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Abstract. A key contributor to the success of keyword search systems is a
ranking mechanism that considers the importance of the retrieved documents.
The notion of importance in graphs is typically computed using centrality
measures that highly depend on the degree of the nodes, such as PageRank.
However, in RDF graphs, the notion of importance is not necessarily related to
the node degree. Therefore, this paper addresses two problems: (1) how to define
importance measures in RDF graphs; (2) how to use these measures to help
compile and rank results of keyword queries over RDF graphs. To solve these
problems, the paper proposes a novel family of measures, called InfoRank, and a
keyword search system, called QUIRA, for RDF graphs. Finally, this paper
concludes with experiments showing that the proposed solution improves the
quality of results in two keyword search benchmarks.
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1 Introduction

Keyword search is a well-known and convenient way for users to query large amounts
of data, whether in Web pages or databases. The user simply types some terms, called
keywords, and it is up to the system to retrieve the documents that best match the list of
keywords. Search engines for Web pages popularized this kind of search. More
recently, some of the Information Retrieval techniques used by Web search engines
[17] were adapted to query databases to hide from users unfriendly SQL queries.

In the last decade, RDF emerged as a data model that represents data as a set of
triples, which in turn induces a graph. This kind of modeling adds flexibility to describe
resources and follows W3C standardized formats and ontologies. Considering that
RDF graphs are interesting sources of knowledge that are also queried with unfriendly
SPARQL queries, keyword search over RDF graphs (or briefly RDF-KwS) becomes a
relevant research topic.
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In Web Information Retrieval there are two main tasks: (1) matching keywords
with indexed documents; (2) ranking the retrieved documents by order of relevance.
RDF graphs present a further challenge, when compared to the Web, since the infor-
mation that a user needs may not be in a single triple, but rather it is distributed over the
graph. Hence, an answer for a keyword query over an RDF graph is better formalized
as a minimal subgraph of the RDF graph that covers the keywords.

Summarizing, there are three main tasks in RDF-KwS: (1) finding pieces of
information in the RDF graph; (2) assembling the retrieved pieces of information to
compose complete answers; (3) ranking the complete answers. The main motivation of
this work is how to construct an RDF-KwS system that covers these three tasks.

To achieve a good ranking mechanism, typical information retrieval systems rank
the documents based not only on how well they match the keyword query, but also
based on how important the documents are. The notion of importance for Web pages is
typically computed using centrality measures for graphs created using the hyperlink
structure of the Web. PageRank [6] and HITS [23] are some of the most popular
centrality measures used in Web Information Retrieval. Their main idea is to assign
high scores to pages that are referenced by many other important pages.

Returning to the RDF environment, the majority of the related work test their strate-
gies using some RDF graph that reflects Web pages and their links [12, 15, 18, 21, 26],
such as DBpedia1, or using some dataset about co-authorship of research papers [3, 12,
33], such asDBLP2.We argue that PageRank orHITS variationsworkwell for these types
of RDF graphs because the incoming or outgoing edges indeed indicate the relevance of a
resource. In the Web, it is reasonable that a Web page (or node) with several incoming
edges ismore important than aWeb pagewith a few incoming edges. Likewise, in anRDF
graph about research publications, the importance of an author is proportional to the
number of accepted papers.

However, RDF-KwS operates over full RDF graphs, where the incoming or
outgoing edges of a node do not necessarily indicate the node’s importance with respect
to any existing node relationship or, at least, it may be hard to detect which relationships
would express the notion of importance. Thus, traditional measures may fail to compute
the importance of a node. As an example, in an RDF graph representation of the Internet
Movie Database – IMDb (www.imdb.com), instances of “common classes” (e.g. Genre,
Language, Country, Company) have a high number of incoming edges. Hence, a
traditional PageRank algorithm will assign scores to these common instances that are
higher than the scores of popular movies and actors. Of course, we could manually
assign weights to the object properties in order to capture their semantics, and use a
Weighted PageRank or HITS Algorithm, as in [3, 10, 29]. However, one may argue that
the manual assignment of weights is bothersome and subjective. Thus, other works
focused on strategies to learn weights based on user feedback [1, 24, 27]. In addition to
the difficulty of detecting relationships that express the importance of a graph node, it
would be interesting to eliminate unwanted relationships that would distort traditional
importance measures.

1 http://dbpedia.org/sparql.
2 http://dblp.uni-trier.de.
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Summarizing, the problems addressed in this work are: (1) how to define impor-
tance measures in RDF graphs in which the importance of a node is not directly related
to its degree; (2) how to use these measures to help compute and rank answers of
keyword queries over RDF graphs.

To solve these problems, the first and key contribution of this paper is a novel
family of importance measures for RDF graphs, collectively called InfoRank, that
combine three intuitions: (I) “important things have lots of information about them”;
(II) “important things are surrounded by other important things”; (III) “few important
relations (e.g. friends) are better than many unimportant relations (e.g. acquain-
tances)”. They require neither the manual assignment of weights to object properties
nor a training dataset to use as input to a learning algorithm.

The second contribution is an RDF-KwS system, called QUIRA (QUerying with
InfoRAnk), which uses InfoRank: to narrow the retrieved pieces of information; to
choose the best paths to connect the resources (nodes) in the graph; to rank the
retrieved answers.

Finally, the third contribution of this paper consists of two enriched datasets, IMDb
and MusicBrainz (http://musicbrainz.org), along with keyword search benchmarks
adapted to the RDF environment. We use these datasets in our experiments to assess
the correctness and the performance of InfoRank in the QUIRA system.

The rest of this paper is organized as follows. Section 2 summarizes related work.
Section 3 defines the InfoRank measures. Section 4 describes the QUIRA keyword
search system. Section 5 evaluates the performance of InfoRank in the QUIRA system.
Finally, Sect. 6 contains the conclusions and suggestions for future work.

2 Related Work

Keyword Search over Structured Databases. Tools that implement keyword-based
queries over relational databases [34] and RDF datasets have been investigated for
some time. Since both fields have similar challenges, we discuss them together.

We may distinguish between tools that are schema-based, that use information
about the conceptual schema to compile a keyword-based query into an SQL or
SPARQL query, from those that are graph-based, which operate directly on the data.

BANKS [5] and BLINKS [16] are examples of relational graph-based tools, and
Sindice [28] and Structured LM [11] are examples of RDF graph-based tools.

Relational schema-based tools explore the foreign keys declared in the relational
schema to compile a keyword-based query into an SQL query with a minimal set of
join clauses, based on the notion of candidate networks (CNs). This approach was first
proposed in DISCOVER [19] and DBXplorer [2] and adopted in quite a few tools,
including recent ones [9].

SPARK [37] offers an example of an early RDF schema-based tool. Tran et al. [31]
combine the idea of generating summary graphs for the original RDF graph, using the
class hierarchy, to generate and rank candidate SPARQL queries. QUICK [36] is a tool
designed to translate keyword-based queries to SPARQL queries with the help of the
users, who choose a set of intermediate queries, that the tool ranks and executes.
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The QUIOW tool, our earlier implementation [13, 20], is schema-based and sup-
ports both the RDF and the relational environments by translating keyword queries into
SPARQL or SQL queries. Although the tool proved efficient for an industrial dataset
about petroleum, it had poor performance for an RDF graph representation of IMDb
due to the large size and ambiguity of the domain. The importance measures introduced
in this paper remediate these problems, as shown in Sect. 5.

Importance Measures for Structured Databases. ObjectRank [3] was one of the
first proposals to compute a global importance score for database entities using
PageRank. The authors transformed the structure of a relational database (RDB) into a
graph, using foreign keys as links between entities, and then applied PageRank with
manual weight assignment to different types of links. The authors evaluated their
strategy using the DBLP dataset.

In RDF, other works that manually assign weights to use with PageRank are:
Swoogle [10], which evaluated their strategy using documents crawled from the Web;
Park et al. [29], which performs evaluation using their own small research dataset; and
Beagle++ [7], which adapted ObjectRank to an RDF Graph about activity metadata in
desktops.

TripleRank [12] represented an RDF graph as a tensor. Then, it used the PAR-
AFAC decomposition of the tensor to induce groups of properties and resources, with
authority and hub scores for the particular latent aspect (topic) the group represents. It
showed how to use the result of the PARAFAC decomposition to guide a faceted
browsing application. Finally, it tested the application in several experiments over RDF
datasets with 5 to 55 thousand triples. PARAFAC decomposition proved interesting for
faceted browsing exactly because it induces groups of properties and resources,
together with authority and hub scores. However, it is not clear how to extend this
strategy to the context of keyword search, not to mention the problem of computing the
PARAFAC decomposition of tensors with 200+ million non-zero entries, as in the
experiments described in Sect. 5.

More recently, FORK [24] adapted ObjectRank to Linked Data. The main con-
tribution of the work is a learning algorithm for property weights based on user rele-
vance feedback, instead of the manual assignment of weights. The authors evaluated
their strategy using DBpedia and results showed that FORK achieves the best ranking
method when compared to baseline approaches. Similarly, DBtrends [25] uses query
logs to improve its ranking function.

As mentioned in the introduction, DBpedia and DBLP are highly influenced by link
semantics: DBLP through authorship links, and DBpedia through links derived from
Wikipedia, such as wikiPageRedirects, wikiPageDisambiguates, primaryTopic, etc.
Furthermore, in the LOD cloud (http://lod-cloud.net), DBpedia has many incoming
links from other RDF datasets.

For further references that focus on ranking strategies for degree-dependent data-
sets, such as DBpedia or DBLP, we refer the reader to [4, 30, 35]. We continue our
discussion with some alternative strategies that do not highly depend on node degree.

Graves et al. [14] proposes the use of closeness centrality for undirected graphs and
evaluates the strategy using three small datasets. The authors compare their strategy
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with a ranking using the number of incoming edges. The problem with closeness
centrality is that it is not efficient for large RDF graphs.

Although the work presented in [22] is not specific to RDF graphs, it proposes the
degree decoupled PageRank technique that penalizes or boosts the importance of the
node degree in recommendation graphs, depending on the domain characteristics. They
argue that, in some contexts, the importance of the node can be inversely proportional
to its degree. The authors performed an evaluation using graphs extracted from IMDb,
Last.fm, DBLP and Epinions. From results for the IMDb dataset, they noticed that, for
a movie recommendation graph, traditional PageRank performs better; however, for an
actor recommendation graph, the node degree actually needs to be penalized. They
argue that, when an actor plays in a large number of movies, he probably is a non-
discriminating (“B movie”) actor, whereas, when an actor is associated with relatively
few movies, he may be a more discriminating (“A movie”) actor.

3 The InfoRank Importance Measures

3.1 Background on Importance Measures

Importance measures have as goal to identify the most important or central node in a
graph, depending on what importance means. A simple way to compute the importance
of a node is just to analyze its degree. However, this returns a local measure of
importance, whereas in some contexts a global analysis of the graph is preferable. For
instance, the Betweenness Centrality counts the number of shortest paths going through
a node; hence it is able to identify important connectors in a graph. The Closeness
Centrality measures the average distance from a node to all other nodes, hence the
more central a node is, the closer it is to all other nodes.

Other types of importance measures try to capture the idea that “it is not about what
you know, but who you know”. That is, the notion of importance is given by how well-
connected a node is to other important nodes. PageRank [6] is the most popular
importance measure of this type. Using the hyperlink structure of the Web, the basic
idea is that, if a Web page has links from other high-quality Web pages, then that is an
indication that it is likely to be worth looking at the page.

PageRank can be computed using an iterative method, called Power Iteration. Let
G = (V, E) be a directed graph and PR(r, i) be the PageRank score of a node
r 2 V calculated at iteration i. First, the method initializes all scores with the same
value:

PR r; 0ð Þ ¼ 1=N ð1Þ

where N is the total number of nodes in G. Then, for 0 < i < x, it iterates until the
computation of the score converges or exceeds x, the maximum number of iterations:

PR r; ið Þ ¼ 1� a
N

þ a
X

s2MI rð Þ
PR s; i� 1ð Þ

dO sð Þ ð2Þ
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where a is a dumping factor (usually set to 0.85), MI (r) is the set of nodes that have a
link to r and dO (s) is the number of outgoing links from s.

One variant of PageRank uses link weights to give more importance for certain
types of links. The Weighted PageRank PRW is defined as:

PRW r; 0ð Þ ¼ 1=N ð3Þ

PRW r; ið Þ ¼ 1� a
N

þ a
X

s2MI rð Þ
PRW s; i� 1ð Þ

dO sð Þ � w r; sð Þ ð4Þ

where w(r, s) is a weight between 0 and 1 of edge (r, s) 2 E.

3.2 The Intuitions Behind InfoRank

Following the intuition that “important things have lots of information about them”
and observing the way that RDF graphs are modeled, we notice that more important
nodes are usually associated with more literals (information) through datatype prop-
erties than less important nodes. As an example, in IMDb, a movie with international
projection, such as Titanic (1997), has 205 literals with trivia, 134 literals with quotes
said by the characters, 180 triples with tags, and so on. In fact, there are a total of 1,297
literals describing the movie Titanic. By contrast, a movie with only national projec-
tion, such as the Brazilian movie O Auto da Compadecida, has only 70 literals. Fur-
thermore, in a multilingual dataset, such as DBpedia, Titanic has the label translated in
many languages (e.g. Japanese, Russian, French, Spanish, etc.), while the Brazilian
movie has the label only in Portuguese and English.

The second intuition that we follow is inspired by PageRank and says that “im-
portant things are surrounded by other important things”. For instance, Titanic has
links through object properties with actors Kate Winslet and Leonardo Dicaprio, which
are also important nodes in the graph. As in [14], we agree that, in RDF graphs, the
direction of an object property does not have the same meaning as a Web hyperlink
since a property is often found in its inverse form (e.g. directedBy/hasDirector). Given
that, we treat an RDF graph as undirected and consider all neighbors of a node (i.e. all
other nodes that have an object property linked to it) when propagating the importance
with PageRank.

We further improve this intuition by introducing a third one that says “few friends
are better than many acquaintances”. As discussed in the introduction, the typical
centrality measures are highly dependent on the degree of the node. In our work, we do
not want to boost (or penalize) the degree importance, but we focus on a strategy that
favors the quality of relations, rather than their quantity, that is, we prefer an approach
that captures the notion that “few important relations (e.g. friends) are better than
many unimportant relations (e.g. acquaintances)”.

148 E. S. Menendez et al.



3.3 Ranking Resources with InfoRank

Let T be a set of RDF triples. Assume that T contains schema information and that it is
possible to identify the set C of classes defined in T, the set P of object properties
defined in T, the set L of literals defined in T, and the set R of blank nodes and (class)
instances defined in T, i.e., r 2 R iff there is a triple (r, rdf:type, c) 2 T such that c 2 C.

Instance Informativeness. The level of “informativeness” of a resource measures
how informative the resource is. As discussed in the previous section, information is
represented as literals in RDF graphs. However, data resources (instances) usually have
more literals than metadata resources (classes and properties). Hence, we first focus our
strategy on the informativeness of instances.

The informativeness of an instance r 2 R, denoted IW(r), is defined as the number of
triples of the form (r, p, v) 2 T, where v 2 L.

Ranking Schema Elements. Continuing our strategy based on instance informative-
ness, we say that “important classes usually have informative instances” and “important
properties are usually those connecting informative instances”.

The InfoRank of a class c 2 C, denoted IR(c), is defined as the maximum value of
IW(r) of all instances of class c. We will rank classes by descending order of IR(c).

Likewise, the InfoRank of an object property p 2 P, denoted IR(p), is defined as the
maximum value of IW(r) + IW(s) of all triples of the form (r, p, s) 2 T. We will rank
object properties by descending order of IR(p).

Ranking Data. Note that we used only Intuition I in our strategies to rank metadata
resources. However, we propose a combination of the three intuitions to rank data, that
is, the instances and blank nodes.

Let r, s 2 R and p 2 P. Assume that (r, p, s) 2 T or (s, p, r) 2 T, that is, ignore the
direction of the object property p. The normalized weight of (r, p), denoted W(r, p), is
defined as:

W r; pð Þ ¼ IR pð Þ=
X

q2P and r;q;tð Þ2T or t;q;rð Þ2Tð Þ IR qð Þ ð5Þ

Note that the normalized weightW(r, p) does not depend on “who” the neighbors of
v are, but it depends only on how they are connected to r, that is, it considers the
InfoRank scores of properties p and q.

Then, we compute PageRank using W(r, p) as the edge weights:

PRW r; ið Þ ¼ 1� a
N

þ a
X

r;p;sð Þ2T or s;p;rð Þ2T PRW s; i� 1ð Þ �W r; pð Þ ð6Þ

where, as in Eq. (2), N is the total number of nodes in G and a is a dumping factor.
The InfoRank score of an instance r, denoted IR(r), is the final PageRank score of

r after x iterations, PRW(r, x), weighted by the informativeness of r, IW(r):

IR rð Þ ¼ PRW r; xð Þ � IW rð Þ ð7Þ
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4 The QUIRA Keyword Search System

4.1 Overview

Recall that, given a graph G and a set M of nodes of G, a Steiner tree S for M is a tree
whose nodes contain all nodes in M (and perhaps other nodes of G) and whose edges
are edges of G. The Steiner tree S is minimal iff no other Steiner tree for M has fewer
nodes than S.

As stated in the introduction, an answer of a keyword query over an RDF graph
G is one or more minimal subgraphs that cover all keywords. Hence, a naïve approach
to address the three main tasks would be: (1) find a set M of nodes of G that match all
keywords; (2) find a minimal Steiner tree for M; (3) if there is more than one answer,
rank the answers according to some criterion. Note that computing a Steiner tree avoids
including unnecessary edges to connect the nodes.

There are two main problems with this approach that make it infeasible for most
RDF graphs: (1) the set of nodes that match the keywords can be large; and (2) com-
puting a minimal Steiner tree is an NP-complete problem.

Therefore, in previous work [13, 20], we described a tool, called QUIOW, that
explores schema information to minimize these problems. The schema information is
organized as a schema graph, as illustrated in Fig. 1. Without going into the details, in
the first stage, QUIOW groups the keyword matches around classes, that is, QUIOW
identities the properties whose values match keywords and creates groups of properties
that have the same class as domain. In the second stage, QUIOW generates a Steiner
tree for the set of classes found in the first stage over the schema graph (which is
typically a small graph). In the third stage, QUIOW synthesizes a SPARQL query using
the Steiner tree. Finally, the triplestore processes the SPARQL query synthesized to
actually compute an answer to the keyword query.

In this work, we maintain the idea of grouping the matches in classes/properties to
generate SPARQL templates. However, we completely reformulated the strategy to
compute the templates to take advantage of InfoRank, as described in what follows.

4.2 Finding Pieces of Information in an RDF Graph

In this section, we present a greedy algorithm that takes keywords as input and returns
the best set of class/property groups, as defined in Sect. 4.1.

Table 1 shows examples of groups in an IMDb dataset. The count column indicates
that there are five movies named Titanic, one actress named Kate Winslet and four
Episodes also named Kate Winslet. The info_score column is the aggregation of the
InfoRank scores of all resources of a given group. For instance, all resources of group
u1 sum up to 0.0099 of InfoRank scores. Finally, group u4 indicates that there is an
rdfs:Class labeled Movie with score 1,468. We define a function accum_score(J, v)
that simply counts the number of keywords from a set of keywords J = {j1, j2, …, jn}
that occurs in a literal value v. As an example, consider the keyword query K = {kate,
winslet, titanic} and the data in Table 1. The non-zero accum scores are:
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accum score kate;winslet; titanicf g;Kate Winsletð Þ ¼ 2
accum score kate;winslet; titanicf g; Titanicð Þ ¼ 1

Algorithm 1 presents an overview of a greedy strategy to obtain the best groups that
satisfy a keyword query K. The strategy first gives priority to class matches. Then, it
searches the groups looking for properties and data matches (e.g. Titanic, Kate
Winslet).

Input: A keyword query K and the set of groups U
Output: A subset of groups M
J = all keywords in K
M = empty list of groups
While J is not empty 

u = find in U a class group with the highest accum_score given J, use the highest in-
fo_score to disambiguate
If a match is found

add u to M, remove the keywords matched in u from J
Else

u = find in U a property or data group (i.e. class is not rdfs:Class) with the highest 
accum_score given J, use the highest sum_score to disambiguate

If a match is found
add u to M, remove the keywords matched in u from J

If J did not change
break

Algorithm 1. Greedy Strategy to return the best set of groups that match a Keyword Query. 

As an example of the algorithm, consider again K = {kate, winslet, titanic}. In the
first iteration of the while loop, J = {kate, winslet, titanic} and the algorithm chooses
group u2. Although groups u2 and u3 have the same accum_score for J, the info_score
is higher for u2. In the second iteration, J = {titanic} and the algorithm chooses group
u1, and the loop ends. At the end of this step, we generate SPARQL templates that
satisfy the groups retrieved in Algorithm 1. The resulting templates for K = {kate,
winslet, titanic} are shown in Table 2.

Table 1. Example of groups from IMDb.

Group Class Property Value info_score Count

u1 imdb:Movie rdfs:label Titanic 0.0099 5
u2 imdb:Actress rdfs:label Kate Winslet 0.0010 1
u3 imdb:Episode rdfs:label Kate Winslet 0.0000068 4
u4 rdfs:Class rdfs:label Movie 1,468 1
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4.3 Connecting and Ranking

Connecting. The second task of the RDF-KwS process, i.e., connecting pieces of
information, consists of finding a minimal Steiner tree between the classes of the groups
retrieved in the first task. The Steiner tree is computed over the schema graph, a
representation of the schema as in Fig. 1. Since the number of classes in an RDF
Dataset is usually not large, it is feasible to compute a minimal Steiner tree.

Completing our templates example presented in Table 2, this step generates one
more template (?r1 ?p1 ?r2), which says that a movie ?r1 and an actress ?r2 are
connected through some property ?p1.

Ranking. In the third task, i.e., ranking the results, we materialize triples together with
the InfoRank score (e.g. :Kate_Winslet :inforank “0.0010”). Hence, we can generate
templates for these triples (e.g. ?r1 :inforank ?s1, ?r2 :inforank ?s2), and synthesize a
SPARQL query with an ORDER BY clause that aggregates the scores of all instances from
the templates. Finally, the following SPARQL query is synthesized for K = {kate,
winslet, titanic}.

Fig. 1. IMDb schema.

Table 2. Templates generated for K = {kate, winslet, titanic}.

Template Interpretation

?r1 rdf:type :Movie. ?r1 rdfs:label ?v1.
filter(contains(?v1, ‘titanic’))

All movies with label titanic

?r2 rdf:type :Actress. ?r2 rdfs:label ?v2.
filter(contains(?v2, ‘kate winslet’))

All actresses with label kate winslet
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select * where { 
?r1 rdf:type :Movie . ?r1 rdfs:label ?v1 . filter(contains(?v1, ‘titanic’))
?r2 rdf:type:Actress . ?r2 rdfs:label ?v2 . filter(contains(?v2, ‘kate winslet’))
?r1 ?p1 ?r2 . ?r1 :inforank ?s1 . ?r2 :inforank ?s2 . } 

order by desc (?s1 + ?s2)

5 Evaluation

5.1 Setup

In order to evaluate our strategy, we downloaded the relational IMDb dataset (https://
sites.google.com/site/ontopiswc13/home/imdb-mo) in MySQL and used Oracle 12c to
transform it to RDF via R2RML. We used an RDF dump of MusicBrainz as our second
dataset; however, since the given dump was incomplete, we enriched it with DBpedia
information. The IMDb and MusicBrainz datasets have around 200 million triples.
Figure 1 shows an overview of the schemas.

All experiments were conducted using a RESTful Web application developed in
Java. The app ran on a macOS Sierra, 1,7 GHz Intel Core i5 RAM 4 GB. To store and
manage the RDF data, we used Oracle 12c, running on a 2x deca-core Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40 GHz, 128 GB RAM, 32 KB Cache L1.

The datasets, benchmarks, and a detailed description of the experiments are
available at the QUIRA Web page (https://sites.google.com/view/quira/).

5.2 Ranking Experiments

This section presents experiments to assess the potential of InfoRank as an importance
measure to be used in a keyword search system over RDF graphs.

Table 3 presents the InfoRank score and the node degree of several classes and
properties (i.e., metadata) from IMDb. We argue that, in an IMDb dataset, the most
important classes are those that represent works (movies, TV series, etc.) and people
(actors, actresses, directors, etc.), which is the result that InfoRank gives. Note that if
we ranked the results using the degree, the order of classes would be Character, Person,
Work; however, a typical IMDb user is likely to be more interested in movies and other
type of works rather than in characters. Furthermore, the top properties are those
connecting movies, such as follows/followed_by, which indicates that a movie is a
sequence of another.
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Table 4 shows the top 10 instances induced by PageRank and InfoRank. With
PageRank, the top instances are highly connected nodes, such as countries, language
and genres. However, we argue that, when considering a movies dataset, we would
expect as top instances popular movies, series, actors, actresses, etc.

To indicate popularity, Table 4 also shows the users’ rating of works extracted
from the IMDb Web site. In the case of a person, we extracted the most rated work that
she stared, directed, produced, etc. InfoRank results show highly rated work/person,
such as Star Wars, The Wizard of Oz, Titanic and Morgan Freeman. The results show
some TV Series with lower rates because they have a considerable level of informa-
tiveness (General Hospital – 375 literals; Days of Our Lives – 232 literals), and also a
high degree through property :episode_of_series, since they have been on the air for a
long time. Likewise, the results show some hosts from TV Shows that also have been
on the air for a long time. Although InfoRank results show a few less popular
works/people, we argue that InfoRank results correspond better to what users would
expect in an IMDb dataset.

A similar scenario happens with MusicBrainz, in which the PageRank top instances
also include countries. However, the InfoRank top instances include famous musicians,
such as Elvis Presley, Mozart, Beethoven, Bob Dylan, etc.

Table 3. IMDb metadata ranking computed by InfoRank.

# Class Info Degree Property Info Degree

1 imdb:Work 1,619 2,410,207 imdb:follows 2,538 332,551
2 imdb:Person 1,482 3,913,018 imdb:followed_by 2,538 332,548
3 imdb:Character 3 19,419,994 imdb:edited_from 2,538 14,103
4 imdb:Company 3 224,971 imdb:edited_into 2,538 14,103
5 imdb:Language 2 364 imdb:referenced_in 2,509 223,535
6 imdb:Country 2 319 imdb:references 2,509 223,532
7 imdb:Genre 2 46 ….

Table 4. IMDb top 10 instances induced by PageRank and InfoRank.

# PageRank InfoRank
Instance Class User

rating
Instance Class User

rating

1 English Language – Star Wars Movie 8.6
2 USA Country – Dolly Parton Actress 6.8
3 Short Genre – Jay Leno Actor 5.3
4 Drama Genre – Morgan Freeman Actor 8.6
5 Comedy Genre – The Wizard of Oz Movie 8.0
6 Documentary Genre – General Hospital Series 6.7
7 UK Country – Days of Our Lives Series 5.3
8 Spanish Language – Bob Barker Actor 7.7
9 German Language – Titanic Movie 7.8
10 France Country – Around the World in

80 Days
Movie 6.8
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5.3 Keyword Search Experiments

To evaluate the impact of using InfoRank in a keyword search system over IMDb, we
used all 50 queries (adapted to the RDF schema) from Coffman’s IMDb Benchmark
[8]. We ran versions of QUIRA using a variety of ranking measures. Table 5 presents
the Mean Average Precision (MAP) [32], the total elapsed time and the number of
iterations needed to compute the measures.

The measures in Table 5 include InfoRank, a version of PageRank considering the
graph as undirected, the HITS Authorities, which prioritizes nodes with high in-degree,
and HITS Hubs, which prioritizes nodes with high out-degree. We also include the
Degree-decoupled (DD) PageRank [22] with a penalization parameter of 0.5. Note that
we compared InfoRank neither with any approach that uses manually weighted links
due to their subjectivity nor with approaches that learn weights from user feedback
since we face the cold start problem. Moreover, we eliminated measures that are not
computed efficiently in large graphs, such as the closeness centrality.

Analyzing the results (not shown here for brevity), we noted that PageRank and
HITS Authorities fail when choosing class Character, instead of class Work, in queries
where a Steiner tree needs to be computed. They also fail in the ranking step for some
keyword queries due to the high dependency on the degree. For example, Fig. 2 shows
the results for PageRank and InfoRank for the query “actor terminator”, whose
expected results are the movies stared by Arnold Schwarzenegger. PageRank ranks first
the voice actor Jim Cummings because his node has a high degree, since voice actors
are usually cast several times, whereas InfoRank correctly returns the movies Termi-
nator 2: Judgment Day and The Terminator starred by Arnold Schwarzenegger.

Table 5. IMDb results.

Time (min) Iterations MAP

InfoRank 28 24 0.82
PageRank 27 30 0.76
HITS Authorities 25 12 0.73
HITS Hubs 25 12 0.30
DD PageRank p = 0, 5 38 37 0.54

Fig. 2. Result for query K = {actor, terminator} in PageRank and InfoRank.
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The HITS Hubs fails in all queries that refer to a person (e.g. Denzel Washington)
since instances of class Person do not have outgoing edges. Furthermore, the Degree
Decoupled (DD) PageRank fails because it penalizes instances with a high degree,
whereas many important instances (e.g. Star Wars) have a high degree.

To summarize, InfoRank achieves the best MAP result in Coffman’s IMDb
Benchmark queries, since it successfully finds a balance between degree and infor-
mativeness. Furthermore, Table 5 indicates that these type of centrality measures,
based on the Power Iteration method, can be computed in a feasible time.

Finally, we used 25 queries from QALD-2 (https://github.com/ag-sc/QALD) to
evaluate the impact of InfoRank in a keyword search system over MusicBrainz.
InfoRank achieved a MAP of 0.80 and PageRank a MAP of 0.75. For instance,
PageRank gives a priority to music albums that have a higher number of tracks, since
more tracks imply more links. However, we argue that the number of tracks is not
necessarily related to the importance of an album.

6 Conclusions and Future Work

In this paper, we addressed two problems: (1) how to define importance measures in
RDF graphs; (2) how to use these measures to help compute and rank answers of
keyword queries over RDF graphs. To solve these problems, we proposed a novel
family of measures, called InfoRank, and a keyword search system, called QUIRA, for
RDF graphs. QUIRA uses the proposed importance measures: to narrow the retrieved
pieces of information; to choose the best paths to connect the resources (nodes) in a
graph; and to rank the retrieved answers. We concluded with experiments that show
that the proposed solution improves the quality of results in popular keyword search
benchmarks.

As future work, we plan to use InfoRank to improve Entity Linking and Entity
Summarization solutions, to evaluate QUIRA with larger schemas, and to test ranking
functions that take advantage of domain knowledge.
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