
cells composed of sets of machines are sought for given production routes, as well as
the reverse problem in which production routes are sought and the transport routes
are given, are combinatorial NP-complete problems [1, 2, 12]. Also, it should be
noted that concurrent operation of multiple vehicles in a limited layout of a distri-
bution network may lead to congestion resulting in deadlocks, livelocks, collisions,
overcrowdings and so on [21]. Consequently, since the problem of defining a set
of feasible routing solutions allowing conflict-free movement of vehicles through a
given layout of a distribution network is an NP-hard decision problem [14], the solu-
tions to a MTMC-PDPTW-CFT of a size encountered in practice have an acceptable
but not optimal.

Therefore, in this study we try to find a computationally effective approach aimed
at simultaneous routing and scheduling of tugger train flow as well as design of a
distribution network infrastructure. For that reason the should allow to formulate a
decision problem that captures the importance of striking an equilibrium between
potential expectations regarding milk-run traffic and the capacity of the existing
distribution network. Moreover it should focus on resolving resource conflicts, i.e.
conflicts that arise when different activities simultaneously request access to shared
resources (e.g. intersections and/or guideway line segments) of limited quantity.

In the MTMC-PDPTW-CFT setting, a homogeneous fleet of vehicles operates
multi-tour routes out of a supermarket and warehouse to deliver and pick-up loads
(parts) to and from workstations and/or manufacturing cells (workstations for short).
In order to provide timely deliveries, the loads must be brought from the supermarket
within the time windows in accordance with the respective workstations require-
ments. In turn, the different workstations have loads that must be picked-up, within
the workstation time windows, and brought to the warehouse. In other words, this
study assumes that tugger trains travel cyclically along routes, servicingworkstations
and terminals, and that the set of routes guarantees that all workstations are serviced
according to the given multiproduct production flow schedule. The characteristics
of the MTMC-PDPTW-CFT that set it apart from other vehicle routing problems
include:
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1. multi-commodity demand defined as specific, time-dependent origin-to-
destination loads to be delivered or picked-up in a pre-defined sequence of
delivery/pick-up time windows;

2. synchronization of tugger train access to shared segments of transportation routes;
3. multi-tour cyclic delivery/pick-up processes running at different periods.

Given these characteristics, we focused on a class of multi-assortment production
systems typically used in the automotive industry.

In the production system considered, composed ofm workstations, different prod-
ucts n aremanufactured at the same time. Someof theworkstations,which are located
along the production routes of various products, are used by them alternately. The
production takt time T Pi of every i th product (job Ji ) is determined by the bottle-
neck of the associated production route, i.e. the slowest workstation along that route.
Assuming that workpieces are manufactured at this workstation in batches Bi , it is
easy to notice that in the period determined by the smallest common multiple, i.e.
T = LCM(B1 · T P1, . . . , Bi · T Pi , . . . , Bn · T Pn), a part set

(
T

T P1
· B1, . . . ,

T
T Pi

·
Bi , . . . ,

T
T Pn

· Bn
)
is produced. This means that during the period T , workpieces are

produced along the various routes in batches of various sizes. Moving along the
individual production routes, these batches are delivered from one workstation to
the next and are then picked up from them in appropriate time windows that make
up sequences PRi = (

T Di,1, TCi,1, . . . , T Di, j , TCi, j , . . . , T Di,r , TCi,r
)
, where

T Di, j , (TCi, j ) is a time window in which a production batch Bi is delivered (picked
up) to (from) the jth workstation along the ith route. It is easy to see that the open-
ing time of the window in which batch Bi is picked up from the jth workstation is
�TCi, j� ≥ �T Di, j�+Bi · t j , where: �T Di, j� – themoment of closing of the delivery
window, t j – time of technological operation related to the production of one batch
of workpieces manufactured on j th workstation on the ith route. The time windows
in which batches are delivered T Di, j , T Di, j+1 and picked up TCi, j , TCi, j+1 occur
at intervals determined by the takt time of the production batch of the i th workpiece,
i.e. Bi · T Pi .

For a production flow organized in this way, a milk-run system is sought which
allows production batches to be distributed in the given time window sequences PRi

subject to the limitations of the available route layout. In other words, knowing a
set of sequences of pick-up and delivery windows for production batches PRi , a
route layout and the size of available tugger train fleet, one looks for routes and the
associated schedules that allow collision-free movement of tugger trains and just-in-
time delivery and pick-up of workpieces and products. Of course, one vehicle can
make multiple trips per cycle.

To the best of our knowledge, theMTMC-PDPTW-CFT has not been addressed in
the literature before. Given this, our goal is to formally introduce its reference model
and provide a mathematical formulation of the problem in the conceptual frame-
work of declarative modeling. In other words, we want to find a computationally
effective approach that will allow to simultaneously route and schedule tugger train
flow and design the infrastructure of a distribution network. Put yet differently, the
reference model sought, which allows to formulate a decision problem that captures
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the importance of striking an equilibrium between potential expectations regard-
ing milk-run traffic and the capacity of the existing distribution network, focuses
on resolving resource conflicts that arise when different delivery/pick-up activities
simultaneously request access to the shared time windows.

A long-term objective of the present study is to develop amethod, derived from the
reference model, oriented toward the use of decision-support-system-like software.
With this in mind, we employ the declarative modeling framework, mostly because
of its fast prototyping capability. It should be recalled that in declarative models,
focus is on what the solution is. In other words, in contrast to imperative models of
computation, which are expressed in terms of states and sequences of state-changing
operations and take an “inside-out” approach, i.e. simply describe how a solution
is obtained, declarative models take an “outside-in” approach. Instead of describing
how a process has to work exactly, a declarative model specifies only the essential
characteristics of the process. The present study is a continuation of our previouswork
on methods of fast prototyping of solutions to selected problems of routing, batching
and scheduling of tasks typically performed in batch flow production systems, as
well as problems regarding the planning and control of production flow in a class
of multi-assortment production systems typically used in the automotive industry
[3–5].

Inwhat follows,we: (1) formally define and present a formulation of theMulti Trip
and Multi Cycle Pick-up and Delivery Problem with TimeWindows and Congestion
Free Traffic, (2) propose a declarative model to address the problem of MTMC-
PDPTW-CFT within the framework of recursive CSP, which allows one to consider
processes with different cycles, (3) propose an approach based on the principle of
“slicing the scheduling period into time slots”, which allows to synchronize cyclic
flows of different periods resulting in a cyclic schedule composed of quasi cyclic
schedules, (4) introduce the deadlock prevention conditions allowing one to pro-
totype alternative congestion free milk-run routes and schedules, (5) analyse the
performance of milk-run traffic systems with different numbers of trips allowed,
executed within a period T , and (6) analyse the performance of the proposed method
and study the impact of two main characteristics of the problem, namely the con-
figuration of admissible congestion free routings, and the number of time slots in a
scheduling period.

The remainder of the paper is organized as follows. Section2 reviews the literature.
Section3 presents a motivating example followed by formulation of the Multi Cycle
Pick-up and Delivery Problem with Time Windows and Congestion Free Traffic,
and a detailed description of the problem within the framework of recursive CSP.
The proposed methodology is described in Sect. 4. Computational results are then
reported and analysed in Sect. 5, while conclusions and future work are considered
in Sect. 6.
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2 Related Work

It can be shown that the total cost spent in a milk-run delivery process is lower than
that incurred by applying the direct shipment method [23]. This means that regular
pick-up/delivery of workpieces by the milk run method is more effective than the use
of the direct or the collaborative transportation methods. Typically, milk-run “trains”
consisting of a tugger and three to five trailers use fixed routes. Tugger trains can be
shared by multiple suppliers and customers, which means that they collect products
at one or more source points and deliver them to the destination points on their
way. Of course, the tugger trains need to visit the source points before they visit the
destination points [11]. In some cases, they operate on a fixed schedule. The system,
therefore, is comparable to a bus system in public transportation [11].

The benefits of using a system of this type include improved efficiency of the over-
all logistics system and potential substantial savings in shortening the total distance
travelled and minimizing the number of vehicles applied, along with remarkable cost
advantages related to inventory costs [17]. In this context, the problems of milk-run
delivery and distribution of in and out-bound material are usually viewed and formu-
lated as vehicle routing problems (VRP),whose objective is to obtain aminimum-cost
route plan to serve a set of customers with known demands, i.e. to assign the items to
vehicles that ship them from one depot to another [13, 19]. Consequently, the milk-
run problems of component/part/commodity distribution can be classified similarly
to the exhaustively studied extensions of the VRP concerning, for instance:

• Capacitated VRP, where the aim is to satisfy the needs of all the customers at
different locations by having a given number of vehicles with capacity constraints.

• Consistent VRP, in which the same customers are serviced by the same driver at
roughly the same time period over a planning horizon.

• VRP with TimeWindows, which is a generalization of the VRP where the service
of any customer starts within a given time interval, called a time window [13, 25],

• VRPwithBackhauls, also known as the linehaul-backhaul problem, is an extension
of the VRP involving both delivery and pick-up points [16],

• VRP with a multi-trip multi-traffic pick-up and delivery problem with time win-
dows and synchronization is a combination of variants of the vehicle routing prob-
lem with multiple trips, the vehicle routing problem with time windows, and the
vehicle routing problem with pick-up delivery [25].

Besides a huge collection of papers covering different technical problems and
addressing issues derived fromeveryday life practice, there is a large body ofmethods
and problem-solving techniques employed in the course of their modeling and inves-
tigation. The modeling frameworks consist of operation research methods (such as
linear and nonlinear programming, MLP, computer simulation, and so on) and artifi-
cial intelligencemethods, such as evolutionary computation (includingmetaheuristic
and stochastic optimization algorithms) [8, 10, 15], and fuzzy-set methods.

The majority of the research in the field of milk-run logistics is devoted to the
analysis of the methods of organizing transport processes in ways that minimize the
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size of the fleet, the distance travelled (energy consumed), or the space occupied by
the infrastructure of a distribution network. The most commonly formulated routing
problems are those aimed at maximizing the utilization of fleet capacity, finding
the best routing and determining the number of parts to be collected from each
supplier on each trip. Other frequently encountered routing problems address the
questions of “How to assign certain sequences of stops to certain routes?” and “How
to configure tugger trains?” [22]. In practice, many restrictions on facility layout,
e.g. one-ways or the radius of the curves/turns, as well as different types of trailer
configurations have to be taken into account. Apart from choosing the routes which
determine the time schedule, one also has to choose the type and number of parts
that must be transported by the different tugger trains to fulfill the orders from
various customers. In other words, milk-run scheduling boils down to determining in
what time windows parts can be collected from suppliers and delivered to customers
along the established routes, so that the cost of transport operations and the size
of the inventory in the supply chain are kept at the minimum. In the general case,
however, the main point is to simultaneously optimize vehicle routes and dispatch
frequency in order to minimize transportation and inventory costs. In that context,
the milk-run method seems to be well-suited to solving problems of scheduling and
dispatching of inventory in warehouses/supermarkets and production facilities with
in-plant transport systems.

Even though the literature addresses a large scope of problems and methods
regarding tugger train routing and scheduling, only a limited number of papers are
devoted to robust and congestion-free scheduling of a fleet of vehicles subject to
in-plant layout constraints. In this respect, the most relevant factors are those which
depend on critical, and often unpredictable, traffic congestions which occur when
logistics operators allocate too many collecting tasks to the available vehicles, gener-
ating unperformed activities due to assumed just-in-time constraints imposed by the
time windows of customer services [13, 15]. In focusing on the search for optimal
solutions, these studies implicitly assume that there exist admissible solutions, e.g.
ones that ensure collision- and/or deadlock-free (congestion-free) flow of concur-
rent transport processes. In practice, this requires either online updating (revision)
of the routing policies used, or prior (offline) planning of congestion-free vehicle
routes and schedules. Studies on generating dynamic routing policies are conducted
sporadically; even less frequent are investigations of robust routing and scheduling
of milk-run traffic, which are, by and large, limited to AGV systems. This is due
to the fact that the congestion-avoidance problem, which conditions the existence
of admissible solutions, is an NP-hard problem [27] as the necessary and sufficient
conditions for deadlock-free execution of concurrent processes are not known. In the
absence of these conditions, system analysis (i.e. analysis of the states potentially
leading to system deadlocks) has to be carried out which requires the use of laborious
and time-consuming computer simulation methods [6, 9].

Consequently, in real-life applications, congestion-avoidance methods (e.g. dead-
lock prevention) are used, which implement sufficient conditions for the collision-
free execution of processes. This means that the time-consuming method of analyz-
ing distribution networks with a view to detecting situations which lead to deadlocks
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between concurrent transport flows can be replaced by searching for a synchroniza-
tion mechanism that would guarantee cyclic execution of these flows.

Methods that are most commonly employed for such purposes include those that
use the formalism of max-plus algebra [20, 26] and constraint programming [24]. It
should be noted, however, that the possibility of fast implementation of a process-
synchronizationmechanism (e.g. employed by deadlock-preventionmethods) comes
at the expense of omitting some of the potentially possible scenarios (e.g. ones that
include optimal solutions) for deadlock-free execution of the processes. The short-
comings of the methods providing admissible solutions restrict their implementation
in DSS systems, in particular in systems supporting the planning of milk-run traffic
flows.

Given this background, our contribution boils down to the assessment of the
possibility of using declarative modeling in decision support tools dedicated to pro-
totyping in-plant milk-run traffic systems. This issue, which takes into account the
specific character of milk-run systems, has been discussed in our previous work on
the leveling of multi-product batch production flows [5] and a declarative modeling
framework for routing and scheduling of Unmanned Aerial Vehicles [2].

3 Modeling

The example of a multi-item batch flow production system presented in this section
illustrates typical cases of problems of analysis and synthesis of milk-run in-plant
distribution networks. In one of the cases (an analysis problem ), twovariants of traffic
flow organization are analyzed, in which two tugger trains moving along different
routes serve disjoint sets of workstations. In the first variant, all workstations are
serviced in the same cycle, i.e. the delivery time windows and the pick-up time
windows are spaced at the same intervals in the production cycle (with a period T ).
In the second variant, a change in the length of the cycle of one of the tugger trains
(still moving along the same route as before the change) leads to train deadlocks and
collisions within period T . This observation spurred further experiments focused
on the problems of synthesis and analysis of milk-run systems , in which different
groups of workstations with different delivery/pick-up time window densities are
serviced by different tugger trains. The goal of the synthesis problem was to find
new, collision-free routes for the available tugger trains. The analysis problem was
formulated to obtain solutions which would allow to modify tugger train velocities
(without changing their routes), so that the individual tugger train trips could be
executed over the entire period T in time slots of quasi-same periods. In other words,
the goal was to seek solutions which returned cyclic schedules consisting of quasi-
cyclic partial schedules.
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3.1 Motivating Example

Consider the milk-run system in which two production flows of products Ji (job i)
are executed (batch size Bi = 1, see Fig. 1a). The system consists of a warehouse
M9, a supermarket M8, and seven workstations M1–M7. The technological route for
product J1 ismarked in violet (route:M1, M2, M5, M7) and the route for product J2 is
marked in magenta (route: M3, M4, M6). The so-called complex operations Oi, j (i.e.
processes that are made up of elementary operations executed by the individual
workstations of a production cell) have the following times:

• t1,1 = 250 u.t. (units of time), t1,2 = 550 u.t., t1,3 = 600 u.t. and t1,4 = 420 u.t.,
for job J1;

• t2,1 = 300 u.t., t2,2 = 600 u.t., t2,3 = 430 u.t., for job J2;

which determine the value of production takt time T P1 = T P2 = 600 u.t. governed
by bottleneck resources M5, M6.

A Gantt chart of production flow in the investigated system is shown in Fig. 2.
The time windows for the delivery/pick-up of components to workstations M1–M7,
determined by the production schedule from Fig. 1b are as follows:

• PR1 = (T D1,1 = [30, 210], T D1,2 = [280, 460], TC1,3 = [830, 1010],
TC1,4 = [2030, 2210])

• PR2 = (T D2,1 = [470, 650], T D2,2 = [770, 950], T D2,3 = [1980, 2160]).
For example time window T D1,2 = [280, 460] is the period of time in which the

components should be delivered toworkstationM2 in order to execute operation O1,2.
It is easy to note that in both cases, the production takt times T P1 = T P2 = 600 u.t.
are same and are determined by timely (occurring within the given time windows)
delivery/pick-up of intermediate components/finished products to/from the given
docking stations .

In other words, the production flow schedule (shown in Fig. 1b) determines
the schedule of visits to the individual tugger train docking stations (sequences
PR1, PR2).

A fleet composed of two tugger trains T T 1, T T 2 (marked in orange and green,
respectively, see Fig. 2) is used to service seven workstations M1–M7, the super-
market (M8) and the warehouse (M9), while providing dedicated material pick-
up/delivery operations. Tugger train T T 1, which follows the transportation route
designated by docking stations M1 – M5, delivers intermediate components from the
supermarket (M8) to the relevant workstations.

In turn, tugger train T T 2, which follows the transportation route designated by
docking stations M6, M7, picks-up finished products from the relevant set of work-
stations to deliver them to the warehouse (M9). All requests must be met within the
given time windows PR1, PR2. In other words, the delivery operations must be
completed within a period of 180 u.t. before job operation start time, and the pick-
up operations should be started within the period of 180 u.t. after the job operation
completion time.
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Fig. 1 Milk-run system under consideration (a) and a Gantt chart of production flow (b)
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Fig. 2 Tugger trains (a) which guarantee a production flows schedule with takt time T P = 600 u.t.
shown in the Gantt chart (b)
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Consequently, the delivery and pick-up timewindows (following from production
flows) can be thought of as interacting, though independently flowing streams of
deliveries servicing both part supply and product pick-up. Assuming that:

• tugger train T T 1 is used to transport components from the supermarket to docking
stations M1–M5 (in cycles with a period further denoted by TS),

• tugger train T T 2 is used to transport products to the warehouse from docking
stations M6, M7 (in cycles with a period further denoted by TS),

• the travel times along transportation sections, which are the same for each tugger
train, are known in advance (see Fig. 1a),

• the times of loading and unloading operations are the same for each docking station
(see Fig. 1a),

• at a given moment, a docking station (transport section) can only be occupied by
one tugger train,

• a resource (e.g. a warehouse, a supermarket, a workstation) is serviced by a single
docking station Mα ,

• each request should be granted within the given delivery/pick-up time windows
PR1, PR2 (see Fig. 1b),

the following question can be considered:Do there exist, for the given fleet of tugger
trains, routes that allow to deliver/pick up items to and from the given docking stations
in time windows PR1, PR2?

Examples of answers to this question are provided by the solutions shown in Fig. 2.
These solutions have been obtained assuming that transport between workstations,
e.g. M1–M2; M2–M5; M5–M7; M3–M4 and M4–M6 is supported by an overhead
transport system. The tugger train routes (π1 and π2) obtained are (Fig. 2a):

• π1 = (M8, M1, M2, M4, M5, M3)—orange line in Fig. 2a.
• π2 = (M9, M6, M7)—green line in Fig. 2a.

A Gantt chart showing how delivery and pick-up operations are executed in a
system implementing this type of solution is presented in Fig. 2b. It is easy to see that
all transport operations are executedwithin appropriate timewindows PR1 and PR2.
In other words, the obtained tugger train schedule (determined by routes π1 and π2)
allow to maintain the required production takt time T P = TP = TS = 600 u.t.

The example refers to a situation in which all workstations operate at the same
takt time (600 u.t.). In practice, an assumption like this is hard to fulfill. In special
cases, each workstation may have its own operation takt time.

Let us consider a situation in which some workstations (M1–M5, M8) work at
takt time TP = 600 u.t. and the rest (M6, M7, M8) operate at takt time TS =
800 u.t. Let us also assume that the routes of tugger trains T T 1, T T 2 are the same
as previously: π1 = (M8, M1, M2, M4, M5, M3) and π2 = (M9, M6, M7) , respec-
tively, (see Fig. 2a). In this context, the delivery requests following sequence π1

are serviced at takt time TP = 600 u.t. by tugger train T T 1, while pick-up requests
following sequence π2 are serviced at takt time TS = 800 u.t by tugger train T T 2.
For this kind of assumptions, the following question can be considered:
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Does there exist a tugger train schedule (for routes π1 and π2) which guarantees
timely (i.e. performed within the given time windows) delivery/pick-up of intermedi-
ate components/finished products to/from the given docking stations?

Examples of solutions are shown in Fig. 3. It is easy to note that the assumed takt
times determine the period of the cyclic milk-run system schedule, which is equal
to the least common multiple T = LCM (T P1, T P2) = LCM (600, 800) = 2400
u.t. This period covers four time sub-windows of 600 u.t. and three time sub-windows
of 800 u.t. (see Fig. 3). It should be noted that in some time windows (the second
time sub-window in the grey-shaded interval) two tugger trains travelling through a
shared critical region composed of a transport section (G9–G8) are in a deadlock.

This observation is in line with the assumption that a critical region consists of
individual carriageway sections which must not be utilized by more than one tugger
train at a time. Note that, in the considered case, tugger train T T 1 moves from M4 to
M5 along (G9–G8) (highlighted by a bold green line) while tugger T T 2 moves from
M9 to M6 along a sequence of sections: (G14–G13), (G13–G10), (G10–G8), (G8–G9),
(G9–G7), (G7–G6) (highlighted by a yellow line).

Occurrence of a deadlock in sector (G9–G8) shown in Fig. 3 eliminates this solu-
tion from further consideration. Among the remaining routing variants, there are
no solutions that would enable deadlock-free movement of the considered tugger

Fig. 3 Gantt chart of production schedule with distinguished critical region
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trains in the system from Fig. 2 along routes π1 = (M8, M1, M2, M4, M5, M3) and
π2 = (M9, M6, M7).
What remains, then, is to look for other routes π1 and π2 (or possibly another fleet

of trains) which would guarantee timely delivery/pick-up of items to/from worksta-
tions without leading to deadlocks of trains servicing production flows simultane-
ously, but at different takt times.

One of the possible solutions to the problem of synthesis formulated in this way
is a set of routes �= {π1, π2}:
• π1 = (M8, M1, M5, M4, M2, M3)—orange line in Fig. 4a,
• π2 = (M9, M6, M7)—green line in Fig. 4a,

which guarantees deadlock-free movement of trains within the entire interval with
period T = 2400 u.t.; see the tugger train schedule from Fig. 4b In this solution,
there is no deadlock, however, there is a danger of collision.

A situation of this type is shown in the grey-shaded time window in Fig. 4b, in
which train T T 1 unloaded at stop M4 is overtaken at node G9 by train T T 2 travel-
ling between stops M9−M6.. When the stops are not located in specially designed
loading/unloading bays, collisions may occur.

Figure5 shows a solution in which there are no collisions or deadlocks. This
solution features a set of routes alongwhich tugger trains travel periodically at period
T = 2400 u.t. In contrast to the previous solutions, in this routing variant train trips
are quasi-periodic. In other words, train travel cycles do not coincide with the time
sub-windows determined by takt times TP = 600 u.t. and TS = 800 u.t.).

Tugger train schedules for these windows are shifted relative to each other by 10
u.t. and 20 u.t., respectively — see Fig. 5b. The possibility that this solution pro-
vides of having different tugger train schedules for the successive time sub-windows
allows one to choose such delivery/pick-up operation start/end times which enable
simultaneous movement of trains without deadlocks and collisions.

The procedure described above, in which analysis of system behavior (evaluation
of collision-free behavior) and synthesis of its parameters (synthesis of routes, fleet
size, etc.) are performed alternately corresponds well with the proposed decision
support methodology described in more detail in Sect. 4.

3.2 Problem Formulation

The questions considered in the previous section are specific cases of the problems
of synthesis and analysis of a multi-item flow production system. These problems
involve either evaluation (analysis) of the attainability of an expected behavior, e.g.
the assessment whether, for a given layout (routes), there exists a schedule that
can guarantee collision-free movement of trains, or synthesis of a layout that will
guarantee the expected behavior, e.g. the assessment whether there exist train routes
along which trains can travel in a collision-free manner?
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Fig. 4 Routes (a) and Gantt chart of a routing/schedule (b) guaranteeing deadlock-free movement
of tugger trains
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Fig. 5 Gantt chart of a schedule guaranteeing deadlock and collision-free movement of tugger
trains

In the case of the class of milk-run systems under consideration, these problems
can be formulated as constraint satisfaction problems . To this end, the following
model with two different production takt times (TP for pick-up operations and TS
delivery operations) was adopted:

Symbols:

Ji job i (production process);
Oi,q operation q of Ji ;
T T v vth transport process (performed by the vth tugger train);
T the period of a production cycle;
Mα αth docking station (associated with the warehouse, the supermarket, the

workstation);
oα αth transport operation (operation of delivery/pick-up of a part/product

to/from a docking station);
bα index of transport operation which precedes oα;
fα index of transport operation which follows oα .

Parameters:

l number of transport means;
ω number of docking stations;
trα operation time of oα;
da,β travel time between docking station Mα and docking station Mβ ;
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TP assumed value of production takt time for pick-up requests;
TS assumed value of production takt time for delivery requests;
Kεβ−λγ intersection indicator. Kεβ−λγ = 1 if (o

ε
, oβ) and (oλ, oγ ) are pairs of

consecutive operations, and the path connecting docking stationsMε ,Mβ,

are executed crosses the path that connects the docking stations Mλ, Mγ ;
Kεβ−λγ = 0 in the remaining cases.

Sets and sequences:

T T set of transport means T T v (tugger trains);
M set of docking stations Mα;
J set of jobs Ji , (production processes);
O set of transport operations oα;
P set of pick-up operations, P ⊆ O;
S set of delivery operations, S ⊆ O;
PRi sequence of delivery/pick-up time windows T Di,q , TCi,q of job Ji ;
PR set of sequences PRi ;
B sequence of predecessor indices of delivery operations,

B = (b1, . . . , bα, . . . , bω), bα ∈ {0, . . . , ω};
F sequence of successor indices of delivery operations,

F = ( f1, . . . , fα, . . . , fω), fα ∈ {1, . . . , ω};
πv πv = (Mv1 , . . . , Mvi , Mvi+1 , . . . , Mvμ

) where: vi+1 = fvi for i = 1, . . . , μ −
1 and v1 = fvμ

—route of vth transport process following sequence (deter-
mined by F) of docking stations serviced by tugger train T T v;

� set of routes πv.

Variables:

xtα start time of operation oα at the αth docking station
ytα end time of operation oα;
xsα moment the resource occupied by a tugger train is released after completion

of operation oα;
bα index of the transport operation preceding operation oα (operations obα

and
oα are executed by the same tugger train); bα = 0 means that oα is the first
operation in the system cycle;

fα index of the transport operation following oα , (operations oα and o fα are
executed by the same tugger train).

Constraints:

1. transport process operations:

ytα=xtα+trα, α= 1, 2, . . . ,ω, (1)

bα= 0,∀α∈BS, BS ⊆ BI = {1, 2, . . . , ω} , |BS| = l (2)

bα 
=bβ∀α, β∈BI\BS, α 
=β, (3)
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fα 
= fβ∀α, β∈BI, α 
=β, (4)

(bα=β) ⇒ (
fβ=α

)
,∀bα 
=0, (5)

[
(bα=β) ∧(bβ 
=0)

]⇒ (
ytβ+dβ,α≤xtα

)
, α, β = 1, 2, . . . ,ω, (6)

xsα≥ytα, α = 1, 2, . . . ,ω, (7)

[
( fα=β) ∧(bβ 
=0)

]⇒ (
xsα=xtβ−dα,β

)
, α, β = 1, 2, . . . ,ω, (8)

[
( fα=β) ∧(bβ= 0)

]⇒ (
ytα+dα,β≤xtβ+TP

)
,∀oα, oβ ∈ P, (9)

[
( fα=β) ∧(bβ= 0)

] ⇒ (
ytα+dα,β≤xtβ+TS

)
,∀oα, oβ ∈ S , (10)

[
( fα=β) ∧(bβ= 0)

]⇒ (
xsα=xtβ−dα,β+TP

)
,∀oα, oβ ∈ P, (11)

[
( fα=β) ∧(bβ= 0)

]⇒ (
xsα=xtβ−dα,β+TS

)
,∀oα, oβ ∈ S , (12)

2. transport operations and production requests

⌊
TCi,q

⌋≤xtα ≤ ⌈
TCi,q

⌉
,∀oα∈P, oα is associated with Oi,q (13)

⌊
T Di,q

⌋ ≤ ytα ≤ ⌈
T Di,q

⌉
,∀oα∈S, oα is associated with Oi,q (14)

3. collision- and deadlock–free traffic
(
Kεβ−λγ = 1

)
⇒

((
xtβ + k · T P(β) ≤ mod {xsλ, T P(λ)} + l · T P(λ)

)∨
∨(

xtγ + l · T P(γ ) ≤ mod {xsε, T P(ε)} + k · T P(ε)
))

(15)

ε, λ, β, γ = 1, 2, . . . , ω,

k, l = 1, 2, . . . , q,

q = max

{
LCM (TS,TP)

TP
,
LCM (TS,TP)

TS

}
,

where:

T P(α) =
{
TP if oα ∈ P,

TS if oα ∈ S.

Analysis problem

The problem of analysis based on the proposed model can be formulated as (16)

CSA = (
(X,D),CA

)
, (16)



122 G. Bocewicz et al.

where:

X decision variables, a cyclic schedule of process operations executed in milk-
run cycles: X = (X ′, Xs ′), where: X ′ = (xtα|α = 1 . . . .ω), Xs ′ = (xsα|α =
1 . . . .ω),

D a finite set of decision variable domains X :

xα ∈ {0, . . . , T }, xsα ∈ {0, . . . , 2T },

C a set of constraints specifying the relationships between the operations of the
processes implemented in milk-run cycles and the processes executed along the
technological routes of individual products:

• constraints on the order (1)–(8) and cyclic execution (9)–(12) of transport
operations;

• constraints which guarantee timely completion of requests (13)–(14);
• constraints which ensure collision- and deadlock-free execution of milk-run
flows (15).

Schedule X of problem (16) determines a tugger train timetable which guaran-
tees timely delivery (in conformity with the starting times of operations of processes
executed along the technological routes of individual products) of materials to work-
stations. This means that, assuming that the set of tugger trains T T travelling in
milk-run cycles, their routes –D, process execution times trα and process flow times
da,β are known, and also known are delivery/pick-up time windows PR, to solve
problem CSA (16) one only needs to determine such values of decision variables
X , for which all constraints given in setCA (1)–(15) are satisfied. Consequently, any
admissible solution being a cyclic schedule provides a tugger trains fleet timetable,
encompassing blockage-free execution of milk-run material delivery processes.

Synthesis Problem

The synthesis problem is given by (17):

CSS = (
({X, B, F},D),CS

)
, (17)

where:

{X, B, F} a set of decision variables including:

X decision variables, a cyclic schedule of process operations executed in
milk-run cycles: X = (

X ′, Xs ′) , where: X ′ = (xtα|α = 1 . . . .ω), Xs ′ =
(xsα|α =
1 . . . .ω).

B, F sequences specifying the order in which operations oα are executed
by the successive processes run in milk-run loops (i.e. processes of set P).
Each pair (B, F) is matched with exactly one pair from the set of routes �.
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D a finite set of decision variable domains {X, B, F}:
xα ∈ {0, . . . , T }, xsα ∈ {0, . . . , 2T }, bα ∈ {0, . . . , ω}, fα ∈ {1, . . . , ω},

CS a set of constraints specifying the relationships between the operations of the
processes implemented in milk-run cycles and the processes executed along
the technological routes of individual products:

• constraints on the order (1)–(8) and cyclic execution (9)–(12) of transport
operations;

• constraints which guarantee timely completion of requests (13)–(14);
• constraints which ensure collision- and deadlock-free execution of milk-run
flows (15).

Decision variables B, F correspond to the structure parameters (routes of tugger
trains –D) which are to guarantee the existence of schedule X that will enable timely
delivery of materials to workstations (in accordance with the delivery/pick-up time
windows PR). In other words, assuming that the set of tugger trains T T travelling in
milk-run cycles, execution times tλ, process flow times dλ,β , and also time windows
PR are all known, to solve problem CSS (17), it is enough to find such values
(determined by domains D) of decision variables B, F (routes of local processes –D)
and X , for which all constraints given in set CS (1)–(15) are satisfied.

3.3 Recursive Constraint Satisfaction Problem

Computer implementation [2] of the problems of synthesis (16) and analysis (17) of
milk-run systems in constraint programming environments such asOzMozart, ILOG,
and ECLiPSE , etc [3, 24] allows to determine routes� and delivery schedules X , on
the condition that train trip cycles coincide with the periods of the time sub-window,
i.e., T P1 = 600 u.t. and T P2 = 800 u.t.—see Figs. 3b and 4b.

However, as the example in Fig. 5 clearly shows, it is also possible to search
for deadlock-free and collision-free solutions that do not meet this condition. Such
solutions yield quasi-periodic train trip cycles which do not overlap with the time
sub-window periods. The observed quasi-cyclicity of train schedules, i.e. cycli-
cally repeating schedules with period T , entails the need to decompose the above-
mentioned CSPs into time sub-windows and to determine the decision variables
sought recursively for the successive CSPs defined by the time sub-windows occur-
ring in period T .

Figure7 shows a schema of interactive planning of amilk-run delivery system, the
first two stages of which, corresponding, respectively, to an analysis and a synthesis
problem, are illustrated by the examples discussed in point Sect. 3.1 (see Figs. 4 and
5). The third stage refers to another analysis problem in which trains T T 1 and T T 2,
moving along previously designated routes π1 = (M8, M1, M5, M4, M2, M3) and
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π2 = (M9, M6, M7), respectively, travel at a double speed. The solution sought at
this stage should guarantee cyclic movement of tugger trains (overlapping with time
sub-window periods) in the considered period T .

Let us focus on the synthesis problem, first. Taking into account the above men-
tioned assumptions, an appropriate Constraint Satisfaction Problem (CSP) can be
formulated as the following recursive scheme:

CSS(l) = (
CS

′
S(l) ∪ X (l), D(l), CS(l)

)
, (18)

where:

l is number of assumed time sub-windows;
CSS(1) is a CSP formulated for the first time sub-window,

CSS(1) = ({B, F, X (1)},D(1),CS(1)
);

{B, F, X (1)} is the solution to this problem while following decision variables
satisfy the constraints CS(1);

X (l) X (l) = (X ′(l), Xs ′(l)), where: X ′(l) = (xtα(l)|α = 1 . . . ω) and
Xs ′(l) = (xsα(l)|α = 1 . . . ω) are the schedules with moments xtα
and xsα for the lth time sub-window;

Dl is a discrete finite set of domains of variables B, F, X (l);
CS(l) is a set of constraints describing constraintsCS(1)–(15) in the lth time

sub-window (in particular, constraints describing different windows
PR(l) in different time sub-windows, see Fig. 6).

To solve the CSS(l) problem (18), the sets of values of decision variables V(l)
determining tugger train routes B, F and schedules X (l) from the lth time sub-
window (i.e. delivery operation schedules), for which all the constraints CS(l) are
satisfied, have to be deduced from the preceding problem CSS (l − 1) while taking
into account the different delivery/pick-up time windows PR(l) occurring in the lth
time sub-window.

In turn, to solve the CSS(l − 1) problem, set V(l − 1) from the l − 1th time sub-
window, for which all the constraints CSS(l − 1) are satisfied, have to be deduced
from the preceding problemCSS(l − 2), while taking into account the different time
windows PR(l − 2) occurring in the l − 2th time sub-window. And so on, up to

CSS(2) = (
CS

′
S(2) ∪ X (2), D(2), CS(2)

)
,

where
CSS(1) = ({B, F, X (1)}, D(1), CS(1)

)
.

In this context, theCSS(l) problem integrates the issues of tugger train routing (B, F)
and tugger train schedules X (1), . . . , X (l). This strategy is illustrated in Fig. 6 using
the example of the schedule from Fig. 5.
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Fig. 6 A recursive schema used for calculation of the schedule from Fig. 5
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The recursive formulation of problem (18) is based on the example of a synthesis
problem CSS (16); an analogous recursive model can also be built for an analysis
problem CSA (17).

4 Method

A computer implementation of the recursive CSP model (18) can be used for the
prototyping of delivery/pick-up cycles in a milk-run system. Routes � and sched-
ules X (1), . . . , X (l), are planned, each time, by solving a dedicated synthesis or
analysis problem, as specified by access to input data characterizing the structural
and functional parameters of the production system being modeled (see Fig. 7).

The strategy of searching for a solution resembles a game situation. The goal of
this game is to look for such elements of the system’s structure, e.g. routes, resource
limits, costs, etc., which either boost the given set of criteria, or suffice to achieve
the given values of the set of criteria being considered, e.g. timeliness, deadlock- and
collision-free traffic, resource utilization rate, etc. Thismeans that, in the former case,
one seeks for such an organization of the structure of the milk-run system, which
will boost the given system-performance criteria; in the latter case, one looks for
such a structure (e.g. an admissible structure) which allows to achieve the expected
values of the parameters characterizing the behavior of the system. Under the action
scenarios (variants) for the first stage, one arbitrarily determines the values of selected
parameters of the system’s structure and evaluates the effect of the changes introduced
on the values of selected system performance evaluation criteria. Under scenarios
for the second stage, one determines the values of the selected evaluation criteria
and checks whether, in the given ranges of variability of the parameters describing
the structure of the distribution system, there exist values of these parameters which
guarantee the fulfilment of the adopted system performance criteria.

The purpose of the decision support process proposed above is to look for answers
to one of the questions presented in Sect. 3.1. This search boils down, each time, to
solving a suitable constraint satisfaction problem . The problems selected in this way
are solved in the Oz Mozart, ILOG, and ECLiPSE environments.

If for a given instance of a problem the resulting set of admissible solutions is
non-empty, then each solution that belongs to this set includes:

• period T , a sequence of pick-up/delivery deadlines determined by delivery/pick-up
time windows PR,

• sequences describing the order of delivery operations B, F, determining routes �

• sequence of starting times of delivery operations X,

• sequence of release times of resources occupied by delivery operations Xs.

An example illustrating the application of the presented approach to the cases from
Figs. 4 and 5 is described in Fig. 7.
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Fig. 7 A flowchart of interactive planning of a milk-run delivery system

5 Computational Experiments

Figure7 shows a flowchart of interactive planning of a milk-run delivery system,
the first two stages of which represent, respectively, an analysis and a synthesis
problem, are illustrated using the examples discussed in Sect. 3.1. (see Figs. 4 and
5). The third stage refers to another analysis problem in which trains T T 1 and T T 2,
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Table 1 Travel times da,β between successive docking stations Mα and Mβ

da,β M1 M2 M3 M4 M5 M6 M7 M8 M9

M1 0 20 45 30 20 40 75 55 25

M2 20 0 70 25 20 25 55 35 30

M3 40 25 0 30 40 30 60 10 50

M4 30 25 30 0 10 10 45 40 30

M5 20 20 40 10 0 20 55 50 20

M6 40 25 30 10 20 0 35 40 40

M7 30 35 60 35 25 35 0 70 5

M8 30 20 10 40 30 40 70 0 40

M9 25 30 55 30 20 40 75 65 0

moving along previously designated routes π1 = (M8, M1, M5, M4, M2, M3) and
π2 = (M9, M6, M7), respectively, travel at a double speed. The solution sought at
this stage should guarantee cyclicmovement of tugger trains (with cycles overlapping
with time sub-window periods) in the considered period T.

In other words, the goal is to find a cyclic schedule for the tugger trains moving
along routes π1 and π2 which would guarantee timely (i.e. within the given time
windows) delivery/pick-up of intermediate components/finished products to/from
the given docking stations. The solutions sought assume that:

• travel time ti, j through transportation sector (Gi ,G j ) is twice as short as that
shown in Fig. 1.

• travel time da,β between successive docking stations Mα and Mβ is determined by
the shortest path linking these stations—see Table1.

• the time of each pick-up and delivery operation is the same at trα = 20 u.t.
• sequences of time windows PR are shown in Fig. 1.

The CSl problem (18) was implemented and solved for l = 4 time sub-windows
in the Oz Mozart constraint programming environment (Windows 10, Intel Core
Duo2 3.00 GHz, 4 GB RAM). The first admissible solution, obtained in less than 10
seconds (shown in Fig. 8), provide the final itinerarywith deadlock-free and collision-
free routings, in which tugger trains move according to an assigned cyclic schedule
with a period T = LCM (600, 800) = 2400 u.t.

In contrast to the solution shown in Fig. 5, the solution in Fig. 8 ensures cyclic
execution of the transport processes run in a periodically repeating cyclic schedule
with period T—all delivery and pick-up operations are executed cyclically at 600 u.t.
and 800 u.t., respectively. However, whether or not this solution can be implemented
is conditioned by the possibility of using a fleet of trains that can travel across a shop
floor with the given layout twice as fast as in the schedule from Fig. 5.

In addition to the experiments reported above, we compared the effectiveness
of the procedures used in the synthesis and analysis problems. The results of the
comparison are shown in Table2. The results of the tests confirm the usefulness of
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Fig. 8 Gantt chart of a deadlock- and collision-free tugger train schedule

Table 2 Results of computational experiments for the analysis and synthesis problems

Number of Problem of analysis Problem of synthesis

Docking
stations

Tugger trains Does there
exist a
solution?a

Calculation
time [s]

Does there
exist a
solution?b

Calculation
time [s]

5 1 y <1 y <1

5 2 y <1 y <1

5 3 n <1 y 3

5 4 n <1 y 5

9 1 y <1 y 5

9a 2 y < 1 y 10

9 3 n <1 y 20

9 4 n <1 y 54

12 1 y <1 y 35

12 2 n <1 y 56

12 3 n <1 y 124

12 4 n <1 y 202

15 1 y <1 y 184

15 2 n <1 y 268

15 3 y <1 ? >900

15 4 n <1 ? >900
aThe solution from Fig. 8
bn—there is no solution; y—there exists an admissible solution
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the presented solution for fast online prototyping of delivery schedules and transport
routes for a fleet of tugger trains. In particular, depending on the adopted assessment
criteria, the solver we developed enables interactive search for solutions that min-
imize the fleet of tugger trains used and allows to assess the possibility of timely
execution of planned deliveries for arbitrarily selected tugger train routes. Synthesis
problems can be solved online when the number of stops in the system does not
exceed fifteen. For systems larger than this, the use of the proposed method leads to
combinatorial explosion, which is a natural consequence of the NP-hard nature of
the problems under consideration.

6 Remarks and Conclusions

The novelty of this study is that it presents an integrated modeling approach to milk-
run system design and operation. The declarative modeling method used allows one
to simultaneously model different, independently processed multi-product produc-
tion flows as well as the different, independently executed pick-up and delivery
processes which service those flows. The model proposed allows a bottom-up or a
top-down organization of production flow by integrating the level of workstation-to-
workstation transport and the level of flows of batches of different (simultaneously
manufactured) products. In the bottom-up approach, the calculated production period
determines the routes and cyclic schedules of tugger trains. In the top-down approach,
the routes and periods of cyclically moving tugger trains determine the production
period. In that context, the model provides a formal framework for formulating task-
oriented problems, i.e. analysis and synthesis problems that lie behind a wide range
of decisions related to the configuration and/or routing and scheduling of milk-run
systems. These decisions concern the selection of a system layout, the size of the
tugger train flee, cyclic schedules for timely pick-up/delivery of materials and so on.

Another benefit of the proposed declarativemodeling perspective is that itmakes it
possible to view the problem under consideration as a constraint satisfaction problem
and solve it with the use of constraint programming platforms provided by commer-
cially available software tools, such as CPLEX/ECLiPSe/Gurobi, etc. This means
that the investigated problem of congestion-free route planning in in-plant milk-run
traffic material supply systems can be implemented and resolved with the help of
dedicated, i.e. task-oriented, decision support tools.

The results of the tests demonstrate that the proposed referencemodel of the recur-
sive constraint satisfaction problem is a useful tool which allows one to formulate the
problems of analysis/synthesis of transport routes available in a given distribution
system. Implemented computationally, it enables fast online prototyping of supply
schedules and transport routes of a fleet of logistics trains. In particular, it allows to
interactively search for possibilities of timely execution of planned deliveries. The
constraints adopted in the model assume that the concurrent transport processes, exe-
cuted in a cyclic steady state, have a deterministic nature: resource conflicts leading
to deadlocking of processes are resolved using a deadlock prevention method, thus
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implementing conditions which guarantee avoidance of congestion. In other words,
conditions guaranteeing a cyclic steady state flow of milk-run material delivery
processes also ensure their blockage-free execution.

Apart from the research perspective presented in this paper, other directions of
study worth mentioning are those aimed at investigating the conditions that would
allow one to reschedule milk-runs according to customers’ changeable demands.
Also interesting is the search for solutions for fuzzy, uncertain decision variables
determining supply time windows and robustness of planned routings and schedules,
especially in the context of conditions guaranteeing smooth transition between two
successive cyclic steady states.
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6. Carić, T.,Galić, A., Fosin, J., Gold,H., Reinholz,A.:AModelling andOptimizationFramework
for Real-World Vehicle Routing Problems Vehicle Routing Problem. In: Caric, T., Gold, H.
(eds.) Vehicle Routing Problem, pp. 15–34. I-Tech, Vienna, Austria (2008)

7. Goetschalck, M., Jacobs-Blecha, C.: The vehicle routing problem with backhauls. Eur. J. Oper.
Res. 42(1), 39–51 (1989)

8. Gola, A., Kłosowski, G.: Application of fuzzy logic and genetic algorithms in automated works
transport organization. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J.
(eds.) Distributed Computing and Artificial Intelligence, 14th International Conference DCAI
2017, pp. 29–36. Springer, Cham (2018)

9. Güner, A.R.,Murat, A., Chinnam, R.B.: Dynamic routing formilk-run tours with timewindows
in stochastic time-dependent networks. Transp. Res. Part E: Logist. Transp. Rev. 97, 251–267
(2017)

10. Gyulaia D., Pfeiffer A., Sobottka T., Váncza J.: Milkrun Vehicle Routing Approach for Shop-
floor Logistics. In: Forty Sixth CIRP Conference on Manufacturing Systems 2013, Procedia
CIRP, vol. 7, pp. 127–132 (2013)

11. Kitamura T., Okamoto K.: Automated route planning for milk-run transport logistics with
NuSMV model checker. IEICE Trans. Inf. Syst. E96-D(12), 2555–2564 (2013)

12. Levner E., Kats V., Alcaide D., Pablo L. Cheng T.C.E: Complexity of cyclic scheduling prob-
lems: a state-of-the-art survey. Comput. Ind. Eng. 59(2), 352–361 (2010)



132 G. Bocewicz et al.

13. Lau, H., Sim, M., Teo, K.: Vehicle routing problem with time windows and a limited number
of vehicles. Eur. J. Oper. Res. 148(3), 559–569 (2003)

14. Lenstra J.K., Rinnooy Kan A.H.G: Complexity of vehicle and scheduling problems. Networks
11(2), 221–227 (1981)

15. Nguyen, P.K., Crainic, T.G., Toulouse, M.: Multi-trip pickup and delivery problem with time
windows and synchronization. Ann. Oper. Res. 253(2), 899–934 (2017)

16. Ong, J.O.: Suprayogi: vehicle routing problem with backhaul, multiple trips and time window.
Jurnal Teknik Industri 13(1), 1–10 (2011)

17. Patel, D., Patel, M.B., Vadher, J.A.: Implementation of milk run material supply system in
vehicle routing problemwith simultaneous pickup and delivery. Int. J.Appl. Innov. Eng.Manag.
3(11), 122–124 (2014)

18. Perronnet F., Abbas-Turki A., El Moudni A.: Vehicle routing through deadlock-free policy for
cooperative traffic control in a network of intersections: reservation and congestion. In: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, 8–11
Octomber 2014, pp. 2233–2238. IEEE (2014)

19. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing
problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

20. Polak, M., Majdzik, P., Banaszak, Z., Wójcik, R.: The performance evaluation tool for auto-
mated prototyping of concurrent cyclic processes. Fundam. Inf. 60(1), 269–289 (2004)

21. Sun S., Gu C., Wan Q., Huang H., Jia X.: CROTPN based collision-free and deadlock-free
path planning of AGVs in logistic center. In: Procedings of the 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 Nov 2018, pp.
1685–1691. IEEE (2018)

22. Schmidt T., Meinhardt I., Schulze F.: New design guidelines for in-plant milk-run systems
https://pdfs.semanticscholar.org/3fed/4f8d0c253db80c8ae595cd3af494ab120448.pdf (2016).
Accessed 29 Mar 2019

23. Setiani P., Fiddieny H., Setiawan E.B., Cahyanti D.E.: Optimizing delivery route by applying
milkrun method. In: Conference on Global Research on Sustainable Transport (GROST 2017).
Advances in Engineering Research, vol. 147, pp. 748–757 (2017)

24. Sitek P., Wikarek J.: Capacitated vehicle routing problem with pick-up and alternative delivery
(CVRPPAD):model and implementation using hybrid approach.Ann.Oper. Res. 273, 257–277
(2001)

25. Suprayogi, Priyandari Y.: Vehicle routing problem with multiple trips, time windows, and
simultaneous delivery and pickup services. Asia Pac. Ind. Eng. Manag. Syst. 8, 1543–1552
(2009)

26. Witczak, M., Majdzik, P., Stetter, R., Bocewicz, G.: Interval max-plus fault-tolerant control
under resource conflicts and redundancies: application to the seat assembly. International Jour-
nal of Control (2019). in print

27. Wysk, R.A., Yang, N.-S., Joshi, S.: Resolution of deadlocks in flexible manufacturing systems:
avoidance and recovery approaches. J. Manuf. Syst. 13(2), 128–138 (1994)

https://pdfs.semanticscholar.org/3fed/4f8d0c253db80c8ae595cd3af494ab120448.pdf


Max-Plus Algebra for Cyclic Systems
Modeling



Conflict Avoidance Within Max-Plus
Fault-Tolerant Control: Application
to a Seat Assembly System

Marcin Witczak , Paweł Majdzik , Bogdan Lipiec and Ralf Stetter

Abstract Flexibility and agility are central requirements for future manufacturing
systems (especially assembly systems), because in most industries the product vari-
ety and the fluctuations in demand are still increasing. An increase of the degree of
flexibility allows more efficient activities aiming at following the dynamically evolv-
ing markets. Such systems should be able to react to changes of product, demands,
increased varieties of products requirements concerning reduced delivery times and
increased product quality. Therefore, a strong focus on the flexibility of manufactur-
ing and assembly systems leads to economic advantages for industrial companies in
terms of the system investment cost. In particular, the cost related to the reconfigu-
ration of the system.

1 Introduction

In order to fulfill all above requirements, Flexible Manufacturing Systems (FMSs)
have to contain typical layers, such as devices layer (industrial robots, conveyor
belts, vision systems, sensors etc.), control layer (robot controllers, programmable
automation controllers, inverters), and visualization layer (human interfacemachine).
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Manufacturing and assembly systems which employ Automated Guided Vehicles
(AGVs) are one important means for enabling flexible operation and agile recon-
figuration. However, such systems only allow a smooth and economical operation,
if elaborate control and diagnosis systems are present. Today, the Model Predictive
Control (MPC)was identified as prominent control concept addressing this challenge,
because both the model and the control commands can be continuously updated by
using the moving horizon approach. The application of MPC produces two main
advantageous aspects. The first advantageous aspect is that theMPCdelivers a design
procedure for the controller and that it easily can be tuned. The second advantageous
aspect is that MPC is able to deal with constraints concerning the inputs and outputs
of complex systems. The specific advantages of MPC allow meeting the various
precedent requirements regarding manufacturing and assembly processes in indus-
trial companies systems [1–3]. On a certain control level, it is sensible to describe
such manufacturing and assembly systems as Discrete Event Systems (DESs) [4].
DESs are event-driven dynamical systems whose state transitions of a DES indicate
the physical phenomenon that causes the change in state [5, 6]. One of the primary
approaches to evaluate the performance of FMSs is the simulation. The most impor-
tant advantages of this approach are that it can be used for arbitrary classes of DESs,
however this approach requires tedious simulation runs and cannot provide an under-
standing of the dependence of parameters. The other approach allows calculating and
analyzing the system performance using an algebraic model, e.g. max-plus algebra
model.

This chapter illustrated a novel control scheme that is based on the general idea to
apply the max-plus algebra forMPC (compare [7]). Up to now this idea only allowed
to describe DESs without resource conflicts. The novel control scheme presented in
this chapter also allows to control DESwith such conflicts. It is another advantageous
aspect that the novel scheme includes a representation of uncertain discrete event
systems which are influenced by internal and unobservable events (compare [8]).
Additionally, the scheme includes an active fault-tolerant control framework which
allows to identify faults and to accommodate these faults accordingly [9]. It is impor-
tant to note that the application of this kind of elaborate control and diagnosis scheme
can be enabled and eased it the control and diagnosis system is consciously designed.
Guidelines for this kind of design can be summarized under the notion “Design for
Control”; the next section is focusing on this topic.

The most important features related to the design for control are presented in
Sect. 2. In Sect. 3 an overview of the assembly system is given. The modelling of the
assembly system is described in Sect. 4. Section5 presents modelling of AGVs, and
in Sect. 5.2 describe predictive control of two AGVs. Section6 is devoted to fault
tolerant control.
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2 Design for Control

In recent years, research projects were initiated which aim at the development of
design guidelines which aim at support the development of technical systems that
enable and ease control. These guidelineswere summarized under the notion “Design
for Control (DfC)”. The term “Control” includes a large number of different activities
with the aim to manage, command, direct or regulate the behaviour of technical sys-
tems. One example for aDfC guideline is the recommended use of over-actuation, i.e.
the application of more or stronger actuators than directly necessary [10]. It is rather
obvious that the possibility for control actions is enhanced by means of this kind
of over-actuation. The focus of this chapter is a complex system with many AGVs.
Today, complex systems are usually realized with modules which reduce the com-
plexity and allow reuse. One insight concerning the DfC is that structures should be
congruent, i.e. for modular technical system also the control system should be mod-
ular [10]. Another important insight is that modules should contain local intelligence
for local control loops [10]. For the operation of AGVs it is sensible to distribute
control and diagnosis tasks to the individual AGVs and even their components in
order to optimize control and diagnosis speed and to avoid excessive requirements for
the communication between AGVs. Additionally, in order to reduce complexity, it is
sensible to realize planning, control and diagnosis systems with certain hierarchies
(compare [11]). Figure1 shows a hierarchical and distributed control and diagnosis
concept with an FTC-MPC layer.

Meanwhile it is an established fact that control and diagnosis systems will only be
applied in industrial companies, if they are an integral part of the production system

Fig. 1 Hierarchical and distributed control and diagnosis concept



138 M. Witczak et al.

information infrastructure (compare [11]), namely the Enterprise Resource Planning
(ERP) system and Manufacturing Execution System (MES). Enterprise resource
planning (ERP) is an integrated computer-based system used to manage internal
and external resources including tangible assets, financial resources, materials, and
human resources. On the next level below are Manufacturing Execution Systems
(MES). This level takes this planning output of the ERP and executes this plan in
the production. A fault-tolerant control system, as proposed in this chapter, needs to
communicate with the MES.

The rapid development of information technology of the last decades enables
to intensify the collection and processing of all kinds of data and information in
production systems. The culmination of this data collection and processing is the
so-called “Digital Twin” of the production system. A digital twin can be defined
in the following manner [12]: a digital twin is an integrated multi-physics, multi-
scale, probabilistic simulation of a complex technical system which employs the
best available physical models, sensor readings, sensor information updates, etc., to
mirror the life of its corresponding twin—the real technical system. A digital twin
consists of three parts [13]:

• the original technical system in real space,
• a digital product in a virtual space and
• the connection of data and information which links the two spaces.

Digital twins are virtual images of physical objects or systems. Digital Twins of
manufacturing and assembly systems significantly contribute to the required trans-
parency and to near real-time production control [14]. The compulsory precursor of
the digital twin is the Internet of Things (IoT). Digital Twins dispose of four essential
entities:

• sensors which allow a detailed, far reaching monitoring of current status
• connectivity, which realizes a networks between the modules of the systems
• defined data structures enabling analytic functionalities
• a user interface that visualizes the relevant data and information

Examples for realized digital twins are digital twin driven product manufacturing
in shop floors and product services [15]. The Digital Twins concept and its additional
digital functions enable the monitoring and control of real counterparts—real techni-
cal systems. In addition, digital twins communicate with each other and with higher
architectural levels. For the AGV system under consideration, this general concept
is shown in Fig. 2.

In Fig. 2 it is visible that the hierarchical and distributed control structure of the
original technical system is represented in the digital twin. A continuous update is
necessary at all levels. Between the levels information flows are present such as
sensor readings and assignments (here the term “assignments” is a general term for
information or commands such as required schedules or arrival times at certain points
in spaces). These information flows also have to be represented in the digital twin
and require continuous update.
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Fig. 2 Digital twin

This chapter concentrates on a fault-tolerant control framework that is located on
the highest level of Fig. 2. In the next sections the exemplary system is illustrated
and the modelling possibilities for this level are explained.

3 Overview of the Assembly System

The considered manufacturing system consists of two main parts (see Fig. 3). The
first part constitutes an assembly system that produces the car’s seats. The second
one is a transportation system that transmit the seats from the assembly system to
the high storage warehouse. One of the most flexible transport means for in-plant
transportation are AGVs. AGVs dispose of further advantageous characteristics such
as comparatively low investment costs and relatively small expenditures for elements
of the plant infrastructure. The objective of this section is to describe the individual
production tasks in the assembly system (see Fig. 4). The assembly system can be
considered as the system belonging to the class of DES. The entire description of
DES should contain the following parameters:

k event counter;
Ri i th processing unit;
di i th processing time;
ui (k) time instant at which the product is transferred to the system’s i th input;
xi (k) time instant at which i th processing unit starts to carry out a demanded task;
yi (k) time of delivering the i th product;
ti, j time for transportation from the i th to the j th processing unit;
tin,i time for transportation from the i th input storage to the i th processing unit.
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Fig. 3 Overview of the manufacturing system

Fig. 4 Details of the assembly system

Experts in automotive industry expect a profound change of the use of cars in the
next decade. Thenext levels of autonomous drivingwill enable drivers andpassengers
to use the space in their cars in a completely different manner. This influences nearly
all components of the care interior and especially the seats. Future seat will need
to dispose of integrated safety systems such as seat integrated belts and airbags.
Additionally, even more comfort features such as climate control, massage functions
and personal audiowill be integrated in the seats. Thiswill lead to heavier seats which
require more space. This will also lead to changes in-factory transportation systems.
One possibility to address the difficult transportation tasks of future seats are AGVs,
which are flexible enough for a large product variety and fluctuations of demand.
A prospective seating assembly systems is shown in Fig. 4. The process starts with
two parallel assembly stations—one for the assembly of the lower part of the seat
(resource R1 with processing time d1) and one for the assembly of the back rest
(resource R2 with processing time d2). Both parts are then delivered to a common
assembly station which connects the two parts (resource R3 with processing time
d3). Subsequently, seats are transported to the station 4 (R4 with processing time
d4), where the quality of final products are checked. The finished seats are then
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transported to the storage zone. From this station, several AGVs transport the seats
to the loading zone (i.e. the automatic warehouse).

Having the precedent formal description of the system and themathematical back-
ground that is introduced in next section, it is possible to determine the mathematical
model of the assembly system and the redundant AGVs.

4 Modelling of the Assembly System

This section explains the main mathematical concepts describing the max-plus alge-
bra formalism and to present the max-plus algebra linear space equation of the
assembly system (described in the previous section, Fig. 4).

4.1 Max-Plus Algebra Formalism

It is possible to define the basic structure of the so-called max-plus algebra (Rmax ,
⊕, ⊗) as formulated subsequently:

Rmax � R ∪ {−∞},
∀a, b ∈ Rmax , a ⊕ b = max(a, b), (1)

∀a, b ∈ Rmax , a ⊗ b = a + b,

where Rmax is the field of real numbers.
The first operator ⊕ describes the max-plus algebraic addition while the second

operator ⊗ stands for the max-plus algebraic multiplication.
The fundamental characteristics of these max-plus algebra operators may be for-

mulated in the subsequent form:

∀a ∈ Rmax : a ⊕ ε = aand a ⊗ ε = ε,

∀a ∈ Rmax : a ⊗ e = a,
(2)

In these equations ε = −∞ and e = 0 act as neutral elements for both the max-plus
algebraic addition and for the max-plus algebraic multiplication operators.

It is important to note that the max-plus algebra operations are associative, com-
mutative and distributive in the same manner as in conventional algebra. Thus, the
subsequent properties can be formulated:
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associativity of addition ∀a, b, c ∈ Rmax : (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c),

commutativity of addition ∀a, b ∈ Rmax : (a ⊕ b) = b ⊕ a,

associativity of multiplication ∀a, b, c ∈ Rmax : (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)

(3)

Two important aspects of max-plus algebra are that it does not have additive inverses
and it is idempotent. This is why max-plus algebra is considered a semiring and not
a ring. For matrices X,Y ∈ R

m×n
max and Z ∈ R

n×p
max

(X ⊕ Y)i j = xi j ⊕ yi j = max(xi j , yi j ), (4)

(X ⊗ Z)i j =
n⊕

k=1

xik ⊗ zk j = max
k=1,...,n

(xik + zk j ). (5)

The publications [16, 17] contain further details and definitions concerning the for-
malism of max-plus algebra.

4.2 Max-Plus Linear System

One of the challenges of the work with DESs has its origin in the fact that DESs
necessitate a non-linear description, if they are modelled in conventional algebra.
Nevertheless, it was possible in recent years to find a specific class of DES that are
named max-plus linear systems. Linear max-plus models only enable the synchro-
nization of tasks but do not allow an occurrence of concurrency. Consequently, DESs
can be modelled in the subsequent form employing the max-plus algebra formalism:

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k + 1), (6)

y(k) = C ⊗ x(k), (7)

the index k serves as event counter and:

x(k) ∈ R
n
max designates the state, which contains the time instants corresponding

to the internal events occurring at k,
u(k) ∈ R

r
max designates the input vector, which contains the time instants corre-

sponding to input events occurring at k,
y(k) ∈ R

m
max designates the output vector, which contains the time instants corre-

sponding to the output events occurring at k,
A ∈ R

n×n
max designates the state transition matrix, B ∈ R

n×r
max designates the con-

trol matrix and C ∈ R
m×n
max designates the output matrix.

The basic challenge in the development of described assembly system is to design
and implement an appropriate synchronization rules for all tasks, both processing and
transportation tasks. Generally, two essential synchronization modes, i.e. a mutual
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exclusionmode and a rendez-vousmode, can be distinguished. Themutual exclusion
mode requires that at the same time only one task can perform its operation on the
shared resource. The randez-vous mode involves the case where two or more tasks
have to finish its operations so that the next operation can start its performance.

In the system described above, two of the modes of synchronization rules, which
were mentioned earlier in this chapter, are present. The first mode of synchronization
rules describes the phenomenon that any processing unit may start performing its
intended operation on a next product (in the k + 1th iteration) as soon as the earlier
processing operations on the previous product have been successfully carried out (in
the kth iteration). This mode of synchronization concerning the R1 unit (see Fig. 4)
can be expressed by the subsequent equation:

x1(k + 1) = max(x1(k) + d1, u1(k + 1) + tin,1) (8)

It is obvious that this kind of synchronization has to applied for each assembly station
in the system (9).

The second mode of synchronization represents the randes-vous mode and con-
cerns the unit R3 (see Fig. 4) that is used by tasks from two assembly cycles. Taking
into account the structure of described system, the operations on R1 and R2 have to
be finished in order to the assembly operation on unit R3 can be started. This mode
of synchronization is represented by:

x3(k + 1) = max(x1(k + 1) + d1 + t1,3, x2(k + 1) + d2 + t2,3, x3(k) + d3)

In one takes the preceding assumptions as well as the modes of synchronization into
consideration, it is possible to describe the system from Fig. 4 using the following
model:

x1(k + 1) =max(x1(k) + d1, u1(k + 1) + tin,1)

x2(k + 1) =max(x2(k) + d2, u2(k + 1) + tin,2)

x3(k + 1) =max(x1(k + 1) + d1 + t1,3, x2(k + 1) + d2 + t2,3, x3(k) + d3) =
max(x1(k) + 2d1 + t1,3, x2(k) + 2d2 + t2,3, x3(k) + d3,

u1(k + 1) + d1 + tin,1 + t1,3, u2(k + 1) + d2 + tin,2 + t2,3)

x4(k + 1) =max(x3(k + 1) + d3 + t3,4, x4(k + 1) + d4) =
max(x1(k) + 2d1 + d3 + t1,3 + t3,4, x2(k) + 2d2 + d3 + t2,3 + t3,4,

x3(k) + 2d3 + t3,4, x4(k + 1) + d4), u1(k + 1) + d1 + d3 + tin,1+
t1,3 + t3,4, 2(k + 1) + d2 + d3 + tin,2 + t2,3 + t3,4) (9)

ȳ(k) =x4(k) + d4 + tout,1

Onemay also describe the equations listed above using a compact form (6)–(7) while
a detailed description of the system matrices is given in (10).
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A =

⎡

⎢⎢⎣

d1 ε ε ε

ε d2 ε ε

2d1 + t1,3 2d2 + t2,3 d3 ε

2d1 + d3 + t1,3 + t3,4 2d2 + d3 + t2,3 + t3,4 2d3 + t3,4 d4

⎤

⎥⎥⎦,

B =

⎡

⎢⎢⎣

tin,1 ε

ε tin,2

d1 + tin,1 + t1,3 d2 + tin,2 + t2,3
d1 + d3 + tin,1 + t1,3 + t3,4 d2 + d3 + tin,2 + t2,3 + t3,4

⎤

⎥⎥⎦,

C = [
ε ε ε d4 + tout,1

]
.

(10)

In consideration of the fact that an analytical description of the system is present,
the processing and transportation times can be incorporated within an analytical
description (Eq. (11)), which are: d1 = 1, d2 = 2, d3 = 2, d4 = 1, t1,3 = 4, t2,3 = 1,
t3,4 = 2, tin,1 = 2, tin,2 = 1, tout,1 = 2.

A =

⎡

⎢⎢⎣

1 ε ε ε

ε 2 ε ε

6 5 ε ε

10 9 6 1

⎤

⎥⎥⎦, B =

⎡

⎢⎢⎣

2 ε

ε 1
7 ε

11 8

⎤

⎥⎥⎦, C = [
ε ε ε 4

]
(11)

4.3 Handling Constraints

For the sake of describing the full functionality of the system, it is inevitable to
generate a set of constraints which limit system behavior. The constraints of the
system can be described in the subsequent form:

• The first constraint describes the fact that the system has to follow a predefined tra-
jectory. It is possible to define this trajectory by employing scheduling constraints
of the subsequent form:

tref , j (k) ≥ x j (k), j = 1, . . . , n. (12)

In this expression, tre f, j (k) stands for the upper bound of x j (k) at the time instant k.
• The second constraint is directly linked to the second mode of synchronization. It
facilitates the avoiding of tasks which are waiting (see Sect. 4.2):

∀i ∈ {1, 2, . . . , n} (
(xi (k + 1) − (xi (k) + di )) ≤ 0

)
, (13)

In this expression, n denotes the size of system; this size is equal to the number of
present processing units.

• The third constraint is directly linked to the performance of the AGV,

ūi ≥ ui (k + 1) − ui (k), i = 1, . . . , r. (14)
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It is important to note that the upper bound ūi stands for the maximum velocity
the AGVmay achieve. A crossing of this limit may lead to a dramatically increase
of the energy consumption of the drives of the AGV.

• The fourth and last constraint is concerning the change rate:

u j (k + 1) − u j (k) ≥ z j , j = 1, . . . , r. (15)

In this expression, z j > 0 designates the upper bound of the change rate.

One additional obvious constraint is the fact that the time to reach any individual
assembly station for k + 1 needs to be larger than or at least equal to the one for k.

4.4 Constrained Model Predictive Control

Current industrial production systems require constraints and certain control qual-
ity measures. One central advantage of MPC is its natural ability of dealing with
constraints, therefore it is an ideal candidate to address the challenges of current
industrial production systems. The framework, which is proposed in this chapter,
could be developed on the basis of the general MPC strategy for max-plus linear
systems described in [7]. In the proposed scheme, MPC and max-plus algebra are
applied in order to reduce the number of conflict tasks. The core of the problem is to
find the input sequence u(k), . . . , u(k + Np − 1) minimizing the cost function J (u)

J (u) = −
Np−1∑

j=0

r∑

i=1

qiui (k + j), (16)

where qi > 0, i = 1, . . . ,m denotes a positive weighting constant, while Np desig-
nates the prediction horizon. It is a core advantage of (16) compared to the quadratic
criteria employed in the case of continuous systems that no time-consuming quadratic
programming is required. On the contrary, an efficient linear programming frame-
work may be applied, because of the linear constraints (12)–(15).

The first inevitable step that leads to a possible computational framework is to
make sure that no direct influence of x(k + 1), . . . , x(k + Np − 1) to the scheduling
constraints (12) exists. In order to achieve this, let:

x̃(k + Np − 1) = M ⊗ x(k) ⊕ H ⊗ ũ(k), (17)
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where

ũ(k) =

⎡

⎢⎢⎢⎣

u(k + 1)
u(k + 2)

...

u(k + Np − 1)

⎤

⎥⎥⎥⎦, x̃(k + Np − 1) =
⎡

⎢⎣
x(k + 1)

...

x(k + Np − 1)

⎤

⎥⎦. (18)

On the basis of the description of the DES formulated in (6)–(7), it may be shown
that:

H =

⎡

⎢⎢⎢⎣

B ε · · · ε

A ⊗ B B · · · ε
...

...
. . .

...

A⊗Np−2 ⊗ B A⊗Np−3 ⊗ B · · · B

⎤

⎥⎥⎥⎦, M =

⎡

⎢⎢⎢⎣

A
A⊗2

...

A⊗Np−1

⎤

⎥⎥⎥⎦.

It is possible to formulate the intended optimization strategy in a straight-forward
manner. An initial condition x(k) needs to be determined. Starting from this condi-
tion, the optimal input sequence ũ(k)∗ may be found by means of solving:

ũ(k)∗ = argmin
ũ(k)

J (u), (19)

considering the constraints (12)–(15).
All associated constraints need to be provided, before the scheme can be applied

to the assembly system (Fig. 2). The first logical step are the scheduling constraints:

tref (0) = [1, 2, 7, 11]T,
tref (1) = [3, 3, 8, 12]T,

...

(20)

The prediction horizon was set to Np = 4 along with q1 = q2 = 1 shaping the cost
function (16) The goal of this example is to show the performance of the scheme
in case of a chosen schedule (tre f ) under a resource conflict. As can be observed in
Fig. 6, a conflict on R3 arises for k = 4. The proposed scheme along with suitable
constraints allows an appropriate control of the process tasks by optimized accelera-
tion/deceleration of the pre-product providing time to R1 from u1 and/or to R2 from
u2. While analyzing Fig. 5, it can be observed that an appropriate control of u1 at
k = 3 allows avoiding the conflict described above.
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Fig. 5 Evolution of control variable with proposed strategy (dashed line) and without it (solid line)

1 2 3 4 5 6 7
k - counter

4

6

8

10

12

14

16

18

tim
e

x
3,c

x
4,c

x
3,nominal

x
4,nominal

Fig. 6 The states x3(k) and x4(k) with MPC (dashed line) and without it (solid line)

5 Modelling of the AGVs

As it was described in Sect. 3, the overall system consists of two parts, where the
second one constitutes the transportation system that is based on AGVs. AGVs
are responsible for delivering given final products (seats) from the assembly outlet
towards appropriate point of the warehouse. The warehouse has high-rise shelves on
which pallets with products are stored. Between the shelfs are aisles for automated
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forklifts. The advantages of such high storage warehouse are: good access to articles,
economical use of space and pressure-avoiding storing of the goods ([18]).

The unique design of the AGVs allows unlimited manoeuvring possibilities
(see [19] for a comprehensive explanation). AGVs system ensures the high flexi-
bility and relatively large fault-tolerance. They can theoretically drive in the zone
in front of the warehouse and can supply and receive products on palettes to and
from dedicated transfer stations. The feeding system consists of three control levels
with a hierarchical control structure. The lowest level controls the continuous base-
line including physical and virtual sensors. An middle control level is applied for
detailed path planning. The highest control level called “supervisory control level”
is responsible for dispatching AGVs and for controlling transportation times. This
supervisory control level is in the core subject of the research described in this section.

Because of safety requirements, AGVs have tomove along a designed laneswhich
are intended to forward and backward movement.

M(k) = [c(k), b(k), d(k), p(k)], (21)

where:

c(k) denotes the item packing and transportation time from the outlet of the pro-
duction system to p(k) transfer station;

b(k) denotes the item unpacking and transportation time from p(k) transfer station
to the production outlet;

d(k) is the minimum acceptable time difference between delivering k − 1th item
to p(k − 1) transfer station and kth item to p(k) transfer station, respectively;

p(k) is a unique number identifying the transfer station, i.e., p(k) ∈ {1, . . . , ns}
where ns is the number of transfer stations.

Moreover, the sequence of the itemswhich have to be transported from the production
outlet to the transfer stations are supplied by MES:

M(0),M(1), . . . ,M(Np − 1), (22)

where Np stands for production horizon. It should be noted that each kth item have
to be delivered to the p(k) transfer station according to an assumed time schedule:

xre f (0), xre f (1), . . . , xre f (Np − 1), (23)

In order to achieve this aim, the schedule of nv AGVs has to be dispatched with along
a sequence of item outlet delivery times:

y(0), y(1), . . . , y(Np − 1). (24)

These delivery times stand for the time of providing the kth item at the outlet of the
production system. In this chapter, the performance of the AGV-based transportation
system is measured in the following form:
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J (y) = −
Np−1∑

k=0

y(k). (25)

This preceding function needs to beminimized taking into consideration the schedul-
ing constraint (23) while also considering the overall performance of the AGVs.
Resulting from this, the largest possible sum of (24) needs to be obtained, which
guarantees the satisfaction of (23). It is important to note that (25)may also be defined
in a different fashion, e.g. by means of allowing the maximization of the consecutive
differences y(k + 1) − y(k). This arrangement may provide the maximum spread
between consecutive item outlet delivery times. For the sake of simplicity and clarity,
this chapter concentrates on an transportation system consisting of two AGVs.

An mathematical description of two AGVs has to be defined employing an
extended max-plus algebra which can be based on the max-plus algebra presented in
Sect. 4. Additionally, for obtaining a sequence (24) whichmaximizes (25) taking into
consideration the scheduling constraint (23), the model predictive control employing
the max-plus algebra description is used. The preceding approach assumes that the
actual transportation times of the i th AGV, which carries the kth item, are equal to
their nominal values, even though the second AGV transportation times are set to
zero, i.e.:

if c1(k) = c(k), b1(k) = b(k) then c2(k) = 0, b2(k) = 0 (26)

if c2(k) = c(k), b2(k) = b(k) then c1(k) = 0, b1(k) = 0 (27)

Transportation delays for which the actual measured transportation times ci (k)m and
bi (k)m are not equal c(k) and b(k) respectively, are considered to be faults. This
process may be formally described as:

if ci (k)
m = c(k) then fi,c(k) = 0

else fi,c(k) = ci (k)
m − c(k) (28)

if bi (k)
m = b(k) then fi,b(k) = 0

else fi,b(k) = bi (k)
m − b(k) i ∈ {1, 2} (29)

5.1 Mathematical Description of AGVs

This section aims to deliver a mathematical description which will enable the fault-
tolerant control of theAGVsystem.The core of this section is amathematical descrip-
tion of twin AGVs which allows a real-time determination of their time schedule on
a given horizon Np. The initial step can be a definition of the main variables:

xi (k) denotes the time instant at which the i th AGV is ready to transport the kth
item, i ∈ {1, 2};
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x3(k) denotes kth item delivery time at the p(k) transfer station;
vi (k) denotes decision variable that associates i th AGV with the transportation of

kth item; vi (k) ∈ {e, ε}, i ∈ {1, 2}.
Note that vi (k) = e means that the i th AVG transports the kth item while vi (k) = ε

means an opposite situation. On the basis of the variables, which were defined prece-
dently, the time-evolution of xi (k) for each AGV can be described in the subsequent
form:

x1(k) = max(x1(k − 1) + b1(k − 1) + c1(k − 1), y(k) + v1(k)),

x2(k) = max(x2(k − 1) + b2(k − 1) + c2(k − 1), y(k) + v2(k)).
(30)

with the associated constraints

b1(k) = max(e, b(k) + v1(k)),

b2(k) = max(e, b(k) + v2(k)),

c1(k) = max(e, c(k) + v1(k)),

c2(k) = max(e, c(k) + v2(k)).

(31)

and

v1(k) = e ⇔ v2(k) = ε

v2(k) = e ⇔ v1(k) = ε (32)

Note that from (42) follows that only one AGV, i.e. i th AGV can transport kth item
from the production outlet towards p(k)th transfer station. Subsequently, the kth item
delivery time at p(k)th transfer station obeys:

x3(k) = max(x1(k) + c1(k) + v1(k), x2(k) + c2(k) + v2(k), x3(k) + d3(k)) (33)

On the basis of (31) it is possible to show that

c1(k) + v1(k) = max(e, c(k) + v1(k)) + v1(k) = c(k) + v1(k)

c2(k) + v2(k) = max(e, c(k) + v2(k)) + v2(k) = c(k) + v2(k)
(34)

and for this reason (35) can be condensed to:

x3(k) = max(x1(k) + c(k) + v1(k), x2(k) + c(k) + v2(k), x3(k − 1) + d3(k))
(35)

Through a detailed analysis of (30)–(35), it becomes obvious that the only employed
mathematical operators are + and max. On that account, among the different avail-
able DES modelling techniques [20–22], the max plus algebra [7, 23] is apparently
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the most suitable one. Employing the preceding notation, it may be proposed to
reformulate the model (30)–(35) into the subsequent form:

x(k) = A(v(k − 1), v(k), k) ⊗ x(k − 1) ⊕ B(v(k), k) ⊗ y(k), (36)

where: x(k) = [x1(k), x2(k), x3(k)]T , v(k) = [v1(k), v2(k)], A(v(k − 1), v(k), k) ∈
R

n×n
max and B(v(k), k) ∈ R

n×r
max stand for the state transition matrix and the control

matrix, respectively.
For a convenient application (and with a slight abuse of the notation conventions)

the above matrices will be denoted by Av(k) and Bv(k). On that account, substitut-
ing (30) into (35) leads to:

x3(k) = max(x1(k − 1) + b1(k − 1) + c1(k − 1) + c1(k) + v1(k),

x2(k − 1) + b2(k − 1) + c2(k − 1) + c2(k) + v2(k),

y(k) + c(k) + v1(k), y(k) + c(k) + v2(k),

y(k) + c(k) + v3(k), . . . , y(k) + c(k),

x3(k − 1) + d(k)) (37)

Combining (30) and (37) makes it possible to derive the matrices Av(k) and Bv(k)
that are given by (38)

Av(k) =
⎡

⎣
b1(k − 1) + c1(k − 1) ε ε

ε b2(k − 1) + c2(k − 1) ε

b1(k − 1) + c1(k − 1) + c1(k) + v1(k) b2(k − 1) + c2(k − 1) + c2(k) + v2(k) d3(k)

⎤

⎦ ,

Bv(k) = [v1(k), v2(k), c(k)]
T

(38)

5.2 Model Predictive Control of Two AGVs

The main focus of this section is the generation of a sequence (24), which maximizes
the cost function (25) taking into account the scheduling constraint (23). This section
concerns the determination of the item delivery time sequence (24) for a predefined
production horizon Np. This item delivery time sequence minimizes (25) and should
be determined considering both the scheduling constraints (23) and the performance
of a set of nv AGVs.

The developed framework employs a general MPC paradigm for max-plus linear
systems as presented by de Schutter and van den Boom [7]. This paradigm was
extendedwith the decision variables vi (k), i = 1, 2. Themain challenge is to identify
the input sequence y(k), . . . , y(k + Np − 1) on a moving horizon k, . . . , k + Np −
1. This identification necessitates a slight modification of the cost function (25) that
was previously introduced:
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J (y) = −
Np−1∑

j=0

y(k + j). (39)

Consequently, the central task is obtaining y(k), . . . , y(k + Np − 1) for each k. A
initial step towards the computational framework is the derivation of predictions of
x(k + 1), . . . , x(k + Np − 1). This step may be realized by means of defining

ỹ(k) =

⎡

⎢⎢⎢⎣

y(k)
y(k + 1)

...

y(k + Np − 1)

⎤

⎥⎥⎥⎦, x̃(k) =

⎡

⎢⎢⎢⎣

x(k)
x(k + 1)

...

x(k + Np − 1)

⎤

⎥⎥⎥⎦,

ṽ(k) =

⎡

⎢⎢⎢⎣

v(k)
v(k + 1)

...

v(k + Np − 1)

⎤

⎥⎥⎥⎦, v(k) = [v1(k), v2(k)]T.

(40)

as well as a recursive application of (36). The next step, which precedes the devel-
opment of the entire algorithm, is the introduction of a complete set of constraints,
which is required during repetitive optimization cycles on k . . . , k + Np − 1:

Transportation: the transportation is defined by (31)–(34) and concerns the trans-
portation times of a set of AGVs:

b1(k) = max(e, b(k) + v1(k)),

b2(k) = max(e, b(k) + v2(k)), (41)

c1(k) = max(e, c(k) + v1(k))

c2(k) = max(e, c(k) + v2(k)).

Concurrency: concurrency is defined by (42) and pertains selecting the AGV trans-
porting the kth item:

v1(k) = e ⇔ v2(k) = ε

v2(k) = e ⇔ v1(k) = ε (42)

Scheduling: scheduling is defined by (23) and concerns a required items delivery
time:

x3(k) ≤ xre f (k). (43)

Production performance: production performance is closely connected to the max-
imum rate of change of the production outlet delivery time:
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y(k + 1) − y(k) ≥ yz(k), (44)

where yz(k) ≥ 0 is the production performance upper bound. Based on the preceding
constraints, the complete optimization problem can be condensed to:

(
ỹ(k)∗, ṽ(k)∗

) = arg min
ỹ(k),ṽ(k)

J (y), (45)

under (41)–(44).
To conclude, the developed control strategy for twoAGVsdisposes of the structure

given by Algorithm 6 with fault-tolerance capabilities.

Algorithm 6: Max-plus MPC for two AGVs

Step 0:
Set k = 1, Np , v(0);

Step 1:
Get M(k), . . . ,M(k + Np − 1), yz(k) . . . , yz(k + Np − 1) and
xre f (k), . . . , xre f (k + Np − 1) from MES;

Step 2:
Measure the state x(k − 1) and obtain ỹ(k)∗ and ṽ(k)∗ by solving the constrained
optimization problem (45);

Step 3:
Use the first vector elements of ỹ(k)∗ and ṽ(k)∗ (i.e., y(k)∗ and v(k)∗) and feed them into
the system (30);

Step 4:
Set k = k + 1 and go to Step 1;

In addition to the rather elegant recursive description of (17) and the linearity
of the cost function (39), it is possible to observe that any optimization constraint
having the form a = max(b, c) may be transformed into a set of equivalent linear
constraints, i.e., a ≥ b, a ≥ c. This fact obviously indicates that the optimization
problem can be reduced to mixed-integer linear programming.

6 Fault-Tolerant Control of AGVs

The objective of this section is to provide an answer to the subsequent research
question: How to manage large inconsistencies, which may lead to the significant
transportation delays and possible violation of the scheduling constraints? This
question concerns the accommodation of the possible faults, which are defined by
(28). The consequence of these possible faults (28) may be a severe violation of the
scheduling constraints (43). This violation can result in an infeasibility of the overall
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optimization problem (17). In order to address this problem field, a time varying
relaxation variable α(k) ≥ 0 may be incorporated into (43) which results in:

x3(k) ≤ xre f (k) + α(k). (46)

In this context, it is intended that α(k) is as little as possible in order to achieve a
small divergence from the time schedule that was initially desired. For the purpose
of obtaining the optimal values of α j (k), a new cost function can be proposed:

J (α) =
Np−1∑

j=0

α(k + j). (47)

Consequently, it is possible to introduce a new FTC-oriented cost function:

J (y, α) = (1 − β)J (y) + β J (α). (48)

In this equation, 1 ≤ β ≤ 0 is a constant that can be set by the control engineer and
which can be adjusted to reflect the higher importance of either J (y) or J (α), respec-
tively. By defining α̃(k) = [α(k), . . . , α(k + Np − 1)]T , it is possible to rewrite the
optimization problem as:

(
ỹ(k)∗, ṽ(k)∗

) = arg min
ỹ(k),ṽ(k),α̃(k)

J (y, α), (49)

under (41)–(44) and (46). The consideration of the precedent optimization problem
allows to propose an entire FTC algorithm, which updates the matrices Av(·, ·, ·)
and Bv(·, ·) together with associated constraints depending on fault estimates. FTC
algorithm ensures that the optimization problem is always feasible. If the current
performance of an AGV set is insufficient to attain xre f (k), it is optimally relaxed
and the closest schedule to the original infeasible one is obtained.

6.1 Performance Evaluation

The central aim of this section is the evaluation of the reliability of Algorithm 2
in chapter “Cyclic Two Machine Flow Shop with Disjoint Sequence-Dependent
Setups”. For the sake of simplicity and clarity, it was applied to an transportation
system consisting of two AGVs. The desired schedule is given by:

xre f = [1, 2, 3, 7, 10, 2, 15, 16, 20]T . (50)

In this case, the nominal transportation times were set equal to one minute, i.e.
b(k) = c(k) = 1. It is important to point out that the assumed schedule (50) is not
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evenly distributed, consequently it is not possible to realize the scheduling in a simple
ad hoc manner. Additionally, a dedicated fault scenario was assumed, which consists
of a one minute transportation delay f2,c = 1 of one of the AGVs during its first
operation. Figure7a shows (50) (red line) along with the actual item delivery time x3
(blue line). Figure7b contains the respective item outlet delivery times. It is obvious
that the item delivery time is larger than the desired schedule for k = 2 only. Most
notably, for all remaining event counters a desired schedule is achieved. Additionally,
from the Gantt diagram (Fig. 8) it is evident that the second robot operates for k = 2,
and therefore, according to the fault scenario a one minute delay occurs. However,
the predictive FTC algorithm is able to identify this fault and can calculate a desired
AGVwork schedule that is able to eliminate this delay for subsequent event counters.

7 Remarks and Conclusions

The central research objective of this chapter was to clarify if and and how a fault-
tolerant intervalmax-plus algebramodel predictive control framework can be applied
for controlling flexible assembly systems which include resource conflicts. The main
research contribution was the proposition of a unified FTC MPC procedure which
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guarantees an optimal allocation of transportation tasks among a set of two AGVs.
In particular, one of the objectives was to describe this AGV system by means of an
interval max-plus algebra framework along with appropriate constraints. The pro-
posed analytic description of two AGVs system had to be able to consider two basic
properties of concurrent tasks: synchronization and concurrency. The underlying
optimization criteria takes into account all transportation tasks according to a given
MES-based time schedule. An decisive advantage is the fact that the cost function is
linear but not quadratic. This property allows the applicationof the proposed approach
in an on-line mode even for medium or large scale AGVs systems. The framework
allows either to avoid resource conflicts or at least to minimize the possible negative
influences of this kind of conflicts. The performance of this framework could be
illustrated on the example of a seat assembly system, which represents all impor-
tant functionalities and levels of industrial production systems. It was discussed in
detail, how the design of the control and diagnosis system can enable the respective
control and diagnosis task. This discussion was based on established guidelines for
Design for Control. The research results allow to avoid resource conflicts in the seat
assembly system and the consequences of remaining conflicts could be minimized.

Acknowledgements Theworkwas supported by theNational Science Centre, Poland under Grant:
UMO-2017/27/B/ST7/00620.

References

1. Rossiter, J.A.: Model-Based Predictive Control: A Practical Approach. CRC Press, Bocca
Raton (2013)

2. Prodan, I., Olaru, S., Stoica, C., Niculescu, S.-I.: Predictive control for trajectory tracking and
decentralized navigation of multi-agent formations. Int. J. Appl. Math. Comput. Sci. 23(1),
91–102 (2013)

3. Gruzlikov, A.M., Kolesov, N.V.: Discrete-event diagnostic model for a distributed computa-
tional system. Merging chains. Autom. Remote Control 78(4), 682–688 (2017)

4. Polak, M., Majdzik, P., Banaszak, Z., Robert Wójcik, R.: The performance evaluation tool for
automated prototyping of concurrent cyclic processes. Fundam. Inf. 60(1), 269–289 (2004)

5. Abrams,M., Doraswamy, N., Chitra, A.M.: Visual analysis of parallel and distributed programs
in the time, event, and frequency domains. IEEE Trans. Parallel Distrib. Syst. 3(6), 672–685
(1992)

6. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant
control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

7. De Schutter, B., VanDen Boom, T.:Model predictive control for max-plus-linear discrete event
systems. Automatica 37(7), 1049–1056 (2001)

8. Park, S.J., Lim, J.T.: Robust and nonblocking supervisor for discreteevent systems with model
uncertainty under partial observation. IEEE Trans. Autom. Control 45(9), 2393–2396 (2000)

9. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems.
Springer International Publishing, Berlin (2014)

10. Stetter, R., Simundsson, A.: Design for control. In: Proceedings of the 21st International Con-
ference onEngineeringDesign,Vancouver, Canada, 21–25Aug2017, pp. 149–158. TheDesign
Society (2017)
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Max-Plus Algebraic Modelling
of Cyclical Multi-assortment
Manufacturing System

Jarosław Stańczyk

1 Introduction

In this chapter, multi-assortment production systems are considered, which can be
described as Discrete Event Systems (DES). Due to the implementation of a certain
number of products, they are characterizedby repetitive, cyclical (rhythmic) behavior.
Analyzingmulti-assortment, cyclic production, there are a number of phenomena that
have a direct impact on the behavior of systems, such as ending the production of one
product or launching, in an already existing production system, the production of an
additional, new product. And it is the modeling of such phenomena that is presented
in this chapter.

Tools and techniques are used in DES studies, a review can be found e.g. in [3].
The theory of DES can be divided presently into three main approaches:

• logical—which considers the occurrence of events or the impossibility of this
occurrence and the sequences of these events, but which does not consider the
precise time of those occurrences i.e. does not consider performances e.g. an
automata theory [5] or Petri nets [8];

• deterministic—which addresses the issue of performance evaluation (evaluated by
the number of events occurring in a given lapse of time), and that of performance
optimization e.g. the timed Petri nets or the max-plus algebra [2, 9];

• stochastic—used when certain statistical characteristics of the system are known,
e.g. Markov chain [14], Queueing theory [18] or computer simulation.

In this work, problems of modeling a certain DES class are considered using
max-plus algebra. Examples of such systems are, inter alia, production systems [10,
17]. Modeling of individual types of production systems using max-plus algebra has
been presented in [6, 15].

What essentially max-plus algebra is compared to conventional algebra? The
concept is based on two operators. In the max-plus algebra the addition (+) and
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multiplication (×) operators from the conventional algebra are replaced by the max-
imization (max) and addition (+) operators, respectively.

The max-plus algebra was first introduced in [4]. A standard reference for long
time was [1] replaced by [2, 9], a brief survey of methods and applications of this
algebra is given in [7, 9]. The theory with reference to graph theory was collected
in [12]. In recent years, the theory of max-plus algebra and its applications has
been constantly developing, it is enough to mention a few directions in production
modeling, planning and evaluation [6, 13, 15], etc. A survey of the history of max-
plus algebra and its role in the field of discrete event systems is presented in [11].

All computational experiments presented in this chapter were carried out in the
MATLAB environment using the Max-Plus Algebra Toolbox for MATLAB [16].

2 Problem Statement

Example 8.1 Consider a manufacturing system that consists of three machines (M1,
M2 and M3). In this manufacturing system two different types of parts (P1 and P2)
are produced according to a certain product mix. The routes followed by the various
types of parts are depicted in Fig. 1.

Parts of type P1 first visit machine M1, then M2 and then go to M3. Parts of type
P2 enter the system via machine M1, then finally leave the system through machine
M3. It is assumed that:

• The transportation times are negligible and that there are no set-up times on the
machines when they switch from one part type to another.

• The sequencing of the various parts on themachines is known: forM1 it is (P1, P2),
i.e. access to machine M1 gets P1 first and then process P2. We will call these
sequences local dispatching rules and we will describe them as σ (i.e. σ1 for the
sequence on M1, and σ3 for M3). σ3 = (P1, P2). After finishing the last operation
in the rule, the first one is started again, i.e. parts P1, P2, then P1, P2 are processed.

We assume that the workpiece will leave themachine immediately after the operation
is completed, provided that the next resources are available, and that the workpiece
will be processed immediately as soon as it reaches the machine and the machine is

Fig. 1 The routing of the
various types of parts along
the machines

P1

P2

M1 M2 M3
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u2(k)

u1(k)

u3(k)

(P1,M1)

(P2,M1)

y3(k)

(P1, M2)

u4(k)

(P1, M3)

(P2, M3)

y4(k)

y1(k)

y2(k)

d1 = 1 d2 = 1 d3 = 1

d4 = 3 d5 = 4

x1 x2 x3

x4 x5

σ1 σ3

P1

P2

Fig. 2 The sequence and the duration of the various activities

free. Buffers and storehouses of sufficient capacity are located between the individual
stands. The information about the sequencing and the duration of the various activities
(processing times) is shown in Fig. 2. In this figure, the activities are represented by
ordered pairs of the form (Pi , Mj ) meaning that a part of type Pi is processed on
machine Mj . The arcs represent the precedence constraints between activities. At
the bottom right of each activity we have indicated its duration, e.g. (P1, M3) has
duration d3 = 1.

Analyzing production systems as described in Example 8.1, we consider the fol-
lowing problem:

1. How tomodel the systembehavior, i.e. the implementation of individual processes
over time?
This issue has been divided into:

a. How to model a given system, depending on the availability of input mate-
rials, times of individual operations and availability of resources in order to
produce workpieces of different types simultaneously?

b. What conditions must be met for the system’s behavior to be cyclical?
Having a model and conditions of a system whose steady state behavior is
cyclical, a number of subsequent questions appear. Namely:

c. What conditions should bemet to start production in a cyclic state? It means,
how to start without a transition state?

d. What is the impact of change in the dynamics on the system behavior? I.e.
how to start a new or complete an existing production process affects the
length of the cycle?
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3 Max-Plus Algebra

3.1 The Basics

The max-plus algebra is defined in the field of real numbers with −∞, i.e.:

Rε = R ∪ {ε} = R ∪ {−∞} (1)

Operators ⊕ (maximum) and ⊗ (plus) are defined as follows:

∀a, b ∈ Rε

(
a ⊕ b = max{a, b}), (2)

∀a, b ∈ Rε

(
a ⊗ b = a + b

)
. (3)

In addition, neutral elements are provided for individual operators:

ε = −∞ (4)

and
e = 0 (5)

The algebraic structure Rmax = (Rε,⊕,⊗, ε, e), is called the max-plus algebra or
more precisely idempotent, commutative semifield.

In this chapter the notation presented in [1] is used, it means ε and e instead of−∞
and 0 respectively for emphasizing their special meanings and to avoid confusion
with their roles in the conventional algebra. Additionally, notation ab instead of
a ⊗ b is used everywhere where it does not cause ambiguity.

Now, we extend the max-plus algebra operations to matrices in the following
way. The sum ⊕ of matrices A, B ∈ R

m×n
ε is defined to be the m × n matrix A ⊕ B

obtained by adding corresponding entries. That is,

(A ⊕ B)i j = (A)i j ⊕ (B)i j , i = 1, . . . ,m; j = 1, . . . , n. (6)

The product⊗ ofmatricesA ∈ R
m×p
ε andB ∈ R

p×n
ε is defined to be them × nmatrix

whose (i, j)-entry is the inner product of the i th row of A with the j th column in B.
That is,

(A ⊗ B)i j =
p⊕

k=1

(
(A)ik ⊗ (B)k j

) ≡ max
k

(
(A)ik + (B)k j

)
, (7)

i = 1, . . . ,m; j = 1, . . . , n,

where:
m⊕

j=1

a j is short-hand for a1 ⊕ · · · ⊕ am .
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The matrix In ∈ R
n×n
ε with e’s on the main diagonal and ε’s elsewhere is called

the identity matrix of order n. The matrix ε ∈ R
m×n
ε with εi j = ε for all i, j , is

the zero matrix. The operator � for square matrices A ∈ R
n×n
ε is defined by:

A� =
⊕

k∈N0

Ak, (8)

where: Ak = A ⊗ Ak−1, A0 = In , N0 is the set of nonnegative integers.
Equation (8) is only meaningful if the right-hand side converges [4]. The operator

� (Kleene star) is used to solve the equation, where x is entangled on both sides of
the equation:

x = Ax ⊕ b, (9)

so
x = A�b. (10)

Proof can be found e.g. in [1].
After entering the basics, let us get to the state space description.

3.2 State Space Description

One of the best known equation of dynamic systems is

x(t + 1) = Ax(t), t = 1, 2, . . . , (11)

where vector x ∈ R
n is a state of considered model, and matrix A ∈ R

n×n is state
(or system) matrix. If starting conditions are known, i.e. x(0) = x0, then behavior of
the system is determined. Equation (11)wrote inmax-plus, where x ∈ R

n
ε ,A ∈ R

n×n
ε ,

is as follows
∀k ∈ N

(
x(k + 1) = A ⊗ x(k)

)
. (12)

In Eq. (12) instead t is k, because it is not a time of an event, but number of a cycle
in which the event takes place. The most general state-space representation of a
max-plus-linear system:

∀k ∈ N
(
x(k + 1) = Ax(k) ⊕ Bu(k)

)
, (13)

(
y(k) = Cx(k) ⊕ Du(k)

)
, (14)

where u ∈ R
r
ε, B ∈ R

n×r
ε , y ∈ R

m
ε , C ∈ R

m×n
ε and D ∈ R

m×r
ε .

In the general case, for the N th order time-invariant system, i.e, where N previous
iterations affect the current behavior of the system, with the entangled x(k) on both
sides of the equation, the model is represented by (15) and (16):
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x(k + 1) =
N+1⊕

i=0

Aix(k + 1 − i) ⊕
N⊕

i=0

Bi+1u(k − i), (15)

y(k) =
N⊕

i=0

(
Ci+1x(k − i) ⊕ Di+1u(k − i)

)
. (16)

After removing x(k + 1) from the right side of the Eq. (15) (let assume A�
0 is con-

vergent) and after introduction of new vectors x̃ and ũ:

x̃(k) = [
x(k) x(k − 1) . . . x(k − N )

]T
,

ũ(k) = [
u(k) u(k − 1) . . . u(k − N )

]T
,

and matrices:

A =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

A�
0A1 A�

0A2 . . . . . . A�
0AN

I ε . . . . . . ε

ε
...

...
. . .

...

ε . . . ε I ε

⎤

⎥⎥⎥⎥⎥
⎥
⎦

, B =

⎡

⎢⎢⎢
⎣

A�
0B0 . . . A�

0BN−1

ε . . . ε
...

...

ε . . . ε

⎤

⎥⎥⎥
⎦

,

C = [
C0 . . . CN−1

]
, D = [

D0 . . . DN−1
]
,

where I i ε are appropriate size max-plus-algebraic identity and zero matrix, 1st
order model, described by (13) and (14), is obtained.

4 Multi-assortment Manufacturing System

Example 8.2 Let’s continue with the considerations of the Example of 8.1. What
does the max-plus model of an algebraic model look like? How the execution of
individual processes is represented based on such model?

In order to simplify the process of deriving the evolution equations of this system,
we shall first look at what happens in one cycle of the production process. We define:

ui (k) time instant at which the raw material for a part of type Pi is available in the
kth production cycle for i = 1, 2;

u j (k) time instant at which machine M1 and M3 is available for the first activity
that should be performed on it in the kth production cycle for j = 3, 4;

xi (k) time instant at which activity i starts in the kth production cycle for i =
1, 2, . . . , 5;

yi (k) time instant at which the finished product of type Pi of the kth production
cycle has been completed for i = 1, 2;
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y j (k) time instant at which machine M3 (or M4) has finished processing the last
part of the kth production cycle that should be processed on it for j = 3, 4.

We have the following evolution equations:

x1(k + 1) = d1x1(k) ⊕ u1(k) ⊕ u3(k),

x2(k + 1) = d1x1(k + 1) ⊕ d2x2(k), (17)

...

or, more compactly in matrix description:

x(k + 1) = A0x(k + 1) ⊕ A1x(k) ⊕ B1u(k) (18)

= Ax(k) ⊕ Bu(k), (19)

y(k) = Cx(k), (20)

where A = A∗
0A1 and B = A∗

0B1 and

x(k) =

⎡

⎢⎢⎢⎢
⎣

x1(k)
x2(k)
x3(k)
x4(k)
x5(k)

⎤

⎥⎥⎥⎥
⎦

, A0 =

⎡

⎢⎢⎢⎢
⎣

ε ε ε ε ε

d1 ε ε ε ε

ε d2 ε ε ε

d1 ε ε ε ε

ε ε d3 d4 ε

⎤

⎥⎥⎥⎥
⎦

, A1 =

⎡

⎢⎢⎢⎢
⎣

d1 ε ε d4 ε

ε d2 ε ε ε

ε ε d3 ε d5
ε ε ε d4 ε

ε ε ε ε d5

⎤

⎥⎥⎥⎥
⎦

,

B1 =

⎡

⎢⎢⎢⎢
⎣

0 ε 0 ε

ε ε ε ε

ε ε ε 0
ε 0 ε ε

ε ε ε ε

⎤

⎥⎥⎥⎥
⎦

, C =

⎡

⎢⎢
⎣

ε ε d3 ε ε

ε ε ε ε d5
ε ε ε d4 ε

ε ε ε ε d5

⎤

⎥⎥
⎦, u(k) =

⎡

⎢⎢
⎣

u1(k)
u2(k)
u3(k)
u4(k)

⎤

⎥⎥
⎦, y(k) =

⎡

⎢⎢
⎣

y1(k)
y2(k)
y3(k)
y4(k)

⎤

⎥⎥
⎦.

After substituting numerical values we get:

A =

⎡

⎢⎢⎢⎢
⎣

1 ε ε 3 ε

2 1 ε 4 ε

3 2 1 5 4
2 ε ε 4 ε

5 3 2 7 5

⎤

⎥⎥⎥⎥
⎦

, B =

⎡

⎢⎢⎢⎢
⎣

0 ε 0 ε

1 ε 1 ε

2 ε 2 0
1 0 1 ε

4 3 4 1

⎤

⎥⎥⎥⎥
⎦

, C =

⎡

⎢⎢
⎣

ε ε 1 ε ε

ε ε ε ε 3
ε ε ε 3 ε

ε ε ε ε 3

⎤

⎥⎥
⎦.

Performing processes in such a system is shown in the Gantt chart in Fig. 3. For the
purposes of simulation, it was assumed that at the moment of take-off all machines
and inter-operation buffers are empty, i.e.

x(0) = ε. (21)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M1

M2

M3

Fig. 3 The Gantt’s chart of machine occupancy in manufacturing system from Example 8.2 for
production of the first few parts

Hence
x(1) = Bu(0). (22)

Additionally, the input material is always available, i.e.

u(k) = 0. (23)

The Fig. 3 shows the first few iterations. First one, marked in red. At the moment
of take-off the operation P1 on M1 is performed. Then the workpiece goes to M2,
and working of workpiece P2 starts on M1. After completing the operation on M2,
the workpiece goes to the machine M3 (idle up to now) and leaves the system after
the operation is completed. The M3 remains idle for one time instant until it starts
processing P2. After leaving P2 of the machine M1, the second iteration starts—
marked in green. The second iteration starts with the processing of workpiece P1 on
M1, and so on.

Modeling of stationary systems, described by Eqs. (19)–(20), was among others
the topic of the work [17]. There, the problem of modeling inter-operation buffers
and the impact of buffer capacity on system behavior were also considered.

4.1 Cyclic Systems

In cyclic systems, there is a certain relationship between the system outputs and its
inputs, which creates a closed system, with production taking place rhythmically. So,
it is advisable to introduce a matrix K ∈ R

r×m
ε , to describe the dynamics of restarting

the system for the next cycle (and cyclical dependence of inputs and outputs):

u(k + 1) = Ky(k). (24)

Hence:

x(k + 1) = Ax(k) ⊕ BKy(k) (25)

= Ax(k) ⊕ BKCx(k) (26)
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= (A ⊕ BKC)x(k) (27)

= Âx(k). (28)

So, we obtain an autonomous model.

Example 8.3 Let’s go back to the example from the beginning of this section and
introduce an additional assumption: there is only one pallet available for each type
of part. Which means that only after the part is finished, when the pallet leaves the
system, the next pallet will be able to enter the system. Hence:

Â = A ⊕ BKC (29)

=

⎡

⎢
⎢⎢⎢
⎣

1 ε ε 3 ε

2 1 ε 4 ε

3 2 1 5 3
2 ε ε 4 ε

5 3 2 7 4

⎤

⎥
⎥⎥⎥
⎦

⊕

⎡

⎢
⎢⎢⎢
⎣

0 ε 0 ε

1 ε 1 ε

2 ε 2 0
1 0 1 ε

4 3 4 1

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎣

0 ε ε ε

ε 0 ε ε

ε ε 0 ε

ε ε ε 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ε ε d3 ε ε

ε ε ε ε d5
ε ε ε d4 ε

ε ε ε ε d5

⎤

⎥⎥
⎦ (30)

=

⎡

⎢⎢⎢⎢
⎣

1 ε 1 3 ε

2 1 2 4 ε

3 2 3 5 3
2 ε 2 4 3
5 3 5 7 6

⎤

⎥⎥⎥⎥
⎦
. (31)

Individual operations in the system are shown in Fig. 4. There is assumed, as in
the previous simulation, that x(0) = ε. As can be seen, that execution of processes
differs from Fig. 3.

On the other hand, a discrete system can be treated as cyclic, if the following
condition holds:

∃k0 ∈ N0, T ∈ Rε ∀k � k0
(
x(k + 1) = T x(k)

)
, (32)

where T is a cycle time (period), k0 is length of transient state.

The most useful max-plus practicable results are relative to the spectral
problem (33).

Av = λv (33)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M1

M2

M3

Fig. 4 The Gantt’s chart of machine occupancy in manufacturing system from Example 8.3
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where: λ is eigenvalue of A, v is eigenvector associated with A. The theory is very
similar to the theory of Perron–Frobenius when it comes to eigenvalue and eigen-
vector.

Theorem 8.1 (The Perron–Frobenius Theorem) An irreducible matrix A ∈ Rε has
unique eigenvalue, equal to the maximal circuit mean of A.

Unlike in conventional P-F. theory an irreducible max-plus algebraic matrix my have
several (non proportional) eigenvectors, hence there are a number of algorithms for
determining these vectors.

Definition 8.1 (Cyclicity of a matrix) An irreducible matrix A ∈ R
n×n
ε is cyclic if:

∃d,m, M ∈ N0 ∀m � M
(
Ad+m = λdAm

)
, (34)

where λ is maximum cycle mean of A, i.e.

λ =
n⊕

i=1

(trace(Ai )
1
i ), (35)

trace(A) =
n⊕

j=1

a j j , (36)

and d is quantity of arcs in critical circuit.

If system matrix A is cyclic, then the system is cyclic, and the length of period T
in steady state:

T = λd (37)

For the Example 8.3, where the implementation of the processes has been presented
in Fig. 4, and matrix A has been described by the Eq. (31): T = 6 (i.e. λ = 6 and
d = 1).

In the general case, for the system described by Eq.13, behavior of the system
may be cyclic or not, depending on the second part of the equation, more specifically
depends on u(k). If the input vector changes cyclically, as presented by the Eq.38

u(k + 1) = Tuu(k), (38)

and the condition (39) is met, then the system is cyclic.

T � Tu, (39)

where T is a period of cyclicity of system matrix A.
For T > Tu , although the input vector behaves cyclically, however, the systemwill

not keep up with the processing of the input material, therefore, the system will not
behave cyclically. Example 8.4 shows different system behaviors depending on Tn .
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M1
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M3

Fig. 5 The Gantt’s chart of processes execution with Tu = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M1

M2

M3

Fig. 6 The Gantt’s chart of processes execution with Tu = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M1

M2

M3

Fig. 7 The Gantt’s chart of processes execution with Tu = 4

Example 8.4 Below have been presented 3 different implementations of processes
in the production system of Example 8.2. They differ only in times, when the input
material goes to the system (i.e. inputs vectors are different). In this example T = 5.

(a) Figure5 shows the execution of processes when the input material appears every
10 time units. System is cyclic, with Tu = 10.

(b) Figure6 presents the Gantt’s chart, when the input material appears every 5 time
units. System is cyclic, Tu = T = 5.

(c) Figure7 presents the system behavior, when the input material appears every 4
time units. System is not cyclic (Tu < T ), in each iteration the occupation of the
staging buffers increases, and operations on the machine M3 begins later. The
same behavior can be observed in Fig. 3, where u(k) = 0.

4.2 System Without Transient State

What conditions must be fulfil, in order to processes execution begin in steady state?
To start with, consider the autonomous system, i.e. as described by the Eq. (12)

or (28). In other words:
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x(k + 1) = Ax(k) (40)

= T x(k) (41)

= T k+1x(0). (42)

Hence:

1. the matrix A must be cyclic (with period T ),
2. the initial vector x(0) must be an eigenvector of the matrix A.

Consider the case of a system in which his behavior determines the matrix A, but
the initial state depends on the inputs—as in the Eqs. (21) and (22). Then, besides
the cyclicity of the matrix A, the condition must be fulfilled:

Bu(0) = v, (43)

where v is an eigenvalue of the matrix A.
The designation of such u(0) to meet the Eq. (43) is not possible in the general

case. Which means that the system before it reaches the determined cyclical state,
in which the execution of the processes is rhythmic, will have so-called transient
(starting) state.

4.3 Ending Production

In this section,we consider a situation inwhich, after producing of the desired amount
of elements of a given type, we want to finish producing that elements. How will this
affect the behavior of the modeled system?

Ending of the production of any of the elements is associated with a change in the
parameters of the model. We assume that extinction the production of a selected ele-
mentmeans stopping the production of new elements, while production in progress is
continued. By changing the production dynamics, by adding or removing the produc-
tion process, the systemmodel dynamically changes Let’s look at the example below.

Example 8.5 Let’s continue with the considerations of the production system from
Example 8.2. As in Example 8.2, we start productions under the same initial condi-
tions, i.e. x(0) = [

ε ε ε ε ε
]T
, and u(k) = [

0 0 0 0
]T
. Suppose, that after produc-

ing the appropriate number of products e.g. 4 items, of the type P2, this production
process is ending. How will the production schedule look like then? For k ≤ 4, the
system model is exactly the same as in Example 8.2. The model changes for k ≥ 5:

System matrix A = A∗
0A1, where

A0 =

⎡

⎢⎢⎢⎢
⎣

ε ε ε ε ε

d1 ε ε ε ε

ε d2 ε ε ε

ε ε ε ε ε

ε ε ε ε ε

⎤

⎥⎥⎥⎥
⎦

, A1 =

⎡

⎢⎢⎢⎢
⎣

d1 ε ε d4 ε

ε d2 ε ε ε

ε ε d3 ε d5
ε ε ε ε ε

ε ε ε ε ε

⎤

⎥⎥⎥⎥
⎦

.
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Fig. 8 The Gantt’s chart from Example 8.5

Input matrix B = A∗
0B1 and input vector

B1 =

⎡

⎢⎢
⎢⎢
⎣

0 ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

⎤

⎥⎥
⎥⎥
⎦

, u(k) =

⎡

⎢
⎢
⎣

0
ε

ε

ε

⎤

⎥
⎥
⎦.

Output matrix and output vector:

C =

⎡

⎢⎢
⎣

ε ε 1 ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

⎤

⎥⎥
⎦, u(k) =

⎡

⎢⎢
⎣

y1
ε

ε

ε

⎤

⎥⎥
⎦.

The processes execution in the system is presented as the Gant’s chart on Fig. 8.

In conclusion, adding changes to the model described by Eqs. (13)–(14) induce by
production changes, we obtain a model in which not only individual vectors depend
on production iterations but also matrices, that is, we obtain a time-variant model:

x(k + 1) = A(k)x(k) ⊕ B(k)u(k), (44)

y(k) = C(k)x(k) ⊕ D(k)u(k). (45)

5 Remarks and Conclusions

Max-plus algebra is a convenient analytical tool for modeling the behavior of pro-
duction systems. Thanks to its use, it is easy to obtain a number of quantitative data
regarding, e.g. resource utilization over time. Directly from matrix A, a set of initial
state vectors can be obtained for which production processes will be started immedi-
ately in a steady state (without transition state). In addition, for stationary systems,
analysis of matrix A provides a number of information, such as the length of the
cycle in steady state. The non-stationary model, obtained in the case of introducing
dynamics related to production changes, complicates this situation, but extends the
class of systems that can be effectively modeled using max-plus algebra.
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Incorporating Automatic Model
Checking into GPenSIM

Reggie Davidrajuh , Bozena Skolud and Damian Krenczyk

Abstract Large-scale manufacturing systems involve hardware and software that
are highly interconnected and complex. Unexpected failures in these systems can
cause material damages and can risk human lives too. The definite way of avoid-
ing unexpected failures is to make a model of the system and to perform model
verification and validation on it. Petri nets are a highly effective way of modelling
discrete-event systems. Model checking is the terminology that is used for model
verification on Petri Nets. General-purpose Petri Net Simulator (GPenSIM) is a tool
for modelling, simulation, performance evaluation, and control of discrete-event sys-
tems (GPenSIM: a general purpose Petri net simulator, http://www.davidrajuh.net/
gpensim, 2019, [15]). GPenSIM is developed by one of the authors of this chapter.
This chapter explores the potentials of incorporating the model checking functions to
GPenSIM. In this chapter, the problem of model checking is presented. The chapter
introduces Activity-Oriented Petri Nets (AOPN) and GPenSIM for model checking
of cyclic production systems.

1 Cyclic Concurrent Processes

High competitiveness between manufacturers is a great challenge in this age.
Undoubtedly it always boils down to increasing the offer. This is the reason for
looking for solutions, which, like the group technology will enable the production
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of small series and even individual products in repetitive manufacturing conditions,
which in turn allows focusing on the repetition period, instead of the whole produc-
tion. In this context, cyclic production is becoming more and more popular. Cyclic
scheduling reduces inventory levels. It also allows manufacturing using common
resources that are technologically diverse, at the same time ensuring a high level
of utilization. Recently, the tendency to produce of many different products in one
production system is observed. However from the operational point of view all those
operations that should be executed on onemachine are similar one to the another one,
so that there is no need to preset machine between those operations. This situation is
often observed e.g. in automotive industry, household goods production, etc. Cyclic
multi-assortment production (cyclic job shop) is a topic present in many works.

Rhythmic production is a form of production organization that enables analytical
determination of the indicators that characterize it. With regard to the production
process, rhythmicity is understood as regular, repetition of specific elements of the
productionprocess (operations, activities). The rhythmic production system is the one
inwhich the completion of the last operation in the sequence results in the return to the
first in the sequence. The rhythmic production system is usually used to produce one
assortment. In recent years, the demand for this type of production has been declining.
However, it is important that the rhythmic organization of production allows the
determination of the parameters that characterize the production at a near-optimal
level. Therefore, rhythmicity is also used in the production of many assortments.
Problems related to conducting rhythmic production are a predicate ofmany scientific
studies. The authors of this chapter also dealt with these issues. Analytical models are
used for descriptions of rhythmic systems, being formal models with a mathematical
basis, such as queuing theory, mathematical programming, computer simulation,
Petri Nets, max+ algebra, minimax algebra, etc.

In this chapter a cyclic behavior in steady state is considered. The model is deter-
ministic. The deterministic model is a mathematical model which precisely deter-
mines known relationships among states and events, without any room for random
variation. In such models, a given input will always produce the same output.

The advantage of the cyclical approach to production is that it has a lower degree
of complexity compared to the general problem complexity. The created model for
a single production cycle is easier to analyze. Modeling of the complex production
system is easy to miss important interaction patterns. Taking into account the com-
plexity of concurrent production systems it is important to provide methods for its
checking, methods that enable its testing before building and running the system.
The problem is how to design the system to be sure of its functioning. The need is
to build an executable model of the system [17].

Korbaa et al. [20] presented the problem of determination of command of FMS
for small and medium production, and chosen cyclic behavior to reduce complexity.
The aim was to reduce WIP and reach optimal production speed. They choose few
heuristics (Hillion’s [16], Valentin’s [26], and Ohl’s [24] Heuristic) and conclude
that the complexity is large and computation time is large too. Authors propose to
limit some parameters to shorten computational time (depth of the search tree or
number of intervals for each machine) but are not fit for real production conditions.
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In the paper [1] the evaluation of transfer function in this capability of identifying and
describing the dynamics of a project-driven system in repetitive production systems
in a repetitive process in construction. Authors proposed black-box modeling, trial
and errormethodwhere parameters of variousmodels are estimated, and the output of
these models are compared to the results with the opportunity for further refinement.
Hillion and Proth [16] used event graphs to model cyclic systems with their control.
They showed that it is theoretically possible to reach the optimal cycle time (given by
the bottleneck machine) and proposed an algorithm to meet the performance while
minimizing the WIP. Valentin [26] revisited the previous approach and introduced
available intervals to improve the previous results [21].

Reachability

A reachability problem consists of checking whether a given set of target states can
be reached starting from a fixed set of initial states. The set of target states can be
represented explicitly or via some implicit representation (e.g., a system of equations,
a set of minimal elements with respect to some ordering on the states). Authors of
[18] proposed Petri net as a tool which is a simple yet powerful formalism for rep-
resentation of concurrency and interaction of events in a system. The reachability
problem with Petri nests implementation is discussed in this paper. Authors con-
clude in this work that many problems concerning Petri net behavior are intrinsically
very hard to solve. Unfortunately in the discussed problem they require unaccept-
able amounts of computation time or space. In [2] some decision problems related
to the reachability problem for Petri nets are presented. Authors proof that for Petri
nets reachability problem is equivalent to equality problem. In some Petri nets the
reachability problem is undesirable for generalization of Petri nets in which some
transitions can reset a certain place to zero marking. Authors of [3–5] presented the
reachability problem in a system of repetitive concurrent processes which is treated
as a system of autonomous processes that compete for access to shared resources.
The access is controlled by dispatching rules allocated to the resources, which handle
the required synchronization of the process execution. They discussed a problem of
initial processes and dispatching rule allocation enables to predict the deadlock-free
and starvation-free behavior. In [3] the policy of the buffer capacity allocation is
discussed for the sufficient condition guaranteeing a cyclic steady state behavior for
some combination of initial state and priority rules allocation including resource
capacity allocation. In [4, 6], the multimodal processes are defined. Operations are
executed along sequences that repeat an indefinite number of times. Train or bus traf-
fic can be considered as an example of such kind of systems. A concept ofmultimodal
processes system is presented by authors of [4, 5]. Each process route can interact
with other processes by so-called common resources. In general each process is exe-
cuted repetitively State space S* composed of the sequence of resources allocation
Ak state St can be linked via another state by transitions. Authors show the cyclic
scheduling problem of multimodal processes characteristic for the transportation
network. Authors propose local dispatching rule, and they create a schedule show-
ing time-dependent activities (multimodal process behavior) which describe detailed
dependence of each one activity with others. The problem is NP-hard. The approach
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shows that the most important advantage (distributed control) is lost. In addition,
this work presents an approach which is based on recognizing all possible states and
checking the known state from the whole states; the checking is time-consuming
and in more complicated problems is practically useless. Wójcik [27] states that the
initial state and set of dispatching rules can be seen as control variables allowing to
adjust processes schedule. “Switching” among cyclic steady state can be modeled in
terms of constraints satisfaction problem and implemented in declarative language
environment OZMozart system. The same author in [28] described a system of repet-
itive manufacturing processes as a set of process sharing common resources using
a mutual exclusion protocol. The problem of designing no-wait cyclic schedule for
this class of repetitive manufacturing can be solved using constraints programming.
Constraints propagation is an efficient inference mechanism that is intended to nar-
row the variable domains. The idea is based on a logical analysis of the constraints to
derive the new constraints, which define a smaller space of the admissible solution.
The method of constraint propagation reduces the size of search space. The problem
was solved by checking the starting time for the processes for which the no-wait
cyclic schedule exist. The paper [9] deals with the problem of state space in cyclic
systems. The state space explosion often makes verification impractical. According
to [9] two method can be can be used for such. One is the state space reduction.
Second is use algorithms which traverse the state space in a more efficient manner.
Cheng et al. [9] proposed to improve a standard linear timemodel checking algorithm
by taking into account strongly connected components.

Reachability is a fundamental basis for studying the dynamic properties of any
system. Building a Petri network based on an informal or even formal program
specification is a difficult issue. In many cases, the process of building a model in the
form of a Petri net reveals the incompleteness of the specification. This is important
in systems for critical applications. The method is based on the construction of the
reachability tree. From the M0 state all possible transitions that lead to reachable
markings forming nodes of the graph are fired, with successive ones, etc. It has been
shown that the reachability problem take at least exponential space to verify in a
general case [22, 25].

A different modification of Petri net is proposed to tackle the exponential space
problem. However, the equality problem is undecidable, i.e., there is no algorithm for
determining if firing sequences for any two Petri nets are equal. That’s why authors
propose another tool GPenSIM which based on Activity–oriented Petri Nets and
elaborated by the first author of the chapter.

2 Activity-Oriented Petri Net Models of Cyclic Systems

It seems Petri nets are very useful for modeling the repetitive production planning
problem as the problem is basically a discrete system.However, due to a large number
of production resources involved in the repetitive production planning problem, the
resulting Petri netmodel will become huge. Usually, even for a simple problemwith a
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few resources, the resulting Petri net model is very large [10]. Activity-oriented Petri
Nets (AOPN) is a methodology that provides smaller Petri net models of systems
that involves a large number of resources [10, 12].

The model building with AOPN is performed in two steps [13]: In the first step
(phase-I), the static Petri Net graph is developed. In the first step, only the activities
considered for developing the Petri Net graph, and the resources are not considered.
By taking only the activities (which will be represented by transitions in the Petri
Net graph), a smaller Static Petri Net graph is yielded.

In the second step (phase-II), the run-time dynamic model is developed. In this
step, the following run-time details are considered: transitions (activities) requesting
the resources, consuming the resources if they allocated, and then releasing the
resources after completion of the activity.

The Run-Time Petri Net Model Example

The considered, repetitive production planning problem involves three processes,
having three, four, and two activities, respectively. Also, there are four resources
involved in the problem. By the phase-I Developing the static Petri net graph, the
static Petri net graph shown in the Fig. 1 is obtained, which only possess the activities
of the three processes and the precedence relationship between them. In the phase-II
Developing the run-time model, all the run-time details are added to the static Petri
net graph to make it as a dynamic model. For example, the following dynamic details
are added to the model:

p22p21 p23 p24 t24 p2et23t22t21

p12p11 p13 p1et13t12t11

p32p31 p3et32t31

Process-1

Process-2

Process-3

p22p21 p23 p24 t24 p2et23t22t21

p12p11 p13 p1et13t12t11

p32p31 p3et32t31

Process-1

Process-2

Process-3

Fig. 1 Static Petri net graph of the example
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• The connection between the activities and the resources: TheResource-Allocation-
Policy (RAP) defines the set of resources that can perform the specific activities
of a process (mp1,1 to mp1,n).

• The expected duration of the activities (cycle times): The cycle time (mp2, j) of
the process-i becomes the firing times of the respective transition tij.

3 General-Purpose Petri Net Simulator

General-purpose Petri net simulator (GPenSIM) is a MATLAB toolbox. GPenSIM
is for modeling, simulation, performance analysis, and control of discrete systems.
GPenSIM is relatively new software. However, GPenSIM is already being used by
some universities [7, 8, 19, 23]. The users report that the reasons for using GPenSIM
is its simplicity of learning and using, and its flexibility to create newer functionality
[7, 8, 11, 14, 19, 23]. Implementing a Petri net model with GPenSIM usually results
in four M-files [11, 14]:

1. Petri net Definition File (PDF): A PDF declares the static Petri net graph: the set
of places, the set of transitions, and the set of arcs are declared in this file.

2. Main Simulation File (MSF): The MSF declares the initial dynamics (e.g., initial
tokens in the places, firing times of the transitions, firing costs of the transitions)
and runs the simulations. When the simulation terminates, the code for plotting
and printing the simulation results are also coded in this file.

3. The pre-processor file (COMMON_PRE): If there are additional conditions for
the enabled transitions to satisfy before firing, these conditions are coded in the
COMMON_PRE file.

4. The post-processor file (COMMON_POST): If there are any post-firing actions
to be performed after firing of transitions, these actions can be coded in the
COMMON_POST file.

For model checking (discussed in the following section), the reachability graph
has to be generated. This is done by calling the function ‘cotree’ in the MSF.

4 Automatic Model Checking Method

In this section, a running example is used to show how automatic model checking
can be done for repetitive production systems.

Running Example:

The running example is shown in Fig. 2, which involves two CNC machines and a
robot. The operational specifications of the system:

1. To start a cycle, a raw part must be available on the incoming conveyor belt, and
the robot is also available.
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Robot

Input
Conveyor Belt

Horizontal
CNC Machine

Vertical
CNC Machine

Output
Conveyor Belt

Fig. 2 A cyclic production system

2. The robot moves a raw part from the conveyor and loads it at the horizontal
machine.

3. The milling operations are performed at the horizontal machine while the robot
backs off (returns).

4. The robot unloads the semi-finished part from the horizontal machine, loads it to
the vertical machine and then it returns.

5. The drilling operation is performed at the vertical machine, and simultaneously
the robot performs step 2.

6. The robot unloads the finished part from the vertical machine, deposits it on the
conveyor and returns.

In normal operations, the steps 2–6 are repeated.

The Petri Net Model

Figure3 shows the Petri Net model. Table1 presents the elements (transitions and
places) involved in themodel. Figure4 shows the reachability graph when the system
works on two input materials.

GPenSIM Implementation of the Petri Net

The two files MSF and PDF are given below.
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IB

pR

tIB2Mill tMill tMill2Drill

tDrill
OB

tDrill2OB

ibMill obMill

ibDrill

obDrill

Fig. 3 The Petri net model

Table 1 The elements of the Petri net model

Place Transition

IB: the input buffer for raw material –

pR: availability of the robot tIB2Mill: the activity of robot moving raw
material from IB into ibMill

ibMill: the input buffer of the milling machine tMill: milling operation

obMill: the out buffer of the milling machine tIB2Mill: the activity of robot moving
semi-product from obMill to ibDrill

ibDrill: the input buffer of the drilling machine tDrill: drilling operation

obDrill: the output buffer of the drilling
machine

tDrill2OB: the activity of robot moving
completed product from obDrill to OB

OB: the output buffer for the products –

MSF:

% Repetitive Production System

% MSF: the main file to run simulation

global global_info

png = pnstruct(’PDF_rps’);

dyn.m0 = {’IB’,2, ’Robot’,1};

dyn.ft ={’allothers’, 2};

pni = initialdynamics(png, dyn);

cotree(pni, 1, 0);

PDF:
function [png] = PDF_rps()

% file: PDF_rps.m:

% PDF for "Repetitive Production System"
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Fig. 4 Reachability graph generated from the Petri net model

png.PN_name = ’Repettive Production System’;

png.set_of_Ps={’IB’,’ibMill’,’obMill’, ...

’ibDrill’, ’obDrill’, ’OB’, ’Robot’};

png.set_of_Ts = {’tIB2Mill’,’tMill’,’tMill2Drill’,

’tDrill’, ’tDrill2OB’};

png.set_of_As = {...

’IB’,’tIB2Mill’,1, ’Robot’,’tIB2Mill’,1,... %tIB2Mill

’tIB2Mill’,’ibMill’,1, ... % tIB2Mill

’ibMill’,’tMill’,1, ’tMill’,’Robot’,1, ’tMill’,

’obMill’,1, ... % tMill

’obMill’,’tMill2Drill’,1, ’Robot’,’tMill2Drill’,

1,...% tMill2Drill

’tMill2Drill’,’ibDrill’,1, ’tMill2Drill’,’Robot’,

1,... % tMill2Drill

’ibDrill’,’tDrill’,1, ’tDrill’,’obDrill’,

1, ... % tDrill
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’obDrill’,’tDrill2OB’,1, ’Robot’,’tDrill2OB’,

1,... ... % tDrill

’tDrill2OB’,’Robot’,1, ’tDrill2OB’,’OB’,

1, ... % tDrill2OB

};

Model Checking on the Petri Net Model

Since the robot is involved in four different activities involving the two machines, a
mishap can happen. For example, the robot places the part produced by the drilling
machine into the input buffer of the milling machine, instead of the output buffer
OB. Hence, the model is checked for the following properties, generally known as
the safeness properties:

Property-1: only the raw input materials enter the input buffer of the milling
machine.

Property-2: after the milling operation, the robot transport the part from the out
buffer of the milling machine immediately into the input buffer of the
drilling machine.

Property-3: after the drilling operation, the robot moves the part right into the
output buffer OB.

Using CTL, these properties can be formally specified as follows:

Property-1: IB U ibMill
Property-2: tMill −→ obMill U ibDrill
Property-3: tDrill2OB −→ N OB

It can be easily verified that all these properties are satisfied by the reachability
graph shown in Fig. 4. For example, Fig. 5 shows that the property 3 being satisfied;
in Fig. 5, the operation tDrill2OB (marked with continuous red ovals) is immediately
followed by states that show the part in output buffer OB (marked with broken green
ovals).

5 Remarks and Conclusions

Activity-oriented Petri Nets (AOPN) is a discrete-event modeling language that is an
extension of the Resource-Oriented Petri Net. AOPN with which resources can be
abstracted away from thePetri netmodel allows to significantly reduce the complexity
and size of Petri network models. This is particularly important in the context of
using AOPN implementation as an effective and efficient tool for modeling and
analysis of discrete production systems, for which models, the use of standard Petri
net models significantly increases their complexity. The chapter presents a computer
implementation of the AOPN concept in the form of GPenSIM software on the
MATLAB platform. An incorporating Automatic Model Checking into GPenSIM
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Fig. 5 Property-3 is satisfied

has been proposed. This gives the opportunity to exhaustively checks all the states
of the system, to see whether any state meets a given property specification. The
presented extension also allows to automatically check the availability capability
between two known states, being the last and first state of the source and target state
established in cyclic production. This is particularly important in the development of
methods of determining the schedule in transient phases, between two known steady-
states established for cyclic production (job shop transient scheduling problem).
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