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Abstract. RDF and SPARQL are increasingly used in a broad range of
information management scenarios (e.g., governments, corporations, and
startups). Scalable SPARQL querying has been the main issue for vir-
tually all the recent RDF triplestores. This paper presents WA-RDF, a
middleware that addresses workload-adaptive management of large RDF
graphs. Our middleware not only employs all the most used NoSQL data
models but also provides a novel RDF data partitioning approach based
on a fragmentation strategy that maps RDF data into multiple NoSQL
databases. This workload-aware partitioning scheme provides, in turn,
efficient processing of SPARQL queries over these NoSQL databases.
Our experimental evaluation shows that the solution is promising, out-
performing three recent baselines.
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1 Introduction

In the last decade, RDF, the standardized data model that, along with other
technologies, like RDFS, and SPARQL, grounds the vision of the Semantic Web,
was affected by a wide range of data management problems. The main reason
for that is the current scale of Big Data intensive applications, which generates
very large datasets and need to efficiently store massive RDF graphs that goes
beyond the processing capacities of existing RDF storage systems operating on
a single node. This scenario includes innovations in the frontier of Semantic Web
research fields. For example, semantic technologies can enhance the storage of
moving object trajectories [6], generating huge datasets about traffic, people
behaviour and citizen routine. The scale of this kind of domain raises the need
for new triplestores that can, for instance, take advantage of NoSQL databases
to store and access large volumes of RDF data.

This paper presents WA-RDF, a triplestore composed of a middleware and
multiple NoSQL databases. Our middleware includes a novel RDF data par-
titioning approach with a fragmentation strategy that maps pieces of an RDF
graph into NoSQL databases with different data models. We consider a workload-
aware partitioning approach based on the ideas from Estocada [1] to develop a
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multiformat RDF storage that takes into account the query workload to decide
which NoSQL data model is the best fit for each incoming RDF fragment.

The main contributions of this paper are: (i) a workload-aware RDF data
partitioning approach based on the current graph structure and, mainly, on the
typical application queries; (ii) a query processing mechanism that takes advan-
tage of the partitioning approach to define efficient query planning to access
RDF data; (iii) a set of experiments that evaluate our solution against three
baselines (Rainbow [2], ScalaRDF [4] and S2RDF [8]) by considering the NoSQL
databases MongoDB and Neo4J. Our strong point is the ability to process queries
over large RDF graphs stored on multiple NoSQL database servers with a subtle
amount data joining cost. The experimental evaluation shows that our middle-
ware scales well.

The rest of the paper is organized as follows. Section 2 contains the back-
ground and related work. Sections 3 and 4 detail the WA-RDF approach.
Section 5 reports the experimental evaluation and Sect. 6 concludes the paper.

2 Background and Related Work

The most important pillars of this work are the Semantic Web and the NoSQL
databases movement.

Currently, the Semantic Web is defined mainly in terms of well-established
standards for expressing shared meaning, defined by WWW Consortium
(W3C)1, like Resource Description Framework (RDF) and the Simple Protocol
and RDF Query Language (SPARQL). RDF is expressed by triples that define
a relationship between two resources. RDF triples can be modeled as graphs,
where the resources, called subject and object, are vertexes, and the relationship,
called predicate, is a directed edge from the subject to the object. SPARQL
is a query language for searching and retrieving RDF information. The most
important part of a SPARQL query is the triple pattern, which defines the RDF
subject, predicate and object to be searched. Moreover, sets of triple patterns
define Basic Graph Patterns (BGP), being each BGP a function that transforms
the RDF datasets into the answer of a SPARQL query in the form of RDF triples.
Traditionally, SPARQL queries can be categorized into star, chain and complex
queries [8]. These query shapes depend on the location of the variables in the
triple patterns, which can heavily influence the query performance [8].

There are many works that employs NoSQL systems for scalable RDF data
management [5]. Among the recent works, we highlight Rainbow [2] (a polyglot
NoSQL-based triplestore), ScalaRDF [4] (an in-memory solution) and S2RDF
[8] (a scalable query processor). Rainbow is a distributed triplestore that uses
the HBase columnar database and the Redis key-value database (K/V) as dis-
tributed storages to speed up query processing. Based on a previous analysis
of the dataset and the expected workload, it decides on which NoSQL database
the RDF data will be maintained. ScalaRDF introduces a distributed in-memory

1 https://www.w3.org/.
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triple store that uses Redis as a fault-tolerant and distributed RDF store. Addi-
tionally, S2RDF proposes a Spark -based SPARQL query processor that offers
very fast response time for star queries by extending the vertical partitioning.
Their partition scheme uses the Apache Parquet2 columnar format to store the
triples excluding unnecessary data from query processing. In order to reduce the
intermediate results, S2RDF maintains statistics about the size of the dataset
tables and places the subqueries corresponding to the smallest tables at the
beginning of a joining in order to reduce the intermediate result size.

WA-RDF represents an advance on the state-of-the-art in sense that it is the
first triplestore that considers the typical workload to decide which is the best
NoSQL database to store an RDF triple.

3 WA-RDF

WA-RDF is a workload-aware middleware for storing and querying RDF data
in multiple NoSQL database nodes. Its inspiration comes from Estocada, which
argues that a mixed-model layer, relying on a set of diverse and heterogeneous
data stores, can provide performance advantages for the applications using this
layer. However, Estocada is neither a workload-aware approach nor a storage
solution for RDF data. Another idea we borrowed from Estocada is a fragment-
based storage that is entirely transparent to the client applications. It means
that the data flow in WA-RDF is most of the time in the format of fragments.
Figure 1 gives an overview of the WA-RDF architecture.

Fig. 1. WA-RDF architecture

An RDF-based application issues store or query requests to WA-RDF, which
is normally deployed into multiple dedicated physical nodes. When an RDF-
based Application submits a store request for a triple to the Fragmenter/Mapper

2 https://parquet.apache.org/.
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component, WA-RDF expands this triple to a fragment FRDFi and maps FRDFi

to the target NoSQL database(s). This process is performed by the Dataset
Characterizer, which is the main component of our middleware. During a triple
storage, it decides on translating FRDFi to a NoSQL document or graph database
(or both) according to the usual query workload, and indexes it with the aid
of the Indexer component. Once FRDFi is created, the Partitioner registers
this fragment into the Dictionary repository - supported by a NoSQL columnar
database - and stores it in the NoSQL databases.

When an RDF-based Application submits a SPARQL query request, the
Query Evaluator component decomposes this query into subqueries and reports
to the Dataset Characterizer about them. In the following, the Query Evaluator
verifies, with the aid of the Dictionary, the partitions on which the triples for
the query are potentially located. Based on this information, it checks which
triples are available in the Near Cache (a data structure in the main memory of
the server) and the Remote Cache (a remote NoSQL key/value database), and
sends the SPARQL subqueries for the missing triples to the Query Processor
component that, in turn, translates them to graph and/or document NoSQL
database queries. Finally, the Query Processor sends back the query results to
the Query Evaluator that translates them back to RDF triples with the aid of
the Dictionary, and returns the result to the RDF-based Application.

The main purpose of WA-RDF is to store large RDF graphs. In such a sce-
nario, the number of RDF triples can easily surpass the performance capacity
(e.g., disk, memory, CPU) of a single server. When it occurs, WA-RDF dis-
tributes the RDF fragments among potentially many NoSQL nodes. A fragment
is our smallest grain of distribution, i.e., during the partitioning process we deal
with fragments instead of triples. Nevertheless, a query can eventually access
data in multiple partitions, forcing WA-RDF to join data from different par-
titions. Since a join operation is very costly, we try to avoid join processes by
replicating fragments that are potentially part of a join. In short, whenever the
typical workload for a fragment spans more than one partition, our partitioning
scheme replicates the boundary fragments of the partition. Boundary fragments
have triples that are connected to triples present in other partitions.

WA-RDF also provides an RDF indexing strategy. In this context, a tradi-
tional approach is to build indexes for the full set of permutations of each triple
component (subject (S), predicate (P) and object (O)). Although this method
has been designed to accelerate joins by some orders of magnitude, the overhead
with large index space limits its scalability and makes it heavyweight. Hence, we
developed a hashmap index with subject and object keys following the patterns
S-PO and O-PS. In WA-RDF, the Indexer component is responsible to manage
these indexes. It is accessed in two situations: (i) during the fragment creation;
and (ii) to process queries with one triple pattern.

WA-RDF is an evolution of Rendezvous [7]. In this version, all the NoSQL
databases are employed. Also, as stated before, a graph database replaced the
columnar database for triple storage, and the dictionary uses now a columnar
database as the main storage.
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4 The Workload-Aware Approach

A workload-aware approach is the cornerstone of WA-RDF. Based on it, WA-
RDF decides where to place each triple, which influences mapping, partitioning
and querying strategies. In order to be aware of the typical workload, WA-
RDF registers information about the triple patterns of each incoming SPARQL
query. We consider triple patterns because they determine BGPs that define
the query shape (star, chain or complex). For instance, in the SPARQL query
SELECT ?x WHERE { ?x p1 B }, the triple pattern is ?x p1 B. WA-RDF reg-
isters historical information about the queries into two hashmaps, as shown in
the example of Figs. 2(iii) and 3(iii) for the RDF graph (i) of both figures. One
hashmap registers all the chain-shaped queries indexed by the predicate, and the
other one all the star-shaped queries indexed by the subject. For example, Fig. 2
(iii) shows that a typical star query around C containing the triple patterns
C p6 G, C p9 I and C p8 H, and Fig. 3(iii) shows a chain query starting on p1
containing the triple patterns A p1 B, B p5 C and C p6 ?.

Fig. 2. Star fragmentation strategy

Fig. 3. Chain fragmentation strategy

4.1 Storage: Fragmentation and Partitioning

When a new RDF triple tnew = (s, p, o) is inserted through WA-RDF, the
hashmaps are checked to decide if tnew is more frequent on star or chain-shaped
queries. Algorithm 1 shows the workload-based triple storage procedure. The
input parameter is tnew, and it generates an RDF fragment f that is stored
in one or more partitions. In Figs. 2(ii) and 3(ii), for instance, we have two new
triples C p10 M and C p2 D, respectively. An RDF fragment represents an expan-
sion of tnew (called core triple) with all of its neighbors according to a n-hop
replication horizon managed by WA-RDF. The n-hop is used to avoid frequent
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joins by wisely expanding the core triple to include its neighbors until a maxi-
mal distance n. The value n is calculated as the mode of the number of triple
patterns in the queries related to tnew. For star queries, it is the most frequent
diameter of the queries. For chain queries, it is the most frequent length of the
queries. For example, the diameter mode for the triple C p10 M is 1 according
to the frequent star-shaped query in the index of Fig. 2(iii).

Algorithm 1: Workload-based triple storage
Input: Triple tnew

1 if !exists(tnew) then
2 f = new Fragment;
3 f.core = tnew;
4 indexSPO.put(tnew.s, tnew);
5 indexOPS.put(tnew.o, tnew);
6 f.shapes = getShapes(tnew);
7 hop = 1;
8 if f.shapes.contains(’chain’) then
9 hop = chainHop(tnew);

10 if f.shapes.contains(’star’) then
11 if(starHop(t) > hop) hop = starHop(tnew);
12 f.triples = expand(tnew, hop, f.shapes);
13 writeToPartitions(f);

14 end

Back to Algorithm 1, if tnew does not exists (line 1), a new RDF fragment
f is generated (line 2) and it initially holds the core triple (line 3). Next, the
core triple is indexed in an SPO and OPS fashion (lines 4 and 5) in order to
reduce response time of queries without joins and facilitate the query expansion.
From line 6 to line 11, Algorithm 1 obtains the shapes and the n-hop size for
the core triple. The n-hop size is defined as the size in terms of triple patterns
of the biggest query in the typical workload for the core triple. It initially finds
the shapes and registers them in the fragment f (line 6). If neither the predicate
nor the subject exist in the chain and star hashmaps, respectively (no shape is
found), it defaults to a star-shaped query with one triple n-hop size (hop = 1)
(line 7). Otherwise, it determines the hop based on the found shapes (lines 8 to
11). In line 12, tnew is expanded to the n-hop size. f.triples is an array with up to
2 positions: one for the chain fragment and another one for the star fragment. In
the example of Fig. 2, the new triple C p10 M is expanded to the RDF fragment
in the left of Fig. 2(iv), and the new triple C p2 D to the RDF fragment in the
top of Fig. 3(iv).

Formally, an RDF Fragment is a set FRDFi = {tRDF } of RDF triples tRDF =
(s, p, o) whose content may overlap with other fragment FRDFj . After the doc-
ument or graph fragment is created, WA-RDF distributes it among potentially
NoSQL nodes (line 13). A NoSQL node can store one or more partitions. We
discuss RDF data partitioning further on in this section.
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It is important to observe here that a core triple can generate two RDF
fragments (graph and document). It happens when the subject of this core triple
is in the star hashmap and its predicate is in the chain hashmap at the same time.
If an RDF fragment is translated to a document fragment, we have a mapping to
a JSON document and it is stored into a NoSQL document database. If an RDF
fragment is translated to a graph fragment, we have a mapping to a NoSQL
graph database.

A document fragment is a tuple fdf = (kd, A) where fdf .kd is the JSON
document key and fdf .A = {(kα : v)} is a set of attributes, being kα the attribute
key and v a value whose domain can be atomic, a list, a set or a tuple. In short,
the core triple tcore in the RDF fragment FRDFi is mapped to a document
whose key is tcore.s, and each outgoing predicate from the subject becomes a
document attribute with a key tcore.p. If FRDFi is 1-hop, the attribute value
of each outgoing predicate is the object tcore.o reached from it. Otherwise, the
predicate value is an inner document that maintains the target object as the
inner document key, and its outgoing predicates as attributes. If any of these
outgoing predicates is, in turn, an n-hop, n > 1, the generation of other inner
documents proceeds recursively. Figure 2(iv) illustrates an RDF fragment (left)
and its corresponding document fragment (right).

A graph fragment is a triple fgf = (sgf, T, ogf) where sgf is a vertex repre-
senting the first subject of a chain, ogf is a vertex representing the last object
of a chain, and T = {tn} denotes an edge that holds a set of triples as property,
i.e., the intermediary triples between sgf and ogf , including the object of the
first triple and the subject of the last triple. A graph fragment summarizes a
chain of triples by transforming this chain into a triple where the subject of the
first triple and the object of the last triple are mapped to two vertexes, and the
edge between these two vertexes is created with a property that maintains all
the triples of the chain. In Fig. 3(iv) we see an RDF fragment (top) and a graph
fragment obtained from it (bottom).

We now explain the partitioning strategy of WA-RDF. Given the RDF graph
of Fig. 4 (the resulting graph after the storage of the triples C p10 M and C p2 D
into the graph of Figs. 2(i) and 3(i)), the fragments are stored in document
partitions (for instance, P1) and/or in graph partitions (for instance, P2 and
P3). In WA-RDF, a fragment is the finest unit for a partition. As defined in the
following, a partition is a set of fragments stored into the same physical NoSQL
node, and a fragment can be replicated in multiple partitions.

An RDF Partition Pm of an RDF graph G, such that G ⊆ P1 ∪ P2 ∪ ...Pn,
is a set of RDF fragments Pm = {FRDFi}, being not required that Pm ∩ Pt =
∅, for m �= t. Also, given SP = {P1, P2, ..., Pn} the set of RDF partitions, the
partition boundary BPi

of a partition Pi ⊂ SP is the set of RDF fragments
BPi

= FbP1 ∪ FbP2 ... ∪ FbPn
, where FbPk

⊂ Pk for any k. Each FbPi
∈ BPi

has
one or more RDF triples tiFPi

= (si, pi, oi) where oi = sj , being sj the subject
of any other triple tjFPj

of a partition Pj where tjFPj
= (sj , pj , oj).

The Dictionary shown in Fig. 4 registers each fragment location. It holds
three hashsets for each partition to keep track of the RDF elements stored in
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Fig. 4. Fragment partitioning

each partition (represented in the tables P1 Fragments and P2 Fragments), so
during a query request we can avoid accessing unnecessary partitions that cannot
answer this query. If a WA-RDF node manages more than one partition of a
NoSQL database type, in face of a new core triple we have to decide which
is the best partition to store its fragments. For doing so, WA-RDF finds out
the typical workload for the triples that belong to the fragment generated by
the core triple. With this information, we can query the partition sets in the
Dictionary to verify in which partition this fragment can be more useful (this
is represented by the line 13 of Algorithm 1) in sense that joins outside the
fragment can be answered within a single partition. In Fig. 4, the size n = 1 for
boundary replication repeats the fragment with core triple C p10 D in partitions
P1 and P2.

Algorithm 2 presents an overview of the query planning and partition pro-
cesses. The input is the set of triple patterns from the query and the output is
the result set R. If the query has only one triple pattern, the result is retrieved
from SPO and OPS indexes (lines 1 and 2). Otherwise, Algorithm2 looks for the
shapes of the query to define its execution plan. Firstly (lines 4 to 6), WA-RDF
loads the triple patterns into two multilevel hash tables mhtSPO and mhtOPS
in order to speedup the further steps. Then, it looks for S-S star shapes (lines
11 to 14), O-O star shapes (lines 15 to 18) and chains (lines 20 to 26). The star
shapes are identified when a subject has more than 2 entries in the mhtSPO
(line 11), or an object have more than 2 entries on the mhtOPS (line 15). In
this case, it expands the star shape with all the entries from the multilevel hash
tables, registers the results in the star hashmap and add it to the query execu-
tion plan stored into the set stars that will be later translated to the document
database query language (line 28). The triple patterns that do not define star
shapes are expanded to chains (line 20). If the expanded chain has size 1 (i.e.,
the triple pattern itself), the indexes are accessed to get the result triples (line
22 and 23). Otherwise, the expanded chain is registered in the chain hashmap
and added to the query execution plan stored into the set chains, which is later
translated to the graph database query language (line 29). Finally, with the aid
of the Dictionary, after the stars and chains sets are processed by the document
and graph databases, the algorithm returns the result set R (line 30).
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Algorithm 2: Workload-based triple querying
Input: SPARQL query triple patterns = {tp1, tp2, ..., tpn}, where

tpi = (si, pi, oi)
Output: Result set R = {t1, t2, ..., tm}

1 if n == 1 then
2 R.add(getFromIndex(tp1));
3 else
4 for i = 1 to n do
5 mhtSPO.put(si, tpi);
6 mhtOPS.put(oi, tpi);

7 end
8 stars = {};
9 chains = {};

10 for i = 1 to n do
11 if mhtSPO.get(si).size() > 2 then
12 expandedStar = expandSubject(mhtSPO.get(si));
13 register(expandedStar, ’star’, expandedStar.hop);
14 stars.add(expandedStar);

15 else if mhtOPS.get(oi).size() > 2 then
16 expandedStar = expandObject(mhtOPS.get(oi));
17 register(expandedStar, ’star’, expandedStar.hop);
18 stars.add(expandedStar);

19 else
20 expandedChain = expandChain(tpi);
21 if expandedChain.horizon==1 then
22 R.add(indexSPO.get(si));
23 R.add(indexOPS.get(oi));

24 else
25 register(expandedChain, ’chain’, expandedChain.hop);
26 chains.add(expandedChain);

27 end
28 R.add(readFromDocument(stars));
29 R.add(readFromGraph(chains));

30 return R;

4.2 Query Processing

From a performance point of view, the most important task accomplished by
WA-RDF is the query processing. The queries analyzed by the Query Evaluator
component are processed by the Query Processor component, which determines
the best way to read data from the NoSQL databases.

The Query Processor usually has many options to process a query. Even so,
its main strategy is to foster the early execution of triples with low selectivity to
reduce the number of intermediate results and, consequently, to boost the query
performance. Our work focuses on selectivity estimation of single BGPs based
on statistics of the queried data.
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Suppose, for example, the query Q in the following. It could be decomposed
into BGPs that define star queries where ?x and ?y are the star shape centers,
or BGPs that define chain queries that starts in ?x, follows to ?y and then goes
to other nodes. However, during the query processing we have to decide if the
process first execute one of the star or chain queries, as there are dependencies
between the queries.

Q: SELECT ?x WHERE { ?x p1 ?y . ?x p2 ?z .
?x p3 ?w . ?y p5 ?k . ?y p6 G . ?k p7 ?l . ?l p8 H . ?l p8 J }
Suppose, for example, that the star-shaped BGP ?x p1 ?y . ?x p2 ?z .
?x p3 ?w potentially returns 100 triples and the chain-shaped BGP ?x p1 ?y .
?y p5 ?k . ?k p7 l . ?l p8 J returns only 10 triples. In this case, we would
process first the chain-shaped BGP.

In short, the selectivity estimation is the number of triples that is returned
for each BGP. This number depends on the shape of the query. For star shapes,
it is calculated by the number of times that the center of the star (subject or
object) is present in the Dictionary. For chain shapes, it is calculated as how
many times the predicates of the chain are presented in the chain.

The selectivity is the input for the query translation processes accomplished
by the Query Processor component into the target databases. The star queries
(O-O or S-S joins) are converted to queries over NoSQL document databases. For
instance, the star queries Q1 (O-O) and Q2 (S-S) in the following are converted
to the access methods D1 and D2, respectively (MongoDB NoSQL database
syntax). The $exists function of MongoDB filters the JSON documents that
have all the predicates of each query. In D2, we also filter by the subject M.

Q1: SELECT ?x WHERE {x? p5 y? . x? p2 z? .}
Q2: SELECT ?x WHERE {x? p9 y? . M p10 y? .}

D1: db.partition1.find({p5:{$exists:true},
p2:{$exists:true}}})
D2: db.partition1.find({p9:{$exists:true},
subject:M}})

The chain queries are converted to queries over NoSQL graph databases.
For example, given the query Q3 in the following, with O-S joins, WA-RDF
translates it to the set of query G1 according to the Cypher3 query language of
the Neo4J NoSQL database.

Q3: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 w?.}

G1: MATCH (f:Fragment)
WHERE ANY(item IN f.p WHERE item = p1 OR
item = p2 OR item = p3)
RETURN p

3 https://neo4j.com/developer/cypher-query-language/.

https://neo4j.com/developer/cypher-query-language/
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The processing of joins occurs when a query as a whole cannot be executed on
a single partition. In this case, it needs to be decomposed into a set of subqueries,
being each subquery evaluated separately and joined at the WA-RDF node.

For example, if we consider the graph of Fig. 4, the query Q4 in the following
is not able to be completed only querying the partitions P1 or P2 alone. In this
case, the Query Processor divides it into subqueries SQ5 and SQ6, issues it to
the partitions P1 and P2, respectively, and joins the result sets by matching the
predicate p9 (the connection between P1 and P2 ).

Q4: SELECT ?x WHERE {x? p1 y?. y? p5 z?.
z? p9 w?. w? p11 J.}
SQ5: SELECT ?x WHERE {x? p1 y?. y? p5 z?.
z? p9 w?.}
SQ6: SELECT ?x WHERE {z? p9 w?. w? p11 J.}

As explained before, a complex query is a combination of the star and
chain patterns, potentially connected by simple queries. Query Q5 in the
following is an example, where the BGP x? p1 y? . y? p2 z? . z? p3 w?
is a chain pattern, the BGP z? p5 ?k is a simple query, and the BGP
k? p6 G . k? p7 I . k? p8 H is a star pattern. In this case, the decom-
position process works as follows: (i) it first sorts the triple patterns by subject
and object; (ii) if it is identified a subset with two or more patterns with the
same subject or object, it is considered a star subquery, like the subquery P1
in the following. Then, chains are identified in the remaining query patterns,
i.e., (iii) for each triple pattern, we navigate from object to subject creating
chains, and we pick up the longest chain and consider this a chain subquery, like
subquery P2.

Q5: SELECT ?x WHERE { x? p1 y? . y? p2 z? .
z? p3 w? . z? p5 ?k . k? p6 G . k? p7 I . k? p8 H }
P1: {k? p6 G . k? p7 I . k? p8 H }
P2: {x? p1 y? . y? p2 z? . z? p3 w?}
P3: {z? p5 ?k}

We repeat step (iii) until there are no more chains, or there are only simple
patterns, like the subquery P3. Each star and chain subquery is processed sepa-
rately, and the join of the results (along with the simple patterns) is performed at
the WA-RDF node. In case of ambiguity, i.e., a pattern that is presented in more
than one query type, we consider the following priority: (1) subject-based star
query; (2) object-based star query; (3) the longest chain query; and (4) simple
queries. The star queries are processed with high priority for two reasons: star
queries are most common, and the MongoDB translation permits that we query
mostly the document keys, what lets queries over documents much faster when
compared to queries over graphs.
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5 Experimental Evaluation

This section presents an evaluation of the proposed approach. The considered
dataset comes from the Lehigh University Benchmark (LUBM) [3], which fea-
tures an ontology for an University domain, synthetic RDF data, and 14 exten-
sional queries representing a variety of properties. In our experiments, we gen-
erate a dataset with 4000 universities. The dataset size is around 100 GB and
contains around 500 million triples. Regarding query complexity, we have 12
queries with joins, all of them having at least one star join, and 6 of them also
having at least one chain join.

We ran experiments for data insertion and data querying to evaluate the
performance and scalability of WA-RDF. WA-RDF was developed using Apache
Jena version 3.2.0 with Java 1.8, and we use MongoDB 3.4.3 and Neo4J 3.2.5
as the document and graph NoSQL databases, respectively, on considering their
maturity as representatives of these NoSQL data models. All the nodes are
Amazon m3.xlarge spot instances4 with 7.5 GB of memory and 1 × 32 SSD
capacity. For all the experiments, the nodes represent the number of MongoDB +
Neo4J servers, always with half of each database. We also create one partition for
each server, and the WA-RDF servers were installed alone in each node. All the
queries were issued from a server in the same network, so the latency between
the client and WA-RDF was inexpressive.

We reproduce the query processing strategies of Rainbow and ScalaRDF
because we could not find the implementation of these baselines in public repos-
itories. To test S2RDF, we use the version found in GitHub5, with small changes
in the source code so we could use LUBM. The machines we use to run Rainbow,
ScalaRDF and S2RDF are similar to the m3.xlarge of WA-RDF. We considered
only one processing server forRainbow and ScalaRDF, and we deployed an Apache
Spark cluster with one master and 3 workers for S2RDF (the same size of our WA-
RDF installation). The baselines were chosen because they hold different strate-
gies: Rainbow also applies multiple databases by using Redis as a cache, ScalaRDF
use a native storage along with Redis, and S2RDF uses Apache Spark.

Table 1 details the ingestion response time for three different triples. LUBM
is a synthetic benchmark based on the educational domain, creating a model and
data simulating a university with students, courses and professors. We first ran
the queries Q1 to Q5 to provide workload information to WA-RDF and, in the
following, we inserted the fragments F1 to F3. The queries and the fragments
are available at Appendix A. F1 presents the insertion of a university. As shown
in Table 1, the fragmentation is faster and only MongoDB was used. F2 presents
the insertion of a Department in the University of F1. During F2 processing,
the fragmentation phase is slower because the triples are expanded to include
the University and, as the relation ub:subOrganizationOf is part of the chain
in query Q5, it is added to Neo4J. F3 inserts a professor that is also a chair of
the department inserted before. It generates fragments for MongoDB and Neo4J
so the fragmentation and partitioning tasks are slower than the other ones.

4 https://aws.amazon.com/ec2/instance-types/.
5 https://github.com/mxhdev/S2RDF BSBM.

https://aws.amazon.com/ec2/instance-types/
https://github.com/mxhdev/S2RDF_BSBM
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Table 1. Detailed ingestion time (ms)

Work F1 F2 F3

WA-RDF - Parsing 9 12 13

WA-RDF - Fragmenting 13 19 23

WA-RDF - Indexing 5 6 4

WA-RDF - Partitioning 24 39 41

WA-RDF - Inserting MongoDB 102 - 204

WA-RDF - Inserting Neo4J - 300 320

WA-RDF total 153 356 605

Rainbow 201 209 198

ScalaRDF 233 253 208

S2RDF 129 197 291

Table 2. Detailed query response time (ms)

Work Q1 Q2 Q3 Q4 Q5

WA-RDF - Parsing 10 13 20 21 19

WA-RDF - Index access 13 14 11 18 15

WA-RDF - Decomposition - 20 35 33 54

WA-RDF - MongoDB - 70 102 123 132

WA-RDF - Neo4J - - - - 302

WA-RDF - Result set creation 5 20 30 40 60

WA-RDF total 28 144 199 233 582

Rainbow 33 162 203 594 1022

ScalaRDF 34 190 182 602 892

S2RDF 27 98 182 493 921

Table 2 details the querying response time for five different triples. The
queries used here were proposed by Guo et al. [3]. For sake of simplicity,
we discuss only a simple, a star, a chain and two complex queries, instead
of all the queries available in LUBM. Q1 is the most basic query, and it is
solved directed by the WA-RDF OPS index. Q2 is a small star-shape query
around X that causes an access to MongoDB. Q3 is composed of two stars
connected by Y. It takes more time to generate the result set because some
triples have to be cleaned. Q4 is a big star composed of five BGPs. However, it
is very fast to be processed by WA-RDF because we can solve it with only
one MongoDB access. Q5 is a complex query that is decomposed into two
stars and a chain (?X ub:memberOf ?Z . ?Z ub:subOrganizationOf ?Y .
?Y rdf:type ub:University.). It touches Neo4J and avoids multiple calls to
MongoDB. As shown in Table 2, WA-RDF is specially interesting for complex
queries like Q4 and Q5.
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6 Conclusion

This paper presents WA-RDF, a workload-aware RDF partitioning and querying
approach for RDF data stored into NoSQL databases. We based it on a middle-
ware that can, according to the typical shape of SPARQL queries, define RDF
fragments and store them into the document and graph NoSQL databases. Our
experiments show that WA-RDF outperformed three recent baselines in terms
of large queries (Q4 and Q5 ). For most of the other ones, we ran under the aver-
age of the baselines executions. However, there is still room for improvements
regarding data ingestion time and storage size.

In general, WA-RDF is a contribution to the problem of efficient management
of RDF data persisted into NoSQL databases. To the best of our knowledge, this
is the first work that deals with RDF data fragmentation, partitioning and effi-
cient query processing (including optimization issues to deal with intermediate
results) for massive RDF graphs stored in multiple NoSQL databases. Even so,
we have some future works in mind. First of all, we are considering the devel-
opment of an algorithm for triples compression. The lack of this feature lets
WA-RDF uses exponentially more storage space as the n-hop horizon grows.
Moreover, we intend to consider update and delete operations and cluster capa-
bilities in the WA-RDF server. With these improvements, we aim at comparing
it again with the related work. Finally, we intend to evaluate WA-RDF against
other benchmarks, like the Waterloo SPARQL Diversity Test Suite (WatDiv).

A Fragments and Queries

F1 - Insert a university:
University0.edu rdf:type ub:University

F2 - Insert a department for the university:
Department0.University0.edu rdf:type ub:Department
Department0.University0.edu ub:subOrganizationOf University0.edu

F3 - Insert a professor for the department:
Professor0 rdf:type ub:Professor
Professor0 rdf:type ub:Chair
Professor0 ub:worksFor Department0.University0.edu

Q1 - SELECT ?X WHERE {?X rdf:type ub:UndergraduateStudent}

Q2 - SELECT ?X WHERE {?X rdf:type ub:GraduateStudent . ?X
ub:takesCourse Department0.University0.edu GraduateCourse0}

Q3 - SELECT ?X, ?Y WHERE {?X rdf:type ub:Chair . ?Y rdf:type
ub:Department . ?X ub:worksFor ?Y . ?Y ub:subOrganizationOf Univer-
sity0.edu}
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Q4 - SELECT ?X, ?Y1, ?Y2, ?Y3 WHERE {?X rdf:type ub:Professor .
?X ub:worksFor Department0.University0.edu . ?X ub:name ?Y1 . ?X
ub:emailAddress ?Y2 . ?X ub:telephone ?Y3}

Q5 - SELECT ?X, ?Y, ?Z WHERE {?X rdf:type ub:GraduateStudent .?Y
rdf:type ub:University .?Z rdf:type ub:Department .?X ub:memberOf ?Z .?Z
ub:subOrganizationOf ?Y . ?X ub:undergraduateDegreeFrom ?Y}
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