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Abstract. One of the main constructs of graph processing is the two-
level nested loop structure. Parallelizing nested loops is notoriously
unfriendly to both CPU and memory access when dealing with real graph
data due to its skewed distribution. To address this problem, we present
SilverChunk, a high performance graph processing system. SilverChunk
builds edge chunks of equal size from original graphs and unfolds nested
loops statically in pull-based executions (VR-Chunk) and dynamically in
push-based executions (D-Chunk). VR-Chunk slices the entire graph into
several chunks. A virtual vertex is generated pointing to the first half of
each sliced edge list so that no edge list lives in more than one chunk.
D-Chunk builds its chunk list via binary searching over the prefix degree
sum array of the active vertices. Each chunk has a local buffer for conflict-
free maintenance of the next frontier. By changing the units of schedul-
ing from edges to chunks, SilverChunk achieves better CPU and mem-
ory utilization. SilverChunk provides a high level programming interface
combined with multiple optimization techniques to help developing effi-
cient graph processing applications. Our evaluation results reveal that
SilverChunk outperforms state-of-the-art shared-memory graph process-
ing systems by up to 4×, including Gemini, Grazelle, etc. Moreover, it
has lower memory overheads and nearly zero pre-processing time.
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1 Introduction

1.1 Background

Graphs are commonly used to represent interactions between real world entities.
Graph analytics are algorithms that extract information from a graph, which are
widely used in social network analytics, transportation, ad and e-commerce rec-
ommendation systems. As a result, a large number of graph processing systems
are proposed to facilitate graph analytics. Recently there is a rising interest of
building multi-core shared memory graph processing systems on a single machine
because (1) distributed graph systems incur a lot of communication overheads;
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(2) real world graphs, e.g., Twitter’s follower graph, despite its billions of edges,
can still fit into main memory; and (3) memory capacity and bandwidth are
increasing and will keep increasing in the near future. These systems [5,6,8–14]
process a big graph in main memory of a single high-end server with large RAM
space. They provide high level interfaces for programming simplicity and aim at
full utilization of all CPU and memory resources without manual tweaking. For
example, Ligra [9] provides two simple primitives, EdgeMap and VertexMap, for
iterating over edges and vertices respectively in parallel. These simple primitives
can be applied to various graph algorithms which operate on a subset of vertices
during each iteration.

1.2 Problems

Parallel graph processing is nontrivial due to complex data dependencies in
graphs, however, it is essential for efficient graph analytics. In this paper we dis-
cuss two problems of building an high-performance in-memory graph processing
system.

Preliminaries. In-memory graph processing systems often organize outgoing
edges in the Compressed Sparse Row (CSR) format and incoming ones in the
Compressed Sparse Column (CSC) format, as shown in Fig. 1. A frontier is a
subset of the vertices which are active in the current iteration, as shown in Fig. 2.
Graph algorithms visit the destination vertices of the active edges and apply an
algorithm-specific function to propagate the value from each edge’s source to its
destination. This operation is repeated until the current frontier is empty or user
defined condition is met. We refer to this process as frontier-based computing.
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Fig. 1. Compressed Sparse Row/Column format

The frontier structure may be implemented either as a bitmap (dense format)
or as an array directly storing the vertex IDs (sparse format). Which one is better
depends on the density of the frontier. Frontier-based computing can have two
different execution modes, namely push and pull. Both modes contains a two-
level nested loop. In push mode, frontiers are used in the outer loop and updates
are propagated from active vertices to their neighbors, while in pull mode, the
outer loop is the entire vertex list and each vertex receives updates from its
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Fig. 2. Frontiers in a simple BFS algorithm

in-bound edges by checking if the source vertex is inside the current frontier
or not. There are active researches [1,7] studying whether to push or pull. The
basic principle is to push when the frontier is sparse and to pull if otherwise. As
a result, graph processing engines like Ligra [9] automatically switches between
these two execution modes based on the density of the current frontier.

Problems. We discuss the following two problems:

– In both execution modes, the outer loop is parallelized in order to lever-
age the multiple cores of modern processor chips. Unfortunately, due to the
power-law nature of real world social graphs, only a small fraction of vertices
has a significant large number of neighbors while a major fraction of vertices
has relatively few neighbors. As a result, parallelizing only the outer loop is
insufficient as it can lead to significant load imbalance. One naive approach
is to use traditional parallel schedulers such as Cilk [2] or OpenMP [3] to
parallelize the inner loop. However, this approach can lead to numerous con-
flicting writes and scheduling overhead which completely negates the benefits
of the pull execution mode. Grazelle [5] solves this problem by introducing
a scheduler-aware interface that allows programmers to directly operates on
the internal structure of the execution unit of the underlying scheduler. It
provides thread local storage for local updates and merge buffers for global
updates in order to achieve conflict-free parallelization. However the imple-
mentation is architecture-specific and requires additional efforts to implement
even a simple graph algorithm.

– In push mode, due to the sparsity of the frontier, there is a high probability
that the next frontier will also be sparse, hence building the next frontier as
a sparse array instead of a bitmap is more efficient. However, building sparse
frontiers in parallel is nontrivial. Ligra [9] does this by first allocating a scratch
buffer that is large enough to hold all possible vertices in the next frontier,
and then computing an offset array via parallel prefix summing over the active
vertices’ degrees in the current frontier. When a vertex successfully updates
one of its neighbor, Ligra puts the neighbor into the scratch place pointed
by its corresponding offset and atomically adds one to the offset. Finally it
gathers all the valid vertices inside the scratch buffer into the next frontier.
This process is both CPU and memory unfriendly. It scatters the vertices in
the scratch buffer with random writes and relies on atomic instructions to
synchronize the updates of the offset values.
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1.3 Our Solutions and Contributions

To address these problems, we present SilverChunk, a graph processing system
that enables balanced execution of parallel nested loop and conflict-free frontier
maintenance. SilverChunk consists of two different chunking schemes, namely
VR-Chunk for pull mode and D-Chunk for push mode. It also provides a high level
programming interface with additional optimizations. The main contributions of
our work are summarized as follows:

– VR-Chunk. We show that our VR-Chunk solves the first problem in a clean
way. Instead of tuning the parallel scheduler, we change the scheduling unit
directly from vertices to chunks. VR-Chunk splits the edge list statically into
small chunks and generates additional virtual vertices to ensure conflict-free
updates.

– D-Chunk. To tackle the second problem, we propose D-Chunk, a dynamic
chunking scheme that applies to sparse frontiers. Since the vertices in a sparse
frontier is discrete in memory, we build a list of virtual chunks that contains
the information to help iterate over the edge list one piece of at a time.
A virtual chunk provides a scratch space to aggregate vertices for the next
iteration, which alleviates concurrent conflicts when building sparse frontiers.

– Hybrid Polymorphic Interface and Optimizations. We propose a new
programming interface addressing different execution modes and graph algo-
rithm properties for further optimizations. We design a new execution mode:
AllPull mode, which optimizes the execution when the current frontiers are
very dense.

– Extensive Experiments. We carry out extensive experiments using both
large-scale real-world graphs and synthetic graphs to validate the performance
of SilverChunk. Our experiments look into the key performance factors to
all in-memory systems including the pre-processing time, the computational
time and the effectiveness of main memory utilization. The results reveal
that SilverChunk outperforms the state-of-the-art graph processing systems
in most test cases by up to 4×.

The rest of this paper is organized as follows. Section 2 describes the
main constructs of SilverChunk. Section. 3 shows the high level programming
interface and additional optimizations. Section 4 contains experimental results.
Finally, Sect. 5 discusses the related works and Sect. 6 gives the concluding
remarks.

2 Constructs

The main constructs of SilverChunk are the two chunking schemes: VR-Chunk
and D-Chunk. Both schemes output similar chunk structures which are used to
iterate over the input graphs. As a result, we unfold the nested loop into one
flat loop which is efficient for parallel scheduling.
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2.1 VR-Chunk

In pull-based execution, we always iterate over the entire edge list to pull updates
from the active vertices, thus the chunking scheme is static. Figure 3 shows how
chunks are built from the original CSC array. Due to the dense feature of the
frontier in pull mode, we assume that every edge requires the same amount of
computation. Hence we slice the edge list into several chunks with equal number
of edges, and assign each thread the same number of chunks to process.

Each chunk only needs to maintain five data fields: the starting and the
ending destination vertices, the first edge, the virtual vertex and the last edge.
The first two fields are obvious. As VR-Chunk might break the edge list, we
need to maintain the first edge at each boundary. These fields form the real
part of a chunk. The interesting one is the virtual vertex field, which stores the
virtual vertex’s ID, referring to the virtual part of a chunk. A different approach
of dealing skewed distribution would be directly slicing the giant vertices into
small virtual vertices. However, it cannot generate balanced chunks with respect
to the edge number. VR-Chunk always slices giant vertices if its neighbor size is
greater than the chunk size. Virtual vertices are used as delegates to the real
vertices so that each vertex is assigned to exact one chunk. Virtual vertices are
appended at the end of the vertex array to enlarge the vertex space so that the
application data such as the PageRank value array gets transparently expanded
too. Therefore, every application data gets a dedicated merge buffer which is
appended at the end and there is no need to explicitly maintain a separate one.

2.2 D-Chunk

In push-based execution, since the active frontier is known only at runtime,
VR-Chunk cannot be applied directly. Also the push execution always incurs
random writes, synchronization is unavoidable. However, we can still benefit from



SilverChunk: An Efficient In-Memory Parallel Graph Processing System 227

chunking because it allows the destination vertices be collected in a conflict-free
manner, therefore improving the sparse frontier’s maintenance.
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Fig. 4. D-Chunk

To build a chunk list dynamically in push-based execution, we extend the
sparse frontier construction process used in Ligra [9], which requires calculat-
ing the prefix sum of the degree array. Figure 4 shows the building process of
D-Chunk. An astute reader might notice that we need to rebuild the chunk list
every time when entering push mode. This might sound problematic but actu-
ally building a chunk list for sparse frontier is very fast. Since we already have
the prefix sum of the vertices’ degrees in the current frontier during the original
construction process, the running time of building the chunk list is proportional
to the logarithm of the frontier’s size. The additional work that D-Chunk does is
a binary search to generate chunks with equal number of edges.

Each chunk only needs to maintain four data fields: the starting source vertex,
the first and last edges, and the frontier offset. The first three data fields are used
together with the current sparse frontier to iterate over the active edges. The
frontier offset is a variable that helps collecting the vertices into the next sparse
frontier. Since it is local to each chunk and there is no inter-chunk parallelism,
the collecting process is conflict-free. Moreover, it generates sequential writes for
each chunk. Hence the frontier maintenance is both CPU and memory friendly.
Note that by using chunking in push mode, we can reuse the parallel scheduler
in pull mode, which leads to better thread locality too. The actual scheduler is a
simple thread pool implemented using a user-space thread barrier. Each thread
is bound to a unique CPU core and the scheduler does round-robin work-stealing
over the chunk list.
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3 Implementations and Optimizations

Both VR-Chunk and D-Chunk are computational efficient but may require some
amount of work to implement an actual graph algorithm based on them. As a
result, we provide abstractions to hide the implementation details of the chunk
internals. In this section we discuss the high level API design of SilverChunk
and its optimizations.

3.1 Programming Interface

There are two commonly used APIs for graph processing systems: edge-based and
list-based. Ligra [9] uses an edge-based API which allows users to only implement
edge updating logic without caring about frontier maintenance. However, it also
prevents the application to do customized optimizations since the actual execu-
tion context is limited to only one edge. On the other hand, Gemini [15] exposes
a list-based API for the end users which allows application based optimizations,
such as merging application states locally and doing vectorized processing. How-
ever, it requires the end users to maintain the next frontier in application code
which is nontrivial for sparse frontiers. Therefore Gemini only uses dense fron-
tiers. Moreover, a direct implementation of list-based API can lead to workload
imbalance due to the skewed distribution of a input graph.

As a result, we adopt these two API styles into SilverChunk and propose a
hybrid interface. For push mode, we use the edge-based API similar to Ligra. The
main reason is, since we are already doing random writes in push mode, there
is little chance for a list-based API to provide further optimizations. Instead,
we can hide the nontrivial frontier maintenance from the end users. An actual
implementation of graph algorithms in push mode is instantiated as a push
operator. A push operator accepts a source vertex and a destination vertex.
It requires synchronization when updating to the destination vertex. A push
operator can return a boolean value indicating whether the destination vertex
should be put into the next frontier. It can also return nothing so that any sane
compilers will get rid of unnecessary instructions of the frontier maintenance.

For pull mode, we use the list-based API similar to Gemini. Thanks to our
VR-Chunk scheme, giant vertices are already sliced, so workload balance is guar-
anteed. The running instance is called the pull operator. A pull operator
accepts the starting and ending pointers of a source edge list, a real destina-
tion vertex and a destination vertex that might be real or virtual. Every update
is guaranteed to be conflict-free when the pull operator is executed in parallel.
The destination vertex is equal to the real destination vertex unless the vertex
has its source edge list sliced by VR-Chunk. In that case, it is equal to the cor-
responding virtual vertex. In additional, pull mode also requires a pull reduce
operator to be specified so that at the end of each iteration, all virtual vertices’
states are merged to their corresponding real ones.

Listing 1 shows a vanilla implementation of the PageRank algorithm using
the SilverChunk’s API. The graph argument contains the input graph data and
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is able to run a graph algorithm. The Algorithm class is instantiated with the
aforementioned three operators, written as C++ lambdas.

void PageRankFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&]( UInt32 s, UInt32 d) {// push

atomicAdd(pr_new[d], pr[s]); },

[&]( UInt32* b, UInt32* e, UInt32 rd, UInt32 d) {// pull

Float y = 0;

while (b < e) y += pr[*b++];

pr_new[d] = y; },

[&]( UInt32 rd, UInt32 d) {// pull reduce

atomicAdd(pr_new[rd], pr_new[d]); }

);

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 1. Page Rank Implementation

3.2 Optimizations

In the previous section we briefly described the polymorphism of the push oper-
ator, which enables optimizations when returning nothing. We call algorithms
having this kind of operators Immutable since the frontier does not change after
each iteration. We also identify other properties of graph algorithms for poten-
tial optimizations, as shown in Table 1. When all vertices are activated, the code
path of propagating updates can be further optimized by removing unnecessary
checks. We refer to this execution mode as AllPull.

Table 1. Algorithm properties

Algorithm Immutable Bypassable Idempotent

PageRank �

BFS � �

Components �

BellmanFord �

An algorithm is Bypassable if every vertex is supposed to be activated only
once. An example is the simple breadth first search algorithm which finds any one
traversing tree from the starting vertex. As shown in Listing 2, the Algorithm
class accepts a Bypassable flag that checks if a vertex is already activated and
can be bypassed for any further updates. When Bypassable is specified, the
frontier maintenance does not interact with the application, hence it can be
optimized statically. Note that the pull reduce operator is not needed in this
algorithm.
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void SimpleBFSFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&]( UInt32 s, UInt32 d) {// push

parent[d] = s; },

[&]( UInt32* b, UInt32* e, UInt32 rd , UInt32 d) {// pull

while (b < e)

if (graph.isActive (*b)) { parent[rd] = *b; return; }},

Bypassable ());

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 2. Simple BFS Implementation

An algorithm is Idempotent if algorithm correctness is not affected by prop-
agating updates from inactive vertices to their neighbors. An example is the
label propagation algorithm for computing connected components. As shown
in Listing 3, the Algorithm class accepts a Idempotent threshold that switches
to AllPull execution when current frontier’s density is greater than the thresh-
old. The reason of specializing this property is because when frontiers are near
full, AllPull is faster than normal pull mode.

void LabelPropagationFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&]( UInt32 s, UInt32 d) {// push

return writeMin(id[d], id[s]); },

[&]( UInt32* b, UInt32* e, UInt32 rd , UInt32 d) {// pull

UInt32 m = MAX_UINT32;

while (b < e) if (graph.isActive (*b)) m = min(m, *b);

if (m < id[rd]) { id[d] = m; return true; }

return false; },

[&]( UInt32 rd, UInt32 d) {// pull reduce

writeMin(id[rd], id[d]); },

Idempotent (0.5));

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 3. Label Propagation Implementation

4 Experiments

In this section, we evaluate SilverChunk’s performance using a physical server
with four applications (PageRank, BFS, WCC and BellmanFord) and five
datasets (RMat24, RMat27, Twitter, Powerlaw and USARoad). The physical
server contains two Intel Xeon E5-2640v4 CPUs with 128 GB memory. We synthe-
sized graphs using the R-MAT generator, following the same configuration used by
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the graph500 benchmark. The synthetic power-law graph (PowerLaw) with fixed
power-law constant 2.0 was generated using the tool in PowerGraph [4], which
randomly samples the degree of each vertex from a Zipf distribution and then
adds edges. We also use two types of real-world datasets, a social network graph
(twitter-20101) and a geometric graph (USARoad2). All graphs are unweighted
except USARoad. To provide a weighted input for the SSSP algorithm, we add a
random edge weight in the range [1, 100] to each edge. Following Table 2 shows
the basic information of used datasets .

Table 2. Data set

Dataset Vertex Num Edge Num Avg Deg Max Indeg Max Outdeg Size (CSV)

RMat24 16M 0.3B 16.0 18.0K 17.3K 4.0GB

RMat27 134M 2.1B 15.8 0.90M 0.86M 34GB

Twitter 42M 1.5B 35.3 0.77M 3.0M 25GB

Powerlaw 10M 0.1B 9.2 10 2.1M 1.4GB

USARoad 23M 58M 2.4 9 9 1.3GB

We compare SilverChunk to a number of different in-memory graph engines.
Primarily, we compare SilverChunk with Ligra [9], Polymer [13], Gemini [15],
Grazelle [5] and Galois [8] as these systems achieves state-of-the-art performance
on a single-machine environment using in-memory storage. We run these systems
with four graph algorithms on five different data sets using two different config-
uration of one commodity machine (Dell PowerEdge R730xd). We run iterative
algorithms like Pagerank (PR) as well as traversal algorithms such as Bellman-
Ford (BF) algorithm on these engines. This allows a comparison on how well a
graph engine can handle different kinds of graph algorithms with different graph
data distributions. The detailed information of the evaluated graph algorithms
are as follow:

PageRank (PR) computes the rank of each vertex based on the ranks of its
neighbors. We use the synchronous, pull-based PageRank in all cases and apply
the division elimination optimization to all applications except Grazelle.

Breadth-first search (BFS) traverses an unweighted graph by visiting the
sibling vertices before visiting the child vertices. The source is vertex one for
this test.

Connected components (CC) calculates a maximal set of vertices that are
reachable from each other for a directed graph. All systems adopt label propaga-
tion algorithm except Galois, which provides a topology-driven algorithm based
on a concurrent union-find data structure.

1 http://law.di.unimi.it/datasets.php.
2 http://www.dis.uniroma1.it/challenge9/.

http://law.di.unimi.it/datasets.php
http://www.dis.uniroma1.it/challenge9/
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Table 3. Running times (in seconds) of algorithms over various data sets

System Data set PR (5 iterations) BFS CC SSSP

one cpu two cpus one cpu two cpus one cpu two cpus one cpu two cpus

SilverChunk R-Mat24 1.35 0.84 0.13 0.10 0.79 0.48 3.50 2.49

R-Mat27 9.52 5.86 0.62 0.42 5.56 2.69
��
7.66

��
4.63

Twitter 4.55
��
2.64 0.41 0.30

��
4.49 2.35 7.54 4.59

Powerlaw 0.34 0.21 0.13 0.10
��
0.53 0.27 0.93 0.64

US Road 0.36
��
0.23

��
0.55

��
0.80

���
23.18

���
15.01

����
117.29

���
70.19

Ligra R-Mat24 2.78 1.81 0.23 0.20 1.93 1.03
��
3.84

��
2.51

R-Mat27 19.13 14.80 1.07 1.06 13.32 7.62 7.84 5.08

Twitter 9.18 6.69 0.68 0.61 10.97 6.75
��
7.65

��
5.03

Powerlaw 0.94 0.72 0.18
��
0.12 1.44 0.98

��
1.26 0.93

US Road 0.88 0.65 1.46 1.57 62.42 40.12 169.23 87.26

Polymer R-Mat24 4.71 1.88 0.26 0.22 1.64 0.80 4.23 2.53

R-Mat27 43.98 19.08 1.36 1.04 13.82 6.58 9.48 4.91

Twitter 28.82 12.02 0.79 0.65 16.51 8.61 7.69 5.15

Powerlaw 1.54 0.71 0.18 0.20 1.58 1.02 1.29 0.73

US Road 0.61 0.52 1.21 1.25 82.94 45.59 258.03 180.71

Gemini R-Mat24
��
1.52

��
0.85 0.18 0.14 3.12 1.35 7.06 3.55

R-Mat27
��
9.64

��
6.14 0.86 0.76 18.28 8.77 16.21 8.14

Twitter
��
4.88 2.56 0.56 0.74 19.06 9.84 12.66 6.51

Powerlaw 0.46 0.41 0.15 0.23 1.25 0.54 1.39
��
0.72

US Road 0.61 0.31 20.42 21.64 176.23 123.24 533.04 379.54

Grazelle R-Mat24 2.18 1.42
��
0.14

��
0.13

��
1.02

��
0.63 No Impl

R-Mat27 13.30 9.05
��
0.69

��
0.70

��
7.67

��
4.36

Twitter 6.27 3.81
��
0.54

��
0.44 6.27 4.47

Powerlaw
��
0.45

��
0.33

��
0.14 0.13 0.88 0.43

US Road
��
0.39 0.22 2.91 1.85 26.23 15.66

Galois R-Mat24 5.09 2.72 0.61 0.32 1.04 0.64 4.40 4.18

R-Mat27 36.93 20.48 4.14 2.41 7.87 4.90 7.40 4.48

Twitter 10.47 6.12 2.19 1.55 3.86
��
2.48 90.92 69.74

Powerlaw 1.71 0.86 0.38 0.22 0.51
��
0.35 3.88 4.27

US Road 4.40 2.15 0.33 0.30 0.81 0.45 0.90 1.02

Fastest time is denoted as underline. Second fastest time is denoted as
�������
underwave.

Single-source shortest-paths (SSSP) computes the distance of the shortest
path from a given source vertex to other vertices. The source is vertex one for
this test. All systems implement SSSP based on the Bellman-Ford algorithm
with synchronously data-driven scheduling, while Galois uses a data-driven and
asynchronously scheduled delta-stepping algorithm.

4.1 Graph Algorithm Test

Table 3 gives a complete runtime comparison. Of all the test cases, we report the
execution time of their five runs. For PageRank algorithm, SilverChunk achieves
optimal performance against other systems using only one CPU. Gemini and
Grazellel are the second best. With two CPUs enabled, systems like Polymer,
Gemini and Grazelle scales better than SilverChunk, however SilverChunk
still holds three best results out of five. On the other hand, the graph traversal
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algorithms, including BFS, CC and SSSP, are not sensitive to the memory
accesses of NUMA systems, since they have much fewer active vertices in each
iteration, resulting in fewer memory accesses. Therefore, SilverChunk outper-
forms all other systems except Galois, which either adopts different algorithms
for the problem or uses specialized scheduler for asynchronous execution. In
most test cases, SilverChunk takes a leading position, except the USRoad graph.
For high-diameter graphs like USRoad, the asynchronous scheduling and special
implementations in Galois are able to exploit more parallelism for the graph
traversal algorithms, such as CC and SSSP. In general, our graph chunking
technique achieves 99% of CPU usage without any dynamic coordination in pull
mode. It also gives consistent load balance in push mode.

4.2 VR-Chunk Test

As can be seen from Fig. 5, compared to other systems, VR-Chunk does not intro-
duce pre-processing overheads, while still achieves the best performance. Figure 6
compares the running time of the PageRank algorithm on the twitter graph
with three different implementations: Cilk [2], VR-Chunk and VR-Chunk with
work-stealing. The static execution of VR-Chunk already excels the Cilk sched-
uler. Adding a simple chunk-based work-stealing mechanism gives another 10%
performance gain.

Fig. 5. Comparision among different
systems

Fig. 6. Comparision with hand-written
code

4.3 AllPull Test

We test different thresholds of AllPull execution combined with adaptive Push-
Pull switching. Figure 7 shows the test result of running the Connected Com-
ponents algorithm. With AllPull mode enabled, we get 30% performance gain.
All three different data set achieve the best running time when the threshold
is between 0.3 and 0.5. Therefore it can serve as a proper reference value for
optimizing idempotent algorithms.
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Fig. 7. Connected components execution time with different AllPull thresholds

4.4 NUMA and Cache Optimization Test

Since NUMA based engine Polymer [13] does not reveal proper performance,
and cache based engine Cagra [14] does not open source their code, we imple-
ment both optimization schemes in order to complete our testing. We also
combine NUMA and cache optimizations along with the optimizations used in
SilverChunk. As can be seen from Table 4, both NUMA or cache optimizations
can effectively improve the performance. The last column lists the memory con-
sumption with values related to the lowest one. Cache optimization gives better
running time than NUMA optimization but it introduces a huge amount of mem-
ory consumption and pre-processing time. SilverChunk gives further improve-
ments in all optimization combinations, and it is more effective when there is
no NUMA or cache optimization applied, which suggests that SilverChunk not
only balances workloads, but also optimizes memory accesses. Notice that both
NUMA and cache optimizations in this test have their pre-processing time longer
than the actual running time. As a result, Whether to enable such optimization
needs further considerations.

Table 4. PageRank (5 iters) over Twitter-2010

Nested loop VR-Chunk Pre-processing Peak memory

No NUMA, No Cache 3.13 s 2.64 s 0 s 1.0

NUMA, No Cache 2.28 s 2.08 s 3.83 s 1.05

No NUMA, Cache 1.91 s 1.68 s 6.52 s 1.56

NUMA, Cache 1.67 s 1.55 s 11.84 s 1.64

5 Related Works

The field of single machine graph processing in main memory has seen efforts in
both parallel scheduling and graph partitioning. Ligra [9] proposes an EdgeMap
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interface to hide the inner loop parallelism, however it does not solve the actual
workload imbalance issue. Grazelle [5] adopts a schedule-aware to achieve work-
load balance which however makes graph applications hard to implement. Poly-
mer [13], Gemini [15] and Grazelle [5] are exponents in NUMA optimizations.
They partition graph into subgraphs for each NUMA node, trying to reduce
remote memory access. However it takes more time in pre-processing and its
effectiveness is related to the graph data distribution and the actual running
modes. For sparse frontiers, pre-partitioned graphs are less effective. Systems
like GRACE [12] and Cagra [14] partition the input graph even further, at the
CPU cache level. Cagra manually partitions the graph in order to make sure one
batch of concurrent workload would end up only reading data from CPU’s LLC.
However, this adds a lot of complexity to the initialization process, and similar to
NUMA-aware partitioning, it barely helps when the frontiers are sparse. Graph-
Grind [10] uses partition-based optimization only when the frontier’s density
exceeds certain threshold, which is 50% in their experiments, while still keeps
the vanilla CSR/CSC formats for sparse and medium-dense frontiers. However,
they add one additional copy of the graph data to store the partitioned graph,
resulting in 50% more memory consumption.

6 Conclusion

We present SilverChunk, an efficient in-memory parallel graph processing sys-
tem running on a single machine. SilverChunk solves the workload imbalance
issue of frontier-based computing by unfolding the nested loop into a flat loop
over a chunk list. We extend the chunking scheme to support both pull and
push modes and provide a unified high level API for implementing graph appli-
cations. In addition, we address new optimization opportunities based on differ-
ent execution modes and algorithm properties, and use a policy based API to
automatically apply the corresponding optimizations. Currently SilverChunk
cannot handle graphs too big to fit into main memory. We plan to extend the
ideas presented in this paper to external memory and distributed environment
in near future.
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