
A Method for Efficient Argument-Based
Inquiry

Bas Testerink1(B), Daphne Odekerken1,2, and Floris Bex2

1 Police Lab AI, Netherlands National Police, Driebergen, The Netherlands
{bas.testerink,daphne.odekerken}@politie.nl

2 Police Lab AI, Utrecht University, Utrecht, The Netherlands
f.j.bex@uu.nl

Abstract. In this paper we describe a method for efficient argument-
based inquiry. In this method, an agent creates arguments for and against
a particular topic by matching argumentation rules with observations
gathered by querying the environment. To avoid making superfluous
queries, the agent needs to determine if the acceptability status of the
topic can change given more information. We define a notion of stability,
where a structured argumentation setup is stable if no new arguments
can be added, or if adding new arguments will not change the status of
the topic. Because determining stability requires hypothesizing over all
future argumentation setups, which is computationally very expensive,
we define a less complex approximation algorithm and show that this is a
sound approximation of stability. Finally, we show how stability (or our
approximation of it) can be used in determining an optimal inquiry pol-
icy, and discuss how this policy can be used to, for example, determine
a strategy in an argument-based inquiry dialogue.

Keywords: Computational argumentation · Inquiry

1 Introduction

When performing inquiry or information seeking, an agent gathers information
from the environment such that it can form an opinion on a particular topic.
There are different strategies that one can consider for an agent [3,7,11]. We
propose a method for capturing agent inquiry policies in a way that is efficient
– both computationally and in terms of the length of the inquiry process. The
knowledge of the agent is modelled as a structured argumentation setup similar
to ASPIC+ [8]. A set of possible queryable literals (observations which can be
made in the future) is also defined as part of the argumentation setup. Given
these queryable literals and the arguments that follow from the current observa-
tions, it can then be determined whether the topic is an acceptable conclusion
[4], and which future observations (i.e. answers to queries) could conceivably
change the acceptability of this conclusion.

c© Springer Nature Switzerland AG 2019
A. Cuzzocrea et al. (Eds.): FQAS 2019, LNAI 11529, pp. 114–125, 2019.
https://doi.org/10.1007/978-3-030-27629-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27629-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-27629-4_13

A Method for Efficient Argument-Based Inquiry 115

In order to avoid making superfluous queries we define a notion of stability :
an argumentation setup is stable if given the possible queries no new arguments
can be added or adding new arguments will not change the acceptability of the
topic. Concretely: does an argument for the topic exist, is this argument in the
grounded extension [4], and can future answers to available queries change these
facts? It is computationally complex to generate all arguments given the current
observations and then calculate the grounded extension. Extra complexity is
added for inquiry because one has to hypothesize on the possible results of future
queries. We therefore we propose a considerably less complex approximation
algorithm for determining stability. We also show that this algorithm provides a
sound approximation of stability: if the approximation algorithm, for example,
determines that the topic is acceptable, it is guaranteed that the topic is in the
grounded extension and further observations cannot change this.

The proposed inquiry method is currently applied in practice for crime inves-
tigation. As an example throughout the paper, we use a simplified version of the
domain of internet trade fraud (e.g. scammers on eBay or fake online stores), and
specifically the situation where a complainant files an official complaint with the
police. Structured argumentation is an obvious way to model the practical and
legal rules concerning a crime [10]. Crime investigation should also be performed
efficiently, as investigative actions (questioning the complainant, requesting the
counterparty’s bank details) inevitably come with a cost. Furthermore, investi-
gation is a stochastic process, as investigative actions are not guaranteed to yield
new information – the complainant might, for instance, not know the requested
information. Our method takes these aspects into account. The method shows
how the argumentation setup can be used to construct a Markov-decision pro-
cess that represents the inquiry task. Any suitable technique can be used to
approximate the optimal policy given the MDP (e.g. dynamic programming
or reinforcement learning). Roughly speaking, the argumentation aspect of the
method determines what kind of information is still relevant, and the policy
learning aspect determines which relevant information to inquire about next.

Due to limited space we had to abbreviate examples and proofs. For the
interested reader we provide extended examples and full proofs1. The rest of
this paper is structured as follows. In Sect. 2 we discuss our base argumenta-
tion formalism. In Sect. 3 we then describe stability, that is, how to hypothesize
over possible future observations, and an algorithm that approximates stabil-
ity, and give soundness and complexity results for the approximation algorithm.
Section 4 discusses our inquiry policy. Section 5 discusses related work and Sect. 6
concludes the paper.

2 Base Formalism

The base formalism for argumentation draws upon ASPIC+ [8] for structured
argumentation and Dung’s grounded semantics [4] for abstract argumentation.

1 Extended examples and proofs: https://preview.tinyurl.com/y656r3ek.

https://preview.tinyurl.com/y656r3ek

116 B. Testerink et al.

From ASPIC+ the concepts of a topic language, knowledge base and defeasi-
ble rules are used. The concepts of queryable literals and a topic are added to
these. The queryable literals are those literals in the topic language of which an
observation might be made. The topic is a special literal of interest for which
the agent aims to get a stable opinion. Together, these components are referred
to as an argumentation setup as defined below. For notation convenience we use
−l to negate a literal l, i.e.: −l = p if l = ¬p and −l = ¬p if l = p, for some
propositional atom p.

Definition 1 (Argumentation Setup, AS). An argumentation setup AS is
a tuple AS = (L,R,Q,K, τ) where:

– L is a logical language consisting of propositional literals, such that if l ∈ L
then also −l ∈ L.

– R is a set of defeasible rules p1...pm ⇒ q s.t. p1, ..., pm, q ∈ L. p1...pm are
called the antecedents of a rule and q the consequent. The antecedents of a
rule are unordered. We refer to a rule p1...pm ⇒ q as ‘a rule for q’.

– Q ⊆ {l ∈ L|l �= ¬p} is a set of non-negated queryable literals.
– K ⊆ L, such that ∀l ∈ K : (−)l ∈ Q ∧ −l �∈ K, is a knowledge base of

observations which is a consistent set of literals.
– τ ∈ L is a topic.

Example 1. As an example, let AS = (L,R,Q,K, τ) be an argumentation setup
for a simplified fraud scenario. Figure 1 depicts the topic language and rules.
We abbreviate in formal examples the literals in the graph to the parenthesized
literals. In this example L consists of literals made of the atoms f , cp, c, p, s and
w, where ‘f’ stands for ‘this is a case of fraud’, ‘c’ for ‘the complainant delivered’,
‘cp’ for ‘the counterparty delivered’, ‘p’ for ‘the complainant paid’, ‘s’ for ‘the
complainant sent a product’ and ‘w’ for ‘the wrong product was delivered’. The
rules are given by R = {p ⇒ c, s ⇒ c, (¬cp, c) ⇒ f , w ⇒ cp, w ⇒ ¬f}. In
the graph we represent a rule with an ‘&’ that points to its consequent and is
undirectionally connected to its antecedents. The idea behind the rules is that
if the complainant delivered in the trade but the counterparty did not, then
defeasibly the setup is a case of fraud. If a wrong product was delivered, then it
is defeasibly not a case of fraud. Finally, if a wrong product was delivered then
arguably the counterparty delivered in the trade, but this could be overruled by
the fact that the complainant considers the ordered product to not have been
delivered. The queryable literals are given by Q = {p, s, w, cp}. This means that
for instance the complainant can be queried for whether he/she paid. As the
topic we take τ = f . We will consider different knowledge bases throughout the
examples.

As per ASPIC+’s formalism, an argument is an inference tree that is con-
structed through the application of rules. The starting points for constructing an
argument are the observations in the knowledge base. They are arguments them-
selves and on top of them new arguments can be made. Cyclic arguments are
forbidden to avoid an infinite number of arguments. This is enforced by requiring

A Method for Efficient Argument-Based Inquiry 117

that the conclusion of an argument cannot occur in any of its subarguments. The
inference function that gives the arguments for a given argumentation setup is
defined next.

Definition 2 (Inference, I). Let AS = (L,R,Q,K, τ) be an argumentation
setup. An argument is an inference A1...Am �→ c such that A1...Am is an
unordered set of arguments called its premises and c ∈ L is its conclusion. We
refer to A1...Am �→ c as ‘an argument for c’. The arguments of AS are given by
I(AS):

– ∅ �→ c ∈ I(AS) iff c ∈ K.
– A1...Am �→ c ∈ I(AS) iff A1...Am are in I(AS) and their conclusions are

c1...cm, and there is a rule c1...cm ⇒ c ∈ R, and c does not occur in any of
the arguments A1...Am.

Example 2. Consider the previously defined argumentation setup and let the
knowledge base be K = {p,¬cp} (the complainant paid but the counterparty
did not deliver). For this example I(AS) = {A1 = (∅ �→ p), A2 = (∅ �→ ¬cp),
A3 = (A1 �→ c), A4 = (A2, A3 �→ f)}. Hence, given this knowledge there is an
argument for fraud.

fraud
(f)

~fraud
(~f)

delivered_c
(c)

paid
(p)

~paid
(~p)

sent
(s)

~sent
(~s)

delivered_cp
(cp)

~delivered_cp
(~cp)

wrong
(w)

~wrong
(~w)

&

& & & &

Fig. 1. A graphical representation of
the example topic language and rules.
Queryable literals are underlined.

Arguments may attack and/or defend
each other. An argument A attacks an
another argument B if A’s conclusion
negates some conclusion of a subargument
of B (a premise attack) or B’s own conclu-
sion (a rebut). In the first case, the attack
is one-sided (from A to B), in the other
case it is two-sided. There is one excep-
tion; an argument cannot be attacked
on a premise or its conclusion if that
premise/conclusion is an observation. The
reasoning behind this is that an observa-
tion is a low-level directly observed piece
of evidence and not defeasibly inferred.
An argument A can defend another argu-
ment B if A attacks attackers for B. The
notion of attack and defense are defined
next.

Definition 3 (Attack, Defense). Let AS = (L,R,Q,K, τ) be an argumenta-
tion setup. For two arguments A,B ∈ I(AS) we say that A attacks B iff A’s
conclusion is c and −c occurs in B and −c �∈ K. A set of arguments X ⊆ I(AS)
defends an argument A ∈ I(AS) iff for each B ∈ I(AS) that attacks A there is
a C ∈ X that attacks B.

The acceptability of arguments is determined by Dung’s grounded semantics
for abstract argumentation [4].

118 B. Testerink et al.

Definition 4 (Grounded Extension, G). Let AS = (L,R,Q,K, τ) be an
argumentation setup. The grounded extension G ⊆ I(AS) of AS is the smallest
set of arguments (w.r.t. set inclusion) such that:

– There is no pair A,B ∈ G such that A attacks B (conflict-free), and
– G = {A ∈ I(AS)|G defends A} (complete)

Example 3. Consider the previously defined argumentation setup and let the
knowledge base be K = {p,¬cp, w} (the complainant paid and the counterparty
delivered the wrong product). For this example I(AS) are the arguments in
Fig. 2. The attack relation is also shown in Fig. 2. The grounded extension for
this example is {A1, A2, A3, A5}. Note that without the observation w, as in
the previous example, the argument A4 for fraud would be in the grounded
extension. Hence, extra observations may change whether or not an argument is
in the grounded extension.

3 Hypothesizing over Future Observations

Fig. 2. A graphical representa-
tion arguments and their attack
relation (the arrows). Boldface
arguments are in the grounded
extension.

An inquiry agent tries to form a stable opin-
ion on its topic literal. An argument for a literal
can be non-existent, in the grounded extension,
or outside the grounded extension. In the lat-
ter case, the argument might be attacked from
within the grounded extension or otherwise from
outside the grounded extension. These four cases
indicate different belief-statuses. If the status
of the topic cannot change by executing more
queries, then the argumentation setup is called
stable. The possible future argumentation setups
are all those setups where the queryable literals
are put in a current knowledge base as either
positive or negative. Stability of an argumenta-
tion setup is defined below.

Definition 5 (Future setups, Stability, F). Let AS = (L,R,Q,K, τ) be an
argumentation setup. The set of all future setups F (AS) consists of all setups
(L,R,Q,K′, τ) such that K ⊆ K′. AS is stable iff any of the following holds:

– Unsatisfiable: For each AS′ ∈ F (AS) there is no argument for τ in I(AS′)
– Defended: For each AS′ ∈ F (AS) there is an argument for τ in the grounded

extension of AS′

– Out: For each AS′ ∈ F (AS) there is an argument for τ in I(AS′) but all
arguments for τ are attacked by an argument in the grounded extension of
AS′

– Blocked: For each AS′ ∈ F (AS) there is an argument for τ in I(AS′) but
not in the grounded extension of AS′ and at least one argument for τ is not
attacked by an argument from the grounded extension of AS′

A Method for Efficient Argument-Based Inquiry 119

Example 4. Let us consider the previous example again where K = {p,¬cp, w}
and the arguments and attack relation are shown in Fig. 2. The blocked case
applies because there exist arguments for f and ¬f (A4 and A7) and they are
both outside the grounded extension. Furthermore, the only queryable literal
that is left is s, which cannot influence this situation if s or ¬s is observed.
Consider also the setup where K = {cp}. For this setup no argument can possibly
exist for f because all potential arguments require ¬cp. Therefore, in that setup
the unsatisfiable case applies. If s, ¬w and ¬cp are observed, then there exists
an argument for f in the grounded extension and no further observations (i.e.
p or ¬p) can change this. Therefore in that case the defended case applies.
Finally, in this example the out case can only apply for the literal ¬cp. This
happens when w and cp are observed. In that case w is a basis for an argument
for cp whilst ¬cp’s observation unilaterally attacks that argument.

A brute-force method for determining stability would be to calculate all pos-
sible future setups and then for each setup calculate the grounded extension to
see whether the topic is stable. This results in possibly 3|Q| different setups to
calculate the grounded extension for. The number of arguments in the grounded
extension given n = |L| is maximally n ·g(n), g(n) = (1+g(n))n−1. The runtime
complexity of this approach would be unpractical. Therefore a less complex app-
roach to this task is preferable. The following labelling is an approximation of the
task. The idea behind it is that rules and literals are labelled, where labels relate
to the cases of stability. The labelling is defined as follows. After the definition
and an example we discuss the soundness and complexity of the labelling.

Definition 6 (Labelling, L). Let AS = (L,R,Q,K, τ) be an argumentation
setup. A labelling L is a partial function that assigns a label from {U,D,O,B}
to literals and rules. Literals that are in Q but not observed (l,−l �∈ K) are not
labelled. For the other literals and the rules the labelling is defined as follows:

Case U literal: l ∈ L is labelled U iff either: (A) No rule exists for l and if
(−)l ∈ Q then −l ∈ K. (B) There are rules for l and they are labelled U and
l �∈ K.
Case U rule: r ∈ R is labelled U iff any of its antecedents is labelled U .
Case D literal: l ∈ L is labelled D iff either: (A) l ∈ K. (B) There is a rule
for l labelled D, −l �∈ K and there is no rule for −l. (C) There is a rule for l
labelled D, −l �∈ K and there are rules for −l but they are all labelled U or O.
Case D rule: r ∈ R is labelled D iff all its antecedents are labelled D.
Case O literal: l ∈ L is labelled O iff either: (A) There exists a rule for l
labelled D, O or B and −l is labelled D. (B) There are rules for l of which
at least one is labelled O and the rest is either labelled O or U .
Case O rule: r ∈ R is labelled O iff at least one antecedent is labelled O and
the rest is labeled D, B or O.
Case B literal: l ∈ L is labelled B iff l,−l �∈ Q and either: (A) A rule for l
and a rule for −l is labelled D or B. (B) There are rules for l of which one
is labelled B and the rest is either labelled U , O or B.

120 B. Testerink et al.

Case B rule: r ∈ R is labelled B iff at least one antecedent is labelled B and
the rest is labeled B or D.

Example 5. Figure 3 shows the labelling for the example argumentation setup
where K = {p,¬cp, w}. As expected given the previous example, the f literal is
labelled B. Consider also the setup where K = {cp}. The labelling for that setup
labels ¬cp U due to case ‘U literal A’. Consequently, the rule c,¬cp ⇒ f is
labelled U due to case ‘U rule’. Finally f is labelled U because of case ‘U literal
B’. Hence, as discussed in the previous example, for the example argumentation
setup where K = {cp} the topic f is unsatisfiable. In the ‘extended examples
and proofs’ document we discuss more examples.

fraud
(f)

~fraud
(~f)

delivered_c
(c)

paid
(p)

~paid
(~p)

sent
(s)

~sent
(~s)

delivered_cp
(cp)

~delivered_cp
(~cp)

wrong
(w)

~wrong
(~w)

&

& & & &

D

B

O

U

D

U

D

D

B

D D D

D

Fig. 3. Labelling of Fig. 2 given
K = {p, w,¬cp}. Boldface literals
are in K and underlined literals are
queryable.

Note that alongside possible future obser-
vations, other literals can also be unlabelled.
In particular, as long as the topic remains
unlabelled it means that more information is
required. The labelling of an argumentation
setup is a sound approximation of stability.
This means that if the topic is labelled, then
the argumentation setup is stable. The fol-
lowing two propositions together show this.
As the method is an approximation there
are cases where a literal might be stable but
unlabelled. The proof for Proposition 2 in the
‘extended examples and proofs’ document2

contains such an example.

Proposition 1. Let L be the labelling of an
argumentation setup AS = (L,R,Q,K, τ). If
for a rule r = (p1...pm ⇒ c) ∈ R: L(r) ∈
{D,B,O} then there exists an argument for
c in I(AS).

Proof Sketch: By following the labels D, B and O from literals to rules we must
end up in observed literals. Hence, if a rule is labelled D, B or O then we can
follow the labelling until we end up with a set of observed literals. The observed
literals, and the rules that were passed by following the labelling, can be used to
construct the argument for c.

Proposition 2. Let AS = (L,R,Q,K, τ) be an argumentation setup and L be
its labelling. If L(τ) = U,D,O or B then AS is stable because of the unsatisfi-
able, defended, out, or blocked case of Definition 5, respectively.

Proof Sketch: The different labels are ‘introduced’ under the stated property and
their propagation through the rules to other literals preserves this property. U is
introduced if a literal l has no rules for it and is unobservable (possibly due to

2 Extended examples and proofs: https://preview.tinyurl.com/y656r3ek.

https://preview.tinyurl.com/y656r3ek

A Method for Efficient Argument-Based Inquiry 121

−l being observed). Hence, no argument could exist for l. D is introduced for
observed literals and hence for such literals an argument is guaranteed to exist
that is in the grounded extension. O is introduced if a rule for a literal l can be
applied to make an argument but −l is observed. Hence every argument for l is
unilaterally attacked by an argument in the grounded extension. B is introduced
if for l and −l there exists at least one argument that is not attacked by an
argument from the grounded extension.

U is propagated through rules if for a rule at least one premise is labelled
U . This indicates that the rule cannot be applied to construct an argument for
its conclusion. If a literal has only U -labelled rules then therefore no rule can
be applied to construct an argument for that literal. D is propagated if for a
rule all premises are labelled D. This indicates that if the conclusion cannot
have a rebutter, then this rule can be applied to construct an argument for in
the grounded extension. So an unobservable literal becomes D if this holds. O
is propagated if for a rule all premises are not unsatisfiable (so arguments can
be made) but at least one is O, indicating that there will always be a unilateral
premise attack from the grounded extension to arguments based on this rule.
Which is why literals with only O-applicable rules are labelled O. B is propagated
if for a rule if at least one of its premises is labelled B and the others are D
or B-labelled. This indicates that every argument based on this rule will have a
unilateral attacker on one of its premises. However, this attacker has a bi-lateral
attacker that rebuts it. Hence arguments based on this rule will be attacked but
not by arguments in the grounded extension. Therefore if a literal has only rules
that are labelled U , O or B then the labelled becomes B.

Finally, we aim to improve upon the complexity of the brute-force method of
determining stability. The following proposition discusses the big-Oh complexity
of labelling an argumentation setup.

Proposition 3. Let AS = (L,R,Q,K, τ) be an argumentation setup. The
labelling L of AS can be constructed in O((|L| + |R|)2).
Proof Sketch: A simple algorithm for the labelling works as follows. We can start
with the set L∪R minus the literals from L that might be observed in the future.
Then, we iterate through the cases of Definition 6 until no case applies anymore.
Any time a case applies for a literal or rule, we remove it from the set. Worst-
case, the set shrinks one-by-one until the empty set is reached (every literal/rule
has a label) in which case a quadratic number of passes through the cases has
been executed (0.5 ∗ (|L| · |R|)2).

4 Optimizing Inquiry Policies

An inquiry policy returns a query to execute given an argumentation setup and
available queries. In the following, we show how to model the inquiry setting as
a Markov Decision Process (MDP) for which the optimal policy can be obtained
by standard methods. An MDP consists of actions, states, a transition function

122 B. Testerink et al.

and a reward function. For the actions we take the queries that are available. A
query can be executed once during a dialogue.3 A state in the MDP is a pair of
an argumentation setup and a set of available queries. After executing a query
it is removed from the available queries and the setup may change because new
observations might be added to the knowledge base.

The transition function tells us what the probability of a transition from one
state to the next is when executing some query. For example, observing that a
wrong product was received increases the probability of observing in the future
that the complainant paid. We cancel out illegal transitions by setting their prob-
ability to zero. As for the reward function; we generate positive reward when a
stable argumentation setup is reached from an unstable setup. Any transitions
among unstable setups are negative because a query was executed. The tran-
sitions among stable setups are considered neutral. The labelling of Sect. 3 is
applied to approximate stability. Finally, the optimal policy immediately follows
from the MDP. The best action to execute give a state is the query which maxi-
mizes the expected reward. By maximizing reward, the policy will minimize the
expected number of executed queries before reaching a stable setup.

Definition 7 (Argumentation MDP, policy, M,π). Let AS = (L,R,Q,
K, τ) be an argumentation setup and F (AS) be all its possible future setups. An
argumentation MDP M for AS is a tuple (Q,S, δ, r), where:

– Q is a set of queries
– S = F (AS) × 2Q is the state space
– δ : S × Q × S → [0, 1] is the transition function which returns the probability

of the next state being s2 ∈ S given some state s1 ∈ S and query q ∈ Q.
Furthermore, δ(s1, q, s2) = 0 if the knowledge base of AS1 is not a subset of
that of AS2, or if q is not available (q �∈ Q1), or if Q2 �= Q1 \ {q}.

– r : S × S → I is the reward for transitioning from s1 = (AS1, Q1) ∈ S to
s2 = (AS2, Q2) ∈ S and is given by: r(s1, s2) = |Q1| if τ is labelled in the
labelling of AS2 but not AS1, r(s1, s2) = 0 if τ was already labelled in the
labelling of AS1, else r(s1, s2) = −1.

The policy π : S → Q is given by:
∀s1 = (AS1, Q1) ∈ S : π(s1) = argmaxq∈Q1Σs2∈Sδ(s1, q, s2)(r(s1, s2) + V (s2))
where: V (s2) = Σs3∈Sδ(s2, π(s2), s3)(r(s2, s3) + V (s3)).

Example 6. Consider a policy for the MDP that belongs to the argumentation
setup of the previous examples. A query can be any action that potentially
leads to some observations. For this example we take Boolean queries that only
have single queryable literal for which they may lead to an observation. Let
the queries be Q = {p?, s?, w?, cp?}. For a query x? assume that its execution
results in x or −x being added to the knowledge base. The policy may then look
like the one that is shown in Fig. 4. Note that for simplicity’s sake, we assume
3 Note that, if desired, the same query can be ‘copied’ multiple times in the formal

model to allow for repeated execution.

A Method for Efficient Argument-Based Inquiry 123

K={}
Q={p, s, w, cp}

K={cp}
Q={p, s, w}

K={-cp}
Q={p, s, w}

K={-cp, w}
Q={p, s}

K={-cp, -w}
Q={p, s}

K={-cp, -w, s}
Q={p}

K={-cp, -w, -s}
Q={p}

K={-cp, -w, -s, p}
Q={}

K={-cp, -w, -s, -p}
Q={}

cp? w? s? p?

L(f)=U L(f)=D L(f)=D

L(f)=U

K={-cp, w, p}
Q={s}

K={-cp, w, -p}
Q={s}

K={-cp, w, -p, -s}
Q={}

p? s?

L(f)=B

L(f)=U

Fig. 4. Part of the example policy. These are the reachable states/actions from the
empty observation set (i.e., zero probability transitions are omitted). States with stable
setups are boldface and the label of the topic f is shown as well for such states.

some (implicit) probabilities for the transitions. From the policy it can be read
that first it queried whether the counterpary delivered (partially) upon his/her
promise. If not, then it is queried whether a wrong product was delivered. If
so, then it is queried whether the complainant paid, or otherwise whether the
complainant sent a product. In both situations, if the answer is negative, then the
last query is executed. Note that in the example policy, after the user answered
negative to ‘cp?’ and positive to ‘w?’, that the label for fraud cannot be D in the
future. It depends on an application whether this might be a reason to halt the
execution. Formally, the system still executes queries because the reason why
the label is not ‘D’ is still unstable.

Roughly speaking, for our real-world applications the argumentation system
provides information on what queries are relevant and the policy then chooses
among the relevant queries. We apply various techniques to make the policy such
as dynamic programming and q-learning. The policy itself can also be used in
different ways. In one of our applications it guides a dialogue with the user and
in another it prioritizes database queries. Similarly, the argumentation setup has
different applications. It can be used to determine what information is relevant
but also provide argumentation-based explanations for the agent’s decisions.

5 Related Work

A typical argument-based inquiry is a so-called inquiry dialogue [3,7], in which
arguing agents collaborate to answer some question the answer to which is not
known by the individual agents. Our setting is different in that the informa-
tion source of our agent is not necessarily another arguing agent: a query can

124 B. Testerink et al.

be implemented as an utterance in an argumentation dialogue, but it can also
for instance be a query on a database. Thus, our optimal query policy can be
used to determine an efficient strategy for inquiry dialogues, but it can also be
used outside such dialogues. Furthermore, as already discussed in Sect. 3, in our
setting the agent can only query observations, whereas in an argument inquiry
dialogue the other agent (i.e. the agents that “answers” the query) can also pro-
vide an argument, making these dialogues slightly more flexible. However, in the
existing work on inquiry dialogue strategies [3,11] only exhaustive strategies are
defined, which simply perform all queries, that is, the agent keeps asking ques-
tions even if it already has an argument for its topic, or if adding new arguments
cannot change the status of the topic. Such exhaustive strategies are both inef-
ficient (in terms of the length of the inquiry process) and computationally very
expensive. While there is work on developing more optimal policies or strate-
gies for argumentation dialogues (see [9] for a fairly recent overview), some of
which shows some similarities with our work in their use of (in their case par-
tially observable) MDPs for defining policies [6], this existing work all focuses on
strategies for so-called persuasion dialogue, in which the agent tries to convince
an opponent of some conclusion. Furthermore, this existing work is all based
on abstract argumentation frameworks [4], in which only arguments as single
entities (propositions, nodes) and their attacks are considered, and there is no
argument structure that includes inferences based on a knowledge base. Work
on inquiry that does not explicitly use arguments is [5], in which the authors
propose a four-valued logic with the truth values true, false, inconsistent and
unknown, which, broadly speaking, are similar to the current paper’s Defended,
Out, Blocked and Unsatisfiable stability cases. Like [3], the strategies for inquiry
discussed in this paper are all exhaustive and hence not efficient.

With respect to the idea of stability, much of the work on argumentation is
more concerned with the static situation: given the knowledge we have now, what
are the acceptable arguments. A notable exception is by Ballnat and Gordon [1].
This work looks at determining which possible future additions to a knowledge
base might change the acceptability of a conclusion. They do not use their basic
ideas for determining optimal policies, however, nor do they discuss the com-
plexity and approximation results we provide in this paper. The idea of stability
also has clear links to what is called the enforcing problem [2]: given a set of
arguments, can we modify this set by adding or removing arguments and con-
flicts so that some argument from the original set becomes acceptable? The work
that exists on this topic, however, again only deals with abstract argumentation
frameworks.

6 Conclusion and Future Work

In this paper we have described a policy for efficient argument-based inquiry –
that is, a policy that minimizes the expected number of queries required to reach
a stable setup in which the acceptability of some conclusion cannot change any
more given a stochastic environment. Our approach is efficient in a number of
ways, computationally as well as with respect to the inquiry process itself.

A Method for Efficient Argument-Based Inquiry 125

– By rewarding an agent that reasons towards a stable argumentation as quickly
as possible we ensure that only the minimum required number of queries is
executed to draw a stable conclusion.

– By approximating the notion of stability we make determining or learning
the policy feasible in terms of computational complexity.

– Finally, by defining the policy by means of an MDP we allow the agent to
avoid executing queries that are likely to be unsuccessful.

As for future work we want to further explore the notion of stability in struc-
tured argumentation, taking into account the possibility of rules, preferences
and attacks being added through queries. We also intend to see how we can
further embed the policy in argument dialogues between agents. Finally, our
implementations of this method are leading to best-practices (e.g. to deal with
noisy observations) which we aim to publish publicly.

References

1. Ballnat, S., Gordon, T.F.: Goal selection in argumentation processes. In: Compu-
tational models of argument: Proceedings of COMMA 2010. Frontiers in Artificial
Intelligence and Applications, vol. 216, pp. 51–62. IOS Press (2010)

2. Baumann, R.: What does it take to enforce an argument? Minimal change in
abstract argumentation. In: Proceedings of the 20th European Conference on Arti-
ficial Intelligence. Frontiers in Artificial Intelligence and Applications, pp. 127–132,
no. 242. IOS Press (2012)

3. Black, E., Hunter, A.: An inquiry dialogue system. Auton. Agent. Multi-Agent
Syst. 19(2), 173–209 (2009)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

5. Dunin-Keplicz, B., Strachocka, A.: Tractable inquiry in information-rich environ-
ments. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI 2015), pp. 53–60. AAAI publishing (2015)

6. Hadoux, E., Beynier, A., Maudet, N., Weng, P., Hunter, A.: Optimization of
probabilistic argumentation with Markov decision models. In: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI
2015), pp. 2004–2010. AAAI publishing (2015)

7. Parsons, S., McBurney, P., Wooldridge, M.: The mechanics of some formal inter-
agent dialogues. In: Dignum, F. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp.
329–348. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24608-
4 19

8. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1(2), 93–124 (2010)

9. Thimm, M.: Strategic argumentation in multi-agent systems. KI-Künstl. Intell.
28(3), 159–168 (2014)

10. Verheij, B.: Dialectical argumentation with argumentation schemes: an approach
to legal logic. Artif. Intell. Law 11(2–3), 167–195 (2003)

11. Yan, C., Lindgren, H., Nieves, J.C.: A dialogue-based approach for dealing with
uncertain and conflicting information in medical diagnosis. Auton. Agent. Multi-
Agent Syst. 32(6), 861–885 (2018)

https://doi.org/10.1007/978-3-540-24608-4_19
https://doi.org/10.1007/978-3-540-24608-4_19

	A Method for Efficient Argument-Based Inquiry
	1 Introduction
	2 Base Formalism
	3 Hypothesizing over Future Observations
	4 Optimizing Inquiry Policies
	5 Related Work
	6 Conclusion and Future Work
	References

