
Indexing for Skyline Computation

A Comparison Study

Markus Endres(B) and Erich Glaser

Faculty of Computer Science and Mathematics, University of Passau,
Innstr. 33, 94032 Passau, Germany

markus.endres@uni-passau.de, erichglaser@gmail.com

Abstract. Skyline queries enable satisfying search results by delivering
best matches, even if the filter criteria are conflictive. Skyline algorithms
are often classified into generic and index-based approaches. While there
are uncountable papers on the comparison on generic algorithms, there
exists only a few publications on the effect of index-based Skyline compu-
tation. In this paper, we give an overview on the most recent index-based
Skyline algorithms BBS, ZSky, and SkyMap. We conducted comprehen-
sive experiments on different data sets and present some really interesting
outcomes.

Keywords: Skyline · Pareto · Index · BBS · ZSky · SkyMap

1 Introduction

Preferences in databases are a well established framework to create personalized
information systems [7]. Skyline queries [1] are the most prominent representa-
tives of these queries; they model equally important preferences.

More detailed: Given a data set D, a Skyline query returns all objects that are
not dominated by any other object in D. An object p is dominated by another
object q, if q is at least as good as p on all dimensions and definitely better
in at least one dimension. Thus, a Skyline query computes all Pareto-optimal
objects w.r.t. to a preference or feature function and has many applications in
multi-criteria optimization problems.

As an example consider Table 1. Imagine that the objects are hotels and the
x and y coordinates in the 2-dim space correspond to the price and distance to
the beach. The target is to find the cheapest hotels which are close to the beach.
Then this query would identify the hotels {p1, p2, p3, p5, p6} as the Skyline result.
All objects in this set are indifferent and dominate all other objects.

The main problem with Skyline queries is to efficiently find the set of non-
dominated objects from a large data set, because Skyline processing is an expen-
sive operation. Its cost is mainly constituted by I/O costs in accessing data from
a secondary storage (e.g., disks) and CPU costs spent on dominance tests.

There exist several algorithms for Skyline processing which, in general, can
be divided into generic and index-based techniques.
c© Springer Nature Switzerland AG 2019
A. Cuzzocrea et al. (Eds.): FQAS 2019, LNAI 11529, pp. 31–42, 2019.
https://doi.org/10.1007/978-3-030-27629-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27629-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-27629-4_6

32 M. Endres and E. Glaser

Table 1. Sample data set for Skyline.

Object p1 p2 p3 p4 p5 p6 p7 p8 p9

x 3 1 2 3 5 7 6 4 6

y 3 6 4 7 2 1 2 4 6

Generic algorithms are often capable to evaluate each kind of preference
(modeled as irreflexive and transitive order [4]) due to an object-to-object com-
parison approach. However, in a worst-case scenario the generic algorithms show
a quadratic runtime O(n2) in the size n of the input relation. On the other hand,
index-based algorithms tend to be faster, but are less flexible – they are designed
for quite static data, flat query structures and have a high maintenance overhead
associated with database updates [6]. In general, they cannot deal with complex
preference queries, where, e.g., intermediate relations are dynamically produced
by a Cartesian product or a join.

As Skyline queries have been considered as an analytical tool in some com-
mercial relational database systems [2,11], and the data sets to be processed in
real-world applications are of considerable size, there is definitely the need for
improved query performance. And indexing data is one natural choice to achieve
this performance improvement. Also, Lee et al. [9] show that a wide variety of
special Skyline queries (k-dominant Skylines, Skybands, Subspace Skylines, etc.)
can be supported using a single index structure. While indexes can dramatically
speed-up retrieval, they also introduce maintenance costs and tend to quickly
degenerate on higher dimensional data.

In this paper, we compare the best known index algorithms for Skyline com-
putation, namely BBS [12], ZSky [8,9], and SkyMap [14] w.r.t. their perfor-
mance, since search efficiency is the most important performance criteria using
this kind of queries. We will present comprehensive experiments on synthetic
and real-world data to evaluate the behavior in different scenarios in order to
find the best approach for one’s field of application.

The rest of the paper is organized as follows: Sect. 2 presents background on
Skylines and we introduce the index-based Skyline algorithms used in this paper
in Sect. 3. Section 4 contains our comprehensive experiments and in Sect. 5 we
give some final remarks.

2 Preliminaries

The aim of a Skyline query or Pareto preference is to find the best matching
objects in a data set D, denoted by Sky(D) [3]. More formally:

Definition 1 (Dominance and Indifference). Assume a set of vectors D ⊆
R

d. Given p = (p1, ..., pn), q = (q1, ..., qd) ∈ D, p dominates q on D, denotes as
p ≺ q, if the following holds:

p ≺ q ⇔ ∀i ∈ {1, ..., d} : pi ≤ qi ∧ ∃j ∈ {1, ..., d} : pj < qj (1)

Indexing for Skyline Computation 33

Note that following Definition 1, we consider a subset D ⊆ R
d in that we

search for Skylines w.r.t. the natural order ≤ in each dimension. Characteristic
properties of such a data set D are its dimensionality d, its cardinality n, and
its Skyline size |Sky(D)|.
Definition 2 (Skyline Sky(D)). The Skyline Sky(D) of D is defined by the
maxima in D according to the ordering ≺, or explicitly by the set

Sky(D) := {p ∈ D | �q ∈ D : q ≺ p} (2)

In this sense, the minimal values in each domain are preferred and we write
p ≺ q if p is better than q.

In the introductory example we have Sky(D) = {p1, p2, p3, p5, p6}.

3 Algorithms

In this section we review the state-of-the-art index-based Skyline algorithms
BBS, ZSky, and SkyMap as well as BNL as an object comparison approach.

3.1 BBS

BBS (Branch-and-Bound Skyline) [12,13] is based on a nearest neighbor (NN)
search and uses R-trees for data partitioning. As an example consider Fig. 1a
taken from [8]. The object p1 is the first Skyline object, since it is the NN to
the origin. The objects p4, p8, and p9 fall into the dominance region of p1 and
therefore can be discarded. p3 is the second NN (not worse than p1) and hence
is another Skyline object. The same idea applies to p5 (which dominates p7) and
p2 and p6. All non-dominated objects build the Skyline.

(a) BBS. (b) Main-memory R-
tree.

Fig. 1. The BBS algorithm, cp. [8].

BBS uses a main-memory R-tree to perform dominance tests on every exami-
nee (i.e., data object or index node) by issuing an enclosure query. If an examinee

34 M. Endres and E. Glaser

is entirely enclosed by any Skyline candidate’s dominance region, it is dominated
and can be discarded. For example, in Fig. 1b, p8 is compared with the mini-
mum bounding rectangles (MBR) Ba and Bb. Since p8 is in Ba, it is possibly
dominated by some data objects enclosed by Ba. Hence, p8 is compared with the
dominance regions of all the data objects inside Ba and found to be dominated
by p1 and p3.

3.2 ZSky

ZSky is a framework for Skyline computation using a Z-order space filling curve
[9]. A Z-order curve maps multi-dimensional data objects to one-dimensional
objects. Thereby each object is represented by a bit-string computed by inter-
leaving the bits of its coordinate values, called Z-address, which then can be used
for B-tree indexing. Through the Z-addresses the B-tree imposes a pre-sorting
on the data, which can be exploited for dominance tests: No database item can
dominate any item having a lower Z-address. These observations lead to the
access order of the data objects arranged on a Z-order curve.

In Fig. 2a the data space is partitioned into four regions I to IV. Region I is
not dominated by any other object, and all objects in region IV are dominated
by region I. Region II and III are incomparable. These principles also apply
to subregions and single coordinates. Using a Z-order curve, region I should be
accessed first, followed by region II and III, and finally region IV. The access
sequence therefore follows the mentioned Z-order curve as seen in Fig. 2b.

With effective region-based dominance tests, ZSky (more accurate ZSearch)
can efficiently assert if a region of data objects is dominated by a single object
or a region of Skyline objects. In each round, the region of a node is examined
against the current Skyline candidate list. If its corresponding region is not
dominated, the node is further explored.

(a) ZSky regions. (b) A Z-order curve.

Fig. 2. ZSky example, cp. [9].

Z-Sky can also be used with bulkloading. Bulkloading builds a ZB-tree in
a bottom-up fashion. It sorts all data objects in an ascending order of their
Z-addresses and forms leaf nodes based on every N data objects. It also puts
every N leaf nodes together to form non-leaf nodes until the root of a ZB-tree
is formed.

Indexing for Skyline Computation 35

3.3 SkyMap

Selke and Balke [14] proposed SkyMap for Skyline query computation. In general,
SkyMap is based on the idea of the Z-order curve, but relies on a trie (from
retrieval) indexing structure instead on a ZB-tree. In a trie (also known as Prefix
B-tree), internal nodes are solely used for navigational purposes, whereas the leaf
nodes store the actual data. SkyMap is a multi-dimensional extension of binary
tries, which additionally provides an efficient method for dominance checks. The
SkyMap index has primarily been designed to resemble the recursive splitting
process of Z-regions.

When traversing a SkyMap index while looking for objects q dominating
an object p, one can skip any node (along with all its children) whose cor-
responding Z-region is worse than p w.r.t. at least one dimension. Navigation
within the SkyMap index is particularly efficient by relying on inexpensive bit-
wise operations only. In this sense, SkyMap promises efficient navigation and
index maintenance which should result in a higher performance in comparison
to Z-Sky.

3.4 BNL

BNL (Block-Nested-Loop) was developed by Börzsönyi [1] in 2001. The idea of
BNL is to scan over the input data set D and to maintain a window (or block)
of objects in main memory containing the temporary Skyline elements w.r.t. the
data read so far. When an object p ∈ D is read from the input, p is compared to
all objects of the window and, based on this comparison, p is either eliminated,
or placed into the window. At the end of the algorithm the window contains the
Skyline. The average case complexity is of the order O(n), where n counts the
number of input objects. In the worst case the complexity is O(n2) [1].

The major advantage of a BNL-style algorithm is its simplicity and suitability
for computing the Skyline of arbitrary partial orders [4]. Note that BNL is not
an index approach, but is used as a baseline algorithm in our experiments.

4 Experiments

In this section we show our comprehensive comparison study on index-based
Skyline algorithms, i.e., BBS, ZSky, ZSky-Bl (ZSky with bulkloading), and
SkyMap. As a base line algorithm we used the generic BNL. In all our exper-
iments the data objects and index structures are held in main memory as has
also been done by the original works [9,10,12] and [14]. All experiments were
implemented in Java 1.8 and performed on a common PC (Intel i7 4.0 GHz CPU,
16 GB RAM) running Linux. We use a maximum of 4 GB RAM for the JVM.

Similar to most of the related work in the literature, we use elapse
time/runtime as the main performance metric. Each measurement was based
on 16 repetitions from which we neglected the four best and four worst run-
times. From the remaining 8 measurements we used the average runtime in our
figures.

36 M. Endres and E. Glaser

Four our synthetic data sets we used the data generator commonly used in
Skyline research [1] and that one was also used by the original papers [9,12,14].
We generated independent (ind), correlated (cor), and anti-correlated (anti) data
and varied the number of dimensions (d) and the number of input objects (n).
For the experiments on real-data, we used the well-known Zillow, House, and
NBA data sets which will be explained in detail later. Due to the restricted space
in this paper we only present some characteristic results. More experiments and
details can be found in our Technical Report [5].

4.1 Effect of Data Dimensionality

This section considers the influence of the dimensions d on the runtime of the
algorithms. We varied d ∈ {4, 6, 8, 10, 15, 20, 25, 30}, where each dimension has
the integer domain [0, 1024), and used different data distributions. We fixed
n = 100K, and plotted the elapsed time in log scale against dimensionality.

Independent Data. Figure 3 shows our results on synthetic independent data.
Considering the index construction (on the top right, “Index”), BBS is worst and
ZSky-Bl is best, because there are no special computations due to bulkloading. We
also observe that the index construction time increases with growing dimensions.
For the Skyline computation time (on the top left, “Skyline”), BNL outperforms
some index algorithms, but has the highest runtime from 10 dimensions on. Note,
that the size of the Skyline is nearly the size of the input data from 20 dimensions
on and therefore the computation costs are nearly equal in these cases. In general,
BBS is the slowest algorithm, whereas there is nearly no difference between ZSky
and ZSky-Bl. Based on the incremental insert of objects, we only get slightly better
Z-regions. In summary, BNL performs well for less number of dimensions, whereas
SkyMap performs better with increasing dimensions.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

4 6 8 10 15 20 25 30

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

4 6 8 10 15 20 25 30

Index

 0.01

 0.1

 1

 10

 100

 1000

4 6 8 10 15 20 25 30

Skyline + Index

R
un

tim
e

[s
]

d

Fig. 3. Independent data. Runtime w.r.t. dimensionality.

Indexing for Skyline Computation 37

Table 2(a) summarizes some statistics for the evaluation, e.g., the size of the
Skyline, and the number of dominance tests. The dominance tests also include
the comparison between regions to objects and other regions in BBS and ZSky. In
particular, the number of dominance tests is very high for BNL and BBS, which
are mainly based on object-to-object comparisons. On the other hand, ZSky and
SkyMap are able to sort out leafs or inner nodes of the index structure, which
leads to a etter performance and less comparisons.

Table 2. Dominance tests ·106 w.r.t. dimensionality.

Dim Skyline BNL BBS ZSky ZSky-Bl SkyMap

4 246 0.472 0.211 0.199 0.258 0.229
6 2486 8 5 7 7 2
8 9671 88 51 32 31 9

10 25673 465 336 95 94 33

15 76944 3265 2967 411 409 168
20 97034 4794 4709 602 599 285
25 99806 4988 4980 649 647 315
30 99995 4999 4999 650 648 316

(a) Independent data.

Dim Skyline BNL BBS ZSky ZSky-Bl SkyMap

4 3465 17 76 31 34 16
6 14076 175 507 139 139 46
8 34278 823 1741 325 324 123

10 58508 2108 3346 612 610 415

15 94400 4603 5892 1066 1063 804
20 99669 4979 6295 1169 1166 876
25 99933 4995 6242 1193 1189 924
30 99978 4999 6187 1185 1182 921

(b) Anti-correlated data.

Anti-correlated Data. Figure 4 shows our results on anti-correlated data.
Anti-correlated data is the worst-case for Skyline computation, because there
are many indifferent objects and the result set is large. The costs for index
creation and Skyline computation is very similar to independent data. Consid-
ering the total costs (“Skyline + Index”), BNL is better than all index-based
approaches until 6 dimensions. In higher dimensions BBS, ZSky, and ZSky-Bl are
nearly equally good and all are outperformed by SkyMap. Furthermore, SkyMap
is much better than all other algorithms w.r.t. the pure Skyline computation.
These results are also reflected by the numbers in Table 2(b). SkyMap uses the
lowest number of dominance tests.

 0.01

 0.1

 1

 10

 100

 1000

4 6 8 10 15 20 25 30

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

4 6 8 10 15 20 25 30

Index

 0.01

 0.1

 1

 10

 100

 1000

4 6 8 10 15 20 25 30

Skyline + Index

R
un

tim
e

[s
]

d

Fig. 4. Anti-correlated data. Runtime w.r.t. dimensionality.

38 M. Endres and E. Glaser

4.2 Effect of Data Cardinality

In the next experiments we considered the influence of the data input size n using
the following characteristics: Integer domain in [0, 1024), d = 8 dimensions, input
size n ∈ {10K, 100K, 500K, 1000K, 2000K}.

Independent Data. Figure 5 shows that ZSky and ZSky-Bl perform worse
from n = 500K objects on w.r.t. the Skyline computation. Even BNL as an
object-to-object comparison algorithm is faster. This is based on the fact that
the underlying ZB-tree constructs index nodes very fast, and due to less common
prefixes this results in very large Z-regions which must be checked for dominance.
SkyMap is definitely better than its competitors, because of its trie index struc-
ture. Also BBS is better than the ZSky approaches, although it is the oldest of
all algorithms. On the other hand, BBS is really worse w.r.t. the index construc-
tion time because of the linear splits. The SkyMap sorting is a bit more costly
than the filling of the ZB-trees via bulkloading.

Table 3(a) shows the number of dominance tests, where SkyMap clearly out-
performs all other algorithms. It is notable that in ZSky the number of index
nodes increase. Therefore, the algorithm builds larger Z-regions, which in the
end lead to a higher runtime.

 0.01

 0.1

 1

 10

 100

 1000

10k 100k 500k 1000k 2000k

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

10k 100k 500k 1000k 2000k

Index

 0.01

 0.1

 1

 10

 100

 1000

10k 100k 500k 1000k 2000k

Skyline + Index

R
un

tim
e

[s
]

n

Fig. 5. Independent data. Runtime w.r.t. input size.

Anti-correlated Data. Figure 6 and Table 3(b) show our results on anti-
correlated data. Anti-correlated data lead to many Skyline objects and therefore
are more challenging for Skyline algorithms. Clearly, BNL shows a bad perfor-
mance because of many object comparisons. BBS is quite good on less data
objects but slows down with increasing number of objects. Even ZSky becomes
worse because of larger Z-regions. The winner is definitely SkyMap, which out-
performs all other algorithms by far.

Indexing for Skyline Computation 39

Table 3. Dominance tests ·106 w.r.t. input size.

n Skyline BNL BBS ZSky ZSky-Bl SkyMap

10k 2591 5.5 3.5 2.2 2.1 1.8
100k 9671 88 51 32 31 9
500k 22302 539 287 239 243 48

1000k 30332 1086 556 537 562 77
2000k 39301 2048 994 1215 1300 132

(a) Independent data.

n Skyline BNL BBS ZSky ZSky-Bl SkyMap

10k 5754 21.8 32.4 8.7 8.7 5.7
100k 34278 823 1741 325 324 123
500k 103719 8403 23265 2890 2877 1284

1000k 164304 21457 70307 7594 7569 3683
2000k 250442 53123 199088 1890 18829 10561

(b) Anti-correlated data.

 0.01

 0.1

 1

 10

 100

 1000

 10000

10k 100k 500k 1000k 2000k

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

10k 100k 500k 1000k 2000k

Index

 0.1

 1

 10

 100

 1000

 10000

10k 100k 500k 1000k 2000k

Skyline + Index

R
un

tim
e

[s
]

n

Fig. 6. Anti-correlated data. Runtime w.r.t. input size.

4.3 Effect of Domain Size

We now examine the influence of the domain size. Instead of considering domains
in [0, 1024), we utilize a domain size of [0, {25, 210, 215, 220, 225, 230}) for each
dimension. In addition, we set d = 5, n = 106 and used independent data.

Figure 7 shows our results. It is notable that ZSky is highly efficient for
[0, 25), but worse for higher domains w.r.t. Skyline computation runtime. BBS
and BNL are much better than ZSky and SkyMap for higher dimensions. This
is due to the Z-addresses, which are stored as bits, and these bits are based on
the domain values. That means, when using a maximal domain value of 25 on
5 dimensions we need 25 bits per Z-address, and 150 bits for 230 values. This
leads to the high computation costs. Therefore, algorithms using Z-addresses are
mainly applicable for “low-cardinality” domains. On the other hand, the runtime
of BNL and BBS are quite good, because they are based on an object comparison
where a high or low cardinality domain does not matter. Considering the index
constructions costs, BBS and ZSky are worse than ZSky-Bl and SkyMap.

Table 4 shows the number of dominance tests. SkyMap is better than its
competitors in most cases w.r.t. the dominance tests, but performs worse w.r.t.
the runtime.

40 M. Endres and E. Glaser

 0.001

 0.01

 0.1

 1

 10

 100

5 10 15 20 25 30

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

5 10 15 20 25 30

Index

 0.001

 0.01

 0.1

 1

 10

 100

5 10 15 20 25 30

Skyline + Index

R
un

tim
e

[s
]

Exponent for base 2

Fig. 7. Independent data. Runtime w.r.t. domain size.

Table 4. Independent data. Domi-
nance tests ·106 w.r.t. the domain size.

Domain size Skyline BNL BBS ZSky ZSky-Bl SkyMap

25 25 2.1 0.2 0.009 0.03 1.0

210 1277 9.2 5.3 8.5 11.3 2.8

215 1787 12.1 7.7 17.7 20.0 3.4

220 1842 12.3 7.5 27.8 28.6 3.5

225 1843 12.3 7.6 29.0 29.5 3.5

230 1843 12.3 7.6 29.0 29.5 3.5

Table 5. Real data. Dominance tests.

Data source Zillow House NBA

n 1.288.684 127.931 17.265

dim 5 6 5

Skyline 1 5.762 493

Dominance tests ·103
BNL 1.289 24.945 412

BBS 36 23.669 765

ZSky 0.794 24.305 798

ZSky-Bulk 1.5 23.585 833

SkyMap 1.288 5.389 533

4.4 Real Data

For our experiments on real world data we used the well-known Zillow data set,
which consists of 5 dimensions and 1.288.684 distinct objects. Zillow represents
real estates in the United States and stores information about the number of
rooms, base area, year of construction, and so on. The House data set is a 6-
dimensional database of 127.931 objects and represents the average costs of a
family in the USA for water, electricity, etc. Our third real data set is NBA,
a 5-dimensional data with 17.265 entries about NBA players. For the sake of
convenience, we search the objects with the lowest values, i.e., the smallest flat,
the thrifty American and the worst basketball player. Note that ZSky is not able
to deal with duplicates and hence we reduced all data sets to its essence.

Figure 8 shows that ZSky is best for the Zillow data set. This is obvious,
because the Skyline only exists of 1 object. In contrast, the runtime of SkyMap,
similar to our other tests, is quite high for small Skyline sets, i.e., Zillow and
NBA, whereas it performs better for House. Considering the House data set,
BBS and SkyMap perform best when considering the pure Skyline computation,
even though BBS is much older than SkyMap. On the other hand, SkyMap

Indexing for Skyline Computation 41

produces lower index maintenance costs. In the NBA data set, BNL outperforms
its competitors because the input data set is relatively small.

Table 5 presents the number of dominance tests used to find the Skyline. In
particular, ZSky uses only a few dominance tests on the Zillow data set. This
is due to the early rejection of Z-regions, which avoids many object-to-object
comparisons.

 0.001

 0.01

 0.1

 1

 10

 100

Zillow House NBA

Skyline

R
un

tim
e

[s
]

BNL BBS ZSky ZSky-Bl SkyMap

Zillow Houston NBA

Index

 0.001

 0.01

 0.1

 1

 10

 100

Zillow House NBA

Skyline + Index

R
un

tim
e

[s
]

Real data source

Fig. 8. Real data.

5 Summary and Conclusion

In this paper we briefly reviewed the well-known index-based Skyline algorithms
BBS, ZSky, and SkyMap. In order to apply the most efficient index structure
in database systems, we presented comprehensive experiments on synthetic and
real-world data to evaluate the performance of the presented algorithms. As
expected, none of the algorithms performs best for all experiments. The decision
for an algorithm must be based on the application it should be used for.

BNL is quite good for a small number of dimensions, whereas SkyMap shows
its advantages for higher dimensions. We have also seen that with increasing data
dimensionality the performance of R-trees and hence of BBS deteriorates. On
the other hand, BBS and SkyMap outperform the other algorithms with increas-
ing input size, independently from the data distribution. When considering the
domain size, BNL and BBS are better than their competitors and therefore
should be preferred for high cardinality domains. The Z-Sky approaches do well
in the case of real data. However, one of the drawbacks of Z-Sky is its restriction
to total orders. Duplicates are not allowed. In addition, in the ZB-tree approach
regions may overlap, which hampers effective pruning. Moreover, the mainte-
nance of B-trees is rather expensive in case of frequent updates, in particular
due to rebalancing operations caused by node underflows.

42 M. Endres and E. Glaser

Based on these results, it will be necessary to develop a cost-based algorithm
selection, which automatically decides which approach should be used. But this
remains future work.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
ICDE 2001, pp. 421–430. IEEE, Washington (2001)

2. Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust cardinality and cost estimation for
skyline operator. In: Proceedings of ICDE 2006, p. 64. IEEE Computer Society,
Washington (2006)

3. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. Proc.
SIGMOD Rec. 42(3), 6–18 (2013)

4. Endres, M.: The structure of preference orders. In: Morzy, T., Valduriez, P., Bella-
treche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 32–45. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23135-8 3

5. Endres, M., Glaser, E.: Evaluation of index-based skyline algorithms. Technical
report 2019–01, University of Augsburg, Institute of Computer Science (2019).
https://opus.bibliothek.uni-augsburg.de/opus4/49414

6. Endres, M., Weichmann, F.: Index structures for preference database queries. In:
Christiansen, H., Jaudoin, H., Chountas, P., Andreasen, T., Legind Larsen, H.
(eds.) FQAS 2017. LNCS (LNAI), vol. 10333, pp. 137–149. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59692-1 12

7. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview.
Bull. Tech. Commitee Data Eng. 34(2), 11–18 (2011)

8. Lee, K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z Order. In:
Proceedings of VLDB 2007, pp. 279–290. VLDB Endowment (2007)

9. Lee, K.C.K., Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-SKY: an efficient skyline
query processing framework based on Z-order. VLDB J. 19(3), 333–362 (2009)

10. Liu, B., Chan, C.Y.: ZINC: efficient indexing for skyline computation. Proc. VLDB
Endow. 4(3), 197–207 (2010)

11. Mandl, S., Kozachuk, O., Endres, M., Kießling, W.: Preference analytics in EXA-
Solution. In: Proceedings of BTW 2015 (2015)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of SIGMOD 2003, pp. 467–478. ACM (2003)

13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM TODS 30(1), 41–82 (2005)

14. Selke, J., Balke, W.-T.: SkyMap: a trie-based index structure for high-performance
skyline query processing. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou,
X. (eds.) DEXA 2011. LNCS, vol. 6861, pp. 350–365. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23091-2 30

https://doi.org/10.1007/978-3-319-23135-8_3
https://opus.bibliothek.uni-augsburg.de/opus4/49414
https://doi.org/10.1007/978-3-319-59692-1_12
https://doi.org/10.1007/978-3-642-23091-2_30

	Indexing for Skyline Computation
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 BBS
	3.2 ZSky
	3.3 SkyMap
	3.4 BNL

	4 Experiments
	4.1 Effect of Data Dimensionality
	4.2 Effect of Data Cardinality
	4.3 Effect of Domain Size
	4.4 Real Data

	5 Summary and Conclusion
	References

