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Abstract. Argumentation is one of the most relevant fields in the sphere
of Artificial Intelligence. In particular, Dung’s abstract argumentation
framework (AF) has received much attention in the last twenty years,
and many computational issues have been investigated for different argu-
mentation semantics. Specifically, enumerating the sets of arguments pre-
scribed by an argumentation semantics (i.e., extensions) is arguably one
of the most challenging problems for AFs, and this is the case also for
the well-known semi-stable semantics.

In this paper, we propose an algorithm for efficiently computing the set
of semi-stable extensions of a given AF. Our technique relies on exploit-
ing the computation of grounded extension to snip some arguments in
order to obtain a smaller framework (called cut-AF) over which state-of-
the-art solvers for enumerating the semi-stable extensions are called, as
needed to return the extensions of the input AF.

We experimentally evaluated our technique and found that our app-
roach is orders of magnitude faster than the computation over the whole
AF.

Keywords: Abstract argumentation · Semi-stable semantics ·
Enumeration of semi-stable extensions

1 Introduction

Abstract argumentation has emerged as one of the major fields in Artificial
Intelligence [10,15,41,44].

The capability to handle incompatible and conflicting information make argu-
mentation applicable to several real-world scenarios as, for example, building
arguments by retrieving information from relational databases [20] (within dif-
ferent context applications), such that a query corresponds to determine from a
skeptical viewpoint the truth of such arguments.

In particular, abstract argumentation frameworks (AFs) [21] are a simple,
yet powerful formalism for modelling disputes between two or more agents. The
formal meaning of an AF is given in terms of argumentation semantics, which
intuitively tell us the sets of arguments (called extensions) that can collectively
be used to support a point of view in a discussion.
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Although the idea underlying AFs is very simple and intuitive, most of the
argumentation semantics proposed so far suffer from a high computational com-
plexity [22,24,26–28]. In particular, the enumeration problem of AFs (i.e., the
problem of computing all extensions according to some semantics) is intractable
for several argumentation semantics [23,35], including the semi-stable seman-
tics, one of the more recent semantics introduced in [18] to avoid a problem
the stable semantics has. In fact, although stable semantics is one of the oldest
way to determine which argument can be accepted [30], it is not always true
that, given an argumentation framework, a stable extension for it exists. Com-
plexity bounds and evaluation algorithms for AFs have been deeply investigated
in the literature, and the International Competition on Computational Models
of Argumentation (ICCMA)1 has been established for promoting research and
development of efficient algorithms for computational models of AFs. A chal-
lenging computational tasks of ICCMA is EE-sst, that is, enumerating all the
extensions of a given AF under the semi-stable semantics.

In this paper, we propose an approach for scaling up the computation of the
EE-sst problem.

Contributions. The main contributions of the paper are as follows:

– We propose the concept of cut-AF that allows us to compute all the semi-
stable extensions by focusing only on a smaller portion of the initial AF.
Particularly, the cut-AF is built by removing from the whole AF all those
relationships and arguments belonging to the grounded extension, which is a
proper set of arguments contained in every semi-stable extensions [18].

– We come up with an efficient algorithm for computing the set of all semi-
stable extensions. The algorithm enables the computation of the semi-stable
extensions by focusing only on the cut-AFs and using state-of-the-art AF
solvers.

– An experimental analysis to show the relevance of our approach is presented.
It is carried out by comparing our technique with other state-of-the-art solvers
able to solve both the enumeration problem of semi-stable semantics and
computation of grounded semantics, and show that our technique is at least
400 times faster than the computation from scratch.

2 Preliminaries

We assume the existence of a set Arg of arguments. An (abstract) argumentation
framework [21] (AF ) is a pair 〈A,Σ〉, where A ⊆ Arg is a finite set of arguments,
and Σ ⊆ A × A is a binary relation over A whose elements are called attacks.
Thus, an AF can be viewed as a directed graph where nodes correspond to
arguments and edges correspond to attacks.

Example 1 (Running example). The pair A0 = 〈A0, Σ0〉 where A0 = 〈{a, b, c, d,

e, f, g, h
}

and Σ0 = {(a, b), (b, c), (c, d), (d, a), (f, e), (g, h), (e, a), (h, a)}〉 is an
AF, and the corresponding graph is shown in Fig. 1(a).
1 http://argumentationcompetition.org.

http://argumentationcompetition.org
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Fig. 1. (a) AF A0, (b) AF Cut(A0).

Given an AF 〈A,Σ〉 and arguments a, b ∈ A, we say that a attacks b iff
(a, b) ∈ Σ, and that a set S ⊆ A attacks b iff there is a ∈ S attacking b. We use
S+ = {b | ∃ a ∈ S : (a, b) ∈ Σ} to denote the set of arguments attacked by S.
For instance, in our running example, we have that {b, d}+ = {c, a}.

Moreover, we say that S ⊆ A defends a iff ∀b ∈ A such that b attacks a,
there is c ∈ S such that c attacks b. In our running example, we have that {b, d}
defends both b and d, as b defends d from the attack of c, and d defends b from
the attack of a.

A set S ⊆ A of arguments is said to be:

(i) conflict-free, if there are no a, b ∈ S such that a attacks b;
(ii) admissible, if it is conflict-free and it defends all its arguments.

For instance, in our example, {b, d} is conflict-free and thus it is admissible since,
as said earlier, it defends all of its arguments.

An argumentation semantics specifies the criteria for identifying a set of
arguments that can be considered “reasonable” together, called extension.

A complete extension (co) is an admissible set that contains all the arguments
that it defends. It is easy to see that, the complete extensions of the AF in
Fig. 1(a) are {f, g}, {a, c, f, g}, {b, d, f, g}.

A complete extension S is said to be:

– grounded (gr) iff it is minimal (w.r.t. ⊆);
– semi-stable (sst) iff S ∪ S+ is maximal (w.r.t. ⊆).

Given an AF A and a semantics S ∈ {co, gr, sst}, we use ES(A) to denote
the set of S-extensions for A, i.e., the set of extensions for A prescribed by
semantics S.

All the above-mentioned semantics admit at least one extension, while the
grounded admits exactly one extension [21]. The grounded semantics is called
deterministic or unique status as |Egr(A)| = 1, whereas the semi-stable semantics
is called nondeterministic or multiple status since |Esst(A)| ≥ 1.

Example 2. Continuing with our example, we have that the grounded extension
of A0 is Egr = {f, g} (i.e., Egr(A0) = {{f, g}}). Moreover, the set of semi-stable
extensions is Esst(A0) = {{a, c, f, g}, {b, d, f, g}}.



142 G. Alfano

It is well-known that, for any AF A and semantics S ∈ {gr, sst}, it is the
case that ES(A) ⊆ Eco(A), and let Egr and Esst be the grounded and semi-stable
extensions, for every E ∈ Esst(A), it holds that Egr ⊆ E. Indeed, in the example
above, we have that Egr = {f, g} ⊆ Esst = {a, c, f, g} ⊆ Eco = {a, c, f, g} and
Egr = {f, g} ⊆ Esst = {b, d, f, g} ⊆ Eco = {b, d, f, g}.

3 Enumerating Semi-stable Extensions

In this section, we provide an approach for efficiently enumerating all the semi-
stable extensions of a given AF. Our approach relies on first computing the
grounded extension and then using it to define a smaller AF, called cut-AF, to
be used as the starting point for enumerating the semi-stable extensions.

Definition 1. Let A = 〈A,Σ〉 be an AF, and Egr the grounded extension for
A. The cut-AF for A is Cut(A) = 〈Acut, Σcut〉 where:

– Acut = A \ (Egr ∪ E+
gr);

– Σcut = Σ \ {(a, b) | a ∈ (Egr ∪ E+
gr) or b ∈ (Egr ∪ E+

gr)}.
Thus, the cut-AF is obtained by removing from the initial AF all the argu-

ments belonging to the grounded extension as well as the arguments attacked by
some argument in the grounded extension. Consistently with this, all the attacks
towards or from the arguments removed are deleted as well.

Example 3. Continuing with our example, since Egr = {f, g}, we have that
Cut(A0) = 〈Acut, Σcut〉 where:

– Acut = A0 \ ({f, g} ∪ {h, e}) = {a, b, c, d}, and
– Σcut = Σ0 \ {(f, e), (e, a), (g, h), (h, a), } = {(a, b), (b, c), (c, d), (d, a)}.

The graph corresponding to the cut-AF is shown in Fig. 1(b).

Observe that computing the cut-AF con be accomplished in polynomial time
w.r.t. the size (i.e., number of arguments/attacks) of the initial AF.

The following theorem states that every semi-stable extension E of an AF
A one-to-one corresponds to a semi-stable extension of the AF Cut(A), and we
can obtain a semi-stable extension of the whole AF by joining a semi-stable
extension of the cut-AF with the grounded extension of A.

Theorem 1. Let A = 〈A,Σ〉 be an AF, Egr the grounded extension for A, and
Cut(A) = 〈Acut, Σcut〉 the cut-AF for A. Then, E ∈ Esst(A) iff E = Egr ∪ Ecut

where Ecut ∈ Esst(Cut(A)).

Example 4. Continuing from Example 3, the set of semi-stable extensions of the
cut-AF is Esst(Cut(A)) = {{a, c}, {b, d}}. Using the result of Theorem1, we
obtain that Esst(A) = {{a, c} ∪ Egr, {b, d} ∪ Egr}, where Egr = {f, g}. Thus, we
obtain the semi-stable extensions {f, g, a, c} and {f, g, b, d} (c.f. Example 2).
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3.1 Algorithm

The pseudo-code of our algorithm for computing the set of semi-stable extensions
of an AF is shown in Algorithm 1. It takes as input an AF A, and a percentage
value p that is a parameter used for deciding when the computation should be
carried out by using the cut-AF or not. In fact, in some cases, such as when
the grounded extension of the input AF is empty, the overhead of computing
the cut-AF does not pay off because it will correspond to be the whole initial
framework, and so, computing the semi-stable extensions over the cut-AF would
cost the same as computing the extension on the initial AF plus the overhead of
computing the cut-AF.

Thus, we use parameter p to decide when computing or not the cut-AF. In
particular, if the grounded extension of the given AF is larger than p% of the
number of arguments in the AF, then the cut-AF is computed; otherwise, the
semi-stable extensions are directly computed w.r.t. the whole AF from scratch.
Here, computing the grounded extension is polynomial-time (while computing
the semi-stable extension is hard), and this suggests that the overhead of com-
puting the grounded extension of the input AF is likely to pay off—in Sect. 4
we thoroughly discuss the results of experiments where different values of p are
considered, including p = 0% which means forcing the algorithm to compute the
cut-AF in any case.

Algorithm 1 works as follows. It first computes the grounded extension of the
given AF A (Line 1), and then it checks if the size of the grounded extension
is bigger than or equal to p% of the number of the arguments of A (Line 2).
If this holds, the algorithm proceeds by computing the cut-AF (Line 3). Next,
an external AF-solver SST-Solver is called for enumerating the set of extensions
of the cut-AF (Line 4), from which the extensions of the whole AF are finally
computed at Line 5 using the result of Theorem 1. However, if at Line 2 the size
of the grounded extension is smaller than p% of the number of the arguments
of A, then the set of extensions of A is computed from scratch by calling the
external solver SST-Solver with input the whole AF (Line 7). Finally, the set of
extensions Esst(A) computed by using the cut-AF (Lines 3–5) or not (Line 7) is
returned.

Example 5. Continuing with our running example, if p = 0% then the condition
at Line 2 trivially holds since |Egr| ≥ 0 for every AF. Therefore, the cut-AF
Acut = Cut(A) = 〈{a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}〉 is computed at Line 3.
Next, the set of all semi-stable extensions Esst(Acut) = {{a, c}, {b, d}} of the cut-
AF is computed (Line 4), and the set of semi-stable extensions of the whole AF is
computed at Line 5 by combining the arguments in the grounded extension with
those in the semi-stable extensions of the cut-AF. Therefore, the output of the
algorithm is obtained as follows: Esst(A) = {{{f, g}∪{a, c}}, {{f, g}∪{b, d}}} =
{{f, g, a, c}, {f, g, b, d}}.

Considering now the case that p = 5%, we have again that |Egr| ≥ p·|A| (since
2 ≥ 0.05 · 8 = 0.4), and thus the execution of Algorithm1 is again as above.

Finally, consider the case that p = 30% for which we have that |Egr| 
≥
p · |A| (since 2 
≥ 0.3 · 8 = 2.4). Thus Algorithm 1 directly computes the set
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Algorithm 1. CutSST(A, p)
Input: AF A = 〈A,Σ〉,

A percentage value p.
Output: Set Esst(A) of semi-stable extensions of A.
begin
1: Egr =GR-Solver(A)
2: if |Egr| ≥ p · |A| then
3: Acut = Cut(A)
4: Esst(Acut) =SST-Solver(Acut)
5: Esst(A) = {E | E = Egr ∪ Ecut, where Ecut ∈ Esst(Acut)}
6: else
7: Esst(A) =SST-Solver(A)
8: return Esst(A)

Esst(A) of semi-stable extensions by calling the solver SST-Solver with input the
whole AF (Line 7).

The following theorems states that Algorithm 1 is sound and complete, pro-
vided that the external solvers return the correct results.

Theorem 2. Given an AF A, if GR-Solver and SST-Solver are sound and com-
plete, then Algorithm1 returns the set Esst(A) of semi-stable extensions of A.

4 Implementation and Experiments

We implemented a C++ prototype to evaluate our technique over benchmark
AFs taken from the EE-sst track of ICCMA’17, which consists in determining
all the semi-stable extensions of a given AF. Specifically, we used the AFs in the
datasets named E2 and E3 having more than one semi-stable extension.

Particularly, dataset E2 (resp. E3) consists of 19 (resp. 41) AFs, and a num-
ber of arguments contained in AFs of dataset E2 (resp. E3) that varies from a
minimum value of 61 (resp. 40) to a maximum of 1.2K (resp. 1.9K). Further-
more, the range of the number of attacks in the AFs of dataset E2 (resp. E3)
varies from a minimum of 97 (resp. 72) to a maximum of 10.3K (resp. 218K).

Methodology. For every AF A in each dataset, we first computed the set of all
semi-stable extensions of A by calling Algorithm1, where as external grounded
solver (GR- Solver) is used CoQuiAAS [36], able to resolve the ICCMA’17 track
for computing the grounded extension, as well as for computing all the semi-
stable extensions (SST-Solver) we used ArgSemSAT [19]. Then, the amount of
time required by Algorithm 1 was compared with that required by ArgSemSAT
to compute all semi-stable extension over the given AF A from scratch.

All experiments were carried out on an Intel Core i7-3770K CPU 3.5 GHz
with 12 GB RAM running Ubuntu 16.04.
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Fig. 2. Improvement (i.e. the running time of ArgSemSAT over the running time of
Algorithm 1) for p = 0% (a and d), p = 5% (b and e), and p = 10% (c and f), over
the datasets E2 (first row) and E3 (second row). Circle-shaped data points (coloured
blue) represent AFs having a grounded extension larger than or equal to p% of the
number of the arguments, and thus the cut-AF is computed by executing Lines 3–5
of Algorithm 1. Diamond-shaped data points (coloured red) represent AFs having a
grounded extension smaller than p% of the number of arguments, and thus the cut-AF
is not computed (Line 7 of Algorithm 1 is executed). (Color figure online)

Results. Figure 2 reports the average improvement (log scale) obtained by our
algorithm over the computation from scratch for the AFs in the datasets E2
(first row), and E3 (second row), and for p = 0% (first column), p = 5% (second
column), p = 10% (third column).

Specifically, given an AF A and a percentage value p, we measured the
improvement as follows:

impr(A, p) =
running time of ArgSemSAT with input A

running time of CutSST (A, p)

In Fig. 2, circle-shaped data points (coloured blue) correspond to AFs having
a grounded extension larger than or equal to p% of the number of the arguments.
In these cases, the cut-AF is computed by executing Lines 3–5 of Algorithm 1.
Diamond-shaped data points (coloured red) represent AFs having a grounded
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extension smaller than p% of the number of the arguments, and in this case,
both the cut-AF is not computed and Line 7 of Algorithm 1 is executed.

For each plot in Fig. 2, a solid black line representing the average improve-
ment obtained for the considered dataset and value of p is reported. Moreover,
to easy readability, we also report a dashed grey line corresponding to average
improvement equal to 1. Clearly, an improvement strict less than 1 means that
the overall overhead of computing the grounded extension, and eventually the
cut-AF, does not pay off. However, when the improvement is close to 1, the
overhead is negligible.

From the results in Fig. 2, we can draw the following conclusions:

– Our algorithm significantly outperforms the competitor that computes the
semi-stable extensions from scratch. In fact, the average improvement is
greater than 410 and 2100 over the datasets E2 and E3, respectively, mean-
ing that Algorithm1 is on average at least 410 and 2100 times faster than
ArgSemSAT.

– The smaller the number of arguments of the AFs, the bigger the (average)
improvement obtained. In particular, for the datasets E2 and E3, this implies
that the amount of time required decreases from dozens of minutes (compu-
tation from scratch) to a few seconds (our algorithm).

– The average improvement remains high for p = 0%, that is, when computing
both the grounded extension and the cut-AF irrespectively of the size of the
grounded extension. However, the number of AFs for which the improvement
is too lower than 1 decreases if p > 0%. In particular, for the datasets E2
and E3, using p = 5% is enough for avoiding all the cases for which the
improvement is significantly lower than 1. Thus, using p greater than zero
allows us to reduce the overhead due to the computation of the grounded
extension plus the cut-AF.

– Although increasing the value of p avoids cases where our approach may
work worse than the computation from scratch, using too high values of p
deteriorates performances on average because the cut-AF is not built even
when it would be helpful. In fact, for the datasets E2 and E3, using p = 10%
entails that the cut-AF is not built in vain for the AFs whose improvements
are shown as blue data points in Fig. 2 for p = 5% and become colored red
when passing to p = 10% (since increasing p entails that cut-AF is no longer
computed).

– All in all, the best trade-off between paying the cost of computing the
grounded extension along with the cut-AF and risking to have the overhead
of the computation of the cut-AF seems to be choosing p greater than zero
but no more than 10%.

5 Related Work

Overviews of key concepts in argumentation theory and of formal models of
argumentation in the field of Artificial Intelligence can be found in [9,15,16,44].
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Further discussion regarding uses of computational argumentation as an Agree-
ment Technology can be found in [42]. Several computational problems of AFs
have been studied such as skeptical and credulous reasoning [5], existence of a
non-empty extension, and verifying if a set of arguments is an extension under
different argumentation semantics [22,24–26]. The complexity of the problem
of computing all extensions according to some semantics for AFs has been
recently investigated in [35], where it was shown that the enumeration prob-
lem is intractable under the semi-stable semantics, and, in particular, it is not
in OutputP (“output-polynomial time”, also known as TotalP “total polynomial
time” [34]) even for bipartite AFs.

An approach to deal with the problem of enumerating the semi-stable exten-
sions is proposed in [17], where a new algorithm for computing semi-stable
semantics using dynamic programming on tree decompositions that runs in linear
time on AFs of bounded treewidth is presented. However, this kind of approaches
provide advantages only in case of bounded treewidth, noting that that algorithm
should not be seen as general solvers that outperform standard techniques on
average. This is not case of our technique which performances are not related to
the size of treewidth.

Approaches for dividing AFs into subgraphs have been explored also in the
context of dynamic AFs—AFs which are updated by adding/removing (set of)
attacks/arguments—for which the set of extensions evolves. The division-based
method, proposed by [37] and then refined by [12], divides the updated frame-
work into two parts: affected and unaffected, where only the status of affected
arguments is recomputed after updates. Using the results in [37,39] investigated
the efficient evaluation of the justification status of a subset of arguments in an
AF (instead of the whole set of arguments), and proposed an approach based
on answer-set programming for local computation. In [38], an AF is decomposed
into a set of strongly connected components, yielding sub-AFs located in layers,
which are then used for incrementally computing the semantics of the given AF
by proceeding layer by layer. Focusing on unique-status semantics, the concept
of influenced set was introduced in [31–33] to further restrict the set of affected
arguments defined in [37], while [2] provided an incremental technique for com-
puting some extension of dynamic AFs under multiple-extensions semantics. [13]
proposed an approach exploiting the concept of splitting of logic programs to deal
with dynamic argumentation. [14] investigated whether and how it is possible
to modify a given AF so that a desired set of arguments becomes an extension,
whereas [43] studied equivalence between two AFs when further information
(another AF) is added to both AFs.

Dung’s abstract argumentation framework has been extended along several
dimensions (e.g. [11,40,45]), and techniques for the efficient computation in
dynamic extended AFs were proposed [1,3,4] that, similarly to [32], rely on
identifying portions of the AFs that change after performing updates. Finally,
the approaches recently proposed in [7,8] focused on the efficient computation
of the status of structured arguments in dynamic DeLP-programs [29].
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The above-cited approaches are related to ours because of the idea of reducing
the computation effort by trying to consider a smaller portion of the input AF.
However, our technique relies on the novel idea of using cut-AFs through the
grounded extension and enabling the modular use of external AF-solvers to
compute the set of the semi-stable extensions.

6 Conclusion and Future Work

We introduced a technique for efficiently enumerating the semi-stable extensions
of abstract argumentation frameworks. Our approach is modular with respect
to the solvers used for computing the grounded extensions, as well as the solver
used for the enumeration of semi-stable extensions on the cut-AF—any solver
addressing one of these tasks could be plugged-in and exploited for addressing
the enumeration problem under the semi-stable semantics. A similar approach
is proposed in [6] for enumerating the set of preferred extensions.

We have experimentally investigated the behavior of our technique, and ana-
lyzed the conditions under which building the cut-AF is convenient for comput-
ing the semi-stable extensions. It turned out that it is worth paying the cost
of building the cut-AF after looking at the size of the grounded extension as
the computation of the semi-stable extensions over the cut-AF yields significant
improvements over the computation from scratch.

Future work will be devoted to extending our technique to the enumeration
problem in the presence of other argumentation semantics, such as the stable
semantics [21]. In fact, a stable extension is a complete extension which attacks
all the arguments outside the extension, and the set of stable extensions are
a subset of the set of semi-stable extensions; thus, similarly to the semi-stable
semantics, the grounded extension is contained in every stable extension. For
instance, in our running example the set of the stable extensions coincides with
that of the semi-stable extensions, both considering the cut-AF and the whole
initial one. However, extending the technique to deal with the stable semantics
requires to face up with the fact that a stable extension may not exists for an
AF, and checking this is computationally hard [24].
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