
Sven Hartmann · Josef Küng ·
Sharma Chakravarthy · Gabriele Anderst-Kotsis ·
A Min Tjoa · Ismail Khalil (Eds.)

LN
CS

 1
17

07

30th International Conference, DEXA 2019
Linz, Austria, August 26–29, 2019
Proceedings, Part II

Database and Expert
Systems Applications

Lecture Notes in Computer Science 11707

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Sven Hartmann • Josef Küng •

Sharma Chakravarthy • Gabriele Anderst-Kotsis •

A Min Tjoa • Ismail Khalil (Eds.)

Database and Expert
Systems Applications
30th International Conference, DEXA 2019
Linz, Austria, August 26–29, 2019
Proceedings, Part II

123

Editors
Sven Hartmann
Clausthal University of Technology
Clausthal-Zellerfeld, Germany

Josef Küng
Johannes Kepler University of Linz
Linz, Austria

Sharma Chakravarthy
The University of Texas at Arlington
Arlington, TX, USA

Gabriele Anderst-Kotsis
Johannes Kepler University of Linz
Linz, Austria

A Min Tjoa
Software Competence Center Hagenberg
Hagenberg im Mühlkreis, Austria

Ismail Khalil
Johannes Kepler University of Linz
Linz, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-27617-1 ISBN 978-3-030-27618-8 (eBook)
https://doi.org/10.1007/978-3-030-27618-8

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8295-9252
https://doi.org/10.1007/978-3-030-27618-8

Preface

This volume contains the papers presented at the 30th International Conference on
Database and Expert Systems Applications (DEXA 2019), which was held in Linz,
Austria, during August 26–29, 2019. On behalf of the Program Committee, we
commend these papers to you and hope you find them useful.

Database, information, and knowledge systems have always been a core subject of
computer science. The ever-increasing need to distribute, exchange, and integrate data,
information, and knowledge has added further importance to this subject. Advances in
the field will help facilitate new avenues of communication, to proliferate
interdisciplinary discovery, and to drive innovation and commercial opportunity.

DEXA is an international conference series that showcases state-of-the-art research
activities in database, information, and knowledge systems. The conference and its
associated workshops provide a premier annual forum to present original research
results and to examine advanced applications in the field. The goal is to bring together
developers, scientists, and users to extensively discuss requirements, challenges, and
solutions in database, information, and knowledge systems.

DEXA 2019 solicited original contributions dealing with any aspect of database,
information, and knowledge systems. Suggested topics included, but were not limited
to:

– Acquisition, Modeling, Management, and Processing of Knowledge
– Authenticity, Privacy, Security, and Trust
– Availability, Reliability, and Fault Tolerance
– Big Data Management and Analytics
– Consistency, Integrity, Quality of Data
– Constraint Modeling and Processing
– Cloud Computing and Database-as-a-Service
– Database Federation and Integration, Interoperability, Multi-Databases
– Data and Information Networks
– Data and Information Semantics
– Data Integration, Metadata Management, and Interoperability
– Data Structures and Data Management Algorithms
– Database and Information System Architecture and Performance
– Data Streams and Sensor Data
– Data Warehousing
– Decision Support Systems and Their Applications
– Dependability, Reliability, and Fault Tolerance
– Digital Libraries and Multimedia Databases
– Distributed, Parallel, P2P, Grid, and Cloud Databases
– Graph Databases
– Incomplete and Uncertain Data
– Information Retrieval

– Information and Database Systems and Their Applications
– Mobile, Pervasive, and Ubiquitous Data
– Modeling, Automation, and Optimization of Processes
– NoSQL and NewSQL Databases
– Object, Object-Relational, and Deductive Databases
– Provenance of Data and Information
– Semantic Web and Ontologies
– Social Networks, Social Web, Graph, and Personal Information Management
– Statistical and Scientific Databases
– Temporal, Spatial, and High-Dimensional Databases
– Query Processing and Transaction Management
– User Interfaces to Databases and Information Systems
– Visual Data Analytics, Data Mining, and Knowledge Discovery
– WWW and Databases, Web Services
– Workflow Management and Databases
– XML and Semi-Structured Data

Following the call for papers, which attracted 157 submissions, there was a rigorous
review process that saw each submission refereed by 3 to 6 international experts. The
32 submissions judged best by the Program Committee were accepted as full research
papers, yielding an acceptance rate of 20%. A further 34 submissions were accepted as
special research papers.

As is the tradition of DEXA, all accepted papers are published by Springer. Authors
of selected papers presented at the conference were invited to submit substantially
extended versions of their conference papers for publication in special issues of
international journals. The submitted extended versions underwent a further review
process.

The success of DEXA 2019 was the result of collegial teamwork from many
individuals. We wish to thank all authors who submitted papers and all conference
participants for the fruitful discussions.

We are grateful to Dirk Draheim, (Technical University of Tallinn), Vladimir Marik
(Technical University of Prague), Axel Polleres (Vienna Business School), and
Stefanie Rinderle Ma (University of Vienna) for their keynote talks.

This edition of DEXA also featured four international workshops covering a variety
of specialized topics:

• BIOKDD 2019: The 10th International Workshop on Biological Knowledge
Discovery from Data

• IWCFS 2019: The Third International Workshop on Cyber-Security and Functional
Safety in Cyber-Physical Systems

• MLKgraphs 2019: The First International Workshop on Machine Learning and
Knowledge Graphs

• TIR 2019: The 16th International Workshop on Technologies for Information
Retrieval

vi Preface

We would like to express our thanks to all institutions actively supporting this event,
namely:

• Johannes Kepler University Linz (JKU)
• Software Competence Center Hagenberg (SCCH)
• International Organization for Information Integration and Web based applications

and Services (@WAS)

Finally, we hope that all the participants of DEXA 2019 enjoyed the program that
was put together.

August 2019 Sven Hartmann
Josef Küng

Sharma Chakravarthy

Preface vii

Organization

General Chair

A Min Tjoa Technical University of Vienna, Austria

Program Committee Chairs

Sharma Chakravarthy University of Texas at Arlington, USA
Sven Hartmann Clausthal University of Technology, Germany
Josef Küng Johannes Kepler University Linz, Austria

Steering Committee

Gabriele Anderst-Kotsis Johannes Kepler University Linz, Austria
A Min Tjoa Software Competence Center Hagenberg, Austria
Ismail Khalil Johannes Kepler University Linz, Austria

Program Committee and Reviewers

Sonali Agarwal Indian Institute of Information Technology Allahabad,
India

Riccardo Albertoni Institute of Applied Mathematics and Information
Technologies, Italian National Council of Research,
Italy

Idir Amine Amarouche University Houari Boumediene, Algeria
Rachid Anane Coventry University, UK
Mustafa Atay Winston-Salem State University, USA
Faten Atigui CNAM, France
Ladjel Bellatreche ENSMA, France
Nadia Bennani INSA Lyon, France
Karim Benouaret Université Claude Bernard Lyon 1, France
Djamal Benslimane Lyon 1 University, France
Morad Benyoucef University of Ottawa, Canada
Mikael Berndtsson University of Skovde, Sweden
Catherine Berrut Grenoble University, France
Vasudha Bhatnagar Delhi University, India
Athman Bouguettaya University of Sydney, Australia
Omar Boussaid University of Lyon/Lyon 2, France
Stephane Bressan National University of Singapore, Singapore
Barbara Catania DISI, University of Genoa, Italy
Sharma Chakravarthy The University of Texas at Arlington, USA
Cindy Chen University of Massachusetts Lowell, USA

Max Chevalier IRIT - SIG, Université de Toulouse, France
Soon Ae Chun City University of New York, USA
Alfredo Cuzzocrea University of Trieste, Italy
Deborah Dahl Conversational Technologies, USA
Jérôme Darmont Université de Lyon (ERIC Lyon 2), France
Soumyava Das Teradata, USA
Vincenzo Deufemia Università degli Studi di Salerno, Italy
Juliette Dibie-Barthélemy AgroParisTech, France
Dejing Dou University of Oregon, USA
Cedric du Mouza CNAM, France
Johann Eder University of Klagenfurt, Austria
Suzanne Embury The University of Manchester, UK
Markus Endres University of Augsburg, Germany
Noura Faci Lyon 1 University, France
Bettina Fazzinga ICAR-CNR, Italy
Stefano Ferilli University of Bari, Italy
Flavio Ferrarotti Software Competence Center Hagenberg, Austria
Vladimir Fomichov School of Business Informatics, National Research

University Higher School of Economics, Russia
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Bernhard Freudenthaler Software Competence Center Hagenberg GmbH,

Austria
Steven Furnell Plymouth University, UK
Joy Garfield University of Worcester, UK
Claudio Gennaro ISTI-CNR, Italy
Manolis Gergatsoulis Ionian University, Greece
Javad Ghofrani HTW Dresden University of Applied Sciences,

Germany
Vikram Goyal IIIT Delhi, India
Carmine Gravino University of Salerno, Italy
Sven Groppe Lübeck University, Germany
William Grosky University of Michigan, USA
Francesco Guerra Università degli Studi Di Modena e Reggio Emilia,

Italy
Giovanna Guerrini University of Genova, Italy
Allel Hadjali ENSMA, France
Abdelkader Hameurlain Paul Sabatier University, France
Ibrahim Hamidah Universiti Putra Malaysia, Malaysia
Takahiro Hara Osaka University, Japan
Ionut Emil Iacob Georgia Southern University, USA
Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine INRIA Grand Nancy, France
Yasunori Ishihara Nanzan University, Japan
Peiquan Jin University of Science and Technology of China, China
Anne Kao Boeing, USA
Dimitris Karagiannis University of Vienna, Austria

x Organization

Stefan Katzenbeisser University of Passau, Germany
Anne Kayem Hasso-Plattner-Institute, Germany
Uday Kiran Rage University of Tokyo, Japan
Carsten Kleiner University of Applied Sciences and Arts Hannover,

Germany
Henning Koehler Massey University, New Zealand
Michal Krátký Technical University of Ostrava, Czech Republic
Petr Kremen Czech Technical University in Prague, Czech Republic
Anne Laurent LIRMM, University of Montpellier 2, France
Lenka Lhotska Czech Technical University, Czech Republic
Wenxin Liang Dalian University of Technology, China
Chuan-Ming Liu National Taipei University of Technology, Taiwan
Hong-Cheu Liu University of South Australia, Australia
Jorge Lloret Gazo University of Zaragoza, Spain
Hui Ma Victoria University of Wellington, New Zealand
Qiang Ma Kyoto University, Japan
Zakaria Maamar Zayed University, UAE
Elio Masciari ICAR-CNR, Università della Calabria, Italy
Brahim Medjahed University of Michigan, USA
Jun Miyazaki Tokyo Institute of Technology, Japan
Lars Moench University of Hagen, Germany
Riad Mokadem IRIT, Paul Sabatier University, France
Anirban Mondal Ashoka University, India
Yang-Sae Moon Kangwon National University, Republic of Korea
Franck Morvan IRIT, Paul Sabatier University, France
Francesc Munoz-Escoi Universitat Politècnica de València, Spain
Ismael Navas-Delgado University of Málaga, Spain
Wilfred Ng Hong Kong University of Science and Technology,

SAR China
Javier Nieves Acedo IK4-Azterlan, Spain
Marcin Paprzycki Polish Academy of Sciences, Warsaw Management

Academy, Poland
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Clara Pizzuti Institute for High Performance Computing and

Networking, National Research Council, Italy
Elaheh Pourabbas National Research Council, Italy
Rodolfo Resende Federal University of Minas Gerais, Brazil
Claudia Roncancio Grenoble University, LIG, France
Viera Rozinajova Slovak University of Technology in Bratislava,

Slovakia
Massimo Ruffolo ICAR-CNR, Italy
Marinette Savonnet University of Burgundy, France
Florence Sedes IRIT, Paul Sabatier University, France
Nazha Selmaoui University of New Caledonia, New Caledonia
Michael Sheng Macquarie University, Australia
Patrick Siarry Université Paris 12, LiSSi, France

Organization xi

Hala Skaf-Molli Nantes University, France
Srinivasa Srinath IIIT Bangalore, India
Bala Srinivasan (Retried) Monash University, Australia
Olivier Teste IRIT, University of Toulouse, France
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Jean-Marc Thevenin University of Toulouse 1 Capitole, France
Vicenc Torra Maynooth University, Ireland
Traian Marius Truta Northern Kentucky University, USA
Lucia Vaira University of Salento, Italy
Krishnamurthy Vidyasankar Memorial University of Newfoundland, Canada
Marco Vieira University of Coimbra, Portugal
Ming Hour Yang Chung Yuan Christian University, Taiwan
Xiaochun Yang Northeastern University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Qiang Zhu The University of Michigan, USA
Yan Zhu Southwest Jiaotong University, China
Marcin Zimniak Leipzig University, Germany
Ester Zumpano University of Calabria, Italy

Organizers

xii Organization

Contents – Part II

Distributed, Parallel, P2P, Grid and Cloud Databases

Looking into the Peak Memory Consumption of Epoch-Based Reclamation
in Scalable in-Memory Database Systems. 3

Hitoshi Mitake, Hiroshi Yamada, and Tatsuo Nakajima

Energy Efficient Data Placement and Buffer Management
for Multiple Replication . 19

Satoshi Hikida, Hieu Hanh Le, and Haruo Yokota

Querying Knowledge Graphs with Natural Languages 30
Xin Wang, Lan Yang, Yan Zhu, Huayi Zhan, and Yuan Jin

Explaining Query Answer Completeness and Correctness
with Partition Patterns . 47

Fatma-Zohra Hannou, Bernd Amann, and Mohamed-Amine Baazizi

Information Retrieval

Research Paper Search Using a Topic-Based Boolean Query Search
and a General Query-Based Ranking Model . 65

Satoshi Fukuda, Yoichi Tomiura, and Emi Ishita

Extractive Document Summarization using Non-negative Matrix
Factorization. 76

Alka Khurana and Vasudha Bhatnagar

Succinct BWT-Based Sequence Prediction . 91
Rafael Ktistakis, Philippe Fournier-Viger, Simon J. Puglisi,
and Rajeev Raman

TRR: Reducing Crowdsourcing Task Redundancy. 102
Sh. Galal and Mohamed E. El-Sharkawi

Software Resource Recommendation for Process Execution Based
on the Organization’s Profile . 118

Miller Biazus, Carlos Habekost dos Santos, Larissa Narumi Takeda,
José Palazzo Moreira de Oliveira, Marcelo Fantinato, Jan Mendling,
and Lucinéia Heloisa Thom

An Experiment to Analyze the Use of Process Modeling Guidelines
to Create High-Quality Process Models . 129

Diego Torales Avila, Raphael Piegas Cigana, Marcelo Fantinato,
Hajo A. Reijers, Jan Mendling, and Lucineia Heloisa Thom

Semantic Web and Ontologies

Novel Node Importance Measures to Improve Keyword Search
over RDF Graphs . 143

Elisa S. Menendez, Marco A. Casanova, Luiz A. P. Paes Leme,
and Mohand Boughanem

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 159
Luiz Henrique Zambom Santana and Ronaldo dos Santos Mello

Reverse Partitioning for SPARQL Queries: Principles
and Performance Analysis . 174

Jorge Galicia, Amin Mesmoudi, Ladjel Bellatreche, and Carlos Ordonez

PFed: Recommending Plausible Federated SPARQL Queries 184
Florian Hacques, Hala Skaf-Molli, Pascal Molli, and Sara E. L. Hassad

Representing and Reasoning About Precise and Imprecise Time Points
and Intervals in Semantic Web: Dealing with Dates and Time Clocks 198

Nassira Achich, Fatma Ghorbel, Fayçal Hamdi, Elisabeth Metais,
and Faiez Gargouri

Information Processing

Context-Aware Multi-criteria Recommendation Based on Spectral
Graph Partitioning. 211

Rim Dridi, Lynda Tamine, and Yahya Slimani

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 222
Tianqi Zheng, Zhibin Zhang, and Xueqi Cheng

A Modular Approach for Efficient Simple Question Answering
Over Knowledge Base . 237

Happy Buzaaba and Toshiyuki Amagasa

Scalable Machine Learning in the R Language Using
a Summarization Matrix. 247

Siva Uday Sampreeth Chebolu, Carlos Ordonez,
and Sikder Tahsin Al-Amin

ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines 263
Felix Kossak and Michael Zwick

xiv Contents – Part II

Temporal, Spatial, and High Dimensional Databases

Correlation Set Discovery on Time-Series Data. 275
Daichi Amagata and Takahiro Hara

Anomaly Subsequence Detection with Dynamic Local Density
for Time Series . 291

Chunkai Zhang, Yingyang Chen, and Ao Yin

Trajectory Similarity Join for Spatial Temporal Database 306
Tangpeng Dan, Changyin Luo, Yanhong Li, and Chenyuan Zhang

Knowledge Discovery

Multiviewpoint-Based Agglomerative Hierarchical Clustering 325
Yuji Fujiwara and Hisashi Koga

Triplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive
Classification for Imbalanced Image Detection . 341

Jiefan Tan, Yan Zhu, and Qiang Du

Discovering Partial Periodic High Utility Itemsets in Temporal Databases . . . 351
T. Yashwanth Reddy, R. Uday Kiran, Masashi Toyoda,
P. Krishna Reddy, and Masaru Kitsuregawa

Using Mandatory Concepts for Knowledge Discovery and Data Structuring . . . 362
Samir Elloumi, Sadok Ben Yahia, and Jihad Al Ja’am

Topological Data Analysis with �-net Induced Lazy Witness Complex. 376
Naheed Anjum Arafat, Debabrota Basu, and Stéphane Bressan

Analyzing Sequence Pattern Variants in Sequential Pattern Mining
and Its Application to Electronic Medical Record Systems 393

Hieu Hanh Le, Tatsuhiro Yamada, Yuichi Honda, Masaaki Kayahara,
Muneo Kushima, Kenji Araki, and Haruo Yokota

Web Services

Composing Distributed Data-Intensive Web Services
Using Distance-Guided Memetic Algorithm . 411

Soheila Sadeghiram, Hui Ma, and Gang Chen

Keyword Search Based Mashup Construction with Guaranteed Diversity 423
Huanyu Cheng, Ming Zhong, Jian Wang, and Tieyun Qian

Using EDA-Based Local Search to Improve the Performance
of NSGA-II for Multiobjective Semantic Web Service Composition 434

Chen Wang, Hui Ma, and Gang Chen

Contents – Part II xv

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 452
Gaëtan Heidsieck, Daniel de Oliveira, Esther Pacitti,
Christophe Pradal, François Tardieu, and Patrick Valduriez

Correction to: Keyword Search Based Mashup Construction
with Guaranteed Diversity . C1

Huanyu Cheng, Ming Zhong, Jian Wang, and Tieyun Qian

Author Index . 467

xvi Contents – Part II

Contents – Part I

Big Data Management and Analytics

Optimization of Row Pattern Matching over Sequence Data in Spark SQL. . . 3
Kosuke Nakabasami, Hiroyuki Kitagawa, and Yuya Nasu

Rainfall Estimation from Traffic Cameras. 18
Remmy Zen, Dewa Made Sri Arsa, Ruixi Zhang, Ngurah Agus Sanjaya ER,
and Stéphane Bressan

Towards Identifying De-anonymisation Risks in Distributed Health
Data Silos . 33

Nikolai J. Podlesny, Anne V. D. M. Kayem, and Christoph Meinel

An Attribute-Based Fine-Grained Access Control Mechanism for HBase 44
Liangqiang Huang, Yan Zhu, Xin Wang, and Faisal Khurshid

Data Structures and Data Management

Lopper: An Efficient Method for Online Log Pattern Mining Based
on Hybrid Clustering Tree . 63

Jiawei Liu, Zhirong Hou, and Ying Li

Discord Monitoring for Streaming Time-Series . 79
Shinya Kato, Daichi Amagata, Shunya Nishio, and Takahiro Hara

Partially Indexing on Flash Memory . 95
Wojciech Macyna and Michal Kukowski

HGraph: A Connected-Partition Approach to Proximity Graphs
for Similarity Search . 106

Larissa Capobianco Shimomura and Daniel S. Kaster

Management and Processing of Knowledge

Statistical Processing of Stopwords on SNS . 125
Yuta Nezu and Takao Miura

Multiple Choice Question Answering in the Legal Domain
Using Reinforced Co-occurrence . 138

Jorge Martinez-Gil, Bernhard Freudenthaler, and A Min Tjoa

A Probabilistic Algorithm to Predict Missing Facts
from Knowledge Graphs . 149

André Gonzaga, Mirella Moro, and Mário S. Alvim

Semantic Oppositeness Embedding Using an Autoencoder-Based
Learning Model . 159

Nisansa de Silva and Dejing Dou

COMET: A Contextualized Molecule-Based Matching Technique 175
Mayesha Tasnim, Diego Collarana, Damien Graux, Mikhail Galkin,
and Maria-Esther Vidal

Authenticity, Privacy, Security and Trust

Differentially Private Non-parametric Machine Learning as a Service 189
Ashish Dandekar, Debabrota Basu, and Stéphane Bressan

PURE: A Privacy Aware Rule-Based Framework over Knowledge Graphs. . . 205
Marlene Goncalves, Maria-Esther Vidal, and Kemele M. Endris

FFT-2PCA: A New Feature Extraction Method for Data-Based
Fault Detection . 215

Matheus Maia de Souza, João Cesar Netto, and Renata Galante

Consistency, Integrity, Quality of Data

A DaQL to Monitor Data Quality in Machine Learning Applications. 227
Lisa Ehrlinger, Verena Haunschmid, Davide Palazzini,
and Christian Lettner

Automated Detection and Monitoring of Advanced Data Quality Rules 238
Felix Heine, Carsten Kleiner, and Thomas Oelsner

Effect of Imprecise Data Income-Flow Variability on Harvest Stability:
A Quantile-Based Approach . 248

Zied ben Othmane, Cyril de Runz, Amine Ait Younes,
and Vincent Mercelot

Decision Support Systems

Fairness-Enhancing Interventions in Stream Classification 261
Vasileios Iosifidis, Thi Ngoc Han Tran, and Eirini Ntoutsi

Early Turnover Prediction of New Restaurant Employees
from Their Attendance Records and Attributes . 277

Koya Sato, Mizuki Oka, and Kazuhiko Kato

xviii Contents – Part I

An Efficient Premiumness and Utility-Based Itemset Placement Scheme
for Retail Stores . 287

Parul Chaudhary, Anirban Mondal, and Polepalli Krishna Reddy

Data Lakes: Trends and Perspectives . 304
Franck Ravat and Yan Zhao

An Efficient Greedy Algorithm for Sequence Recommendation 314
Idir Benouaret, Sihem Amer-Yahia, and Senjuti Basu Roy

Discovering Diverse Popular Paths Using Transactional Modeling
and Pattern Mining . 327

P. Revanth Rathan, P. Krishna Reddy, and Anirban Mondal

Data Mining and Warehousing

Representative Sample Extraction from Web Data Streams. 341
Michael Scriney, Congcong Xing, Andrew McCarren,
and Mark Roantree

LogLInc: LoG Queries of Linked Open Data Investigator
for Cube Design . 352

Selma Khouri, Dihia Lanasri, Roaya Saidoune, Kamila Boudoukha,
and Ladjel Bellatreche

Handling the Information Backlog for Data Warehouse Development 368
Naveen Prakash and Deepika Prakash

Ontario: Federated Query Processing Against a Semantic Data Lake 379
Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal,
and Sören Auer

A Model-Driven Framework for the Modeling and the Description
of Data-as-a-Service to Assist Service Selection and Composition 396

Hiba Alili, Rim Drira, Khalid Belhajjame, Henda Hajjami Ben Ghezala,
and Daniela Grigori

Named Entity Recognition in Local Intent Web Search Queries 407
Saloni Mittal and Manoj K. Agarwal

Database Processing-in-Memory: A Vision. 418
Tiago R. Kepe, Eduardo C. Almeida, Marco A. Z. Alves,
and Jorge A. Meira

Context-Aware GANs for Image Generation from Multimodal Queries 429
Kenki Nakamura and Qiang Ma

Author Index . 445

Contents – Part I xix

Distributed, Parallel, P2P, Grid and
Cloud Databases

Looking into the Peak Memory Consumption
of Epoch-Based Reclamation in Scalable

in-Memory Database Systems

Hitoshi Mitake1, Hiroshi Yamada2, and Tatsuo Nakajima1(&)

1 Department of Computer Science and Engineering,
Waseda University, Shinjuku, Tokyo, Japan

{mitake,tatsuo}@dcl.cs.waseda.ac.jp
2 Department of Computer and Information Sciences,

TUAT, Fuchu, Tokyo, Japan
hiroshiy@cc.tuat.ac.jp

Abstract. Deferred memory reclamation is an essential mechanism of scalable
in-memory database management systems (DBMSs) that releases stale objects
asynchronously to free operations. Modern scalable in-memory DBMSs com-
monly employ a deferred reclamation mechanism named epoch-based recla-
mation (EBR). However, no existing research has studied the EBR’s trade-off
between performance improvements and memory consumption; its peak mem-
ory consumption makes capacity planning difficult and sometimes causes dis-
ruptive performance degradation. We argue that gracefully controlling the peak
memory usage is a key to achieving stable throughput and latency of scalable
EBR-based in-memory DBMSs. This paper conducts a quantitative analysis and
evaluation of a representative EBR-based DBMS, Silo, from the viewpoint of
memory management. Our evaluation reveals that the integration of conven-
tional solutions fails to achieve stable performance with lower memory uti-
lization, and Glasstree-based Silo achieves a 20% higher throughput, latencies
characterized by an 81% lower standard deviation, and 34% lower peak memory
usage than Masstree-based Silo even under read-majority workloads.

Keywords: In-memory database � Epoch-based reclamation �
Multicore scalability � Index tree structure

1 Introduction

In-memory database management systems (DBMSs) are promising components that
achieve considerably higher performance than traditional disk-based DBMSs because
modern commodity servers are equipped with multiple terabytes of DRAM [24, 25].
Exploring the design of in-memory DBMSs, such as key-value stores (KVSes) [16] and
relational database management systems (RDBMSs) [9, 21], is a popular research
topic. Some of these efforts have resulted in successful, commercially available systems

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-27618-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_1

like VoltDB1. Hekaton [4] and Silo [22] are the latest in-memory RDBMSs in which
transaction throughput is scalable on multicore platforms.

In scalable in-memory DBMSs, deferred memory reclamation is an essential
mechanism for attaining multicore scalability [5]. Even if the highly concurrent data
structures utilize synchronization techniques, such as lock-free approaches [5], naive
memory management such as reference counts involve frequent writes to shared
memory areas, thus resulting in cache line contentions that can produce scalability
bottlenecks [17]. To minimize the updates of shared cache lines in transaction pro-
cessing, modern scalable in-memory DBMSs employ a deferred memory reclamation
named epoch-based reclamation (EBR). EBR avoids updating values on shared
memory areas when getting and releasing referred objects so that the in-memory
DBMSs can achieve high scalability under read-heavy workloads.

Despite the importance of deferred memory reclamation, its trade-off between
performance improvements and drawbacks is not the primary focus of prior studies.
Such deferred memory reclamation causes high peak memory usage, making it quite
difficult to achieve accurate capacity planning and sometimes resulting in disruptive
performance degradation. The memory usage of the EBR-based DBMSs fluctuates by
incoming request sequences and an interval for which stale objects can reside in
memory, known as the grace period. At worst, the malicious sequence of requests can
lead to memory exhaustion. Additionally, the EBR’s memory usage poses a tail latency
problem due to object reclamation. The literature [14] reports that a pause time for
reclaiming stale objects in Masstree-based KVS [12] causes large latency spikes.

We argue that gracefully controlling the peak memory usage is a key to achieving
the stable throughput and latency of scalable EBR-based DBMSs. In this paper, we
conduct a quantitative analysis and evaluation of a representative EBR-based DBMS,
Silo [22], from the viewpoint of memory management. Experimental results demon-
strate the advantages and disadvantages of the state-of-the-art designs and techniques of
in-memory DBMSs. The most remarkable result is that a system combining both
reference counting and EBR can improve throughput, latency and peak memory usage
simultaneously. Moreover, in the case of the YCSB benchmark, Glasstree-based Silo
can achieve a 20% higher throughput, latencies characterized by an 81% lower stan-
dard deviation, and 34% less peak memory usage than Masstree-based Silo even under
read-majority workloads.

Our contributions are the quantitative analysis and evaluation of the drawbacks of
the advanced lifetime management scheme that realizes multicore scalable in-memory
DBMSs. To the best of our knowledge, our study is unique mainly because of these
points:

(1) We analyze the effect of peak memory usage in scalable in-memory DBMSs and
show how the effect influences their throughput and latency. As an example, we
show that a carefully designed index structure that reduces peak memory usage
offers better throughput and stable latency. The results show that reducing peak
memory usage is essential for developing new advanced techniques to increase
their scalability.

1 https://www.voltdb.com/.

4 H. Mitake et al.

https://www.voltdb.com/

(2) Our study proposes the idea that physical memory management is also important
for in-memory DBMSs [23]. Our evaluation includes workloads that involve the
dynamic allocation and reclamation of large amounts of memory area that are
suitable for evaluating physical memory management strategies. Our study shows
that analyzing methodologies related to physical data management are also
valuable for in-memory DBMSs.

The remainder of this paper is organized as follows: Sect. 2 describes the back-
ground and related work of our study. We explain the details of the problems and
solutions for solving them in Sect. 3. We show the effectiveness of the proposed
carefully designed memory lifetime management technique in Sect. 4. We conclude
this paper in Sect. 5.

2 Background and Related Work

2.1 Memory Reclamation Mechanism for Achieving Scalability

To avoid the degradation of the scalability achieved by concurrency control techniques,
most multicore scalable in-memory DBMSs employ deferred memory reclamation
mechanisms [1, 2, 5, 7]. The deferred memory reclamation mechanisms are alternatives
to naive resource lifetime management techniques such as reference counting. Tradi-
tionally, deferred reclamation is used in an OS kernel to protect mostly read data
structures [13]. Typical OS kernels have many such data structures, e.g., a list of
loadable modules. Therefore, protecting them with a naive reader-writer lock or
managing their lifetime with a naïve reference counting degrades the multicore scal-
ability of the kernel and its user space programs. Read-Copy Update (RCU) [13] is
successfully used as an alternative to these naive techniques: the most widely known
use case of RCU is the Linux kernel. For implementing RCU in the Linux kernel,
quiescent state-based reclamation (QSBR) is used for detecting reader-side critical
sections [17]. The mechanism of QSBR is based on the privilege of the kernel space,
including enabling and disabling preemption and sending an interprocessor interrupt
(IPI) to remote cores. Then, a writer thread can ensure that there are no reader threads
that have a reference to an object and should be reclaimed.

Unlike an OS kernel, the DBMSs are usually user space programs, and they do not
have the privileges of thread scheduling. For such programs, EBR is more suitable than
QSBR as a foundation for a memory reclamation mechanism2.

Implementing EBR requires a global epoch number e, and each thread that can read
objects whose lifetime is managed by EBR has its own epoch number ew. e is periodically
incremented, and ew of each thread can be synchronized by a global epoch manager with
ewhen the thread is not working3. Deleted objects must be registered to the limbo list [5],
a temporal place for objects that are awaiting safe reclamation, of the deleting thread with

2 Using QSBR in a user space program requires a specialized system call of the underlying OS, e.g.
membarrier(2) in the Linux kernel.

3 In such a situation, the thread is considered to be in a quiescent state.

Looking into the Peak Memory Consumption 5

its ew. With this rule, a thread can determine that an object in the limbo list with an epoch
number that is less than the minimum ew can be reclaimed safely.

2.2 Using EBR in Multicore Scalable in-Memory DBMSs

Similar to other programs that use scalable data structures, the DBMSs follow the design
to exclude cache line contentions as much as possible. In the case of the DBMSs, the
data structures managed with EBR are accessed in transactions; each transaction is a
critical section of the EBR, and an interval between transactions is a quiescent state. To
present such an example, Fig. 1 briefly describes the transaction commit protocol of Silo
[22]. If a transaction does not involve write operations, it does not update shared cache
lines because the validation phase (from line 5 to line 9) and transaction ID
(TID) generation (line 10) do not write to globally shared memory areas; only locking
(line 3 and 13) and writing (line 12) operations update the shared area. Therefore, the
concurrency control of Silo successfully minimizes the scalability bottleneck.

This design for avoiding the shared cache line updates is also shared with the
memory lifetime management scheme (line 15). If the tuples pointed to by readset,

Fig. 1. The transaction commit process of Silo. txn is a transaction to commit. e is a global
epoch number. If txn.writeset is empty, lock(), unlock() and write(), which updates shared cache
lines, are not called.

6 H. Mitake et al.

nodeset and writeset are managed with reference counting, then the destruction process
must update the cache lines that contain the reference counts of the tuples for the
decrement operations. The cache line updates for the decrement operations are avoided
because Silo is based on EBR4. After the destruction of a transaction, the ew of the
worker thread can be updated by the global epoch manager because the thread is in the
quiescent state. This means that the lifetimes of the tuples are updated implicitly; if they
already belong to a limbo list of a thread, they can be reclaimed after the destruction of
the transaction.

2.3 Drawbacks to Using EBR and Its Alternatives

Although EBR contributes to the scalable performance of in-memory DBMSs, it
introduces significant drawbacks caused by its high memory usage. The impact of these
drawbacks on in-memory DBMSs is widely acknowledged. In the context of the
DBMSs, for example, Wu et al. provided an empirical study on MVCC DBMSs [23].
The scope of the study included physical data management techniques, and they noted
that memory reclamation is an important factor for modern in-memory DBMSs.
Hekaton used a lock-free memory allocator and asynchronous memory reclamation
mechanism to mitigate these problems. Some research systems provide techniques for
efficient memory management [10, 11]. However, the drawbacks of EBR and the
solutions have yet to be thoroughly analyzed despite their importance.

Previous studies have shown that QSBR contributes to the multicore scalability of
kernels but introduces serious drawbacks, such as performance degradation and memory
exhaustion, when a large number of deleted objects are generated [18]. Only a few
solutions have been proposed, and the solutions can be used only in OS kernels. Our
prior work showed that EBR can cause problems similar to QSBR [14]. Therefore, the
drawbacks and solutions must be analyzed carefully in the context of in-memory
DBMSs.

Another candidate alternative is a GC mechanism of the language runtime (e.g., GC
of Java VM). Such GC mechanisms still introduce high overhead as a drawback in their
general design. Improving the performance of the language GC is still a popular
research topic, especially in the context of multicore scalability [6].

As discussed above, EBR seems to be the only high-performance memory recla-
mation mechanism that can be used for in-memory DBMSs. Although reference
counting introduces scalability limitations, its property of immediate reclamation is
attractive for reducing the peak memory usage. Conversely, EBR increases the life-
times of deleted objects to increase peak memory usage. The trade-off between the two
techniques is depicted in Fig. 2.

4 Getting the references of the tuples also avoids the cache line updates due to the lock-free lookup of
Masstree used in Silo.

Looking into the Peak Memory Consumption 7

3 Potential Sources of the Drawbacks Caused by EBR
and Possible Solutions

Memory objects managed under EBR cannot be immediately reclaimed even when no
threads are referencing them.5 This means that the peak memory usage of systems
based on EBR tends to be high. In addition, the hit ratio of the memory allocator’s
thread-local cache tends to be lower because long-lived objects prevent the recycling of
the space. In the context of OS kernels, this low hit ratio is known to cause performance
degradation of the entire system [18].

Therefore, the observation requires analyzing the impact of different memory
allocators on the memory usage of in-memory DBMSs. Additionally, the impact of
memory reclamation on memory usage should be investigated. If not, it is not clear
whether a high peak memory load degrades throughput and makes latencies unstable.
The drawbacks were not carefully analyzed in past studies to identify the actual sources
of the drawbacks. This section first discusses whether a widely used traditional solution
may overcome the drawbacks. Then, we consider some possible solutions to overcome
high peak memory usage. The paper will present detailed experimental evidences for
showing the effects of the solutions in Sect. 4.

3.1 Impact of Memory Reclamation

EBR defers the reclamation of unused objects. The unused objects are periodically
reclaimed in an amortized manner. In the case of Silo, the default interval of the
memory reclamation is 1 s, and the configuration can cause high latency spikes [14].

Fig. 2. Comparison of EBR and reference counting from the perspective of memory allocation.
e1 and e2 denote the epoch of EBR. T1 and T2 are threads.

5 The time interval required for ensuring the end of all reader-side critical sections is called the grace
period.

8 H. Mitake et al.

The widely used and straightforward approach to decrease unstable latencies is to
use asynchronous memory reclamation; asynchronous memory reclamation executes a
thread that cleans deleted objects that can be reclaimed safely. This approach is
employed in both research systems [10] and production systems [4]. Because of this
mechanism, these systems do not need to stall active transactions. However, there is no
analysis of how asynchronous memory reclamation impacts memory usage in past
studies.

We added asynchronous memory reclamation to Silo and investigated the tech-
nique with a workload that involves dynamic memory loads. The purpose of the
investigation was to understand how effective the technique is and what type of new
drawbacks would be introduced. We hypothesized that asynchronous memory recla-
mation contributes to reducing latency spikes but amplifies peak memory usage. This is
because the asynchronous nature of this technique can defer the reclamation so the
system cannot guarantee when the reclamation can be completed, and the peak memory
usage makes the behavior unstable. The motivation to raise the question is that using
asynchronous memory reclamation overcomes some issues of EBR, but it does not
solve essential issues that are raised by the drawbacks of EBR.

3.2 Reducing High Peak Memory Usage Caused by EBR

EBR makes high peak memory usage of in-memory DBMSs because of its deferred
reclamation. This property makes capacity planning difficult. Unlike EBR, reference
counting introduces frequent incrementing and decrementing of count values when it is
naively used. This limits multicore scalability; on the other hand, this accurate counting
of referring threads enables immediate reclamation after the last reference is finished.
The trade-off between the two techniques to reduce high peak memory usage was not
carefully considered in past studies.

We could not find a straightforward solution to this problem. As we describe in the
next section, using asynchronous memory reclamation cannot be an essential solution.
Glasstree (Garbage-Less Masstree) is a new carefully designed index structure, which
is an enhancement of Masstree, to reduce peak memory usage [15]. The purpose of this
new index structure is to understand whether it is possible to reduce the peak memory
usage without sacrificing multicore scalability. Its design and implementation were not
trivial; thus, we describe these aspects in the following.

The design of Glasstree exploits a simple but fundamental property of balanced
trees, namely, data structures used as ordered indexes; if the access to values is equally
distributed, shallower nodes near a root node are accessed frequently, whereas deeper

Table 1. Breakdown of the types and numbers of reclaimed objects during Silo’s TPC-C

Type # of reclamation Percentage

Internode 767505 2.3%
Leaf 7734210 24.0%
Value (tuple) 23813904 73.7%

Looking into the Peak Memory Consumption 9

nodes near the values are not accessed frequently. From the perspective of multicore
scalability, this means that updating shared cache lines when accessing shallower nodes
will likely produce scalability bottlenecks. Conversely, update operations when
accessing deeper nodes will produce fewer bottlenecks. The design also respects the
principle of deferred reclamation; deferred reclamation is suitable for protecting mostly
read and long-lived objects [17]. In general, the internodes and the leaves live longer
than the values. The values can be reclaimed if they are updated or deleted. Conversely,
internodes and leaves are only reclaimed when reshaping occurs when deleting values.
This assumption can also be validated by actual experiments. Table 1 summarizes
memory reclamation under Silo’s TPC-C benchmark. As shown in this table, a large
portion of memory reclamation is dominated by a value object that functions as a tuple.

Based on the above observations, Glasstree employs both EBR and reference
counting as its memory lifetime management scheme. As depicted in Fig. 3, Glasstree
manages the lifetimes of internodes and leaves using EBR, where the design strategy is
shared with Masstree [12]. Conversely, Glasstree manages the lifetimes of values with
reference counting as previously described. Therefore, the read operations (get and
scan) need to increment before passing the results to their callers and decrement after
their usage. This means that Glasstree sacrifices the complete invisibility of the readers.
In contrast to the read operations, the write operations (insert, put and remove) are not
changed from Masstree.

Because of the design, the reclaimed values of Glasstree are directly returned to its
allocator. For Masstree, they are registered to a limbo list of each thread once and then
returned to its allocator after the end of the grace periods.

Fig. 3. Abstract model of glasstree

10 H. Mitake et al.

4 Evaluation and Analysis

In this section, we analyze the properties of EBR for in-memory DBMSs by comparing
the original version of Silo [20]6, which uses Masstree as its index structure (denoted as
Silo), and our modified versions of Silo, which uses Glasstree.

We executed the YCSB benchmark of Silo on a machine equipped with dual Intel
Xeon E5-2690 v4 CPUs (2.60 GHz, total of 28 physical cores) and 128 GB of DRAM.
Hyperthreading was disabled, and each worker thread was pinned on a dedicated
physical core. Every workload was executed 3 times for 60 s. The average scores were
plotted with lines. The maximum and minimum scores are depicted with error bars.

To simplify the analysis, we also disabled the logging functionality of Silo to focus
on memory management components. Therefore, the baseline corresponds to MemSilo
of the original paper on Silo [22].

We used YCSB [3], a benchmark suite for evaluating various DBMSs, including
RDBMSs and KVSs. Silo includes an implementation of YCSB in its benchmark. The
benchmark mimics a workload that can be generated when managing a database of web
services that stores user information. It is suitable for measuring the performance of key
access because the workloads are relatively simple. The simplicity allows us to focus
on the physical data management functionalities.

The implementation of YCSB in Silo allows worker threads to issue requests based
on a configured probability. The probability is given in the following form: (R, W, RAW,
S), where R + W + RAW + S = 100. There are four types of requests: read (representing
R% of all requests), write (representing W% of all requests), read after write (repre-
senting RAW% of all requests), and scan (representing S% of all requests). Every request
is issued to a single table (corresponding to a single instance of Masstree or Glasstree) in
its own transaction. However, these requests are not suitable for evaluating memory
management components because they only cause read or in-place update operations.
As in the original YCSB, we added two more requests: create (representing C% of all
requests) and delete (representing D% of all requests). The create request creates a new
tuple, and the delete request deletes an existing tuple. The combination of these two
requests generates deleted tuples, and thus, it is suitable for evaluating physical data
management functionalities. We configured the size of the tuples to be 2 KB.7 Addi-
tionally, we chose the uniform workload of YCSB because the original paper on Silo
used the same workload, so it is effective to compare Silo and our approach.

4.1 Workload with Creation and Deletion Operations

Original Silo (Silo) and the modified version of Silo that performs memory reclamation
in an asynchronous manner (Silo-AsyncGC) were investigated. The purpose of
investigating this comparison is to examine how asynchronous memory reclamation
influences reducing latencies but causes another drawback.

6 The base commit ID of git used in our evaluation is cc11ca1 [20].
7 The reason for choosing the size is that the size clearly reveals the differences according to the
measured results of the original Silo paper.

Looking into the Peak Memory Consumption 11

Next, we investigated our modified version of Silo that uses Glasstree as its index
structure (denoted as Silo-Glass). Silo-Glass must produce fewer deleted tuples and can
keep the peak memory usage low due to the design principle.

In the investigation, we used three memory allocators: the standard libc malloc,
jemalloc and SSMalloc. Note that the original version of SSMalloc demands pages
from the OS in an extremely aggressive manner (the number of the required pages
grows quadratically). We changed the policy because it results in needlessly high
memory usage, and our modified SSMalloc requires pages with linear speed.

We present the results of the evaluation of workloads that include create (C = 15)
and deletion (D = 15) operations (note that even with these operations, the workloads
are read majority because 70% of the operations are read operations). The initial
database size is 10 GB (500,000 tuples)8.

Figure 4 shows the benchmark scores with three different memory allocators: libc
malloc, jemalloc and SSMalloc.9 As shown in [4, 10], adopting asynchronous memory
reclamation significantly reduces the latency spikes, reducing the drawbacks of EBR.
As shown in Fig. 4(h), using asynchronous memory reclamation improves latency
stabilities. Conversely, the latency stabilities of Silo that use jemalloc are increased in
proportion to the number of processor cores. Thus, it seems that asynchronous memory
reclamation overcomes the drawbacks if we do not carefully analyze the evaluation
with other memory allocators and if we do not investigate the peak memory usage
during the execution of the workloads.

Our hypothesis is that a serious source of the drawbacks of EBR is from the high
peak memory usage. Thus, if asynchronous memory reclamation cannot reduce the
high peak memory usage, the technique can only partially overcome the drawbacks.

As depicted in Fig. 4(h), asynchronous memory reclamation influences latency
stabilities when using jemalloc, but Fig. 4(i) shows that the latency stabilities do not
change when using SSMalloc. This means that the improvement of latency stabilities
when using jemalloc comes from the scalability of memory allocators not using
asynchronous memory reclamation.

Moreover, as shown in Fig. 4(k) and (l), using asynchronous reclamation increases
peak memory usage, which makes the drawbacks of EBR worse. Thus, as shown in
Fig. 4(b), (c), (e), and (f) using asynchronous memory reclamation does not heavily
influence the average latency and the throughput. Thus, the results show that the effect
of asynchronous memory reclamation is limited in terms of the drawbacks of EBR.

As depicted in Fig. 4(j), (k) and (l), Silo-Glass presents the lowest peak memory
usage in every configuration. This is quite natural because of the qualitative property of
reference counting, as shown in Fig. 2. Reference counting contributes to the imme-
diate reclamation of unused tuples.

8 Readers may notice that the peak memory usage depicted in this figure is much higher than in Fig. 4.
The difference comes from the memory area that is used for storing the commit latencies of the
transactions. All the latencies are required for calculating standard deviation, which requires a large
memory area because the benchmarks produce tens of millions of transactions.

9 In the figures, the results are suddenly bigger when the number of threads is changed from 24 to 28.
This is due to the conflict between a thread to process the epoch and a thread to perform a
transaction. Thus, as shown in the results, the influence of the effect is smaller in Silo-Glass.

12 H. Mitake et al.

Interestingly, as shown in Fig. 4(a), (b) and (c), Silo-Glass outperforms Silo and
Silo-AsyncGC with respect to throughput. This can be explained by the low miss ratio
of the thread local cache of malloc. We measured the cache hit ratio for the case of
jemalloc, as depicted in Fig. 5. The miss ratio was calculated as nmalloc/nrequest for
all bins and arenas [8, 19]. As the graph shows, Silo and Silo-AsyncGC suffer from
high miss ratios, larger than 50% in every case. Conversely, Silo-Glass achieves a low
miss ratio, lower than 10% in every case.

In addition, Silo-Glass achieves better latency scores than Silo and Silo-AsyncGC.
This is because a large number of deleted tuples can be reclaimed with the reference
counting of Glasstree without waiting for the reclamation process of EBR.

The above discussion shows that using Glasstree significantly reduces peak
memory usage and directly contributes to overcoming the drawbacks of EBR.

Fig. 4. The benchmark scores of Silo, Silo-AsyncGC and Silo-Glass under an R = 70, C = 15,
D = 15 workload with three different memory allocators.

Looking into the Peak Memory Consumption 13

4.2 Read-Only and Scan-Only Workload

In this section, we discuss how is it efficient under workloads that do not involve
updates because the drawbacks of reference counting have not been sufficiently eval-
uated. Silo-Glass did not take into account the aspect of an invisible reader as described
in Sect. 3.

To answer the question we present results from evaluating the read-only (R = 100)
and scan-only (S = 100) workloads of YCSB in Fig. 6. For this workload, the reference
counting of Glasstree can represent pure overhead. Therefore, the result is helpful for
understanding the contribution of managing the lifetimes of values with EBR in
Masstree. In the read-only and scan-only workloads, the overhead of memory recla-
mation can be ignored; thus, we omit the scores of the latencies and the results of Silo-
AsyncGC. We provide the throughput of the workloads with various database sizes:
10 GB (500,000 tuples), 20 GB (1,000,000 tuples) and 40 GB (2,000,000 tuples). In
the case of read-only benchmarks, worker threads read a single tuple in their trans-
actions. In the case of scan-only benchmarks, worker threads read 50 tuples in their
transactions.

In this benchmark, we also evaluated Silo-GlobalTID, which emulates the bottle-
neck of centralized TID generation. The benchmark results of Silo-GlobalTID are
helpful in understanding how the decentralized overhead of Glasstree is different from
the centralized overhead that can be found in systems such as Hekaton.

As shown in Fig. 6(a), Silo outperforms Silo-Glass for the case of small (10 GB)
databases (Silo achieves a 4% higher throughput than Silo-Glass at 28 threads). How-
ever, the differences in the scores decrease as the database size increases to 20 GB, as
shown in Fig. 6(b) (Silo achieves a 3% higher throughput at 28 threads). In addition, the
result of Fig. 6(c) implies that managing tuples with EBR does not contribute to the read
performance under practically large (40 GB) databases (Silo achieves only 1% higher
throughput at 28 threads). This difference expresses the contribution of managing tuples
with EBR rather than reference counting.

Conversely, Silo-GlobalTID introduces significant overhead because of its cen-
tralized bottleneck. The overhead is not affected by the diverged size of the databases.
This is because the centralized TID generation mechanism is accessed by every

Fig. 5. Jemalloc cache miss ratio

14 H. Mitake et al.

transaction unconditionally, unlike accessing tuples. Therefore, it can be a critical
bottleneck for short transactions.

Figure 6(d), (e), and (f) show the throughput of scan-only workloads. The size of
each transaction is larger than in the case of read-only benchmarks. Therefore, global
TID generation is not a serious bottleneck for scan workloads. As in the case of read-
only workloads, we find that the performance difference between Silo and Silo-Glass
decreases with the database size. Silo achieves a 13% higher throughput with a 10 GB
database, a 5% higher throughput with a 20 GB database, and a 1% higher throughput
with a 40 GB database than Silo-Glass at 28 threads.

From the results, we can conclude that the contribution of EBR in Masstree is
particularly effective for handling small databases. In such workloads, the frequent
updating of shared cache lines can degrade scalability. However, the significance of the
contribution decreases for larger databases. It can be considered that the portion of other
costs in read operations, e.g., tracking pointers, increases, and the overhead of the shared
cache line updates becomes relatively smaller. Moreover, the cost of Masstree’s read
operations is dominated by the latency of DRAM access [12]. Therefore, managing the
lifetimes with reference counting will not introduce centralized bottlenecks, such as
global TID generation, if the number of frequently accessed tuples is not small.

4.3 Design for Minimizing Peak Memory Usage

In previous advanced techniques for scalable in-memory DBMSs, avoiding resource
contentions among concurrent activities is essential to increasing the system’s scala-
bility. Various advanced techniques have been proposed for increasing the scalability,
and recent in-memory DBMSs express outstanding scalability. These techniques offer
excellent high throughput and low latency.

The analyses shown in the paper reveal that peak memory usage is also an important
factor in increasing throughput and decreasing latency. In particular, decreasing peak
memory usage significantly reduces latency stabilities. This paper shows that the source

Fig. 6. Throughput of Silo, Silo-GlobalTID and Silo-Glass under read-only and scan-only
workloads.

Looking into the Peak Memory Consumption 15

of the drawbacks of EBR comes from the high peak memory usage, and Glasstree can
reduce the peak memory usage. Consequently, the latency stabilities are significantly
reduced, and the throughput and latency are also improved. One of the important
insights from this study is that peak memory usage should be carefully considered when
designing any scalable systems, not only in-memory DBMSs.

The insight shows a new future direction for designing scalable systems:

• To examine peak memory usage is essential when proposing new advanced tech-
niques for designing scalable systems.

Future system designers need to take into account the above insight when designing
new scalable systems for achieving stable performance.

5 Conclusion and Future Direction

In this paper, we analyzed the performance properties of EBR, a deferred reclamation
mechanism widely used by many state-of-the-art in-memory DBMSs. Our analysis
revealed that widely known and straightforward techniques have limited performance
benefits. Surprisingly, throughput, latency and memory efficiency can be improved
simultaneously by carefully designing lifetime management schemes. We proved this
by designing a new index structure, Glasstree that utilizes both EBR and reference
counting. As a result, our study revealed the importance of and opportunity for addi-
tional research on physical data management techniques, including lifetime manage-
ment schemes and memory allocators, in the context of in-memory DBMSs. To
establish truly robust multicore scalable in-memory DBMSs, more detailed studies on
the topic are required. We hope that our analysis will be informative for future studies.

5.1 Optimization for Performance and Energy Consumption

We revealed that EBR introduces high peak memory usage. High peak memory usage
can cause various problems. The most straightforward example is capacity planning.
The safety margin that cannot be exhausted by the objects deleted and awaiting
reclamation must be preserved. This is a critical problem for scale-up systems because
unlike scale-out systems which can increase their storage capacity by adding nodes to a
cluster during runtime, scale-up systems cannot increase their capacity dynamically.
Therefore, in managing scale-up systems, it is important to accurately predict the safety
margin. Clearly, EBR makes this task difficult. We also note that this safety margin can
cause another problem: high energy costs. The energy consumption of DRAM grows
exponentially with the DRAM capacity. Therefore, keeping the peak memory usage
lower is valuable, not only for ease of management but also for reducing energy
consumption. We believe that research on lifetime management schemes and physical
data management for these metrics has substantial opportunities for improvement.

16 H. Mitake et al.

5.2 Optimization for Read Performance

Glasstree improves throughput, latency and memory efficiency simultaneously for
workloads that involve dynamic memory loads. However, it introduces a small over-
head for read-only workloads because of the newly introduced lock and atomic
counting in the reference counting mechanism. We believe that this overhead can be
reduced by utilizing existing techniques, e.g., scalable locking, scalable reference
counting that enables immediate reclamation and tree-based techniques.

Of course, we do not believe that it is possible to construct a perfect index structure
or lifetime management scheme that provides better performance than any other
alternatives under every workload because every technique must introduce trade-offs.
Combining the various techniques will result in tuned index structures that can handle
specific workloads with high performance and predictable drawbacks.

The source code used in this paper is publicly available at https://gitlab.com/
mitake1/silo-glass.

References

1. Alistarh, D., Leiserson, W., Matveev, A., Shavit, N.: Forkscan: conservative memory
reclamation for modern operating systems. In: Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, pp. 483–498 (2017)

2. Brown, T.A.: Reclaiming memory for lock-free data structures: there has to be a better way.
In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, pp. 261–270 (2015)

3. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud
serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, pp. 143–154 (2010)

4. Diaconu, C., et al.: Hekaton: SQL server’s memory- optimized OLTP engine. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, pp. 1243–1254 (2013)

5. Fraser, K.: Practical lock-freedom. Ph.D. thesis, Cambridge University. Technical Report
UCAM-CL-TR-579 (2004)

6. Gidra, L., Thomas, G., Sopena, J., Shapiro, M.: A study of the scalability of stop-the-world
garbage collectors on multicores. In: Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2013, pp. 229–240 (2013)

7. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of memory reclamation
for lockless synchronization. J. Parallel Distrib. Comput. 67(12), 1270–1285 (2007)

8. Jemalloc wiki: Use Case: Basic Allocator Statistics. https://goo.gl/GdX1FB. Accessed 2
June 2019

9. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP & OLAP main memory database system
based on virtual memory snapshots. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ICDE 2011, pp. 195–206 (2011)

10. Kim, K., Wang, T., Johnson, R., Pandis, I.: ERMIA: Fast memory- optimized database
system for heterogeneous workloads. In: Proceedings of the 2016 International Conference
on Management of Data, SIGMOD 2016, pp. 1675–1687 (2016)

Looking into the Peak Memory Consumption 17

https://gitlab.com/mitake1/silo-glass
https://gitlab.com/mitake1/silo-glass
https://goo.gl/GdX1FB

11. Lim, H., Kaminsky, M., Andersen, D.G.: Cicada: dependably fast multi-core in-memory
transactions. In: Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD 2017, pp. 21–35 (2017)

12. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In:
Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys 2012,
pp. 183–196 (2012)

13. McKenney, P.E., Sarma, D., Arcangeli, A., Kleen, A., Krieger, O., Russell, R.: Read-copy
update. In: Proceedings of Ottawa Linux Symposium (2002)

14. Mitake, H., Yamada, H., Nakajima, T.: Analyzing the tradeoff between throughput and
latency in multicore scalable in-memory database systems. In: Proceedings of the 7th
ACM SIGOPS Asia-Pacific Workshop on Systems, APSys 2016, pp. 17:1–17:9 (2016)

15. Mitake, H., Yamada, H., Nakajima, T.: A highly scalable index structure for multicore in-
memory database systems. In: Proceedings of the International Conference on the 13th
International Symposium on Intelligent Distributed Computing (2019)

16. Ousterhout, J., et al.: The RAMCloud storage system. ACM Trans. Comput. Syst. 33(3),
7:1–7:55 (2015)

17. McKenney, P.E.: Is parallel programming hard, and, if so, what can you do about it? https://
goo.gl/THnFNb. Accessed 24 Aug 2018

18. Prasad, A., Gopinath, K.: Prudent memory reclamation in procrastination-based synchro-
nization. In: Proceedings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 99–112 (2016)

19. Scalable memory allocation using jemalloc. https://goo.gl/skcwvS. Accessed 24 Aug 2018
20. Silo. https://github.com/stephentu/silo. Accessed 2 June 2019
21. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The

end of an architectural era: (it’s time for a complete rewrite). In: Proceedings of the 33rd
International Conference on Very Large Data Bases, pp. 1150–1160 (2007)

22. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy transactions in multicore in-
memory databases. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP 2013, pp. 18–32 (2013)

23. Wu, Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical evaluation of in-memory multi-
version concurrency control. Proc. VLDB Endow. 10(7), 781–792 (2017)

24. https://www.samsung.com/semiconductor/global.semi.static/Data_Processing_with_
Samsung_Advanced_DRAM_and_SSD_Solutions_Whitepaper-0.pdf. Accessed 2 2019

25. https://aws.amazon.com/ec2/instance-types/high-memory/?nc1=h_ls. Accessed 2 June 2019

18 H. Mitake et al.

https://goo.gl/THnFNb
https://goo.gl/THnFNb
https://goo.gl/skcwvS
https://github.com/stephentu/silo
https://www.samsung.com/semiconductor/global.semi.static/Data_Processing_with_Samsung_Advanced_DRAM_and_SSD_Solutions_Whitepaper-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Data_Processing_with_Samsung_Advanced_DRAM_and_SSD_Solutions_Whitepaper-0.pdf
https://aws.amazon.com/ec2/instance-types/high-memory/%3fnc1%3dh_ls

Energy Efficient Data Placement
and Buffer Management for Multiple

Replication

Satoshi Hikida(B), Hieu Hanh Le, and Haruo Yokota

Department of Computer Science, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{hikida,hanhlh}@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract. Increasing data replication improves the reliability and avail-
ability of the large-scale storage systems. However, multiple replication
required much more storage capacity and disk I/O frequency that cause
of increasing the power consumption of the storage systems. To address
this issue, we propose two data placement policies, Disk Group Aggrega-
tion and Cache Striping. These data placement policies employ different
data mapping between buffers (memory) and disk drives to control buffer
overflow timing of each replica to reduce the disk access frequency. In
addition, we also propose two buffer flush algorithms, WithAllSpins and
SpinupEE. WithAllSpins flushes buffered data to currently rotating disks,
whereas SpinupEE forces disks to spin up based on the estimated energy
efficiency, and writes buffered data to the disk to make the buffer space
fresh. We evaluated the effectiveness of our proposals using a simulation
program and demonstrated that they can reduce power consumption,
even if the data are replicated multiply.

Keywords: Large storage · Power reduction · Data redundancy ·
Data replication

1 Introduction

Data replication is very important to ensure the reliability and availability of
large-scale storage systems. For example, the Google File System (GFS) [3] and
the Hadoop Distributed File System (HDFS) [11] have three replicas on sepa-
rated storage nodes by default. Although increasing the number of replicas of
data enhances the reliability and availability of storage systems, it also increases
the power consumption of the storage systems. Specifically, increasing the num-
ber of replicas generally increases the number of disk accesses, thus reduces the
opportunity to keep the disks in standby mode. As a result, reducing the power
consumption of the storage systems with more than three replicas has become
an important issue.

Many studies have been proposed to reduce the power consumption of storage
systems. MAID [2] is a well-known power saving method for the large-scale near-
line storage systems. MAID keeps a small number of disk drives rotating at
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 19–29, 2019.
https://doi.org/10.1007/978-3-030-27618-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_2

20 S. Hikida et al.

all times; these are used as a cache (cache disk), allowing the majority of the
disk drives (data disk) to spin down. However, MAID does not consider the
handling of the multiple replication. Thus, the disk access frequency increases as
increasing replicas and it decreases the opportunity to keep the disks in standby
state. Whereas, RAPoSDA [10] utilizes a primary backup configuration on both
buffers (memories) and disk drives to ensure system reliability. It dynamically
controls the timing and targeting of disk access based on individual disk rotation
status to reduce the number of unnecessary disk accesses and spin-ups to reduce
the power consumption of the storage systems. However, RAPoSDA only works
with two replicas configuration.

To solve this issue, we investigate energy efficiency data placement policy
and buffer flush algorithms for multiple replication, especially, more than three
replicas. The contributions of this paper are; (a) We propose two data placement
policies between the buffers and the disks for the storage systems with multiple
replicas. Each policy provides different buffer overflow timing for each replica
to reduce the disk access frequency, (b) we propose two buffer flush algorithms
for the storage systems with multiple replicas. One algorithm considers the disk
rotation status and aggressively flushes the buffer data to the spinning disks,
while the other forces the disk that has the largest buffer to spin up in order to
maintain the largest free space in the buffer. (c) We evaluate the efficiency of
the data placement policies and buffer flush algorithms with simulation based
evaluation.

The remainder of this paper is as follows. In Sect. 2, we describe an approach
to reduce the power consumption of storage systems with multiple replicas. We
describe the data placement policy in Sect. 3, and the buffer flush algorithms
in Sect. 4. Then, the proposed methods are evaluated in Sect. 5. In Sect. 6 we
discuss related works. Lastly, Sect. 7 concludes this paper.

2 A Power-Saving Approach for Two-Way Replicated
Storage Systems

This section describes an approach to reduce the power consumption of two-way
replicated storage systems. RAPoSDA [10] is chosen as an example to explain
how to reduce the power consumption of a storage system.

The storage system assumed in this paper consists of several buffers (mem-
ories) and disk drives. It is important to maintain reliability when the data are
in the volatile memory, so the buffer is provided with a primary backup config-
uration, and each buffer is connected to corresponding Uninterruptible Power
Supply (UPS) to avoid data loss via outage. In addition, a small number of disks
can be used as cache optionally, whereas it is mandatory in MAID [2]. Buffers are
dedicated corresponding to the data disks. One buffer shared by multiple disks
as a logical group, defined as a Disk Group (DG). This configuration appears in
the typical distributed storage systems such as Cassandra [8].

In RAPoSDA, data are assigned to a corresponding data disk as primary,
and then written to the primary area of a buffer that binds to the same DG.

Energy Efficient Data Placement and Buffer Management 21

(a) data placement of DGA (b) data placement of CS

Fig. 1. An example of the data layout of DGA and CS (NCM = 3, NDG = 2, NDD = 6,
NR = 3)

The backup data is then written to the backup area of another buffer which
assigned randomly. Thus, the disk access can be avoided until the buffer thresh-
old is exceeded. When the data are flushed, it tries to select a disk that is
currently rotating or one that has been in the standby state longer than the
break-even time if both the primary and backup disks are on standby.

The data on the data disks placed with chained declustering [6] manner.

3 Energy-Efficient Data Placement

This section describes the data placement policies to reduce the disk access fre-
quency of storage systems with more than three replicas. For simplicity regarding
the storage system, we only explains the case of three replicas (Nr = 3). However,
this simplified case can be generalized to cases with more than three replicas.

3.1 Data Placement Policy on Data Disks

The data placement policy on data disks with three replicas extends the chained
declustering [6]. The rth replica of primary data (r = 0 is primary) on ith data
disk is represented as Rr

i , is assigned to the ((i + r) mod NDD)-th data disk.

3.2 Data Placement Policy on Buffers

To reduce the disk access frequency with more than three replicas, two data
placement policies with different assignments of buffers corresponding to primary
data, named Disk Group Aggregation (DGA) and Cache Striping (CS), were
utilized. Figure 1 depicts an example of the data placement of DGA and CS. In
this figure, Di represents the ith data disk and CMj represents the jth buffer.
In addition, Pi represents the area of primary data of the Di-th data disk, and
Rr

i represents the area of the rth replica of the primary data, Pi.
In DGA, primary data belonging to the same DG are written in the primary

area of the identical buffer. Then, the replicas are assigned to a replica area of
another buffer by the chained declustering strategy in the unit of the primary
area of the buffer. In other words, the buffer number j and its rth replica area,

22 S. Hikida et al.

which stores the data of the rth replica area of the ith data disk (r = 0 means
primary), are determined as follows.

jr =
{ �i0/NDG� mod NCM (r = 0)

(jr−1 + 1) mod NCM (otherwise) (1)

where, i0 indicates the data disk that stores the primary data that corresponds
to the rth replica, and NCM is the total number of buffers.

In CS, the primary data are not in bulk within the same DG. Instead, CS
assigns a buffer in a striping manner. That is, the buffer number j and its rth

replica area, which stores the data of the rth replica area of the ith data disk
(r = 0 means primary), is determined as follows.

jr =
{

i0 mod NCM (r = 0)
(jr−1 + 1) mod NCM (otherwise) (2)

4 Energy-Efficient Buffer Flush Algorithm

This section describes energy-efficient buffer flush algorithms that we propose.
In respect to the buffer flush, one of the naive method to accomplish this goal

is to flush all the data on buffer to disk when a buffer overflow occurs. However,
flushing all of the buffered data may access many data disks, causing many
disks to spin up, thereby requiring a large amount of power to accommodate the
temporarily large peek power. To address this issue, we propose two buffer flush
algorithms WithAllSpins and SpinupEE.

The basic buffer flush procedure is presented as following.

1. The disk which has largest buffer data in the flush target buffer region is
marked as the target disk. Then the disk is spun-up if it is in standby state.

2. The buffer data on the target disk are flushed. In addition, the buffer data
in the same buffer region are flushed to the corresponding disks that are in
active state.

3. The some other buffer data are flushed to the corresponding disks according
to the each buffer flush algorithm, described in next two sub sections.

4.1 WithAllSpins

After the second step of the basic buffer flush procedure, WithAllSpins flushes
all of the buffered data of currently rotating disks. This approach does not only
require no disk spin-up, but also can make a lot of free space in the buffer. Thus,
the time for the next buffer overflow becomes longer. Therefore, the disks can
keep the standby state as long as possible.

Energy Efficient Data Placement and Buffer Management 23

Algorithm 1. Flush the Buffer with the Maximum Energy Efficiency
1: Bbase := Get all buffered data chunks of spinning data disks
2: TnextOF := |Bbase|/λ // Calculate the time to the next buffer overflow by using

Bbase and λ
3: Bmax := Bbase

4: Emin := 1/TnextOF

5: for all SubDspindown which subset of the data disks is in the standby state do
6: BSubD := Get all buffered data chunks of SubDspindown

7: TSubD
nextOF := (|BSubD| + |Bbase|)/λ

8: ESubD := |SubDspindown| × Pstandby/TSubD
nextOF

9: if ESubD < Emin then
10: Bmax := Bbase ∪ BSubD

11: Emin := min{Emin, ESubD}
12: end if
13: end for
14: Flush all buffered data chunks of Bmax

4.2 SpinupEE

SpinupEE flushes the disks with the buffered data considered as the most energy
efficient. The energy efficiency is defined as the ratio of the total energy when the
buffered data of a certain combination of disks are flushed and the predicted time
to the next buffer overflow. The detail of the SpinupEE is shown in Algorithm 1.

At first, the algorithm separates the data disks into two groups: spinning
disks and standby disks. Then, the algorithm places all the buffered data chunks
on buffers that correspond to spinning disks and aggregates these chunks into
one buffer. In line 1, Bbase denotes the aggregated buffered data chunk. Next,
the algorithm calculates the expected time to the next buffer overflow TnextOF

if only the buffered data of spinning disks were flushed by using Bbase and the
average arrival rate of write requests λ. As shown in line 2, the value of TnextOF is
calculated as the size of the buffered data chunk (the sum of blocks in the chunk)
|Bbase| divided by λ, and then the algorithm calculates the energy efficiency of
the buffer being flushed from the only spinning disks and calculates the value
set into the Emin temporarily (line 4). The energy efficiency is calculated as the
value of the extra energy consumption when the buffer is being flushed divided
by the predicted time to the next buffer overflow. The energy efficiency is the
required energy per second to get the time to the next buffer overflow. Thus,
if flushing buffer data to only the spinning disks, since there is no need for
extra energy for the disk spin-up, the energy efficiency can be presented as Emin

and calculated as 1/TnextOF . In line 5 to line 13, for the arbitrary combination
of the remaining standby disks, the algorithm calculates the energy efficiency
by using the time to the next buffer overflow and its energy overhead due to
the spinning up of these disks in a similar manner, as discussed in the presented
steps. In other words, considering the set of disks in the standby state, Dspindown

= {Di| Di is a data disk ∧ Di is in a standby state} and an arbitrary subset
SubDspindown of Dspindown. Thus, the algorithm calculates the energy efficiency

24 S. Hikida et al.

Table 1. Parameters of the hard disk
drive used in the simulation

Parameters Value

Capacity (TB) 2

Number of platters 5

Rotations per minute (RPM) 7200

Disk cache size (MB) 32

Data transfer rate (MB/s) 134

Active power (W) 11.1

Idle power (W) 7.5

Standby power (W) 0.8

Spin-down energy (J) 35.0

Spin-up energy (J) 450.0

Spin-down time (s) 0.7

Spin-up time (s) 15.0

Table 2. Configuration of each storage
system

Normal RAPoSDA

Buffer - 24 GB
(8 GB × 3)

of replicas 3 3

of cache disks - 6, 9

of data disks 60, 90 60, 90

Table 3. Configuration of the storage for
comparing buffer flush algorithms

Component Value

of cache disks 6

of data disks 30

of buffers 3 (4GB/memory)

Block size 64 KB

Data mapping policy CS

ESubD of all spinning disks and the standby disks that belong to one of the
subsets SubDspindown with energy overhead to spin up the standby disks.

To calculate the energy efficiency ESubD, first, the algorithm calculates the
expected time to the next buffer overflow to merge the buffered data of the spin-
ning disks and the standby disks belonging to the selected subset SubDspindown

when flushing their buffered data (line 7). Then, the extra energy required for this
case is the sum of the spin-up energy of the standby disks belonging to a selected
subset which is derived as |SubDspindown| × Pstandby. Therefore, the energy effi-
ciency of this case ESubD is calculated as |SubDspindown| × Pstandby/TSubD

nextOF

(line 8). After calculating the ESubD for all subsets of standby disks, except the
empty set φ, the most energy efficient combination of disks to flush the buffered
data is determined. If the energy efficiency of any combination of standby and
spinning disks is larger than the case of only using spinning disks, the algorithm
flushes the buffered data of only spinning disks.

5 Evaluation

In this section, we evaluate the effectiveness of the data placement policies,
DGA and CS (Evaluation 1), and the buffer flush algorithms, WithAllSpins and
SpinupEE (Evaluation 2). In the evaluation, a simulation program [12] which
we developed is used. We employ RAPoSDA as the base storage configuration
through the experiment. And Normal configuration which does not employ any
power reduction techniques is also used for the comparison. The simulation uses
Hitachi Deskstar 7K2000 [5] as the hard disk drive model. The parameters of

Energy Efficient Data Placement and Buffer Management 25

Table 4. Parameters of the synthetic workload

Workload parameter Evaluation 1 Evaluation 2

Simulation time 5 h Same

Read:write ratio 3:7 0:10, 3:7

Number of files 10,000,000 (32 KB/file) 10 M (1 MB/Object)

Total file size 960 GB (3replicas) 30 TB (3replicas)

Number of requests λ × 3600 × 5 (h) Same

Data access distribution Zipf Same

Request arrival distribution Poisson arrival Same

Zipf factor s 1.2 Same

Mean arrival rate (λ) 30 (request/s) Same

(a) Power reduction
ratio

(b) Average response
time

(c) Number of buffer
overflow

(d) Number of
spinups

Fig. 2. Simulation results

this model are described in Table 1. In addition, Tables 2 and 4 depict each of
storage system configuration and the parameters of the synthetic workload in
this evaluation (Table 3).

5.1 Comparison of Cache Striping and Disk Group Aggregation

Simulation Results. The simulation results are depicted in Fig. 2. In Fig. 2(a),
DGA achieved a slightly better power reduction ratio than CS in the case of 60
data disks. Whereas, DGA and CS showed almost the same in the case of 90 data
disks. Thus, regarding the power reduction ratio, there are no salient differences
between DGA and CS.

Figure 2(b) depicts the average response time. Normal is the fastest, but
consumes the most power. In RAPoSDA, the average response time of CS is
1.03 s, while the average response time of DGA is 0.94 s in the case of 60 data
disks. For 90 data disks, the average response times of CS and DGA are 0.78 s
and 0.77 s, respectively. Thus, DGA has a slightly faster average response time
than CS. Also, Fig. 2(c) and (d) depict the total number of buffer overflows of
cache memory and the total number of disk spin-ups of RAPoSDA. In Fig. 2(c),
DGA has three times fewer overflows than CS with 60 data disks. By contrast,
CS has one time fewer overflows than DGA with 90 data disks. From Fig. 2(d),
although CS can suppress the spin-up counts slightly more than DGA with 60
data disks, it shows the inverse tendency with 90 data disks.

26 S. Hikida et al.

(a) Power consumption (b) Average response time

Fig. 3. Power consumption and average response time for each buffer flush algorithms

(a) Buffer overflow count (b) Spin-up/spin-down
count

(c) Cache hit ratio

Fig. 4. Buffer overflow, spin-up/spin-down count, and cache hit ratio for each buffer
flush algorithms

5.2 Comparison of Each Buffer Flush Algorithms

In this comparison, two buffer flush algorithms are compared. In addition, we
introduce Chunk, which represents the original RAPoSDA’s buffer flush proce-
dure described in Sect. 4 to compare with the proposed algorithms.

Simulation Results. Figure 3(a) depicts the power consumption of the three
buffer flushing algorithms with each workload. With the write only workload
(represented as “(wo)” in the figure), the Chunk algorithm shows the lowest
power consumption, and the WithAllSpins algorithm consuming the second-
most amount of power. By contrast, the SpinupEE algorithm consumes the most
power, In particular, it consumes about 23 % more power than the Chunk algo-
rithm. With the mixed write and read workload (represented as “(wr)” in the
figure) shows that the WithAllSpins algorithm consumes the least amount of
power, 2.8% less than the Chunk algorithm.

Figure 3(b) shows the average response time of the three buffer flush algo-
rithms with each workload. Chunk algorithm has the largest response time with
the write only workload; the reason for this is that Chunk algorithm suffered from
waiting to the standby disks because it has substantially more buffer overflows
and spin-ups/spin-downs than the others. By contrast, with the mixed write
and read workload, the result shows that the Chunk algorithm has the fastest
average response time. Accordingly, regarding the cache hit rate (in Fig. 4(c)),
the Chunk algorithm leaves the largest amount of buffer data in buffer memory.
Therefore, the Chunk algorithm has the lowest average response time, and the

Energy Efficient Data Placement and Buffer Management 27

SpinupEE algorithm shows the lowest response performance; the reason for this
is because access to the disks that are spun up is delayed owing to the buffer
flush algorithm described in Sect. 4. In addition, the WithAllSpins and SpinupEE
algorithms suffer from relatively large latency.

Figure 4(a) shows that the SpinupEE algorithm achieves the lowest overflow
count, as expected. However, according to Fig. 4(b), the lowest spin-up(spin-
down) count is achieved by the WithAllSpins algorithm; the reason for this is
that the WithAllSpins algorithm does not have any extra disks spin-up during
buffer overflow, and it flushes buffered data to all the spinning disks. Thus,
the WithAllSpins algorithm can reduce the number of spin-up/spin-down count
more than the others.

5.3 Discussion

Regarding data placement policies, the differences between DGA and CS are
small. Also, this result could have been affected by the workload characteristics.
It is anticipated that CS is effective when the write accesses show a random
distribution. However, the workload of this simulation has higher access locality.
Therefore, DGA is advantageous compared with CS.

Regarding buffer flushing algorithms, WithAllSpins and SpinupEE signifi-
cantly reduce the buffer overflow count and spin-up/spin-down count compared
with the RAPoSDA approach (Chunk). With the mixed read and write work-
load, all three algorithms achieve almost the same amount of power. However,
the average response times of the WithAllSpins and SpinupEE are more than
double that of the Chunk, because of the buffer cache hit for the read requests.
By contrast, with the write-only workload, the average response times of the
WithAllSpins and SpinupEE algorithms were twice as fast as that of the Chunk.
The reason is that Chunk was suffering a longer delay penalty of many spin-
up/spin-down compared with the other algorithms.

6 Related Work

Lang et al. [9] studied on both load balancing and power reduction by using
a chained declustering data placement strategy. However, since it only has two
replicas, they do not consider more than three replicas.

Rabbit [1], Sierra [13], FREP [7], and Accordion [4] determine the power pro-
portionality. These studies purpose that the ratio of their power consumption
and performance can be kept constant by increasing and decreasing the number
of active nodes along with the current load. Since they assume large-scale dis-
tributed storage systems, most of the nodes activate to assure the primary data
are available, even if they are relatively large.

REED [14] and RESS [15] are designed for large-scale distributed storage
systems to reduce the power consumption and ensure the reliability of the storage
by integrating SSD and HDD. These studies use HDD as the primary storage
and SSD as cache. If the workload is heavy, all HDDs are active and serve the

28 S. Hikida et al.

maximum IO performance, whereas, during the light workload, SSD is activated
and HDDs are deactivated if their idle time exceeded a certain threshold time.
However, they do not consider the data availability, such as MTTDL.

7 Conclusion

In this paper, we proposed two data placement policies, Cache Striping (CS)
and Disk Group Aggregation (DGA) for storage systems with more than three
replicas. CS saves a little more energy than DGA, while DGA slightly reduces
the overhead of the response time more than CS.

In addition, we also proposed and evaluated two buffer flushing algorithms for
storage systems with more than three replicas. In the read/write mixed work-
load, WithAllSpins and SpinupEE reduce the number of spin-ups/spin-downs
and the number of buffer overflows more than Chunk. Furthermore, WithAll-
Spins reduced the power consumption the most among the three algorithms. In
the evaluation, we demonstrated considering disk rotation status when buffer
flushing can reduce the power consumption more. However, the proposed algo-
rithms suffer a greater penalty of latency compared with Chunk since they tend
to increase I/Os when buffer flushing. Thus, there are design positives and neg-
atives for power reduction and performance, especially response time.

References

1. Amur, H., et al.: Robust and flexible power-proportional storage. In: Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010 (2010)

2. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:
Proceedings of the ACM/IEEE Conference on Supercomputing, pp. 1–11 (2002)

3. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. SIGOPS Oper.
Syst. Rev. 37(5), 29–43 (2003)

4. Le, H.H., Hikida, S., Yokota, H.: Accordion: an efficient gear-shifting for a power-
proportional distributed data-placement method. IEICE Trans. Inform. Syst. 1013–
1026 (2015)

5. Hitachi Global Storage Technologies: Hard disk drive specification, hitachi deskstar
7k2000. http://www.hgst.com/tech/techlib.nsf/products/Ultrastar 7K4000

6. Hsiao, H.I., DeWitt, D.J.: Chained declustering: a new availability strategy for
multiprocessor database machines. In: Proceedings of the 6th ICDE, pp. 456–465
(1990)

7. Kim, J., Rotem, D.: Energy proportionality for disk storage using replication. In:
Proceedings of the 14th EDBT (2011)

8. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

9. Lang, W., Patel, J.M., Naughton, J.F.: On energy management, load balancing
and replication. SIGMOD Rec. 38(4), 35–42 (2010)

10. Hikida, S., Le, H.H., Yokota, H.: A power saving storage method that considers
individual disk rotation. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R.,
Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7239, pp. 138–149. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29035-0 10

http://www.hgst.com/tech/techlib.nsf/products/Ultrastar_7K4000
https://doi.org/10.1007/978-3-642-29035-0_10

Energy Efficient Data Placement and Buffer Management 29

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file
system. In: 2010 IEEE 26th MSST, pp. 1–10, May 2010

12. Storage system simulator. https://github.com/reddikih/spsim2
13. Thereska, E., Donnelly, A., Narayanan, D.: Sierra: practical power-proportionality

for data center storage. In: Proceedings of the 6th Conference on Computer Sys-
tems. ACM (2011)

14. Yin, S., Li, X., et al.: REED: a reliable energy-efficient raid. In: 2015 44th Inter-
national Conference on Parallel Processing, pp. 649–658, September 2015

15. Yin, S., Xiao, Z., et al.: RESS: a reliable energy-efficient storage system. In: IEEE
22nd International Conference on Parallel and Distributed Systems, pp. 1193–1198,
December 2016

https://github.com/reddikih/spsim2

Querying Knowledge Graphs
with Natural Languages

Xin Wang1(B), Lan Yang2, Yan Zhu1, Huayi Zhan3, and Yuan Jin4

1 Southwest Jiaotong University, Chengdu, China
{xinwang,yzhu}@swjtu.edu.cn

2 Sichuan ChangHong Electric Co. Ltd, Mianyang, China
lan.yang@changhong.com

3 Xi’an Jiaotong University, Xi’an, China
huayizhan2012@stu.xjtu.edu.cn

4 Nuclear Power Institute of China, Chengdu, China
jinyuan1377@sina.com

Abstract. With the unprecedented proliferation of knowledge graphs,
how to process query evaluation over them becomes increasingly impor-
tant. On knowledge graphs, queries are typically evaluated with graph
pattern matching, i.e., given a pattern query Q and a knowledge graph
G, it is to find the set M(Q,G) of matches of Q in G, where matching
is defined with subgraph isomorphism. However querying big knowledge
graphs brings us challenges: (1) queries are often issued with natural lan-
guages, hence can not be evaluated directly; (2) query evaluation is very
costly and match results are often difficult to inspect. In light of these,
this paper studies the problem of querying knowledge graphs with natu-
ral languages. (1) We extend pattern queries by designating a node uo as
“query focus”, and revise the matching semantic based on the extension.
(2) We develop techniques to understand natural language queries, and
generate pattern queries with “query focus”. (3) We develop efficient
techniques to identify top-k matches of “query focus”. (4) We exper-
imentally verify that our techniques for query understanding perform
well, and our query algorithm is able to find diversified top-k matches
efficiently.

1 Introduction

The ever-increasing knowledge graphs impose an urgent demand of effective
query techniques for end users. Typically, queries over knowledge graphs are
evaluated with pattern matching, i.e., given a pattern query Q and a knowledge
graph G, it is to find M(Q,G), the set of matches of Q in G. There are two key
issues for querying knowledge graphs. (1) Users’ queries are often expressed with
natural languages, which are unstructured and can not be evaluated over graphs
directly, instead, one needs to bridge the gap by constructing structured pattern
queries from corresponding questions. (2) Knowledge graphs are often very big,
e.g., DBpedia [2] has more than 4.58 million entities, and 3 billion RDF triples,
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 30–46, 2019.
https://doi.org/10.1007/978-3-030-27618-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_3

Querying Knowledge Graphs with Natural Languages 31

and query semantic is typically defined in terms of subgraph isomorphism, which
is an NP-complete problem [7], these together bring following challenges: (a)
query evaluation is cost prohibitive, (b) it is a daunting task to understand
query results, as there may exist excessive matches of Q in G, and (c) users are
often interested in top-k matches of a specific node uo as “query focus” of Q, that
are not only relevant to uo, but are also as diverse as possible, simultaneously [9].

These highlight the need for (1) query structuring, which transforms natural
language queries QNL into pattern queries Q with node uo as “query focus”,
and (2) diversified top-k graph pattern matching, that identifies diversified top-k
matches of the “query focus” uo of Q.

Example 1. A fraction of a movie knowledge base IMDB consists of a set of
triples (s, p, o), indicating subject, predicate and object, respectively. For exam-
ple, (m1, hasRating, 5.7) says that a movie with id m1 has rating 5.7. This triple
set can be modeled as a graph G (shown in Fig. 1(a)), in which s and o are nodes,
that are connected by an edge from s to o with label p. Note that the prefix of
the id of each entity indicates the type of the entity, e.g., m (resp. p) represents
that the entity is of the type “movie” (resp. “performer”).

Due to the schema-less characteristic of graph data, one prefers issuing a
natural language query QNL to find movies that he is interested in, e.g., “Find
comedy movies played by You Ge and another actress who played comedy movies
before”. Obviously, QNL can not be used directly to query on knowledge graphs,
it should be transformed into a pattern query taking a designated node uo as
“query focus”. To this end, we generate such a pattern query Q, which is shown
in Fig. 1(b), by first choosing a pattern structure that is extracted from query log,
and can best capture the relationship among entities in QNL, and then mapping
entities and relationship in QNL to corresponding nodes (including query focus)
and edges in the pattern structure.

As there may exist excessive matches of uo, while users may only be inter-
ested in best k ones, that are as diverse as possible. It is hence unnecessary and
too costly to find all the matches of uo, an algorithm with the early termina-
tion property is desired. To rank matches of uo, one may consider the following
criteria. (1) Influences. Observe that m9 can form multiple matches of Q with
different nodes surrounded, hence is considered more influential. (2) Diversity.
Consider sets {m4,m9} and {m4,m6}, m4 is more “dissimilar” to m9 than m6

is, since m4 and m9 have less common neighbors as matches of pattern nodes of
Q than m6 and m9 have. Putting these together, when k = 2, {m4,m9} makes
a good candidate for top-k matches in terms of both influence and diversity. ��

This example shows that natural language can simplify query expression on
knowledge graphs, and diversified top-k graph pattern matching can not only
improve user’s satisfaction, but also may improve query efficiency. However, to
query knowledge graphs with natural languages, two fundamental problems have
to be settled. (1) How to generate a pattern query Q with output node uo from
a natural language query? (2) How to develop efficient algorithms, better with
early termination property, for computing diversified top-k matches of uo?

32 X. Wang et al.

Fig. 1. Knowledge graph, natural language query and its corresponding pattern query

Contributions. This paper investigates following questions for querying knowl-
edge graphs. We focus on graph pattern matching defined in terms of subgraph
isomorphism, since it is commonly used in knowledge graph search.

(1) Knowledge graph search often has specific focuses [4], we hence revise pattern
query by designating a node uo as “query focus”. Then given Q and G, it
is to compute Mu(Q,G, uo), the set of matches of uo in G via Q. To rank
matches of uo, we develop two functions, namely, relevance function w() and
distance function d(). Based on both, we define a bi-criteria diversification
function F () that aims to maximize relevance and diversity simultaneously
(Sect. 2).

(2) We propose a novel method to transform natural language queries QNL into
pattern queries (Sect. 3). The approach extracts typical pattern structures
from query log as class labels, trains a classifier with labeled query log,
and employs the classifier to find a pattern structure that best captures
relationship among keywords occurred in the query sentence.

(3) We investigate the diversified top-k graph pattern matching problem. It is
to find top-k matches of uo based on the diversification function F (). We
show that the decision version of the problem is NP-hard. Nevertheless, we
develop an algorithm TopKET in O(|Q|2 + |Q||G|2 + |G|2|G|!) time, with the
early termination property (Sect. 4).

(4) Using both real-life and synthetic data, we experimentally verify the effi-
ciency and effectiveness of our methods (Sect. 5). We find that (a) our query
structuring technique is very effective, with accuracy ratio R over 95%, on
average; and (b) TopKET is not only effective, but also efficient. Taking
knowledge graph Movie as example, when top-5 matches are required, its
F-measurecan reach 80% over patterns with size |Q| = (3, 2), and moreover
it only needs less than 1 second to find top-10 matches, and accounts for,
on average, 20% and 18.5% of the time used by TopKApx and TopKNaive,
respectively.

Querying Knowledge Graphs with Natural Languages 33

These results yield a promising approach to querying big knowledge graphs.
Our technique can understand natural language queries well, and our query
algorithm can efficiently identify diversified top-k matches of “query focus”.

Related Work. We categorize the related work as follows.

Query Structuring. Keyword search may not be expressive enough to query
structured data, e.g., knowledge graphs, since only a few words are not suffi-
cient to specify the query intention, and structured queries are in demand for
querying structured data. In light of this, various techniques have been devel-
oped to understand natural language queries, among these are [13,16,17,19].
[17] trains a classifier by mining frequent structured queries from query log, and
combining them with linguistic structure in keyword queries. With the classifier,
keyword queries can be translated to structured queries. [19] translates users’
questions into an extended form of structured SPARQL queries, with text pred-
icates attached to triple patterns. [13] presents MING, a principled method for
extracting an informative subgraph for given query nodes, and hence form a
structured query representation. When users do not know how to describe the
specifications of the items of interest, but does know some examples, [16] pro-
posed methods to understand the structure of exemplar queries. [21] proposes an
approach to understanding questions and generating structured queries through
talking between the data (i.e., the knowledge graph) and the user.

Top-k Graph Pattern Matching. Top-k graph pattern matching is to retrieve
k best matches from the match set. There has been a host of work on this topic.
For example, [8,22] propose to rank matches, e.g., by the total node similarity
scores [22], and identify k matches with the highest scores. [11] investigates top-
k query evaluation for twig queries, which essentially computes isomorphism
matching between rooted graphs. To provide more flexibility of top-k pattern
matching, [6] extends matching semantics by allowing edge to path mapping, and
proposes to rank matches based on their compactness. Instead of matching with
subgraph isomorphism, graph simulation [12] is applied as matching semantic,
and pattern graph is designated an output node in [9], then match result is a set
of nodes that are matches of the output node.

Diversified Graph Pattern Matching. Result diversification is a bi-criteria
optimization problem for balancing result relevance and diversity [5,10], with
applications in e.g., social searching [3]. Following the idea, diversified graph
pattern matching has been studied in, e.g., [9,20]. [9] takes both diversity and
relevance into consideration, and proposes functions to capture both relevance
and diversity. In contrast, [20] considers diversity only, and measures diversity
by the number of vertices covered by all the matches in the result.

Our work differs from prior work in the following: (1) our matching seman-
tic is quite different from that in [9,20], where [9] extends pattern queries with
output node and applies graph simulation as matching semantic, and [20] finds
matches of pattern queries rather than its “query focus”, via subgraph isomor-
phism. (2) [17] translates natural language queries into structured queries with-
out output node, while ours can not only structure natural language queries

34 X. Wang et al.

but also specify query focus. (3) [20] only considers match diversity, while ours
considers both relevance and diversity.

2 Preliminary

In this section, we review notions about knowledge graph, pattern queries
(Sect. 2.1), graph pattern matching (Sect. 2.2), and query structuring (Sect. 2.3),
respectively.

2.1 Knowledge Graphs and Pattern Queries

We start with notions of knowledge graphs and pattern queries.

Knowledge Graphs. Assume a set E of entities, a set D of values, a set P of
predicates (labels), and a set Θ of types. Each entity e in E has a unique ID and
a type in Θ. A knowledge graph (or simply a graph) consists of a set of triples
(s, p, o), where subject s is an entity in E , p is a predicate in P, and o is either
an entity in E or a value d in D. It can be represented as a directed edge-labeled
graph G = (V,E,L), such that V is the set of nodes consisting of s and o for
each triple (s, p, o); and E includes edges e = (u, v) with label L(e) = p, for each
triple (s, p, o), where L() is the edge labeling function.

Two types of equality are considered: (a) node identity on E : if entities e1
and e2 have the same ID; and (b) value equality on D: d1 = d2 if they are the
same value.

Pattern Queries. A pattern query (or simply a pattern) Q is a set of triples
(sQ, pQ, oQ), where sQ is a variable z, oQ is one of a value d or z, and pQ is a
predicate in P. Here variable z has one of three forms: (a) entity variable y, to
map to an entity, (b) value variable y∗, to map to a value, and (c) wildcard y,
to map to an entity. Here sQ can be either y or y, while oQ can be y, y∗ or
y. Entity variables and wildcard carry a type, denoting the type of entities they

represent. A pattern query can also be represented as a graph Q = (Vp, Ep), such
that two variables are represented as the same node if they have the same name
of y, y∗ or y; similarly for values d.

We denote |Vp|+ |Ep| as |Q| (the size of Q), and |V |+ |E| as |G| (the size of G).

2.2 Graph Pattern Matching Revised

We first propose the notion of valuation, followed by graph pattern matching
problem (GPM). We next introduce result diversification. Consider a knowledge
graph G and a pattern Q(uo).

Valuation. A valuation of Q in a set T of triples is a mapping ν from Q to
T that preserves values in D and predicates in P, and maps variables y and
y to entities of the same type. More specifically, for each triple (sQ, pQ, oQ)

in Q, there exists (s, p, o) in T , written as (sQ, pQ, oQ) �→ν (s, p, o) or simply

Querying Knowledge Graphs with Natural Languages 35

(sQ, pQ, oQ) �→ (s, p, o), where (a) ν(sQ) = s, p = pQ, ν(oQ) = o; (b) o is an
entity if oQ is a variable y or y; it is a value if oQ is y∗, and o = d if oQ is a
value d; and (c) entities s and sQ have the same type; similarly for entities o
and oQ if oQ is y or y. We say that ν is a bijection if ν is one-to-one and onto
mapping.

Graph Pattern Matching [7]. Consider a knowledge graph G and a pattern
query Q. We say that G matches Q if there exist a set T of triples in G and a
valuation ν of Q in T such that ν is a bijection between Q and T . We refer to T
as a match of Q in G at e under ν. Intuitively, ν is an isomorphism from Q to
T when Q and T are represented as graphs. The answer to Q in G, denoted by
M(Q,G) is the set of matches T of Q in G. To search query focus of a pattern
query, we extend a pattern query as Q = (Vp, Ep, uo), where uo is a node in Q
labeled with ∗, referred to as the output node of Q, Then the matches of uo in
G is defined to be Mu(Q,G, uo) = {vo|ν(uo) = vo, vo ∈ T}, i.e., all the matches
of the output node uo.

Example 2. Recall G, Q in Example 1. It can be easily verified that match set
M(Q,G) includes 6 matches: (p4, p5, m10, m4), (p4, p5, m4, m6), (p4, p5, m10,
m6), (p4, p5, m4, m9), (p4, p5, m6, m9), (p4, p5, m10, m9). One may further infer
Mu(Q,G, uo) (uo is M, marked with ∗) from M(Q,G), and obtain three movies,
i.e., m4,m6 and m9. ��

For a pattern query Q, we use distu(u, u′) to denote the length of the shortest
path between u and u′ in Q, then its radius r is the largest distu(uo, u

′) between
uo and any other node u′ in Vp, when Q is treated as an undirected graph.

Result Diversification. It is recognized that search results should be rele-
vant, and at the same time, be as diverse as possible [10]. This gives the rise of
diversification measurement.

Relevance Function. We define the relevance set Rs(vo) as {vk|vk ∈ T, T ∈
M(Q,G), ν(uo) = vo, vo �= vk}. Then the relevance function is defined as
w() = |Rs(vo)|.

Intuitively, for a match vo of uo, if the more nodes that can make up distinct
matches of Q(uo) with vo, the more important vo is. That’s the relevance function
favors those matches that connect more other matches. For example, Rs(m4) =
{p4, p5,m10}, then |Rs(m4)| = 3, while Rs(m9) = {p4, p5,m4,m6,m10}, indicat-
ing |Rs(m9)| = 5, hence m9 is considered a more relevant match of M than m4.

Distance Function. To characterize the diversity of a match set, we define a dis-
tance function to measure the “dissimilarity” of two matches. Given two matches
v1, v2 of uo, we define their distance d(v1, v2) as

d(v1, v2) = 1 − |Rs(v1) ∩ Rs(v2)|
|Rs(v1) ∪ Rs(v2)|

36 X. Wang et al.

Diversification Function. To measure the diversification of a match set U =
{v1, v2, · · · , vk} of the output node uo, a function F () is defined as

F (U) = (1 − λ)
∑

vi∈U
w′(vi) +

2 · λ

k − 1

∑

vi∈U,vj∈U,i<j

d(vi, vj),

where w′(vi) is a normalized relevance function defined as w(vi)
w(vm) , and w(vm) is

the largest relevance value among all matches of uo, d() is the distance function,
and λ ∈ [0, 1] is a parameter set by users. The diversity metric is scaled down
with 2·λ

k−1 , since there are k(k−1)
2 numbers for the difference sum, while only k

numbers for the relevance sum.

Diversified Top-k Matching Problem. With the diversification function F (),
we next state the diversified top-k matching problem, denoted by TopKM. Given
G, Q, a positive integer k, and a parameter λ ∈ [0, 1], it is to find a set of k
matches U ⊆ Mu(Q,G, uo) such that

F (U) = arg max
U ′⊆Mu(Q,G,uo)

F (U ′),

i.e., for all k-element sets U ′ ⊆ Mu(Q,G, uo), F (U) ≥ F (U ′).

Example 3. Recall Example 2. As the match set Mu(Q,G, uo) = {m4,m6,m9},
when k = 2 and λ = 0.5, three two-element sets {m4,m9}, {m4,m6} and
{m6,m9} have diversification values 1.2, 0.95 and 1.1, respectively. Hence
{m4,m9} makes a diversified top-2 match set. ��

2.3 Query Understanding

Due to unstructured character, natural language queries QNL can not be directly
used to query knowledge graphs. It needs to be correctly translated into a struc-
tured pattern query. Typically, translation of QNL consists of two tasks, i.e.,
phrase identification, and query structuring.

Phrase Identification. A natural language query is consisted of a sequence of
tokens, QNL = (t0, t1, · · · , tn). A phrase is a contiguous subsequence of tokens
P = (ti, ti+1, ..., ti+l) ⊆ QNL (0 ≤ i, 0 ≤ l ≤ n). Phrases can denote entities
(e.g., the city of Casablanca or the movie Casablanca), types (e.g., actresses,
movies), or relations/attributes (e.g., played in between people and movies).
Phrase identification is to identify a set of phrases P from QNL such that each
of them potentially corresponds to semantic items such as “movie” and “played
in”. To simplify presentation, we denote an ordered list of phrases of QNL as LP.

Query Structuring. Querying a knowledge graph with identified phrases still
can not well capture user’s query intention [17], instead, a structured pattern
query with query focus is required. However, it is a challenging task to structure
QNL due to that relationship among phrases may not be explicitly mentioned
in a QNL, which calls for techniques to infer implicit relations and construct a
pattern query.

Querying Knowledge Graphs with Natural Languages 37

Example 4. A natural language query QNL and its corresponding pattern query
Q is shown in Fig. 1(b). Note that nodes in Q represent either entities or their
contents; edges indicate relationships among nodes, e.g., perform, hasGenre and
releaseYear; and the query focus M is marked with “∗” as “output node”. ��

Fig. 2. Overview of the approach

2.4 Approach Overview

Figure 2 presents the overview of our approach, which consists of four mod-
ules, i.e., Phrase Processor (FP), Query log Analyzer (QA), Pattern Generator
(PGen) and Query Executer (QE). The main functions of the modules are as
follows. (1) Module FP contains two submodules, i.e., phrase identifier (PI) and
phrase annotator (PA, Sect. 3.1), which are in charge of phrase identification and
annotation, respectively. The output of module PI is an ordered list of phrases of
QNL, denoted as LP, and will be used by QA and PGen for classifier training and
pattern query generation, respectively. (2) Using query log, module QA trains
a classifier, which will be used by module PGen to generate pattern queries Q
(Sect. 3.2). (4) Module QE computes diversified top-k matches of Q in G (Sect. 4).
It deserves mentioning that module QE takes advantage of a synonym dictionary
to eliminate ambiguities of entities or relations.

3 Structuring Natural Language Queries

In this section, we first introduce method to annotate queries (Sect. 3.1), then
provide techniques to generate pattern queries (Sect. 3.2).

3.1 Query Annotation

Given a natural language query QNL, one can identify its phrases with techniques,
e.g., [14], and generate a phrase sequence LP = k1, · · · , kn, where ki in LP is a
phrase that refers to an entity, a value or a relation. Based on LP, a semantically
annotated query is defined as following.

Annotated Query. Given a sequence of phrases LP = k1, k2, · · · , kn, a seman-
tically annotated query AQ is a sequence of “phrase:semantic annotation” pairs:

AQ = 〈k1 : a1, k2 : a2, · · · , kn : an〉,

38 X. Wang et al.

where each ai is a semantic annotation from annotation set Φ.
Following [17], we let Φ take five semantic annotations, i.e., entity, type, value,

relation and attribute, where entity, type, value and relation, attribute are used for
annotating nodes and edges, respectively. To ease presentation, we denote entity,
type, value, relation and attribute by AE , AT , AV , AR and AA, respectively.

Semantic Summary. Given an annotated query AQ = 〈k1 : a1, k2 :
a2, · · · , kn : an〉, a semantic summary is an ordered list of annotations occurring
in AQ, and is generated by the function g(), such that g(AQ) = 〈a1, · · · , an〉.
Example 5. Recall query QNL in Fig. 1(b). Its phrase sequence LP is “comedy”,
“movies”, “played by”, “You Ge”, “actress”, “played”, “comedy”, “movies”,
“before”, and the corresponding annotated query AQ is 〈“comedy”:AV ,
“movies”:AT , “played by”:AR, “You Ge”:AE , “actress”:AE , “played”:AR,
“comedy”:AV , “movies”:AT , “before”:AV〉, hence the semantic summary
f(AQ) = 〈AV ,AT ,AR,AE ,AE ,AR,AV ,AT ,AV〉.

Similar to the semantic summary defined on keyword queries, we define struc-
tured semantic summary for pattern queries as following.

Structured Semantic Summary. A structured semantic summary Qs is a
structured representation of the semantic summary of query QNL, in which each
node carries an annotation from {AE ,AT ,AV}, each edge takes annotation from
{AR,AA}, and one node is particularly specified as output node, and marked
with ∗.

3.2 Pattern Query Generation

An annotated query reveals parts of the latent structure of a phrase-based query
by indicating the semantic role represented by various parts of the query. How-
ever, query annotation alone can not describe how these semantic annotations
interact to model the underlying query intention. To bridge the gap between
annotated queries and structured semantic summaries, we next introduce the
query structuring problem.

Query Structuring Problem. Given a natural language query QNL, the query
structuring problem is to find the most probable structured semantic summary
Qs, such that

Qs = argmaxQ′
s
Pr(Q′

s|f(AQ)),

where f(AQ) is the semantic summary of QNL, and Q′
s is a structured semantic

summary, extracted from labeled query log Log.
Indeed, the calculation of Pr(Q′

s|f(AQ)) can be achieved by estimating from
labeled training data in query log following the definition of conditional prob-
abilities and using the semantic summary as a high level representation of the
annotated query. Specifically, given a semantic summary f(AQ), and a set of

Querying Knowledge Graphs with Natural Languages 39

labeled query log Log, one can evaluate the probability of a structured semantic
summary Qs that’s mapped from f(AQ), with below formula:

Pr(Qs|AQ) =
|S2|
|S1| ,

where S1 = {Qsi
| f(AQ) = f(AQi), 〈Qsi

, AQi〉 ∈ Log}, S2 = {Qsj
| f(AQ) =

f(AQj), Qs = Qsj
, 〈Qsj

, AQj〉 ∈ Log}.
In a nutshell, the probability of a structured semantic summary Qs given

a semantic summary f(AQ) can be evaluated by the proportion of structured
semantic summary with the same semantic summary as f(AQ) and the same
structure along with output node as Qs, versus the total number of structured
semantic summary with the same semantic summary as f(AQ) but any struc-
ture. Following the idea, module QA employs algorithm Bayes (not shown) to
train a classifier, i.e., the conditional probability, by using labeled training data.

Example 6. Consider two QNL: “Find operas of Korea of Huiqiao Song.” and
“Find operas of Huiqiao Song of Korea.” One may verify that they have the
same semantic summaries, i.e., f(AQ) = 〈AT ,AA,AA〉, while they correspond
to different pattern queries. Thus, the most probable pattern query can be used
to structure the query. ��

Pattern Query Construction. With the classifier, we show how module PGen
construct a pattern query for a given QNL as follows: (1) extract a semantically
annotated query AQ from QNL; (2) find a Qs such that Pr(Qs|f(AQ)) is maxi-
mum among all structured semantic summaries with the same f(AQ); and (3)
for each “phrase:semantic annotation” pair (ki : ai) in AQ, replace vi in Qs with
ki if vi is annotated with ai.

4 Querying Knowledge Graphs

In this section, we investigate the diversified top-k graph pattern matching prob-
lem. The main result of this section is as follows.

Theorem 1. The TopKM problem (1) is NP-hard (decision problem); (2) has
a heuristic that is in O(|Q|2 + |Q||G|2 + |G|2|G|!) time, and preserves early
termination property.

Proof: As TopKM problem embeds subgraph isomorphism problem, which is
known an NP-complete problem, Theorem 1 (1) then follows. To see Theorem 1
(2), we present an algorithm, denoted as TopKET, as a constructive proof.

Before illustrating the algorithm, we first introduce notions ball and dual
simulation, followed by a lemma used by the algorithm for fast pruning.

Balls. Given a node v in a graph G, a pattern query Q and a non-negative integer
r, the ball with center v and radius r is a subgraph of G, denoted by G[v, r],
such that (1) for all nodes v′ ∈ G[v, r], the shortest distance distu(v, v′) ≤ r, (2)

40 X. Wang et al.

Input: Pattern query Q = (Vp, Ep, uo), graph G = (V, E, L), k, λ.
Output: A top-k match set of uo.

1. set T := ∅, U := ∅;
2. compute r := max({distu(uo, u)|u ∈ Vp});
3. for each v ∈ V do
4. if v is a candidate match of uo then
5. compute ball G(v, r); S := DualSim(Q, G(v, r));
6. if S = ∅ then
7. Ra(v) := {v |(u , v) ∈ S, u ∈ Vp, u = uo}; T := T v, Ra(v) ;
8. sort v in T in descending order of |Ra(v)|;
9. for each v, Ra(v) T do
10. if v is a true match of uo then
11. update(v,U);
12. if termination condition is satisfied then break ;
13. return U;

Fig. 3. Algorithm TopKET

for each node v in G[v, r], there must exist a node u in Vp such that u = v, and
(3) it has exactly the edges that appear in G over the same node set.

Dual Simulation [15]. Given graph G and pattern query Q, we say a dual simula-
tion relation between Q and G exists, if there exists a binary relation S ⊆ Vp ×V
such that (1) for each (u, v) ∈ S, u = v; and (2) for each node u in Vp, there
exists v in V such that (a) (u, v) ∈ S, (b) for each edge (u, u′) ∈ Ep, there exists
an edge (v, v′) in E such that (u′, v′) ∈ S, and (c) for each edge (u′′, u) ∈ Ep,
there exists an edge (v′′, v) in E such that (u′′, v′′) ∈ S.

The benefits of computing a dual simulation relation are threefold: (1) a set
Ra(v), inferred from S, can be treated as approximate relevant set of v since each
v in Ra(v) is also possibly in Rs(v); and (2) the relation can be evaluated by an
algorithm in O((|Vp| + |Ep|)(|V | + |E|)) time, which is much more efficient than
the exponential algorithms for subgraph isomorphism. with S, one can safely
prune candidate matches by applying the lemma given below.

Lemma 1. If the dual simulation relation S between Q and G is an empty set,
then G can not match Q via subgraph isomorphism.

Proof sketch: To see the correctness of Lemma 1, observe that when S = ∅,
there must exist at least one node u in Vp such that no element (u, v) ∈ S for
any v in V . This indicates that there does not exist a node v as a match of u,
such that for each child u′ (resp. parent u′′) of u, there is a child v′ (resp. parent
v′′) of v, and moreover (u′, v′) (resp. u′′, v′′) in S. This further indicates that
there does not exist a bijective function h from Vp to a subgraph Gs of G.

Based on above notions and Lemma 1, we are ready to illustrate algorithm
TopKET.

Algorithm. The algorithm TopKET takes Q, G and k as input, and works as
following. It first initializes empty sets T and U to keep track of a set of 〈v,Ra(v)〉,

Querying Knowledge Graphs with Natural Languages 41

where v is a match candidate of uo, and Ra(v) is a superset of Rs(v) and will
be used as approximate relevance set (line 1). It then treats Q as an undirected
graph, and computes its radius r, i.e., the largest distance between uo and any
other node u in Vp (line 2). TopKET next computes a set Ra(v) for each candidate
match v of uo as following (lines 3–7). For each node v in V , if v has the same node
label as uo, TopKET first computes the ball G(v, r), and then invokes Procedure
DualSim to compute the dual simulation relation S between Q and G(v, r) (lines
4–5). If S is not empty, TopKET derives Ra(v) from S, and expands T with
〈v,Ra(v)〉 (lines 6–7). Observe that when S is empty, there exists no subgraph
of G(v, r) that is isomorphic to Q [15], hence v can not be a match of uo, and
can be safely excluded from T. After T is initialized, TopKET sorts nodes v in T
in descending order of Ra(v) (line 8), and iteratively verifies match candidate,
expands U with valid match until termination condition reaches (lines 9–11).
Specifically, TopKET first verifies whether a candidate match v is a true match
of uo by applying an algorithm that revises VF2 [7] by terminating enumeration
as soon as v is verified a valid match of uo (line 10). For a valid match v, it invokes
procedure update to update U with v (line 11). The procedure finds a node vr

in U and replaces vr with v if F (U ∪ {v} \ {vr}) > F (U). TopKET then checks
whether the termination condition, i.e., there do not exist a match vr in U and
a candidate vc with largest |Ra(vc)| in T such that F (U∪{vc}\{vr}) > F (U), is
encountered, and breaks the loop if so (line 12). After loop completes, TopKET
returns U as final result (line 13).

Example 7: Consider G and Q in Example 1. Let λ = 0.5, TopKET finds top-2
matches of uo as follows. It first identifies the radius r as 4. For each match
candidate, i.e., all comedy movies m2-m10, it computes the ball, and dual sim-
ulation for each of them. Take m9 as example, its ball includes nodes: p4, p5,
m2, m4, m5, m6, m7, m8, m9 and m10 (only entity nodes are considered here)
and exactly the same edges among these nodes as in graph G, the dual simu-
lation S = {(You Ge, p4), (Fan Xu, p5), (M1,m4), (M1,m6), (M1,m10), (M,m9)}
and Ra(v) = {p4, p5,m4,m6,m10,m9}. After all the candidates are processed
and sorted, set T includes following nodes, i.e., m9, m6, m4, along with their
approximate relevance sets. TopKET then iteratively confirms validity for each
candidate, and updates U as following. It first initializes set M with m9 followed
by m6, as the termination condition can not be met, TopKET next updates U
by replacing m6 with m4. After the loop, U is returned as a top-2 match set. ��

Correctness and Complexity. We show the correctness of TopKET by proving
that (1) TopKET always terminates, and (2) when TopKET terminates, it returns
a set of at most k matches of uo.
(1) TopKET first repeats the for loop (lines 3–7, Fig. 3) |V | times, and in each
iteration, it computes a dual simulation relation between Q and G(v, r), for a
match candidate v. TopKET next iteratively verifies whether a match candi-
date v in T is valid or not, and selects v if it is a valid match (lines 9–12).
As |T| is bounded by |V |, hence the iteration repeats no more than |V | times.
As two rounds iteration repeats limited times, thus TopKET always terminates.

42 X. Wang et al.

(2) Termination condition ensures that when algorithm terminates, at most k
matches will be returned.

For the complexity, TopKET first computes radius r of Q in O(|Vp|(|Vp| +
|Ep|)) time (line 1). TopKET then iteratively computes a ball G(v, r) and the
dual simulation between Q and G(v, r) (lines 3–7). As a single iteration takes
TopKET O(|V | + |E|) time to compute a ball G(v, r) with node set Vb and edge
set Eb, and O((|Vp| + |Ep|)(|Vb| + |Eb|)) time to compute the dual simulation
relation via Procedure DualSim (lines 3–7), and the for loop repeats at most
O(|V |) time, hence it is in total O(|V |((|V | + |E|) + (|Vp| + |Ep|)(|Vb| + |Eb|)))
time. The sorting process takes TopKET O(|V |log(|V |)) time as |T| is bounded
by |V | (line 8). The second for loop repeats at most |V | times, and in each
iteration, it takes TopKET O(|V ||V |!) time to verify whether v is a match or not
(line 10), thus, it is in O(|V |2|V |!) time to verify and select matches. Summing
these up, the total time is in O(|Q|2 + |Q||G|2 + |G|2|G|!).
Early Termination. Algorithm TopKET has the early termination property, as
it leverages one strategy for early termination, thus no need to verify validity for
all candidate matches. As will be verified in Sect. 5, TopKET can find a set of k
matches with F-measure reaching 80%, and better still, it is more efficient than
its counterpart.

Fig. 4. Typical structured semantic summaries

5 Experimental Study

We next present an experimental study of our query structuring method
(Sect. 5.1) and diversified top-k graph pattern matching method (Sect. 5.2), using
real-life data. The experiments were conducted on a machine with an Intel Core
(TM) 2 Dual Core 3.00 GHz CPU and 8 GB of RAM. Each experiment was run
at least 5 times, and the average is reported.

5.1 Experiments for Query Structuring

We first evaluate the effectiveness of our query structuring method.

Experimental Setting. We used real-life query log from our industrial collabo-
rator in our experiments. The query log consists of 97801 query sentences (all in

Querying Knowledge Graphs with Natural Languages 43

Chinese), with search intention focusing on movies or TV programs. To evaluate
our approaches, we choose 20% of the sentences in query log as training data,
and leave remaining sentences as testing data.

Implementation. We implemented the training algorithm Bayes, in Java.

Experimental Results. We next report our findings.

Exp-1: Effectiveness. To measure the effectiveness of our query structuring
method, we define the ratio R = |CS|

|TS| , where TS is the set of testing sentences,
and CS includes those sentences whose pattern queries are correctly generated.
Before computing R, we used CRF++ [1] to recognize entities and explicit rela-
tions for each query sentence, inspected training data and manually extracted a
set of structured semantic summaries, as shown in Fig. 4. Taking Qs1 as exam-
ple, it represents a class of pattern queries, that searches objects (marked with
“*”) with type AT , e.g., movie and attribute (with edge labeled as AA) that
represents an entity AE , e.g., country. These typical structured semantic sum-
maries are treated as class labels of training data. We then ran Bayes on training
data to obtain a classifier, and applied the classifier to determine whether a test
sentence can be correctly structured. We find that our method is very effective,
i.e., the R value is over 95%, on average.

5.2 Experiments for Diversified Top-k Graph Pattern Matching

Experimental Setting. We used real-life data in our experiments.
(1) Real-life data. We used two real-life graphs: (a) Movie, a crawled knowledge
graph with 87K nodes and 167K edges. Each node has attributes such as name,
genre and rating, and each edge from a person to a movie indicates that the
person played in (resp. directed) the movie. (b) Youtube, a network with 1.4M
nodes and 3M edges. Each node is a video with attributes such as category, rate,
and edge edge from v to v′ indicates that v′ is in the related list of v.

Implementation. We implemented the following algorithms, all in Java: (1)
TopKApx, an algorithm that first computes a match set Mu(Q,G, uo) with algo-
rithm [7], and then selects k matches from Mu(Q,G, uo) by following the strategy
introduced by [5]. (2) TopKNaive, which computes all the matches of Q, identifies
matches of uo along with their relevance sets, and finds diversified top-k matches
via exhaustive search. (3) our algorithm TopKET.

Experimental Results. We denote (|Vp|, |Ep|) as the size |Q| of Q. To measure
how pattern size influences performances of matching algorithms, we used three
kinds of pattern queries with size (2, 1), (3, 2) and (4, 3). We next present our
findings.

Exp-1: Effectiveness. We first evaluated the effectiveness of our diversified top-
k matching algorithms, i.e.,TopKET vs. TopKApx and TopKNaive. We measured
effectiveness by computing the F-measure [18], which is defined as 2·(recall·precision)

(recall+precision),

where recall = |true match found|
|true matches| , and precision = |true matches found|

|matches found| .

44 X. Wang et al.

Varying |Q|. Fixing k = 10, λ = 0.5, we varied |Q| from (2, 1) to (4, 3), and
evaluated F-measure over Movie. The results shown in Fig. 5(a) tell us the fol-
lowing. (1) TopKET is very effective, especially on tree patterns, e.g., it achieves
higher F-measure than TopKApx when |Q| = (2, 1). (2) TopKNaive identifies
all the matches of Q, hence has F-measure= 100%. (3) TopKApx has higher
F-measure than TopKET for larger patterns, as it pays more time to find approx-
imate matches.

In the same setting as in Fig. 5(a), we evaluated F-measure on Youtube with
patterns ranging from (4, 6) to (8, 16). As shown in Fig. 5(b), the F-measure of
TopKET is slightly worse than TopKApx on larger patterns, and TopKNaive has
F-measure=1 in all the cases.

Varying k. Fixing |Q| = (3, 2) (resp. |Q| = (4, 6)) and λ = 0.5 , we varied k
from 5 to 30 in 5 increments, and reported F-measure on Movie (resp. Youtube).
As shown in Figs. 5(c) and (d), when k gets larger, more true and false matches
are identified by TopKET, hence the F-measure varies between 69% and 80% on
Movie and 55% and 68% on Youtube, respectively.

 0

 20

 40

 60

 80

 100

 120

 140

(2,1) (3,2) (4,3)

Pe
rc

en
ta

ge
 (%

)

TopKET
TopKApx

TopKNaive

(a) Vary |Q| (Movie)

 0

 20

 40

 60

 80

 100

 120

 140

(4,6) (5,10) (6,12) (7,14) (8,16)

Pe
rc

en
ta

ge
 (%

)

TopKET
TopKApx

TopKNaive

(b) Vary |Q| (Youtube)
 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20 25 30

Pe
rc

en
ta

ge
 (%

)

TopKET
TopKApx

TopKNaive

(c) Vary k (Movie)

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20 25 30

Pe
rc

en
ta

ge
 (%

)

TopKET
TopKApx

TopKNaive

(d) Vary k (Youtube)

 0

 1

 2

 3

 4

 5

 6

 7

(2,1) (3,2) (4,3)

Se
co

nd

TopKET
TopKApx

TopKNaive

(e) Vary |Q| (Movie)

 10

 100

 1000

(4,6) (5,10) (6,12) (7,14) (8,16)

Ti
m

e (
se

co
nd

)

TopKET
TopKApx

TopKNaive

(f) Vary |Q| (Youtube)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 10 15 20 25 30

Ti
m

e (
se

co
nd

) TopKET
TopKApx

TopKNaive

(g) Vary k (Movie)

 50

 100

 150

 200

 250

 300

 350

5 10 15 20 25 30

Ti
m

e (
se

co
nd

)

TopKET
TopKApx

TopKNaive

(h) Vary k (Youtube)

Fig. 5. Performance evaluation

Exp-2: Efficiency. We evaluated efficiency of the algorithms, in the same set-
ting as in Exp-1.

Varying |Q|. As shown in Fig. 5(e), (1) TopKET takes only 20.2% (resp. 18.5%)
time of TopKApx (resp. TopKNaive), on average, on Movie. This verifies the
effectiveness of the early termination property that TopKET preserves. In the
same setting as in Fig. 5(e) but with larger patterns, we evaluated efficiency of
the algorithms on Youtube. As shown in Fig. 5(f), (1) all the algorithms spend
more time on larger patterns, (2) TopKET is the most efficient one among three
algorithms. These results also verify the observations on Movie.

Varying k. Fixing |Q| = (3, 2) (resp. |Q| = (4, 6)) and λ = 0.5, we varied k from 5
to 30 in 5 increments, and tested the efficiency of the algorithms on Movie (resp.

Querying Knowledge Graphs with Natural Languages 45

Youtube). The results shown in Fig. 5(g) (resp. Fig. 5(h)) tell us following. (1)
All the algorithms spend more time for larger k. (2) TopKET is more sensitive
to the increase of k than TopKApx and TopKNaive, as TopKApx and TopKNaive
spend a large part of time to compute entire match set.

6 Conclusion

We have introduced and studied query structuring and diversified top-k graph
pattern matching problems. We have proposed techniques for structuring natu-
ral language queries based on their semantic summaries. We have also provided
techniques for computing diversified top-k matches based on the diversification
function, with early termination property. As verified analytically and exper-
imentally, our methods indeed remedy the limitations of prior algorithms, by
eliminating excessive matches and improving efficiency on big real-life knowl-
edge graphs.

Acknowledgement. Xin Wang is supported in part by the NSFC 71490722, and
Fundamental Research Funds for the Central Universities, China.

References

1. Crf++. https://taku910.github.io/crfpp/
2. Dbpedia. https://en.wikipedia.org/wiki/DBpedia
3. Alonso, O., Gamon, M., Haas, K., Pantel, P.: Diversity and relevance in social

search. In: DDR (2012)
4. Bendersky, M., Metzler, D., Croft, W.B.: Learning concept importance using a

weighted dependence model. In: WSDM 2010, pp. 31–40 (2010)
5. Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular

functions and dynamic updates. In: PODS, pp. 155–166. ACM (2012)
6. Cheng, J., Zeng, X., Yu, J.X.: Top-k graph pattern matching over large graphs. In:

ICDE (2013)
7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism

algorithm for matching large graphs. TPAMI 26(10), 1367–1372 (2004)
8. Ding, X., Jia, J., Li, J., Liu, J., Jin, H.: Top-k similarity matching in large graphs

with attributes. In: DASFAA, pp. 156–170 (2014)
9. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. PVLDB 6,

1510–1521 (2013)
10. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:

WWW (2009)
11. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching

over graphs. In: SIGMOD (2008)
12. Henzinger, M.R., Henzinger, T., Kopke, P.: Computing simulations on finite and

infinite graphs. In: FOCS (1995)
13. Kasneci, G., Elbassuoni, S., Weikum, G.: MING: mining informative entity rela-

tionship subgraphs. In: CIKM, pp. 1653–1656 (2009)
14. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-

bilistic models for segmenting and labeling sequence data. In: ICML, USA, pp.
282–289 (2001)

https://taku910.github.io/crfpp/
https://en.wikipedia.org/wiki/DBpedia

46 X. Wang et al.

15. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern
matching. PVLDB 5(4), 310–321 (2011)

16. Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: Exemplar queries: a new
way of searching. VLDB J. 25(6), 741–765 (2016)

17. Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.E.: Interpreting keyword queries
over web knowledge bases. In: CIKM, pp. 305–314 (2012)

18. Wikipedia: F-measure. http://en.wikipedia.org/wiki/F1 score
19. Yahya, M., Berberich, K., Elbassuoni, S., Weikum, G.: Robust question answering

over the web of linked data. In: CIKM, pp. 1107–1116 (2013)
20. Yang, Z., Fu, A.W., Liu, R.: Diversified top-k subgraph querying in a large graph.

In: SIGMOD, pp. 1167–1182 (2016)
21. Zheng, W., Cheng, H., Zou, L., Yu, J.X., Zhao, K.: Natural language ques-

tion/answering: let users talk with the knowledge graph. In: CIKM, pp. 217–226
(2017)

22. Zou, L., Chen, L., Lu, Y.: Top-k subgraph matching query in a large graph. In:
Ph.D. workshop in CIKM (2007)

http://en.wikipedia.org/wiki/F1_score

Explaining Query Answer Completeness
and Correctness with Partition Patterns

Fatma-Zohra Hannou, Bernd Amann(B), and Mohamed-Amine Baazizi

Sorbonne Université, CNRS, LIP6, Paris, France
{Fatma.Hannou,Bernd.Amann,Mohamed-Amine.Baazizi}@lip6.fr

Abstract. Information incompleteness is a major data quality issue
which is amplified by the increasing amount of data collected from unreli-
able sources. Assessing the completeness of data is crucial for determining
the quality of the data itself, but also for verifying the validity of query
answers over incomplete data. In this article, we tackle the issue of effi-
ciently describing and inferring knowledge about data completeness w.r.t.
to a complete reference data set and study the use of a partition pattern
algebra for summarizing the completeness and validity of query answers.
We describe an implementation and experiments with a real-world dataset
to validate the effectiveness and the efficiency of our approach.

1 Introduction

Information incompleteness is a major data quality issue that is exacerbated
by the growing number of applications, collecting data from distributed, open,
and unreliable environments. Sensor networks and data integration are signifi-
cant examples in which data incompleteness naturally arises due to hardware or
software failures, data incompatibility, missing data access authorizations etc.
In all these situations, querying and analyzing data can lead to deriving partial
or incorrect answers.

Extensive effort has been devoted to representing and querying incomplete
databases [2,6,7,10,11,14]. The common characteristics of these approaches is
the use of some intensional or extensional information about completeness for
deciding whether a query returns complete answers and, in some cases, for
annotating the query answers with some completeness meta-data. Despite these
efforts, reasoning about data completeness remains tricky due to the complex-
ity of exhaustively representing and deriving information about available and
missing data in large datasets.

In many situations, datasets and query results are explicitly or implicitly
depend on some reference (or master) datasets to describe their expected full
extent. Reference datasets can be obtained in different ways. A first way is to
analyze the completeness of some attribute M in some table T (A,M) with key
A by separating T into a table D(A,M) which contains all tuples where M is not
null and a reference table R(A) which contains all keys of T . Another solution is
to exploit external reference tables for identifying the tuples missing in measure
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 47–62, 2019.
https://doi.org/10.1007/978-3-030-27618-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_4

48 F.-Z. Hannou et al.

table D. For instance, sensor databases are usually construed within a spatio-
temporal reference delimiting the coverage of the captured data. According to
[8] 80% of enterprises maintain master data with their analytic databases. In
other data-centric applications, a reference is defined by domain experts during
database design and updated when necessary. Finally, it may also sometimes
be useful to use an existing table or query result as a reference for deriving a
comprehensive representation about available and missing information in some
specific context.

To understand the use of reference datasets for assessing data completeness,
consider the database in Table 1c which depicts an example of a sensor database.
The table DE reports on daily energy measurements for some locations spec-
ified by floor (fl) and room (ro). For various reasons, the current database
misses some values with respect to some reference dataset RE . These values
are pinpointed in grey in the DE table. The reference dataset is built by tak-
ing the Cartesian product of a spatial reference MAP describing all locations
in some building and a calendar CAL indicating the expected temporal cov-
erage (Table 1a). Observe that we also could have built a reference dataset by
extracting the keys of a measure dataset with null values for measure kWh.

Table 1. Reference tables and data table

Table 2. Minimal covers
of DE

Assume that an analyst wants to gain a full knowl-
edge about the segments of the data that are available
or missing. To facilitate her understanding of the data,
the analyst would like a summarized version of the com-
pleteness information and may opt for a pattern-based
representation like the one presented in Table 2. This
figure shows two partition pattern tables PE and PE

capturing the available and the missing information of
table DE respectively. More exactly, complete pattern
table PE contains pattern tuples that capture all parti-
tions which are complete w.r.t. the reference and empty

Explaining Query Compl. and Corr. with Partition Patterns 49

pattern table PE contains pattern tuples that capture all partitions which are
empty in DE but not in the reference dataset RE . For instance, pattern tuple p0
indicates that all measurements pertaining to week w1 are available, whatever
the values of fl, ro or da are. Pattern p3 in table PE reports that no measure
can be found for room r2 and week w2. This representation is compact as it only
reports on the largest possible partitions that are complete (resp. missing) in the
data. It is also covering as it reports on every possible maximal complete (resp.
missing) partition of the data.

In this article we introduce a pattern algebra for querying pattern summaries
and reasoning about query results. This pattern algebra can be considered as
a generalization of the relational algebra where tuples are replaced by partition
patterns. This algebra can be applied to complete and empty pattern summaries
for reasoning about the completeness and the correctness of query answers. The
idea of the pattern algebra is to define for each relational operator op a pattern
counterpart opopop which reflects the transformation of the underlying pattern tables.
To illustrate this idea, consider Q1 which retrieves all measures referring to week
w2 on table DE :

Q1 : select ∗ from DE where we = ‘w2 ’ ;

This query corresponds to a simple selection Q1 = σwe=′w2′(DE) and the com-
pleteness of the result of this query is defined with respect to the result of the
same selection applied to the reference table RE . The pattern queries which
reflect the corresponing transformations on the complete and missing pattern
tables are obtained by using the pattern counterpart of Q1: Q1Q1Q1 = σσσwe=′w2′(PE)
summarizes all complete patterns and Q1Q1Q1 = σσσwe=′w2′(PE) summarizes all empty
partitions as shown in Table 3. Observe that both pattern queries do not only
choose those patterns where we =′ w2′ but must generate all patterns that sum-
marize partitions in σwe=′w2′(DE) which are complete with respect to partitions
in σwe=′w2(RE).

Table 3. Partition patterns for Q1 and Q2

As another example take a projection Q2 = πfl,ro(DE) on attributes fl and
ro. The corresponding pattern query Q2Q2Q2 = πππfl,ro(PE) returns the pattern table
summarizing all floors and rooms where some measures are avalaible and Q2Q2Q2 =
πππfl,ro(PE) returns the pattern table summarizing all floors and rooms where
some measures are missing (see Table 3). The pattern completeness model also
plays a useful role for validating the correctness of aggregation queries answers.
When such queries are applied on incomplete data, the values resulting from

50 F.-Z. Hannou et al.

aggregating incomplete partitions are simply incorrect and there is no means
to notify this fact to the user. To illustrate the role of the pattern model in
detecting potential problems with aggregation queries, consider Q3 which sums
the energy consumption over all da values.

Q3 : select f l , ro , we , sum(kWh) as kWh from DE

where f l= ’ f 1 ’ group by f l , ro , we

This query returns both valid and non-valid answers produced by com-
plete and incomplete partitions respectively. As before pattern table Q3Q3Q3 =
πππfl,ro,we(σσσfl=′f1′(PE)) summarizes all complete and partially complete parti-
tions whereas set Q3Q3Q3 = πππfl,ro,we(σσσfl=′f1′(PE)) summarizes all empty or par-
tially empty partitions. To obtain the summaries of all complete, empty and
partially complete (empty) partitions, we can apply pattern table difference and
intersection as shown in Table 4 where Q3Q3Q3 −−− Q3Q3Q3 summarizes all correct results,
Q3Q3Q3 −−− Q3Q3Q3 summarizes all missing results and Q3Q3Q3 ∩∩∩ Q3Q3Q3 summarizes all incorrect
results.

Table 4. Partition patterns for Q3.

Table 5. Result of Q3Q3Q3

fl ro we kWh Annot

f1 r1 w1 22 ok
f1 r1 w2 10 nok
f1 r2 w1 18 ok

Since data tables are pattern tables without wild-
cards, it is then possible to use the pattern algebra for
annotating query results. For example, Table 5 shows
the annotated result of query Q3Q3Q3 where complete-
ness information is directly extracted from tables
Q3Q3Q3 −−− Q3Q3Q3 (correct results generated by complete par-
titions) and Q3Q3Q3 ∩∩∩ Q3Q3Q3 (incorrect results generated by
incomplete partitions). This result can be obtained
by rewriting Q3Q3Q3 into a union of two queries Qok and Qnok separating the correct
and incorrect answers. For example, the following pattern query generates the
subset of all annotated results by applying a pattern join between the data table
and the pattern table identifying all complete partitions:

σσσfl=′f1′(DE) ������ (πππfl,ro,we(σσσfl=′f1′(PE)) − πππfl,ro,we(σσσfl=′f1′(PE))) (1)

Contributions and Paper Outline. The main contributions of this article are (1)
a new data completeness model based on the notion of partition patterns for
summarizing relative completeness information, (2) a new sound and complete
pattern algebra for generating and transforming partition pattern covers, (3) a
practical implementation of the algebra based on SQL and (4) an experimental

Explaining Query Compl. and Corr. with Partition Patterns 51

evaluation on a real-world sensor dataset, on top of a standard relational DBMS.
The rest of the article is structured as follows. Section 2 discusses related work.
Section 3 introduces the pattern model as well as the notions of completeness and
correctness of SQL queries. The pattern algebra and some applications of pattern
queries are presented in Sect. 4. Section 5 describes our solution for processing
and optimize pattern queries using standard relational database technology and
presents two algorithms for generating pattern tables. The experimental eval-
uation presented in Sect. 6 validates our approach on real-world and synthetic
sensor datasets.

2 Related Work

Our work is reminiscent to the work on relative information completeness [2]
using materialized reference (master) datasets to model information complete-
ness. Given a database DB and a master database DBC , deciding whether DB
is complete for a query Q resorts to finding a set of containment constraints
V of the form q(DB) ⊆ p(DBC) where q is a query on DB and p is a pro-
jection on DBC . The complexity bounds obtained for different languages used
for expressing queries and containment constraints demonstrate the difficulty of
reasoning about information completeness [2]. Within this formal setting, our
pattern tables can be considered as exhaustive sets of conjunctive containment
constraints and our goal is not only to decide if the answer is complete, but also
to compute all containment constraints (patterns) satisfied by the query answer.

The seminal work of [10] suggests the use of meta tuples to describe data
integrity (completeness and correctness) constraints. Meta relations are simi-
lar to our pattern tables, where meta tuples are used to define available, valid
and invalid data and to encode logical views over virtual complete and correct
data tables. Query completeness checks if there exists a rewriting of the query
using only complete views. Another idea we adopt from this early work is the
definition of an algebra that manipulates meta tuples for producing sound (but
not complete) sets of meta tuples satisfied by an input query. More recently,
[11] presents an approach which consists in associating completeness patterns
to data tables and an algebra for querying patterns to produce query answer
completeness information. From this work we adopt the approach of using pat-
terns and of defining an algebra to manipulate these patterns. In [11] com-
pleteness patterns describe the extent of data completeness as views over a vir-
tual complete database, whereas we suppose that the completeness of a data
table or query answer is automatically assessed w.r.t. a materialized reference
table. This introduces an additional practical and semantic dimension for ana-
lyzing quality issues of data and query results related to information incomplete-
ness. Our completeness patterns and pattern algebra can also be assimilated to
the m-tables model [14] (inspired from c-tables [5]) which introduces extended
tuples for representing completeness information and an algebra over m-tables for
annotating query answers with certainty information. The work in [6] analyzes
different types of partial result anomalies engendered by data incompleteness.

52 F.-Z. Hannou et al.

The data completeness model distinguishes between cardinality (incomplete,
phantom, indeterminate) and correctness (credible and non-credible) anomalies
at different granularity levels (input, operator, column, partition). The authors
also study how these anomalies are propagated within a query plan. We follow
the same approach regarding completeness propagation using operators at the
granularity of partition (down to individual tuples). We derive raw completeness
information from reference data whereas [6] derives completeness information
from observed physical access anomalies.

In our setting, correctness does not deal with the validity of data tuples
w.r.t. logical constraints as in [7,10], but is more related to the concept of sum-
marizability [9]. The notion of summarizability was first introduced by [12] in
the context of statistical databases, where it refers to the correct computation
of aggregate values with a coarser level of detail from aggregate values with
a finer level of detail. One of the summarizability conditions defined in [12] is
completeness which checks if all elements in a cluster (coarser level) exist and
are attached to some cluster. In our setting, this mainly corresponds to the con-
straint that the partitions (clusters) generated by the group by clause of an
analytic query are complete. As we will show in Sect. 4, our pattern model and
algebra also allows us to identify and filter incomplete partitions. Finally, other
existing work deals with deriving explanations for missing answers [4] or with
answering why-not questions [1,15]. These works assume the data to be complete
and focus on understanding the behaviour of queries rather than on evaluating
the impact of incomplete data on the completeness and the validity of queries
with aggregation.

3 Pattern Model: Definitions

Our data model starts from the standard relational data model extended by the
possibility to define reference tables for representing completeness constraints
over data tables.

Definition 1. Let D and R be two relational tables and A the set of attributes
of R, called reference attributes. If A is a key in table D, table R is called a
reference table for data table D and the pair T = (D,R) is called a constrained
table.

For example, table RE in Table 1a is a reference table of DE with reference
attributes A = {fl, ro, we, da}. Observe that any table S(A,M) with key A and
with null values for attribute M can be decomposed into a constrained table
Δ(S) = (D,R) where measure table D ⊆ S contains all tuples in S without null
values and R = πA(S) contains all key values in S. Similarly, we can build from
any constrained table T = (D,R) a relational table Γ (T) = R � D with null
values such that Δ(Γ (T)) = T .

Definition 2. A constrained table T = (D,R) with reference attributes A is
complete iff R ⊆ πA(D).

Explaining Query Compl. and Corr. with Partition Patterns 53

For example, the constrained table T = (DE , RE) in Table 1c is not complete
whereas T ′ = (DE , σwe=′w1′∧ro=′r1′(RE)) is complete. We introduce the notion
of pattern as a comprehensive description of all complete and empty data parti-
tions in a constrained table.

Definition 3. Let A = {a1, a2, ..., an} be a set of reference attributes where the
domain of each attribute is extended by a distinguished value ∗ called wildcard. A
partition pattern p = [a1 : v1, a2 : v2, ..., an : vn] over A is a tuple which assigns
to each reference attribute ai ∈ A a value vi ∈ dom(ai) ∪ {∗} in the extended
domain of ai. A set of partition patterns P (A) = {p1, p2, . . . , pk} over a set of
reference attributes A is called a pattern table.

In the following we will denote by [∗] the wildcard pattern where all attributes
are assigned to wildcards. Observe that a pattern table might contain only data
tuples, i.e. pattern tuples without any wildcards. Partition patterns are part of
a generalization/specialization hierarchy defined as follows.

Definition 4. A pattern p1 generalizes a pattern p2 if p1 can be obtained from
p2 by replacing zero or more constants by wildcards. Inversely, p1 specializes p2
if p1 can be obtained from p2 by replacing zero or more wildcards by constants.

The generalization/specialization hierarchy forms a semi-lattice with the wild-
card pattern as top-element and data tuples as bottom elements.

Definition 5. The instance �(p, S) of a pattern p in some table S is the subset
of tuples t ∈ S which are specializations of p.

The instance �(p, S) of a pattern p = [a1 : v1, a2 : v2, ..., an : vn] in some table
S can be computed by a relational selection �(p, S) = σcond(S) with filtering
condition cond =

∧
(ai = p.ai ∨ p.ai = ∗). It is then easy to show that (1)

�([∗], S) = S, (2) �(p, �(p, S)) = �(p, S), and (3) S ⊆ S′ ⇒ �(p, S) ⊆ �(p, S′).
The notion of instance can naturally be extended from patterns to pattern tables
P and constrained tables T = (D,R): �(P, S) =

⋃
p∈P �(p, S) and �(p, T) =

(�(p,D), �(p,R)). In the following, we define several properties and relationships
connecting pattern tables to constrained tables which are necessary to define the
final notion of minimal pattern cover.

Definition 6. A constrained table T = (D,R) satisfies a partition pattern p,
denoted by T |= p, if �(p,R) = �(p,D). By extension, T satisfies P if T satisfies
all patterns in P .

It is easy to show that a constrained table T is complete if it satisfies the wildcard
pattern [∗].

Definition 7. A partition pattern p1 subsumes a partition pattern p2, denoted
p2 	 p1 if for all constrained tables T : T |= p1 ⇒ T |= p2.

Proposition 1. If p2 is a specialization of p1, then p1 subsumes p2.

54 F.-Z. Hannou et al.

Definition 8. A pattern table P covers a constrained table T if T |= P and for
all patterns p satisfied by T there exists a pattern p′ ∈ P such that p 	 p′.

Pattern table PE in Table 2 covers the constrained table TE = (DE , RE).
When replacing p0 = [∗, ∗, w1, ∗] by two patterns pa = [f1, ∗, w1, ∗] and pb =
[f2, ∗, w1, ∗] this is not true anymore, since pattern p0 = [∗, ∗, w1, ∗] is satisfied
by T but not subsumed by any pattern in P − {p0} ∪ {pa, pb}.

Definition 9. A pattern table P is reduced if there exists no pair of distinct
patterns p ∈ P and p′ ∈ P such that p is a specialization of p′.

Proposition 2. For each constrained table T , there exists a unique reduced
cover �(T) called the minimal pattern cover of T .

For example, pattern table PE in Table 1c is the minimal pattern cover of
constrained table T = (DE , RE).

4 Pattern Algebra: Folding and Unfolding

Let T = (D,R) be a constrained table and Q be a relational query which can be
applied to D and R. Our goal is to define a set of operators which allow us to
compute the minimal cover �(T ′) of the result of T ′ = Q(T). One solution is to
implement an operator � for computing the minimal cover �(T ′) of constrained
table T ′ (see red dashed lines in Fig. 1). An alternative way is to rewrite Q(D)
into a new query QQQ(�(T)) over a minimal cover �(T) to produce �(T ′) (see blue
solid line in Fig. 1).

T = (D,R) T ′ = (D′, R′)

�(T) �(T ′)

Q

�
QQQ

�

Fig. 1. Pattern queries (Color fig
online)

In the following we extend the relational
algebra RA with two operators unfold (�) and
fold (�) for transforming pattern tables and
use this extended algebra RAext = RA ∪
{�, �} to define a new pattern algebra RApatt

over pattern tables.

Definition 10. The unfold operator �A(P,R)
generates for a given pattern table P and reference table R an equivalent1 pattern
table P ′ where all values of attributes ai ∈ A are constant values.

The unfolding �A(P,R) of a pattern table P on some attribute set A w.r.t. its
reference table R can be defined by the following relational algebra expression:

�A (P,R) = πR.A,P.¬A(P ��θ�
R) (2)

where θ� =
∧

aj∈A(P.aj = ∗∨P.aj = R.aj) for all attributes in A and πR.A,P.¬A

denotes the projection on attributes A of R and on all attributes of P except A.
Consider the pattern table P in Table 6. Its unfolding �{fl}(P,R) over att-

tibute fl obviously is not minimal. For example, the third pattern subsumes the
second one in �{fl}(P,R).

1 Two pattern tables are equivalent if their instances in R are equal.

Explaining Query Compl. and Corr. with Partition Patterns 55

Table 6. Example

Operator fold �ai
is the inverse operator of �ai

and generalizes, when possible,
all subsets S of patterns p ∈ S which are equal for all attributes except for
attribute ai into a single pattern pai:∗ with a wildcard value for attribute ai = ∗:

Definition 11. Given a pattern table P and a reference table R, the fold oper-
ator �ai

generates a pattern table �ai
(P,R) = P ′ which is equivalent to P and

where there exists no subset S ⊆ P ′ and pattern p
∈ S where p.ai =′ ∗′ and p is
equivalent to S: P ′ ≡R P∧
 ∃S ⊆ P ′, p
∈ S, : p.au = ∗ ∧ {p} ≡R S.

Operator �ai
can be expressed in the relational algebra (see the extended version

of this article [3]). As for unfold, the fold operation is associative and can be
generalized on a set of attributes A = {a1, a2, ..., an}:

�A (P,R) =
{

P for A = ∅⋃
ai∈Ah

(�ai
(�A−ai

(P,R), R)) otherwise (3)

We show in Sect. 5.2 two folding algorithms based on this definition. In the
following, �(P,R) (unfold all) and �(P,R) (fold all) will denote the unfold and
fold operations over all reference attributes in P (and R). Using this extended
relational algebra RAext, we can now define a pattern algebra RApatt which
contains for each data table operator � ∈= {σ, π, ��,∪,∩,−} its pattern-table
counterpart ��� ∈ {σσσ,πππ,������,∪∪∪,∩∩∩}.

Definition 12. Let P and P ′ be two minimal covers of constrained tables
T = (D,R) and T ′ = (D′, R′). Then we define the following pattern algebra
RApatt = {σσσ,πππ,������,∪∪∪,∩∩∩, } where each operator ��� is defined by using its relational
counterpart � and operators � and �:

���(P) = � (�(�(P,R)), �(R)) (4)
P ��� P ′ = � (�(P,R) � �(P ′, R′), R � R′) (5)

Observe that the previous definition does not include set difference. Instead,
we introduce a complement operator P which generates the “complement” of a
partition table P . Using this operator and intersection we define pattern differ-
ence as follows:

P = � (R − �(P,R), R) (6)

P −−− P ′ =P ∩∩∩ P ′ (7)

56 F.-Z. Hannou et al.

Theorem 3. RApatt is sound and complete: for all relational operators � ∈
{σ, π, ��,∪,∩}, constrained tables T = (D,R) and T ′ = (D′, R′) with covers P
and P ′ respectively, the following equations are true:

���(P) = � (�(D), �(R)) (8)
P ��� P ′ = � (D � D′, R � R′) (9)

Proof. The proof is given in the extended version of this article [3].

5 Pattern Query Processing and Folding Algorithms

5.1 Pattern Query Rewriting and Optimization

As shown in Sect. 4 unfolding � can be expressed in the relational algebra (RA),
whereas folding � over a set of attributes is not expressible in RA (see Sect. 5.2
for implementations of �). It then is possible to rewrite any pattern query without
folding into a relational query over pattern tables and reference tables. We will
illustrate this by two examples with selection and projection.

Let pattern table P be a cover of constrained table T = (D,R). Let σθ(D)
be a filtering query over data table D with a predicate θ using only reference
attributes. Then, the following pattern selection query generates a cover for the
result of Q:

QaQaQa = σσσθ(P,R) = � (σθ(�(P,R)), σθ(R)) (10)

Unfolding is necessary to check the existence of tuples in pattern instances. For
example, in order to check if a pattern p = (a1 : v1, . . . , ai : ∗, . . . , an : vn)
satisfies a filtering condition ai = ci, p must be unfolded on attribute ai. The
subexpression E = σθ(�(P,R)) can be translated into the relational algebra and
optimized using standard relational query rewriting. Starting from the expression
E we can apply several rewriting steps to obtain a more optimal expression in
relational algebra which can be translated into SQL:

QaQaQa = ({[A : ∗]} × (πP.¬A(P �θ�
(σθ(R))), σθ(R))) (11)

Fold (�) and unfold (�) comprise costly joins with reference tables. In many real
world settings, reference tables R = R1×R2×...×Rn are defined by the Cartesian
product of independent reference tables Ri corresponding to spatial, temporal
and other dimensions. These reference tables Ri are obviously much smaller
than the generated reference table R and introduce optimization opportunities
for reducing unfolding/folding costs. Consider the following more complex query
expression over the same constrained table T = (D,R):

QB = πfl,ro,we,da(σfl=′f1′(D)) (12)

Let P be a minimal cover of T and R = MAP × CAL. By applying several
rewriting steps, we can obtain the following pattern query which generates a
(but not minimal) cover of the constrained query result (Q(D), Q(R)):

QBQBQB = {fl : ∗} × πP.ro,P.we,P.da(P ��cond (σfl=′f1′(MAP)) (13)

Explaining Query Compl. and Corr. with Partition Patterns 57

Observe that QBQBQB only refers to table MAP for unfolding attribute fl and
reference table CAL can be ignored.

5.2 Folding Algorithms

This section will present two optimized folding algorithms. The first algorithm
FoldData computes minimal covers for data tables and the second algorithm
FoldPatterns directly folds pattern tables into minimal covers without a pre-
liminary unfolding step.

Algorithm FoldData computes for a given constrained table T = (D,R) a
strict cover �(T) following a set of attributes A. If A is the set of all attributes
in T , FoldData produces the minimal cover of T . The algorithm explores the
data table by searching for complete partitions. It starts from the most general
pattern i.e.wildcard pattern [∗] (level 0) and explores top-down and breadth-first
the pattern subsumption lattice LD generated by the active attribute domains
in the data table D. Each level l corresponds to all patterns p with l constants.
For checking if some pattern p is satisfied by D, the algorithm compares the
cardinality of p in D and R using SQL. After each level, all specializations of
the found complete patterns p are by definition also complete and the tuples
covered by p can be pruned from D before executing the next level. The exact
algorithm is defined in the extended version of this article [3].

Algorithm FoldData operates exclusively on data tables and cannot be
applied to fold pattern tables without a preliminary complete unfold. This
unfolding obviously reduces the compression ratio of pattern tables, in particu-
lar for pattern tables with a high compactness ratios. A pattern table P is not
minimal for two main reasons. First, it might not be reduced, i.e.it contains
two patterns p1 and p2 such that p1 � p2. Second, it might not be a cover,
i.e.there might exist a subset of patterns S ⊆ P which could be merged into a
single equivalent pattern p
∈ P . For example [f1, r1, w1, ∗] and [f1, r2, w1, ∗]
from P can be merged into [f1, ∗, w1, ∗] /∈ P . Algorithm FoldPatterns explores
the pattern lattice bottom-up starting from the most specialized pattern (at the
lowest level) and by recursively merging sets S of patterns which differ only on
the constant of one attribute. The merge step first solves the second issue and
checks if the instance �(S,R) of a subset S ⊆ P is equivalent to the instance
�(p,R) of a pattern p
∈ P . As soon as S can be merged into one pattern p,
the latter is added to P (it might be merged with a higher level pattern at the
next iteration). Notice that one pattern can take part in several pattern merges
and merged patterns are removed only after all level merges are performed. For
example, [f1,r1,w1,∗] can merge first with [f1, r2, w1, ∗] to generate [f1, ∗, w1,
∗], and merge a second time with [f2, r1, w1, ∗] to produce [∗, r1, w1, ∗]). The
algorithm is described in more detail in the extended version of this article [3].

6 Experimentation

We ran our experiments on a standard Linux machine equipped with a
2.4 GHz dual core CPU, 8 GB of RAM and 350 GB of standard storage.

58 F.-Z. Hannou et al.

The algorithms are implemented in Python 2.6 whereas data and patterns
were managed in PostgresSQL [13] and accessed using the psycopg2+ library
of Python. We did not define any indexes to accelerate filters and joins. We
use temperature measures collected in 12 out of 96 buildings and refer to this
measure table with Temp. The reference table RTemp includes all campus spa-
tial localities equipped with a temperature sensor. Measure table Temp has
key (building, floor, room, year,month, day, hour) and an additional attribute
value. The reference tables only contains the key attributes of Temp. The size
of table Temp is 1.3M tuples and table RTemp contains 24.6M tuples.

We perform a preliminary experiment to measure the completeness of dif-
ferent datasets D and the compactness ratio of the corresponding complete and
missing pattern tables P and P . We define the compactness ratio Γ (P,D) of a
pattern table P by the ratio |D|/|P | ∈ [1,D] where |P | is the size (cardinal-
ity) of the pattern table and |D| is the size of the data table. The completeness
Ω(D) of a measure table D with respect to its reference table R is defined by
the ratio |D|/|R| ∈ [0, 1]. In addition to Temp, we consider a subset OneBlg of
all measures in building 2232 and a subset OneMonth of all measures collected
during the month of January. The corresponding reference tables are built by
extracting the reference subsets corresponding to the same building and month
respectively.

The completeness ratio Ω is significantly higher for the dataset OneBlg
(restricted to building 2232) than for the overall campus average which can
be explained by a better sensor coverage in this building. Completeness is not
uniformly distributed over months of the year, many sensors experience periods
of no recording activity (failure) or are installed after January, leading to a lower
monthly completeness rate than for other months. Observe from the Table 7 that
the completeness ratio and the data size are not sufficient to explain the com-
pactness ratio since the compactness ratio is governed by the distribution of
missing data over the spatial and temporal localities.

Table 7. Patterns tables sizes and compactness ratios

D Ω(D) |D| |P | Γ (P, D) |P | Γ (P , R − D)

Temp 5.36% 1,321,686 11,269 117 10,777 2,161

OneBlg 21.43% 341,640 39 8760 55 22,776

OneMonth 4.23% 88,536 119 744 370 5,390

We define two “real” measure datasets Temp 0 (empty temperature table),
Temp 50% (containing the first 50% of Temp sorted by time and space),
Synthetic 0% (empty table) and two “synthetic” datasets Synthetic 30% (con-
taining a random 30% sample of the reference table). Starting from these four
datasets with a fixed completeness ratio, we build two series of datasets obtained
by successively inserting and deleting tuples from the dataset. The insertion
and deletions follow two strategies: (i) a sequential strategy which selects the

Explaining Query Compl. and Corr. with Partition Patterns 59

(inserted or deleted) tuples using their spatial and temporal domain order pre-
serving the original data distribution in Temp 0% and Temp 50%, and (ii) a
random strategy which picks these tuples in a random fashion for Synthetic 0%
and Synthetic 30%.

Fig. 2. Compactness versus completeness: synthetic dataset (random)

Figures 2 and 3 depict the evolution of compactness w.r.t. completeness for
each dataset. In the synthetic datasets (Fig. 2), the compactness of a random
dataset with 30% completeness evolves symmetrically in both directions (inser-
tion and deletion): successive insertions/deletions generate/remove tuples which
give raise to new patterns. At some point, these insertions/deletions will cause
the merging of fine-grained patterns to coarser-grained ones increasing the com-
pactness ratio to achieve maximum compactness at both extremities. In the real
datasets we observe the same trend with a lower amplitude for a dataset with
50% initial completeness: insertions lead to a faster completion of the partial
partitions (thanks to order sensitive updates) and thus to faster derivation of
coarser patterns without deriving all their subsumed patterns. In the follow-
ing experiment we evaluate the performance of algorithm FoldData. From the
original dataset Temp, we derived 30 datasets grouped into three categories,
each with approximately the same completeness rate, but different dataset sizes.
Figure 4 shows the run time of FoldData for all datasets according to the num-
ber of generated patterns. Categories are represented by points of different colors

Fig. 3. Compactness versus completeness: real dataset (sensor failures)

60 F.-Z. Hannou et al.

Fig. 4. Fold data run time evolution by the number of generated patterns (Color fig
online)

(orange = 15%, violet = 10% and green = 3% completeness rate). Notice that
execution time is not impacted by the data completeness but grows exponentially
with the number of generated patterns.

The following experiment measures the efficiency of processing pattern
queries for producing minimal covers for queries over constrained tables. We
compare the pattern-based query plans (blue solid path in Fig. 1) using the
techniques described in Sect. 5 by comparing it with the “naive” strategy of
computing the minimal cover from the results of the query applied to the data
and reference tables (red dashed path in Fig. 1). We tested both approaches on
the queries below and report the result in Table 8. The reported execution times
correspond to the queyr answer completeness pattern table generation cost (Fold
Answer), and to the sum of pattern query evaluation cost and the Fold Pattern
cost necessary to produce a minimal pattern set (Pattern Algebra).

Q1: σb=2223(Temp) Q2: σb=2223∧f=1(Temp)
Q3: σb∈(1213,3334)∧(m∈(11,12)(Temp) Q4: πb,f,r,mσbin(1213,2324)(Temp)
Q5: πf,r,m,d(Temp) Q6: Πb,f,r,area,tempTemp ��b LocArea
Q7: OneBlg − OneMonth

Assessing the completeness of queries with the pattern algebra outperforms
the naive approach for all of the tested queries. Queries Q1 and Q2 only refer
to the spatial dimension and both methods (Fold Answer and Pattern Algebra)
can be optimized by exploiting attribute domain independence as described in
Sect. 5. For Q3 the gain is less important since it needs partial unfolding over both
reference tables which incurs in an important overhead for Fold Answer. Queries
Q4 and Q5 need no unfolding which explains the performance gain of the pattern
algebra approach. For Q5, the pattern algebra evaluation is much more efficient
because of the compactness of the pattern covers and the fact that corresponding
pattern query doesn’t need unfolding (no selection) in contrast with Q4. The
performance gain for the last two queries Q6 and Q7 is less significant, since both

Explaining Query Compl. and Corr. with Partition Patterns 61

imply accessing two tables, leading to performing joins between corresponding
pattern tables. Pattern queries are independent of the data size: for Q7 the data
size is much larger than for Q6, but the pattern queries have similar run time
since both queries have pattern tables of similar size.

Table 8. Complete and missing query answer patterns

Query Complete Missing Execution time (sec)

|Answer| |P (Qi)| |Missing| |P (Qi)| Fold answer Pattern algebra

Q1 96,360 11 1,103,760 66 7.410 0.091

Q2 8,760 1 191,808 15 0.250 0.002

Q3 16,025 217 584,250 91 156.060 13.700

Q4 144 12 3,228 46 1.700 0.140

Q5 25,342 114 101,678 763 143.920 9.890

Q6 327 11 10,415 578 10.090 8.630

Q7 312,624 39 1,146,288 143 23.520 9.870

7 Conclusion

In this paper, we presented a pattern-based approach for representing and
summarizing relative completeness information. We proposed a formal model
and characterized a powerful reasoning mechanism for inferring and analyzing
exhaustive sets of completeness statements about data and query answers. We
validated our approach experimentally and confirm the efficiency of the pattern
algebra and its usefulness in evaluating query completeness and correctness.
Extending the model with statistical information about data completeness is a
challenging future direction. A natural extension under study is the use of a
map-reduce platform like Apache Spark [16] to compute minimal pattern cov-
ers and implement the pattern algebra. In parallel to this work we also study
the use of pattern covers for reasoning about data completeness and implement
rule-based data imputations strategies.

References

1. Bidoit, N., Herschel, M., Tzompanaki, A.: Efficient computation of polynomial
explanations of why-not questions. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 713–722 (2015)

2. Fan, W., Geerts, F.: Relative information completeness. ACM Trans. Database
Syst. 35(4), 27:1–27:44 (2010)

3. Hannou, F.Z., Amann, B., Baazizi, M.A.: Explaining query answer completeness
and correctness using partition patterns (long version). Technical report (2019).
http://www-bd.lip6.fr/wiki/site/recherche/articles/start

4. Herschel, M., Hernández, M.A.: Explaining missing answers to SPJUA queries.
Proc. VLDB Endow. 3(1–2), 185–196 (2010)

http://www-bd.lip6.fr/wiki/site/recherche/articles/start

62 F.-Z. Hannou et al.

5. Imieliński, T., Lipski, W.: Incomplete information in relational databases. In: Read-
ings in Artificial Intelligence and Databases, pp. 342–360. Elsevier (1988)

6. Lang, W., Nehme, R.V., Robinson, E., Naughton, J.F.: Partial results in database
systems. In: International Conference on Management of Data, SIGMOD, pp.
1275–1286. Snowbird, USA, June 2014

7. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: Proceed-
ings of the 22th International Conference on Very Large Data Bases, VLDB 1996,
pp. 402–412. Morgan Kaufmann Publishers Inc., San Francisco (1996)

8. Loshin, D.: Master Data Management. Morgan Kaufmann, Burlington (2010)
9. Mazón, J.N., Lechtenbörger, J., Trujillo, J.: A survey on summarizability issues in

multidimensional modeling. Data Knowl. Eng. 68(12), 1452–1469 (2009)
10. Motro, A.: Integrity = validity + completeness. ACM Trans. Database Syst. 14(4),

480–502 (1989)
11. Razniewski, S., Korn, F., Nutt, W., Srivastava, D.: Identifying the extent of com-

pleteness of query answers over partially complete databases. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, pp. 561–576, 31 May–4 June 2015

12. Shoshani, A.: OLAP and statistical databases: similarities and differences. In: Pro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, pp. 185–196. ACM (1997)

13. Stonebraker, M., Rowe, L.A.: The design of postgres. SIGMOD Rec. 15(2), 340–
355 (1986)

14. Sundarmurthy, B., Koutris, P., Lang, W., Naughton, J.F., Tannen, V.: m-tables:
representing missing data. In: 20th International Conference on Database Theory,
ICDT, Venice, Italy, pp. 21:1–21:20, March 2017

15. Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, pp.
15–26. ACM (2010)

16. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

Information Retrieval

Research Paper Search Using a Topic-Based
Boolean Query Search and a General

Query-Based Ranking Model

Satoshi Fukuda(&), Yoichi Tomiura, and Emi Ishita

Kyushu University, Fukuoka 819-0395, Japan
{s.fukuda,tom}@inf.kyushu-u.ac.jp,

ishita.emi.982@m.kyushu-u.ac.jp

Abstract. When conducting a search for research papers, the search should
return comprehensive results related to the user’s query. In general, a user inputs
a Boolean query that reflects the information need, and the search engine ranks
the research papers based on the query. However, it is difficult to anticipate all
possible terms that authors of relevant papers might have used. Moreover,
general query-based ranking methods emphasize how to rank the relevant
documents at the top of the results, but require some means of guaranteeing the
comprehensiveness of the results. Therefore, two ranking methods that consider
the comprehensiveness of relevant papers are proposed. The first uses a topic-
based Boolean query search. This search converts every word in the abstract set
and query into a topic via topic analysis by Latent Dirichlet Allocation
(LDA) and conducts a search at the topic level. The topic assigned to synonyms
of a search term is expected to be the same as that assigned to the search term.
Each paper is ranked based on the number of times it is matched with each
topic-based Boolean query search executed for various LDA parameter settings.
The second is a hybrid method that emphasizes better results from our topic-
based ranking result and a general query-based ranking result. This method is
based on the observation that the paper sets retrieved by our method and by a
general ranking method will be different. Through experiments using the
NTCIR-1 and -2 datasets, the effectiveness of our topic-based and hybrid
methods are demonstrated.

Keywords: Latent Dirichlet Allocation � Research paper search � Search recall

1 Introduction

When searching for research papers, it is important that the search returns compre-
hensive results related to a user’s information needs. In many cases, a user inputs a
Boolean query that reflects his/her information needs to an academic search engine, and
acquires the research papers that are most closely related to the query. However, there
are two main problems when searching for papers in such a search engine.

The first problem is a construction of query. When a user searches research papers
for a method of extracting a hierarchical relationship between words, for example, the
user first defines a Boolean query that expresses his/her information needs as follows:

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 65–75, 2019.
https://doi.org/10.1007/978-3-030-27618-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_5

“hierarchical relationship” AND extract. If this query produces any hits, then the results
are likely to satisfy the information needs. However, there are many synonyms and
similar expressions for “hierarchical relationship” and “extract.” Therefore, the user
might extend the query to (“hierarchical relationship”OR “hierarchical structure”) AND
(extract OR acquire). Unfortunately, this query does not return relevant papers in which,
for example, “hierarchical relationship” or “hierarchical structure” appears but neither
“extract” nor “acquire” appears. This query also misses relevant papers if the author uses
terms such as “obtain” or “get” instead of “extract” and “acquire.” Similarly, the above
query also misses relevant papers that use terms such as “superordinate-subordinate
relation” and “part-whole relationship,” which are specific words for “hierarchical
relationship” in the field. Thus, it is difficult for a user to fully predict how represen-
tations of search terms might have been expressed by other authors.

The second problem concerns the ranking model to find the relevant papers. In
daily search, it is important that several documents ranked highly satisfy the infor-
mation needs, because we need only check some highly ranked documents to find those
that satisfy the information needs. However, in an academic search, it is not sufficient
to check only highly ranked documents: the comprehensiveness of relevant documents
is also important. More specifically, completeness when confirming across a certain
amount, that is, the cumulative recall up to rank r, is important, and a high recall is
desirable for realistic values of r (e.g., r = 1,000 for 90% recall).

Therefore, we propose two ranking methods and model a Boolean query-based
search by considering the comprehensiveness of relevant papers.

(1) Search method based on a topic-based Boolean query
We propose a search method in which every word in each abstract in the research paper
set (determining of the research paper set is described in Sect. 3) and each search term
in the Boolean query is converted to a topic using Latent Dirichlet Allocation
(LDA) [4], and then topic-level matching is conducted. By converting words to topics,
abstracts that do not include the search terms but include synonyms or similar
expressions are matched. In the topic analysis by LDA, the same topic is assigned to
words that tend to appear together in many abstracts. For example, if words w, w1, w2,
and w3 appear together in many abstracts and words w′, w1, w2, and w3 appear together
in many other abstracts, then the same topic tends to be assigned to words w, w′, w1,
w2, and w3 in such abstracts. In this case, w and w′ have the potential to be semantically
similar; that is, when word w is specified in the query, a research paper that matches a
Boolean query in which w is replaced by w′ could be a relevant search result. Using this
characteristic of LDA, we construct a query search system that conducts a search based
on the topics assigned to the search terms and collects papers that exactly match the
topic-based Boolean query from the topics assigned to each word in the abstracts.

Using the topic-based Boolean query search described above, we propose a new
ranking method. First, we set the range of parameters assigned to LDA, and execute a
topic-based Boolean query search for each parameter setting. The system then sorts
research papers in descending order of the number of times they matched the query
search for each parameter setting. This approach is based on the following observation.
In LDA, it is necessary to provide the hyper-parameters a; b; and number of topics K in
advance. In many empirical studies using LDA, a symmetric Dirichlet distribution with

66 S. Fukuda et al.

a ¼ 50=K, b ¼ 0:1 is used [4]. However, there may not be truly optimal parameters for
a given document set. On the other hand, we know empirically that a group of words
generated from the same topic with a certain high probability and a group of documents
containing common topics at a certain ratio or more are retained even if the number of
topics and hyper-parameters assigned to LDA changes slightly, and such word groups
and document groups represent the stable relationships between words and between
documents that do not depend on the slight differences in parameters. The stable
relationships found through integrating multiple topic analysis results achieve a com-
prehensive search without specifying all possible search terms related to the query.

(2) Hybrid method to integrate the ranking results of our topic-based Boolean
query search and general query-based ranking model
Our topic-based search (ranking) method focuses on collecting a comprehensive set of
relevant papers. Therefore, if a user searches for research papers using our method and a
general ranking method (as represented by a query likelihood model), the set of highly
ranked papers may be significantly different, because the latter model emphasizes how
several documents satisfying the user’s information needs should be ranked at the top of
the results. We examined the precision and overlap ratio in two types of research paper
set ranked by our topic-based ranking method and Wei and Croft’s ranking method,
which is a query likelihood model using LDA [20]. The results using a search task of the
NTCIR-1 dataset [7] are shown in Fig. 1. The horizontal axis represents the rank of
papers sorted by each method. The left vertical axis represents the ratio of relevant
papers contained in the paper set within a certain interval on the horizontal axis, i.e., the
precision, and the right vertical axis represents the ratio of overlapping papers within
two types of paper sets given by each method within certain intervals on the horizontal
axis, i.e., the overlap ratio. Figure 1 indicates that many relevant papers are included in
the papers ranked highly by each method; however, the overlap ratio between each high-
ranked paper sets is relatively low at 0.349, and the overlap rates in the subsequent
intervals are also low. From these results, it is highly likely that the research papers
ranked highly by each method will be relevant for the user’s information needs.
Therefore, we expect that more effective paper search results can be obtained by inte-
grating the paper sets output by two different ranking approaches.

2 Related Work

2.1 Query-Based Academic Search

The challenge for an academic search is to comprehensively collect research papers
related to a user’s information needs (i.e., recall-oriented) [9, 19]. Many academic
searches engines require multiple queries when a user comprehensively collect relevant
papers, however, constructing queries manually is a heavy burden for users. Therefore,
not only systems using word-based queries but also specific systems using elements
other than words have been developed. For example, some systems use the body of a
paper [2, 12, 23], the URL of a web page [16], and user profiles [1, 5, 6, 15], and
however, general academic search engines such as Google Scholar, Web of Science,
and Scopus require word-based queries, and we also consider a word-based search

Research Paper Search Using a Topic-Based Boolean Query Search 67

engine. For systems using a word-based search query, there have been many studies on
query term suggestion for estimating alternative queries using the initial query [9, 19]
and query expansion for automatically expanding the initial query [17, 21]. To estimate
or extend the query, collections ranked highly by the initial query [9, 19] or thesaurus
[17] are used, but relevant papers with words and phrases that are not included in these
resources may be missed. Our topic-based search method does not require such
resources because of the expansion to words that are potentially similar to the search
word using an LDA topic model.

Recently, along with the development of an academic database, an academic search
system using research paper-specific meta-information such as the title, author, pro-
ceedings, and venue has been actively studied [12, 21]. Our task uses only the abstract,
so we can retrieve research papers that do not include meta-information.

2.2 Query-Based Ranking Model

A general search model based on a query forms a ranking by calculating the degree of
association with the query based on the document model in each document. For the
document modeling, there have been many attempts to develop a mathematically
descriptive framework by introducing a stochastic language model. A stochastic lan-
guage model using a query is called a query likelihood model [14], and is often adopted
in the ranking module for academic search tasks [9, 19].

In query likelihood models, a multinomial distribution model is widely used when
expressing a document by a language model. This can be expressed as:

P QjDð Þ ¼
Y

q2Q PðqjDÞ ð1Þ

where D is a document, q is a query term in query set Q, and P QjDð Þ is the likelihood
of the document model generating the query terms. For the estimation of PðqjDÞ, Zhai
and Lafferty [22] proposed a query likelihood model using Dirichlet smoothing to
assign a probability value to words that do not appear in the document, as shown
below:

Fig. 1. Precision and overlap ratio given by our topic-based ranking method and by Wei and
Croft’s method using a search task (“0006”) of the NTCIR-1 dataset. This search task datum has
2,196 relevance judgment data. We ranked using all of these data, and set the intervals at 5% (i.e.,
top 1–121, 122–243, …). In Wei and Croft’s method we set a ¼ 0:1; b ¼ 0:1;K ¼ 10; k ¼ 0:7;
and l ¼ 50. The overlap ratio was calculated by Dice coefficient.

68 S. Fukuda et al.

P wjDð Þ ¼ ND

ND þ l
P0 wjDð Þþ 1� ND

ND þ l

� �
P0 wjcollð Þ ð2Þ

where ND is the number of word tokens in D, P0 wjDð Þ is the maximum likelihood
estimate of w in D, and P0 wjcollð Þ is the maximum likelihood estimate of w in the entire
collection. l is a smoothing parameter. Hereafter, we call this method LM (Language
Model) Search. The LM search uses only superficial language information appearing in
the document. Several query likelihood models using the potential relationships among
words have been studied. These use document clusters obtained by analyzing a doc-
ument collection [11, 20] and word embedding [3, 13]. One study on a query likelihood
model using LDA, similar to our topic-based search method, is that of Wei and Croft
[20], who proposed a ranking model incorporating topic analysis results into a language
model, as shown below:

P wjDð Þ ¼ k
ND

ND þ l
P0 wjDð Þþ 1� ND

ND þ l

� �
P0 wjcollð Þ

� �

þ 1� kð Þ
XK

t¼1

n wið Þ
�i;j þ bwiPV

v¼1 n
vð Þ
�i;j þ bv

� n Dið Þ
�i;j þ aziPT

t¼1 n
Dið Þ
�i;t þ at

 !
:

ð3Þ

where k is a smoothing parameter. n wið Þ
�i;j is the number of instances of word wi assigned

to topic j, not including the current token, and n Dið Þ
�i;j is the number of words in Di

assigned to topic j, not including the current token.
PV

v¼1 n
vð Þ
�i;j is the total number of

words assigned to topic j and
PT

t¼1 n
Dið Þ
�i;t is the total number of words in Di, not

including the current word. Hereafter, we call this search method LDA + LM Search.
We integrate our topic-based search method with the LM (LDA + LM) Search, and
attempt to improve the ranking performance by emphasizing better results from indi-
vidually ranked results.

3 Search Method Based on a Topic-Based Boolean Query
Using Multiple Topic Analysis Results

Our topic-based search method consists of five steps: (1) a user defines the Boolean
query and collects research papers; (2) the system conducts the preprocessing of the
abstract set; (3) the system performs topic analysis of the abstract set using LDA with
various parameter settings; (4) the system performs the topic-based Boolean query
search using a topic analysis result for each parameter setting; (5) the system ranks
papers based on the number of times it matched each topic-based Boolean query
search. We call this method “Topic Search.” In the following, we describe each step in
detail.

Research Paper Search Using a Topic-Based Boolean Query Search 69

Query Definition and Collection of Research Paper Set. In step (1), our system
requires the user to define a Boolean query in the following form:

w1 ORw2 OR. . .wmð Þ AND w0
1 ORw0

2 OR . . .w0
n

� �
AND. . .

where w is a search term, the words in parentheses connected by OR comprise a
concept unit, and each word inside the parentheses expresses a synonym of the same
concept.

Simultaneously with the definition of the query, the system requires the user to
comprehensively collect research papers that avoid missing relevant papers. At this
time, various approaches are conceivable for collecting research papers more
exhaustively, such as the system asks the user to specify a research field or an academic
journal name and the system requires the user to construct another more comprehensive
query. The research paper set collection used in our experiment is described in
Sect. 5.1.

Preprocessing. Step (2) comprises two modules, one for the conversion of search
terms and one for the removal of unnecessary words. In the conversion of search terms
module, all search terms in the concept unit are converted to the same special symbol
not appearing in the abstract set, and each search term appearing in each abstract in the
database is converted to the corresponding symbol, as shown in Fig. 2. This process
ensures that the same topics are assigned to all terms in each concept unit in the topic
analysis. In the removal of unnecessary words module, we use TreeTagger [18] to
tokenize and convert the original form, and retain only nouns, verbs, and adjectives that
occur two or more times in the abstract set to be analyzed as features.

Topic Analysis Using LDA. The LDA used in step (3) supposes that an abstract d is a

sequence of words and each word is generated from a topic. Let w dð Þ ¼ w dð Þ
1 ; � � � ;

�
w dð Þ
ld Þ be the sequence of words for the d-th abstract, z dð Þ ¼ z dð Þ

1 ; � � � ; z dð Þ
ld

� �
be the

sequence of topics, w ¼ w 1ð Þ; � � � ;w Dð Þ� �
be the abstract set, and z ¼ z 1ð Þ; � � � ; z Dð Þ� �

be the sequence of topics for the whole collection. Following [4], z is generated using
Gibbs Sampling according to:

Fig. 2. Example of the conversion of a Boolean query and abstract.

70 S. Fukuda et al.

P zjw; a; bð Þ ¼ Pðw; zja;bÞP
z Pðw; zja; bÞ

: ð4Þ

What is needed for our method is to assign a topic to every word in the abstract set.
Therefore, using Gibbs Sampling, z with a relatively high probability of Eq. (4) are
intensively generated, and z that maximizes Eq. (4) among them is determined. Finally,
z that maximizes Eq. (4) that can be reached from this z is found using gradient
method.

Topic-Based Boolean Query Search. In step (4), the system first constructs a topic-
based Boolean query from a symbol-based query using the topic analysis result. The
format of the topic-based Boolean query is as follows:

ANDI
i¼1 ti;1 OR ti;2 OR � � � OR ti;Ji
� �

where I is the number of concept units constituting the query, and ti;1; ti;2; � � � ; ti;Ji
� 	

is
the topic set assigned to the special symbol with which the i-th concept unit is replaced.
The procedure for constructing the topic-based Boolean query is shown in Fig. 3. The
system seeks the topics assigned to each special symbol in the abstract set that exactly
match the symbol-based Boolean query, and then converts those symbols into their
corresponding topics. Note that if different topics are assigned in different abstracts,
they are joined by OR according to the above format. Research papers that exactly
match the Boolean query constructed in step (1) are likely to satisfy the information
needs, and so a topic-based Boolean query constructed using these research papers will
properly represent the information needs.

After constructing a topic-based Boolean query, the system examines the topic
types for all words in each abstract given by LDA. Finally, abstracts that exactly match
a topic-based Boolean query are identified and these research papers are returned. For
example, a topic-based Boolean query “Topic 0 AND (Topic 1 OR Topic 3)” for which
research paper A contains topics 0 and 1, research paper B contains topics 0, 1 and 3,
research paper C contains topics 0 and 3, research paper D contains topic 2, and
research paper E contains topics 1, 2 and 3 will return research papers A, B, and C.

Fig. 3. Example of query conversion.

Research Paper Search Using a Topic-Based Boolean Query Search 71

Topic-Based Ranking Method. In step (5), after executing the topic-based Boolean
query search for each of the parameter settings assigned to LDA, the system counts the
number of times each paper is included in each search result. Based on the number of
matches for all papers, the system ranks each paper in descending order. For example,
we suppose that research papers A, B, and C are included in the result of a topic-based
Boolean query search with parameters ða; b;KÞ = (0.1, 0.1, 10), research papers A and
C are included in the result of a topic-based search with parameters ða; b;KÞ = (0.1,
0.01, 10), and research papers A, B, C, and D are included in the result of a topic-based
search with parameters ða; b;KÞ = (0.01, 0.1, 10). The system counts 3, 2, 3, 1, and 0
as the number of matches for research papers A, B, C, D, and E, respectively, and ranks
the papers in the order A, C, B, D, and E. Even if relevant papers have not been
retrieved by a topic-based Boolean query search because of the inappropriate parameter
setting, this influence can be reduced by integrating multiple topic analysis results.

4 Hybrid Search

In this section, we describe a ranking method that integrates the ranking results of the
Topic Search with topics from the LM (or LDA + LM) Search. Hereafter, we call this
method “Hybrid Search.” In the design of this method, we use two simple approaches
to re-rank the papers based on the ranking results given by two type of search methods.

r3 ¼ min r1; r2ð Þ ð5Þ

r3 ¼ r1 þ r2 ð6Þ

where r1 and r2 are the ranks of a research paper determined by Topic Search and LM
(LDA + LM) Search, respectively. After the rankings for all research papers have been
determined by Eqs. (5) or (6), the system sorts papers in ascending order based on r3.

5 Experiment

5.1 Experimental Settings

We used the test collections of the NTCIR-1 and -2 datasets [7, 8]. These sets contain
132 search tasks that describe the conditions of research papers satisfying the infor-
mation needs. Each search task datum has approximately 1,000–4,000 relevance
judgment data that determine whether it satisfies the information needs for its task from
the research papers collected using the pooling method [10], and each paper is manually
judged according to the following criteria: highly-relevant, relevant, partially relevant,
and non-relevant. In this experiment, we regarded “highly relevant,” “relevant,” and
“partially relevant” to be equivalent to “relevant,” and used 40 search tasks that have
approximately 10–100 relevant papers. The Boolean queries in each search task were
manually constructed by one subject by reading the contents of the search tasks.

72 S. Fukuda et al.

We compared the following two baseline methods and five versions of our method:

• LM Search (baseline): rank papers calculated by Eqs. (1) and (2).
• LDA + LM Search (baseline): rank papers calculated by Eqs. (1) and (3).
• Topic Search: rank papers by multiple topic analysis results.
• Hybrid (Topic & LM) Search (min): integrate the ranking results of Topic Search

and LM Search using Eq. (5).
• Hybrid (Topic & LM) Search (sum): integrate the ranking results of Topic Search

and LM Search using Eq. (6).
• Hybrid (Topic & LDA + LM) Search (min): integrate the ranking results of

Topic Search and LDA + LM Search using Eq. (5).
• Hybrid (Topic & LDA + LM) Search (sum): integrate the ranking results of

Topic Search and LDA + LM Search using Eq. (6).

For the evaluation, we used the cumulative recall, where the recall is calculated as
(number of relevant papers in the top n% research paper sets of the ranking result)/
(number of relevant papers in the paper set). We set n to 1–100% with increments of 1%.
The macro averages of the cumulative recall for the top n% of research papers in the
ranking results of 40 search tasks are calculated. The method that has the highest rank
that achieves a specific cumulative recall is best at its recall point. We evaluated Topic
Search with parameter a2{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, b2{0.01, 0.02, 0.05, 0.1, 0.2,
0.5}, and K2{6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. We also evaluated LM Search,
LDA + LM Search and each Hybrid Search using 40-fold cross validation. At this time,
we performed a grid search using a2{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, b2{0.01, 0.02,
0.05, 0.1, 0.2, 0.5}, K2{6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, k2{0.1, 0.3, 0.5, 0.7, 0.9}, and
l2{10, 20, 30, 40, 50} to determine the optimal setting of parameters in each cross-
validation fold. For the Gibbs Sampling, we set the number of iterations to 10,000.

5.2 Experimental Results and Discussion

The ranks when achieving a specific cumulative recall are shown in Table 1. First, we
compare Topic Search and LM Search. From Table 1, when the target recall is 0.75 or
more, Topic Search significantly improves the rank that achieves the desired recall in
the ranking results. In particular, Topic Search shows an improvement in the ranking
result of 15% or more compared with LM Search when the target recall is 0.90 and
0.95. This means that the number of search results including the same number of
relevant papers can be reduced by 15% or more by using Topic Search instead of LM
Search. We next compare the results of Topic Search and LDA + LM Search. When
the target recall is set to 0.85 or more, Topic Search returns a higher rank that achieves
the desired recall than LDA + LM Search. From these results, when ranking research
papers based on queries in a research paper search that requires comprehensive results
for relevant papers, we can confirm that our topic-based search method outperforms the
query likelihood methods with the same rank in the ranking results.

Next, we examine the effectiveness of our hybrid search. From Table 1, when the
target recall ranges from 0.65–0.95, Hybrid (Topic & LDA + LM) Search
(sum) achieves the recall with the highest rank. In particular, when the target recall is
from 0.65–0.95, Hybrid (Topic & LDA + LM) Search (sum) shows an improvement in

Research Paper Search Using a Topic-Based Boolean Query Search 73

the ranking result of 5% or more compared with LDA + LM Search. Also, Hybrid
(Topic & LDA + LM) Search (sum) improves the ranking result by 5–8% compared
with Topic Search when the target recall is from 0.65–0.95. From these results, we can
confirm the effectiveness of integrating two types of query-based ranking methods that
have a different purpose and analytical approach for the collection of relevant papers.

6 Conclusion

We have proposed two kinds of research paper search methods using a word-based
Boolean query constructed by a user. The first method uses a topic-based Boolean
query search. This search converts every word in the abstract set and query into a topic
via topic analysis and conducts a search at the topic level. Using this search method, we
ranked research papers by combining the results of multiple topic-based searches for
each parameter setting. The second method integrates the ranking results using our
topic-based ranking method and a query likelihood ranking method. In future work, we
will integrate our topic-based method with other query-based ranking methods such as
word embedding [3, 13] in the Hybrid Search.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
JP15H01721. We thank Stuart Jenkinson, PhD, from Edanz Group (www.edanzediting.com/ac)
for editing a draft of this manuscript.

References

1. Amami, M., Pasi, G., Stella, F., Faiz, R.: An LDA-based approach to scientific paper
recommendation. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds.)
NLDB 2016. LNCS, vol. 9612, pp. 200–210. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41754-7_17

Table 1. Comparison of the top n% rank in the ranking result when achieving a specific
cumulative recall.

Target recall
0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000

Topic search 20% 25% 29% 33% 39% 46% 60% 95%
LM search 20% 24% 30% 36% 46% 61% 77% 99%
LDA + LM search 18% 22% 27% 33% 41% 51% 62% 95%
Hybrid (Topic & LM) search (min) 17% 21% 28% 31% 36% 47% 57% 97%
Hybrid (Topic & LM) search (sum) 14% 18% 22% 27% 32% 42% 57% 95%
Hybrid (Topic & LDA + LM)
search (min)

17% 21% 26% 30% 37% 46% 57% 97%

Hybrid (Topic & LDA + LM)
search (sum)

13% 17% 21% 27% 33% 40% 55% 97%

74 S. Fukuda et al.

http://www.edanzediting.com/ac
http://dx.doi.org/10.1007/978-3-319-41754-7_17
http://dx.doi.org/10.1007/978-3-319-41754-7_17

2. Dhanda, M., Verma, V.: Recommender system for academic literature with incremental
dataset. Procedia Comput. Sci. 89, 483–491 (2016)

3. Ganguly, D., Roy, D., Mitra, M., Jones, G.J.F.: A Word embedding based generalized
language model for information retrieval. In: SIGIR, pp. 795–798 (2015)

4. Griffiths, T.L., Steyvers, M.: Finding scientific topics. In: National Academy of Sciences,
pp. 5228–5253 (2004)

5. Hassan, H.A.M.: Personalized research paper recommendation using deep learning. In:
UMAP, pp. 327–330 (2017)

6. Hong, K., Jeon, H., Jeon, C.: Personalized research paper recommendation system using
keyword extraction based on userprofile. Convergence Inf. Technol. 8(16), 106–116 (2013)

7. Kando, N., et al.: The NTCIR workshop: the first evaluation workshop on Japanese text
retrieval and cross-lingual information retrieval. In: Information Retrieval with Asian
Languages Workshop (1999)

8. Kando, N.: Overview of the second NTCIR workshop. In: NTCIR Workshop, pp. 35–43
(2001)

9. Kim, Y., Seo, J., Croft, W.B.: Automatic Boolean query suggestion for professional search.
In: SIGIR, pp. 825–834 (2011)

10. Kuriyama, K., Kando, N., Nozue, T., Eguchi, K.: Pooling for a large-scale test collection: an
analysis of the search results from the first NTCIR workshop. Inf. Retrieval 5(1), 41–59
(2002)

11. Liu, X., Croft, W.B.: Cluster-based retrieval using language models. In: SIGIR, pp. 186–193
(2004)

12. Mai, G., Janowicz, K., Yan, B.: Combining text embedding and knowledge graph
embedding techniques for academic search engines. In: SemDeep–4 at ISWC (2018)

13. Masumura, R., Asami, T., Masataki, H., Sadamitsu, K., Nishida, K., Higashinaka, R.:
Hyperspherical query likelihood models with word embeddings. In: IJCNLP, pp. 210–216
(2017)

14. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR,
pp. 275–281 (1998)

15. Sugiyama, K., Kan, M.-Y.: Scholarly paper recommendation via user’s recent research
interests. In: JCDL, pp. 29–38 (2010)

16. Takaku, M., Egusa, Y.: Simple document-by-document search tool “fuwatto search” using
web API. In: Tuamsuk, K., Jatowt, A., Rasmussen, E. (eds.) ICADL 2014. LNCS, vol. 8839,
pp. 312–319. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12823-8_32

17. Tannebaum, W., Rauber, A.: Using query logs of USPTO patent examiners for automatic
query expansion in patent searching. Inf. Retrieval 17(5–6), 452–470 (2014)

18. TreeTagger. http://www.cis.uni-muenchen.de/*schmid/tools/TreeTagger/
19. Verberne, S., Sappelli, M., Kraaij, W.: Query term suggestion in academic search. In: de

Rijke, M., et al. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 560–566. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06028-6_57

20. Wei, X., Croft, W.B.: LDA-based document models for ad-hoc retrieval. In: SIGIR,
pp. 178–185 (2006)

21. Xion, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge
graph embedding. In: WWW, pp. 1271–1279 (2017)

22. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to
information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)

23. Zhao, W., Wu, R., Liu, H.: Paper recommendation based on the knowledge gap between a
researcher’s background knowledge and research target. Inf. Process. Manage. 52(5),
976–988 (2016)

Research Paper Search Using a Topic-Based Boolean Query Search 75

http://dx.doi.org/10.1007/978-3-319-12823-8_32
http://www.cis.uni-muenchen.de/%7eschmid/tools/TreeTagger/
http://dx.doi.org/10.1007/978-3-319-06028-6_57

Extractive Document Summarization
using Non-negative Matrix Factorization

Alka Khurana(B) and Vasudha Bhatnagar

Department of Computer Science, University of Delhi, Delhi, India
{akhurana,vbhatnagar}@cs.du.ac.in

Abstract. Effectiveness of Non-negative Matrix Factorization (NMF)
in mining latent semantic structure of text has motivated its use for
single document summarization. Initial promise shown by the method
provokes further research in this field to advance state-of-the-art.

In this paper, we propose two methods to improve the performance
of NMF based document summarization method for mining important
sentences from the text to construct summary. We use Non-negative Dou-
ble Singular Value Decomposition (NNDSVD) method to initialize NMF
factor matrices, which begets summary stability and improves quality.
Next, we propose two novel sentence scoring methods that use parts-
based representation of text obtained after NMF decomposition. Both
variations exploit information contained in feature and co-efficient matri-
ces to achieve improvement in summary quality. Quality of summaries
mined by the proposed methods is evaluated for four public data-sets
using standard ROUGE tool.

The proposed method is unsupervised, agnostic to the language of the
document and does not use external knowledge. It is also generic, inde-
pendent of domain and collection. These features of NMF based sum-
marization along with additional advantage of speed make our method
a potent candidate for online extractive summarization tool.

Keywords: Non-negative Matrix Factorization ·
Extractive summarization · NNDSVD

1 Introduction

Summarization is an important task in view of overload of text data, born digital
on the Web. Manual summarization of text is an arduous task that demands time
and intellect, beside being prone to human subjectivity. Mining text documents
for automatic summarization is the process of condensing text while ensuring
that the condensed text faithfully conveys the content of original document.
Extensive research has been carried out in the area of automatic document
summarization recently [1,3,7,11,24,34].

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 76–90, 2019.
https://doi.org/10.1007/978-3-030-27618-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_6&domain=pdf
http://orcid.org/0000-0001-6413-9982
http://orcid.org/0000-0002-9706-9340
https://doi.org/10.1007/978-3-030-27618-8_6

Extractive Document Summarization using NMF 77

Extractive summarization techniques mine documents to select relevant sen-
tences from a document to produce corresponding summary, while ensuring coher-
ence and minimum redundancy. Contrastingly, abstractive summarization tech-
niques create summary by paraphrasing sections of the text. Extractive summa-
rization methods are more popular [2,3,8,11,14,18,22,29,30,34] than abstractive
summarization methods [13,20,23] since the latter are more complex in terms of
language understanding and demand natural language generation.

Typically, unsupervised techniques for extractive summarization entail sen-
tence scoring based on pre-specified criteria and include top scoring sentences in
the summary. These techniques span over statistical, probabilistic, optimization,
graph-based, machine learning and matrix decomposition [2,3,18,21,22,24,29].

Statistical techniques use attributes such as frequency of significant words,
cue words, position of the sentence, length of the sentence, presence of proper
noun etc. as features for scoring and selecting sentences to be included in the
summary [10,12,21]. These techniques are simple and computationally efficient
but completely ignore the semantics and context. Probabilistic methods for sum-
marization include Hidden Markov Models (HMMs) and Conditional Random
Fields (CRFs), which consider sentence dependencies and interactions to extract
important sentences [8,29]. These techniques take cognizance of document con-
text but are computationally expensive.

Optimization based techniques solve document summarization problem by
modeling it in terms of an objective function based on summary attributes such
as length, relevance and redundancy [2,3,15]. Besides optimizing various sum-
mary features, these approaches endure high computational complexity due to
expense incurred for simultaneous optimization of parameters. Another popular
technique for extractive summarization is based on graph representation of text
[11,22,34]. These methods transform text into a graph, where each sentence is a
node and edges connect semantically related sentences. Subsequently, node based
ranking algorithms are employed for selecting summary sentences. Language and
domain independent features of these techniques make them attractive.

Recently, neural network and reinforcement learning based techniques have
gained research focus [1,7,24,36]. Although neural network based approaches
produce high quality summaries, these methods demand large size data-sets
for training, extensive computation and suffer from low interpretability. These
methods are often domain-, collection- dependent and hence are less amenable
for generic document summarization.

Matrix decomposition approaches like PCA (Principal Component Analysis),
LSA (Latent Semantic Analysis) and NMF (Non-negative Matrix Factorization)
exhibit promising results for document summarization [14,18,31]. These meth-
ods are attractive because of frugal resource requirement (ordinary commodity
machine with basic setup). Further, matrix decomposition techniques for doc-
ument summarization are language and genre independent, which makes them
attractive for generic document summarization.

78 A. Khurana and V. Bhatnagar

In this work, we focus attention on non-negative matrix factorization for doc-
ument summarization. Non-negative Matrix Factorization [18] is preferred over
Singular Value Decomposition (SVD) based Latent Semantic Analysis (LSA)
[14] because of better interpretability of factor matrices in latent space [17].
NMF factors are parts-based representation of the complete document, which
can be meaningfully combined. Non-negativity constraint on NMF factor matri-
ces results in useful interpretation of the latent semantic space. Major caveat
of NMF based summarization is random initialization of NMF factors, which
results in ambivalent summaries of the document.

We overcome the stochastic variations inherent in Non-negative Matrix Fac-
torization method by using Non-negative Double Singular Value Decomposition
(NNDSVD) for initializing NMF factors [6]. We also propose two novel sentence
scoring methods that take cognizance of the interplay between terms and topics
in the document. Specifically, our research contributions are as follows:

i. We propose an efficient method for mining important sentences from text
using Non-negative Matrix Factorization. The method is generic in the sense
that it is language-, domain- and collection- independent (Sect. 4).

ii. We use NNDSVD initialization for NMF factor matrices and empirically
demonstrate improvement in summary quality compared to fixed value ini-
tialization as proposed earlier [18] (Sect. 3).

iii. We use both NMF feature and co-efficient matrices, thereby effectively uti-
lizing term and topic contributions in the document (Sect. 4).

iv. We compare the proposed sentence scoring methods on four public data-
sets. Though the performance of the proposed methods is not the best for
all four corpora, the domain-, language- and collection- agnostic features of
the methods in addition to the fast execution time makes it a candidate for
online generic summarization tool (Sect. 6).

2 Background and Motivation

Matrix Factorization is recognized as an eminent approach for dimension reduc-
tion and to uncover latent features in data objects. In the context of text mining,
matrix decomposition techniques have potential to reveal latent semantic struc-
ture of a text document in the reduced rank space. Matrix factorization tech-
niques such as Latent Semantic Analysis (LSA), Principal Component Analysis
(PCA) and Non-negative Matrix Factorization (NMF) have shown high qual-
ity results when used for summarization [14,18,31], topic modeling [5,28] and
document clustering [33].

Gong and Liu [14] successfully applied LSA for single document summariza-
tion by factorizing term-sentence matrix and ranking sentences for inclusion in
summary. LSA decomposes input matrix into factors that contain both positive
and negative entries, making understanding and interpretation of semantic space
non-intuitive. Lee et al. [18] successfully used non-negative matrix factorization
for automatic single document summarization. Since the factors obtained by NMF
decomposition are non-negative, interplay of the topics and terms in the document
potentially increases understanding of the latent space in a perceptive way [17].

Extractive Document Summarization using NMF 79

2.1 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a matrix decomposition method
for reduced rank approximation of non-negative matrix A ∈ R

m×n as A ≈
WH, such that W ∈ R

m×r and H ∈ R
r×n are non-negative factor matrices

(r � min{m,n}). Initializing W and H factors with non-negative seed values,
NMF algorithm iteratively improves both factor matrices to converge locally and
approximate A by product of W , H such that Frobenius norm || A − WH ||2F is
minimized.

2.2 Non-negative Matrix Factorization for Document
Summarization

Non-negativity constraint in NMF factors (W&H) provides better interpretabil-
ity and enhances understanding of the text in latent semantic space than SVD
[17]. Lee et al. [18] propose NMF based method for automatic document sum-
marization by computing Generic Relevance Score (GRS) for each sentence as
described below.

Consider document D consisting of n sentences (S1, S2, . . . , Sn) for summa-
rization. Let T = {t1, t2, . . . , tm} be the set of m terms in D after removal of
stop-words. Further, let A denote m × n term-sentence matrix for D, where
columns of A correspond to document sentences and rows represent terms. Ele-
ment aij in A denotes the weight of term ti in sentence Sj .

Suppose k is the number of sentences required to create summary of desired
length. Decomposing matrix A using NMF results into two non-negative factor
matrices W and H, where W is m×r term-topic (feature) matrix and H is r×n
topic-sentence (co-efficient) matrix. Columns in W correspond to r document
topics (τ1, τ2 . . . τr) in the latent semantic space and columns in H correspond
to sentences in D. Element wij in W signifies the contribution of term ti in topic
τj , and element hij in H represents the strength of topic τi in sentence Sj .

Post factorization, NMF co-efficient matrix H is used for calculating Generic
Relevance Score (GRS) of a sentence [18], as given below:

GRS(Sj) =
r∑

i=1

(hij ∗ Θ(i∗)),where (1)

Θ(i∗) =

n∑
q=1

hiq

r∑
p=1

n∑
q=1

hpq

(2)

Here, Θ(i∗) is the normalized strength of topic τi in n sentences. It specifies
relative contribution of each topic in n sentences. Top-k scoring sentences are
selected for creating summary.

80 A. Khurana and V. Bhatnagar

3 NNDSVD Initialization

Presence of stochastic elements in the initialization phase of NMF results in
variable summaries of a document. To overcome this problem, Lee et al. used
fixed initial values for NMF factors as a straight forward solution [18]. This is
not an appealing proposition because same fixed initialization value may not
produce quality summary for all documents.

We propose to use NNDSVD initialization of NMF factor matrices as used
by Belford et al. [5] for topic modeling. NNDSVD chooses initial factors in a
deterministic manner based on a sparse SVD approximation of the original
data matrix (here, term-sentence matrix) [6]. Eliminating initial stochasticity
not only results in stable summaries, but also yields significant improvement in
performance.

We empirically demonstrate the effectiveness of NNDSVD initialization using
documents in four data-sets1. These data-sets have been extensively used in
earlier works for evaluating the performance of data summarization methods [3,
11,22,24,32]. System summaries are generated using fixed value of 0.5 (following
[18]) and NNDSVD initialization for NMF2 followed by GRS scoring [18]. For
each system summary of a document in DUC2001, DUC2002 data-sets, recall
scores for ROUGE-1, ROUGE-2 and ROUGE-L are calculated against reference
summaries. F-measure of the three ROUGE variations is calculated for CNN and
DailyMail documents following earlier works [1,7,24]. Macro averaged ROUGE
scores for each data-set are reported in Table 1.

Table 1. Comparison of summary quality for fixed and NNDSVD initialization for
NMF decomposition using four data-sets.

ROUGE-1 ROUGE-2 ROUGE-L

Fixed NNDSVD Fixed NNDSVD Fixed NNDSVD

DUC2002 44.7 46.3 16.9 18.2 40.4 41.5

DUC2001 40.9 42.1 13.0 14.2 36.5 37.4

CNN+DailyMail 28.8 30.8 8.5 10.4 26.0 27.7

Higher average ROUGE scores for all corpora indicate that use of NNDSVD
initialization significantly boosts summary quality compared to fixed initializa-
tion of NMF factor matrices.

Convinced by the leverage, we perform all subsequent experiments reported
in Sect. 6 using NNDSVD initialization.

1 We apologize for the forward reference to the data-set overview and the metric
description in Sect. 5.

2 We create binary incidence term-sentence matrix (A) for NMF decomposition.

Extractive Document Summarization using NMF 81

4 Proposed Summarization Method

Summary sentences are expected to well represent the content covered in the
document. Sentences that are strong contributors to important latent topics, or
those having high contribution of important terms in each topic are considered
good candidates for document summary. Based on this idea, we propose two
novel sentence scoring methods which take complete cognizance of information
contained in both NMF factors W & H.

We decompose the input text into individual sentences and create binary
incidence term-sentence matrix A. Each element aij in A is 1 if term ti appears
at-least once in sentence Sj , otherwise aij is set to 0. Using NNDSVD initial-
ization, we decompose term-sentence input matrix into feature matrix (W) and
co-efficient matrix (H). We explain the two sentence scoring methods below.

4.1 Term-oriented Sentence Scoring

Intuitively, a term with higher contribution in the latent topics of the text is a
better descriptor of the document than that with lower contribution. Assuming
that the importance of a sentence is an additive function of terms’ contribution,
the sentence with terms having higher contribution in latent topics is a better
candidate for inclusion in summary.

Based on this conjecture, we propose an approach for scoring a sentence
to explicitly employ the contribution of terms in latent topics. Element wij in
W quantifies the contribution of term ti in latent topic τj . Row sum (

∑
wi∗) in

matrix W represents aggregate contribution of term ti in r latent topics and Eq. 3
computes normalized contribution φi of the term ti in all latent topics. Additive
contribution of unique terms in a sentence (Eq. 4) quantifies its importance in
the document.

φi =

r∑
q=1

wiq

m∑
p=1

r∑
q=1

wpq

(3)

Score(Sq) =
m∑

i=1

aiqφi (4)

Top-k scoring sentences are selected to create summary of desired length. The
computational complexity of the scoring method is O((n + r)m) where n is
number of sentences, m is number of terms (after removing stop-words) and r
is number of latent topics in the document considered for summarization.

4.2 Topic-oriented Sentence Scoring

This approach for sentence scoring is based on the idea that topic importance
in the document should be reflected proportionately in the summary. In this
method, sentence scoring takes into account how well the sentence represents

82 A. Khurana and V. Bhatnagar

the important topics in the document. Sentences that contribute heavily to
important topics get higher score by this method. Topic strength in this method
implicitly uses terms’ contribution to latent topics unlike the previous method,
which uses terms’ contribution explicitly.

Element hij in H quantifies the contribution of topic τi in document sentence
Sj . Column sum in the feature matrix W (

∑
w∗i) denotes aggregate contribution

of all terms in the document for the topic τi. Normalizing this aggregate yields
relative dominance ωi of topic τi as follows:

ωi =

m∑
q=1

wqi

m∑
p=1

r∑
q=1

wpq

(5)

Thus, score of sentence Sq is calculated as:

Score(Sq) =
r∑

i=1

ωihiq, (6)

where ωihiq is weighted contribution of topic τi in sentence Sq. Higher the score
of a sentence, more capable it is of representing latent topics in the document.
Top-k scoring sentences are selected to create document summary of desired
length. Computational complexity of the scoring method is O((n + m)r).

5 Experimental Setup

In this section, we describe the experimental setting for performance evaluation
of the proposed sentence scoring methods. Algorithms were coded in Python
3.6.1 using Natural Language Toolkit (NLTK), Scikit-learn toolkit and textmin-
ing package of python. All experiments were performed on Windows (64-bit)
machine with Intel Core i3 processor and 4 GB memory.

Data-Sets. We use four public corpora viz. DUC20013, DUC2002 (See Footnote
3), CNN4 and DailyMail (See Footnote 4) for performance evaluation of proposed
algorithms, which have been used in similar studies for performance comparison
[3,11,24,27,32,35].

DUC2001 data-set consists of 308 documents while DUC2002 data-set con-
sists of 567 documents5 for the task of generic single document summariza-
tion. Reference summaries for both DUC2001 and DUC2002 documents are
abstractive and are approximately 100 words long. Each document in DUC2001,
DUC2002 data-set has 1–3 reference summaries.
3 http://duc.nist.gov.
4 CNN and DailyMail corpora contain news articles and were originally constructed

by [16] for the task of passage-based question answering, and later re-purposed for
the task of document summarization.

5 However, we experimented on 533 unique documents from the data-set.

http://duc.nist.gov

Extractive Document Summarization using NMF 83

CNN and DailyMail data-sets documents are partitioned into training, vali-
dation and test sets. CNN data-set consists of 92,579 (90,266 + 1,220 + 1,093)
documents whereas DailyMail data-set comprises of 219,506 (196,961 + 12,148 +
10,397) documents. Following earlier studies, we evaluate the proposed sentence
scoring methods using test set for both corpora taken together. Each document
in CNN and DailyMail corpora has associated story highlights, which are used as
gold standard reference summary. For comparison with state-of-the-art methods
[26,36], which report results on CNN and DailyMail corpora, we extract three
sentences for each CNN document summary and extract four sentences for each
DailyMail document summary.

Number of Latent Topics(r). Optimal number of latent topics for a doc-
ument cannot be predicted. We follow the method proposed by Aliguliyev et
al. [4] to determine the number of latent semantic topics in a document. This
approach is based on the distribution of words in the document sentences. Fol-
lowing [4], parameter r for non-negative factorization of term-sentence matrix A
is computed as:

r = n
|⋃n

i=1 Si|∑n
i=1|Si| (7)

i.e. number of latent topics is n (number of sentences) times the ratio of the
total number of unique terms in the document to total number of terms in the
document (after removing stop-words).

Performance Metrics. Performance of the proposed methods is evaluated
using ROUGE toolkit [19]. ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) is an evaluation toolkit for evaluating the performance of system
(algorithmic) summary against a set of reference summaries. ROUGE evaluates
system summary against a set of reference summaries by generating recall, pre-
cision and F-measure. While recall measures the extent to which the system
summary captures reference summary, precision measures how much of the sys-
tem summary is relevant. However, limit on choice of summary length makes
precision less meaningful.

We use three ROUGE variations viz. ROUGE-1, ROUGE-2 and ROUGE-L
for our experiments. ROUGE-1 identifies overlapping uni-grams between sys-
tem and reference summaries, ROUGE-2 calculates bi-grams, while ROUGE-L
depicts longest common sub-sequence (LCS) and identifies longest N-gram that
co-occurs both in system and reference summaries. Recall scores for these three
ROUGE variations are computed for DUC2001, DUC2002 documents while F-
measure is reported for CNN and DailyMail documents. We report macro aver-
aged ROUGE score along with standard deviation for proposed methods.

Competing Methods. We use NNDSVD initialization of NMF factors with
general relevance scoring method proposed by Lee et al. [18] as the baseline
method (NMF-GRS). We compare the two proposed scoring methods - NMF-
TR (term-oriented sentence scoring), NMF-TP (topic-oriented sentence scoring)
against the baseline to assess the quantum of improvement attained by augment-
ing the computation of sentence score with the information contained in both

84 A. Khurana and V. Bhatnagar

NMF factor matrices. We also pit the proposed methods against each other to
gauge the significance of term-topic interplay for document summarization.

Furthermore, we compare the proposed sentence scoring methods with sev-
eral state-of-the-art supervised and unsupervised methods. Interestingly, no pub-
lished work on extractive summarization evaluates performance on all four data-
sets. We refrain from implementing competing algorithms and testing on all cor-
pora to preserve transparency. Instead, we choose to compare the performance
with the published results for each corpora. Accordingly, we dedicate one section
for presenting quantitative assessment of summaries for each data-set.

6 Experimental Results

In this section, we report experimental results for performance evaluation of
the proposed sentence scoring methods with baseline NMF-GRS method and
state-of-the-art supervised as well as unsupervised methods.

6.1 DUC2002 Corpus

Table 2 shows the result of comparative evaluation for DUC2002 corpus. The
proposed scoring methods outperform the baseline demonstrating the validity of
our conjecture that both NMF factor matrices (feature and co-efficient) contain
information that can be efficiently and effectively exploited for sentence scoring.
It is observed that NMF-TR performs better than NMF-TP suggesting that
the use of explicit contribution of terms in latent topics is more effective than
the latent topics themselves. Relatively weaker performance of NMF-TP can be
explained by the nature of the documents, which are news articles where topics
are not clearly distinguishable. We envisage that scientific documents which are
better structured will be better summarized by topic-oriented NMF-TP method.

Unsupervised Methods. We observe that NMF-TR method achieves compet-
itive ROUGE-1 and ROUGE-2 performance compared to URANK method [32].
However, performance of NMF-TP is lower by 1%. Since ROUGE-L metric for
URANK method is not reported, its superiority is not conclusive. Furthermore,
URANK follows unified approach for summarizing single and multiple docu-
ments simultaneously, which makes it unsuitable for standalone task of single
document summarization.

ROUGE-1 score for NMF-TR summaries is also comparable with that of
TGRAPH summaries [27]. TGRAPH performs topic modeling using external
knowledge (corpus) and represents the document as weighted graph. Subse-
quently, it employs Integer Linear Programming based optimization to simul-
taneously optimize importance, coherence and redundancy for single document
summarization. There is a dip of approximately 3% in ROUGE-2 score for NMF-
TR, while ROUGE-L score for TGRAPH is not available. Thus it is indiscreet
to judge superiority of either method. It is noteworthy that TGRAPH method is
collection- and domain- dependent as it uses external knowledge to generate top-
ics for graph creation. This makes the method unsuitable for generic document
summarization.

Extractive Document Summarization using NMF 85

Table 2. Performance comparison of the proposed methods for DUC2002 data-set on
basis of ROUGE recall scores. CI: Collection Independent, LI: Language Independent,
DI: Domain Independent

ROUGE-1 ROUGE-2 ROUGE-L CI LI DI

Baseline NMF-GRS 46.3 ± 0.1 18.2 ± 0.1 41.5 ± 0.1 � � �
Proposed methods NMF-TR 49.0 ± 0.1 21.5 ± 0.1 44.1 ± 0.1 � � �

NMF-TP 47.6 ± 0.1 19.7 ± 0.1 42.4 ± 0.1 � � �
Unsupervised methods URANK [32] 48.5 21.5 - ✗ � �

TGRAPH [27] 48.1 24.3 - ✗ � ✗

CoRank [11] 50.7 24.0 43.4 � � �
CoRank+ [11] 52.6 25.8 45.1 � � �
COSUM [3] 49.08 23.09 - � ✗ �
iGraph [34] 48.5 ± 0.4 22.0 ± 0.2 43.7 ± 0.3 ✗ ✗ ✗

iGraph-R [34] 49.2 ± 0.3 23.1 ± 0.2 44.1 ± 0.2 ✗ ✗ ✗

Supervised methods NN-SE [7] 47.4 23.0 43.5 ✗ � ✗

Deep-Classifier [25] 46.8 ± 0.9 22.6 ± 0.9 43.1 ± 0.9 ✗ � ✗

SummaRuNNer [24] 46.6 ±0.8 23.1 ±0.9 43.03 ±0.8 ✗ � ✗

HSSAS [1] 52.1 24.5 48.8 ✗ � ✗

DQN [35] 46.4 22.7 42.9 ✗ � ✗

CoRank and CoRank+ [11], augment sentence-sentence relationship with
word-sentence relationship using graph-based approach for scoring sentences.
Both methods are unsupervised, language-, collection- and domain- independent
like the proposed methods. CoRank+ outperforms almost all methods listed in
Table 2. However, when we compared the average execution time per document
(reported as 30 s per document for DUC2002 data-set in Sect. 4.3 of [11]), we found
proposed methods to be much faster with average execution time per document
as 0.218 s for NMF-TR and 0.175 s for NMF-TP for DUC2002 data-set.

COSUM [3] formulates summarization as clustering based optimization prob-
lem. ROUGE-1 and ROUGE-2 recall scores of COSUM are better than ROUGE
scores of both proposed variations. However, in absence of ROUGE-L recall score
and evaluation on other data-sets, overall performance of COSUM is not deci-
sively better. Further, the method uses stemming and hence is not language
independent.

iGraph and its variation iGraph-R [34] are graph based methods which use
an enhanced embedding model to detect the inherent semantic properties at the
word level, bigram level and trigram level. Words with part-of-speech (POS) tags,
bigrams and trigrams are extracted to train the embedding models. Embedding
model is used to calculate similarity between sentences which act as graph edges
and then TextRank [22] is used to rank document sentences. Performance of
NMF-TR method is almost at par with the performance of iGraph method. Both
iGraph and iGraph-R use external knowledge to train the enhanced embedding
model used for generating sentence similarities which discourages their use for
generic document summarization.

86 A. Khurana and V. Bhatnagar

Supervised Methods. These methods adopt deep neural network based app-
roach, which are known to be effective for NLP tasks. Results show that NMF-
TR performs better than NN-SE [7], Deep-Classifier [25], SummaRuNNer [24]
and DQN [35] for ROUGE-1 and ROUGE-L, but slightly lower for ROUGE-
2. However, the method is outperformed by HSSAS [1] on all three metrics.
It is noteworthy that the competing methods in this category are supervised,
collection-, domain- dependent [24] unlike NMF-TR. Consequently, their suit-
ability for generic document summarization is arguable.

6.2 DUC2001 Corpus

In this section, we report comparative evaluation on DUC2001 corpus (Table 3).
Proposed sentence scoring methods outperform baseline for DUC2001 corpus
also. Since DUC2001 corpus also contains news articles, as expected, NMF-TR
performs slightly better.

Table 3. Performance comparison of the proposed methods for DUC2001 data-set on
basis of ROUGE recall scores. CI: Collection Independent, LI: Language Independent,
DI: Domain Independent

ROUGE-1 ROUGE-2 ROUGE-L CI LI DI

Baseline NMF-GRS 42.1 ± 0.1 14.2 ± 0.1 37.4 ± 0.1 � � �
Proposed methods NMF-TR 44.7 ± 0.1 15.9 ± 0.1 39.3 ± 0.1 � � �

NMF-TP 43.7 ± 0.1 15.6 ± 0.1 38.5 ± 0.1 � � �
Unsupervised methods URANK [32] 45.4 17.6 - � � �

COSUM [3] 47.3 20.1 - � ✗ �

Unsupervised Methods. Both unsupervised methods outperform NMF based
methods, with COSUM [3] leading the pack. There is no clear winner because of
unavailability of ROUGE-L scores for both URANK [32] and COSUM methods.
TGRAPH [27], CoRank [11] and iGraph [34] have not been evaluated on this
data-set. Interestingly, none of the supervised methods listed in Table 2 have
been evaluated on this corpus.

6.3 CNN/DailyMail Corpora

Table 4 presents comparative evaluation of the proposed methods, competing
methods for combined CNN and DailyMail corpora. Quality of NMF-TR sum-
maries is clearly better than the baseline and NMF-TP. None of the unsuper-
vised methods considered in Table 2 have reported performance evaluation on
this data-set.

Supervised Methods. We report comparison of the proposed methods with
NN-SE [7], NEUSUM [36], SummaRuNNer [24], REFRESH [26], HSSAS [1],
DQN [35] and BANDITSUM [9] methods, for combined CNN and DailyMail
corpora. All these methods follow some or the other variation of deep learning

Extractive Document Summarization using NMF 87

Table 4. Performance comparison of the proposed methods for combined CNN and
DailyMail data-sets on basis of ROUGE F-measure scores. CI: Collection Independent,
LI: Language Independent, DI: Domain Independent.

ROUGE-1 ROUGE-2 ROUGE-L CI LI DI

Baseline NMF-GRS 30.8 ± 0.1 10.4 ± 0.1 27.7 ± 0.1 � � �
Proposed methods NMF-TR 34.2 ± 0.1 13.2 ± 0.1 31.0 ± 0.1 � � �

NMF-TP 30.4 ± 0.1 10.9 ± 0.1 27.4 ± 0.1 � � �
Supervised methods NN-SEa[7] 35.5 14.7 32.2 ✗ � ✗

NEUSUM [36] 41.59 19.01 37.98 ✗ � ✗

SummaRuNNer [24] 39.6 16.2 35.3 ✗ � ✗

REFRESH [26] 40.0 18.2 36.6 ✗ � ✗

HSSAS [1] 42.3 17.8 37.6 ✗ � ✗

DQN [35] 39.4 16.1 35.6 ✗ � ✗

BANDITSUM [9] 41.5 18.7 37.6 ✗ � ✗
a Combined results for this model has been taken from [26].

approach. These are supervised methods trained on CNN/DailyMail corpora,
with hyper-parameters tuned using the validation set.

Table 4 shows that all competing methods create markedly better quality
summaries than NMF-TR summaries. Though, effectiveness of deep learning
approaches for extractive document summarization is clearly indicated, perfor-
mance of the trained models on other out-of-domain documents need to be fur-
ther investigated. E.g. SummaRuNNer [24], which is trained on CNN/DailyMail
corpora exhibits better performance than NMF-TR in Table 4, but the same
model reveals relatively lower performance on out-of-domain DUC2002 data-set.

7 Discussion

Our empirical study reveals some interesting observations. It emerges from
Tables 2, 3 and 4 that no method performs best on all four data-sets. CoRank+
[11] is a clear winner for DUC2002 data-set among unsupervised methods, but
it is not tested for other data-sets. Hence, calling it state-of-the-art is arguable.
HSSAS [1] has good performance for DUC2002 and combined CNN & DailyMail
data-sets but is not tested for DUC2001. Hence, its status as state-of-the-art is
also ambiguous.

The proposed NMF-TR has slightly degraded performance among unsu-
pervised methods for DUC data-sets but its performance is completely over-
shadowed by neural network and reinforcement based methods for combined
CNN & DailyMail data-sets. Please note that no supervised method is evalu-
ated on DUC2001 data-set, even though it was released earlier. Since there are
no quality issues with this data-set, the possible reason could be its small size,
which is unfavorable for effective model training. CNN+DailyMail data-set has
been favored for evaluation of all neural based deep methods possibly because
of large data available for training.

88 A. Khurana and V. Bhatnagar

Superior performance of deep methods for extractive summarization estab-
lishes their high effectiveness within domain. However, since the models were
trained, tuned and tested on the same data-set, and it is difficult to predict their
performance for (out-of-domain) DUC data-sets. Nallapati et al. have clearly
observed degraded performance of recurrent neural network based sequence
method for out-of-domain DUC2002 data-set (Sect. 4.7 in [24]). Since preparing
large training data for specific domains, and training the models used by deep
neural network methods is an arduous and expensive task, we argue for effi-
cient and effective, unsupervised generic text summarization methods that are
language-, domain-, collection- independent. There is a vast space of use-cases
where such methods are much needed.

Another observation is related to the use of NMF-TR vs. NMF-TP, even
though both are unsupervised, fast and language-, domain- and collection- inde-
pendent methods. NMF-TR is superior for online generic document summa-
rization because there is no underlying design assumption, whereas NMF-TP
is designed for longer documents, which usually have clear topic oriented dis-
course structure. NMF-TR is expected to deliver reasonable performance for
all types of general documents, even when topics are not intensely and clearly
demarcated within the discourse. Since all evaluation corpora are news articles
where the discourse is not topic oriented, NMF-TP has under-performed on all
data-sets. Furthermore, both NMF-TR and NMF-TP methods are computation-
ally inexpensive. LA073089-0118 in DUC2001, the longest document among all
four data-sets (29 KB, 1509 terms, 227 sentences) was summarized in 12.48 s by
NMF-TR and 11.98 s by NMF-TP. Timing measurements were averaged over 20
runs. Summarization time per document, averaged over all four data-sets was
recorded as 0.39 s for NMF-TR and 0.31 s for NMF-TP. As expected, NMF-TP
is faster in comparison to NMF-TR.

8 Conclusion

In this paper, we leverage NMF based extractive summarization by (i) initializ-
ing NMF factors using NNDSVD, and (ii) proposing two novel sentence scoring
methods that utilize both feature matrix and co-efficient matrix. The document
is transformed to term-sentence binary incidence matrix and decomposed using
Non-negative Matrix Factorization. Use of NNDSVD initialization for NMF fac-
tors eliminates stochastic variations in the summaries, leading to stable and
quality summaries.

The sentence scoring methods exploit information contained in both fac-
tors of the decomposed matrix, thereby attending to the importance of terms
and topics in the latent semantic space. The first method (NMF-TR) considers
the explicit contribution of terms appearing in a sentence, whereas the sec-
ond method (NMF-TP) takes into account contribution of terms implicitly by
acknowledging topic importance. The computations are simple, elegant and fast.

Our experiments reveal that NNDSVD initialization pays-off well. Exten-
sive comparative performance evaluation is reported on four public data-sets.

Extractive Document Summarization using NMF 89

The results are presented data-set wise, because no existing work reports result
on all four data-sets. The major insight obtained by analysis of comparative eval-
uation is that neural network based extractive summarization methods create
high quality summaries for the documents within the domain. However, their per-
formance on out-of-domain documents is yet to be explored. Some unsupervised
methods yield superior scores for some data-sets than the proposed methods, yet
there is no clear winner in absence of exhaustive evaluation on all four data-sets.
We aim to improve the quality of summaries by reducing redundancy.

References

1. Al-Sabahi, K., Zuping, Z., Nadher, M.: A hierarchical structured self-attentive
model for extractive document summarization (HSSAS). IEEE Access 6, 24205–
24212 (2018)

2. Alguliev, R.M., Aliguliyev, R.M., Hajirahimova, M.S., Mehdiyev, C.A.: MCMR:
maximum coverage and minimum redundant text summarization model. Expert
Syst. Appl. 38(12), 14514–14522 (2011)

3. Alguliyev, R.M., Aliguliyev, R.M., Isazade, N.R., Abdi, A., Idris, N.: COSUM: text
summarization based on clustering and optimization. Expert Syst. 36(1), e12340
(2019)

4. Aliguliyev, R.M.: A new sentence similarity measure and sentence based extractive
technique for automatic text summarization. Expert Syst. Appl. 36(4), 7764–7772
(2009)

5. Belford, M., Mac Namee, B., Greene, D.: Stability of topic modeling via matrix
factorization. Expert Syst. Appl. 91, 159–169 (2018)

6. Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonneg-
ative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

7. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252 (2016)

8. Conroy, J.M., O’leary, D.P.: Text summarization via hidden Markov models. In:
24th ACM SIGIR, pp. 406–407. ACM (2001)

9. Dong, Y., Shen, Y., Crawford, E., van Hoof, H., Cheung, J.C.K.: BanditSum:
extractive summarization as a contextual bandit. arXiv:1809.09672 (2018)

10. Edmundson, H.P.: New methods in automatic extracting. J. ACM (JACM) 16(2),
264–285 (1969)

11. Fang, C., Mu, D., Deng, Z., Wu, Z.: Word-sentence co-ranking for automatic extrac-
tive text summarization. Expert Syst. Appl. 72, 189–195 (2017)

12. Fattah, M.A., Ren, F.: GA, MR, FFNN, PNN and GMM based models for auto-
matic text summarization. Comput. Speech Lang. 23(1), 126–144 (2009)

13. Genest, P.E., Lapalme, G.: Framework for abstractive summarization using text-
to-text generation. In: Proceedings of the Workshop on Monolingual Text-To-Text
Generation, pp. 64–73. Association for Computational Linguistics (2011)

14. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent
semantic analysis. In: 24th ACM SIGIR, pp. 19–25. ACM (2001)

15. He, Z., et al.: Document summarization based on data reconstruction. In: AAAI
(2012)

16. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Advances
in Neural Information Processing Systems, pp. 1693–1701 (2015)

http://arxiv.org/abs/1603.07252
http://arxiv.org/abs/1809.09672

90 A. Khurana and V. Bhatnagar

17. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788 (1999)

18. Lee, J.H., Park, S., Ahn, C.M., Kim, D.: Automatic generic document summariza-
tion based on non-negative matrix factorization. Inform. Process. Manage. 45(1),
20–34 (2009)

19. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. Text Sum-
marization Branches Out (2004)

20. Lloret, E., Romá-Ferri, M.T., Palomar, M.: COMPENDIUM: a text summarization
system for generating abstracts of research papers. Data Knowl. Eng. 88, 164–175
(2013)

21. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2),
159–165 (1958)

22. Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (2004)

23. Moawad, I.F., Aref, M.: Semantic graph reduction approach for abstractive text
summarization. In: ICCES 2012, pp. 132–138. IEEE (2012)

24. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based
sequence model for extractive summarization of documents. In: Thirty-First AAAI
Conference on Artificial Intelligence (2017)

25. Nallapati, R., Zhou, B., Ma, M.: Classify or select: neural architectures for extrac-
tive document summarization. arXiv:1611.04244 (2016)

26. Narayan, S., Cohen, S.B., Lapata, M.: Ranking sentences for extractive summa-
rization with reinforcement learning. arXiv preprint arXiv:1802.08636 (2018)

27. Parveen, D., Ramsl, H.M., Strube, M.: Topical coherence for graph-based extractive
summarization. In: Proceedings of the 2015 EMNLP, pp. 1949–1954 (2015)

28. Qiang, J., Li, Y., Yuan, Y., Liu, W.: Snapshot ensembles of non-negative matrix
factorization for stability of topic modeling. Appl. Intell. 48, 1–13 (2018)

29. Shen, D., Sun, J.T., Li, H., Yang, Q., Chen, Z.: Document summarization using
conditional random fields. In: IJCAI, vol. 7, pp. 2862–2867 (2007)

30. Steinberger, J., Ježek, K.: Text summarization and singular value decomposi-
tion. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 245–254. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30198-1 25

31. Vikas, O., Meshram, A.K., Meena, G., Gupta, A.: Multiple document summa-
rization using principal component analysis incorporating semantic vector space
model. IJCLCLP 13(2), 141–156 (2008)

32. Wan, X.: Towards a unified approach to simultaneous single-document and multi-
document summarizations. In: Proceedings of the 23rd International Conference
on Computational Linguistics, pp. 1137–1145. ACL (2010)

33. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: 26th ACM SIGIR, pp. 267–273. ACM (2003)

34. Yang, K., Al-Sabahi, K., Xiang, Y., Zhang, Z.: An integrated graph model for
document summarization. Information 9(9), 232 (2018)

35. Yao, K., Zhang, L., Luo, T., Wu, Y.: Deep reinforcement learning for extractive
document summarization. Neurocomputing 284, 52–62 (2018)

36. Zhou, Q., Yang, N., Wei, F., Huang, S., Zhou, M., Zhao, T.: Neural document
summarization by jointly learning to score and select sentences. arXiv:1807.02305
(2018)

http://arxiv.org/abs/1611.04244
http://arxiv.org/abs/1802.08636
https://doi.org/10.1007/978-3-540-30198-1_25
http://arxiv.org/abs/1807.02305

Succinct BWT-Based Sequence
Prediction

Rafael Ktistakis1(B), Philippe Fournier-Viger2, Simon J. Puglisi3,
and Rajeev Raman1

1 Department of Informatics, University of Leicester, Leicester, UK
{crk15,r.raman}@leicester.ac.uk

2 Harbin Institute of Technology (Shenzhen), Shenzhen, China
philfv@hit.edu.cn

3 Department of Computer Science, University of Helsinki, Helsinki, Finland
puglisi@cs.helsinki.fi

Abstract. Sequences of symbols can be used to represent data in many
domains such as text documents, activity logs, customer transactions and
website click-streams. Sequence prediction is a popular task, which con-
sists of predicting the next symbol of a sequence, given a set of training
sequences. Although numerous prediction models have been proposed,
many have a low accuracy because they are lossy models (they discard
information from training sequences to build the model), while lossless
models are often more accurate but typically consume a large amount of
memory. This paper addresses these issues by proposing a novel sequence
prediction model named SuBSeq that is lossless and utilizes the suc-
cinct Wavelet Tree data structure and the Burrows-Wheeler Transform
to compactly store and efficiently access training sequences for predic-
tion. An experimental evaluation shows that SuBSeq has a very low
memory consumption and excellent accuracy when compared to eight
state-of-the-art predictors on seven real datasets.

1 Introduction

Sequences of symbols (strings) are a type of data found in many domains. For
instance, they can be used to represent sequences of words in a text, events in a
business process log, purchases made by customers, or point-of-interests visited
by tourists. An important task in data mining is sequence prediction. Given
a multi-set of training strings (or sequences) D̂ = {x1, . . . , xd} defined over a
finite ordered alphabet of symbols, sequence prediction consists of predicting the
next symbol of the prefix of an unknown query sequence Q. The underlying
assumption is that all the strings are created by a same underlying process.
To perform sequence prediction, a predictor can be trained using the training
strings. Then the predictor can perform predictions.

Various sequence prediction models have been proposed, having various char-
acteristics. They have been used in many domains to perform tasks such as pre-
dicting heart failure [18], human activities [19] and webpage prefetching [6].
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 91–101, 2019.
https://doi.org/10.1007/978-3-030-27618-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_7

92 R. Ktistakis et al.

Although numerous prediction models have been proposed, many are lossy
models [3,9,15,16,21]. In other words, they discard information from training
sequences to build small models. But the drawback of this approach is that they
may lack information when its time to make a prediction, which can result in
low prediction accuracy [7]. Some models such as DG [15] also adopt simplifying
assumptions such that each symbol of a string only depends on the previous one.
But this assumption often does not hold in real life applications.

The aforementioned limitations of lossy predictors have recently been
addressed by proposing lossless models, which keep all information about train-
ing sequences in memory to perform more accurate predictions. The assumption
is that a lossless model should be more accurate because they can use all the
available information to make each prediction. Some of the best models of this
type is CPT [7], which was then extended as CPT+ [6]. These models store
training sequences in a trie-based structure, and were shown to be more accu-
rate than multiple state-of-the-art lossy models. However, the CPT/CPT+ have
several important drawbacks:

– To perform a prediction, the CPT/CPT+ models utilize the bag-of-words
model, which does not consider the order between symbols. But for some
domains, the order is important.

– The CPT/CPT+ models require choosing several dataset-specific parameters.
The prediction accuracy can vary greatly depending on how these parame-
ters are set. Setting these parameters is not trivial and requires to have back-
ground knowledge or use a trial-and-error approach to find optimal parameter
settings.

– All lossless predictors end up storing the entire training sequence in main
memory. Thus, it is essential that a lossless predictor should store the training
sequence space-efficiently. We use the following variables to denote the size of
the sequence database D: d is the number of sequences, M is the total length
of all the sequences and σ is the alphabet size. We note that the information-
theoretic lower bound for storing D is M log σ bits1 in the worst case. On the
other hand:

• CPT+ uses σ bit-strings of length d to represent the sets of symbols
contained in each sequence. This alone takes dσ bits, which can be much
larger than M log σ bits if σ is large.

• CPT+ stores the training dataset in a trie. In the worst case, there could
be Ω(M) trie nodes, and each trie node contains three (64-bit) pointers,
a significant overhead.

• CPT+ uses ideas such as Patricia compression and replacing frequently
occurring sub-sequences by a single symbol to try to minimize the num-
ber of trie nodes [6]. However, success is unpredictable, and the frequent
pattern mining slows down the training phase.

– During the prediction phase, given a query Q of k symbols, CPT+ performs
several bitwise-and of up to k bit-strings of length d each to find sequences

1 Logs are to base 2 unless stated otherwise.

Succinct BWT-Based Sequence Prediction 93

containing a subset of symbols in Q. This takes O(f(k) · d) time where f(k)
can be as large as 2k. In practice, many fewer than 2k combinations are tried,
and the constants in the O() are small. However, as we show, the query time
of CPT+ grows linearly with d.

This paper addresses drawbacks of the CPT/CPT+ models by proposing
a novel sequence predictor named SuBSeq. This model adopts the succinct
Wavelet Tree data structure and the Burrows-Wheeler Transform to store train-
ing sequences in a very compact way, while still allowing fast access to training
sequences for prediction. An experimental evaluation shows that SuBSeq has a
very low and predictable memory consumption (the space usage varies between
1.6 and 2.2 times the binary size of D) and excellent accuracy when compared
to state-of-the-art predictors on real datasets. Last but not least, SuBSeq is
largely parameter-free.

The rest of this paper is organized as follows. Section 2 introduces prelimi-
naries about sequence prediction. Section 3 presents the proposed SuBSeq pre-
dictor. Section 4 presents the performance evaluation. Finally, a conclusion is
drawn and future work is discussed.

2 Preliminaries

Strings. A string x = x[0..n − 1] = x[0]x[1] . . . x[n − 1] is a sequence of |x| = n
symbols drawn from a constant ordered alphabet of size σ. For i = 0, . . . , n − 1
we write X[i..n−1] to denote the suffix of X of length n−i+1, that is X[i..n−1] =
X[i]X[i + 1] . . .X[n − 1]. We will often refer to suffix X[i..n − 1] simply as “suffix
i”. Similarly, we write X[0..i] to denote the prefix of X of length i + 1. We write
X[i..j] to represent the substring X[i]X[i + 1] . . .X[j] of X that starts at position
i and ends at position j.

In this paper we consider a multiset of d strings D̂ = {x1, x2, . . . xd}. We
represent D̂ as a single string by concatenating the strings in D into a single
string D = x1$x2$. . . $xd, using a special symbol $ to delineate individual strings,
which does not occur in any string xi. We let M = |D| denote the length of D.

Suffix Arrays. We make use of several standard data structures built from D.
The first of these is the suffix array [10], denoted SA, which is an array SA[0..M −
1] containing a permutation of the integers 0..M −1 such that D[SA[0]..M −1] <
D[SA[1]..M − 1] < · · · < D[SA[M − 1]..M − 1]. In other words, SA[j] = i iff
D[i..M − 1] is the jth suffix of D in ascending lexicographical order.

The Burrows-Wheeler Transform [2,11], denoted BWT is a string BWT[0..
M − 1] is a permutation of D defined by SA, such that BWT[i] = D[SA[i] − 1],
except when SA[i] = 0, in which case BWT[i] = D[M]. See Fig. 1 for an example.

Backward Search. The FM-index is a compressed text index (see [13]) that
consists of two main components: a wavelet tree build from the BWT string, and
an array C of σ integers such that C[c] gives the total number of symbols in the
BWT string that are less than symbol c. Searching with an FM-index is based

94 R. Ktistakis et al.

on a procedure called backward search, which finds the range of SA containing all
suffixes that begin with a given query pattern Q. This range then contains the
positions of occurrence of Q in D. Figure 2 shows how backward search is used
for counting the number of occurrences (the count query). In the algorithm, C[c]
is the position of the first occurrence of the symbol c in F, and the function rankL
is defined as rankL(c, j) ≡ ∣

∣{i | i < j and L[i] = c}∣
∣. The main difference between

the members of the FM-family is how they implement the rankL-function. The
best ones use wavelet trees.

L SA
A 6 $

N 5 A $

N 3 A N A $

B 1 A N A N A $

$ 0 B A N A N A $

A 4 N A $

A 2 N A N A $

Fig. 1. SA and BWT string L for string
D = BANANA$.

Algorithm FM-Count(Q[0..k − 1])
1: b ← 0; e ← M
2: for i ← m − 1 downto 0 do
3: c ← Q[i]
4: b ← C[c] + rankL(c, b)
5: e ← C[c] + rankL(c, e)
6: if b = e then break
7: return e − b

Fig. 2. Counting pattern occurrences
using backward search.

Wavelet Tree. The wavelet tree [12] of string D over an alphabet Σ is a binary
tree with leaves labelled by the symbols of Σ. Each node v is associated with the
subsequence of D consisting of those symbols that appear in the subtree rooted
at v. The associated strings are not stored; instead each internal node v stores
a bitvector B(v) that tells for each character in the associated string whether it
is in the left or right subtree of v.

In a wavelet tree the total length of the bitvectors is |D|�log |Σ|�, which is
exactly the length of D in bits using the standard representation.

A rank query rankD(c, r) over a wavelet tree is evaluated by a traversal from
the root to the leaf labelled by c. Wavelet trees answer rank queries in O(log σ)
time. A similar procedure enables one to access a given symbol D[i] in O(log σ)
time, or to enumerate all the distinct symbols in a range of the string, as well
as compute the frequency of each of those symbols. Wavelet trees answer these
distinct(i, j) queries in O(k log σ) time, where k is the number of distinct symbols
in D[i..j]. Wavelet trees also support the query select(c, i) in O(log σ) time, which
returns the position of the ith occurrence of symbol c in D. The queries rank,
select, access, and distinct involve rank (or select) queries over the bitvectors
stored on the root-to-leaf path. There are many data structures for representing
bitvectors so that rank and select queries can be answered in constant time [14,
17]. These data structures are a standard component in succinct data structure
design. Recent experimental studies of these bitvectors can be found in [5,8].

Succinct BWT-Based Sequence Prediction 95

3 Succinct BWT-Based Sequence Prediction Model

The Succinct BWT-based Sequence prediction model (SuBSeq) is a new lossless
predictor. Its main distinctive characteristics are that (1) efficiently stores the
entire input training data without any loss (2) fetches training sequences similar
to a given sequence (query prefix) (3) it does not depend in any parameter-set
fine-tuning in order to be accurate (4) SuBSeq keeps into account the item
order of a given query prefix. The latter is the main key difference to the CPT+
prediction model. CPT+ searches for sequences using the bag-of-words model.
This model does not take into account the items order of a prefix for match-
ing it in the training data (which might be important aspect for some domain
applications, as discussed).

3.1 Algorithm Description

The SuBSeq prediction algorithm is consisted of two main phases; the train
phase and the ready-for-prediction phase. A multiset D̂ of training sequences is
given as an input. During the train phase, SuBSeq will use the D to produce the
FM-index and store BWT in memory using a wavelet tree. During the ready-for-
prediction phase, SuBSeq is ready to answer query prefixes. The answers that
SuBSeq returns can further be evaluated with the query suffix (see Sect. 4.2).

For every query prefix SuBSeq will try to give an answer by finding similar
sequences in its training data sequences. This is done through the given query
prefix and a generated collection of sub-queries. Due to the fact that SuBSeq
is only able to locate exact matches of a given pattern in its training data, it
is essential to have a mechanism that expands our prediction model coverage to
more training data. The collection of sub-queries plays the role of this mecha-
nism. Every sub-query comes from the initial query prefix. These are produced
by allowing operations of deletion and substitution. The deletions are always at
the start of the query or sub-query and the substitutions are limited to two.

Example. For a given Q = [a, b, c, d], SuBSeq will try to find exact matches for
Q1 = [a, b, c, d], Q2 = [¿, b, c, d], Q3 = [a, ¿, c, d], Q4 = [a, b, ¿, d], Q5 = [b, c, d],
Q6 = [¿, c, d], Q7 = [b, ¿, d], Q8 = [c, d], Q9 = [¿, d].

On the example above we denote with ¿ the place where we can replace with
any symbol from our alphabet. Assuming our alphabet as Σ = {a, b, c, d} then
SuBSeq can match Q6 with some example training sequences like: [a, c, d, a, d],
[b, c, d, c, a], [c, c, d, b, b], [d, c, d, a, b].

After SuBSeq has found the similar sequences, it uses them to produce
possible answers and eventually order them according to a weight. Producing
possible answers is done through the consequents of the similar sequences. The
consequent of a similar sequence s is considered the subsequence from the item
common to both s and the current (sub-)query used, and up to the last item
of s. For SuBSeq we will be using consequents of length up to two items long.
Every time a (sub-)query is used to find similar training sequence, we come up
with consequents. The items of the consequents are put into a Frequency Array

96 R. Ktistakis et al.

and they are ordered by a weight. A final prediction answer is the item in the
array with the highest weight value. The final answer is given either (a) when
SuBSeq has collected all possible consequents for both the initial query prefix
and its all produced sub-queries or (b) when a threshold of confidence is met.

Finally, when an item of a consequent is inserted to the frequency array, it
is assigned a weight value. If the item exists in the array then the new value is
added-up on the old value. The weight formula is defined as w = y/Y + (2 −
sub)/2 + 1 + r. We consider y to be the suq-query length, Y the initial query
length, sub the number of substitutions and r = 1

index+1 . The later indicates the
index of the item in the consequent.

3.2 Implementation Using FM-Index

We mainly need four core functions; (1) backwardSearch (2) forwardSearch
(3) neighbourExpansion (4) getConsequents.

The backwardSearch can be implemented by tweaking the FM-Count
(see Fig. 2) to return the (b, e) for a query item at a time.

The forwardSearch does the opposite of the backwardSearch for a given
i. It gives the index i′ = C[c] + rankL(c, i) where c = L[i], and c′ = L[i′] occurs
after c in D.

The neighbourExpansion constitutes the key function of our prediction
model. Using the FM-index, one can only find exact matches for a given pat-
tern. This creates a twofold issue; (1) there is no way to locate similar training
sequences (2) usually in sequence prediction, searching only for exact matches
does not give an enough coverage (if any) for confident predictions. The main
idea of neighbour expansion is that for a given query prefix, it will perform a nor-
mal backwardSearch if the prefix does not have any substitutions in place or for
any substitution that it meets it will recursively expand to all possible symbols
that might follow. Taking into account our previous example of sub-queries, Q3,
we will make the following assumption; before a [c, d] all of the {a, b, c, d} appear
in the training data. This can be figured out with a distinct call for a range in
L. Then Q3 will be expanded to [a, a, c, d], [a, b, c, d], [a, c, c, d] and [a, d, c, d] for
a normal backwardSearch each.

The getConsequents utilises the forwardSearch definition to obtain the
consequents for ranges that have been acquired through the neighbour
Expansion. Expanded sub-queries which result in patterns that have already
been used, are excluded. We do this by utilising a bit-vector of length M . Every
index of successful neighbourExpansion ranges, is a set bit in the bit-vector.
Thus, consequents from sub-queries that have been prior utilised, will not be
re-used and only new consequent information will added in Frequency Array.

A C++ implementation of our prediction model can be found on
github.com/rafkt/SUBSEQ.

Succinct BWT-Based Sequence Prediction 97

4 Evaluation

We split this section as: the set-up environment, our experimental aims, the
competition to our prediction model and finally the discussion of accuracy and
performance evaluation. For this section, full details about our experimental data
and about our results can be found on github.com/rafkt/SUBSEQ.

4.1 Experimental Setup

Environment. Experiments were performed under macOS 10.14.1 with an Intel
Core i7 (4 Cores, 256 KB L2 per Core, 8 MB L3), 32 GB DDR3 1867 MHz RAM
and a 8.0 GT/s Link speed SSD. The lossless predictors, CPT+, CPT, were
ran using IPredict framework [6] under java version 1.8.0 112 with JIT enabled
which allows the bytecode to be compiled into native machine code, allowing a
fair comparison with native implementations. The SuBSeq Predictor was com-
piled under clang-1000.11.45.5, while SPiCe baseline [1] was compiled and run
under Python 2.7.10. We used the sdsl-lite library [4] for implementing SuBSeq.

Aims. To measure and compare different prediction models in terms of their
accuracy and their performance. Performance is measured in terms of the execu-
tion time a prediction model needs to train itself; the execution time it needs to
complete answering a testing set; the memory usage it utilises after the training
phase is complete.

Competition. We compare SuBSeq with a variety of state-of-the-art lossy
and lossless predictors. These are: All-K-order Markov (AKOM) [16], LZ78 [21],
Transition Directed Acyclic Graph (TDAG) [9], Prediction by Partial Match-
ing (PPM) [3] and Dependency Graphs (DG) [15]. We also included a spectral
learning prediction model from SPiCe competition [1]. We also compare SuBSeq
with CPT+ [6] as it is the current state-of-the-art lossless prediction model.

Data. For our experiments we used datasets with various characteristics from
SPMF library2 library. In addition, we used synthetic data3 which was generated
by IBM QUEST data generator [20].

4.2 Accuracy of Prediction

Each dataset is read in memory, and then is split into a training set and a
testing set using the k-fold cross validation. Once a predictor has been trained,
each sequence of the testing set is split into two parts, the query prefix and the
query suffix. The size of each can be defined through a parameter in advance.
Then a trained prediction model is called to give answers for every prefix in
the testing set. A prediction answer for a query prefix is accurate if it appears
within the query suffix4. The accuracy rate is the ratio of accurate predictions
2 Available at http://www.philippe-fournier-viger.com/spmf.
3 Details about QUEST exported data, are available at github.com/rafkt/SUBSEQ.
4 Same evaluation approach was followed for CPT+[6].

http://www.philippe-fournier-viger.com/spmf

98 R. Ktistakis et al.

to the total number of test sequences. Each prediction model has been trained
and tested using k-fold cross validation with k = 14 to obtain a low variance for
each run.

Accuracy results are shown in Table 1. Our prediction model provides bet-
ter accuracy than any other lossy predictor for SIGN, KOSARAK and FIFA
datasets. At the same time, we can observe that SuBSeq has an overall better
accuracy than any predictor for MSNBC and BIBLE CHAR. However, if we
take into consideration the accuracy variation of CPT+ (as show in the Table 1
at CPT+ column in a [min-max] range) based on its different possible param-
eter tunes, then SuBSeq provides an overall better accuracy performance for
KOSARAK and FIFA as well. Thus, CPT+ gets less competitive if it is not finely
tuned making SuBSeq more attractive.

Table 1. Prediction models and their accuracy in %. First and second best performers
are in bold

Datasets DG TDAG CPT+ subSeq Mark1
(PPM)

AKOM LZ78 SPiCe
baseline

BMS 36 7 [30–38] 33 30 31 33 0.19

SIGN 2 0 [26–34] 23 4 7 5 4

MSNBC 55 31 [49–59] 64 38 48 43 30

BIBLE WORD 6 23 [0–22] 29 11 32 18 2

BIBLE CHAR 3 79 [1–80] 88 16 81 65 6

KOSARAK 30 1 [31–37] 34 23 20 20 0.6

FIFA 25 7 [18–34] 29 23 26 25 0.38

4.3 Performance

The Memory of SuBSeq was measured by using the relevant api in sdsl library.
The memory for the rest of the predictors was measured through IPredict. We
compared the different prediction models through the ratio of their memory
usage over the training set binary size. In the Table 2, SuBSeq is the most con-
sistent and most memory efficient prediction model. It uses an average memory
of up to 2.2 times the memory of the input training set binary size. Predic-
tion models like TDAG and CPT+ appear to be highly inconsistent. TDAG
can utilise space between 70 to 2500 times the input binary size while CPT+
between 0.5 to 80 times; indicating an unpredictable performance.

The running time of SuBSeq was directly compared to CPT+ for various
datasets (Fig. 3c) in respect of the testing-phase (and training-phase). Evalua-
tions also included input data of an increasing σ, n, d using the QUEST genera-
tor. The results showed competitive and consistent performance for SuBSeq in
comparison to CPT+.

Succinct BWT-Based Sequence Prediction 99

Table 2. Ratio of prediction model memory to training binary size (M ∗ �log(σ)�)

Datasets DG TDAG CPT+ CPT subSeq Mark1 (PPM) AKOM LZ78

BMS 4.87 136.34 9.01 15.58 2.14 1.63 26.05 5.60

SIGN 2.96 124.51 0.54 10.86 1.73 1.69 38.07 5.08

MSNBC 0.06 176.29 3.19 5.42 2.14 0.06 13.71 4.14

BIBLE WORD 6.07 77.72 11.10 12.74 1.90 1.70 20.83 3.40

BIBLE CHAR 0.68 2689.15 3.38 6.46 2.18 0.25 51.69 42.77

KOSARAK 6.76 126.92 81.49 86.43 1.67 21.17 30.62 4.86

FIFA 2.98 90.74 4.88 6.64 1.60 1.15 23.40 3.59

(a) Memory (b) Time (c) various datasets

Fig. 3. Testing time performance of CPT+ and SuBSeq

4.4 Optimisation Discussion

Our current implementation of SuBSeq is not fully optimised yet. Experimen-
tal evaluation showed that 90% of the time needed from SuBSeq to answer a
query, it is spent for neighbour expansion. Further experiments revealed that
in average only a 45% of the executed rank operations are unique per query.
Thus, preventing neighbour expansion from performing excessive rank calls in
the wavelet tree, would optimise the speed performance of SuBSeq for datasets
with large σ. Figure 3c shows that for a dataset like KOSARAK (σ = 654, 987),
SuBSeq performance is less competitive. One way to minimise excessive rank
calls is to store (retrieve) each rank result in (from) a trie-based data structure.

5 Conclusion

Lossless sequence predictors are often very accurate but can consume a large
amount of memory. To address this issue, this paper presented a novel predic-
tor named SuBSeq that is lossless and utilizes the succinct Wavelet Tree data
structure and the Burrows-Wheeler Transform to compactly store and efficiently
access training sequences for prediction. Experimental results have shown that
SuBSeq has a very low and predictable memory consumption (varying 1.6 to 2.2
times the binary size of D) and excellent accuracy in comparison to state-of-the-
art predictors on real datasets. Moreover, SuBSeq is mostly parameter-free.
Future work includes optimising SuBSeq neighbour expansion along with its
overall speed performance.

100 R. Ktistakis et al.

References

1. Balle, B., Eyraud, R., Luque, F.M., Quattoni, A., Verwer, S.: Results of the
sequence PredIction ChallengE (SPiCe): a competition on learning the next sym-
bol in a sequence. In: Proceedings 13th International Conference in Grammatical
Inference, vol. 57. JMLR W&CP, Delft (2016)

2. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical report, 124, Digital Equiptment Corporation (1994)

3. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

4. Gog, S.: simongog/sdsl-lite (2015). https://github.com/simongog/sdsl-lite
5. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Softw.

Pract. Experience 44(11), 1287–1314 (2014)
6. Gueniche, T., Fournier-Viger, P., Raman, R., Tseng, V.S.: CPT+: decreasing the

time/space complexity of the compact prediction tree. In: Cao, T., Lim, E.-P.,
Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS
(LNAI), vol. 9078, pp. 625–636. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18032-8 49

7. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless
model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane,
O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177–188.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6 16

8. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proceedings DCC, pp. 302–311. IEEE (2014)

9. Laird, P., Saul, R.: Discrete sequence prediction and its applications. Mach. Learn.
15(1), 43–68 (1994)

10. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

11. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

12. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)
13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.

39(1) (2007). Article 2
14. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.

In: Proceedings ALENEX, pp. 60–70. SIAM (2007)
15. Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world

wide web latency. SIGCOMM Comput. Commun. Rev. 26(3), 22–36 (1996)
16. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world

wide web surfing. In: Proceedings of the 2nd Conference on USENIX Symposium
on Internet Technologies and Systems - Volume 2, USITS 1999, pp. 139–150 (1999)

17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms 3(4),
43 (2007)

18. Rjeily, C.B., Badr, G., Al Hassani, A.H., Andres, E.: Predicting heart failure class
using a sequence prediction algorithm. In: 2017 Fourth International Conference
on Advances in Biomedical Engineering (ICABME), pp. 1–4. IEEE (2017)

19. Tax, N.: Human activity prediction in smart home environments with LSTM neural
networks. In: 2018 14th International Conference on Intelligent Environments (IE),
pp. 40–47. IEEE (2018)

https://github.com/simongog/sdsl-lite
https://doi.org/10.1007/978-3-319-18032-8_49
https://doi.org/10.1007/978-3-319-18032-8_49
https://doi.org/10.1007/978-3-642-53917-6_16

Succinct BWT-Based Sequence Prediction 101

20. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algo-
rithms. In: Proceedings ACM SIGKDD, pp. 401–406. ACM (2001)

21. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

TRR: Reducing Crowdsourcing
Task Redundancy

Sh. Galal(&) and Mohamed E. El-Sharkawi

Faculty of Computers and Information, Department of Information Systems,
Cairo University, Giza, Egypt

{sh.galal,m.elsharkawi}@fci-cu.edu.eg

Abstract. In this paper, we address the problem of task redundancy in crowd-
sourcing systems while providing a methodology to decrease the overall effort
required to accomplish a crowdsourcing task. Typical task assignment systems
assign tasks to a fixed number of crowd workers, while tasks are varied in
difficulty as being easy or hard tasks. Easy tasks need fewer task assignments
than hard tasks. We present TRR, a task redundancy reducer that assigns tasks to
crowd workers on several work iterations, that adaptively estimates how many
workers are needed for each iteration for Boolean and classification task types.
TRR stops assigning tasks to crowd workers upon detecting convergence
between workers’ opinions that in turn reduces invested cost and time to answer
a task. TRR supports Boolean, classification, and rating task types taking into
consideration both crowdsourcing task assignment schemes of anonymous
workers task assignments and non-anonymous workers task assignments. The
paper includes experimental results by performing simulating experiments on
crowdsourced datasets.

Keywords: Crowdsourcing task redundancy �
Crowdsourcing HITs redundancy � Crowdsourcing tasks

1 Introduction

Crowdsourcing was coined as a new problem solving paradigm allowing integrating
people into the computational process to enhance problem solving techniques as well
as providing solutions to unsolvable problems. Crowdsourcing allows humans to
perform tasks in the form of questions that is called human intelligent tasks (HITs) in
compensation to monetary incentives in most cases. Various crowdsourcing platforms
[1, 2] provide a wide range of tasks such as data entry, and image classification where a
task requester submits batches of tasks for a small incentive to be selected by workers.
Many computer applications have made use of crowdsourcing to enhance computer
algorithms by providing humans with a set of questions to be answered. The produced
task assignments are getting overwhelmingly large jeoparding the tasks cost and
elapsed time as humans are expensive and time-consuming. As a consequence, this
introduced the data redundancy problem [3] that is defined as the problem of estimating

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 102–117, 2019.
https://doi.org/10.1007/978-3-030-27618-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_8

how many workers should answer a single question (task or HIT) with stable quality,
taking into consideration that some questions may be easy while others may be more
difficult in terms of recognizing the answer by the assigned crowd workers (e.g. a
question asking ‘Is “iPhone XS 5.8-inch” and “iPhone XS Max” are the same entities?’
–is an easy question it needs only 2 or 3 reliable crowd workers to recognize the correct
answer, however, entity resolution questions are assigned to 10 workers as a practice).
The essential dilemma of this problem is that we cannot automatically detect whether
we are encountering an easy or hard task prior to task assignment process. Determining
a task hardness is challenging due to the following: (1) Annotating the task hardness
before task assignment is impractical. (2) Whenever a task is announced by the
crowdsourcing platform, a random set of workers will volunteer to answer this task
making it complex to predict whether it is an easy or hard task for the assigned workers.
This paper introduces a model that automatically reduces task assignments in crowd-
sourcing platforms, that is crucial to reduce the invested cost, time, and effort devoted
to answer a set of crowdsourcing questions.

2 Related Work

Previous researches [4–7] have provided solutions to determine the number of task
assignments needed for a classification task. Work presented in [4, 5] has utilized a
belief-propagation technique that represents workers and tasks in a bipartite graph. The
model learns the worker correctness and the task probable correct answer upon
receiving task answers in an iterative manner. The model continually accepts workers’
answers once the task has been declared targeting minimization of the total task price
guided by the final answer correctness. Work presented in [6] starts the task assignment
process by estimating the number of workers needed for each task (the prediction
phase). The prediction phase enumerates all the possible available workers’ correctness
in providing an answer (combinations) deploying the sum-product probabilistic algo-
rithm targeting the group of workers maximizing the answer correctness. The model
stops assigning a task to workers upon reaching predefined answer correctness. The
most recent work presented in [7] has proposed an iterative exploration technique to
collect task answers by assigning each task to one worker at a time and wait for the
worker to reply back, then assign the task to another worker till a certain stopping
condition. The stopping condition is satisfied by a certain bias in the task answer’s
voting distribution. The previously depicted researches illustrate effective solutions to
the task redundancy problem however, it presented the following few shortcomings:

(1) All models provides handling for Boolean and classification tasks only, despite
of the variety of crowdsourcing task types that need different handling methods such as
rating tasks. (2) Prediction models presented in [4–6] are worker quality-sensitive
answering models, however not all crowdsourcing platforms provide such information.
For example the AMT crowdsourcing platform records the approval rate (i.e. the
percentage of questions approved by task requesters), however the approval rate does

TRR: Reducing Crowdsourcing Task Redundancy 103

not measure the worker quality as the worker quality differs from a task to another, and
some requesters automatically approves all answers. Work in [6] suggested a sampling
based technique to provide initial estimate to the user quality through the use of gold-
questions, and [4] suggested to learn the user quality during currently assigned tasks.
However, there is still a need to provide handling of anonymous workers where gold
questions are costly, and users’ quality varies over different topics.

Work in [7] presented few shortcomings that are: (1) The proposition of one by one
task assignment can cause a latency problem as the platform must wait till workers
volunteer to answer tasks. In some cases, this is a matter of seconds causing no latency
at all and in other cases, this might take days initiating a considerable latency problem.
Moreover, few crowd opinions may not be enough to evaluate a task’s answer.
(2) Utilization of complex priors such as probabilities bias that should be determined by
a data expert in order to achieve the targeted goal of reducing task assignments.

This paper introduces the task redundancy reducer (TRR); a model to reduce task
assignments while overcome the aforementioned problems.

Contributions of this paper are: (1) TRR reduces the aforementioned latency
problem via assigning the task to few crowd members on several iterations, each
iteration’s collected answers guide TRR whether to assign more workers to the task (as
no consensus agreement on the answer among the assigned workers) utilizing the
diversity measure. (2) Providing dichotomy handling for both crowdsourcing platforms
based on hiring anonymous and non-anonymous workers. (3) Providing a method to
handle rating tasks. (4) Applicability to crowdsourcing platforms proving a way to
understand the representation of the model priors allowing non-experts to interact with
the platform. (5) We conducted experiments to demonstrate the efficiency and effec-
tiveness of applying the TPR model via performing experiments on real crowdsourced
datasets.

3 An Overview of Task Redundancy Reducer (TRR)

Before the elaboration of TRR in details we present two important design
considerations:

1. Supported tasks: TRR targets constrained mini-tasks [8] only for the meanwhile
leaving the macro-tasks [9] as they are different in task nature. Constrained tasks are
Boolean, classification, and rating tasks.

2. Diversity measure: Diversity measure (index) [10] is a statistical index intended
to measure the variety of a set of various classifications. TRR utilizes the diversity
measure to observe the diversity level of workers’ answers recognizing whether there is
a consensus on the task answer with some percentage. The observed variables in our
context are the crowd members’ answers, and thus we can mathematically compute the
task answers’ diversity level. We have chosen to utilize the diversity measure rather
than the entropy measure as the later provides a number that we cannot interpret
whether there is high or low entropy. However, entropies are used to compare entropies
of different states, it is useful to recognize whether there is a reduction or increase in a
presented entropy level such as work in [11].

104 Sh. Galal and M. E. El-Sharkawi

Figure 1 depicts the TRR workflow as a set of steps. At the first step, a task
requester provides a workload (i.e. a set of questions) to the crowdsourcing platform.
The requester also provides the required priors guiding the platform through the task
assignment process. The priors are the minimum and the maximum number of crowd
members to be assigned to a task (NC) and (MC), respectively. The required answer
diversity level (DL) identifying a percentage of how a task answers are different where
Zero% diversity means that all crowd members have provided the same answer, and
100% diversity means we are completely unsure of what is the answer, this happens
when each worker provides a different answer. An optional prior answer-confirming
crowd (ACC) represents crowd members who are needed to confirm the answer reached
so far. The confirming crowd is advised to be experts (of high reliabilities) for
crowdsourcing platforms considering workers’ reliabilities (i.e. qualities), to avoid
inaccurate answer deviation. However, for crowdsourcing platforms that do not con-
sider workers’ reliability, we do not recommend assigning confirming-crowd as we
cannot distinguish experts.

TRR utilizes NC task assignments as fewer assignments less than the minimum
workers will not provide an informative answer. Moreover, it reduces the introduced
latency problem discussed in Sect. 1. On the other hand, determining the task maxi-
mum assignments will prevent infinite task assignment iterations in case the task
answer did not encounter convergence of workers’ opinions. At the second step, the
platform starts to assign the workload questions (tasks) to NC number of crowd
members as an initial iteration of a task answers collection. At the third step, crowd
members provide answers back to the TRR; TRR then checks whether the collected
answers’ diversity level is less than or equal DL (the targeted diversity level). At this
step, TRR annotates tasks as ‘completed’, ’not completed’ or ‘closed’. Reaching the
predetermined DL signifies that all or most of the crowd workers agree on choosing a
certain answer (i.e. no further task assignments); the task is annotated as a ‘completed’
task reaching the fourth step. On the other hand, a task is annotated as ‘not completed’
if its diversity level is greater than the targeted DL and did not reach the maximum
number of assignments as well. TRR will then provide an estimate of the needed
number of crowd members that might help to reach the targeted DL as a next iteration.
Steps from two to four are repeated until there are no remained ‘not completed’ tasks.
‘Not completed’ tasks reaching the maximum number of task assignments are anno-
tated as ‘closed’ tasks. Tasks that are annotated as ‘completed’ can be optionally
assigned to answer-confirming crowd members (ACC) as an attempt to assure that the
task has reached the correct answer when the confirming answer crowd members have

Fig. 1. Task redundancy reducer workflow

TRR: Reducing Crowdsourcing Task Redundancy 105

all agreed to the same answer. Otherwise, this is an indication of having the “aggre-
gated answer conflict” phenomenon. Aggregated answer conflict is a situation where
workers of the first iteration agree to an answer (guided by the targeted DL) while it is
not the correct answer. However, the wrong answer is corrected by hiring more
workers. This situation will strongly appear if the first participating workers are per-
forming random choices or they are not experts in the field leading to an agreement by
coincidence.

The following methods can mitigate or even eliminate the effect of this conflict:

• Using reputation-based systems such as iCrowd [12], QASCA [13], and Docs
system that estimates each worker reliabilities for several domains [14].

• Qualification test support: qualification tests [3, 15] are essential to determine the
needed crowd member’s qualifications when tasks are related to specific domains.

An intermingled approach using qualification test and reputation-based systems are
promised to guarantee the best results of selecting the adequate workers. However,
assigning the answer-confirming crowd members is a powerful utility of checking that
we get the correct answer whenever there is an emphasis on the answer correctness.

4 Handling Boolean and Classification Tasks

In this section, we give the definitions related to the problem of this paper and the
computations behind Boolean and classification task types.

Definition 1 (Boolean and Classification Question and the Question-Answer Set)
Let qi denote a question, provided a possible set of labels (answers), denoted by
L ¼ l1; l2; . . .; lmf g. For Boolean questions, the set of labels contains only two labels,
while labels extend to more than two labels in classification tasks. Aqi ¼
Aqi;j; . . .;Aqi;k

� �
denotes the answer set of all assigned workers to question qi, where

Aqi;k is the answer of worker k to qi.

Definition 2 (Observed Question Answers Distribution Vector)
Vector Vqi is a “1 � m” row matrix representing the observed probability distribution
for the answers of question qi, where m is the number of labels. Vqi is computed based
on workers’ answers set Aqi . Each cell Vqi;j denotes the observed probability distri-
bution that label j is the correct answer for the question qi, the summation of proba-
bilities for any question qi will equal one and the vector is initialized to zero.

Crowdsourcing platforms are either assigning tasks to anonymous workers such as
[1] in which the worker quality is not evaluated nor considered or assigning tasks to
non-anonymous workers such as [2] in which the worker quality is acquainted and
computed automatically by the platform. Therefore, the entries of the observed data
vector Vqi;j are computed differently according to the assigned worker model. The
probabilities computation is provided in the following sub-sections.

106 Sh. Galal and M. E. El-Sharkawi

4.1 Observed Probabilities Distribution in Anonymous Workers Model

In this working scheme workers request working on tasks, then task requester approves
or rejects the worker; in case of rejection the platform re-announce the task for other
workers, and in case of approval the worker is assigned the task. The answer set of
question qi for a worker is an ordered tuple with two components that are the worker Id
and the worker answer. Upon answers submission, TRR starts to update the Vqi vector
according to support votes for each label. Consider Ljs is the number of crowd members
that have chosen label j as a correct answer for the question qi. Thus Vqi;j ¼ Ljs=Tw
(where Tw – total workers- is the total number of crowd members worked on question
qi so far).

4.2 Observed Probabilities Distribution in Non-anonymous Workers
Model

In this working scheme workers’ qualities are considered during the task assignment
process that is performed automatically in the online task assignment systems such as
[13, 14]. The value of Vqi entries consider the worker’s quality. qi answer set is a set of
ordered tuples with three components that are the worker’s Id, worker’s quality, and
worker’s answer. Work in [13, 14, 16] considered calculating Vqi; j as follows:

WAn;j ¼ qn; for j ¼ the worker n answer
1

m�1 1� qnð Þ; for j 6¼ the worker n answer

�

Vqi;j ¼
Yr
n¼1

WAn;j; r is the assigned workers number

Where qn is worker n quality, m is the number of labels, and Vqi vector is
normalized.

4.3 Measuring Diversity for Boolean and Classification Tasks

TRR utilizes Gini-Simpson diversity index [10] to measure a question’s answers
diversity. A major reason for utilizing Gini-Simpson is its non-parametric nature (it
doesn’t require priors), in addition it takes into consideration evenness (workers’
answers distribution) and richness (number of labels). A task diversity level denotes the
level of divergence between the assigned workers’ answers, and is defined as follows:

Definition 3 (Boolean and Classification Question Answers’ Diversity)
For Boolean and classification questions Gini-Simpson diversity index is defined by:

DLqi;r ¼ 1�
Xm
j¼1

Vqi;j
� �2

Where m is the labels number of qi, and r is the number of assigned workers to qi.

TRR: Reducing Crowdsourcing Task Redundancy 107

4.4 TRR Redundancy Estimation Algorithm for Boolean
and Classification Tasks

Tasks annotated as ‘not completed’ (i.e. the task did not reach the required diversity
level, and did not reach the maximum task assignments as well) are expected to be
assigned to more crowd workers for another work iteration (i.e. new redundancy). TRR
performs a simulation to compute how many assignments are minimally needed to
reach the targeted diversity level (seeking convergence), assuming that the prospect
next assigned crowd members will give the same answer with the highest probability to
be the correct answer, as this is the minimum number of needed workers (i.e. the
optimistic case). Algorithm 1 depicts how TRR estimates the next iteration redundancy
for both working schemes. The algorithm starts with computing dl (i.e. the current
question diversity) in lines 1–3. k (line 4) represents the allowable number of task
assignments for qi. k is identified as the difference between current redundancy (i.e.
number of workers that have worked on the question qi through previous work itera-
tions) and the allowable maximum number of workers. In the non-anonymous working
scheme, the algorithm maintains an active worker queue Wqi providing qualities of
workers that are willing to work on this question. Wqi is considered the set of workers
that have submitted a working request for qi, otherwise, Wqi is an empty input set when
dealing with anonymous workers (lines 5–6). iCrowd [12] discussed a set of methods
to keep track of the active workers’ set such as considering workers currently holding
tasks as active workers, otherwise, they are considered inactive workers. Another
method is to consider a time window (e.g. 1 h), if the working request is less than the
time window, the worker is considered an active worker. The algorithm assumes that
the label with the highest probability is the correct label and there is a high probability
that next workers will choose the same label. Algorithm1 updates the new probability
distribution for the question answers (lines 7–22), then checks the answers divergence
till reaching the targeted DL or reaching the allowable number of workers k. The
algorithm outputs r (i.e. the new iteration estimated redundancy), in addition to the
selected active workers who should work on the task in case of non-anonymous
crowdsourcing platforms. A special case is that where the probability vector is equally
distributed (i.e. each task answer have been voted for the same number of times). In
such case TRR, assigns an extra single worker to explore the probable correct answer
(line 9). Another solution is to make task assignments an odd number of workers to
guarantees answer distinction. Our proposed model employs majority voting (MV) for
truth inference (i.e. the task final answer) for generality, however, the Expectation
maximization (EM) technique [3] provided a tuning for the management of human
errors and recognizing the possible correct answer (i.e. truth). We leave the adoption of
EM technique to future work. However, the impact of both techniques provides
improved results for reducing the task assignments.

108 Sh. Galal and M. E. El-Sharkawi

5 Handling Rating Tasks

Rating questions [17] are asking workers to rate answers for several classifications.
Unlike Boolean and classification questions the TRR model provided previously
cannot be utilized for rating questions as the worker rates several choices for the same
task disallowing representing the answer selection as a discrete probability distribution.
However, a rating question answers represent fuzzy sets [18] and the diversity of fuzzy
sets can be measured [19].

Definition 4 (Rating Question and the Question-Answer Set)
Given a rating question qi provided with a set of possible labels L ¼ fl1; l2; . . .; lmg,
where each label is rated given a min and max scale. Aqi ¼ Aqi;j; . . .;Aqi;k

� �
denotes the

answer set of all assigned workers to question qi. The worker j answer set for qi is
represented as Aqi;j ¼ lj;1; . . .:; lj;m

� �
, where lj;i is the rating of label i (membership

degree) divided by the max rating scale to guarantee that lj;i lies between [0, 1].

TRR: Reducing Crowdsourcing Task Redundancy 109

5.1 Measuring Diversity for Anonymous Workers Model

The diversity of several rating answer sets represents “How diverse crowd answers are
for a certain question”. We adapted the normalized hamming distance in rating
questions diversity computation due to its computational efficiency and distances
interval lies between [0, 1] that can be later averaged to the same interval producing a
percentage of answers’ diversity. The diversity of a worker answers is measured by the
distance between this worker answers and the average answers of all the assigned
workers to the task [20]. The task diversity level is considered the average diversity of
the assigned workers’ answers diversities.

Definition 5 (Anonymous Worker Rating Answers Diversity)
Given the rating question qi provided in Definition 4, the normalized hamming distance
measuring worker j answers’ diversity is defined by:

d Aqi;j; �Aqi

� � ¼ 1
m

Xm
x¼1

lj;x � l�Aqi ;x

��� ���

Where �Aqi is the average workers’ answers set and l�Aqi ;x
is the average rating of

label x in �Aqi .

Definition 6 (Anonymous Rating Question Answers Diversity)
The diversity of qi provided in Definition 5 of k assigned workers is defined by:

DLqi;k ¼
1
k

Xk
j¼1

d Aqi;j; �Aqi

� �

Sharp rating labels that have the same value of all answer sets are discarded while
computing the worker answers’ diversity as it causes deviation of the actual value.

5.2 Measuring Diversity for Non-anonymous Workers Model

In the non-anonymous working scheme, the worker quality and the worker subjective
rates influence the final question’s diversity in two ways. The first way, they influence
the average answer introduced in Definition 5 to be a weighted average answer [21] as
the high-quality workers are expected to provide the more reliable answers and vice
versa. The second way, the worker answers’ diversity of a question is influenced to be a
weighted diversity reflecting the worker’s reliability.

Definition 7 (Rating Question-Answer Weighted Average) [21]
Given a rating question qi of m labels provided the workers’ quality vector of k workers
Wq ¼ q1; . . .; qk

� �
; where

Pk
j¼1 q

j ¼ 1. A label li weighted average answer is defined

by �lwi ¼
Pk

j¼1 q
j lj;i, and the question qi answer weighted average is provided by

�Awqi ¼ �lw1;�lw2; . . .;�lwm
� �

.

110 Sh. Galal and M. E. El-Sharkawi

TRR measures the non-anonymous workers’ answers diversity utilizing Defini-
tion 5, however, it evaluates the worker answers’ against the answer weighted average
provided in Definition 7 instead of the regular answer average. The question’s diversity
is measured by the total weighted workers’ answers diversities.

Definition 8 (Non-anonymous Rating Question-Answers Diversity)
The diversity of the rating question qi provided in Definition 7 is defined by:

DLqi;k ¼
Xk
j¼1

q j d Aqi;j; �Awqi

� �

Utilizing the workers’ qualities has a threefold impact on TRR. The first, by col-
lecting more accurate final question answer via being biased to high-quality workers
who tend to provide more accurate ratings. The second, by providing a more accurate
diversity measure. The third, downsizing the outlier worker’s ratings influence to the
final question answer, and the measured question diversity as well.

For Boolean and classification tasks TRR predicts the needed number of workers for
next work iteration as it can predict the correct answer based on the assigned workers’
choices. However, TRR cannot perform this prediction for rating tasks. The correct
rating question answer is considered an average of the assigned workers’ ratings.
However, performing a simulation of assigned workers with an average answer does
not make the diversity converge. As a consequence, TRR performs monotonic worker
assignment after the first iteration by performing one by one worker assignment.

6 Experiments

The goal of our experiments is to understand the effectiveness and efficiency of
applying TRR to crowdsourcing platforms. This is achieved by analyzing the workload
cost and the elapsed time to resolve questions for both anonymous and non-anonymous
crowdsourcing platforms against crowdsourcing platforms utilizing fixed task redun-
dancy. We seek to provide an answer to the following inquiries: (1) Whether the
algorithm will produce the same task “answer” when it halts the assignment process
early in the case of “completed tasks” against the model assigning fixed redundancy to
tasks (Answer in Sect. 6.4 for rating tasks. The detailed experiment for Boolean and
classification tasks is not included due to space limitation, however, results are high-
lighted in Sect. 6.2). (2) We need to study the cost and latency in both systems (Answer
in Sects. 6.3, and 6.4). (3) Conclude how to provide priors in real crowdsourcing
platforms, particularly the average diversity level (Answer in Sect. 6.2).

6.1 Datasets

We experimented three real datasets, each of which represents one of the aforemen-
tioned task types. In all the experimented datasets a task is only one question.

TRR: Reducing Crowdsourcing Task Redundancy 111

Dataset 1 (Boolean Tasks): Crowdsourced Web Relevance Judgments Dataset
In this dataset [22], AMT workers judged the relevance of a set of Web pages. Rel-
evance is judged on a binary scale: relevant, and non-relevant representing Boolean
tasks. The primary version of the dataset produced in 2010 contains full information
about the assignment process such as (task submission time, accept and rejection time)
that are critical in our experiment to verify the model. The experiment elicited workers
answers in the same order they occurred on the crowdsourcing platforms. The dataset
contains 1000 task of 100 distinct questions posed to 149 workers where each question
has been assigned to 10 workers (i.e. the fixed task assignment redundancy is 10). The
dataset does not include worker quality, thus, we implemented the majority voting
technique to compute and consider worker quality in our model.

Dataset 2 (Classification Tasks): Weather Tweets’ Sentiment Analysis Dataset
The weather tweets’ sentiment analysis dataset [23] is collected using AMT. The
dataset contains 6000 classifications of the sentiment of 300 tweets, with gold-standard
sentiment labels, answered by 110 workers. The sentiment judgments were provided in
the following categories: negative (0), neutral (1), positive (2), tweet not related to
weather (3) and cannot tell (4). Each task was assigned to 20 workers as a fixed data
redundancy.

Dataset 3 (Representing Rating Tasks): News Headlines Emotion Analysis
Dataset
The news headlines emotion analysis dataset [22] is used to study the effect of the TRR
model to rating tasks. For each task crowd workers were presented with a news
headline, the worker task is to score each headline for how much it holds regarding six
specific emotions: anger, disgust, fear, joy, sadness, and surprise. Each of these is to be
judged on a scale of 0–100, with 0 meaning “not at all”, and 100 meaning “maximum
emotion”. The dataset presents 100 distinct questions that were posed to different 38
workers with total 1000 task assignments, with gold-standard ratings. The dataset
represents rating tasks with fixed data redundancy of 10 workers per each task. The
dataset does not include worker quality, thus, we implemented a “quality adjust”
technique to induce workers’ qualities. A worker answers a question correctly if he/she
has provided ratings for the same classifications of the gold-standard answer with a
limit of 30% rating deviation from the gold rating.

6.2 Estimating Priors

An accurate estimation for the TRR priors is a key to the model success; we conducted
a study of the three datasets to estimate the adequate priors’ values as follow:

1. The Minimum number of crowd members to be assigned to a task (NC): by
inspecting datasets 1 and 2, setting NC to three assigned workers in the first dataset
and four workers in the second dataset was sufficient to have an early correct
consensus answer. Such an answer is equivalent to the same final answer collected
from the fixed number of workers in each dataset.

112 Sh. Galal and M. E. El-Sharkawi

2. The Maximum number of crowd members to be assigned to a task (MC): it is the
fixed redundancy that was considered in the first place, that is 10 workers for
datasets 1&3, and 20 workers for dataset 2.

3. The required answer diversity level (DL): We analyzed the diversity of questions by
applying the fixed redundancy working model to reveal the average diversity that
questions expose. Boolean, classification and rating tasks datasets have shown
average diversity interval of (20%–42%) (i.e. on average around one-third the
crowd members will deviate from the correct answer whatever the assigned number
of crowd workers). Figure 2 illustrates the median diversity index computed while
assigning a fixed redundancy of 10 workers for Boolean and rating task datasets,
and 20 workers for the classification task dataset.

4. Answer-confirming crowd (ACC): one or two high-quality crowd members are
advised to be assigned in order to review the ‘completed’ tasks to avoid answer
deviation.

6.3 Boolean and Classification Tasks Analysis

Task Cost Analysis
In this section, we explore the experimental evaluation of the model behavior for
Boolean and classification task types’ datasets while utilizing different NC values. We
have compared our model to the baseline algorithm that utilizes fixed data redundancy
for all tasks.
Boolean tasks’ cost analysis

Dataset 1 provides 1000 Boolean task of varied prices (0.01$ for 800 tasks and 0.02
$ for 200 tasks) with total cost 1200 cent. Applying TRR to this dataset have coined a
significant change in cost reduction.

Fig. 2. Task’s diversity index

Fig. 3. Boolean tasks’ cost analysis

TRR: Reducing Crowdsourcing Task Redundancy 113

Figure 3 depicts the total cost of the two working modes (anonymous, and non-
anonymous workers) while varying different values of NC (3, 4, and 5), fixing the
values of MC to 10 workers and DL to 35% (representing the median diversity). We
did not include NC = 2 as two workers are not enough to provide informative judg-
ment and caused the aggregated answer conflict problem. The cost reduction varied
from 62% to 32% of the task’s total cost utilizing different parameters’ values.

Classification tasks’ cost analysis
Dataset 2 utilizes fixed redundancy of 20 workers per task. Tasks’ cost analysis of

applying TRR to dataset 2 is shown in Fig. 4. The experiment presents varied values of
NC, DL = 35%, and MC = 20 workers. Numbers bars represents the workload cost.

The relationship between the total needed task assignments and the diversity level
is an inverse relationship. Lowering the required diversity level requires more task
assignments to reach such opinion convergence. Figure 5 depicts the total cost (in
terms of task assignments) of dataset 2 under different DL levels.

Task Working Time Analysis
TRR reduces task assignments, as a consequence, the working time to produce the
workload answers will be reduced as well. Dataset 1 of web relevance judgments
provided critical timing information of the task assignment process including task
creation time, task acceptance time, task assignment approval time, worker elapsed
time to finish the task, and the task expiration time. Timing information allowed us to
study how much saved time has been accomplished by applying TRR during the task
assignment process. Dataset 1 tasks consumed eight working days starting from
Thursday ‘18th February 2010’ till ‘Thursday 25th February 2010’ of total 18 working
hours, tasks lifecycle elapsed time varied from few hours to few days. The dataset tasks
were announced on the platform at simultaneous times thus, there was no latency
saving in terms of working days. Meanwhile, we would run into situations where
workers would take a long time to pick up a task causing latency that can be avoided by
applying our TRR model. The intrinsic time saving was the human working time that
was not assigned to this task alleviating work pressure on the available crowd members
as well as shortening the working time for task requesters. Figure 6 depicts the elapsed
working time of the 1000 task for dataset 1 while setting DL = 35%. The baseline
algorithm of fixed data redundancy = 10 workers per task has a cost of 18.12 working
hours. Numbers above each bar represents the total working time per hours.

Fig. 4. Classification tasks’ cost analysis

Fig. 5. Classification tasks’ cost analysis of
varied DL values

114 Sh. Galal and M. E. El-Sharkawi

6.4 Rating Tasks Analysis

Task Cost Analysis
An experiment of assigning varied values of NC = 5, 6, 7, 8, and 9 where MC = 10
and DL = 10%, 15%, 20%, 25% and 30% (20% is the median diversity for rating
tasks) has been performed to experiment the anonymous and non-anonymous working
scheme. A comparison has been held between the final consensus answer when
assigning 10 workers as fixed redundancy (baseline algorithm), and when applying
TRR. We computed the correct task answer classification utilizing majority voting for
the supported classifications by the assigned workers and considered its average rate.
Rating tasks showed an aggregated final answer conflict upon assigning NC to two and
three workers. The conflict down-streamed for NC = 4 and completely disappeared for
setting NC = 5. Thus, we recommend setting NC as five on the first work iteration to
avoid that problem.

Figure 7 depicts the cost saving between the baseline algorithm, and TRR anonymous
working scheme for a variety of NC and DL values while, Fig. 8 depicts the non-
anonymous working scheme.

Final Answer Correctness Analysis
Utilizing the workers’ qualities has an impact on the aggregated final answer cor-
rectness via being biased to high-quality workers who tend to provide more accurate

Fig. 6. Tasks’ working time analysis

Fig. 7. Rating tasks’ assignments for anony-
mous workers

Fig. 8. Rating tasks’ assignments for non-
anonymous

TRR: Reducing Crowdsourcing Task Redundancy 115

ratings. An experiment to analyze this impact have been held utilizing the questions
gold answers provided in dataset 3. We conducted a thorough experiment that measures
the diversity between the final question answers’ and their gold answers using different
values of NCs, and DLs while fixing MC to 10 workers. Figure 9 provides the average
diversity results for both the anonymous and non-anonymous working scheme. The
non-anonymous working scheme has achieved less diversity from the gold answers in
almost most of the experiments.

7 Conclusion and Future Directions

Reducing the number of crowdsourcing task assignments significantly reduces the
overall cost, effort, and time to accomplish a task. We presented Task Redundancy
Reducer (TRR), a model that reduces the number of task assignments by tracking the
diversity level of the workers’ answers. TRR performs the task assignment process as a
set of work iterations, estimating the needed number of workers for each iteration for
Boolean and classification tasks in order to collect a correct answer guided by certain
diversity level. Moreover, it supports different types of tasks (Boolean, classification,
and rating tasks). TRR provides a framework to integrate the model with crowd-
sourcing platforms providing concise priors that are determined by the task requester.

However, the model would benefit from several extensions: (1) Providing a tech-
nique to predict the needed number of crowd members of subsequent iterations of
rating tasks instead of monotonic increase (one-by-one assignments). (2) Extending the
model to other task types such as macro-tasks where it is difficult to define and
recognize a consensus answer. (3) Utilizing other truth inference algorithms (i.e.
optimization, and the probabilistic graphical model).

References

1. Amazon Mechanical Turk (2005). https://www.mturk.com/
2. CrowdFlower (2009). http://www.crowdflower.com/

Fig. 9. Final answer diversity percentage against gold answers varying NC, and DL values

116 Sh. Galal and M. E. El-Sharkawi

https://www.mturk.com/
http://www.crowdflower.com/

3. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth Inference in Crowdsourcing : Is the
Problem Solved ? PVLDB 3(3.0), 541–552 (2016)

4. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems. In:
Advances in Neural Information Processing Systems 24 (NIPS) (2011)

5. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing
systems. Oper. Res. 62(1), 1–24 (2014)

6. Liu, X., Lu, M., Ooi, C., Shen, Y., Wu, S., Zhang, M.: CDAS: a crowdsourcing data
analytics p system. PVLDB 5(10), 1040–1051 (2012)

7. Abraham, I., Alonso, O., Kandylas, V., Patel, R., Shelford, S., Slivkins, A.: How many
workers to ask? adaptive exploration for collecting high quality labels. In: ACM SIGIR,
p. 473 (2016)

8. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering
queries with crowdsourcing. In: SIGMOD, pp. 61–72 (2011)

9. Haas, D., Ansel, J., Gu, L., Marcus, A.: Argonaut: macrotask crowdsourcing for complex
data processing. PVLDB 8(12), 1642–1653 (2015)

10. Jost, L.: Entropy and diversity. Oikos 113(2), 363–375 (2006)
11. Zhang, C.J., Zhao, Z., Chen, L., Jagadish, H.V.: Cao CC. CrowdMatcher: crowd-assisted

schema matching. In: SIGMOD, pp. 721–724 (2014)
12. Fan, J., Tan, K.: iCrowd : an adaptive crowdsourcing framework. In: SIGMOD, pp. 1015–

1030 (2015)
13. Zheng, Y., Wang, J., Li, G., Cheng, R., Feng, J.: Berkeley UC, pp. 1031–1046. A quality-

aware task assignment system for crowdsourcing applications. SIGMOD, QASCA (2015)
14. Zheng, Y., Li, G., Cheng, R.: DOCS: domain-aware crowdsourcing system. PVLDB 10(4),

361–372 (2016)
15. Jain, A., Das Sarma, A., Parameswaran, A., Widom, J.: Understanding workers, developing

effective tasks, and enhancing marketplace dynamics: a study of a large crowdsourcing
marketplace. PVLDB 10(7), 829–840 (2017)

16. Guo, S., Parameswaran, A., Garcia-molina, H.: So who won ? dynamic max discovery with
the crowd. In: SIGMOD (2012)

17. Khanfouci, M., Nicolas, G.: Consensus-based techniques for range-task resolution in
crowdsourcing systems. In: EDBT/ICDT Workshops (2017)

18. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Springer (2000)
19. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114,

505–518 (2000)
20. Solanas, A., Selvam, R.M., Leiva, D.: Common indexes of group diversity: upper

boundaries. Psychol. Rep. 111(3), 777–796 (2012)
21. Zeng, S.: Some intuitionistic fuzzy weighted distance measures and their application to

group decision making. Group Decis. Negot. 22(2), 281–298 (2013)
22. Crowd database group. http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
23. Weather sentiment analysis dataset. https://eprints.soton.ac.uk/376543/

TRR: Reducing Crowdsourcing Task Redundancy 117

http://dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
https://eprints.soton.ac.uk/376543/

Software Resource Recommendation
for Process Execution Based
on the Organization’s Profile

Miller Biazus1 , Carlos Habekost dos Santos1 , Larissa Narumi Takeda1 ,
José Palazzo Moreira de Oliveira1 , Marcelo Fantinato2 , Jan Mendling3 ,

and Lucinéia Heloisa Thom1(B)

1 Institute of Informatics, Postgraduate Program in Computer Science,
Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{mbiazus,cfhsantos,lntakeda,palazzo,lucineia}@inf.ufrgs.br
2 School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil

m.fantinato@usp.br
3 Vienna University of Economics and Business, Vienna, Austria

jan.mendling@wu.ac.at

Abstract. Lack of information on the infrastructure resources needed
to execute business processes may interfere with the execution flow of the
BPM lifecycle phases. If an organization recognizes that it does not have
the resources needed to execute a process as planned, it might have to
redesign the process. This paper presents an approach to recommending
the infrastructure resources needed to execute a process. The recommen-
dation relies on the task labels of the process model and comprises two
phases: resource type classification and resource recommendation.

The approach contributes to the redesign phase as it provides the
process analyst with information on the resources needed to execute the
process. It also supports decision-making process before the implemen-
tation phase regarding, for example, remodeling, project cancellation,
resource procurement etc. The developed approach was validated based
on a set of real processes of a public university through a cross-fold val-
idation that reached 83% of accuracy.

Keywords: Business processes · BPMN · Recommender systems ·
Process mining · Machine learning · Systematic literature review

1 Introduction

Business Process Management (BPM) is a discipline that aims to support orga-
nizations in carrying out their work to ensure the expected results. According
to Dumas et al. [7], the BPM lifecycle comprises the following phases: process
identification, process discovery, process analysis, process redesign, process imple-
mentation, and process monitoring. Organizations do not always have the proper
infrastructure to support the execution of to-be processes as modeled [6]. In this
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 118–128, 2019.
https://doi.org/10.1007/978-3-030-27618-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_9&domain=pdf
http://orcid.org/0000-0003-2098-3502
http://orcid.org/0000-0003-3291-5208
http://orcid.org/0000-0002-4035-7368
http://orcid.org/0000-0002-9166-8801
http://orcid.org/0000-0001-6261-1497
http://orcid.org/0000-0002-7260-524X
http://orcid.org/0000-0002-0620-9302
https://doi.org/10.1007/978-3-030-27618-8_9

Resource Recommendation for Process Execution 119

case, process analysts and systems engineers should be aware of the infrastruc-
ture resources needed to execute a process before reaching the implementation
phase. In this paper, we use only the word resources to refer to the expression
infrastructure resources. Resources needed for process execution may be software,
hardware, and people. In this paper, we consider only the recommendation of
software. Recommending the needed resources at the end of the redesign phase
would overcome the lack of information at the implementation phase. Recom-
mender systems comprise tools and techniques that suggest items most likely
to be interesting to specific users [17]. Recommender systems often use machine
learning and data mining techniques to predict a user’s preference for a particular
item or help users deal with information overload by filtering information.

In this paper, we present a semi-automatic approach to recommending the
resources needed to execute a process aiming to improve the process implemen-
tation phase. The approach helps prevent system engineers from attempting to
implement a modeling process without having the resources needed for the subse-
quent process execution. If the process analyst identifies a recommended resource
is neither available in the organization’s profile nor is targeted for acquisition,
the process model must be redesigned to meet the available resources.

The paper is structured as follows: Sect. 2 presents related work. Section 3
details the proposed recommendation approach with its two phases of resource
type classification and resource recommendation. Section 4 presents the approach
validation. Section 5 concludes the paper.

2 Related Work

This section presents an analysis of the work related to the approach proposed
herein. A quasi-systematic literature review was conducted to find studies on
resource recommendation in BPM.

2.1 Search Protocol and Found Studies

We looked for studies that could help us answer the following research questions:
(i) What types of resources have been addressed in approaches to recommending
resources in BPM? and (ii) What techniques or algorithms have been applied in
approaches to recommending resources in BPM?

The applied search string was: (“business process” OR “process model*”
OR BPM OR workflow) AND (“resource recommend*” OR “recommending
resource*” OR “recommendation of resource*”). The search was carried out
using Scopus engine, in December of 2018, which indexes papers from the most
important publishers such as IEEE Xplore Digital Library, Springer Link and
ACM Digital Library. As the inclusion criterion, we selected the papers returned
in the search whose main goal is resource recommendation in BPM published
in any date. For the exclusion criteria, we removed papers that: (i) are not
published in journals, conference proceedings or as book chapters; (ii) are sec-
ondary or tertiary studies; (iii) are not in English; (iv) are not available in digital

120 M. Biazus et al.

libraries; (v) are duplicate or similar to another more complete paper; and (vi)
are not full papers, i.e., short papers, poster abstracts etc. The references of the
papers found in the search were added in the evaluation to complement the ones
found by the applied research string.

We obtained 13 primary studies. In the oldest work identified, Liu et al. [14]
presented an approach to reduce the amount of manual staff assignment per-
formed at run-time workflow instantiation and execution stages. The approach
uses three supervised machine learning algorithms to obtain a classifier: C4.5
decision tree, Näıve Bayes and Support Vector Machine (SVM). Several works
have been proposed afterwards [2–5,8,9,11,13,18–20].

The most recent work, Abdulhameed et al. [1] used co-working history to
predict human resources based on event log history. The approach determines the
criteria and the metrics from event logs for resource recommendation, considering
as criteria frequency and duration. The approach then gets information from the
resources used to perform the same tasks in previous runs for the instance of the
currently running process to recommend resources.

2.2 Requirements for Supporting Redesign

First, in terms of types of resources that have been addressed in the research on
recommending resources in BPM: the results of the systematic review carried
out clearly show that the vast majority of studies published in the last ten
years have been mainly concerned with recommending human resources. Of the
13 related works found, nine approaches refer exclusively to human resources
(people) while the other four approaches work with other types of resources,
but mainly considering human resources. This strong feature of the existing
recommendation approaches for BPM seems to be quite natural as there is a high
cost in the human resources associated with the tasks of the business processes.

As for the techniques or algorithms that have been applied in the works
oriented to recommend resources in BPM: the results of the systematic review
show that, except for one paper, all 12 other papers refer to approaches based
on data mining or process mining. Only one research does not depend on mining
event logs to allow for the recommendation; instead, it applies a prioritization
approach based on user preferences [5]. Using process mining means recommend-
ing resources through the support of techniques or algorithms that analyze data
and extract relevant information from event logs derived from past executions
of business processes. No pattern of techniques or algorithms was identified in
these 12 papers proposing approaches to recommend resources based on process
mining. In terms of technique for this event mining, although we tested decision
trees, Näıve Bayes and SVM, the results of our tests indicated the Näıve Bayes
as the best choice.

Our approach is oriented to the recommendation of the most appropriate
types of resources to perform the tasks of the process according to what is
available in the organization. We aim to reduce costs, not by optimizing the
use of resources but avoiding the need to redesign the process to choose new
resources. In this context, one natural choice is to address software resources,

Resource Recommendation for Process Execution 121

which is the kind of resource covered in this paper. In fact, according to our
review’s results, this is the first work to address the recommendation of the
needed infrastructure resources to execute the tasks of business processes.

3 The Resource Recommendation Approach

This section introduces the semi-automatic methodology developed to recom-
mend the resources needed to execute a process. The recommendation occurs at
the end of the process redesign phase and is based on other process models of
the organization and on the resources available in the organization.

Our research suggest software applications to be invoked by a BPM System
(BPMS) to support the execution of a to-be process previously modeled. The
recommendation occurs in the redesign phase when the process analyst can verify
whether the organization has the resources needed to execute the process and
then implement it. If the needed resources are not available, the organization
may consider acquiring them or alternative resources need to be considered.
Ultimately, the process model should not follow for implementation.

To recommend the resources, the following items must be defined before:
(i) Resource types: identification of the type of each resource that can be used
to execute tasks, such as browsers, printers, spreadsheet editors etc; (ii) Orga-
nization’s resources: the list of all the resources available in the organization,
accompanied by their types, acquisition cost and attributes. The attributes are
defined at the discretion of each organization; (iii) Organization’s process mod-
els: a set of process models, obtained from a historical base of the organization,
with the definition of the resources used to execute their tasks.

The set of organization’s process models must follow the 7PMG [15] guideline
on task naming, which defines that tasks should be labeled in the verb-object
format (e.g. “create the trip itinerary” instead of “creation of trip itinerary”).

The resource recommendation occurs in two phases: (i) resource type classi-
fication, when process model tasks are classified by the types of resources needed
to execute them; and (ii) resource recommendation, when, based on the types
of resources needed for each task, the resources available in the organization are
analyzed and recommended according to the organization interests.

3.1 Resource Type Classification

The resource type classification is carried out in four steps: (i) reading the process
model and, for each task, extracting its types (e.g. manual task) and labels; (ii)
normalizing task labels; (iii) applying the text classification algorithm; and (iv)
calculating the classification accuracy.

In the first step, the to-be process model, designed in BPMN 2.0, should
be parsed. For this, the model should be exported from the modeling tool to a
format suitable for processing, what is usually done via XML (Extensible Markup
Language). Several libraries can be used to manipulate XML files. File on .bpmn
format is represented using XML, which is structured following specifications
defined in OMG [16].

122 M. Biazus et al.

As for the second step, the normalization of task labels begins by removing
stop words, which are less useful to index documents. As the process models con-
sidered in this work are in Portuguese, then the stop words are also in Portuguese
in the next list. Two types of stop words can be considered [12]: (i) Frequently
used function stop words: words with little relevance to represent meaning, e.g.,
que (that), é (is) and em (in). (ii) Frequently used content stop words: words
with more semantic information than functional words, but commonly with a
very high incidence, e.g., querer (want) and através (through).

Considering the scenario of this work, we removed only the function stop
words. Since the average number of words in task labels is low (around three
to five words), also removing content stop words could lead to an exaggerated
decrease in the size of the labels. To support the removal of stop words, a natural
language tool, the NLTK library was applied. Therefore, the process is structured
as follows: for each word of task labels, we verified if it belongs to stop words.
Normally, natural language tools already define the most common stop words
of a specific idiom the library NLTK specifies words such as ‘a’ (to), ‘aquela’
(that), ‘aquelas’ (those), as stop words.

Still about normalization, stemming should follow. Stemming refers to the
removal of affixes of words (e.g. gerunds), keeping their stem (i.e. radical), to
reduce a word to its essence It is assumed that a typical word has a stem that
refers to a central idea or meaning and that certain affixes are added to change
the meaning of the word or adjust it to its syntactic role. The morphological rules
of natural languages lead to the use of different stemming algorithms according
to the corresponding language. If applied in document pre-processing, stemming
helps index and search documents, allowing to increase the level of document
retrieval.

Stemming is used here to standardize words with the same stem, indexing
them as equals. For example, the words agenda (schedule), agendar (to schedule)
and agendamento (scheduling) are all indexed as agend (schedul), preventing
text classification algorithms from interpreting them as different words and thus
improving the classification accuracy. We applied the stemming procedure to all
words that make up each task label.

As the third step, the tasks should be classified according to the resource
types. For this, first the type of all tasks should be identified. Only the following
BPMN task types should be considered for classification: user, send, receive,
business rule and abstract tasks. BPMN manual tasks should not be classified
as they are not executed with the support of software applications. BPMN service
tasks should also not be classified as they are executed through web services or
automated applications, which are not within the scope of this work.

Several algorithms for text classification are proposed such as Näıve Bayes,
decision trees and SVM. Näıve Bayes stands out for its high accuracy even though
it is conceptually simple. Depending on the data being processed, the algorithms’
accuracy changes, and hence the choice of the algorithm is strongly related to
the data to be classified [10]. To choose the best algorithm for this approach, we
conducted a comparison among Näıve Bayes, decision trees and SVM in terms

Resource Recommendation for Process Execution 123

of classification accuracy. We used 521 task labels related to real-world processes
of an university.

We used Weka to compare the accuracy of the classifiers. We measured the
accuracy using all possible classes (i.e. all possible types of resources) for the
instances. Thus, all the correctly classified samples were checked and split by
the total number of instances that were to be classified.

The three algorithms had accuracy close to 80%. Näıve Bayes presented the
highest accuracy, recall and precision, having, then, been chosen for this work.

As highlighted before, the algorithm execution assumes the existence of both:
(i) pre-defined types of resources (such as spreadsheet, text editor, electronic
agenda etc.) and (ii) a set of organization’s process models with the definition of
which resources (and hence types of resources) were used to execute their tasks,
which is needed for the Näıve Bayes’ supervised learning. As an example, consider
that for a given process, the resource type agenda was used to perform the task
agendar entrevista (schedule interview). The more accurate the classification of
the process models that precede the execution of the algorithm, the better the
training and hence the more accurate the classification of the algorithm.

Therefore, considering the Näıvee Bayes algorithm, first, the tasks of the
set of organization’s process models were used for training. After the training,
the classification was performed on the tasks of another specific process. The
algorithm calculates the probability that a task label word belongs to a given
class (in this case, the class represents a resource type).

In the fourth step, to calculate the accuracy of the resource type classification,
we used k-fold cross-validation, dividing the task labels into ten groups. In each
round of validation, nine groups were used for training and the other for testing.
The mean predictive accuracy was 81.7%.

3.2 Resource Recommendation

Based on the types of resources needed to execute the process tasks according
to the classification carried out in the previous phase, the most appropriate
resources for each type are recommended considering only those available in
the organization. To perform the recommendation, a content-based filtering is
performed, analyzing the resource attributes and the organization’s profile.

The recommendation relies on the organization’s resource profile. To define
the profile of a particular organization, the relevant attributes (e.g. supplier,
platform, license type etc.) of its resources must be identified. Based on the
organization’s profile, it is possible to identify which of its resources are best
suited to support the execution of the process tasks and thus recommend them.

For each resource type identified for the tasks in the process, our approach
recommends the most appropriate resource in the organization’s profile, consid-
ering the similarities between the resource types and the resources available. To
identify these similarities, an N-dimensional space is used to represent the organi-
zation’s profile and the process for which the resources should be recommended.
The organization’s profile is represented by one point in the N-dimensional space
defined as follows: considering all the resources available in the organization, we

124 M. Biazus et al.

calculate the arithmetic mean for each one of its attributes, generating a point in
the N-dimensional space. Each attribute represents one of the space dimensions.
A similar procedure is followed for the process to receive recommendations, i.e.,
for each task for which a resource type was identified, a point is calculated in
the N-dimensional space for the resources related to the corresponding type.

As an example, consider for training, three resources and their attributes, as
shown in Table 1. In this case, the organization’s profile would be a set of five
points derived from the arithmetic mean of the three values of each attribute,
as presented in the last line of the table. The organization’s profile would be
therefore a point with the coordinates [0.333, 0.333, 0.666, 0.666, 0.000].

Table 1. Example of attribute values for the resources

Resource Attributes

Collabor. Open-sour. Web ver. Cross-plat. Intern

Microsoft Word 0 0 0 0 0

Google Agenda 1 0 1 1 0

Firefox 0 1 1 1 0

Arithmetic mean 0.333 0.333 0.666 0.666 0.000

The similarity for recommendation is then calculated using the Euclidean
distance between the organization’s profile and some resource type of the process
for which the resources are to be recommended. The similarity is, therefore,
calculated through the distance between the point in the dimensional space that
represents the organization’s profile and the points referring to the candidate
resources to be recommended, i.e., related to the resource types of the tasks
in the process. For example, assuming that a candidate resource is identified
by the point [0, 0, 0, 0, 1] in the dimensional space, then, its distance to the
organization’s profile would be:

d(p, q) =
√

(0 − 0.333)2 + (0 − 0.333)2 + (0 − 0.666)2 + (0 − 0.666)2 + (1 − 0)2

We need to compare this result with the results of the other resources candi-
dates for recommendation considering the resource type for the same task in the
process. The resource with the lowest value is recommended (i.e. the one that
represents the shortest distance and hence more similar). The recommendation
should be carried out iteratively, for all the tasks of the process model, until all
the resources needed to execute the process are recommended.

4 Evaluation of the Recommendation Approach

This section presents the results of an experiment conducted to test the proposed
resource recommendation approach. The experiment was based on a set of real

Resource Recommendation for Process Execution 125

process models related to one department of a public university. These process
models were developed by students of a BPM course and semantically validated
by actual process users. In addition, the course lecturer verified the robust-
ness properties of the process models. The prototype developed to evaluate the
resource recommendation approach was developed with Python language and
Django framework for development. Python provides a wide variety of libraries
to support natural language processing. Django provides features that facilitate
rapid development, which is useful for proof-of-concept purpose. The resources
available in the university department, as well as a set of other possible resources
for acquisition, were all registered. Thereafter, we defined their types, as fol-
lows: E-mail client (Microsoft Outlook), Browser (Firefox); File manager (Google
Drive), Bank app (Banco do Brasil App), Spreadsheet (Microsoft Excel), Alloca-
tion system (University Room Allocation System), Schedule (Google Agenda),
Text editor (Microsoft Word), E-printer (PDF Printer).

The following attributes were considered to characterize the resources (cf.
Table 1), based on the software features: (i) collaborative (or non-collaborative);
(ii) open-source (or proprietary); (iii) having a web version (or not); (iv) cross-
platform (or specific platform); and (v) internally developed at university (or
not). Further, a cross-validation on the department’s processes was carried out
with 10 folds (k = 10). In each cross-validation round, we created the organiza-
tion’s profile for the university department based on the process tasks used for
training and using the means of the attribute values. As the attributes used are
all binary (i.e., they assume 1 for positive and 0 for negative), then the profile
for each round is composed of five values of 0 and 1.

Considering the test tasks as the recommendation target, the prototype rec-
ommended resources for the tasks in each of the cross-validation rounds. The
resources were related to the resource types that the classifier Näıve Bayes sug-
gested for the tasks. The recommendation was made by similarity between the
organization’s profile of the university department generated in each round and
the resources registered in the prototype. The accuracy of the recommendation
among all 521 tasks of the training processes after cross-validation was 83%.

Although it has been shown the possibility of recommending resources, to exe-
cute process tasks, based on the organization’s profile, there are some remarks:
a higher number of processes and hence tasks for training would tend to improve
the accuracy of classification of resource types by Näıve Bayes; Näıve Bayes does
not consider the relative position of the words on the task label, and we did not
evaluate whether there would be any impact when using a classifier that con-
siders such a relative position; as different students have developed the process
models, there may be a higher linguistic bias than if there was only one modeler;
we did not define the degree of relevance of the attributes; as a result, the weight
was the same for all of them.

5 Conclusion

We have developed an approach to recommend resources aiming to minimize the
problem of the compatibility of process models modeled in the process redesign

126 M. Biazus et al.

phase and the organization’s infrastructure. The recommendation could support
the process analyst about the resources that are needed to execute a process,
and with to the process owner, can take appropriate action, such as continuing
Process Redesign, by adapting the process to the organization’s infrastructure.
With the implementation of the proposed approach, we can evaluate the accuracy
of the recommendation, using cross-validation, with accuracy resulting as 83%.

The main contributions of this paper are as follow. First, we provide a com-
parative analysis among three text classifier algorithms in the context of process
task labels. We used processes from a federal public university, and the accuracy
of Näıve Bayes stood out compared to the other two analyzed algorithms (Sup-
porting Vector Machines and Decision Trees). Second, we developed an approach
for recommending resources needed to implement a specific process, based on
process models, wherever it is proposed to train with the process task labels.
Third, we conducted a systematic literature review, aiming to obtain the state
of art about approaches to estimate or recommend BPM resources. The litera-
ture review also identifies the characteristics of the resources and the tasks, for
a recommendation. As result, there is a discussion about the use of the term
resource, in the selected publications.

As limitations, we identified that different students modeled the process mod-
els that we used to classifier and to test the recommendation, which can influ-
ence the classification, considering that there is no synonyms normalization, for
example. We performed tests about the approach, realized in a single university
department. This observation implies that meaning that context of the other
organizations and process were not considered in this work.

As future work, we suggest customizing the approach, focusing on using col-
laborative filtering in the recommendation, i.e., recommends based on the orga-
nization with similar characteristics. Also, we suggest investigating the accuracy
of the recommendation for process modeled in other idioms, besides Portuguese.
We indicate to explore a recommendation focused on the most efficient resource
for the organization, based on attributes and the organization’s profile.

Acknowledgments. Lucinéia Heloisa Thom is a CAPES scholarship holder, Program
Professor Visitante no Exterior, grant 88881.172071/2018-01; José Palazzo Moreira
de Oliveira receive support from CNPq by grants 301425/2018-3 and 400954/2016-8;
Carlos Habekost dos Santos and Larissa Narumi Takeda are scholarship holders from
CNPq; Marcelo Fantinato is funded by FAPESP, grant 2017/26491-1; this study was
financed in part by the CAPES - Brazil - Finance Code 001.

References

1. Abdulhameed, N., Helal, I., Awad, A., Ezat, E.: A resource recommendation app-
roach based on co-working history. Int. J. Adv. Comput. Sci. Appl. 9(7), 236–245
(2018)

2. Arias, M., Munoz-Gama, J., Sepúlveda, M., Miranda, J.: Human resource alloca-
tion or recommendation based on multi-factor criteria in on-demand and batch
scenarios. Eur. J. Ind. Eng. 12(3), 364–404 (2018)

Resource Recommendation for Process Execution 127

3. Arias, M., Rojas, E., Munoz-Gama, J., Sepúlveda, M.: A framework for recom-
mending resource allocation based on process mining. In: Reichert, M., Reijers,
H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 458–470. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42887-1 37

4. Brander, S., et al.: Refining process models through the analysis of informal work
practice. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 116–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23059-2 12

5. Cabanillas, C., Garćıa, J.M., Resinas, M., Ruiz, D., Mendling, J., Ruiz-Cortés,
A.: Priority-based human resource allocation in business processes. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 374–388.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1 26

6. Confort, V.T.F.: The BPM Issues in Brazilian Perspective. Master’s thesis, Federal
University of the State of Rio de janeiro, Brazil (2016)

7. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-662-56509-4

8. Huang, Z., van der Aalst, W., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. Data Knowl. Eng. 70(1), 127–
145 (2011)

9. Huang, Z., Lu, X., Duan, H.: Mining association rules to support resource allocation
in business process management. Exp. Sys. App. 38(8), 9483–9490 (2011)

10. Jaiswal, R., Lokhande, S.: Analysis of early traffic processing and comparison of
machine learning algorithms for real time internet traffic identification using statis-
tical approach. In: Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty,
A. (eds.) Advanced Computing, Networking and Informatics- Volume 2. SIST,
vol. 28, pp. 577–587. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07350-7 64

11. Koschmider, A., Yingbo, L., Schuster, T.: Role assignment in business process
models. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99,
pp. 37–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-
2 4

12. Li, H., Chen, Q., Wang, X.: An improved method for semantic similarity calculation
based on stop-words. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds.) ICMLC
2014. CCIS, vol. 481, pp. 339–347. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45652-1 34

13. Liu, T., Cheng, Y., Ni, Z.: Mining event logs to support workflow resource alloca-
tion. Knowl. Based Syst. 35, 320–331 (2012)

14. Liu, Y., Wang, J., Yang, Y., Sun, J.: A semi-automatic approach for workflow staff
assignment. Comput. Ind. 59(5), 463–476 (2008)

15. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

16. OMG: Business process model and notation (BPMN), version 2.0 (2011)
17. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and chal-

lenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Hand-
book, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-
7637-6 1

18. Sindhgatta, R., Ghose, A., Dam, H.K.: Context-aware analysis of past process
executions to aid resource allocation decisions. In: Nurcan, S., Soffer, P., Bajec,
M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 575–589. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39696-5 35

https://doi.org/10.1007/978-3-319-42887-1_37
https://doi.org/10.1007/978-3-642-23059-2_12
https://doi.org/10.1007/978-3-642-23059-2_12
https://doi.org/10.1007/978-3-642-45005-1_26
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-319-07350-7_64
https://doi.org/10.1007/978-3-319-07350-7_64
https://doi.org/10.1007/978-3-642-28108-2_4
https://doi.org/10.1007/978-3-642-28108-2_4
https://doi.org/10.1007/978-3-662-45652-1_34
https://doi.org/10.1007/978-3-662-45652-1_34
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-3-319-39696-5_35

128 M. Biazus et al.

19. Yang, H., Wen, L., Liu, Y., Wang, J.: An approach to recommend resources for
business processes. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.)
OTM 2012. LNCS, vol. 7567, pp. 662–665. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33618-8 88

20. Zhao, W., Liu, H., Dai, W., Ma, J.: An entropy-based clustering ensemble method
to support resource allocation in business process management. Knowl. Inf. Syst.
48(2), 305–330 (2016)

https://doi.org/10.1007/978-3-642-33618-8_88
https://doi.org/10.1007/978-3-642-33618-8_88

An Experiment to Analyze the Use
of Process Modeling Guidelines to Create

High-Quality Process Models

Diego Torales Avila1 , Raphael Piegas Cigana1 , Marcelo Fantinato2 ,
Hajo A. Reijers3 , Jan Mendling4 , and Lucineia Heloisa Thom1(B)

1 Institute of Informatics, Postgraduate Program in Computing,
Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{dtavila,rpcigana,lucineia}@inf.ufrgs.br
2 School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil

m.fantinato@usp.br
3 Department of Information and Computing Sciences,

Universiteit Utrecht, Utrecht, The Netherlands
h.a.reijers@uu.nl

4 Vienna University of Economics and Business, Vienna, Austria
jan.mendling@wu.ac.at

Abstract. Process modeling guidelines are an essential tool to help pro-
cess modelers to create models that are correct and easy to understand.
Many guidelines have been proposed in the literature, but there is lit-
tle empirical evidence to which extent guidelines are effectively used.
This paper addresses this research gap by presenting the results of a
semi-controlled experiment conducted on two occasions with 21 students
from a Business Process Management course. Two successive process
modeling tasks were compared, one before and one after the subjects
were presented to a set of 20 guidelines, which were collected through a
systematic literature review. From the results obtained with the experi-
ment, it was observed that the subjects would be more receptive to the
guidelines if they were easier to understand and use.

Keywords: Process modeling · Process modeling guidelines · BPM ·
BPMN · Experiment

1 Introduction

Business process modeling is a difficult [7] but important task, in which a process
analyst studies the business processes of an organization to create a representa-
tion – graphical, usually – of its activities, events and control flow logic [4]. The
result is a process model, which may be used as a tool for learning, improvement
and communication of the business process. While it is important that process
models have high quality [13], they often have modeling issues, such as control

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 129–139, 2019.
https://doi.org/10.1007/978-3-030-27618-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_10&domain=pdf
http://orcid.org/0000-0003-0603-3607
http://orcid.org/0000-0003-2752-4122
http://orcid.org/0000-0001-6261-1497
http://orcid.org/0000-0001-9634-5852
http://orcid.org/0000-0002-7260-524X
http://orcid.org/0000-0002-0620-9302
https://doi.org/10.1007/978-3-030-27618-8_10

130 D. T. Avila et al.

flow errors, badly designed structures and layouts, or incorrect labeling [6], which
may significantly impair their understandability.

A frequent cause of these issues is the inexperience of process modelers [9],
which can be lightened by the use of process modeling guidelines [6]. Guide-
lines are simple rules that help in creating more understandable process models
and with fewer errors [7]. For example, a common modeling guideline is to use
fewer modeling elements. Many guidelines are a result of experimental research
that sought to understand what characteristics of process models influence their
quality. Despite this, it is still uncertain whether process modelers, especially
beginners learning to model, can successfully use guidelines to create better pro-
cess models.

In this context, this paper reports an experiment in which the use of process
modeling guidelines is analyzed for a process modeling task. We asked students
of a process modeling course to create two process models, with only the second
modeling task being supported by a set of modeling guidelines we collected
from the literature. The data collected through this experiment was evaluated
via statistical analysis. This experiment was executed twice with two sets of
students and both datasets were merged for analysis and reporting. We present
in this paper the protocol and the instruments designed for this experiment. We
also exhibit the statistical analysis and the discussion of the results.

This paper is organized as follows: Sect. 2 provides background on process
modeling guidelines and discusses other work related to this paper. Section 3
defines the protocol of the experiment, its hypotheses, design and instruments.
Section 4 presents the results of the experiment, the test of the hypotheses and
a discussion of the results. Section 5 concludes this paper with a summary and
an outlook for future work.

2 Background

This section presents the fundamental background of our work. First, we present
the set of process modeling guidelines that was used during our experiment.
Second, we describe the related work on modeling guidelines.

2.1 Process Modeling Guidelines

Prior to our experiment, we have conducted a systematic literature review [1]
in search of insights on important characteristics of high-quality process models
that were interpreted as or transformed into a set of 45 modeling guidelines.
These studies analyzed by the review did not share a common modeling notation
among themselves, so all the extracted guidelines were adapted to the Business
Process Model and Notation (BPMN) [11], which has been rising in popularity
in recent years, as perceived throughout the review.

One characteristic discovered during this review was that not all guidelines
were equally valuable or useful. Some of the guidelines we found were not studied

An Experiment to Analyze the Use of Process Modeling Guidelines 131

in an empirical research to determine if they can improve the understandabil-
ity of process models without changing their underlying behavior. Thus, these
guidelines may be detrimental to the process modeling task, possibly even reduc-
ing the quality of the resulting process model. In our experiment, for example,
they may have made it considerably longer and more difficult for its subjects.
Therefore, we found it necessary to remove these guidelines.

Table 1 shows the set of guidelines we chose to use in our experiment. These
guidelines were selected through a manual analysis, removing those that are
possibly detrimental to the modeling task. We also removed those that were too
similar to the guideline “Use as few elements as possible”, since they could be
considered redundant. The guidelines are arranged in four categories: size, which
related to the size of the process model, topology, which contains guidelines on
how model elements combine with each other, layout, which consists of conven-
tions on how the process model should be visually presented, and labeling, which
has instructions on how to label model elements.

2.2 Related Work

Defining what is process model quality has been a long-standing issue to which
theoretical frameworks such as SEQUAL, SIQ and the Guidelines of Modeling
(GoM) [2,5,13] were created. While insights provided by these frameworks are
invaluable, they often define quality categories overly abstractly to be applied by
novice modelers. In addition, the frameworks do not provide a straightforward
method for their implementation in a process modeling project [7].

Creating more concrete and straightforward guidelines to be used in process
modeling may solve this problem. One well-known work on modeling guidelines
is the “Seven Process Modeling Guidelines (7PMG)” proposed by Mendling et al.
[7]. It is notable for synthesizing a set of guidelines built upon empirical insights
and contributing a ranking of them based on the opinions of expert analysts.
This ranking solves the issue of when modelers have the opportunity to apply
multiple guidelines that guide them to conflicting solutions.

Another important work is from Moreno-Montes de Oca et al. [10], in which a
set of 30 modeling guidelines was presented to students that were asked to eval-
uate each one individually through its perceived ease of use, perceived usefulness
and behavioral intention. The results were then compared against each other to
find the highest scoring guidelines for these variables and their correlations.

Despite these studies, we found none that analyzes one of the main goals of
modeling guidelines, which is to guide inexperienced process modelers to cre-
ate more understandable process models. Thus, in our work, we use the set of
modeling guidelines from Table 1 to evaluate whether this goal can be completed
and what are the main challenges faced by inexperienced process modelers when
using modeling guidelines.

132 D. T. Avila et al.

Table 1. Process modeling guidelines used in this experiment (from literature review)

ID Guideline Category

S-1 Use fewer than 37 modeling elements Size

S-2 Avoid using inclusive (OR) gateways Size

S-3 Do not use implicit gateways Size

S-4 Minimize the degree of all gateways Size

T-1 Model as structured as possible Topology

T-2 Do not create cycles with multiple exit points Topology

T-3 Decompose models that are too large Topology

T-4 Decompose model fragments that occur multiple times or that
benefit from being grouped together or hidden

Topology

T-5 Do not overly decompose the process model Topology

Ly-1 Minimize the drawing area of the model (preferably within a
page)

Layout

Ly-2 Make the process flow from left to right Layout

Ly-3 Minimize the number of bends in sequence flows Layout

Ly-4 Minimize the crossing of sequence flows Layout

Ly-5 Make use of symmetry between elements Layout

Ly-6 Avoid overlapping elements Layout

Ly-7 Keep model elements related to one another close to each other Layout

Lb-1 Label everything necessary Labeling

Lb-2 Use a consistent labeling style, such as: verb-object style for
activity labels; object-particle style for event labels; and
object-particle question style for gateway labels

Labeling

Lb-3 Avoid labels that are vague or ambiguous Labeling

Lb-4 Use short labels Labeling

3 Experiment Protocol

This section presents the research method applied to conduct this study, which
is through an experiment. It displays the protocol used to conduct our exper-
iment, which includes the definition of hypotheses and variables, the design of
the experiment, the selection of subjects and instruments, and how the data
collected was validated.

3.1 Problem Definition and Hypotheses

The influence that modeling guidelines have on process modeling is still an open
issue. Since they are an additional concern to the task of modeling, they pre-
sumably affect cognitive load [14]. As such, they may increase extraneous cogni-
tive load and block cognitive resources, making process modeling more difficult

An Experiment to Analyze the Use of Process Modeling Guidelines 133

by requiring modelers to monitor not only the process being modeled but also
whether the guidelines are being met. Consequently, if modelers believe they
have more difficult modeling while using the guidelines, they may feel discour-
aged from using them again. Another possible effect would be modelers feeling
the need to rely on some method or tool to support the use of guidelines. On
the other hand, if the guidelines are formulated as clear instructions on how to
model correctly, the increased cognitive load might be a germane cognitive load
that helps the modeler in their task.

It is also unclear how effective a modeler can be when using modeling guide-
lines after being introduced to them. Pragmatically, modeling guidelines should
be straightforward and well-founded rules that show how to create a better
quality process model [7]. However, some guidelines found in literature have no
explicit instructions as to when they can be applied; for example, when to use
subprocesses. This imprecision can cause difficulties for modelers. Finally, mod-
elers can perceive their process models with a higher level of understandability
after using modeling guidelines, even though they have not been used correctly
or other modeling issues still remain.

Considering these issues, we formulated three hypotheses in this paper: [H1]
guidelines increase cognitive load, which leads process modelers to a perception of
higher degree of difficulty when modeling with the support of process modeling
guidelines than without them; [H2] process models created with the support
of process modeling guidelines have fewer modeling issues than those without
them; and [H3] process modelers believe their process models have higher level of
understandability when using process modeling guidelines than when not using
them.

Besides these hypotheses, we searched for how receptive the modelers are to
process modeling guidelines. They were specifically asked about how easy to use
and how useful the guidelines are and if they intend to continue using them.

3.2 Experiment Variables

Based on the hypotheses, we defined three dependent variables: for H 1, we mea-
sured the perceived level of difficulty the modelers had during process modeling
through a 5-point Likert scale, ranging from “very easy to model” to “very diffi-
cult to model”; for H 1, we measured the perceived level of difficulty the modelers
had during process modeling through a 5-point Likert scale, ranging from “very
easy to model” to “very difficult to model”; for H 3, we measured the perceived
level of understandability of the process models, from the point of view of their
modelers. This variable was also measured through a 5-point Likert scale, rang-
ing from “very easy to understand” and “very difficult to understand”.

Three additional dependent variables were defined for the modelers’ recep-
tivity to the modeling guidelines: perceived ease of use, perceived usefulness and
future intended use. For each one, the subjects’ opinions were measured using a
5-point Likert scale, ranging from “strongly disagree” to “strongly agree”.

Personal factors, such as experience in modeling, are also a possible influ-
ence on the understanding and performance of subjects interacting with process

134 D. T. Avila et al.

models [3]. Therefore, we measured the subjects’ experience through three inde-
pendent variables: process modeling, BPMN and other process modeling nota-
tions. Each of these variables was measured using a 5-point Likert scale, ranging
from “not experienced” to “very experienced” and their values were averaged
to define the subjects’ overall modeling expertise. Finally, the subjects were
also asked whether they knew some set of process modeling guidelines, as such
knowledge could also be an influence.

3.3 Experiment Design and Subjects

The goal of the experiment was to compare the performance of subjects in two
process modeling tasks based on having or not the support of modeling guide-
lines. We gave the subjects textual descriptions of two processes, one for each
step of the experiment. In the first step, the subjects were asked to model a
first process. In the second step, they were presented to the list of modeling
guidelines and encouraged to use them when modeling a second process. Since
the order of which process would be modeled first could influence the results,
the subjects were randomly separated into two groups, with the order of the
processes alternated. Figure 1 shows the design of the experiment.

Without Modeling Guidelines

Subjects 1 to N/2 Process A

With Modeling Guidelines

Process BSubjects 1 to N/2

Process ASubjects N/2 + 1 to NProcess BSubjects N/2 + 1 to N

Group A

Group B

Fig. 1. The experiment design.

The subjects were students enrolled in an introductory course of business pro-
cess management at a Brazilian public university. We selected students because,
due to their inexperience, they might be more motivated to learn how to model
processes better, which is a goal of modeling guidelines. The subjects were
assumed to be familiar with the basics of process modeling and BPMN. An
overview of the experiment was presented to the subjects, with general goals,
procedures and time limits for each step. They were encouraged to create process
models with quality in mind.

The experiment was executed twice. First, 13 subjects participated (divided
into two groups). Then, the experiment was replicated with eight other subjects.
Each execution was performed in a single laboratory with all subjects at the same
time. The subjects had a limited time to perform each step of the experiment,
whose total took an average of 80 min to complete. In addition, any questions
the subjects might have about the procedure could be answered by the authors
who were controlling the experiment.

An Experiment to Analyze the Use of Process Modeling Guidelines 135

3.4 Experiment Instrumentation

Four instruments were used during the experiment. The first one was the list
of process modeling guidelines presented in Table 1, along with a small descrip-
tion for each guideline detailing how to apply it. The second instrument was the
Bizagi BPM modeler1, a modeling tool that is used during the university’s Busi-
ness Process Management course to learn process modeling. The third instru-
ment was an on-line questionnaire that collected data measuring our independent
and dependent variables. It also had open-ended questions where the students
could provide reasoning for their answers and their opinions about the modeling
guidelines.

The last instrument was the processes that would be modeled during the
experiment. They came from a collection of real-world process models from a
Brazilian public university. We sought in this collection two process models with
complexities similar to each other and that could provide opportunities for the
use of the modeling guidelines. The selected process models are medium-sized
(i.e., over 20 elements), with at least one loop, a potential sub-process and multi-
ple exclusive (XOR) gateways. We also ensured that the subjects had no in-depth
prior knowledge of the selected processes. Finally, the selected process models
were manually transcribed into a textual description.

3.5 Data Validation

All 21 subjects completed the experiment, and data collection through the ques-
tionnaire was successful. Although 42 process models were collected, eight models
were excluded from the analysis of the hypothesis H2 (four from the first part of
the experiment and four from the second part) because they contained serious
syntax errors. These errors occurred because the subjects were unable to finalize
the process modeling in the available time.

4 Data Analysis and Interpretation

This section presents the results of the experiment and its analysis, including
some descriptive statistics, the hypothesis testing, and finally the discussion of
the results.

4.1 Descriptive Statistics

All subjects reported knowledge of the 7PMG guidelines [7], which was expected
by us, as they were introduced in the BPM course from which the subjects
were recruited. The overall experience of both groups of subjects, calculated by
averaging the three modeling experience variables, was similar. Group A had an
average experience of 2.88 and standard deviation of 0.5, while group B had an

1 www.bizagi.com/en/products/bpm-suite/modeler.

www.bizagi.com/en/products/bpm-suite/modeler

136 D. T. Avila et al.

average of 2.97 and standard deviation of 0.67. We have not found any significant
outlier, thus we can assume that these groups are homogeneous.

Figure 2 shows the distribution of the responses to the variables related to
the hypotheses H1 and H3, respectively. After introducing the guidelines, there
was a slight worsening in the perceived level of difficulty, but there was also an
improvement in the perceived level of understandability.

3 4 3 4

2 4 6 2

With

Without

0 5 10
Number of Subjects

G
ui

de
lin

es

Easy Average Difficult Very
Difficult

Perceived level of difficulty

4 4 5 1

2 3 2 4 3

With

Without

0 5 10
Number of Subjects

G
ui

de
lin

es

Very
Easy Easy Average Difficult Very

Difficult

Perceived level of understandability

Fig. 2. Data collected for the perceived level of difficulty and understandability.

Regarding the hypothesis H2, the subjects had an average of 7.35 modeling
issues when modeling without guidelines and 7.94 when modeling with them.
The standard deviation was 2.74 and 2.73, respectively. The increase in the
average when modeling with guidelines goes against our expectations as we had
assumed that the guidelines would help process modelers avoid modeling issues.

Figure 3 shows the responses regarding the receptiveness to the modeling
guidelines. Although all subjects recognize the usefulness of the guidelines and
almost all intend to use them again, some of them do not consider them easy
to use. Through the open questions, some subjects addressed their difficulty in
understanding how to apply some guidelines. One of the subjects argued that
their questions could be clarified with practice and study.

3 10 1

8 5 1

1 5 8

Intent of
Future Use

Perceived
Usefulness

Perceived
Ease Of Use

0 5 10
Number of Subjects

Strongly
Agree

Partially
Agree

Neither Agree
nor Disagree

Partially
Disagree

Strongly
Disagree

Fig. 3. Receptiveness to the modeling guidelines.

An Experiment to Analyze the Use of Process Modeling Guidelines 137

4.2 Hypothesis Testing

To address our three hypotheses, we tested if there was statistical difference
between the results of each dependent variable for each step of the experiment,
i.e., the two modeling tasks. To select the type of hypothesis test to apply, we first
used the Shapiro-Wilk test, a powerful normality test [12], to check if the data
collected was normally distributed. Then, the appropriate parametric or non-
parametric test was chosen, depending on the type of the dependent variable.

For H1 and H2, the Shapiro-Wilk test confirmed that data for the perceived
level of difficulty and modeling issues found are normally distributed. Thus, we
applied a one-sided paired t-test [8], which is commonly used when the sample
data comes from experiments with a paired design, such as this one. For H3,
the variable perceived level of understandability was not found to be normally
distributed. Therefore, we applied a one-sided Wilcoxon signed-rank test [15].
For all three hypothesis, the tests showed that there is no significant difference
between the two steps of the experiment. The resulting p-values were 0.6974,
0.2106, and 0.7288 (for H1, H2 and H3 respectively), which are not significant
at a significance level of 0.05.

4.3 Discussion

While all 21 subjects fully performed the experiment, it was not possible to find
statistical support for the hypotheses pursued. The sample size is possibly a
limiting factor for the statistical power of the tests carried out. Nevertheless, the
experiment shows that it is possible to analyze the effect that process modeling
guidelines have on the process modeling task through the protocol established
to investigate our hypotheses.

More detailed information was identified in the responses to the question-
naire’s open-ended questions. We realized through them how difficult it was for
the subjects to effectively deal with and use the modeling guidelines in a quality-
focused process modeling task. Many subjects reported they had to struggle
to model the processes because many modeling elements were required. They
blamed this over-effort mainly on an over-complexity of the processes. Further,
one subject reported that the Bizagi tool impaired their organizational ability
when working with a large number of modeling elements.

Subjects did not blame the difficulty to model processes on the use of (or the
lack of) modeling guidelines. Instead, they reported that the processes per se
were difficult to model. This also holds true for the quality of the process models
they created. Only when asked directly on the modeling guidelines, some of them
reported difficulty also in understanding and using the modeling guidelines.

This analysis is reflected through the data collected to assess the subjects’
receptiveness to the guidelines, in which usability and intent of future use
received good evaluations while ease of use received moderate ones. These results
may mean that modeling guidelines require further refinement to make them
easier to understand and use. One option would be to implement modeling
guidelines directly in a modeling tool to support the process modelers during
their work.

138 D. T. Avila et al.

5 Conclusion

This paper reports on an experiment conducted to analyze the effects of using
process modeling guidelines. These effects were measured based on the level of
difficulty to model and the level of understandability of the resulting process
models, both from the perspective of the modeler, as well as the effect on the
number of modeling issues in the resulting process models. Two process modeling
tasks were compared, one with and one without the support of modeling guide-
lines. Based on the results, it was not possible to provide significant evidence that
the use of process modeling guidelines influences the measured variables. The
best likely reason is the small sample size that may have affected the statistical
conclusion validity.

In future research, this experiment can be improved to address the identified
issues, focusing especially on strengthening the power of the statistical tests.
Other approaches to applying the modeling guidelines should also be investi-
gated, such as using a modeling tool to automatically verify whether a process
model meets them. Finally, to address the issues modelers had related to ease of
use, it seems valuable to analyze which modeling guidelines could be simplified
or would demand further training.

Acknowledgments. This study was financed by the CNPq - Brazil and CAPES
- Brazil - Finance Code 001. Diego Toralles Avila is a CAPES scholarship holder.
Lucineia Heloisa Thom is a CAPES scholarship holder, Program Professor Visitante
no Exterior, Process Number: 88881.172071/2018-0. We also acknowledge the Graduate
Program in Computer Science as well as the Institute of Informatics, UFRGS. Marcelo
Fantinato is funded by Fapesp, Brazil (grant number: 2017/26491-1).

References

1. Avila, D.T.: Process Modeling guidelines: systematic literature review and experi-
ment. Master’s thesis, Federal University of Rio Grande do Sul, Institute of Infor-
matics, Graduate Program in Informatics, Porto Alegre (2018)

2. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process mod-
eling. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Man-
agement. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45594-9 3

3. Dikici, A., Turetken, O., Demirors, O.: Factors influencing the understandability
of process models: a systematic literature review. Inf. Softw. Technol. 93, 112–129
(2018)

4. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-56509-4

5. Krogstie, J.: Model-Based Development and Evolution of Information Systems, 1st
edn. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2936-3

6. Leopold, H., Mendling, J., Gunther, O.: Learning from quality issues of BPMN
models from industry. IEEE Softw. 33(4), 26–33 (2016)

7. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

https://doi.org/10.1007/3-540-45594-9_3
https://doi.org/10.1007/3-540-45594-9_3
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-1-4471-2936-3

An Experiment to Analyze the Use of Process Modeling Guidelines 139

8. Montgomery, D.C.: Design and Analysis of Experiments, 9th edn. John Wiley &
Sons, Hoboken (2017)

9. Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual modeling quality
framework. Softw. Qual. J. 20(1), 201–228 (2012)

10. Moreno-Montes de Oca, I., Snoeck, M., Casas-Cardoso, G.: A look into business
process modeling guidelines through the lens of the technology acceptance model.
In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP,
vol. 197, pp. 73–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45501-2 6

11. OMG: Business Process Model and Notation (BPMN) version 2.0. Technical
report, Object Management Group (2011)

12. Razali, N.M., Wah, Y.B., et al.: Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Modeling Anal. 2(1), 21–33
(2011)

13. Reijers, H.A., Mendling, J., Recker, J.: Business process quality management. In:
vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management
1. IHIS, pp. 167–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
642-45100-3 8

14. Sweller, J.: Cognitive load theory. In: Mestre, J.P., Ross, B.H. (eds.) Psychology
of Learning and Motivation, vol. 55, pp. 37–76. Elsevier, San Diego (2011)

15. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

https://doi.org/10.1007/978-3-662-45501-2_6
https://doi.org/10.1007/978-3-662-45501-2_6
https://doi.org/10.1007/978-3-642-45100-3_8
https://doi.org/10.1007/978-3-642-45100-3_8

Semantic Web and Ontologies

Novel Node Importance Measures to Improve
Keyword Search over RDF Graphs

Elisa S. Menendez1,3, Marco A. Casanova1(&),
Luiz A. P. Paes Leme2, and Mohand Boughanem3

1 Department of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil
{emenendez,casanova}@inf.puc-rio.br

2 Computer Science Institute, UFF, Niteroi, RJ, Brazil
lapaesleme@ic.uff.br

3 Institut de Recherche en Informatique de Toulouse,
IRIT, Toulouse, France
boughanem@irit.fr

Abstract. A key contributor to the success of keyword search systems is a
ranking mechanism that considers the importance of the retrieved documents.
The notion of importance in graphs is typically computed using centrality
measures that highly depend on the degree of the nodes, such as PageRank.
However, in RDF graphs, the notion of importance is not necessarily related to
the node degree. Therefore, this paper addresses two problems: (1) how to define
importance measures in RDF graphs; (2) how to use these measures to help
compile and rank results of keyword queries over RDF graphs. To solve these
problems, the paper proposes a novel family of measures, called InfoRank, and a
keyword search system, called QUIRA, for RDF graphs. Finally, this paper
concludes with experiments showing that the proposed solution improves the
quality of results in two keyword search benchmarks.

Keywords: Keyword search � RDF � SPARQL � PageRank

1 Introduction

Keyword search is a well-known and convenient way for users to query large amounts
of data, whether in Web pages or databases. The user simply types some terms, called
keywords, and it is up to the system to retrieve the documents that best match the list of
keywords. Search engines for Web pages popularized this kind of search. More
recently, some of the Information Retrieval techniques used by Web search engines
[17] were adapted to query databases to hide from users unfriendly SQL queries.

In the last decade, RDF emerged as a data model that represents data as a set of
triples, which in turn induces a graph. This kind of modeling adds flexibility to describe
resources and follows W3C standardized formats and ontologies. Considering that
RDF graphs are interesting sources of knowledge that are also queried with unfriendly
SPARQL queries, keyword search over RDF graphs (or briefly RDF-KwS) becomes a
relevant research topic.

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 143–158, 2019.
https://doi.org/10.1007/978-3-030-27618-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_11

In Web Information Retrieval there are two main tasks: (1) matching keywords
with indexed documents; (2) ranking the retrieved documents by order of relevance.
RDF graphs present a further challenge, when compared to the Web, since the infor-
mation that a user needs may not be in a single triple, but rather it is distributed over the
graph. Hence, an answer for a keyword query over an RDF graph is better formalized
as a minimal subgraph of the RDF graph that covers the keywords.

Summarizing, there are three main tasks in RDF-KwS: (1) finding pieces of
information in the RDF graph; (2) assembling the retrieved pieces of information to
compose complete answers; (3) ranking the complete answers. The main motivation of
this work is how to construct an RDF-KwS system that covers these three tasks.

To achieve a good ranking mechanism, typical information retrieval systems rank
the documents based not only on how well they match the keyword query, but also
based on how important the documents are. The notion of importance for Web pages is
typically computed using centrality measures for graphs created using the hyperlink
structure of the Web. PageRank [6] and HITS [23] are some of the most popular
centrality measures used in Web Information Retrieval. Their main idea is to assign
high scores to pages that are referenced by many other important pages.

Returning to the RDF environment, the majority of the related work test their strate-
gies using some RDF graph that reflects Web pages and their links [12, 15, 18, 21, 26],
such as DBpedia1, or using some dataset about co-authorship of research papers [3, 12,
33], such asDBLP2.We argue that PageRank orHITS variationsworkwell for these types
of RDF graphs because the incoming or outgoing edges indeed indicate the relevance of a
resource. In the Web, it is reasonable that a Web page (or node) with several incoming
edges ismore important than aWeb pagewith a few incoming edges. Likewise, in anRDF
graph about research publications, the importance of an author is proportional to the
number of accepted papers.

However, RDF-KwS operates over full RDF graphs, where the incoming or
outgoing edges of a node do not necessarily indicate the node’s importance with respect
to any existing node relationship or, at least, it may be hard to detect which relationships
would express the notion of importance. Thus, traditional measures may fail to compute
the importance of a node. As an example, in an RDF graph representation of the Internet
Movie Database – IMDb (www.imdb.com), instances of “common classes” (e.g. Genre,
Language, Country, Company) have a high number of incoming edges. Hence, a
traditional PageRank algorithm will assign scores to these common instances that are
higher than the scores of popular movies and actors. Of course, we could manually
assign weights to the object properties in order to capture their semantics, and use a
Weighted PageRank or HITS Algorithm, as in [3, 10, 29]. However, one may argue that
the manual assignment of weights is bothersome and subjective. Thus, other works
focused on strategies to learn weights based on user feedback [1, 24, 27]. In addition to
the difficulty of detecting relationships that express the importance of a graph node, it
would be interesting to eliminate unwanted relationships that would distort traditional
importance measures.

1 http://dbpedia.org/sparql.
2 http://dblp.uni-trier.de.

144 E. S. Menendez et al.

http://www.imdb.com
http://dbpedia.org/sparql
http://dblp.uni-trier.de

Summarizing, the problems addressed in this work are: (1) how to define impor-
tance measures in RDF graphs in which the importance of a node is not directly related
to its degree; (2) how to use these measures to help compute and rank answers of
keyword queries over RDF graphs.

To solve these problems, the first and key contribution of this paper is a novel
family of importance measures for RDF graphs, collectively called InfoRank, that
combine three intuitions: (I) “important things have lots of information about them”;
(II) “important things are surrounded by other important things”; (III) “few important
relations (e.g. friends) are better than many unimportant relations (e.g. acquain-
tances)”. They require neither the manual assignment of weights to object properties
nor a training dataset to use as input to a learning algorithm.

The second contribution is an RDF-KwS system, called QUIRA (QUerying with
InfoRAnk), which uses InfoRank: to narrow the retrieved pieces of information; to
choose the best paths to connect the resources (nodes) in the graph; to rank the
retrieved answers.

Finally, the third contribution of this paper consists of two enriched datasets, IMDb
and MusicBrainz (http://musicbrainz.org), along with keyword search benchmarks
adapted to the RDF environment. We use these datasets in our experiments to assess
the correctness and the performance of InfoRank in the QUIRA system.

The rest of this paper is organized as follows. Section 2 summarizes related work.
Section 3 defines the InfoRank measures. Section 4 describes the QUIRA keyword
search system. Section 5 evaluates the performance of InfoRank in the QUIRA system.
Finally, Sect. 6 contains the conclusions and suggestions for future work.

2 Related Work

Keyword Search over Structured Databases. Tools that implement keyword-based
queries over relational databases [34] and RDF datasets have been investigated for
some time. Since both fields have similar challenges, we discuss them together.

We may distinguish between tools that are schema-based, that use information
about the conceptual schema to compile a keyword-based query into an SQL or
SPARQL query, from those that are graph-based, which operate directly on the data.

BANKS [5] and BLINKS [16] are examples of relational graph-based tools, and
Sindice [28] and Structured LM [11] are examples of RDF graph-based tools.

Relational schema-based tools explore the foreign keys declared in the relational
schema to compile a keyword-based query into an SQL query with a minimal set of
join clauses, based on the notion of candidate networks (CNs). This approach was first
proposed in DISCOVER [19] and DBXplorer [2] and adopted in quite a few tools,
including recent ones [9].

SPARK [37] offers an example of an early RDF schema-based tool. Tran et al. [31]
combine the idea of generating summary graphs for the original RDF graph, using the
class hierarchy, to generate and rank candidate SPARQL queries. QUICK [36] is a tool
designed to translate keyword-based queries to SPARQL queries with the help of the
users, who choose a set of intermediate queries, that the tool ranks and executes.

Novel Node Importance Measures to Improve Keyword Search 145

http://musicbrainz.org

The QUIOW tool, our earlier implementation [13, 20], is schema-based and sup-
ports both the RDF and the relational environments by translating keyword queries into
SPARQL or SQL queries. Although the tool proved efficient for an industrial dataset
about petroleum, it had poor performance for an RDF graph representation of IMDb
due to the large size and ambiguity of the domain. The importance measures introduced
in this paper remediate these problems, as shown in Sect. 5.

Importance Measures for Structured Databases. ObjectRank [3] was one of the
first proposals to compute a global importance score for database entities using
PageRank. The authors transformed the structure of a relational database (RDB) into a
graph, using foreign keys as links between entities, and then applied PageRank with
manual weight assignment to different types of links. The authors evaluated their
strategy using the DBLP dataset.

In RDF, other works that manually assign weights to use with PageRank are:
Swoogle [10], which evaluated their strategy using documents crawled from the Web;
Park et al. [29], which performs evaluation using their own small research dataset; and
Beagle++ [7], which adapted ObjectRank to an RDF Graph about activity metadata in
desktops.

TripleRank [12] represented an RDF graph as a tensor. Then, it used the PAR-
AFAC decomposition of the tensor to induce groups of properties and resources, with
authority and hub scores for the particular latent aspect (topic) the group represents. It
showed how to use the result of the PARAFAC decomposition to guide a faceted
browsing application. Finally, it tested the application in several experiments over RDF
datasets with 5 to 55 thousand triples. PARAFAC decomposition proved interesting for
faceted browsing exactly because it induces groups of properties and resources,
together with authority and hub scores. However, it is not clear how to extend this
strategy to the context of keyword search, not to mention the problem of computing the
PARAFAC decomposition of tensors with 200+ million non-zero entries, as in the
experiments described in Sect. 5.

More recently, FORK [24] adapted ObjectRank to Linked Data. The main con-
tribution of the work is a learning algorithm for property weights based on user rele-
vance feedback, instead of the manual assignment of weights. The authors evaluated
their strategy using DBpedia and results showed that FORK achieves the best ranking
method when compared to baseline approaches. Similarly, DBtrends [25] uses query
logs to improve its ranking function.

As mentioned in the introduction, DBpedia and DBLP are highly influenced by link
semantics: DBLP through authorship links, and DBpedia through links derived from
Wikipedia, such as wikiPageRedirects, wikiPageDisambiguates, primaryTopic, etc.
Furthermore, in the LOD cloud (http://lod-cloud.net), DBpedia has many incoming
links from other RDF datasets.

For further references that focus on ranking strategies for degree-dependent data-
sets, such as DBpedia or DBLP, we refer the reader to [4, 30, 35]. We continue our
discussion with some alternative strategies that do not highly depend on node degree.

Graves et al. [14] proposes the use of closeness centrality for undirected graphs and
evaluates the strategy using three small datasets. The authors compare their strategy

146 E. S. Menendez et al.

http://lod-cloud.net

with a ranking using the number of incoming edges. The problem with closeness
centrality is that it is not efficient for large RDF graphs.

Although the work presented in [22] is not specific to RDF graphs, it proposes the
degree decoupled PageRank technique that penalizes or boosts the importance of the
node degree in recommendation graphs, depending on the domain characteristics. They
argue that, in some contexts, the importance of the node can be inversely proportional
to its degree. The authors performed an evaluation using graphs extracted from IMDb,
Last.fm, DBLP and Epinions. From results for the IMDb dataset, they noticed that, for
a movie recommendation graph, traditional PageRank performs better; however, for an
actor recommendation graph, the node degree actually needs to be penalized. They
argue that, when an actor plays in a large number of movies, he probably is a non-
discriminating (“B movie”) actor, whereas, when an actor is associated with relatively
few movies, he may be a more discriminating (“A movie”) actor.

3 The InfoRank Importance Measures

3.1 Background on Importance Measures

Importance measures have as goal to identify the most important or central node in a
graph, depending on what importance means. A simple way to compute the importance
of a node is just to analyze its degree. However, this returns a local measure of
importance, whereas in some contexts a global analysis of the graph is preferable. For
instance, the Betweenness Centrality counts the number of shortest paths going through
a node; hence it is able to identify important connectors in a graph. The Closeness
Centrality measures the average distance from a node to all other nodes, hence the
more central a node is, the closer it is to all other nodes.

Other types of importance measures try to capture the idea that “it is not about what
you know, but who you know”. That is, the notion of importance is given by how well-
connected a node is to other important nodes. PageRank [6] is the most popular
importance measure of this type. Using the hyperlink structure of the Web, the basic
idea is that, if a Web page has links from other high-quality Web pages, then that is an
indication that it is likely to be worth looking at the page.

PageRank can be computed using an iterative method, called Power Iteration. Let
G = (V, E) be a directed graph and PR(r, i) be the PageRank score of a node
r 2 V calculated at iteration i. First, the method initializes all scores with the same
value:

PR r; 0ð Þ ¼ 1=N ð1Þ

where N is the total number of nodes in G. Then, for 0 < i < x, it iterates until the
computation of the score converges or exceeds x, the maximum number of iterations:

PR r; ið Þ ¼ 1� a
N

þ a
X

s2MI rð Þ
PR s; i� 1ð Þ

dO sð Þ ð2Þ

Novel Node Importance Measures to Improve Keyword Search 147

where a is a dumping factor (usually set to 0.85), MI (r) is the set of nodes that have a
link to r and dO (s) is the number of outgoing links from s.

One variant of PageRank uses link weights to give more importance for certain
types of links. The Weighted PageRank PRW is defined as:

PRW r; 0ð Þ ¼ 1=N ð3Þ

PRW r; ið Þ ¼ 1� a
N

þ a
X

s2MI rð Þ
PRW s; i� 1ð Þ

dO sð Þ � w r; sð Þ ð4Þ

where w(r, s) is a weight between 0 and 1 of edge (r, s) 2 E.

3.2 The Intuitions Behind InfoRank

Following the intuition that “important things have lots of information about them”
and observing the way that RDF graphs are modeled, we notice that more important
nodes are usually associated with more literals (information) through datatype prop-
erties than less important nodes. As an example, in IMDb, a movie with international
projection, such as Titanic (1997), has 205 literals with trivia, 134 literals with quotes
said by the characters, 180 triples with tags, and so on. In fact, there are a total of 1,297
literals describing the movie Titanic. By contrast, a movie with only national projec-
tion, such as the Brazilian movie O Auto da Compadecida, has only 70 literals. Fur-
thermore, in a multilingual dataset, such as DBpedia, Titanic has the label translated in
many languages (e.g. Japanese, Russian, French, Spanish, etc.), while the Brazilian
movie has the label only in Portuguese and English.

The second intuition that we follow is inspired by PageRank and says that “im-
portant things are surrounded by other important things”. For instance, Titanic has
links through object properties with actors Kate Winslet and Leonardo Dicaprio, which
are also important nodes in the graph. As in [14], we agree that, in RDF graphs, the
direction of an object property does not have the same meaning as a Web hyperlink
since a property is often found in its inverse form (e.g. directedBy/hasDirector). Given
that, we treat an RDF graph as undirected and consider all neighbors of a node (i.e. all
other nodes that have an object property linked to it) when propagating the importance
with PageRank.

We further improve this intuition by introducing a third one that says “few friends
are better than many acquaintances”. As discussed in the introduction, the typical
centrality measures are highly dependent on the degree of the node. In our work, we do
not want to boost (or penalize) the degree importance, but we focus on a strategy that
favors the quality of relations, rather than their quantity, that is, we prefer an approach
that captures the notion that “few important relations (e.g. friends) are better than
many unimportant relations (e.g. acquaintances)”.

148 E. S. Menendez et al.

3.3 Ranking Resources with InfoRank

Let T be a set of RDF triples. Assume that T contains schema information and that it is
possible to identify the set C of classes defined in T, the set P of object properties
defined in T, the set L of literals defined in T, and the set R of blank nodes and (class)
instances defined in T, i.e., r 2 R iff there is a triple (r, rdf:type, c) 2 T such that c 2 C.

Instance Informativeness. The level of “informativeness” of a resource measures
how informative the resource is. As discussed in the previous section, information is
represented as literals in RDF graphs. However, data resources (instances) usually have
more literals than metadata resources (classes and properties). Hence, we first focus our
strategy on the informativeness of instances.

The informativeness of an instance r 2 R, denoted IW(r), is defined as the number of
triples of the form (r, p, v) 2 T, where v 2 L.

Ranking Schema Elements. Continuing our strategy based on instance informative-
ness, we say that “important classes usually have informative instances” and “important
properties are usually those connecting informative instances”.

The InfoRank of a class c 2 C, denoted IR(c), is defined as the maximum value of
IW(r) of all instances of class c. We will rank classes by descending order of IR(c).

Likewise, the InfoRank of an object property p 2 P, denoted IR(p), is defined as the
maximum value of IW(r) + IW(s) of all triples of the form (r, p, s) 2 T. We will rank
object properties by descending order of IR(p).

Ranking Data. Note that we used only Intuition I in our strategies to rank metadata
resources. However, we propose a combination of the three intuitions to rank data, that
is, the instances and blank nodes.

Let r, s 2 R and p 2 P. Assume that (r, p, s) 2 T or (s, p, r) 2 T, that is, ignore the
direction of the object property p. The normalized weight of (r, p), denoted W(r, p), is
defined as:

W r; pð Þ ¼ IR pð Þ=
X

q2P and r;q;tð Þ2T or t;q;rð Þ2Tð Þ IR qð Þ ð5Þ

Note that the normalized weightW(r, p) does not depend on “who” the neighbors of
v are, but it depends only on how they are connected to r, that is, it considers the
InfoRank scores of properties p and q.

Then, we compute PageRank using W(r, p) as the edge weights:

PRW r; ið Þ ¼ 1� a
N

þ a
X

r;p;sð Þ2T or s;p;rð Þ2T PRW s; i� 1ð Þ �W r; pð Þ ð6Þ

where, as in Eq. (2), N is the total number of nodes in G and a is a dumping factor.
The InfoRank score of an instance r, denoted IR(r), is the final PageRank score of

r after x iterations, PRW(r, x), weighted by the informativeness of r, IW(r):

IR rð Þ ¼ PRW r; xð Þ � IW rð Þ ð7Þ

Novel Node Importance Measures to Improve Keyword Search 149

4 The QUIRA Keyword Search System

4.1 Overview

Recall that, given a graph G and a set M of nodes of G, a Steiner tree S for M is a tree
whose nodes contain all nodes in M (and perhaps other nodes of G) and whose edges
are edges of G. The Steiner tree S is minimal iff no other Steiner tree for M has fewer
nodes than S.

As stated in the introduction, an answer of a keyword query over an RDF graph
G is one or more minimal subgraphs that cover all keywords. Hence, a naïve approach
to address the three main tasks would be: (1) find a set M of nodes of G that match all
keywords; (2) find a minimal Steiner tree for M; (3) if there is more than one answer,
rank the answers according to some criterion. Note that computing a Steiner tree avoids
including unnecessary edges to connect the nodes.

There are two main problems with this approach that make it infeasible for most
RDF graphs: (1) the set of nodes that match the keywords can be large; and (2) com-
puting a minimal Steiner tree is an NP-complete problem.

Therefore, in previous work [13, 20], we described a tool, called QUIOW, that
explores schema information to minimize these problems. The schema information is
organized as a schema graph, as illustrated in Fig. 1. Without going into the details, in
the first stage, QUIOW groups the keyword matches around classes, that is, QUIOW
identities the properties whose values match keywords and creates groups of properties
that have the same class as domain. In the second stage, QUIOW generates a Steiner
tree for the set of classes found in the first stage over the schema graph (which is
typically a small graph). In the third stage, QUIOW synthesizes a SPARQL query using
the Steiner tree. Finally, the triplestore processes the SPARQL query synthesized to
actually compute an answer to the keyword query.

In this work, we maintain the idea of grouping the matches in classes/properties to
generate SPARQL templates. However, we completely reformulated the strategy to
compute the templates to take advantage of InfoRank, as described in what follows.

4.2 Finding Pieces of Information in an RDF Graph

In this section, we present a greedy algorithm that takes keywords as input and returns
the best set of class/property groups, as defined in Sect. 4.1.

Table 1 shows examples of groups in an IMDb dataset. The count column indicates
that there are five movies named Titanic, one actress named Kate Winslet and four
Episodes also named Kate Winslet. The info_score column is the aggregation of the
InfoRank scores of all resources of a given group. For instance, all resources of group
u1 sum up to 0.0099 of InfoRank scores. Finally, group u4 indicates that there is an
rdfs:Class labeled Movie with score 1,468. We define a function accum_score(J, v)
that simply counts the number of keywords from a set of keywords J = {j1, j2, …, jn}
that occurs in a literal value v. As an example, consider the keyword query K = {kate,
winslet, titanic} and the data in Table 1. The non-zero accum scores are:

150 E. S. Menendez et al.

accum score kate;winslet; titanicf g;Kate Winsletð Þ ¼ 2
accum score kate;winslet; titanicf g; Titanicð Þ ¼ 1

Algorithm 1 presents an overview of a greedy strategy to obtain the best groups that
satisfy a keyword query K. The strategy first gives priority to class matches. Then, it
searches the groups looking for properties and data matches (e.g. Titanic, Kate
Winslet).

Input: A keyword query K and the set of groups U
Output: A subset of groups M
J = all keywords in K
M = empty list of groups
While J is not empty

u = find in U a class group with the highest accum_score given J, use the highest in-
fo_score to disambiguate
If a match is found

add u to M, remove the keywords matched in u from J
Else

u = find in U a property or data group (i.e. class is not rdfs:Class) with the highest
accum_score given J, use the highest sum_score to disambiguate

If a match is found
add u to M, remove the keywords matched in u from J

If J did not change
break

Algorithm 1. Greedy Strategy to return the best set of groups that match a Keyword Query.

As an example of the algorithm, consider again K = {kate, winslet, titanic}. In the
first iteration of the while loop, J = {kate, winslet, titanic} and the algorithm chooses
group u2. Although groups u2 and u3 have the same accum_score for J, the info_score
is higher for u2. In the second iteration, J = {titanic} and the algorithm chooses group
u1, and the loop ends. At the end of this step, we generate SPARQL templates that
satisfy the groups retrieved in Algorithm 1. The resulting templates for K = {kate,
winslet, titanic} are shown in Table 2.

Table 1. Example of groups from IMDb.

Group Class Property Value info_score Count

u1 imdb:Movie rdfs:label Titanic 0.0099 5
u2 imdb:Actress rdfs:label Kate Winslet 0.0010 1
u3 imdb:Episode rdfs:label Kate Winslet 0.0000068 4
u4 rdfs:Class rdfs:label Movie 1,468 1

Novel Node Importance Measures to Improve Keyword Search 151

4.3 Connecting and Ranking

Connecting. The second task of the RDF-KwS process, i.e., connecting pieces of
information, consists of finding a minimal Steiner tree between the classes of the groups
retrieved in the first task. The Steiner tree is computed over the schema graph, a
representation of the schema as in Fig. 1. Since the number of classes in an RDF
Dataset is usually not large, it is feasible to compute a minimal Steiner tree.

Completing our templates example presented in Table 2, this step generates one
more template (?r1 ?p1 ?r2), which says that a movie ?r1 and an actress ?r2 are
connected through some property ?p1.

Ranking. In the third task, i.e., ranking the results, we materialize triples together with
the InfoRank score (e.g. :Kate_Winslet :inforank “0.0010”). Hence, we can generate
templates for these triples (e.g. ?r1 :inforank ?s1, ?r2 :inforank ?s2), and synthesize a
SPARQL query with an ORDER BY clause that aggregates the scores of all instances from
the templates. Finally, the following SPARQL query is synthesized for K = {kate,
winslet, titanic}.

Fig. 1. IMDb schema.

Table 2. Templates generated for K = {kate, winslet, titanic}.

Template Interpretation

?r1 rdf:type :Movie. ?r1 rdfs:label ?v1.
filter(contains(?v1, ‘titanic’))

All movies with label titanic

?r2 rdf:type :Actress. ?r2 rdfs:label ?v2.
filter(contains(?v2, ‘kate winslet’))

All actresses with label kate winslet

152 E. S. Menendez et al.

select * where {
?r1 rdf:type :Movie . ?r1 rdfs:label ?v1 . filter(contains(?v1, ‘titanic’))
?r2 rdf:type:Actress . ?r2 rdfs:label ?v2 . filter(contains(?v2, ‘kate winslet’))
?r1 ?p1 ?r2 . ?r1 :inforank ?s1 . ?r2 :inforank ?s2 . }

order by desc (?s1 + ?s2)

5 Evaluation

5.1 Setup

In order to evaluate our strategy, we downloaded the relational IMDb dataset (https://
sites.google.com/site/ontopiswc13/home/imdb-mo) in MySQL and used Oracle 12c to
transform it to RDF via R2RML. We used an RDF dump of MusicBrainz as our second
dataset; however, since the given dump was incomplete, we enriched it with DBpedia
information. The IMDb and MusicBrainz datasets have around 200 million triples.
Figure 1 shows an overview of the schemas.

All experiments were conducted using a RESTful Web application developed in
Java. The app ran on a macOS Sierra, 1,7 GHz Intel Core i5 RAM 4 GB. To store and
manage the RDF data, we used Oracle 12c, running on a 2x deca-core Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40 GHz, 128 GB RAM, 32 KB Cache L1.

The datasets, benchmarks, and a detailed description of the experiments are
available at the QUIRA Web page (https://sites.google.com/view/quira/).

5.2 Ranking Experiments

This section presents experiments to assess the potential of InfoRank as an importance
measure to be used in a keyword search system over RDF graphs.

Table 3 presents the InfoRank score and the node degree of several classes and
properties (i.e., metadata) from IMDb. We argue that, in an IMDb dataset, the most
important classes are those that represent works (movies, TV series, etc.) and people
(actors, actresses, directors, etc.), which is the result that InfoRank gives. Note that if
we ranked the results using the degree, the order of classes would be Character, Person,
Work; however, a typical IMDb user is likely to be more interested in movies and other
type of works rather than in characters. Furthermore, the top properties are those
connecting movies, such as follows/followed_by, which indicates that a movie is a
sequence of another.

Novel Node Importance Measures to Improve Keyword Search 153

https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://sites.google.com/view/quira/

Table 4 shows the top 10 instances induced by PageRank and InfoRank. With
PageRank, the top instances are highly connected nodes, such as countries, language
and genres. However, we argue that, when considering a movies dataset, we would
expect as top instances popular movies, series, actors, actresses, etc.

To indicate popularity, Table 4 also shows the users’ rating of works extracted
from the IMDb Web site. In the case of a person, we extracted the most rated work that
she stared, directed, produced, etc. InfoRank results show highly rated work/person,
such as Star Wars, The Wizard of Oz, Titanic and Morgan Freeman. The results show
some TV Series with lower rates because they have a considerable level of informa-
tiveness (General Hospital – 375 literals; Days of Our Lives – 232 literals), and also a
high degree through property :episode_of_series, since they have been on the air for a
long time. Likewise, the results show some hosts from TV Shows that also have been
on the air for a long time. Although InfoRank results show a few less popular
works/people, we argue that InfoRank results correspond better to what users would
expect in an IMDb dataset.

A similar scenario happens with MusicBrainz, in which the PageRank top instances
also include countries. However, the InfoRank top instances include famous musicians,
such as Elvis Presley, Mozart, Beethoven, Bob Dylan, etc.

Table 3. IMDb metadata ranking computed by InfoRank.

Class Info Degree Property Info Degree

1 imdb:Work 1,619 2,410,207 imdb:follows 2,538 332,551
2 imdb:Person 1,482 3,913,018 imdb:followed_by 2,538 332,548
3 imdb:Character 3 19,419,994 imdb:edited_from 2,538 14,103
4 imdb:Company 3 224,971 imdb:edited_into 2,538 14,103
5 imdb:Language 2 364 imdb:referenced_in 2,509 223,535
6 imdb:Country 2 319 imdb:references 2,509 223,532
7 imdb:Genre 2 46 ….

Table 4. IMDb top 10 instances induced by PageRank and InfoRank.

PageRank InfoRank
Instance Class User

rating
Instance Class User

rating

1 English Language – Star Wars Movie 8.6
2 USA Country – Dolly Parton Actress 6.8
3 Short Genre – Jay Leno Actor 5.3
4 Drama Genre – Morgan Freeman Actor 8.6
5 Comedy Genre – The Wizard of Oz Movie 8.0
6 Documentary Genre – General Hospital Series 6.7
7 UK Country – Days of Our Lives Series 5.3
8 Spanish Language – Bob Barker Actor 7.7
9 German Language – Titanic Movie 7.8
10 France Country – Around the World in

80 Days
Movie 6.8

154 E. S. Menendez et al.

5.3 Keyword Search Experiments

To evaluate the impact of using InfoRank in a keyword search system over IMDb, we
used all 50 queries (adapted to the RDF schema) from Coffman’s IMDb Benchmark
[8]. We ran versions of QUIRA using a variety of ranking measures. Table 5 presents
the Mean Average Precision (MAP) [32], the total elapsed time and the number of
iterations needed to compute the measures.

The measures in Table 5 include InfoRank, a version of PageRank considering the
graph as undirected, the HITS Authorities, which prioritizes nodes with high in-degree,
and HITS Hubs, which prioritizes nodes with high out-degree. We also include the
Degree-decoupled (DD) PageRank [22] with a penalization parameter of 0.5. Note that
we compared InfoRank neither with any approach that uses manually weighted links
due to their subjectivity nor with approaches that learn weights from user feedback
since we face the cold start problem. Moreover, we eliminated measures that are not
computed efficiently in large graphs, such as the closeness centrality.

Analyzing the results (not shown here for brevity), we noted that PageRank and
HITS Authorities fail when choosing class Character, instead of class Work, in queries
where a Steiner tree needs to be computed. They also fail in the ranking step for some
keyword queries due to the high dependency on the degree. For example, Fig. 2 shows
the results for PageRank and InfoRank for the query “actor terminator”, whose
expected results are the movies stared by Arnold Schwarzenegger. PageRank ranks first
the voice actor Jim Cummings because his node has a high degree, since voice actors
are usually cast several times, whereas InfoRank correctly returns the movies Termi-
nator 2: Judgment Day and The Terminator starred by Arnold Schwarzenegger.

Table 5. IMDb results.

Time (min) Iterations MAP

InfoRank 28 24 0.82
PageRank 27 30 0.76
HITS Authorities 25 12 0.73
HITS Hubs 25 12 0.30
DD PageRank p = 0, 5 38 37 0.54

Fig. 2. Result for query K = {actor, terminator} in PageRank and InfoRank.

Novel Node Importance Measures to Improve Keyword Search 155

The HITS Hubs fails in all queries that refer to a person (e.g. Denzel Washington)
since instances of class Person do not have outgoing edges. Furthermore, the Degree
Decoupled (DD) PageRank fails because it penalizes instances with a high degree,
whereas many important instances (e.g. Star Wars) have a high degree.

To summarize, InfoRank achieves the best MAP result in Coffman’s IMDb
Benchmark queries, since it successfully finds a balance between degree and infor-
mativeness. Furthermore, Table 5 indicates that these type of centrality measures,
based on the Power Iteration method, can be computed in a feasible time.

Finally, we used 25 queries from QALD-2 (https://github.com/ag-sc/QALD) to
evaluate the impact of InfoRank in a keyword search system over MusicBrainz.
InfoRank achieved a MAP of 0.80 and PageRank a MAP of 0.75. For instance,
PageRank gives a priority to music albums that have a higher number of tracks, since
more tracks imply more links. However, we argue that the number of tracks is not
necessarily related to the importance of an album.

6 Conclusions and Future Work

In this paper, we addressed two problems: (1) how to define importance measures in
RDF graphs; (2) how to use these measures to help compute and rank answers of
keyword queries over RDF graphs. To solve these problems, we proposed a novel
family of measures, called InfoRank, and a keyword search system, called QUIRA, for
RDF graphs. QUIRA uses the proposed importance measures: to narrow the retrieved
pieces of information; to choose the best paths to connect the resources (nodes) in a
graph; and to rank the retrieved answers. We concluded with experiments that show
that the proposed solution improves the quality of results in popular keyword search
benchmarks.

As future work, we plan to use InfoRank to improve Entity Linking and Entity
Summarization solutions, to evaluate QUIRA with larger schemas, and to test ranking
functions that take advantage of domain knowledge.

Acknowledgments. This work was partly funded by CAPES under grant 88881.134081/2016-
01, by CNPq under grants 153908/2015-7, 302303/2017-0 and by FAPERJ under grant E-26-
202.818/2017.

References

1. Agarwal, A., et al.: Learning to rank networked entities. In: Proceedings 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -
KDD 2006, pp. 14–23 (2006)

2. Agrawal, S., et al.: DBXplorer: a system for keyword-based search over relational databases.
In: Proceedings 18th International Conference Data Engineering, pp. 5–16 (2002)

3. Balmin, A., et al.: ObjectRank: authority-based keyword search in databases. In:
Proceedings 13th International Conference on Very Large Data Bases - Volume 30,
pp. 564–575 (2004)

156 E. S. Menendez et al.

https://github.com/ag-sc/QALD

4. Bast, H., et al.: Semantic Search on Text and Knowledge Bases. Foundation and Trends® in
Information Retrieval, vol. 10, no. 2–3, pp. 119–271 (2016)

5. Bhalotia, G., et al.: Keyword searching and browsing in databases using BANKS. In:
Proceedings 18th International Conference on Data Engineering, pp. 431–440. IEEE
Computer Society (2002)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30(1–7), 107–117 (1998)

7. Chirita, P.A., et al.: Beagle ++: semantically enhanced searching and ranking on the
desktop. In: The Semantic Web: Research and Applications - ESWC 2006, pp. 348–362
(2006)

8. Coffman, J., Weaver, A.C.: A framework for evaluating database keyword search strategies.
In: Proceedings 19th ACM International Conference on Information and Knowledge
Management, pp. 729–738 (2010)

9. De Oliveira, P., et al.: Ranking Candidate Networks of relations to improve keyword search
over relational databases. In: Proceedings 31st International Conference on Data Engineer-
ing, pp. 399–410 (2015)

10. Ding, L., et al.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings 13th ACM Conference on Information and Knowledge Management - CIKM
2004, pp. 652–659 (2004)

11. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings 20th ACM
International Conference on Information and Knowledge Management - CIKM 2011,
pp. 237–242 (2011)

12. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web data by tensor
decomposition. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_14

13. García, G.M., et al.: RDF Keyword-based query technology meets a real-world data set. In:
Proceedings 20th International Conference on Extending Database Technology (EDBT),
pp. 656–667 (2017)

14. Graves, A., et al.: A method to rank nodes in an RDF graph. In: Proceedings 7th
International Semantic Web Conference, pp. 84–85 (2008)

15. Harth, A., Kinsella, S., Decker, S.: Using naming authority to rank data and ontologies for
web search. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_18

16. He, H., et al.: BLINKS: ranked keyword searches on graphs. In: Proceedings 2007 ACM
International Conference on Management of Data - SIGMOD 2007, pp. 305–316 (2007)

17. Hiemstra, D.: Information retrieval models. In: Information Retrieval: Searching in the 21st
Century, pp. 1–17 (2009)

18. Hogan, A., et al.: ReConRank: a scalable ranking method for semantic web data with
context. In: Proceedings 2nd Workshop on Scalable Semantic Web Knowledge Base System
(2006)

19. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In:
Proceedings 28th International Conference on Very Large Databases, pp. 670–681. Elsevier
(2002)

20. Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H.:
QUIOW: a keyword-based query processing tool for RDF datasets and relational databases.
In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018.
LNCS, vol. 11030, pp. 259–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98812-2_22

21. Kasneci, G., et al.: NAGA: searching and ranking knowledge. In: Proceedings 2008 IEEE
24th International Conference on Data Engineering, pp. 953–962 (2008)

Novel Node Importance Measures to Improve Keyword Search 157

http://dx.doi.org/10.1007/978-3-642-04930-9_14
http://dx.doi.org/10.1007/978-3-642-04930-9_18
http://dx.doi.org/10.1007/978-3-319-98812-2_22
http://dx.doi.org/10.1007/978-3-319-98812-2_22

22. Kim, J.H., et al.: PageRank revisited: on the relationship between node degrees and node
significances in different applications. In: Proceedings 5th International Workshop on
Querying Graph Structured Data at EDBT/ICDT, pp. 1–8 (2016)

23. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604–632 (1999)

24. Komamizu, T., Okumura, S., Amagasa, T., Kitagawa, H.: FORK: feedback-aware
objectrank-based keyword search over linked data. In: Sung, W.K., et al. (eds.) Information
Retrieval Technology AIRS 2017. Lecture Notes in Computer Science, vol. 10648,
pp. 58–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70145-5_5

25. Marx, E., et al.: DBtrends: exploring query logs for ranking RDF data. In: Proceedings 12th
International ACM Conference on Semantic Systems, pp. 9–16 (2016)

26. Mirizzi, R., Ragone, A., Di Noia, T., Di Sciascio, E.: Ranking the linked data: the case of
DBpedia. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol.
6189, pp. 337–354. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13911-
6_23

27. Nie, Z., et al.: Object-level ranking. In: Proceedings 14th International Conference on World
Wide Web - WWW 2005, pp. 567–674 (2005)

28. Oren, E., et al.: Sindice.com: a document-oriented lookup index for open linked data. Int.
J. Metadata Semant. Ontol. 3(1), 37–52 (2008)

29. Park, H., et al.: A link-based ranking algorithm for semantic web resources. J. Database
Manag. 22(1), 1–25 (2011)

30. Roa-Valverde, A.J., Sicilia, M.-A.: A survey of approaches for ranking on the web of data.
Inf. Retr. 17(4), 295–325 (2014)

31. Tran, T., et al.: Top-k exploration of query candidates for efficient keyword search on graph-
shaped (RDF) data. In: Proceedings 25th International Conference on Data Engineering,
pp. 405–416 (2009)

32. Turpin, A., Scholer, F.: User performance versus precision measures for simple search tasks.
In: Proceedings 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 11–18 (2006)

33. Wei, W., et al.: Rational Research model for ranking semantic entities. Inf. Sci. 181(13),
2823–2840 (2011)

34. Yu, J.X., et al.: Keyword Search in Databases. Morgan & Claypool, San Francisco (2010)
35. Yumusak, S., et al.: A short survey of linked data ranking. In: Proceedings 2014 ACM

Southeast Regional Conference on - ACM SE 2014, pp. 1–4 (2014)
36. Zenz, G., et al.: From keywords to semantic queries - Incremental query construction on the

semantic web. Web Semant. Sci. Serv. Agents W.W.W. 7(3), 166–176 (2009)
37. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: adapting keyword query to

semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825,
pp. 694–707. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_50

158 E. S. Menendez et al.

http://dx.doi.org/10.1007/978-3-319-70145-5_5
http://dx.doi.org/10.1007/978-3-642-13911-6_23
http://dx.doi.org/10.1007/978-3-642-13911-6_23
http://dx.doi.org/10.1007/978-3-540-76298-0_50

Querying in a Workload-Aware
Triplestore Based on NoSQL Databases

Luiz Henrique Zambom Santana(B) and Ronaldo dos Santos Mello

Universidade Federal de Santa Catarina, Florianópolis, Brazil
luiz.santana@posgrad.ufsc.br, r.mello@ufsc.br

Abstract. RDF and SPARQL are increasingly used in a broad range of
information management scenarios (e.g., governments, corporations, and
startups). Scalable SPARQL querying has been the main issue for vir-
tually all the recent RDF triplestores. This paper presents WA-RDF, a
middleware that addresses workload-adaptive management of large RDF
graphs. Our middleware not only employs all the most used NoSQL data
models but also provides a novel RDF data partitioning approach based
on a fragmentation strategy that maps RDF data into multiple NoSQL
databases. This workload-aware partitioning scheme provides, in turn,
efficient processing of SPARQL queries over these NoSQL databases.
Our experimental evaluation shows that the solution is promising, out-
performing three recent baselines.

Keywords: RDF · SPARQL · NoSQL · Workload · Triplestore

1 Introduction

In the last decade, RDF, the standardized data model that, along with other
technologies, like RDFS, and SPARQL, grounds the vision of the Semantic Web,
was affected by a wide range of data management problems. The main reason
for that is the current scale of Big Data intensive applications, which generates
very large datasets and need to efficiently store massive RDF graphs that goes
beyond the processing capacities of existing RDF storage systems operating on
a single node. This scenario includes innovations in the frontier of Semantic Web
research fields. For example, semantic technologies can enhance the storage of
moving object trajectories [6], generating huge datasets about traffic, people
behaviour and citizen routine. The scale of this kind of domain raises the need
for new triplestores that can, for instance, take advantage of NoSQL databases
to store and access large volumes of RDF data.

This paper presents WA-RDF, a triplestore composed of a middleware and
multiple NoSQL databases. Our middleware includes a novel RDF data par-
titioning approach with a fragmentation strategy that maps pieces of an RDF
graph into NoSQL databases with different data models. We consider a workload-
aware partitioning approach based on the ideas from Estocada [1] to develop a

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 159–173, 2019.
https://doi.org/10.1007/978-3-030-27618-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_12

160 L. H. Z. Santana and R. dos Santos Mello

multiformat RDF storage that takes into account the query workload to decide
which NoSQL data model is the best fit for each incoming RDF fragment.

The main contributions of this paper are: (i) a workload-aware RDF data
partitioning approach based on the current graph structure and, mainly, on the
typical application queries; (ii) a query processing mechanism that takes advan-
tage of the partitioning approach to define efficient query planning to access
RDF data; (iii) a set of experiments that evaluate our solution against three
baselines (Rainbow [2], ScalaRDF [4] and S2RDF [8]) by considering the NoSQL
databases MongoDB and Neo4J. Our strong point is the ability to process queries
over large RDF graphs stored on multiple NoSQL database servers with a subtle
amount data joining cost. The experimental evaluation shows that our middle-
ware scales well.

The rest of the paper is organized as follows. Section 2 contains the back-
ground and related work. Sections 3 and 4 detail the WA-RDF approach.
Section 5 reports the experimental evaluation and Sect. 6 concludes the paper.

2 Background and Related Work

The most important pillars of this work are the Semantic Web and the NoSQL
databases movement.

Currently, the Semantic Web is defined mainly in terms of well-established
standards for expressing shared meaning, defined by WWW Consortium
(W3C)1, like Resource Description Framework (RDF) and the Simple Protocol
and RDF Query Language (SPARQL). RDF is expressed by triples that define
a relationship between two resources. RDF triples can be modeled as graphs,
where the resources, called subject and object, are vertexes, and the relationship,
called predicate, is a directed edge from the subject to the object. SPARQL
is a query language for searching and retrieving RDF information. The most
important part of a SPARQL query is the triple pattern, which defines the RDF
subject, predicate and object to be searched. Moreover, sets of triple patterns
define Basic Graph Patterns (BGP), being each BGP a function that transforms
the RDF datasets into the answer of a SPARQL query in the form of RDF triples.
Traditionally, SPARQL queries can be categorized into star, chain and complex
queries [8]. These query shapes depend on the location of the variables in the
triple patterns, which can heavily influence the query performance [8].

There are many works that employs NoSQL systems for scalable RDF data
management [5]. Among the recent works, we highlight Rainbow [2] (a polyglot
NoSQL-based triplestore), ScalaRDF [4] (an in-memory solution) and S2RDF
[8] (a scalable query processor). Rainbow is a distributed triplestore that uses
the HBase columnar database and the Redis key-value database (K/V) as dis-
tributed storages to speed up query processing. Based on a previous analysis
of the dataset and the expected workload, it decides on which NoSQL database
the RDF data will be maintained. ScalaRDF introduces a distributed in-memory

1 https://www.w3.org/.

https://www.w3.org/

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 161

triple store that uses Redis as a fault-tolerant and distributed RDF store. Addi-
tionally, S2RDF proposes a Spark -based SPARQL query processor that offers
very fast response time for star queries by extending the vertical partitioning.
Their partition scheme uses the Apache Parquet2 columnar format to store the
triples excluding unnecessary data from query processing. In order to reduce the
intermediate results, S2RDF maintains statistics about the size of the dataset
tables and places the subqueries corresponding to the smallest tables at the
beginning of a joining in order to reduce the intermediate result size.

WA-RDF represents an advance on the state-of-the-art in sense that it is the
first triplestore that considers the typical workload to decide which is the best
NoSQL database to store an RDF triple.

3 WA-RDF

WA-RDF is a workload-aware middleware for storing and querying RDF data
in multiple NoSQL database nodes. Its inspiration comes from Estocada, which
argues that a mixed-model layer, relying on a set of diverse and heterogeneous
data stores, can provide performance advantages for the applications using this
layer. However, Estocada is neither a workload-aware approach nor a storage
solution for RDF data. Another idea we borrowed from Estocada is a fragment-
based storage that is entirely transparent to the client applications. It means
that the data flow in WA-RDF is most of the time in the format of fragments.
Figure 1 gives an overview of the WA-RDF architecture.

Fig. 1. WA-RDF architecture

An RDF-based application issues store or query requests to WA-RDF, which
is normally deployed into multiple dedicated physical nodes. When an RDF-
based Application submits a store request for a triple to the Fragmenter/Mapper

2 https://parquet.apache.org/.

https://parquet.apache.org/

162 L. H. Z. Santana and R. dos Santos Mello

component, WA-RDF expands this triple to a fragment FRDFi and maps FRDFi

to the target NoSQL database(s). This process is performed by the Dataset
Characterizer, which is the main component of our middleware. During a triple
storage, it decides on translating FRDFi to a NoSQL document or graph database
(or both) according to the usual query workload, and indexes it with the aid
of the Indexer component. Once FRDFi is created, the Partitioner registers
this fragment into the Dictionary repository - supported by a NoSQL columnar
database - and stores it in the NoSQL databases.

When an RDF-based Application submits a SPARQL query request, the
Query Evaluator component decomposes this query into subqueries and reports
to the Dataset Characterizer about them. In the following, the Query Evaluator
verifies, with the aid of the Dictionary, the partitions on which the triples for
the query are potentially located. Based on this information, it checks which
triples are available in the Near Cache (a data structure in the main memory of
the server) and the Remote Cache (a remote NoSQL key/value database), and
sends the SPARQL subqueries for the missing triples to the Query Processor
component that, in turn, translates them to graph and/or document NoSQL
database queries. Finally, the Query Processor sends back the query results to
the Query Evaluator that translates them back to RDF triples with the aid of
the Dictionary, and returns the result to the RDF-based Application.

The main purpose of WA-RDF is to store large RDF graphs. In such a sce-
nario, the number of RDF triples can easily surpass the performance capacity
(e.g., disk, memory, CPU) of a single server. When it occurs, WA-RDF dis-
tributes the RDF fragments among potentially many NoSQL nodes. A fragment
is our smallest grain of distribution, i.e., during the partitioning process we deal
with fragments instead of triples. Nevertheless, a query can eventually access
data in multiple partitions, forcing WA-RDF to join data from different par-
titions. Since a join operation is very costly, we try to avoid join processes by
replicating fragments that are potentially part of a join. In short, whenever the
typical workload for a fragment spans more than one partition, our partitioning
scheme replicates the boundary fragments of the partition. Boundary fragments
have triples that are connected to triples present in other partitions.

WA-RDF also provides an RDF indexing strategy. In this context, a tradi-
tional approach is to build indexes for the full set of permutations of each triple
component (subject (S), predicate (P) and object (O)). Although this method
has been designed to accelerate joins by some orders of magnitude, the overhead
with large index space limits its scalability and makes it heavyweight. Hence, we
developed a hashmap index with subject and object keys following the patterns
S-PO and O-PS. In WA-RDF, the Indexer component is responsible to manage
these indexes. It is accessed in two situations: (i) during the fragment creation;
and (ii) to process queries with one triple pattern.

WA-RDF is an evolution of Rendezvous [7]. In this version, all the NoSQL
databases are employed. Also, as stated before, a graph database replaced the
columnar database for triple storage, and the dictionary uses now a columnar
database as the main storage.

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 163

4 The Workload-Aware Approach

A workload-aware approach is the cornerstone of WA-RDF. Based on it, WA-
RDF decides where to place each triple, which influences mapping, partitioning
and querying strategies. In order to be aware of the typical workload, WA-
RDF registers information about the triple patterns of each incoming SPARQL
query. We consider triple patterns because they determine BGPs that define
the query shape (star, chain or complex). For instance, in the SPARQL query
SELECT ?x WHERE { ?x p1 B }, the triple pattern is ?x p1 B. WA-RDF reg-
isters historical information about the queries into two hashmaps, as shown in
the example of Figs. 2(iii) and 3(iii) for the RDF graph (i) of both figures. One
hashmap registers all the chain-shaped queries indexed by the predicate, and the
other one all the star-shaped queries indexed by the subject. For example, Fig. 2
(iii) shows that a typical star query around C containing the triple patterns
C p6 G, C p9 I and C p8 H, and Fig. 3(iii) shows a chain query starting on p1
containing the triple patterns A p1 B, B p5 C and C p6 ?.

Fig. 2. Star fragmentation strategy

Fig. 3. Chain fragmentation strategy

4.1 Storage: Fragmentation and Partitioning

When a new RDF triple tnew = (s, p, o) is inserted through WA-RDF, the
hashmaps are checked to decide if tnew is more frequent on star or chain-shaped
queries. Algorithm 1 shows the workload-based triple storage procedure. The
input parameter is tnew, and it generates an RDF fragment f that is stored
in one or more partitions. In Figs. 2(ii) and 3(ii), for instance, we have two new
triples C p10 M and C p2 D, respectively. An RDF fragment represents an expan-
sion of tnew (called core triple) with all of its neighbors according to a n-hop
replication horizon managed by WA-RDF. The n-hop is used to avoid frequent

164 L. H. Z. Santana and R. dos Santos Mello

joins by wisely expanding the core triple to include its neighbors until a maxi-
mal distance n. The value n is calculated as the mode of the number of triple
patterns in the queries related to tnew. For star queries, it is the most frequent
diameter of the queries. For chain queries, it is the most frequent length of the
queries. For example, the diameter mode for the triple C p10 M is 1 according
to the frequent star-shaped query in the index of Fig. 2(iii).

Algorithm 1: Workload-based triple storage
Input: Triple tnew

1 if !exists(tnew) then
2 f = new Fragment;
3 f.core = tnew;
4 indexSPO.put(tnew.s, tnew);
5 indexOPS.put(tnew.o, tnew);
6 f.shapes = getShapes(tnew);
7 hop = 1;
8 if f.shapes.contains(’chain’) then
9 hop = chainHop(tnew);

10 if f.shapes.contains(’star’) then
11 if(starHop(t) > hop) hop = starHop(tnew);
12 f.triples = expand(tnew, hop, f.shapes);
13 writeToPartitions(f);

14 end

Back to Algorithm 1, if tnew does not exists (line 1), a new RDF fragment
f is generated (line 2) and it initially holds the core triple (line 3). Next, the
core triple is indexed in an SPO and OPS fashion (lines 4 and 5) in order to
reduce response time of queries without joins and facilitate the query expansion.
From line 6 to line 11, Algorithm 1 obtains the shapes and the n-hop size for
the core triple. The n-hop size is defined as the size in terms of triple patterns
of the biggest query in the typical workload for the core triple. It initially finds
the shapes and registers them in the fragment f (line 6). If neither the predicate
nor the subject exist in the chain and star hashmaps, respectively (no shape is
found), it defaults to a star-shaped query with one triple n-hop size (hop = 1)
(line 7). Otherwise, it determines the hop based on the found shapes (lines 8 to
11). In line 12, tnew is expanded to the n-hop size. f.triples is an array with up to
2 positions: one for the chain fragment and another one for the star fragment. In
the example of Fig. 2, the new triple C p10 M is expanded to the RDF fragment
in the left of Fig. 2(iv), and the new triple C p2 D to the RDF fragment in the
top of Fig. 3(iv).

Formally, an RDF Fragment is a set FRDFi = {tRDF } of RDF triples tRDF =
(s, p, o) whose content may overlap with other fragment FRDFj . After the doc-
ument or graph fragment is created, WA-RDF distributes it among potentially
NoSQL nodes (line 13). A NoSQL node can store one or more partitions. We
discuss RDF data partitioning further on in this section.

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 165

It is important to observe here that a core triple can generate two RDF
fragments (graph and document). It happens when the subject of this core triple
is in the star hashmap and its predicate is in the chain hashmap at the same time.
If an RDF fragment is translated to a document fragment, we have a mapping to
a JSON document and it is stored into a NoSQL document database. If an RDF
fragment is translated to a graph fragment, we have a mapping to a NoSQL
graph database.

A document fragment is a tuple fdf = (kd, A) where fdf .kd is the JSON
document key and fdf .A = {(kα : v)} is a set of attributes, being kα the attribute
key and v a value whose domain can be atomic, a list, a set or a tuple. In short,
the core triple tcore in the RDF fragment FRDFi is mapped to a document
whose key is tcore.s, and each outgoing predicate from the subject becomes a
document attribute with a key tcore.p. If FRDFi is 1-hop, the attribute value
of each outgoing predicate is the object tcore.o reached from it. Otherwise, the
predicate value is an inner document that maintains the target object as the
inner document key, and its outgoing predicates as attributes. If any of these
outgoing predicates is, in turn, an n-hop, n > 1, the generation of other inner
documents proceeds recursively. Figure 2(iv) illustrates an RDF fragment (left)
and its corresponding document fragment (right).

A graph fragment is a triple fgf = (sgf, T, ogf) where sgf is a vertex repre-
senting the first subject of a chain, ogf is a vertex representing the last object
of a chain, and T = {tn} denotes an edge that holds a set of triples as property,
i.e., the intermediary triples between sgf and ogf , including the object of the
first triple and the subject of the last triple. A graph fragment summarizes a
chain of triples by transforming this chain into a triple where the subject of the
first triple and the object of the last triple are mapped to two vertexes, and the
edge between these two vertexes is created with a property that maintains all
the triples of the chain. In Fig. 3(iv) we see an RDF fragment (top) and a graph
fragment obtained from it (bottom).

We now explain the partitioning strategy of WA-RDF. Given the RDF graph
of Fig. 4 (the resulting graph after the storage of the triples C p10 M and C p2 D
into the graph of Figs. 2(i) and 3(i)), the fragments are stored in document
partitions (for instance, P1) and/or in graph partitions (for instance, P2 and
P3). In WA-RDF, a fragment is the finest unit for a partition. As defined in the
following, a partition is a set of fragments stored into the same physical NoSQL
node, and a fragment can be replicated in multiple partitions.

An RDF Partition Pm of an RDF graph G, such that G ⊆ P1 ∪ P2 ∪ ...Pn,
is a set of RDF fragments Pm = {FRDFi}, being not required that Pm ∩ Pt =
∅, for m �= t. Also, given SP = {P1, P2, ..., Pn} the set of RDF partitions, the
partition boundary BPi

of a partition Pi ⊂ SP is the set of RDF fragments
BPi

= FbP1 ∪ FbP2 ... ∪ FbPn
, where FbPk

⊂ Pk for any k. Each FbPi
∈ BPi

has
one or more RDF triples tiFPi

= (si, pi, oi) where oi = sj , being sj the subject
of any other triple tjFPj

of a partition Pj where tjFPj
= (sj , pj , oj).

The Dictionary shown in Fig. 4 registers each fragment location. It holds
three hashsets for each partition to keep track of the RDF elements stored in

166 L. H. Z. Santana and R. dos Santos Mello

Fig. 4. Fragment partitioning

each partition (represented in the tables P1 Fragments and P2 Fragments), so
during a query request we can avoid accessing unnecessary partitions that cannot
answer this query. If a WA-RDF node manages more than one partition of a
NoSQL database type, in face of a new core triple we have to decide which
is the best partition to store its fragments. For doing so, WA-RDF finds out
the typical workload for the triples that belong to the fragment generated by
the core triple. With this information, we can query the partition sets in the
Dictionary to verify in which partition this fragment can be more useful (this
is represented by the line 13 of Algorithm 1) in sense that joins outside the
fragment can be answered within a single partition. In Fig. 4, the size n = 1 for
boundary replication repeats the fragment with core triple C p10 D in partitions
P1 and P2.

Algorithm 2 presents an overview of the query planning and partition pro-
cesses. The input is the set of triple patterns from the query and the output is
the result set R. If the query has only one triple pattern, the result is retrieved
from SPO and OPS indexes (lines 1 and 2). Otherwise, Algorithm2 looks for the
shapes of the query to define its execution plan. Firstly (lines 4 to 6), WA-RDF
loads the triple patterns into two multilevel hash tables mhtSPO and mhtOPS
in order to speedup the further steps. Then, it looks for S-S star shapes (lines
11 to 14), O-O star shapes (lines 15 to 18) and chains (lines 20 to 26). The star
shapes are identified when a subject has more than 2 entries in the mhtSPO
(line 11), or an object have more than 2 entries on the mhtOPS (line 15). In
this case, it expands the star shape with all the entries from the multilevel hash
tables, registers the results in the star hashmap and add it to the query execu-
tion plan stored into the set stars that will be later translated to the document
database query language (line 28). The triple patterns that do not define star
shapes are expanded to chains (line 20). If the expanded chain has size 1 (i.e.,
the triple pattern itself), the indexes are accessed to get the result triples (line
22 and 23). Otherwise, the expanded chain is registered in the chain hashmap
and added to the query execution plan stored into the set chains, which is later
translated to the graph database query language (line 29). Finally, with the aid
of the Dictionary, after the stars and chains sets are processed by the document
and graph databases, the algorithm returns the result set R (line 30).

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 167

Algorithm 2: Workload-based triple querying
Input: SPARQL query triple patterns = {tp1, tp2, ..., tpn}, where

tpi = (si, pi, oi)
Output: Result set R = {t1, t2, ..., tm}

1 if n == 1 then
2 R.add(getFromIndex(tp1));
3 else
4 for i = 1 to n do
5 mhtSPO.put(si, tpi);
6 mhtOPS.put(oi, tpi);

7 end
8 stars = {};
9 chains = {};

10 for i = 1 to n do
11 if mhtSPO.get(si).size() > 2 then
12 expandedStar = expandSubject(mhtSPO.get(si));
13 register(expandedStar, ’star’, expandedStar.hop);
14 stars.add(expandedStar);

15 else if mhtOPS.get(oi).size() > 2 then
16 expandedStar = expandObject(mhtOPS.get(oi));
17 register(expandedStar, ’star’, expandedStar.hop);
18 stars.add(expandedStar);

19 else
20 expandedChain = expandChain(tpi);
21 if expandedChain.horizon==1 then
22 R.add(indexSPO.get(si));
23 R.add(indexOPS.get(oi));

24 else
25 register(expandedChain, ’chain’, expandedChain.hop);
26 chains.add(expandedChain);

27 end
28 R.add(readFromDocument(stars));
29 R.add(readFromGraph(chains));

30 return R;

4.2 Query Processing

From a performance point of view, the most important task accomplished by
WA-RDF is the query processing. The queries analyzed by the Query Evaluator
component are processed by the Query Processor component, which determines
the best way to read data from the NoSQL databases.

The Query Processor usually has many options to process a query. Even so,
its main strategy is to foster the early execution of triples with low selectivity to
reduce the number of intermediate results and, consequently, to boost the query
performance. Our work focuses on selectivity estimation of single BGPs based
on statistics of the queried data.

168 L. H. Z. Santana and R. dos Santos Mello

Suppose, for example, the query Q in the following. It could be decomposed
into BGPs that define star queries where ?x and ?y are the star shape centers,
or BGPs that define chain queries that starts in ?x, follows to ?y and then goes
to other nodes. However, during the query processing we have to decide if the
process first execute one of the star or chain queries, as there are dependencies
between the queries.

Q: SELECT ?x WHERE { ?x p1 ?y . ?x p2 ?z .
?x p3 ?w . ?y p5 ?k . ?y p6 G . ?k p7 ?l . ?l p8 H . ?l p8 J }
Suppose, for example, that the star-shaped BGP ?x p1 ?y . ?x p2 ?z .
?x p3 ?w potentially returns 100 triples and the chain-shaped BGP ?x p1 ?y .
?y p5 ?k . ?k p7 l . ?l p8 J returns only 10 triples. In this case, we would
process first the chain-shaped BGP.

In short, the selectivity estimation is the number of triples that is returned
for each BGP. This number depends on the shape of the query. For star shapes,
it is calculated by the number of times that the center of the star (subject or
object) is present in the Dictionary. For chain shapes, it is calculated as how
many times the predicates of the chain are presented in the chain.

The selectivity is the input for the query translation processes accomplished
by the Query Processor component into the target databases. The star queries
(O-O or S-S joins) are converted to queries over NoSQL document databases. For
instance, the star queries Q1 (O-O) and Q2 (S-S) in the following are converted
to the access methods D1 and D2, respectively (MongoDB NoSQL database
syntax). The $exists function of MongoDB filters the JSON documents that
have all the predicates of each query. In D2, we also filter by the subject M.

Q1: SELECT ?x WHERE {x? p5 y? . x? p2 z? .}
Q2: SELECT ?x WHERE {x? p9 y? . M p10 y? .}

D1: db.partition1.find({p5:{$exists:true},
p2:{$exists:true}}})
D2: db.partition1.find({p9:{$exists:true},
subject:M}})

The chain queries are converted to queries over NoSQL graph databases.
For example, given the query Q3 in the following, with O-S joins, WA-RDF
translates it to the set of query G1 according to the Cypher3 query language of
the Neo4J NoSQL database.

Q3: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 w?.}

G1: MATCH (f:Fragment)
WHERE ANY(item IN f.p WHERE item = p1 OR
item = p2 OR item = p3)
RETURN p

3 https://neo4j.com/developer/cypher-query-language/.

https://neo4j.com/developer/cypher-query-language/

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 169

The processing of joins occurs when a query as a whole cannot be executed on
a single partition. In this case, it needs to be decomposed into a set of subqueries,
being each subquery evaluated separately and joined at the WA-RDF node.

For example, if we consider the graph of Fig. 4, the query Q4 in the following
is not able to be completed only querying the partitions P1 or P2 alone. In this
case, the Query Processor divides it into subqueries SQ5 and SQ6, issues it to
the partitions P1 and P2, respectively, and joins the result sets by matching the
predicate p9 (the connection between P1 and P2).

Q4: SELECT ?x WHERE {x? p1 y?. y? p5 z?.
z? p9 w?. w? p11 J.}
SQ5: SELECT ?x WHERE {x? p1 y?. y? p5 z?.
z? p9 w?.}
SQ6: SELECT ?x WHERE {z? p9 w?. w? p11 J.}

As explained before, a complex query is a combination of the star and
chain patterns, potentially connected by simple queries. Query Q5 in the
following is an example, where the BGP x? p1 y? . y? p2 z? . z? p3 w?
is a chain pattern, the BGP z? p5 ?k is a simple query, and the BGP
k? p6 G . k? p7 I . k? p8 H is a star pattern. In this case, the decom-
position process works as follows: (i) it first sorts the triple patterns by subject
and object; (ii) if it is identified a subset with two or more patterns with the
same subject or object, it is considered a star subquery, like the subquery P1
in the following. Then, chains are identified in the remaining query patterns,
i.e., (iii) for each triple pattern, we navigate from object to subject creating
chains, and we pick up the longest chain and consider this a chain subquery, like
subquery P2.

Q5: SELECT ?x WHERE { x? p1 y? . y? p2 z? .
z? p3 w? . z? p5 ?k . k? p6 G . k? p7 I . k? p8 H }
P1: {k? p6 G . k? p7 I . k? p8 H }
P2: {x? p1 y? . y? p2 z? . z? p3 w?}
P3: {z? p5 ?k}

We repeat step (iii) until there are no more chains, or there are only simple
patterns, like the subquery P3. Each star and chain subquery is processed sepa-
rately, and the join of the results (along with the simple patterns) is performed at
the WA-RDF node. In case of ambiguity, i.e., a pattern that is presented in more
than one query type, we consider the following priority: (1) subject-based star
query; (2) object-based star query; (3) the longest chain query; and (4) simple
queries. The star queries are processed with high priority for two reasons: star
queries are most common, and the MongoDB translation permits that we query
mostly the document keys, what lets queries over documents much faster when
compared to queries over graphs.

170 L. H. Z. Santana and R. dos Santos Mello

5 Experimental Evaluation

This section presents an evaluation of the proposed approach. The considered
dataset comes from the Lehigh University Benchmark (LUBM) [3], which fea-
tures an ontology for an University domain, synthetic RDF data, and 14 exten-
sional queries representing a variety of properties. In our experiments, we gen-
erate a dataset with 4000 universities. The dataset size is around 100 GB and
contains around 500 million triples. Regarding query complexity, we have 12
queries with joins, all of them having at least one star join, and 6 of them also
having at least one chain join.

We ran experiments for data insertion and data querying to evaluate the
performance and scalability of WA-RDF. WA-RDF was developed using Apache
Jena version 3.2.0 with Java 1.8, and we use MongoDB 3.4.3 and Neo4J 3.2.5
as the document and graph NoSQL databases, respectively, on considering their
maturity as representatives of these NoSQL data models. All the nodes are
Amazon m3.xlarge spot instances4 with 7.5 GB of memory and 1 × 32 SSD
capacity. For all the experiments, the nodes represent the number of MongoDB +
Neo4J servers, always with half of each database. We also create one partition for
each server, and the WA-RDF servers were installed alone in each node. All the
queries were issued from a server in the same network, so the latency between
the client and WA-RDF was inexpressive.

We reproduce the query processing strategies of Rainbow and ScalaRDF
because we could not find the implementation of these baselines in public repos-
itories. To test S2RDF, we use the version found in GitHub5, with small changes
in the source code so we could use LUBM. The machines we use to run Rainbow,
ScalaRDF and S2RDF are similar to the m3.xlarge of WA-RDF. We considered
only one processing server forRainbow and ScalaRDF, and we deployed an Apache
Spark cluster with one master and 3 workers for S2RDF (the same size of our WA-
RDF installation). The baselines were chosen because they hold different strate-
gies: Rainbow also applies multiple databases by using Redis as a cache, ScalaRDF
use a native storage along with Redis, and S2RDF uses Apache Spark.

Table 1 details the ingestion response time for three different triples. LUBM
is a synthetic benchmark based on the educational domain, creating a model and
data simulating a university with students, courses and professors. We first ran
the queries Q1 to Q5 to provide workload information to WA-RDF and, in the
following, we inserted the fragments F1 to F3. The queries and the fragments
are available at Appendix A. F1 presents the insertion of a university. As shown
in Table 1, the fragmentation is faster and only MongoDB was used. F2 presents
the insertion of a Department in the University of F1. During F2 processing,
the fragmentation phase is slower because the triples are expanded to include
the University and, as the relation ub:subOrganizationOf is part of the chain
in query Q5, it is added to Neo4J. F3 inserts a professor that is also a chair of
the department inserted before. It generates fragments for MongoDB and Neo4J
so the fragmentation and partitioning tasks are slower than the other ones.

4 https://aws.amazon.com/ec2/instance-types/.
5 https://github.com/mxhdev/S2RDF BSBM.

https://aws.amazon.com/ec2/instance-types/
https://github.com/mxhdev/S2RDF_BSBM

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 171

Table 1. Detailed ingestion time (ms)

Work F1 F2 F3

WA-RDF - Parsing 9 12 13

WA-RDF - Fragmenting 13 19 23

WA-RDF - Indexing 5 6 4

WA-RDF - Partitioning 24 39 41

WA-RDF - Inserting MongoDB 102 - 204

WA-RDF - Inserting Neo4J - 300 320

WA-RDF total 153 356 605

Rainbow 201 209 198

ScalaRDF 233 253 208

S2RDF 129 197 291

Table 2. Detailed query response time (ms)

Work Q1 Q2 Q3 Q4 Q5

WA-RDF - Parsing 10 13 20 21 19

WA-RDF - Index access 13 14 11 18 15

WA-RDF - Decomposition - 20 35 33 54

WA-RDF - MongoDB - 70 102 123 132

WA-RDF - Neo4J - - - - 302

WA-RDF - Result set creation 5 20 30 40 60

WA-RDF total 28 144 199 233 582

Rainbow 33 162 203 594 1022

ScalaRDF 34 190 182 602 892

S2RDF 27 98 182 493 921

Table 2 details the querying response time for five different triples. The
queries used here were proposed by Guo et al. [3]. For sake of simplicity,
we discuss only a simple, a star, a chain and two complex queries, instead
of all the queries available in LUBM. Q1 is the most basic query, and it is
solved directed by the WA-RDF OPS index. Q2 is a small star-shape query
around X that causes an access to MongoDB. Q3 is composed of two stars
connected by Y. It takes more time to generate the result set because some
triples have to be cleaned. Q4 is a big star composed of five BGPs. However, it
is very fast to be processed by WA-RDF because we can solve it with only
one MongoDB access. Q5 is a complex query that is decomposed into two
stars and a chain (?X ub:memberOf ?Z . ?Z ub:subOrganizationOf ?Y .
?Y rdf:type ub:University.). It touches Neo4J and avoids multiple calls to
MongoDB. As shown in Table 2, WA-RDF is specially interesting for complex
queries like Q4 and Q5.

172 L. H. Z. Santana and R. dos Santos Mello

6 Conclusion

This paper presents WA-RDF, a workload-aware RDF partitioning and querying
approach for RDF data stored into NoSQL databases. We based it on a middle-
ware that can, according to the typical shape of SPARQL queries, define RDF
fragments and store them into the document and graph NoSQL databases. Our
experiments show that WA-RDF outperformed three recent baselines in terms
of large queries (Q4 and Q5). For most of the other ones, we ran under the aver-
age of the baselines executions. However, there is still room for improvements
regarding data ingestion time and storage size.

In general, WA-RDF is a contribution to the problem of efficient management
of RDF data persisted into NoSQL databases. To the best of our knowledge, this
is the first work that deals with RDF data fragmentation, partitioning and effi-
cient query processing (including optimization issues to deal with intermediate
results) for massive RDF graphs stored in multiple NoSQL databases. Even so,
we have some future works in mind. First of all, we are considering the devel-
opment of an algorithm for triples compression. The lack of this feature lets
WA-RDF uses exponentially more storage space as the n-hop horizon grows.
Moreover, we intend to consider update and delete operations and cluster capa-
bilities in the WA-RDF server. With these improvements, we aim at comparing
it again with the related work. Finally, we intend to evaluate WA-RDF against
other benchmarks, like the Waterloo SPARQL Diversity Test Suite (WatDiv).

A Fragments and Queries

F1 - Insert a university:
University0.edu rdf:type ub:University

F2 - Insert a department for the university:
Department0.University0.edu rdf:type ub:Department
Department0.University0.edu ub:subOrganizationOf University0.edu

F3 - Insert a professor for the department:
Professor0 rdf:type ub:Professor
Professor0 rdf:type ub:Chair
Professor0 ub:worksFor Department0.University0.edu

Q1 - SELECT ?X WHERE {?X rdf:type ub:UndergraduateStudent}

Q2 - SELECT ?X WHERE {?X rdf:type ub:GraduateStudent . ?X
ub:takesCourse Department0.University0.edu GraduateCourse0}

Q3 - SELECT ?X, ?Y WHERE {?X rdf:type ub:Chair . ?Y rdf:type
ub:Department . ?X ub:worksFor ?Y . ?Y ub:subOrganizationOf Univer-
sity0.edu}

Querying in a Workload-Aware Triplestore Based on NoSQL Databases 173

Q4 - SELECT ?X, ?Y1, ?Y2, ?Y3 WHERE {?X rdf:type ub:Professor .
?X ub:worksFor Department0.University0.edu . ?X ub:name ?Y1 . ?X
ub:emailAddress ?Y2 . ?X ub:telephone ?Y3}

Q5 - SELECT ?X, ?Y, ?Z WHERE {?X rdf:type ub:GraduateStudent .?Y
rdf:type ub:University .?Z rdf:type ub:Department .?X ub:memberOf ?Z .?Z
ub:subOrganizationOf ?Y . ?X ub:undergraduateDegreeFrom ?Y}

References

1. Bugiotti, F., Bursztyn, D., Diego, U.C.S., Ileana, I.: Invisible glue: scalable self-
tuning multi-stores. In: CIDR 2015 (2015)

2. Gu, R., Hu, W., Huang, Y.: Rainbow: a distributed and hierarchical RDF triple
store with dynamic scalability. In: Proceedings - 2014 IEEE International Conference
on Big Data, IEEE Big Data 2014, pp. 561–566 (2015). https://doi.org/10.1109/
BigData.2014.7004274

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semant. Sci. Serv. Agents WWW 3(2), 158–182 (2005)

4. Hu, C., Wang, X., Yang, R., Wo, T.: ScalaRDF: a distributed, elastic and scalable
in-memory RDF triple store (2016)

5. Ma, Z., Capretz, M.A.M., Yan, L.: Storing massive Resource Description
Framework (RDF) data: a survey. Knowl. Eng. Rev. 31(04), 391–413 (2016).
https://doi.org/10.1017/S0269888916000217, http://www.journals.cambridge.org/
abstract S0269888916000217

6. Mello, R.D.S., et al.: Master: a multiple aspect view on trajectories. Trans. GIS
(2019)

7. Santana, M.: Workload-aware RDF partitioning and SPARQL query caching for
massive RDF graphs stored in NoSQL databases. In: Brazilian Symposium on
Databases (SBBD), pp. 1–7. SBC (2017)

8. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on Spark. Proc. VLDB Endowment 9(10), 804–815 (2016)

https://doi.org/10.1109/BigData.2014.7004274
https://doi.org/10.1109/BigData.2014.7004274
https://doi.org/10.1017/S0269888916000217
http://www.journals.cambridge.org/abstract_S0269888916000217
http://www.journals.cambridge.org/abstract_S0269888916000217

Reverse Partitioning for SPARQL
Queries: Principles and Performance

Analysis

Jorge Galicia1(B), Amin Mesmoudi1,2, Ladjel Bellatreche1,
and Carlos Ordonez3

1 LIAS/ISAE-ENSMA, Chasseneuil-du-Poitou, France
{jorge.galicia,bellatreche}@ensma.fr
2 Université de Poitiers, Poitiers, France

amin.mesmoudi@univ-poitiers.fr
3 University of Houston, Houston, USA

Abstract. RDF and SPARQL have been widely adopted for modeling
and querying Web objects as facts in the Semantic Web. The amount
of data stored in RDF format has grown significantly pushing RDF pro-
cessing systems to implement efficient query processing techniques in
parallel and distributed architectures. In such environments, the data
partitioning is a pre-condition for query performance. Traditionally, the
graph-based RDF systems store the data using adjacency lists formed
by a vertex and its outgoing edges. Nevertheless, for a certain type
of queries, considering entities and their ongoing edges may speed up
their execution. This point motivates us to present a new partitioning
technique (called reverse partitioning) dedicated to graph-based triple
stores that is complementary to traditional ones. In this paper, we first
detail its main principles by illustrating its functioning. Secondly, the
best classes of queries for which reverse partitioning gives better perfor-
mance are discussed. Finally, we report on intensive experiments using
large RDF datasets that show significant performance improvements for
certain queries in a graph-based triple store and in a relational-based
system.

Keywords: RDF · Partitioning · Distributed computing

1 Introduction

The Semantic Web strives for a worthwhile integration of the data published
on the Web to be exchanged and reused in a variety of applications, communi-
ties and scenarios. Accordingly the W3C promotes standard data formats and
exchange protocols, most fundamentally the Resource Description Framework
(RDF) and SPARQL [11] as its query language. RDF has been widely adopted
for modeling web objects as facts in the semantic web representing data as a

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 174–183, 2019.
https://doi.org/10.1007/978-3-030-27618-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_13

Reverse Partitioning for SPARQL Queries 175

001

”William
Arthur”

003

:Prince William

002

:Princess Diana

004

:Kensingston Palace

006

:Elizabeth II

005

:Prince Charles

008

:Elizabeth Mother

009

”2002-03-30”

007

:Buckingham Palace

has name

has mother ha
s fat

he
r

has grandmother
lives inlives in

has mother

has mother

has grandmother

died on date

Fig. 1. RDF example graph G

collection of triples of the form < subject, property, object >. A collection of
RDF triples form an RDF graph as the one shown in Fig. 1.

With the advent of low-cost distributed architectures and the need to scale to
process datasets with several millions of triples, the number of research projects
on distributed RDF systems1 has significantly increased. Indeed, distributed
computing raises other challenges such as data distribution and execution skew-
ness that are less relevant in centralized architectures. In distributed engines, a
correct data placement strategy is a pre-condition to balance the loads and opti-
mize the performance of the processing system. In this context, many algorithms
have been proposed for specific platforms, applications and constraints.

Most of distributed RDF processing systems are based on the relational
model. These approaches map triples to relations and apply partitioning strate-
gies used in relational databases (e.g. hashing functions, vertical partitions). In
our work, we focus in other kind of systems storing the data as graphs, with-
out a relational database layer. We are interested in systems persisting the data
as adjacency lists. This storage model is embraced in the gStoreD [8] system
and also in systems built on top of key-value stores (e.g. Trinity.RDF [12]). In
this representation, each node (generally the subject) is stored together with its
outgoing edges and 1-hop neighbors. This paper explores adjacency lists storing
each node and its ingoing edges. We name our strategy reverse partitioning and
we show that this representation is useful for queries with specific shapes. Then,
we propose and compare three allocation strategies in a distributed RDF system.

The contributions of this paper are: (i) The introduction of the reverse parti-
tioning main principles firstly by means of a motivating example that is used in
the formalization part to clarify the main concepts, (ii) An experimental study
performed in a graph-based parallel RDF engine to evaluate our complimen-
tary partitioning solution, and (iii) The comparison of distinct physical storing
strategies simulating different partitioning schemas in a relational-based system.

The organization of the paper is as follows. In the next section (Sect. 2) we
provide a motivating example to clarify our reasoning. In Sect. 3 we describe and

1 We use the term distributed RDF systems to denote both parallel and distributed
architectures.

176 J. Galicia et al.

005

:Prince Charles

?q

?y

has mother

has grandmother

(a) Q1 : Known head

002

:Princess Diana

007

:Buckingham Palace

?p

?y

has mother

has grandmother

lives in

(b) Q2 : Unknown head

Fig. 2. SPARQL query graphs

formalize our partitioning approach. Section 4 shows our experimental results.
Section 5 gives the study of related work and we conclude and give future per-
spectives in Sect. 6.

2 Motivating Example

Let us consider the RDF graph G of Fig. 1 stored in an adjacency list as shown
in Fig. 3a. Each element of the list is called an entity class depicting a vertex and
its outgoing edges. Generally, the entity labels (eLabel in Fig. 3a) are indexed to
improve the performance of queries seeking for a specific subject. Consequently,
conventional adjacency lists are adept to answer linear and star queries in which
the subject or head is known as it is the case of Q1 in of Fig. 2a. However, in
many cases the query is not selective on the subject and instead its properties
are given to identify the subject vertex (e.g. Q2 in Fig. 2b). In these types of
queries, the index mentioned previously on subject labels cannot be used to
prune based on a known subject, bearing a full scan of the adjacency list to
solve the SPARQL query.

Queries on which the head of the outgoing edge is unknown (e.g. Q2 in
Fig. 2b) are very frequent when exploring RDF graphs to obtain meaningful
information. A vertex is described by its properties, therefore if a node or a set
of vertices are to be identified, their properties should be clearly stated in the
query. An efficient searching process in the adjacency list should be able to prune
irrelevant results and avoid a full scan of the list when possible. We propose the
creation of a reverse adjacency list (illustrated in Fig. 3b) that stores the graph
and groups its vertices in terms of its ongoing edges.

eID eLabel adjList
003 :Prince William (has mother, :Princess Diana),

(has father,:Prince Charles),
(has grandmother,:Elizabeth II),
(lives in, y:Kensington palace),
(has name, “William Arthur”)

008 :Elizabeth Mother (died on date, ”2002-03-30")
006 :Elizabeth II (has mother, :Elizabeth Mother),

(lives in,Buckingham Palace)
005 :Prince Charles (has mother,:Elizabeth II),

(has grandmother,:Elizabeth Mother)

(a) Regular Adjacency List for G

eID eLabel adjList
006 x:Elizabeth II (has grandmother,

x:Prince William),
(has mother,x:Prince Charles)

008 x:Elizabeth Mother (has grandmother,x:Prince Charles)
, (has mother,x:Elizabeth II)

001 ”William Arthur” (has name, x:Prince William)
007 y:Buckingham Palace (lives in,x:Elizabeth II)
...

(b) Reverse Adjacency List for G

Fig. 3. Adjacency Lists for G

Reverse Partitioning for SPARQL Queries 177

3 Our Approach

In this section we propose the Reverse Partitioning strategy which formalizes
the intuition presented in Sect. 2.

3.1 Preliminaries

As we have previously mentioned, graph-based triple store engines repre-
sent the data on disk using an adjacency list. Each row of the list repre-
sents the subject and its outgoing edges. For example, x:Prince Charles →
{(has mother, x:Elizabeth II), (has grandmother,x:Elizabeth Mother)}
depicts the entity Prince Charles. The Prince Charles’s entity is described by
its properties and objects. Each row of the adjacency list is named a forward
entity.

Definition 2 Forward Entity: A forward entity denoted as
−→
E is the quadruple

< VR, LR,F(VR), LF(VR) >.
−→
E is a subgraph of G where VR, LR are the root and

label respectively, and F(VR) = {< vr, v
′
r > |∃ < vr, v

′
r >∈ E} (i.e. the set of all

out-going edges from vR and vR’s one-hop neighbors in G) as well as the binding
labels LF(VR).

The forward entities are the base partitioning unit of systems like EAGRE
[13] for example. This partitioning strategy is ideal for star-shaped queries, espe-
cially when the head of the query is known and an efficient index is created on
the adjacency list keys. However, when the head of the query is not known, the
entire adjacency list (of size n) must be read to find the query matches.

Definition 3 Backward Entity: A backward entity denoted as
←−
E is the

quadruple < VR, LR,B(VR), LB(VR) >.
←−
E is a subgraph of G where VR, LR are

the root and label respectively, and B(VR) = {< v′
r, vr > |∃ < v′

r, vr >∈ E} (i.e.
the set of all in-going edges from vR and vR’s one-hop neighbors in G) as well
as the binding labels LB(VR).

Backward entities are ideal to solve queries in which the head of the query is
unknown. Similarly to the Forward Entities, we assume that the adjacency list
is efficiently indexed. In this case, a graph matching is easily found exploring the
index (we assumed an O(1) cost).

3.2 Partition Algorithm

In this section we define the partitioning algorithm used to distribute the data
among the nodes of a distributed/parallel system using Forward or Backward
entities as the distribution units. We represent the number of nodes as P . We
consider the following partitioning strategies.

178 J. Galicia et al.

Hashing Strategies: These methods apply a hashing function on the node’s
label LR of

−→
E or

←−
E . The hashing value modulo the number of computer nodes

(P) returns the site to which the adjacency list’s row is assigned. The risk of
applying this method is that since the connectivity between entities is not con-
sidered, two entities (backward or inward) that are highly connected may be
found in two distinct sites making the join operation between them very costly.

Min-Cut Algorithms: In response to the drawback of hashing methods, graph
partitioning methods have been applied to this problem. EAGRE [13] for exam-
ple used the min-cut strategy to distribute forward entities. The first step of
this strategy consists in mapping the forward/backward entities to a weighted
graph that is partitioned with robust heuristics (e.g. METIS [6]). The METIS
heuristic, for example, takes the number of partitions as a parameter; in our
case, the number of partitions equals the number of sites. Other works like [4],
have also explored scalable graph partitioning algorithms on massive graphs. To
reduce the number of nodes to be partitioned, forward and backward entities
are grouped according to their predicates (entity classes).

a b

c

d

e

f
1

2

3

4

5

(a) Example graph G

A
3

B
1

C
1

1

1

(b) Forward entity graph

B
1

D
1

C
1

F
1

C
1

1

1

1

1

(c) Backward entity graph

Fig. 4. Partition models, P = 2

Definition 4 Entity Class: EC is a set containing only either
−→
E or

←−
E . Two

entities belong to the same entity class set iff they share the same (or almost the
same according to a threshold) set of edge labels LF(VR) or LB(VR).

Let the functions nodes(EC), edges(EC) returning the set of nodes VR and
edges E belonging to all entities in EC respectively.

Definition 5 Compressed Entity Graph: A compressed entity graph denoted
as C(G) = <Vc, wVc

, C(E), wC(E)> is a weighted graph where VC =
{vc|vc is an entity class EC}, wVc

is the node weight equal to the number of
triples contained in EC , C(E) = {< vc, v

′
c > |∃ < vr, v

′
r >∈ edges(vc) where vr ∈

nodes(vc) and v′
r ∈ nodes(v′

c)}, and the weight wC(E) indicates the number of
exchanged tuples.

Reverse Partitioning for SPARQL Queries 179

Definition 6 Reverse Partitioning: The reverse partitioning algorithm con-
sists in applying a partitioning heuristic to the compressed entity graph C(G)
obtained checking the relationships between the backward entities in the RDF
graph.

An example of both, forward and backward entity graphs are shown in Fig. 4.
In Fig. 4b, the weights of the nodes correspond to the number of triples in the
forward entity, and the weighted edges correspond to the number of triples
exchanged between entities. A graph partitioning heuristic creates partitions
that are balanced according to the node’s weights and that cut the least amount
of weighted edges. The Reverse Partitioning heuristic is shown on Fig. 4c.

4 Experimental Evaluation

In this section we evaluate and compare the performance of the Reverse Par-
titioning strategy in different scenarios. The first scenario, detailed in Sect. 4.2,
compares the reverse partitioning strategy with two physical storage approaches
applied by two state of the art systems. The scenario in Sect. 4.3 evaluates the
performance of the reverse partitioning strategy in a distributed graph-based
system.

4.1 Experimental Setup

– Hardware: The scenario described in Sect. 4.2 was performed on a Dell Tower
Precision 3620 running Windows 10. This computer features an Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz processor, 16 GB of main memory and
2TB of hard disk. The experiments on a distributed graph-based triple store
were performed on a 5 machine cluster (i.e. P = 5) connected by a 10 Gbps
Ethernet switch. The cluster runs a 64-bit Linux and each site has a 8 GB
RAM, a processor Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz and 100 GB
of hard disk.

– Software: The reverse partitioning core module is implemented in Scala and
runs in Spark 2.12.2. The translation module from SPARQL to SQL was
implemented in Java and the data were stored on PostreSQL 11. The dis-
tributed version of gStore [8] is the graph-based triple store used to test
partitioning configurations on a cluster.

– Datasets and queries: We tested our approach with the WatDiv framework
for datasets of 1, 10 and 20 million triples. More details are found on Table 1.
For each of these datasets we generated 80 queries (20 of each query type).

4.2 Experiments in a Single-Node Relational Database System

We stored RDF datasets into a relational database using three different strate-
gies: (i) single big table of three columns (subject, predicate, object) similar to

180 J. Galicia et al.

Table 1. Experimental datasets M: millions, #S #O: number of distinct subjects and
objects

Dataset Size (GB) #S #P #O #Backward Entities

Watdiv1M 0.148 52,505 86 105,492 222

Watdiv10M 1.54 521,585 87 1,003,136 587

Watdiv20M 3.28 1,042,785 87 2,473,723 641

RDF-3X’s strategy [7], (ii) vertical partitioning (one table per predicate) similar
to the strategy applied by SW-Store [1] and (iii) applying our reverse partitioning
strategy gathering the data by incoming edges. We evaluated on each schema
the execution time of queries with different forms2. The results are shown in
Fig. 5. Creating vertical partitions on the predicates gives the most performant
execution times for the majority of queries considering that there was not an
intense intermediary indexing strategy as it is the case for RDF-3X. The major
drawback of the vertical partitioning strategy is that the data are not well dis-
tributed in terms of volume. The Reverse Partitioning strategy performs almost
as good as the vertical partitioning, especially when the dataset size is bigger
and exploring a single table becomes more costly. Reverse partitioning has a very
important overhead for queries with patterns in which the subject and object
are unknown.

1 2 3 4 5 6 7 8 9 10 11 12 13* 14* 15*
0
1
2
3
4

Query #

L
o
g
a
ri
tm

ic
e
x
e
c
u
ti
o
n

ti
m

e
(m

s)

BigT

Vertical

Reverse

(a) Watdiv1M

9 10 11 12
0

1,000
2,000
3,000

Query #

E
x
e
c
u
ti
o
n

ti
m

e
(m

s)

(b) Watdiv10M

9 10 11 12
0

0.5

1
·104

Query #

E
x
e
c
u
ti
o
n

ti
m

e
(m

s)

(c) Watdiv20M

Fig. 5. Performance of partitioning configurations in relational based system

2 The tested queries are available in: bit.ly/2VCi6tL.

Reverse Partitioning for SPARQL Queries 181

4.3 Experiments in a Distributed Graph-Based Triple Store

We stored the dataset of 20 million triples in the gStoreD [8] system that allows
to choose among different partitioning strategies. The selected partitioning con-
figurations were: (1) simple hashing on the subject, (2) min-cut algorithm applied
to an entity graph and (3) reverse partitioning strategy.

We configured gStoreD to create the adjacency lists on the triple’s objects.
At query runtime, 7 complex queries did not send any result for both the in-
going and the out-going configurations, 13 queries (11 linear and 2 snowflake)
did not send a result either by the ongoing or the outgoing configuration. Our
final SPARQL query set is composed then of 60 queries (9 linear, 13 complex,
18 snowflake and 20 stars).

Data Distribution: Our results show that the technique that is more efficient
in terms of data skew is hashing the data on the subject that distributes the data
almost evenly. Our reverse partitioning strategy sends almost 29.4% of the data
to one machine but distributes nearly evenly in the four other sites. The min-cut
algorithm on the outgoing edges entities has two sites with 28.7% and 27.3% of
the data, and a site with only 12.5% being the one with the worst performance
in terms of data skewness.

Storage Overhead: Considering that our Reverse Partitioning strategy creates
an adjacency list for the node and its in-going edges, the number of individual
entities stored on the list is greater than the number of entities stored in an
adjacency list of the node and its outgoing edges. Therefore, the V*-Tree3 index
size is larger. The sizes of the hashing, mincut and reverse strategies are 1345,
1246 and 1568 MB respectively. In average compared to the other strategies, the
Reverse Partitioning creates an index 21% larger but that benefits in a much
greater percentage some queries.

Query Performance: In general, the Reverse Partitioning strategy improves
the performance to solve SPARQL queries considerably. The majority of star
queries try to find the head based on the value of its properties, following what
was illustrated in the motivating example of Sect. 2, an inverse adjacency list
will provide a much better performance as proven by our experiments in Fig. 6b.
The 4th and 18th star queries of Fig. 6b are both queries having contrarily to
the majority the variable not located in the center of the star, degrading the
performance of a Reverse Partitioning. With the snowflake queries we confirmed
our intuition that queries having the variable in the center, benefit greatly from
a reverse partitioning strategy.

If the workload of the system is composed only of very complex queries, the
reverse partitioning strategy is not the best option. As shown in Fig. 6d, the
performance of the system is not significantly improved, the cost of storing a

3 bit-based B-Tree index on the subjects and predicates used by gStoreD.

182 J. Galicia et al.

much greater index is not compensated based on the reported performance. We
can represent complex queries as a union of star queries on which the variables
are located on both, the center of star queries, and its on its properties.

5 10
10
15
20
25

Query

E
x
e
c
u
ti
o
n

ti
m

e
in

s

Hash Mincut Reverse

(a) Linear

0 10 20
10
15
20
25

Query

E
x
e
c
u
ti
o
n

ti
m

e
in

s

Hash Mincut Reverse

(b) Star

0 5 10 15
10
15
20
25

Query

E
x
e
c
u
ti
o
n

ti
m

e
in

s

Hash Mincut Reverse

(c) Snowflake

0 5 10 15

15
20
25

Query

E
x
e
c
u
ti
o
n

ti
m

e
in

s

Hash Mincut Reverse

(d) Complex

Fig. 6. Individual query results

5 Related Work

Most of distributed RDF processing systems are dependent on a single parti-
tioning strategy. This strategy relies on how the data are physically stored on
the disk or main memory and also on whether the system is built on top of a
distributed computing platform. A few works have explored RDF partitioning,
[2] for example, proposes a strategyusing the query workload. We classify the
existing systems in three categories:

– Cloud-based: The data distribution is performed by the cloud platform on
which the system is built on. For example SHARD [9] and PigSparql [10].

– Specialized systems: This category considers systems specifically built to pro-
cess RDF. We considered two sub-categories of these systems based on their
processing model: (i) Partitioned-query based: At runtime a SPARQL query is
decomposed into several subqueries such that each subquery is solved locally
on a site and the results are finally aggregated (e.g. TriAD [5]), (ii) Par-
tial query evaluation: contrary of partitioned-query based systems, each site
receives the full SPARQL query and executes it on the local RDF graph
fragment to parallelise the execution (e.g. gStoreD [8]).

– P2P systems: Distributed RDF systems in Peer-to-Peer networks. The sys-
tem 3rdf [3], for instance, is built on top of the 3nuts (p2p network).

Reverse Partitioning for SPARQL Queries 183

6 Conclusions

In this paper we proposed a novel partitioning strategy for graph-based RDF dis-
tributed systems. Our partitioning method, named reverse partitioning, defines
first an adjacency list based on the in-going edges of each node to store the
data. Secondly, the entries in the adjacency list having similar in-going edges
are grouped together and the relations between them are represented in an
undirected weighted graph that is partitioned using graph partitioning heuris-
tics. Experiments confirmed that our partitioning strategy is effective to solve
Linear and Star queries for which the unknown parameters are located in the
center of the star query. Subject hash-based and the min-cut based partitioning
strategies are still more performant to solve a majority of snowflake and com-
plex queries. Our partitioning strategy is therefore complimentary to the ones
already proposed in the literature.

As future perspectives, we consider furthering research in a system that con-
sidering replication to enhance performance and fault-tolerance. Besides, we
acknowledge exploring algorithms to manage highly skewed vertices. Defining
which properties allow breaking groups into smaller pieces is a promising hint.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically parti-
tioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)

2. Al-Ghezi, A.I.A., Wiese, L.: Adaptive workload-based partitioning and replication
for RDF graphs. In: 29th International Conference, DEXA, pp. 250–258 (2018)

3. Ali, L., Janson, T., Lausen, G.: 3rdf: storing and querying RDF data on top of the
3nuts overlay network. In: DEXA, International Workshops, pp. 257–261 (2011)

4. Cabrera, W., Ordonez, C.: Scalable parallel graph algorithms with matrix-vector
multiplication evaluated with queries. Distrib. Parallel Databases 35, 335–362
(2017)

5. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-
nothing RDF engine based on asynchronous message passing. In: SIGMOD, Snow-
bird, UT, USA, 22–27 June, pp. 289–300 (2014)

6. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

7. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

8. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL queries
over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)

9. Rohloff, K., Schantz, R.E.: Clause-iteration with mapreduce to scalably query data-
graphs in the SHARD graph-store. In: DIDC 2011, pp. 35–44 (2011)

10. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: mapping SPARQL
to pig latin. In: Proceedings of SWIM, p. 4 (2011)

11. W3C: RDF 1.1 concepts and abstract syntax (2014). https://www.w3.org/TR/
rdf11-concepts/, https://www.w3.org/TR/rdf-sparql-query/

12. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for
web scale RDF data. PVLDB 6(4), 265–276 (2013)

13. Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: towards scalable I/O efficient
SPARQL query evaluation on the cloud. In: 29th ICDE, pp. 565–576 (2013)

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-sparql-query/

PFed: Recommending Plausible
Federated SPARQL Queries

Florian Hacques, Hala Skaf-Molli(B), Pascal Molli, and Sara E. L. Hassad

LS2N, University of Nantes, Nantes, France
{Hala.Skaf,Pascal.Molli,Sara.elhassad}@univ-nantes.fr

Florian.Hacques@etu.univ-nantes.fr

Abstract. Federated SPARQL queries allow to query multiple inter-
linked datasets hosted by remote SPARQL endpoints. However, finding
federated queries over a growing number of datasets is challenging. In
this paper, we propose PFed, an approach to recommend plausible fed-
erated queries based on real query logs of different datasets. The prob-
lem is not to find similar federated queries, but plausible complementary
queries over different datasets. Starting with a real SPARQL query from
a given log, PFed stretches the query with real queries from different
logs. To prune the research space, PFed proposes semantic summary to
prune the query logs. Experimental results with real logs of DBpedia and
SWDF demonstrate that PFed is able to prune drastically the logs and
recommend plausible federated queries.

Keywords: Semantic web · Federated SPARQL query · Plausible ·
Joinable

1 Introduction

Following the Linked Open Data cloud (LOD) principles many datasets have
been published. Federated SPARQL query engines [1,15] have been developed
to query multiple interlinked datasets hosted by remote SPARQL endpoints.
However, finding federated queries over a growing number of datasets is chal-
lenging. This requires to fully understand the datasets and find potential joins
among them. In this paper, we propose PFed, an original approach to recom-
mend federated queries for end-users. Instead of using datasets to recommend
federated queries, PFed recommends federated queries using query logs of dif-
ferent SPARQL endpoints. This is not a classical recommendation problem. In
recommender systems [2], the problem is to recommend resources (or items) for
users based on similar ones already seen by the users. In PFed, we start with
a SPARQL query from a given log and we stretch this query with real queries
from other existing query logs. The main advantage of using real logs rather than
using datasets is to produce plausible federated queries, i.e. queries that gener-
ated by combining real queries. This is useful, especially for data portal owners
who can recommend federated queries for end-users. Imagine a data portal such
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 184–197, 2019.
https://doi.org/10.1007/978-3-030-27618-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_14

Recommending Plausible SPARQL Federated Queries 185

as Sage1, or LodLaundromat2 hosting thousands of linked datasets. The portal
owner can see that some users are looking for information about “United King-
dom” in DBpedia, others are looking for conferences in SWDF dataset. Using
PFed, the portal owner can suggest to extended conferences with information
about country.

To illustrate, consider queries extracted from real SPARQL query logs of
SWDF (SWDF 2012) and DBpedia (DBpedia 3.5.1)3 presented in Fig. 1.

Fig. 1. SPARQL queries from the logs of SWDF and DBpedia

Consider the Q1S from the log of SWDF, this query can be extended with
the query Q1D from the log of DBpedia. The result is the SPARQL 1.1 federated
Query Q1S1D given in Fig. 2. Q1S1D is generated by joining the variable ?place
of the query Q1S, i.e. the object of the predicate foaf:based near with the variable
?country of the query Q1D, i.e. the subject of the predicates rdfs:label and
dbpedia2:capital. The joined variable ?country has been renamed by ?place, in
the generated query Q1S1D. The execution of this query over a federation of
SWDF and DBpedia produces 1388 results.

The generated query Q1S1D can be recommended as a plausible federated
query. In the same way, we can generate a more complex federated query such as
the query Q2S2D shown in Fig. 2b. Q2S2D is obtained by extending the query
Q2S from the log of SWDF with the query Q2D from the log of DBpedia. The
joining variable ?sameAs is renamed as ?person in Q2S2D.

Recommending plausible federated queries is challenging because the size of
logs. The log of DBpedia contains 217 812 queries, and the log of SWDF contains
64 030 queries [12]. To overcome this problem, we propose a semantic summary
that allows to reduce drastically the size of logs by excluding non joinable queries.
The main contributions of the paper are:

– a new semantic summary for pruning query logs.
– an algorithm to exclude non joinable queries from logs.

1 http://sage.univ-nantes.fr.
2 http://lodlaundromat.org/.
3 All information about logs, and prefixes are available at the project site: https://

github.com/GDD-Nantes/PFed.

http://sage.univ-nantes.fr
http://lodlaundromat.org/
https://github.com/GDD-Nantes/PFed
https://github.com/GDD-Nantes/PFed

186 F. Hacques et al.

Fig. 2. Plausible federated query generated from logs of SWDF and DBpedia in Fig. 1

– an algorithm for generating plausible federated queries using the pruned logs.
– an experimentation using real queries logs of SWDF 2012 and DBpedia 3.5.1.

This paper is organized as follows. Section 2 summarizes related works.
Section 3 details PFed approach and algorithms. Section 4 presents our experi-
mental results. Finally, conclusions and future work are outlined in Sect. 5.

2 Related Work

Many efforts have been done to automatically generate SPARQL queries, either
for individual dataset [4,12] or multiple datasets as Splodge [7] and Fed-
Bench [14]. Federated queries benchmarks have been proposed for evaluating
the performance of federated query engine. Existing benchmark rely either on
hand-crafted queries or on automatically generated ones.

FedBench [14] rely on hand-crafted queries. The datasets of FedBench are
real datasets preselected from the Linked Data Cloud, e.g. Life Science, Cross
domain. FedBench is commonly used for the evaluation of federated query
engines. FedBench is not designed to recommend plausible federated queries
over a federation of SPARQL endpoints. LargeRDFBench [11] attempts to gen-
erate more realistic federated queries. The benchmark comprises a total of 32
queries for SPARQL endpoint federation. Queries are ranging from simple queries
extracted from FedBench queries and large data queries created by the authors
with the help of the expert domain. As FedBench, LargeRDFBench are designed
for preselected datasets and queries are designed for specific domains and cannot
be used for automatic generation of realistic federated queries.

Splodge [7] proposes heuristics for automatic query generation. Splodge gen-
erates only conjunctive queries of triple patterns, i.e., Basic Graph Patterns
(BGP) with bound predicate, unbound subject and unbound object. Other

Recommending Plausible SPARQL Federated Queries 187

SPARQL operators such as FILTER, OPTIONAL are not considered. However,
recent analytical study of large SPARQL query logs [6] shows that 74.83% of
studied queries have JOIN, FILTER and OPTIONAL and only 7.49% have JOIN
alone (conjunctive queries). Consequently, the queries of Splodge cannot reflect
the reality. Feta [8] is a federated query tracker that computes Basic Graph Pat-
terns from a federated log. It supposes the existence of a federated query log.
In this work, we want to build and recommend federated queries rather than
analyzing federated query logs.

Existing approaches of automatic generation of federated queries do not
reflect reality and hand-crafted federated queries are designed for specific
datasets with the purpose to stress the performance of a federated query engine.
Benchmarks are not designed for recommending plausible federated queries.

3 Generation of Plausible Federated Queries

Intuitively, for generating a plausible federated query over n datasets, we propose
to start by combing (joining) the query logs log1 and log2 of two datasets d1 and
d2, respectively. Then, we generate new federated queries by joining the resulting
queries and the log log3 of the dataset d3. We repeat the same process iteratively
until processing the n query logs.

In the following, for simplicity, we restrict our discussion to the case of two
real query logs. Given two queries Q1 and Q2 belong to different query logs, we
want to build a plausible federated query FQ. We call FQ a plausible federated
query because it is composed of two real queries. Our intuition is FQ is more
likely to be a real query than a synthetic one.

3.1 Datasets Capabilities

We can distinguish different type of join combinations: subject-subject or object-
subject leading to different query structures star-shaped, path-shaped, or hybrid
queries [14]. To find joinable predicates, one can rely on the Vocabulary Of
Interlinked Datasets VoID [3]. This vocabulary describes metadata about RDF
datasets and the linkset. A linkset is a collection of RDF links between two
datasets4. An RDF link is an RDF triple whose subject and object are described
in different datasets. This corresponds to the joinable predicates in the exam-
ple of the Fig. 2. However, we cannot use VoID to detect joinable predicates
because a large number of RDF datasets do not provide VoID [16], only 13.65%
of datasets5 (77/564) present a VoID description.

Another solution is to use the capabilities of data sources as defined in Hibis-
cus [13] to check the possible existence of matching. According to [13], the data
summary of a source d ∈ D is the set CA(d) of all capabilities of that source. In
Hibiscus, this summary is used to remove endpoints during the source selection
during federated query processing.
4 https://www.w3.org/TR/void.
5 http://sparqles.ai.wu.ac.at/.

https://www.w3.org/TR/void
http://sparqles.ai.wu.ac.at/

188 F. Hacques et al.

Fig. 3. Sample of authorities and classes summaries of logs of SWDF and DBpedia

Definition 1 (Authority Capability). Given a source d, an authority capa-
bility is a triple (p, SA(d, p), OA(d, p)), which contains (1) a predicate p in d,
(2) the set SA(d, p) of all distinct subject authorities of p in d and (3) the set
OA(d, p) of all distinct object authorities of p in d.

The total number of capabilities of a source is equal to the number
of distinct predicates in it. The definition of the authorities of a sub-
ject or an object relies on the analysis of the Unified Resource Identi-
fier (URI) syntax. The URI syntax consists of a hierarchical sequence of

Recommending Plausible SPARQL Federated Queries 189

Fig. 4. Class Capability for foaf:based near predicate in SWDF

Fig. 5. Possible structures for hybrid federated queries

components referred to as the scheme, authority, path, query, and frag-
ment6. For example, the uri <http://dbpedia.org/ontology/Plant> contains
a schema "http", an authority "dbpedia.org" and a path "ontology/Plant".
To compute the set of capabilities for a source, the first two compo-
nents (path, authority) are combined as the authority of the URI. Figure 3
presents a sample of the summary of SWDF 2012 and DBpedia 3.5.1. For
instance, in Fig. 3a, the first capability of SWDF data source is the predi-
cate foaf:based near, its subject authority is <http://data.semanticweb.org>
and its object authorities are <http://dbpedia.org>, <http://www.w3.org>,
<http://sws.geonames.org>, and <http://data.semanticweb.org>.

Authority summary allows to prune the query logs only if many predi-
cates have different subjects or objects authority. However, this not always the
case, especially for the subject authority. For instance, the majority of sub-
jects of DBpedia have the authority <http://dbpedia.org>, only six predicates
out of 39672 predicates of DBpedia 3.5.1 do not have <http://dbpedia.org>
as a subject authority. Therefore, if a query Q1 in SWDF query log is
joinable with a query Q2 in DBpedia query log on the subject authority

6 URI Syntax Components: https://tools.ietf.org/pdf/rfc3986.pdf.

https://tools.ietf.org/pdf/rfc3986.pdf

190 F. Hacques et al.

<http://dbpedia.org>, then Q1 will be joinable with a large number of queries
in the log of DBpedia. Therefore, for query logs of SWDF and DBpedia, author-
ity summary will prune mostly queries with unbounded predicates.

To further prune the log, we define new data summary that considers seman-
tic of subjects and objects for finding joinable predicates. Intuitively, a subject
or an object from one dataset could be joinable with a subject or object from
another dataset, if they share some common types. More precisely, we define a
new summary called Class summary. A class summary is a set of classes capa-
bilities.

Definition 2 (Class Capability). Given a source d, a class capability is a
triple (p, SC(d, p), OC(d, p)), which contains (1) a predicate p in d, (2) the set
SC(d, p) of all distinct subject classes of p in d and (3) the set OA(d, p) of all
distinct object classes of p in d.

Classes capabilities can be computed using SPARQL queries. But since entities
are reused across datasets, types of the subjects and objects for predicates maybe
not defined locally. Therefore, we need to perform a SPARQL federated query to
compute classes capabilities. We use only the direct classes of subjects and objects
to find common classes, we do not use inferences because schemas information are
not always available [9], and we restrict the computation to only used datasets.
For instance, to compute the object classes of the predicate foaf:based near, we
rely only on SWDF and DBpedia. Figures 3c and d present classes summaries for
SWDF and DBpedia, respectively. Figure 4 presents the SPARQL query for com-
puting the Class Capability of foaf:based near predicate in SWDF.

3.2 Pruning Query Logs

Based on authorities summaries and classes summaries, we can prune the logs
of corresponding datasets by retaining only joinable queries.

Definition 3 (Joinable Queries). Let D be a set of distinct data sources,
d1, d2 ∈ D. Let log1 and log2 are the real query log of d1 and d2, respectively.
For two queries Q1 ∈ log1 and Q2 ∈ log2 with tp1 = (s1, p1, o1) ∈ Q1 and
tp2 = (s2, p2, o2) ∈ Q2, we say that Q1 and Q2 are joinable if p1 and p2 have a
predicate joinable path or predicate joinable star.

Definition 4 (Predicate Joinable Path). joinablePath(p1, p2) = true, if
OA(d1, p1) ∩ SA(d2, p2) �= ∅ and OC(d1, p1) ∩ SC(d2, p2) �= ∅.
Definition 5 (Predicate Joinable Star). joinableStar(p1, p2) = true, if
SA(d1, p1) ∩ SA(d2, p2) �= ∅ and SC(d1, p1) ∩ SC(d2, p2) �= ∅.

The hybrid join pattern is built as a mix of a path join pattern and a star join
pattern. Figure 5 presents possible structures of hybrid federated queries. The
query generated in Fig. 5a is built from the path query of p1 ∈ Q1, Q1 ∈ log1 and
p3 ∈ Q2, Q2 ∈ log2. The query generated in Fig. 5b built from the star query of
p1 ∈ Q1, Q1 ∈ log1 and p2 ∈ Q2, Q2 ∈ log2.

Recommending Plausible SPARQL Federated Queries 191

Algorithm 1: Joinable predicates
Input: AS1, CS1, AS2, CS2 � Authorities and classes summaries for the two

datasets
Output: JPred � Set of joinable predicates

1 Function JoinPred(AS1, CS1, AS2, CS2):
2 JPred ←− ∅;
3 foreach cap1 ∈ AS1 do
4 foreach cap2 ∈ AS2 do
5 if AS1.objAuthority(cap1) ∩ AS2.sbjAuthority(cap2) �= ∅ then
6 if CS1.objClasses(cap1) ∩ CS2.sbjClasses(cap2) �= ∅ then
7 JPred ←− JPred ∪ (cap1.predicate, cap2.predicate);
8 end

9 end

10 end

11 end
12 return JPred;

13 End Function

The objective now is to prune query logs and conserve only joinable queries.
First, the Algorithm 1 uses summaries to conserve predicate joinable (predicate
joinable path), then the Algorithm 2 excludes non joinable queries from logs. For
logs in Fig. 3, the Algorithm 1 keeps the couple (foaf:based near,dbpedia2:capital)
because they share http://dbpedia.org as object and subject authority, respec-
tively, and they share Country, Place and PopulatedPlace as object and subject
classes, respectively.

To compute predicate joinable star, we only need to modify conditions in lines
5–6 of the Algorithm 1 to compare subjects parts of both capabilities. With this
modification, the algorithm will keep the couple (skos:prefLabel,dbo:abstract) as
they share same authorities and classes as subjects. The Algorithm 1 can be
iteratively called to compute predicate joinable path or star for more than two
datasets.

We use the result of the Algorithm 1 to exclude non joinable queries as
shown in the Algorithm 2. After the execution of the Algorithm 2 for joinable
path, Q1S of SWDF and Q2D of DBpedia will be preserved, because they have
the joinable predicates (foaf:based near,dbpedia2:capital) as shown previously.
We exclude Q3S because it cannot be joined with any query from dbpedia,
i.e. no predicate in DBpedia has <http://data.semanticweb.org> as subject
authority. We also eliminate Q3D because the capability of unbound predicate
is undefined.

3.3 Building Plausible Federated Queries

We rely on the results of the Algorithm 2 to build plausible federated queries.
For sake of simplification, we start by illustrating the generating of minimal
federated queries PFedmin. A minimal federated contains one triple from log1
and one triple from log2.

http://dbpedia.org

192 F. Hacques et al.

Algorithm 2: Joinable queries
Input: log1, log2, JPred � Logs of both dataset and the set of corresponding

joinable predicates
Output: feds � Set of federated queries

1 Function GenFed(log1, log2, JPred):
2 feds ←− ∅;
3 foreach Q1 ∈ log1 do
4 foreach Q2 ∈ log2 do
5 if ∃(p1, p2)|p1 ∈ Q1, p2 ∈ Q2 ∧ (p1, p2) ∈ JPred then
6 feds ←− feds ∪ (Q1, Q2)
7 end

8 end

9 end
10 return feds;

11 End Function

Fig. 6. Minimal federated queries generated from pruned logs of SWDF and DBpedia
in Fig. 3

In order to construct a path (star) join, we substitute the object (subject) of
p1 and the subject of p2 by the same value as given in the Table 1.

Figure 6a presents a minimal path-shaped federated query between
foaf:based near ∈ Q1S and dbpedia2:capital ∈ Q1D in Fig. 3. Figure 6b presents
a minimal star-shaped federated query between skos:prefLabel ∈ Q4S and
dbo:thumbnail ∈ Q4D.

PFedmin are not required to generate plausible federated queries. But they
can help to reduce the number of potential joinable predicates by only keeping
PFedmin producing results. They can also be used to navigate through datasets.

The construction of QPFed is tricky, if the original queries contain
OPTIONAL operator. We have to construct only correct plausible federated
query. A plausible federated query is correct if it is well designed [10] and service-
safeness [5].

Definition 6 (Well Designed [10]). A graph pattern P is well designed if for
every occurrence of a sub-pattern P′ = (P1 OPT P2) of P and for every variable
?X occurring in P, the following condition holds:

if ?X occurs both inside P2 and outside P ′, then it also occurs in P1.

Recommending Plausible SPARQL Federated Queries 193

Table 1. All substitution values possible to create path join. ?x, ?y are variables and
a, b are constants (URIs or literals)

tp1 object tp2 subject Substitution value

?x ?y ?x

?x a a

a ?x a

a b null

Fig. 7. A non well designed federated query

The federated query in Fig. 7c is not well designed because the variable ?o2
occurs in P2 and outside the P′ (i.e. clause SERVICE <dataset2>), but it not
occurs in P1.

The service-safeness provides condition that ensures that a SPARQL query
containing SERVICE operator can be safely evaluated. Our generated queries
ensure service-safeness because each SERVICE clause has only bounded service,
i.e., during the construction the URI of the SPARQL endpoints are known.

The main issue is to build well designed queries to avoid cartesian products
as illustrated in Fig. 7c. If Q2 does not have a mapping for ?o2, a result will still
produced. To avoid this problem, we define the following strategy:

– If Q1 and Q2 are conjunctive queries (a.k.a BGPs) then QPFed = Q1 �� Q2,
QPFed is a simple concatenation of queries (Q1 . Q2), as in Fig. 2, Q1S1D =
Q1S �� Q1D.

– If Q1 contains binary operators like UNION or OPTIONAL, we distinct two
cases:

• If a joinable predicate is outside binary clauses of Q1, we add Q2 in the
BGP part of Q1.

• If a joinable predicate of Q1 is inside the UNION or OPTIONAL clauses,
we append Q2 inside this clause after the substitution of the join variables
(subject or object of the triple) according to Table 1.

194 F. Hacques et al.

– If a joinable predicate of Q2 is inside an OPTIONAL clause, we make sure
to not generate non well designed queries like query shown in Fig. 7c.

4 Evaluation

The objective of the evaluation is to answer empirically the following questions:
Do authorities summaries prune non joinable predicates? Do classes summaries
prune further non joinable predicates? Does PFed able to generate plausible
federated queries?

All data, codes, and generated query are available at the project web page7.

Table 2. Real datasets and real logs

Dataset |triples| |dataset predicates| |original log| |SELECT queries| |log predicates|
SWDF 242 256 170 64 030 37 592 201

DBPedia 232 542 405 39 672 217 812 127 812 247

4.1 Experimental Setup

Dataset and Queries: We use SWDF 2012 and DBPedia 3.5.1 datasets and
clean queries of Feasible8. We use only SELECT queries to construct plausible
federated queries. Table 2 reports statistics about the datasets and query logs.
It is strange that the query log of SWDF contains more predicates than the
original dataset hosted at the SPARQL endpoint. Some queries in the logs use
predicates that are not defined in the dataset. As they appear inside OPTIONAL
or UNION, they do not stop queries from returning results. Using DBpedia to
generate plausible federated queries is challenging because DBpedia dataset has
a high number of predicates and the log of DBpedia has a high number of queries.

4.2 Experimental Results

Do authorities summaries prune non joinable predicates? Table 3 presents the
results of pruning using authorities summaries. As we can see, the reduction is
62.75% for SWDF query log for path-shaped queries (all path refers to path
from SWDF to DBpedia) and by 42.82% for star-shaped. The reduction is only
2.15% for DBpedia log for both path-shaped queries and star-shaped generation.
This reduction is not significant because most of predicates in DBPedia has the
authority <http://dbpedia.org>.

Table 3. Logs pruning using authorities summaries

path-shaped star-shaped

Dataset |predicate joinable| |pruned log| % reduce |predicate joinable| |pruned log| % reduce

SWDF 6 14 003 62.75 3 21 495 42.82

DBPedia 230 125 078 2.15 229 125 070 2.15

7 https://github.com/GDD-Nantes/PFed.
8 https://github.com/dice-group/feasible.

https://github.com/GDD-Nantes/PFed
https://github.com/dice-group/feasible

Recommending Plausible SPARQL Federated Queries 195

Table 4. Logs pruning using authorities and classes summaries

path-shaped star-shaped

Dataset |predicate joinable | |pruned log| % reduce |predicate joinable | |pruned log| % reduce

SWDF 3 9 355 75.12 3 21 495 42.82

DBPedia 139 36 522 71.42 83 36 449 71.48

Do classes summaries prune further non joinable predicates? We now use our
classes summaries on top of authorities summaries. We observe in Table 4 that
the sizes of logs are reduced. The reduction is impressive for DBpedia, it is about
72%. Therefore, classes summaries are affective for pruning non joinable queries.

We observe also an important reduction in the number of minimal feder-
ated queries PFedmin (Table 5). This reduction is important as each PFedmin

contributes to many federated queries.

Table 5. Number of PFedmin generated using authorities and classes summaries

With authorities With authorities and classes

path-shaped star-shaped path-shaped star-shaped

1 146 687 352 432

Does PFedGenerate Plausible Federated Queries? Due to the size of the pruned
logs, we can generate a large number of plausible federated queries. In our exper-
imentation, we focus on the generation of path-shaped between foaf:based near
from SWDF and dbpedia2:capital from DBPedia. The pruned SWDF query log
contains 2 866 queries that contains foaf:based near. Many of these queries have
the same structure but with different literals and variables. Therefore, instead
of producing 2866 × 14 = 40124 queries where 14 is the number of queries
that contains dbpedia2:capital in pruned DBpedia log, we define patterns for
foaf:based near queries. We differentiate 9 patterns for foaf:based near queries
and we generate 24 queries. All generated queries are executed correctly and 19
of these queries have non empty results set (see Table 6).

We generate star-shaped plausible federated queries based on skos:prefLable
from SWDF and dbpedia:thumbnail from DBPedia (see Table 6). The 42 gener-
ated queries are executed correctly and 28 of these queries produce results.

Table 6. PFed path and star, p1 ∈ SWDF and p2 ∈ DBPedia

p1 |p1| p2 |p2| |PFed| |with result| %

PFed path foaf:based near 9 dbpedia2:capital 5 24 19 79.17

PFed star skos:prefLabel 3 dbo:thumbnail 14 42 14 33.33

196 F. Hacques et al.

5 Conclusion and Future Work

We presented PFed an approach for automatic generation of plausible federated
queries based on real query logs. PFed starts by pruning the logs to exclude
non joinable queries using data summaries. The first one is based on the author-
ities and the second is based on the type of subjects and objects of predicates.
Experimentations with real query logs of SWDF and DBpedia demonstrate that
PFed is able to prune considerably the logs and generate plausible federated
queries.

As future work, we would like to experiment PFed with more real query logs
and produce plausible federated queries over a large number of SPARQL end-
points. Finally, we plan to extend PFed with statistical information to generate
only queries that return results.

Acknowledgement. This work is part of the multidisciplinary project Sedela,
funded by CominLabs, that brings together three laboratories: LS2N, CREAD and
Lab-STICC.

References

1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., et al. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-25073-6 2

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art. IEEE Trans. Knowl. Data Eng. 17(6), 734–
749 (2005)

3. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: LDOW (2009)

4. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: The International Semantic Web Conference, pp.
197–212 (2014)

5. Arenas, M., Pérez, J.: Federation and navigation in SPARQL 1.1. In: Eiter,
T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 78–111.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9 3

6. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL
query logs. PVLDB 11(2), 149–161 (2017). http://www.vldb.org/pvldb/vol11/
p149-bonifati.pdf

7. Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL
benchmark queries for linked open data. ISWC 2012. LNCS, vol. 7649, pp. 116–132.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1 8

8. Nassopoulos, G., Serrano-Alvarado, P., Molli, P., Desmontils, E.: FETA: Federated
QuEry TrAcking for Linked Data. In: Hartmann, S., Ma, H. (eds.) DEXA 2016.
LNCS, vol. 9828, pp. 303–312. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44406-2 24

9. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference
on Data Engineering (ICDE), pp. 984–994. IEEE (2011)

https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.1007/978-3-642-33158-9_3
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
https://doi.org/10.1007/978-3-642-35176-1_8
https://doi.org/10.1007/978-3-319-44406-2_24
https://doi.org/10.1007/978-3-319-44406-2_24

Recommending Plausible SPARQL Federated Queries 197

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006). https://doi.org/10.1007/11926078 3

11. Saleem, M., Hasnainb, A., Ngonga Ngomo, A.C.: LargeRDFBench: A billion triples
benchmark for sparql endpoint federation. J. Web Semant. (JWS) (2017). https://
svn.aksw.org/papers/2017/LargeRDFBench JWS/public.pdf

12. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based
SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9366, pp. 52–69. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25007-6 4

13. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6 13

14. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fed-
Bench: a benchmark suite for federated semantic data query processing. In: Inter-
national Semantic Web Conference, pp. 585–600 (2011). https://doi.org/10.1007/
978-3-642-25073-6 37

15. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25073-6 38

16. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: SPAR-
QLES: monitoring public SPARQL endpoints. Seman. Web 8(6), 1049–1065 (2017)

https://doi.org/10.1007/11926078_3
https://svn.aksw.org/papers/2017/LargeRDFBench_JWS/public.pdf
https://svn.aksw.org/papers/2017/LargeRDFBench_JWS/public.pdf
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1007/978-3-642-25073-6_38

Representing and Reasoning About Precise
and Imprecise Time Points and Intervals
in Semantic Web: Dealing with Dates

and Time Clocks

Nassira Achich1(&), Fatma Ghorbel1,2, Fayçal Hamdi2,
Elisabeth Metais2, and Faiez Gargouri1

1 MIRACL Laboratory, University of Sfax, Sfax, Tunisia
achichnassira@gmail.com, fatmaghorbel6@gmail.com,

faiez.gargouri@isims.usf.tn
2 CEDRIC Laboratory, Conservatoire National des Arts et Métiers (CNAM),

Paris, France
{faycal.hamdi,metais}@cnam.fr

Abstract. Temporal data may be precise or imprecise. Representing and rea-
soning about these kinds of data in ontology still needs to be addressed.
A significant number of approaches exist. However, they handle only precise
temporal data and lack imprecise ones. In this paper, we propose a crisp-based
approach for representing and reasoning about temporal data in term of quan-
titative (i.e., time points that can be dates and clocks, and time intervals) as well
as qualitative relations (e.g., “before”) in ontology. It aims to support not only
precise time points and intervals, but also imprecise ones e.g., “The journey
starts by the beginning of June and ends by mid-June”. It relies only on crisp
exiting Semantic Web standards and it is modeled in crisp ontology. Our
approach is based on three blocks. (i) We extend the 4D-fluents approach with
new crisp ontological components to represent the mentioned precise and
imprecise temporal data. (ii) We extend the Allen’s interval algebra to reason
about imprecise time intervals. Compared to related work, our extension is
entirely based on crisp set theory. The resulting interval relations preserve many
of the desirable properties of the original algebra. We adapt these relations to
allow relating a time interval and a time point, and two time points; where time
points and intervals may be both precise or both imprecise. All proposed rela-
tions can be used for temporal reasoning by means of transitivity tables. (iii) We
propose an OWL 2 ontology based on our extensions. It proposes a set of
SWRL rules to infer the proposed qualitative temporal relations. A prototype
based on this ontology is implemented. We apply our approach to the Travel
ontology.

Keywords: Precise and imprecise temporal data �
Temporal representation and reasoning � Crisp ontology � 4D-fluent approach �
Allen’s interval algebra

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 198–208, 2019.
https://doi.org/10.1007/978-3-030-27618-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_15

1 Introduction

Temporal data given by people are often imprecise. For instance, if they give the
information “Holidays start by the end of May”, an imprecise measure is introduced.
Indeed, “by the end of May” could be May 28th, 29th, 30th or 31th. This paper focuses
on representing and reasoning about precise and imprecise temporal data in ontology.

In the Semantic Web field, many approaches have been proposed to represent and
reason about precise temporal data. However, most of them handle only time intervals
and associated qualitative relations i.e., they are not intended to handle time points and
qualitative relations between a time interval and a time point or two time points. Be-
sides, to the best of our knowledge, there is no approach devoted to handle imprecise
temporal data in ontology.

In our previous work [11], we have proposed a fuzzy-based approach for repre-
senting and reasoning about imprecise time intervals in ontology. It is entirely based on
fuzzy set theory and dates and time clocks are not considered. In this paper, we propose
a crisp-based approach for representing and reasoning about concepts evolving in time
in ontology. Quantitative temporal data, i.e., time points (that can be dates or time
clocks) and intervals, as well as qualitative ones (e.g., “before”) are taken into con-
sideration. Our approach supports not only precise time points and intervals, but also
imprecise ones, such as “The journey starts by June 5th and finishes by the end of
July”. We adopt only crisp existing Semantic Web standards. It is modeled in crisp
ontology. Our approach is based on three facets: (i) Representing precise and imprecise
temporal data in ontology by extending the 4D-fluents approach [25] with new crisp
ontological components. (ii) Reasoning about precise and imprecise temporal data by
extending the Allen’s interval algebra [1]. This latter proposes 13 temporal relations
between precise time intervals. However, it is not designed to handle imprecise time
intervals. Moreover, it is not intended to relate a time interval and a time point or even
two time points. We extend this algebra to propose qualitative temporal relations
between imprecise time intervals. Compared to related work, these relations are defined
based on crisp set theory. Properties of reflexivity/irreflexivity, symmetry/asymmetry
and transitivity are preserved. We adapt the resulting interval relations to propose
temporal relations between a time interval and a time point, and two time points that
may be precise or imprecise. All temporal relations that we propose can be used for
temporal reasoning by means of transitivity tables. (iii) Proposing an OWL 2 ontology
based on our extensions. It infers the proposed qualitative temporal relations via a set of
SWRL rules.

This paper is organized as follows. Preliminaries and related work are reviewed in
Sect. 2. We introduce, respectively, our approaches for representing and reasoning
about precise and imprecise temporal data in Sects. 3 and 4. In Sect. 5, we present our
ontology implemented based on our extensions. Section 6 presents some experimen-
tations. Section 7 summarizes our contributions and gives some future directions.

Representing and Reasoning About Precise and Imprecise 199

2 Preliminaries and Related Work

Related work in the fields of temporal data representation in Semantic Web and Allen’s
interval algebra are discussed in this section.

2.1 Representing Temporal Data in the Semantic Web Field

There is a need for representing temporal data in ontology. However, representing
ontology languages such as OWL and RDF provide a minimal support. They are all
based on binary relations that simply connect two instances without adding any tem-
poral data. There is a significant number of approaches for representing temporal data
in ontology. We classify them into two categories: (i) approaches which extend the
OWL or RDF syntax to incorporate temporal data through defining new OWL or RDF
operators and semantics; and (ii) approaches which are implemented directly using
OWL or RDF to represent temporal data without extending their syntax.

One of the approaches that belongs to the first category is the Temporal Description
Logics [3]. It extends the standard description logics with new temporal semantics such
as “until”. This approach does not suffer from data redundancy and retain decidability.
However, extending OWL or RDF, which is a tedious task, makes it an avoidable
solution. Another approach is the Concrete Domains [18]. It requires introducing
additional data types and operators to OWL. Several implementations based on this
approach have been proposed, such as OWL-MeT [8] and TL-OWL [16]. Tempo-
ral RDF [12], which also belongs to the first category, uses only RDF triples. It does
not have all the expressiveness of OWL. It cannot express qualitative relations. In [15],
the authors present a comprehensive framework to incorporate temporal reasoning into
RDF.

The second category includes: Versioning [17], Reification [6], N-ary Relations
[20], 4D-Fluents and Named Graphs [23] approaches. Versioning is described as the
ability to handle changes in ontology by creating and managing different variants of it.
All the versions are independent from each other which require exhaustive searches in
the all versions. Reification is a technique for representing N-ary relations when only
binary relations are allowed. A new object is created whenever a temporal relation has
to be represented. N-ary Relations proposes to represent an N-ary relation as two
properties each related with a new object. It maintains property semantics. These
approaches suffer from data redundancy. Unlike them, 4D-fluents approach which
represents time intervals and their evolution in OWL, minimizes the problem of data
redundancy, as the changes occur only in the temporal parts and concepts varying in
time are represented as 4-dimensional objects with the 4th dimension being the tem-
poral data. The Named Graphs approach represents each time interval by exactly one
named graph, where all triples belonging share the same validity period. Reasoning and
querying are supported in [2, 5, 13, 14, 21].

All the reviewed approaches handle only precise temporal data and neglect
imprecise ones. They are not intended to handle time points and qualitative temporal
relations between a time interval and a time point or even two time points. Based on

200 N. Achich et al.

this study, we choose to extend the 4D-fluents approach to represent precise and
imprecise quantitative temporal data and associated qualitative temporal relations in
crisp ontology. Our choice is based on that we need an approach which relies on
existing OWL constructs. Therefore, we exclude the Temporal Description Logic,
Concrete Domain and Temporal RDF approaches. We also exclude the Named Graphs
approach as it does not support OWL and it is not a W3C compliant solution. Com-
pared to the Reification, N-ary Relations and Versioning approaches, the 4D-fluents
approach minimizes data redundancy as the changes occur on the temporal parts and
keep the static part unchanged.

2.2 Allen’s Interval Algebra: Definition and Extensions

13 qualitative relations between precise time intervals are proposed by Allen. Their
definitions are expressed in Table 1. A characteristic of Allen’s algebra is that we can
deduce new relations through the composition of other ones. For instance, “Before(A,
B)” and “Equals(B, C)” gives “Before(A, C)”. Allen’s interval algebra is not dedicated to
represent imprecise time intervals. Furthermore, it does not relate neither a time point
and a time interval nor two time points. Several approaches have been extended this
algebra. Some of them propose temporal relations between precise time intervals [4, 7, 9]
and other ones propose temporal relations between imprecise time intervals [10, 19, 22].
However, these extensions are based on theories related to imperfect data and cannot be
supported in the context of crisp ontology.

3 Our Crisp-Based Approach to Representing Precise
and Imprecise Temporal Data in Ontology

We extend the 4D-fluents approach to represent precise and imprecise quantitative
temporal data as well as associated qualitative temporal relations in ontology.

Table 1. Allen’s relations between two precise time intervals A = [A+, A–] and B = [B−, B+]

Relation(A, B) Relations between interval bounds Illustration Inverse(B, A)
Before A+ < B- After

Meets A+ =B- Met-by

Overlaps (A- < B-) (A+ > B-) (A+ < B+) Overlapped-

Starts (A- = B-) (A+ < B+) Started-by

During (A- > B-) (A+ < B+) Contains

Ends (A- > B-) (A+ = B+) Ended-by

Equals (A- = B-) (A+ = B+) Equals

Representing and Reasoning About Precise and Imprecise 201

3.1 Quantitative Temporal Data Representation

We extend the 4D-fluents approach to represent: (i) precise and imprecise time points
and (ii) imprecise time intervals. Some of the introduced components are already
defined in OWL-Time1 ontology. Some others that we define, do not exist.

Representing Precise and Imprecise Time Points. We introduce a class “TimePoint”
and an object property “TsTimePoint”. The latter relates an instance of “TimeSlice”
and an instance of “TimePoint”. To express the dates and time clocks, we use the class
named “time:DateTimeDescription” defined in OWL-Time ontology.

We present precise time points (dates and time clocks). For the dates, let D, Mo and
Y be, respectively, precise day, month and year. We use three datatype properties from
OWL-Time named “time:day”, “time:month” and “time:year” to relate, respectively,
the “Date” class and D, Mo and Y. For instance, if we have “The journey begins in
June 05th 2019”, “June 05th 2019” is represented as a precise date. “time:day” has the
range “05th”, “time:month” has the range “June” and “time:year” has the range “2019”.
Similarly, for the time clocks, let S, Mi and H be, respectively, precise seconds,
minutes and hours. We use three datatype properties from OWL-Time named “time:
second”, “time:minute” and “time:hour”, to connect, respectively, the “Clock“class
with S, Mi and H. For instance, if we have “The breakfast in the hotel starts at
07:30:00“, “07:30:00” is represented as a precise time clock. “time:second” has the
range “00”, “time:minute” has the range “30” and “time:hour” has the range “07”.

We present imprecise time points (dates and time clocks). For the dates, let D, Mo
and Y be, respectively, imprecise day, month and year. We represent them by dis-
junctive ascending sets {D(1)…D(d)}, {Mo(1)…Mo(mo)} and {Y(1)…Y(y)}. As an
example “The price of the train tickets was much cheaper during the seventies”,
“during the seventies” is represented as the disjunctive ascending set {1970 … 1979}.
We define for each of D, Mo and Y, respectively, two datatype properties: “Has-
DayFrom” and “HasDayTo”, “HasMonthFrom” and “HasMonthTo”, “HasYearFrom”
and “HasYearTo”. They are all connected to the “Date” class. For instance, “The
journey begins by the June 05th, 2019”, “by the June 05th, 2019” is represented as an
imprecise date since the day part is imprecise. “HasDayFrom” has the range “03rd” and
“HasDayTo” has the range “07th”. Similarly, for the time clocks, let S, Mi and H be,
respectively, imprecise seconds, minutes and hours, represented by disjunctive
ascending sets {S(1)…S(s)}, {Mi(1)… Mi(mi)} and {H(1)… H(h)}. As an example “We
should finish the breakfast at most at 10 o’clock”, “at most at 10 o’clock” is represented
as the disjunctive ascending set {07 … 10}. We define for each of S, Mi and H,
respectively, two datatype properties: “HasSecondsFrom” and “HasSecondsTo”,
“HasMinutesFrom” and “HasMinutesTo”, “HasHoursFrom” and “HasHoursTo”. They
are all connected to the “Clock” class. For instance, if we have “We leave the hotel
after lunch before 5 pm. Lunch time is between 12 am and 02 pm.”, “after lunch
before 05 pm” is represented as an imprecise time clock. “HasHoursFrom” and
“HasHoursTo” have the ranges “02 pm” and “05 pm”.

1 https://www.w3.org/TR/owl-time/.

202 N. Achich et al.

https://www.w3.org/TR/owl-time/

Representing Imprecise Time Intervals. An imprecise time interval has beginning
and ending bounds. We represent them using instances of “TimePoint”. In our
extension, “time:hasBeginning” and “time:hasEnd” are object properties defining the
beginning and the ending bounds of the interval. They relate an instance of
“TimeInterval” (domain) and an instance of “TimePoint” (range). For example “We
will visit the national park at 14:30 and we will leave in the evening. The national park
closes at 22:00” We represent the time of the park closure “22:00” as a precise time
clock. We represent the duration of the visit as an imprecise time interval. The
beginning bound is represented as a precise time clock. The property “time:
hasBeginning” represents the range “14:30”. The ending bound is represented as an
imprecise time clock. It could be between 19:00 and 22:00. The property “time:
hasEnd” models the range “until the evening”. The properties “hasHoursFrom” and
“hasHoursTo” has the ranges “19” and “22”.

3.2 Qualitative Temporal Data Representation

Four temporal relations may exist between time points and time intervals: Point-Point,
Interval-Point, Point-Interval and Interval-Interval relations. Hence we assign four crisp
object properties. The property “RelationPoints” connects two instances of the
“TimePoint” class to represent Point-Point relations. “RelationIntervalPoint” property
connects an instance of the “TimeInterval” (domain) class and an instance of the
“TimePoint” class (range) to represent Interval-Point relation. “RelationPointInterval”
property connects an instance of the “TimePoint” (domain) class and an instance of the
“TimeInterval” class (range) to represent Point-Interval relation. “RelationIntervals”
connects two instances of the “TimeInterval” class to represent Interval-Interval rela-
tions. Figure 1 represents our 4D-fluents approach extension.

Fig. 1. Our 4D-fluents approach extension

Representing and Reasoning About Precise and Imprecise 203

4 Our Approach to Reasoning About Precise and Imprecise
Temporal Data

Our approach consists of extending the Allen’s interval algebra to: (i) reason about
precise and imprecise quantitative temporal data to infer qualitative temporal relations
and (ii) to reason about the qualitative temporal relations to infer new ones.

4.1 Qualitative Temporal Relations

We define temporal relations in a crisp way. At the beginning, we propose qualitative
temporal relations between imprecise time intervals. Then, we adapt these relations to
relate a time interval and a time point or two time points.

Qualitative Temporal Relations between Time Intervals. The proposed temporal
relations are based on orderings between the time points contained in the intervals.
They may be expressed using time point comparators like the ones proposed in Vilain
and Kautz’s Algebra [24]. When considering precise time intervals, our approach
reduces to Allen’s interval algebra. We redefine the 13 Allen’s relations to propose
temporal relations between imprecise time intervals as shown in Table 2.

Qualitative Temporal Relations between a Time Interval and a Time Point. We
adapt the qualitative temporal relations between time intervals to propose relations be-
tween a time interval and a time point as shown in Table 3.

Table 2. Temporal relations between the imprecise time intervals A and B.

Relation(A, B) Definition Inverse(B, A)

Before(A, B) Precedes (A+(E), B–(1)) After(B, A)
Meets(A, B) Min (Same (A+(1), B–(1)) ^ Same (A+(E), B–(B))) Met-by(B, A)

Overlaps(A, B) Min (Precedes (A–(B), B–(1)) ^ Precedes (B–(B), A+(1)) ^
Precedes(A+(E), B+(1)))

Overlapped-by(B, A)

Starts(A, B) Min (Same (A–(1), B–(1)) ^ Same (A–(B), B–(B)) ^ Precedes
(A+(E), B+(1)))

Started-by(B, A)

During(A, B) Min (Precedes (B–(B), A–(1)) ^ Precedes (A+(E), B+(1))) Contains(B, A)
Ends(A, B) Min (Precedes (B–(B), A–(1)) ^ Same (A+(1), B+(1)) ^ Same

(A+(E), B+(E)))
Ended-by(B, A)

Equals(A, B) Min (Same (A–(1), B–(1)) ^ Same (A–(B), B–(B)) ^ Same (A+(1),
B+(1)) ^ Same (A+(E), B+(E)))

Equals(B, A)

204 N. Achich et al.

Qualitative Temporal Relations between Time Points. We adapt the qualitative
temporal relations between time intervals to propose relations between time points, as
shown in Table 4. For example, let N and R be two imprecise time points; represented
respectively using the disjunctive ascending sets {Just before lunch … One hour before
lunch} and {Just after lunch … Just before dinner}. We conclude that: After (R,
N) = 1.

4.2 Transitivity

The Allen’s transitivity table lets us obtain from R1(A, B) and R2(B, C) that R3(A, C)
holds, where A = [A–, A+], B = [B−, B+] and C = [C−, C+] are precise time intervals
and R1, R2 and R3 are Allen’s relations. Based on Table 1, we deduce from “During
(A, B)” and “Meet(B, C)” that “Before(A, C)” holds. “During(A, B)” means “Precedes
(B−(B), A–(1)) ^ Precedes(A+(E), B+(1))”, and “Meet(B, C)” means “Same(B+(1), C−(1)) ^
Same(B+(E), C−(B))”. Considering precise relations, our transitivity table coincides with

Table 3. Temporal relations between a time interval A and a point P

Relation (P, A) Definition Inverse (A, P)

Temporal relations between a precise time interval A and a precise time point P
Before(P, A) Precedes(P, A–) After(A, P)
After(P, A) Precedes(A+, P) Before(A, P)
Starts(P, A) Same(P, A–) Started-by(A, P)
During(P, A) Precedes(A–, P) ^ Precedes(P, A+) Contains(A, P)
Ends(P, A) Same(P, A+) Ended-by(A, P)
Temporal relations between an imprecise time interval A and an imprecise time
point P
Before(P, A) Precedes(P(P), A–(1)) After(A, P)
After(P, A) Precedes(A+(E), P(1)) Before(A, P)
Starts(P, A) Same(P(1), A–(1)) ^ Same(P(P), A–(B)) Started-by(A, P)
During(P, A) Precedes(A–(E), P(1)) ^ Precedes(P(P), A+(1)) Contains(A, P)
Ends(P, A) Same(P(1), A+(1)) ^ Same(P(P), A+(E)) Ended-by(A, P)

Table 4. Temporal relations between time points N and R.

Relation(N, R) Definition Inverse(R, N)

Temporal relations between precise time points N and R
Before(N, R) Precedes(N, R) After(R, N)
Equals(N, R) Same(N, R) Equals(R, N)
Temporal relations between imprecise time points N and R
Before(N, R) Precedes(N(P), R(1)) After(R, N)
Equals(N, R) Same(N(1), R(1)) ^ Same(N(P), R(L)) Equals(R, N)

Representing and Reasoning About Precise and Imprecise 205

the Allen’s one. We introduce three transitivity tables2 to reason about the qualitative
temporal relations between a time interval and a time point and time point relations.

5 Our Ontology for Representing and Reasoning About
Precise and Imprecise Temporal Data in OWL2

Based on our extensions of the 4D-fluents approach and Allen’s interval algebra, we
implement our OWL 2 temporal ontology. We instantiate the crisp object properties
{“RelationIntervals”, “RelationIntervalPoint”, “RelationPointInterval” and “Rela-
tionPoints”} based on our Allen’s extension. Our ontology proposes a set of SWRL
rules to infer missing qualitative temporal relations. For each temporal relation, we
associate an SWRL rule to deduce it from the quantitative temporal data given by the
user. Based on the transitivity tables, we associate an SWRL rule for each transitivity
relation.

6 Experimentations

To validate our approach, we introduce a prototype based on our proposed ontology.

6.1 Our Ontology-Based Prototype

Our ontology-based3 prototype offers user interfaces to explore our approach. It is
implemented based on JAVA language. It uses JENA API4 and SPARQL-DL API5 for
managing and querying crisp ontology. First, the user instantiates our ontology. After
each new temporal data input, the “Qualitative Temporal Data Inference” component is
automatically executed to infer missing data. It is based on the proposed SWRL rules.
The third component allows users to query our ontology via SPARQL queries.

6.2 Application to the Travel Ontology

We apply our work to the Travel ontology6. It needs to be extended to represent and
reason about precise and imprecise temporal data (we merge our temporal ontology and
the Travel ontology). For example: “The journey starts by the end of the school year.
The school year ends by the end of June. The journey lasts 7 days. The program of the
journey contains two main activities. The first one lasts 3 days and the second lasts 2
days”. Let P = {June 27th…June 30th} be an imprecise time point which represents
the end of the school year. Let A = [A–, A+] and B = [B−, B+] be two imprecise time
intervals representing the durations of both activities. Assume that A– = {June 29th…

2 https://cedric.cnam.fr/*hamdif/upload/DEXA19/Transitivity_Tables.pdf.
3 http://cedric.cnam.fr/isid/ontologies/files/CrispTimeOnto.html.
4 https://jena.apache.org/.
5 http://www.derivo.de/en/resources/sparql-dl-api.html.
6 https://protege.stanford.edu/junitOntologies/testset/travel.owl.

206 N. Achich et al.

https://cedric.cnam.fr/%7ehamdif/upload/DEXA19/Transitivity_Tables.pdf
http://cedric.cnam.fr/isid/ontologies/files/CrispTimeOnto.html
https://jena.apache.org/
http://www.derivo.de/en/resources/sparql-dl-api.html
https://protege.stanford.edu/junitOntologies/testset/travel.owl

June 30th}, A+ = {01st July … July 2nd}, B− = {July 02nd… July 03rd} and B+= {July
03rd…July 04th}. The associated qualitative temporal relations “BeforeIntervals” and
“AfterIntervals” are inferred based on the second component of our prototype.

7 Conclusion and Future Directions

In this paper, we introduce our crisp-based approach for representing and reasoning
about temporal data in terms of quantitative and qualitative relations in ontology. It
supports precise and imprecise time points and imprecise time intervals in ontology. It
is based only on existing crisp Semantic Web standards.

Our approach is based on three contributions. The first one is about extending the
4D-fluents approach with crisp components to represent precise and imprecise time
points, precisely dates and time clocks, and imprecise time intervals. The second
contribution consists of extending the Allen’s interval algebra in a crisp way to reason
about precise and imprecise temporal data. It preserves reflexivity/irreflexivity,
symmetry/asymmetry and transitivity. We introduce four transitivity tables to reason
about the resulting temporal relations. The third contribution is about creating an
ontology based on our extensions. A prototype is created to explore our approach. Our
Allen’s interval algebra extension can be applied to other research fields such as
databases. Our approach can be implemented with crisp standards and researchers are
not obliged to learn technologies related to fuzzy ontology. Thus, it is suitable for
marketed products.

We plan to extend our work to handle other imperfections such as the uncertainty.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843
(1983)

2. Anagnostopoulos, E., Batsakis, S., Petrakis, E.: CHRONOS: a reasoning engine for
qualitative temporal information in OWL. Procedia Comput. Sci. 22, 70–77 (2013)

3. Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math.
Artif. Intell. 30, 70–77 (2000)

4. Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy temporal
reasoning. Artif. Intell. 170(10), 872–908 (2006)

5. Batsakis, S., Petrakis, E.G.M.: SOWL: a framework for handling spatio-temporal
information in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds) Rule-
Based Reasoning, Programming, and Applications. RuleML 2011. LNCS, vol. 6826,
pp. 242–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22546-8_19

6. Buneman, P., Kostylev, E.: Annotation algebras for RDFS. In: Workshop on the Role of
Semantic Web in Provenance Management (2010)

7. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man
Cybern. 19(4), 729–744 (1989)

8. Ermolayev, V., et al.: An agent-oriented model of a dynamic engineering design process. In:
Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS -2005. LNCS
(LNAI), vol. 3529, pp. 168–183. Springer, Heidelberg (2006). https://doi.org/10.1007/
11916291_12

Representing and Reasoning About Precise and Imprecise 207

http://dx.doi.org/10.1007/978-3-642-22546-8_19
http://dx.doi.org/10.1007/11916291_12
http://dx.doi.org/10.1007/11916291_12

9. Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54, 199–227 (1992)
10. Gammoudi, A., Hadjali, A.: Fuzz-TIME: an intelligent system for managing fuzzy temporal

information. Intell. Comput. Cybern. 10, 200–222 (2017)
11. Ghorbel, F., Hamdi, F., Métais, E., Ellouze, N., Gargouri, F.: A fuzzy-based approach for

representing and reasoning on imprecise time intervals in fuzzy-owl 2 ontology. In:
Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018.
LNCS, vol. 10859, pp. 167–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91947-8_17

12. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat,
J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005). https://
doi.org/10.1007/11431053_7

13. Harbelot, B.A.: Continuum: a spatiotemporal data model to represent and qualify filiation
relationships. In: ACM SIGSPATIAL International Workshop, pp. 76–85 (2013)

14. Herradi, N.: A Semantic Representation of Time Intervals in OWL2. KEOD, pp. 1–8 (2017)
15. Hurtado, C., Vaisman, A.: Reasoning with temporal constraints in RDF. In: Alferes, J.J.,

Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 164–178.
Springer, Heidelberg (2006). https://doi.org/10.1007/11853107_12

16. Kim, S.-K., Song, M.-Y., Kim, C., Yea, S.-J., Jang, H.C., Lee, K.-C.: Temporal ontology
language for representing and reasoning interval-based temporal knowledge. In: Domingue, J.,
Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 31–45. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89704-0_3

17. Klein, M.C.: Ontology versioning on the semantic web. In: Semantic Web Working
Symposium, Stanford University, pp. 75–91. California (2001)

18. Lutz, C.: Description logics with concrete domains. In: Advances in Modal Logic, pp. 265–
296 (2003)

19. Nagypál, G., Motik, B.: A fuzzy model for representing uncertain, subjective, and vague
temporal knowledge in ontologies. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM
2003. LNCS, vol. 2888, pp. 906–923. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-39964-3_57

20. Noy, N.R.: Defining N-Ary Relations on the Semantic-Web. W3C Working Group (2006)
21. O’Connor, M.J., Das, A.K.: A method for representing and querying temporal information in

OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010. CCIS, vol. 127, pp. 97–
110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18472-7_8

22. Sadeghi, K.M.: Uncertain interval algebra via fuzzy/probabilistic modeling. In: IEEE
International Conference on Fuzzy Systems, pp. 591–598 (2014)

23. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data
with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_25

24. Vilain, M.B.: Constraint propagation algorithms for temporal reasoning. In: National
Conference on Artificial Intelligence, pp. 377–382. Philadelphia (1986)

25. Welty, C., Fikes, R.: A reusable ontology for fluents in OWL. In: FOIS, pp. 226–336 (2006)

208 N. Achich et al.

http://dx.doi.org/10.1007/978-3-319-91947-8_17
http://dx.doi.org/10.1007/978-3-319-91947-8_17
http://dx.doi.org/10.1007/11431053_7
http://dx.doi.org/10.1007/11431053_7
http://dx.doi.org/10.1007/11853107_12
http://dx.doi.org/10.1007/978-3-540-89704-0_3
http://dx.doi.org/10.1007/978-3-540-39964-3_57
http://dx.doi.org/10.1007/978-3-540-39964-3_57
http://dx.doi.org/10.1007/978-3-642-18472-7_8
http://dx.doi.org/10.1007/978-3-642-02121-3_25

Information Processing

Context-Aware Multi-criteria
Recommendation Based on Spectral

Graph Partitioning

Rim Dridi1,2(B), Lynda Tamine3, and Yahya Slimani2,4

1 ENSI, University of Manouba, Tunis, Tunisia
rim.dridi@ensi-uma.tn

2 LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia
yahya.slimani@fst.rnu.tn

3 IRIT, University of Toulouse 3, Toulouse, France
tamine@irit.fr

4 ISAMM, University of Manouba, Tunis, Tunisia

Abstract. Both multi-criteria recommendation and context-aware rec-
ommendation are well addressed in previous research but separately in
most of existing work. In this paper, we aim to contribute to the under-
explored research problem which consists in tailoring the multi-criteria
rating predictions to users involved in specific contexts. We investigate
the application of simultaneous clustering based on the application of a
spectral partitioning graph method over situational contexts in the one
hand and criteria in the other hand. Besides, we conjecture that even
with similar criteria-related ratings, the importance of criteria might dif-
fer among users. This idea leads us to use prioritized aggregation oper-
ators as means of multi-criteria rating aggregations. Our experimental
results on a real-world dataset show the effectiveness of our approach.

Keywords: Recommender system · Multi-criteria · Context

1 Introduction

The key problem of recommendation is designing the utility function that mea-
sures the usefulness of items to target users. Traditionally, recommender systems
are based on a single-criterion utility function. Some studies have begun employ-
ing multi-criteria recommender systems (MCRS) [1,10,12] that model a user’s
utility of an item as a vector of ratings along several criteria.

Yet, previous recommenders have highlighted the impact of context dimen-
sions (e.g., time, location, etc.) on user’s judgments. In this respect, several
researches have been devoted to context-aware recommender systems (CARS) [2].

However, most of previous CARS still consider single item ratings while either
the item criteria and their strength might evolve while context evolves.

In our work, we attempt to contribute to this under-explored research
area. Specifically, we explore the idea of clustering situational recommendations
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 211–221, 2019.
https://doi.org/10.1007/978-3-030-27618-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_16

212 R. Dridi et al.

embedding users providing similar criteria ratings to target items under similar
contexts. Our assumption is that users in similar contextual situations tend to
have similar interests for similar criteria. Following this assumption, we consider
the joint clustering of two types of entities, where both contextual situations and
criteria are simultaneously assigned to clusters. Then, users’ predicted criteria
ratings from the co-clusters are aggregated based on their personal preferences.
We formulate the recommendation problem in terms of two sub-problems: (1)
Criteria rating prediction: we transform the first sub-problem to a bipartite graph
partitioning problem that we solve using the well known spectral co-clustering
[5]. Then, we exploit the obtained co-clusters with a rating prediction algorithm
for predicting criteria ratings. (2) Overall rating prediction: the key issue within
this second sub-problem is the design of an appropriate aggregation of the cri-
teria ratings resulting from the co-clusters. Therefore, we explore the use of two
prioritized aggregation operators [3,4], where the criteria weights are computed
on the basis of their priority order in accordance with the users’ interests.

2 Related Work

2.1 Multi-criteria Recommender Systems

One of the popular efficient MCRS approaches is the aggregation-based one
[12,14] which builds an aggregation function f (Eq. 1) that represents the rela-
tionship between the overall rating r0 and the criteria ratings (r1, .., rN):

r0 = f(r1, .., rN) (1)

In [7,10], a linear aggregation function was applied to predict the overall rating
using criteria preferences. In [12], Zheng used criteria chains for multi-criteria
rating predictions and conditional aggregations by viewing the criteria predic-
tions as contexts. These criteria ratings are predicted and employed in the chain,
which might lead to an accumulated loss while predicting the global rating.

2.2 Context-Aware Recommender Systems

The first category of work in this area, considers context in a single-criterion
based recommendation framework. For example, in [2], a context-aware matrix
factorization (CAMF) was proposed for item rating prediction.

Unlikely, the second category of work which is closest to ours, explores the
exploitation of context information in addition to multi-criteria ratings to pro-
vide more accurate predictions [9,14]. Li et al. [9] defined a 4-order tensor recom-
mendation space, where the contextual information and the multi-criteria rat-
ings are considered besides the users and items. This tensor was then reduced by
using the relevant context to find the closest neighbors based on the multi-linear
singular value decomposition. Recently, Zheng [14] integrated context informa-
tion into four MCRS baselines. The independent and dependent methods were

Context-Aware Multi-criteria Recommendation 213

used for the multi-criteria rating predictions step, and the linear and conditional
aggregation methods for the rating aggregations step.

Beside the differences in the used prediction methods, what basically differen-
tiates our proposal is considering that criteria are both item and user-dependent.

3 Context-Aware Multi-criteria Recommendation
Framework

3.1 Basic Notation

User’s Situational Context. A user’s situational context refers to the situa-
tion characterized by a user involved in a specific surrounding context. We rep-
resent distinct pairs (user, context) as distinct contextual situations. Let users
set, noted Us is represented by Us = {u1, .., uk}, where k is the total number of
users, and contexts Co are represented by Co = {co1, .., col}, where l is the total
number of contexts. A contextual situation is built up as an entity noted sij ,
represented by a contextual situation that implicitly refers to the pair user ui in
context coj . For care of the simplicity of the notations, sij is noted as si where i
is in the range 1..m leading the whole set of situations noted as S = {s1, .., sm}.

Criteria. The criteria set contains rated item aspects involving in situa-
tional contexts. The set of entities referring to rated item criteria is noted
C = {c1, .., cn}, where n is the number of criteria considered for rating an item.

Situational Bipartite Graph. A situational bipartite graph is a triple G =
(S, C, E) where S, C are the two vertex sets and E is the set of edges that
connect nodes from vertex S to vertex C such as (E = <si, cj> | si ∈ S, cj ∈
C).

3.2 Situational Bipartite Graph Co-clustering

We focus on extending the conventional rating prediction process using a co-
clustering method to find sub-groups of contextually similar users and criteria
that these users are interested in. Our driving hypothesis is the following:

H: “Users in similar contextual situations tend to have similar
interests for similar criteria”.

To solve the partitioning problem, we employ the popular spectral co-
clustering algorithm [5] which approximates the normalized cut of the bipartite
graph to find co-clusters. An approximate solution to the optimal normalized
cut may be found via the decomposition of the normalized m × n rating matrix
R as follows: Rn = D

−1/2
1 R D

−1/2
2 , where D1 is the diagonal matrix with entry

i equal to
∑

j Rij and D2 is the diagonal matrix with entry j equal to
∑

i Rij .
Then, the singular value decomposition of the resulting matrix Rn = UΣV �

provides the desired partitions of the rows and columns of R. U is an m × m

214 R. Dridi et al.

matrix, Σ is an m × n diagonal matrix, and V T is the transpose of an n × n
matrix. The columns of U and V are called the left and right singular vectors
respectively. A subset of the left singular vectors will give the users’ situational
contexts partitions, and a subset of the right singular vectors will give the criteria
partitions. Later, the singular vectors are used to build the matrix Z.

Z = D
−1/2
1 UD

−1/2
2 V

Finally, the resulting matrix Z is decomposed using k-means++ to obtain the
desired co-clusters to be used as input to the prediction process detailed below.

3.3 Rating Prediction Algorithm

Criteria Rating Predictions. The Algorithm 1 aims to provide, as an out-
put, the criteria predicted ratings for each co-cluster of situational contexts and
criteria. As stated in the algorithm, for each co-clusterk, we can extract a rat-
ing sub-matrix Rk ∈ R

mk×nk from the original rating matrix R ∈ R
m×n, mk

and nk denote respectively the number of users’ situational contexts and criteria
in co-clusterk. Then, we use the Matrix Factorization (MF) [8] as the rating
prediction algorithm on each obtained sub-matrix Rk due to its efficiency and
scalability. In line 2, the algorithm calls the MatrixFactorization function. This
routine applies the MF algorithm where we assume there are F hidden factors,
which capture users’ situational contexts features and criteria features to model
users’ preferences. Matrix factorization algorithm works by decomposing the mk

× nk rating sub-matrix Rk into the product of two lower dimensionality matri-
ces. Users’ situational contexts are represented by a mk × F matrix called P ,
where each row of P would represent the strength of the associations between a
user’s situational context and the features. In order to relate users’ situational
context with criteria, the latter are also represented by a matrix called Q, where
each row of Q would represent the strength of the associations between a cri-
terion and the features. P and Q are learned using stochastic gradient descent
method by minimizing the rating prediction errors. The predicted preference r̂ij
of a user’s situational context si for a criterion cj can be computed as follows:

r̂ij = piqj
T (2)

Overall Rating Prediction. We make the first attempt to apply “Scoring”
and “And” prioritized aggregation operators [3,4] for overall rating prediction.
The criteria weights depend on users’ preference order of criteria extracted on
the basis of their expressed criteria ratings. Besides, regarding the problem of
contextual recommendation at hand, we conjecture that the criteria strength
also varies in accordance with users’ contexts. Hence, the prioritized operators
allow flexible personalization of the overall rating prediction by considering the
criteria weights based on users’ criteria preferences under different contexts.

Context-Aware Multi-criteria Recommendation 215

Algorithm 1: Criteria Rating Prediction for each Co-cluster
Input: Rating matrix with multicriteria: R ∈ R

m×n, the number of co-clusters:
L, and the number of factors: F .

begin
for each co-cluster k ∈ {1, .., L} do

1 Rk=ExtractSubmatrix (R,co-clusterk)
2 Pk,Qk=MatrixFactorization(Rk,F)

for each i ∈ Pk do
for each j ∈ Qk do

for each t ∈ {1, .., F} do
3 r̂ij= pi,t × qj,t

Output: Criteria predicted ratings

The importance weight computation of a criterion ci, with i �= 1, depends on
users’ preference order of criteria, and depends also on both the weight associated
to criterion ci−1, and the preference of ci−1. The user preference ordering of the
considered criteria is based on computing an average score for each criterion
in accordance with the users expressed criteria ratings. More formally, let C =
{c1, ..., cN} be a set of ordered criteria, where c1 presents the most preferred
criterion and cN is the least one. We indicate by wp the importance weight of
the criterion cp ∈ C for a given item and user’s context. The weights associated
with the ordered criteria are computed as follows:

– The weight associated with the most important criterion c1 is set to be 1.
– The weights of the other criteria cp for p ∈ [2, N], are computed as follows:

wp = wp−1.rp−1 (3)

rp−1 denotes the preference rating given by a user on criterion cp−1 of an item.
We define in the following a new way in which the function f (See Eq. 1) is
defined according to the mentioned prioritized aggregation operators.

– Prioritized “Scoring” operator (Fs): This operator calculates the overall
item rating r0 from several criteria evaluations, where the weight associated
with each criterion depends both on the weights and on the preferences of the
most important criteria. The higher the satisfaction degree of a more impor-
tant criterion, the more the satisfaction degree of a less important criterion
impacts the overall rating. Fs is defined as: Fs : [0, 1]N −→ [0, N]

r0 = Fs(r1, .., rN) =
N∑

p=1

wp.rp (4)

For example, let us consider that a user is looking for an hotel. His choice
depends on two criteria c1 = “comfort” and c2 = “inexpensiveness” with c1
> c2. An hotel with a “comfort” degree of 1 and an “inexpensiveness” degree
of 0 would have an overall rating of 1.

216 R. Dridi et al.

– Prioritized “And” operator (Fa): This operator models a situation where
the overall rating r0 strongly depends on the importance of the least satisfied
criterion. If it is the most important criterion, the value of the least satisfied
criterion is considered as the overall rating merely. Fa is defined as follows:
Fa : [0, 1]N −→ [0, 1]

r0 = Fa(r1, .., rN) = min
p∈[1,N]

({rp}wp) (5)

Let us come back again to the previous example. c1 = “comfort” and c2 =
“inexpensiveness” with c1 > c2. Here, an hotel with a “comfort” degree of
1 and a “inexpensiveness” degree of 0 would have an overall rating of 0. So
in this case, the under-satisfaction of the inexpensiveness criterion cannot be
compensated by the satisfaction of the “comfort” criterion.

4 Experimental Evaluation

4.1 Experimental Settings

The only suitable dataset with respect to our evaluation purpose is TripAdvisor
data [6] since: (1) user’s context is available based on a contextual dimension
which refers to the season. This contextual dimension is derived from the trip
date expressed in months in the dataset (e.g., March, April and May are the
spring season months). (2) Users’ ratings of seven individual criteria, plus one
overall rating are provided. The used criteria are: value for the money, quality of
rooms, the hotel location, cleanliness of the hotel, experience of check-in, overall
quality of service and business services. There are a total of 22.130 ratings given
by 1502 users on 14.300 hotels. The bipartite graph modeling is built upon
m = 3916 users situational contexts connected to n = 7 criteria.

We measure the performance by mean absolute error (MAE) on this dataset
by adopting a training-testing methodology for both parameter tuning and eval-
uation. For this purpose, we fixed a splitting ratio of training/test of 80/20. For
comparison, we used a single rating approach (BiasMF [8]), multi-criteria rat-
ing approaches (Agg [1], CluAllCrit [10], CIC [12], CCA [12], CCC [12]) and a
context-aware rating approach (CAMF [2]).

4.2 Research Hypothesis Validation

To validate our research hypothesis H (See Sect. 3.2), we perform a statisti-
cal analysis to determine the strength of the relationships between contextu-
ally similar users according to their criteria importance. More precisely, we run
a correlation analysis on all the users providing criteria preferences of simi-
lar items in similar context situations from the real-world TripAdvisor dataset.
First, we compute the importance of each criterion for each user to identify
users preferred criteria according to their contexts [11]. Having computed the
users criteria importance, we examine the strength of the relationship between

Context-Aware Multi-criteria Recommendation 217

these users with respect to their criteria importance through the computation
of the Spearman’s rank correlation coefficient. To interpret the strength of the
obtained correlation coefficient values, we use the rule of thumb (See Fig. 1). We
can clearly see from Fig. 1, the high percentage of the very strongly correlated
users in similar situations. This result shows that the majority of contextually
similar users achieve a fairly strong positive correlation coefficient with respect
to their interests for similar criteria which represents a good agreement between
contextually similar users on criteria importance order. Hence, we could con-
jecture that the more similar the users contexts, the more these users tend to
have similar criteria importance which provides a strong support for our research
hypothesis H.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

.20 -.39

.40 -.59

.60 -.79

.80 -1.0

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y
 (

%
)

 Weak correlation
 Moderate correlation

 Strong correlation
 Very strong correlation

Fig. 1. Distribution of the correlation measures between users’ criteria importance in
similar contexts

4.3 Evaluation of the Prioritized Aggregation Operators

We begin by tuning the latent factor number F which is one of the important
parameters for matrix factorization. As shown in Fig. 2(a), we can observe, when
F is equal to 12 the MAE of our proposal using “And” operator declines to the
lowest in cluster 2 and cluster 3. So, we come to a conclusion that F = 12 is a
better choice for both cluster 2 and cluster 3. For cluster 1 and 4, the MAE of
“And” operator model shows a good prediction accuracy when F = 10. While
the prediction accuracy of “Scoring” operator model in all clusters improves
as the number of latent factors reaches 10 (Fig. 2(b)). Then, we assess in this
experimental scenario, the effectiveness of the “Scoring” and “And” prioritized
operators for improving the overall rating prediction in comparison with the
standard “Average” operator. Particularly, to evaluate the joint effect of the
aggregation operators and the number of co-clusters on rating prediction accu-
racy, we experiment different numbers of co-clusters ranging from 2 to 10. From
Fig. 3, we can observe that the “Scoring” operator (resp. the “And” operator)
achieves an average improvement of 19.9% (resp. 14.6%) over the “Average”
aggregation operator for a number of co-clusters ranging from 5–8. This result
confirms the effectiveness of the prioritized combination of the considered cri-
teria in the co-clusters, which allows flexible personalization of the overall pre-
diction results according to users’ preferences. The “Scoring” operator is the

218 R. Dridi et al.

best performing operator in these comparisons due to the appropriateness of the
importance order of relevant criteria in accordance with users’ contexts. Fig. 3
also reveals that the prediction accuracy is affected by the number of co-clusters.
We can observe that the accuracy slightly increases as the co-clusters number
increases from 2 to 4 since the information within each co-cluster is more tied to
users. However, when the co-clusters number continues to increase, the predic-
tion accuracy tends to be steady. This observation could be explained by the fact
that increasing the number of co-clusters would lead to divide the rating matrix
into several more small sub-matrices. Yet, the criteria rating prediction using the
MF algorithm requires a sufficient volume data to provide accurate predictions.
Thus, under a reasonable threshold of data provided by the co-clusters, the cri-
teria aggregation process can not achieve good results, which have a downside
effect on the prediction quality. Therefore, we fix the number of co-clusters to 4
for the prioritized operators and 3 for the “Average” operator.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 2 4 6 8 10 12 14

M
A

E

F

 Cluster 1
 Cluster 2
 Cluster 3
 Cluster 4

(a) “And” operator model

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 2 4 6 8 10 12 14

M
A

E

F

 Cluster 1
 Cluster 2
 Cluster 3
 Cluster 4

(b) “Scoring” operator model

Fig. 2. F variation on the prioritized operators

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 2 3 4 5 6 7 8 9 10

M
A

E

of co-clusters

Average
And

Scoring

Fig. 3. Effectiveness of prioritized operators

Context-Aware Multi-criteria Recommendation 219

4.4 Comparison Effectiveness Evaluation with Baselines

The multi-criteria baselines results are reported from the published correspond-
ing research papers referenced in Table 1 using their optimal parameters and
using the same dataset we used in our experiments. While the results of the
other categories of baselines are obtained from the toolkit CARSKit [13].

In Table 1, IR Scoring and IR And indicate the improving rate achieved
using the “Scoring” and the “And” operators respectively. According to Table 1,
our proposed approach is able to outperform the baselines by achieving higher
prediction accuracy. More precisely, our model based “Scoring” operator allows
achieving a considerable improvement of +72.1%, +72.9% and +62.4% over Agg,
CIC and CCA models respectively. The same trend of improvement holds for
the model based on the “And” operator. These results could be explained by the
fact that the multi-criteria Agg, CIC and CCA models use either a traditional
way for predicting multi-criteria ratings, a linear aggregation, or both which may
decrease prediction accuracy. The multi-criteria algorithm based on clustering
(CluAllCrit) which uses a linear aggregation degrades the prediction results com-
pared with other multi-criteria algorithms. Therefore, our model allows a huge
improvement over CluAllCrit (+482.4% by the “Scoring” operator and +434.7%
by the “And” operator), this may be because the problem with the automatic cri-
teria coefficients obtained by the linear aggregation function. Even when employ-
ing a clustering technique to enhance prediction results, using such coefficients in
the aggregation process may generate many rating prediction results with nega-
tive values or outside of the [1..5] scale. Comparing with the CCC model, which
considers criteria dependency to predict the criteria ratings and uses conditional
aggregations, there is a little difference in the accuracy results between this lat-
ter model and ours. These results reveal that there might exist complementary
criteria affecting the user’s choice for choosing an item. Meanwhile, using a con-
ditional aggregation may not always be a good choice, since CIC model which
uses a conditional aggregation performs worse than CCA model which uses a
linear function.

For the contextual baseline, CAMF works better than the majority of base-
lines but still outperformed by our model (+46.2% using the “Scoring” operator
and +34.2% using the “And” operator); this may be because it does not take
extra information such as multi-criteria ratings.

Overall, our results indicate that particularly in situations where different
criteria ratings are available, it can be advantageous to consider the criteria
strength with respect to user’s context. This explanation is corroborated by
cross-comparing the results obtained using the prioritized operators in the one
hand versus the average aggregation and the CAMF approach on the other hand.
We can see that the MAE decreased from 0.639 to 0.570 when leveraging context
and decreased more to less 0.480 when additionally applying the prioritized
operators.

220 R. Dridi et al.

Table 1. Comparison results for the rating prediction task

Category Algorithms MAE IR Scoring IR And

Traditional single BiasMF [8] 0.894 +104.5% +87.8%

Multi-criteria rating approaches Agg [1] 0.752 +72.1% +57.9%

CIC [12] 0.756 +72.9% +58.8%

CCA [12] 0.710 +62.4% +49.2%

CCC [12] 0.460 +5.3% −3.5%

CluAllCrit [10] 2.545 +482.4% +434.7%

Context-aware rating approach CAMF [2] 0.639 +46.2% +34.2%

Our model Average 0.570 - -

Scoring 0.437 - -

And 0.476 - -

5 Conclusion

In this paper, we have proposed a context-aware recommendation approach that
relies on multi-criteria rating predictions. The key characteristics of the proposed
approach consist in jointly clustering users involved in contextual situations while
rating items with respect to multiple facets. For this purpose, we used the spec-
tral graph partitioning method. The obtained co-clusters provide partial user’s
item ratings that are aggregated using prioritized aggregation operators which
allow tailoring the criteria strengths to the user’s preferences.

The experiments shows that: (1) the prioritized operators outperform basic
average aggregation but that improvement is achieved only with a limited num-
ber of co-clusters and that (2) the co-clusters of contextual situations and criteria
provide relevant signals about the users’ perceptions about item aspects.

In the future, we plan to evaluate our recommendation framework on other
datasets allowing a multi-dimensional-based context evaluation. Within this line
of work, we will support our model with an in-depth analysis of the users’ ratings
on item aspects in various contexts and study the correlation between them.
This analysis would give insight into the relevance of extending the bipartite
graph to deal with different context nodes and the usefulness of filtering relevant
interactions between contexts and item criteria before applying the aggregation.

References

1. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rat-
ing systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

2. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context
aware recommendation. In: RecSys 2011, New York, USA, pp. 301–304 (2011)

3. da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional relevance: a new
aggregation criterion. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy,
C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 264–275. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00958-7 25

https://doi.org/10.1007/978-3-642-00958-7_25

Context-Aware Multi-criteria Recommendation 221

4. da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation oper-
ator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.)
AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 72–81. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10291-2 8

5. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph
partitioning. In: Proceedings of the 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 269–274. KDD, New York (2001)

6. Jannach, D., Zanker, M., Fuchs, M.: Leveraging multi-criteria customer feedback
for satisfaction analysis and improved recommendations. J. IT Tourism 14(2),
119–149 (2014)

7. Jhalani, T., Kant, V., Dwivedi, P.: A linear regression approach to multi-criteria
recommender system. In: Tan, Y., Shi, Y. (eds.) Data Mining and Big Data, pp.
235–243. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40973-3 23

8. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

9. Li, Q., Wang, C., Geng, G.: Improving personalized services in mobile commerce
by a novel multicriteria rating approach. In: WWW, NY, USA, pp. 1235–1236
(2008)

10. Liu, L., Mehandjiev, N., Xu, D.L.: Multi-criteria service recommendation based on
user criteria preferences. In: RecSys 2011, pp. 77–84. ACM, New York (2011)

11. Sreepada, R.S., Patra, B.K., Hernando, A.: Multi-criteria recommendations
through preference learning. In: CODS, pp. 1:1–1:11. ACM, New York (2017)

12. Zheng, Y.: Criteria chains: A novel multi-criteria recommendation approach. In:
IUI 2017, New York, NY, USA, pp. 29–33 (2017)

13. Zheng, Y., Mobasher, B., Burke, R.D.: CARSKIT: A java-based context-aware
recommendation engine. In: ICDMW, Atlantic City, USA, 14–17, pp. 1668–1671
(2015)

14. Zheng, Y., Shekhar, S., Anna Jose, A., Kumar, S.: Integrating context-awareness
and multi-criteria decision making in educational learning. In: SAC, ACM (2019)

https://doi.org/10.1007/978-3-642-10291-2_8
https://doi.org/10.1007/978-3-319-40973-3_23

SilverChunk: An Efficient In-Memory
Parallel Graph Processing System

Tianqi Zheng1,2(B) , Zhibin Zhang1, and Xueqi Cheng1,2

1 CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

zhengtianqi@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. One of the main constructs of graph processing is the two-
level nested loop structure. Parallelizing nested loops is notoriously
unfriendly to both CPU and memory access when dealing with real graph
data due to its skewed distribution. To address this problem, we present
SilverChunk, a high performance graph processing system. SilverChunk
builds edge chunks of equal size from original graphs and unfolds nested
loops statically in pull-based executions (VR-Chunk) and dynamically in
push-based executions (D-Chunk). VR-Chunk slices the entire graph into
several chunks. A virtual vertex is generated pointing to the first half of
each sliced edge list so that no edge list lives in more than one chunk.
D-Chunk builds its chunk list via binary searching over the prefix degree
sum array of the active vertices. Each chunk has a local buffer for conflict-
free maintenance of the next frontier. By changing the units of schedul-
ing from edges to chunks, SilverChunk achieves better CPU and mem-
ory utilization. SilverChunk provides a high level programming interface
combined with multiple optimization techniques to help developing effi-
cient graph processing applications. Our evaluation results reveal that
SilverChunk outperforms state-of-the-art shared-memory graph process-
ing systems by up to 4×, including Gemini, Grazelle, etc. Moreover, it
has lower memory overheads and nearly zero pre-processing time.

Keywords: Graph processing · Parallel scheduling · Chunking

1 Introduction

1.1 Background

Graphs are commonly used to represent interactions between real world entities.
Graph analytics are algorithms that extract information from a graph, which are
widely used in social network analytics, transportation, ad and e-commerce rec-
ommendation systems. As a result, a large number of graph processing systems
are proposed to facilitate graph analytics. Recently there is a rising interest of
building multi-core shared memory graph processing systems on a single machine
because (1) distributed graph systems incur a lot of communication overheads;
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 222–236, 2019.
https://doi.org/10.1007/978-3-030-27618-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_17&domain=pdf
http://orcid.org/0000-0003-4147-6147
https://doi.org/10.1007/978-3-030-27618-8_17

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 223

(2) real world graphs, e.g., Twitter’s follower graph, despite its billions of edges,
can still fit into main memory; and (3) memory capacity and bandwidth are
increasing and will keep increasing in the near future. These systems [5,6,8–14]
process a big graph in main memory of a single high-end server with large RAM
space. They provide high level interfaces for programming simplicity and aim at
full utilization of all CPU and memory resources without manual tweaking. For
example, Ligra [9] provides two simple primitives, EdgeMap and VertexMap, for
iterating over edges and vertices respectively in parallel. These simple primitives
can be applied to various graph algorithms which operate on a subset of vertices
during each iteration.

1.2 Problems

Parallel graph processing is nontrivial due to complex data dependencies in
graphs, however, it is essential for efficient graph analytics. In this paper we dis-
cuss two problems of building an high-performance in-memory graph processing
system.

Preliminaries. In-memory graph processing systems often organize outgoing
edges in the Compressed Sparse Row (CSR) format and incoming ones in the
Compressed Sparse Column (CSC) format, as shown in Fig. 1. A frontier is a
subset of the vertices which are active in the current iteration, as shown in Fig. 2.
Graph algorithms visit the destination vertices of the active edges and apply an
algorithm-specific function to propagate the value from each edge’s source to its
destination. This operation is repeated until the current frontier is empty or user
defined condition is met. We refer to this process as frontier-based computing.

0 4 5 5 7

1 2 3 4 2 2 4 1
4

0

21

3

0 1 2 3 4
Index

Dest

Src
CSR

0 0 2 5 6

0 4 0 1 3 0 0 3

0 1 2 3 4
Index

Src

Dest
CSC

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Fig. 1. Compressed Sparse Row/Column format

The frontier structure may be implemented either as a bitmap (dense format)
or as an array directly storing the vertex IDs (sparse format). Which one is better
depends on the density of the frontier. Frontier-based computing can have two
different execution modes, namely push and pull. Both modes contains a two-
level nested loop. In push mode, frontiers are used in the outer loop and updates
are propagated from active vertices to their neighbors, while in pull mode, the
outer loop is the entire vertex list and each vertex receives updates from its

224 T. Zheng et al.

4

0

21

3 1 0 1 0 0

20 Sparse

Dense

Current
Fron er

Or

4

0

21

3

Sparse

Dense

31 4

1 0 1 10

Next
Fron er

Or
: visited
: ac ve
: inac ve

Fig. 2. Frontiers in a simple BFS algorithm

in-bound edges by checking if the source vertex is inside the current frontier
or not. There are active researches [1,7] studying whether to push or pull. The
basic principle is to push when the frontier is sparse and to pull if otherwise. As
a result, graph processing engines like Ligra [9] automatically switches between
these two execution modes based on the density of the current frontier.

Problems. We discuss the following two problems:

– In both execution modes, the outer loop is parallelized in order to lever-
age the multiple cores of modern processor chips. Unfortunately, due to the
power-law nature of real world social graphs, only a small fraction of vertices
has a significant large number of neighbors while a major fraction of vertices
has relatively few neighbors. As a result, parallelizing only the outer loop is
insufficient as it can lead to significant load imbalance. One naive approach
is to use traditional parallel schedulers such as Cilk [2] or OpenMP [3] to
parallelize the inner loop. However, this approach can lead to numerous con-
flicting writes and scheduling overhead which completely negates the benefits
of the pull execution mode. Grazelle [5] solves this problem by introducing
a scheduler-aware interface that allows programmers to directly operates on
the internal structure of the execution unit of the underlying scheduler. It
provides thread local storage for local updates and merge buffers for global
updates in order to achieve conflict-free parallelization. However the imple-
mentation is architecture-specific and requires additional efforts to implement
even a simple graph algorithm.

– In push mode, due to the sparsity of the frontier, there is a high probability
that the next frontier will also be sparse, hence building the next frontier as
a sparse array instead of a bitmap is more efficient. However, building sparse
frontiers in parallel is nontrivial. Ligra [9] does this by first allocating a scratch
buffer that is large enough to hold all possible vertices in the next frontier,
and then computing an offset array via parallel prefix summing over the active
vertices’ degrees in the current frontier. When a vertex successfully updates
one of its neighbor, Ligra puts the neighbor into the scratch place pointed
by its corresponding offset and atomically adds one to the offset. Finally it
gathers all the valid vertices inside the scratch buffer into the next frontier.
This process is both CPU and memory unfriendly. It scatters the vertices in
the scratch buffer with random writes and relies on atomic instructions to
synchronize the updates of the offset values.

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 225

1.3 Our Solutions and Contributions

To address these problems, we present SilverChunk, a graph processing system
that enables balanced execution of parallel nested loop and conflict-free frontier
maintenance. SilverChunk consists of two different chunking schemes, namely
VR-Chunk for pull mode and D-Chunk for push mode. It also provides a high level
programming interface with additional optimizations. The main contributions of
our work are summarized as follows:

– VR-Chunk. We show that our VR-Chunk solves the first problem in a clean
way. Instead of tuning the parallel scheduler, we change the scheduling unit
directly from vertices to chunks. VR-Chunk splits the edge list statically into
small chunks and generates additional virtual vertices to ensure conflict-free
updates.

– D-Chunk. To tackle the second problem, we propose D-Chunk, a dynamic
chunking scheme that applies to sparse frontiers. Since the vertices in a sparse
frontier is discrete in memory, we build a list of virtual chunks that contains
the information to help iterate over the edge list one piece of at a time.
A virtual chunk provides a scratch space to aggregate vertices for the next
iteration, which alleviates concurrent conflicts when building sparse frontiers.

– Hybrid Polymorphic Interface and Optimizations. We propose a new
programming interface addressing different execution modes and graph algo-
rithm properties for further optimizations. We design a new execution mode:
AllPull mode, which optimizes the execution when the current frontiers are
very dense.

– Extensive Experiments. We carry out extensive experiments using both
large-scale real-world graphs and synthetic graphs to validate the performance
of SilverChunk. Our experiments look into the key performance factors to
all in-memory systems including the pre-processing time, the computational
time and the effectiveness of main memory utilization. The results reveal
that SilverChunk outperforms the state-of-the-art graph processing systems
in most test cases by up to 4×.

The rest of this paper is organized as follows. Section 2 describes the
main constructs of SilverChunk. Section. 3 shows the high level programming
interface and additional optimizations. Section 4 contains experimental results.
Finally, Sect. 5 discusses the related works and Sect. 6 gives the concluding
remarks.

2 Constructs

The main constructs of SilverChunk are the two chunking schemes: VR-Chunk
and D-Chunk. Both schemes output similar chunk structures which are used to
iterate over the input graphs. As a result, we unfold the nested loop into one
flat loop which is efficient for parallel scheduling.

226 T. Zheng et al.

0 4 4 4 6

1 2 3 4 2 4 1

4

0

21

3

0 1 2 3 4

Offset

Source

Dest

1A
B
C
D
E
F
G

Chunking Line
(Edge Num per Chunk)

Real
Parts

A
B
C

Virtual
Parts

D
E
F
G

CSC Edge List

...

1 2 3 4 2 4

subgraph

Real Part Virtual Part

H
I
J

H
I
J

...

VR-Chunk
RS : Real Part Starting Vertex
RE : Real Part Ending Vertex
RB : Real Part Starting Edge
VV : Virtual Part Vertex
VE : Virtual Part Ending Edge

Fig. 3. VR-Chunk

2.1 VR-Chunk

In pull-based execution, we always iterate over the entire edge list to pull updates
from the active vertices, thus the chunking scheme is static. Figure 3 shows how
chunks are built from the original CSC array. Due to the dense feature of the
frontier in pull mode, we assume that every edge requires the same amount of
computation. Hence we slice the edge list into several chunks with equal number
of edges, and assign each thread the same number of chunks to process.

Each chunk only needs to maintain five data fields: the starting and the
ending destination vertices, the first edge, the virtual vertex and the last edge.
The first two fields are obvious. As VR-Chunk might break the edge list, we
need to maintain the first edge at each boundary. These fields form the real
part of a chunk. The interesting one is the virtual vertex field, which stores the
virtual vertex’s ID, referring to the virtual part of a chunk. A different approach
of dealing skewed distribution would be directly slicing the giant vertices into
small virtual vertices. However, it cannot generate balanced chunks with respect
to the edge number. VR-Chunk always slices giant vertices if its neighbor size is
greater than the chunk size. Virtual vertices are used as delegates to the real
vertices so that each vertex is assigned to exact one chunk. Virtual vertices are
appended at the end of the vertex array to enlarge the vertex space so that the
application data such as the PageRank value array gets transparently expanded
too. Therefore, every application data gets a dedicated merge buffer which is
appended at the end and there is no need to explicitly maintain a separate one.

2.2 D-Chunk

In push-based execution, since the active frontier is known only at runtime,
VR-Chunk cannot be applied directly. Also the push execution always incurs
random writes, synchronization is unavoidable. However, we can still benefit from

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 227

chunking because it allows the destination vertices be collected in a conflict-free
manner, therefore improving the sparse frontier’s maintenance.

D-Chunk
Star�ng Vertex, First Edge, Last Edge,

Fron�er Offset

Binary search over the degree prefix sum array

Sparse Degree Array

0
3
7

12
14

8Traverse
Degree Array

Collect

Degree Prefix Sum Array

Parallel Scan

Chunk1 Chunk2 Chunk3 Chunk4

CSR’s Edge List

((14, 2), 8)

Fron�er

Also Needed by Ligra

Fig. 4. D-Chunk

To build a chunk list dynamically in push-based execution, we extend the
sparse frontier construction process used in Ligra [9], which requires calculat-
ing the prefix sum of the degree array. Figure 4 shows the building process of
D-Chunk. An astute reader might notice that we need to rebuild the chunk list
every time when entering push mode. This might sound problematic but actu-
ally building a chunk list for sparse frontier is very fast. Since we already have
the prefix sum of the vertices’ degrees in the current frontier during the original
construction process, the running time of building the chunk list is proportional
to the logarithm of the frontier’s size. The additional work that D-Chunk does is
a binary search to generate chunks with equal number of edges.

Each chunk only needs to maintain four data fields: the starting source vertex,
the first and last edges, and the frontier offset. The first three data fields are used
together with the current sparse frontier to iterate over the active edges. The
frontier offset is a variable that helps collecting the vertices into the next sparse
frontier. Since it is local to each chunk and there is no inter-chunk parallelism,
the collecting process is conflict-free. Moreover, it generates sequential writes for
each chunk. Hence the frontier maintenance is both CPU and memory friendly.
Note that by using chunking in push mode, we can reuse the parallel scheduler
in pull mode, which leads to better thread locality too. The actual scheduler is a
simple thread pool implemented using a user-space thread barrier. Each thread
is bound to a unique CPU core and the scheduler does round-robin work-stealing
over the chunk list.

228 T. Zheng et al.

3 Implementations and Optimizations

Both VR-Chunk and D-Chunk are computational efficient but may require some
amount of work to implement an actual graph algorithm based on them. As a
result, we provide abstractions to hide the implementation details of the chunk
internals. In this section we discuss the high level API design of SilverChunk
and its optimizations.

3.1 Programming Interface

There are two commonly used APIs for graph processing systems: edge-based and
list-based. Ligra [9] uses an edge-based API which allows users to only implement
edge updating logic without caring about frontier maintenance. However, it also
prevents the application to do customized optimizations since the actual execu-
tion context is limited to only one edge. On the other hand, Gemini [15] exposes
a list-based API for the end users which allows application based optimizations,
such as merging application states locally and doing vectorized processing. How-
ever, it requires the end users to maintain the next frontier in application code
which is nontrivial for sparse frontiers. Therefore Gemini only uses dense fron-
tiers. Moreover, a direct implementation of list-based API can lead to workload
imbalance due to the skewed distribution of a input graph.

As a result, we adopt these two API styles into SilverChunk and propose a
hybrid interface. For push mode, we use the edge-based API similar to Ligra. The
main reason is, since we are already doing random writes in push mode, there
is little chance for a list-based API to provide further optimizations. Instead,
we can hide the nontrivial frontier maintenance from the end users. An actual
implementation of graph algorithms in push mode is instantiated as a push
operator. A push operator accepts a source vertex and a destination vertex.
It requires synchronization when updating to the destination vertex. A push
operator can return a boolean value indicating whether the destination vertex
should be put into the next frontier. It can also return nothing so that any sane
compilers will get rid of unnecessary instructions of the frontier maintenance.

For pull mode, we use the list-based API similar to Gemini. Thanks to our
VR-Chunk scheme, giant vertices are already sliced, so workload balance is guar-
anteed. The running instance is called the pull operator. A pull operator
accepts the starting and ending pointers of a source edge list, a real destina-
tion vertex and a destination vertex that might be real or virtual. Every update
is guaranteed to be conflict-free when the pull operator is executed in parallel.
The destination vertex is equal to the real destination vertex unless the vertex
has its source edge list sliced by VR-Chunk. In that case, it is equal to the cor-
responding virtual vertex. In additional, pull mode also requires a pull reduce
operator to be specified so that at the end of each iteration, all virtual vertices’
states are merged to their corresponding real ones.

Listing 1 shows a vanilla implementation of the PageRank algorithm using
the SilverChunk’s API. The graph argument contains the input graph data and

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 229

is able to run a graph algorithm. The Algorithm class is instantiated with the
aforementioned three operators, written as C++ lambdas.

void PageRankFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&](UInt32 s, UInt32 d) {// push

atomicAdd(pr_new[d], pr[s]); },

[&](UInt32* b, UInt32* e, UInt32 rd, UInt32 d) {// pull

Float y = 0;

while (b < e) y += pr[*b++];

pr_new[d] = y; },

[&](UInt32 rd, UInt32 d) {// pull reduce

atomicAdd(pr_new[rd], pr_new[d]); }

);

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 1. Page Rank Implementation

3.2 Optimizations

In the previous section we briefly described the polymorphism of the push oper-
ator, which enables optimizations when returning nothing. We call algorithms
having this kind of operators Immutable since the frontier does not change after
each iteration. We also identify other properties of graph algorithms for poten-
tial optimizations, as shown in Table 1. When all vertices are activated, the code
path of propagating updates can be further optimized by removing unnecessary
checks. We refer to this execution mode as AllPull.

Table 1. Algorithm properties

Algorithm Immutable Bypassable Idempotent

PageRank �

BFS � �

Components �

BellmanFord �

An algorithm is Bypassable if every vertex is supposed to be activated only
once. An example is the simple breadth first search algorithm which finds any one
traversing tree from the starting vertex. As shown in Listing 2, the Algorithm
class accepts a Bypassable flag that checks if a vertex is already activated and
can be bypassed for any further updates. When Bypassable is specified, the
frontier maintenance does not interact with the application, hence it can be
optimized statically. Note that the pull reduce operator is not needed in this
algorithm.

230 T. Zheng et al.

void SimpleBFSFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&](UInt32 s, UInt32 d) {// push

parent[d] = s; },

[&](UInt32* b, UInt32* e, UInt32 rd , UInt32 d) {// pull

while (b < e)

if (graph.isActive (*b)) { parent[rd] = *b; return; }},

Bypassable ());

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 2. Simple BFS Implementation

An algorithm is Idempotent if algorithm correctness is not affected by prop-
agating updates from inactive vertices to their neighbors. An example is the
label propagation algorithm for computing connected components. As shown
in Listing 3, the Algorithm class accepts a Idempotent threshold that switches
to AllPull execution when current frontier’s density is greater than the thresh-
old. The reason of specializing this property is because when frontiers are near
full, AllPull is faster than normal pull mode.

void LabelPropagationFunction ::run(Graph & graph) {

... // initialization code

Algorithm algo(

[&](UInt32 s, UInt32 d) {// push

return writeMin(id[d], id[s]); },

[&](UInt32* b, UInt32* e, UInt32 rd , UInt32 d) {// pull

UInt32 m = MAX_UINT32;

while (b < e) if (graph.isActive (*b)) m = min(m, *b);

if (m < id[rd]) { id[d] = m; return true; }

return false; },

[&](UInt32 rd, UInt32 d) {// pull reduce

writeMin(id[rd], id[d]); },

Idempotent (0.5));

while (! finish) {

graph.run(algo);

... /* other related code */ }}

Listing 3. Label Propagation Implementation

4 Experiments

In this section, we evaluate SilverChunk’s performance using a physical server
with four applications (PageRank, BFS, WCC and BellmanFord) and five
datasets (RMat24, RMat27, Twitter, Powerlaw and USARoad). The physical
server contains two Intel Xeon E5-2640v4 CPUs with 128 GB memory. We synthe-
sized graphs using the R-MAT generator, following the same configuration used by

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 231

the graph500 benchmark. The synthetic power-law graph (PowerLaw) with fixed
power-law constant 2.0 was generated using the tool in PowerGraph [4], which
randomly samples the degree of each vertex from a Zipf distribution and then
adds edges. We also use two types of real-world datasets, a social network graph
(twitter-20101) and a geometric graph (USARoad2). All graphs are unweighted
except USARoad. To provide a weighted input for the SSSP algorithm, we add a
random edge weight in the range [1, 100] to each edge. Following Table 2 shows
the basic information of used datasets .

Table 2. Data set

Dataset Vertex Num Edge Num Avg Deg Max Indeg Max Outdeg Size (CSV)

RMat24 16M 0.3B 16.0 18.0K 17.3K 4.0GB

RMat27 134M 2.1B 15.8 0.90M 0.86M 34GB

Twitter 42M 1.5B 35.3 0.77M 3.0M 25GB

Powerlaw 10M 0.1B 9.2 10 2.1M 1.4GB

USARoad 23M 58M 2.4 9 9 1.3GB

We compare SilverChunk to a number of different in-memory graph engines.
Primarily, we compare SilverChunk with Ligra [9], Polymer [13], Gemini [15],
Grazelle [5] and Galois [8] as these systems achieves state-of-the-art performance
on a single-machine environment using in-memory storage. We run these systems
with four graph algorithms on five different data sets using two different config-
uration of one commodity machine (Dell PowerEdge R730xd). We run iterative
algorithms like Pagerank (PR) as well as traversal algorithms such as Bellman-
Ford (BF) algorithm on these engines. This allows a comparison on how well a
graph engine can handle different kinds of graph algorithms with different graph
data distributions. The detailed information of the evaluated graph algorithms
are as follow:

PageRank (PR) computes the rank of each vertex based on the ranks of its
neighbors. We use the synchronous, pull-based PageRank in all cases and apply
the division elimination optimization to all applications except Grazelle.

Breadth-first search (BFS) traverses an unweighted graph by visiting the
sibling vertices before visiting the child vertices. The source is vertex one for
this test.

Connected components (CC) calculates a maximal set of vertices that are
reachable from each other for a directed graph. All systems adopt label propaga-
tion algorithm except Galois, which provides a topology-driven algorithm based
on a concurrent union-find data structure.

1 http://law.di.unimi.it/datasets.php.
2 http://www.dis.uniroma1.it/challenge9/.

http://law.di.unimi.it/datasets.php
http://www.dis.uniroma1.it/challenge9/

232 T. Zheng et al.

Table 3. Running times (in seconds) of algorithms over various data sets

System Data set PR (5 iterations) BFS CC SSSP

one cpu two cpus one cpu two cpus one cpu two cpus one cpu two cpus

SilverChunk R-Mat24 1.35 0.84 0.13 0.10 0.79 0.48 3.50 2.49

R-Mat27 9.52 5.86 0.62 0.42 5.56 2.69
��
7.66

��
4.63

Twitter 4.55
��
2.64 0.41 0.30

��
4.49 2.35 7.54 4.59

Powerlaw 0.34 0.21 0.13 0.10
��
0.53 0.27 0.93 0.64

US Road 0.36
��
0.23

��
0.55

��
0.80

���
23.18

���
15.01

����
117.29

���
70.19

Ligra R-Mat24 2.78 1.81 0.23 0.20 1.93 1.03
��
3.84

��
2.51

R-Mat27 19.13 14.80 1.07 1.06 13.32 7.62 7.84 5.08

Twitter 9.18 6.69 0.68 0.61 10.97 6.75
��
7.65

��
5.03

Powerlaw 0.94 0.72 0.18
��
0.12 1.44 0.98

��
1.26 0.93

US Road 0.88 0.65 1.46 1.57 62.42 40.12 169.23 87.26

Polymer R-Mat24 4.71 1.88 0.26 0.22 1.64 0.80 4.23 2.53

R-Mat27 43.98 19.08 1.36 1.04 13.82 6.58 9.48 4.91

Twitter 28.82 12.02 0.79 0.65 16.51 8.61 7.69 5.15

Powerlaw 1.54 0.71 0.18 0.20 1.58 1.02 1.29 0.73

US Road 0.61 0.52 1.21 1.25 82.94 45.59 258.03 180.71

Gemini R-Mat24
��
1.52

��
0.85 0.18 0.14 3.12 1.35 7.06 3.55

R-Mat27
��
9.64

��
6.14 0.86 0.76 18.28 8.77 16.21 8.14

Twitter
��
4.88 2.56 0.56 0.74 19.06 9.84 12.66 6.51

Powerlaw 0.46 0.41 0.15 0.23 1.25 0.54 1.39
��
0.72

US Road 0.61 0.31 20.42 21.64 176.23 123.24 533.04 379.54

Grazelle R-Mat24 2.18 1.42
��
0.14

��
0.13

��
1.02

��
0.63 No Impl

R-Mat27 13.30 9.05
��
0.69

��
0.70

��
7.67

��
4.36

Twitter 6.27 3.81
��
0.54

��
0.44 6.27 4.47

Powerlaw
��
0.45

��
0.33

��
0.14 0.13 0.88 0.43

US Road
��
0.39 0.22 2.91 1.85 26.23 15.66

Galois R-Mat24 5.09 2.72 0.61 0.32 1.04 0.64 4.40 4.18

R-Mat27 36.93 20.48 4.14 2.41 7.87 4.90 7.40 4.48

Twitter 10.47 6.12 2.19 1.55 3.86
��
2.48 90.92 69.74

Powerlaw 1.71 0.86 0.38 0.22 0.51
��
0.35 3.88 4.27

US Road 4.40 2.15 0.33 0.30 0.81 0.45 0.90 1.02

Fastest time is denoted as underline. Second fastest time is denoted as
�������
underwave.

Single-source shortest-paths (SSSP) computes the distance of the shortest
path from a given source vertex to other vertices. The source is vertex one for
this test. All systems implement SSSP based on the Bellman-Ford algorithm
with synchronously data-driven scheduling, while Galois uses a data-driven and
asynchronously scheduled delta-stepping algorithm.

4.1 Graph Algorithm Test

Table 3 gives a complete runtime comparison. Of all the test cases, we report the
execution time of their five runs. For PageRank algorithm, SilverChunk achieves
optimal performance against other systems using only one CPU. Gemini and
Grazellel are the second best. With two CPUs enabled, systems like Polymer,
Gemini and Grazelle scales better than SilverChunk, however SilverChunk
still holds three best results out of five. On the other hand, the graph traversal

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 233

algorithms, including BFS, CC and SSSP, are not sensitive to the memory
accesses of NUMA systems, since they have much fewer active vertices in each
iteration, resulting in fewer memory accesses. Therefore, SilverChunk outper-
forms all other systems except Galois, which either adopts different algorithms
for the problem or uses specialized scheduler for asynchronous execution. In
most test cases, SilverChunk takes a leading position, except the USRoad graph.
For high-diameter graphs like USRoad, the asynchronous scheduling and special
implementations in Galois are able to exploit more parallelism for the graph
traversal algorithms, such as CC and SSSP. In general, our graph chunking
technique achieves 99% of CPU usage without any dynamic coordination in pull
mode. It also gives consistent load balance in push mode.

4.2 VR-Chunk Test

As can be seen from Fig. 5, compared to other systems, VR-Chunk does not intro-
duce pre-processing overheads, while still achieves the best performance. Figure 6
compares the running time of the PageRank algorithm on the twitter graph
with three different implementations: Cilk [2], VR-Chunk and VR-Chunk with
work-stealing. The static execution of VR-Chunk already excels the Cilk sched-
uler. Adding a simple chunk-based work-stealing mechanism gives another 10%
performance gain.

Fig. 5. Comparision among different
systems

Fig. 6. Comparision with hand-written
code

4.3 AllPull Test

We test different thresholds of AllPull execution combined with adaptive Push-
Pull switching. Figure 7 shows the test result of running the Connected Com-
ponents algorithm. With AllPull mode enabled, we get 30% performance gain.
All three different data set achieve the best running time when the threshold
is between 0.3 and 0.5. Therefore it can serve as a proper reference value for
optimizing idempotent algorithms.

234 T. Zheng et al.

Fig. 7. Connected components execution time with different AllPull thresholds

4.4 NUMA and Cache Optimization Test

Since NUMA based engine Polymer [13] does not reveal proper performance,
and cache based engine Cagra [14] does not open source their code, we imple-
ment both optimization schemes in order to complete our testing. We also
combine NUMA and cache optimizations along with the optimizations used in
SilverChunk. As can be seen from Table 4, both NUMA or cache optimizations
can effectively improve the performance. The last column lists the memory con-
sumption with values related to the lowest one. Cache optimization gives better
running time than NUMA optimization but it introduces a huge amount of mem-
ory consumption and pre-processing time. SilverChunk gives further improve-
ments in all optimization combinations, and it is more effective when there is
no NUMA or cache optimization applied, which suggests that SilverChunk not
only balances workloads, but also optimizes memory accesses. Notice that both
NUMA and cache optimizations in this test have their pre-processing time longer
than the actual running time. As a result, Whether to enable such optimization
needs further considerations.

Table 4. PageRank (5 iters) over Twitter-2010

Nested loop VR-Chunk Pre-processing Peak memory

No NUMA, No Cache 3.13 s 2.64 s 0 s 1.0

NUMA, No Cache 2.28 s 2.08 s 3.83 s 1.05

No NUMA, Cache 1.91 s 1.68 s 6.52 s 1.56

NUMA, Cache 1.67 s 1.55 s 11.84 s 1.64

5 Related Works

The field of single machine graph processing in main memory has seen efforts in
both parallel scheduling and graph partitioning. Ligra [9] proposes an EdgeMap

SilverChunk: An Efficient In-Memory Parallel Graph Processing System 235

interface to hide the inner loop parallelism, however it does not solve the actual
workload imbalance issue. Grazelle [5] adopts a schedule-aware to achieve work-
load balance which however makes graph applications hard to implement. Poly-
mer [13], Gemini [15] and Grazelle [5] are exponents in NUMA optimizations.
They partition graph into subgraphs for each NUMA node, trying to reduce
remote memory access. However it takes more time in pre-processing and its
effectiveness is related to the graph data distribution and the actual running
modes. For sparse frontiers, pre-partitioned graphs are less effective. Systems
like GRACE [12] and Cagra [14] partition the input graph even further, at the
CPU cache level. Cagra manually partitions the graph in order to make sure one
batch of concurrent workload would end up only reading data from CPU’s LLC.
However, this adds a lot of complexity to the initialization process, and similar to
NUMA-aware partitioning, it barely helps when the frontiers are sparse. Graph-
Grind [10] uses partition-based optimization only when the frontier’s density
exceeds certain threshold, which is 50% in their experiments, while still keeps
the vanilla CSR/CSC formats for sparse and medium-dense frontiers. However,
they add one additional copy of the graph data to store the partitioned graph,
resulting in 50% more memory consumption.

6 Conclusion

We present SilverChunk, an efficient in-memory parallel graph processing sys-
tem running on a single machine. SilverChunk solves the workload imbalance
issue of frontier-based computing by unfolding the nested loop into a flat loop
over a chunk list. We extend the chunking scheme to support both pull and
push modes and provide a unified high level API for implementing graph appli-
cations. In addition, we address new optimization opportunities based on differ-
ent execution modes and algorithm properties, and use a policy based API to
automatically apply the corresponding optimizations. Currently SilverChunk
cannot handle graphs too big to fit into main memory. We plan to extend the
ideas presented in this paper to external memory and distributed environment
in near future.

Acknowledgements. We thank anonymous reviewers whose comments helped
improve and clarify this manuscript. This work is funded by the National Key Research
and Development Program of China.

References

1. Besta, M., Podstawski, M., Groner, L., Solomonik, E., Hoefler, T.: To push or to
pull: on reducing communication and synchronization in graph computations. In:
Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 93–104. HPDC 2017, ACM, New York (2017).
https://doi.org/10.1145/3078597.3078616

https://doi.org/10.1145/3078597.3078616

236 T. Zheng et al.

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H.,
Zhou, Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 1995, pp. 207–216. ACM, New York (1995). https://doi.org/10.
1145/209936.209958

3. Dagum, L., Menon, R.: OpenMP: an industry standard api for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

4. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2012), pp. 17–30. USENIX, Hollywood (2012)

5. Grossman, S., Litz, H., Kozyrakis, C.: Making pull-based graph processing perfor-
mant, pp. 246–260. ACM Press (2018). https://doi.org/10.1145/3178487.3178506

6. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and effi-
cient graph analysis. In: Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, pp. 349–362. ACM, New York (2012). https://doi.org/10.1145/
2150976.2151013

7. Malicevic, J., Lepers, B., Zwaenepoel, W.: Everything you always wanted to know
about multicore graph processing but were afraid to ask. In: 2017 USENIX Annual
Technical Conference (USENIX ATC 2017), pp. 631–643. USENIX Association,
Santa Clara (2017)

8. Pingali, K., et al.: The tao of parallelism in algorithms. In: Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, pp. 12–25. ACM, New York (2011). https://doi.org/10.
1145/1993498.1993501

9. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory, p. 135. ACM Press (2013). https://doi.org/10.1145/2442516.2442530

10. Sun, J., Vandierendonck, H., Nikolopoulos, D.S.: GraphGrind: addressing load
imbalance of graph partitioning. In: Proceedings of the International Conference
on Supercomputing, ICS 2017, pp. 16:1–16:10. ACM, New York (2017). https://
doi.org/10.1145/3079079.3079097

11. Sundaram, N., et al.: GraphMat: high performance graph analytics made produc-
tive. Proc. VLDB Endowment 8(11), 1214–1225 (2015). https://doi.org/10.14778/
2809974.2809983

12. Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph pro-
cessing made easy. In: CIDR, vol. 13, pp. 3–6 (2013)

13. Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics, pp. 183–
193. ACM Press (2015). https://doi.org/10.1145/2688500.2688507

14. Zhang, Y., Kiriansky, V., Mendis, C., Amarasinghe, S., Zaharia, M.: Making caches
work for graph analytics. In: 2017 IEEE International Conference on Big Data
(Big Data), pp. 293–302, December 2017. https://doi.org/10.1109/BigData.2017.
8257937

15. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: OSDI 2016, pp. 301–316. USENIX Association (2016)

https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/209936.209958
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3178487.3178506
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.1145/2688500.2688507
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/BigData.2017.8257937

A Modular Approach for Efficient
Simple Question Answering

Over Knowledge Base

Happy Buzaaba1(B) and Toshiyuki Amagasa2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

happy-b@kde.cs.tsukuba.ac.jp
2 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan

amagasa@cs.tsukuba.ac.jp

Abstract. In this work, we propose an approach for efficient question
answering (QA) of simple queries over a knowledge base (KB), whereby
a single triple consisting of (subject, predicate, object) is retrieved from
a KB for a given natural language query. In fact, most recent state-of-
the-art methods exploit complex end-to-end neural network approaches
to achieve higher precision while making it difficult to perform detailed
analysis of the performance and suffering from long execution time when
training the networks. To this problem, we decompose the simple QA
task in a three step-pipeline: entity detection, entity linking and rela-
tion prediction. More precisely, our proposed approach is quite simple
but performs reasonably well compared to previous complex approaches.
We introduce a novel index that relies on the relation type to filter out
subject entities from the candidate list so that the object entity with
the highest score becomes the answer to the question. Furthermore, due
to its simplicity, our approach can significantly reduce the training time
compared to other comparative approaches. The experiment on the Sim-
pleQuestions data set finds that basic LSTMs, GRUs, and non-neural
network techniques achieve reasonable performance while providing an
opportunity to understand the problem structure.

Keywords: Question answering · Knowledge base

1 Introduction

Large scale knowledge bases like Freebase [2], consist of a large pool of informa-
tion with real-world entities as nodes and their relations as edges. Each directed
edge, along with its head entity and tail entity, constitute a triple, i.e., (head
entity, relation, tail entity), which is also named as a fact. Because of their
large volume and complex data structures, it is difficult for non-technical users
to access the substantial and valuable knowledge in them. To bridge this gap,
Question answering over knowledge base (KB) aims at automatically translating
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 237–246, 2019.
https://doi.org/10.1007/978-3-030-27618-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_18

238 H. Buzaaba and T. Amagasa

the end users’ natural language questions into structured queries and returning
entities from the KB as answers. For example, given a question “where was
Barack Obama born?”, simple Question answering over KB aims at identify-
ing its corresponding triple, i.e., (Barack Obama, people/person/place/of/birth,
Honolulu). Recent developments in deep learning have triggered a line of work
that have attracted many researchers to investigate more end-to-end approaches
together with complex neural network architectures that performs well on a vari-
ety of natural language processing tasks like opinion extraction [10], sentence
classification [11] etc. It is, however, difficult to perform detailed analysis of the
performance in the end-to-end setting and they also suffer from long execution
time when training the networks.

We focus on simple factoid questions based on the simpleQuestions bench-
mark [3], in which answering a question requires the extraction of a single fact
from the knowledge base. We decompose the simple question-answering task
in three different components: (1) Entity detection where standard Recurrent
Neural Network (RNN), and Conditional Random Field (CRF) are applied to
identify entities in the question, (2) We then link the identified entities to there
corresponding nodes in the KB using an inverted index to generate a candidate
list with their respective score and (3) Relation prediction where a question is
classified as one of the relation types in the KB, we apply standard (RNN) plus
standard Convolutional Neural Network (CNN) to do this.

In our work we make the following contributions; (i) Propose a simple yet
effective approach, our approach is faster/efficient to train the network and
performs reasonably well compared to previous complex approaches of Bodes
et al. [3], Golub and He [8], Lukovinikov et al. [14], that apply end-to-end neural
network on a similar task of simple question answering. (ii) Introduce a novel
index that relies on the relation type to filter out subject entities from the can-
didate list so that the object entity with the highest score becomes the answer
to the question.

2 Related Work

For several years, research has been conducted on question answering by directly
parsing the natural language question into a structured query using semantic
parsing [12], more recent work includes designing knowledge specific logical rep-
resentation and grammar parsing [1]. In his work, Bodes et al. [3], proposed
the single-relation factoid question answering. This work introduces a Simple-
Questions data set which has 108,442 questions built on Freebase and proposes
a memory network to solve the simple question answering task. This prompted
a line of work that have led researchers like Golub and He [8], Lukovinikov
et al. [14], Dai et al. [6] to apply even more complex neural network architectures
to address this problem. Golub and He [8] proposed a character-level attention-
based encoder-decoder model, Lukovinikov et al. [14] applies a hierarchical word-
level and character-level question encoder to train a neural network in an end-to-
end manner. Dai et al. [6] proposes a conditional probabilistic framework using
BIGRUs to infer the target relation first and then the target subject associated

A Modular Approach for Efficient Simple Question Answering 239

with the candidate relations. Yin et al. [19] used character-level convolutional
Neural Network for entity linking and a separate word-level convolutional Neural
Network with attentive max-pooling that models the relationship between the
predicate and question pattern more effectively. Yu et al. [20] applied a resid-
ual hierarchical BILSTM that performs hierarchical matching between questions
and knowledge base relations for relation prediction, the results were then com-
bined with the entity linking output. The above deep learning approaches, exploit
increasingly complex techniques. Our work builds on a related work by Ture and
Jojic [18] which argues that baseline methods when fully explored can equally
produce competitive results. His work applies simple recurrent neural network
and urges that taking advantage of the problem structure yields accurate and
efficient results compared to complex neural network methods.

With the goal of enhancing the performance of the simple question answering
system using baseline methods, we examine the necessity of complex models for
the simple question answering task as applied by previous related work, and we
do this by exploring the performance of baseline methods both standard neural
network and non neural network techniques that perform reasonably well on a
similar task.

3 Proposed Approach

The task of question answering over knowledge base for simple questions can
be formally represented as follows; Let G = {(si, pi, oi)} be the knowledge base
representing a set of triples where si represents a subject entity, pi a predicate
also denoted as a relation, oi an object entity. Given a simple natural language
question q represented as a sequence of words, q = {w1, w2, ..., wT }, the simple
question answering task is to find a triple (ŝ, p̂, ô) ∈ G such that ô is the intended
answer to the question.

We therefore formulate this task to finding the right subject ŝ and predicate
or relation p̂ referred to in the question q that characterizes a set of triples in
the knowledge base G that contain the answer ô to the question.

3.1 Entity Detection

To identify the entity in the question we formulate this as a sequence labeling
problem where each word or token is tagged as entity or non-entity; I: entity and
0:non-entity. We apply both neural network and non-neural network methods to
this task.

In Fig. 1, Each question word/token is represented with a word embedding,
the input word representation is then combined with the hidden layer repre-
sentation from the previous time step using either BiLSTM [9] or BiGRU [4]
standard RNNs which then applies a non-linear transformation to compute the
hidden layer representation at the current time step. The final hidden represen-
tation at the current time step is then projected to the output dimensional space
and normalized into a probability distribution via a softmax layer.

240 H. Buzaaba and T. Amagasa

Fig. 1. RNN architecture for entity
detection

Fig. 2. RNN architecture for relation
prediction.

Gated recurrent units (GRU) Fig. 3, are commonly used due to their ability
to process longer sequences. As we read the sentence from left to right, the
GRU is going to have a new memory variable called the memory cell C<t>,
so that when the network gets further into the sentence it can still remember
the subject of the sentence. At time step t the GRU will output an activation
function equivalent to the memory cell at that time step. The current memory
cell C<t> at time step t is computed by interpolating between the previous
hidden state C<t−1> at previous time step and the candidate state Ĉ<t> at
the current time step; C<t> = Γu � Ĉ<t> + (1 − Γu) � C<t−1>. With Γu as
the update vector and � the element wise vector product. For interpolation,
the update gate which determines how much of the previous state is leaked
into the current state Γu is computed using the current input X<t> and the
previous state C<t−1> as Γu = σ(Wu[C<t−1>,X<t>] + bu). Where Wu and bu

are parameter metrics to be learned during training and σ the Sigmoid activation
function σ(x) = 1

1+e−x applied element wise to the vector entries. The update
gate can decide to forget the previous state altogether or copy the previous state
and ignore the current input. The candidate memory cell/hidden state at the
current time step Ĉ<t> is computed based on the current input X<t> and the
previous hidden state C<t−1> give by Ĉ<t> = tanh(Wc[Γr � C<t−1>,X<t>] +
bc). Wc and bc are parameter metrics, tanh the hyperbolic tangent activation
function and Γr is the reset gate which determines the parts of the previous
state ignored in computation of the candidate state and it is computed as Γr =
σ(Wr[C<t−1>,X<t> + br]) with Wr and br the parameters.

We also apply Conditional random field (crf) to sequence labeling [13]
to compare the entity detection performance with RNN. CRF, represents the
probability of a hidden state sequence given some observations. Given x; input
sequence, x = (x1, x2, ..., xm) and s = (s1, s2, ..., sm) the output states (crf tags),
the conditional probability cp; is given by cp = p(s1, s2, ..., sm|x1, x2, ..., xm).
We define a feature map as Φ(x1, x2, ..., xm, s1, s2, ..., sm) ∈ Rd. This feature
map, maps x paired with s to d : dimensional feature vector. The probability is
therefore modeled as a log linear p(s|x,w) = exp(w.φ(x,s))

∑
s

′ exp(w.φ(x,s′))
with parameter

vector w ∈ Rd. s’ ; ranges over all possible outputs. We estimate the parameter
vector w by assuming that we have a set of n labeled samples {(xi, si)}n, i = 1.
The regularized log likelihood is given by L(w) =

∑n
i=1 log p(si|xi, w)− λ2

2 ||w||22−
λ1||w||1, where λ2

2 ||w||22 and λ1||w||1 forces w to be small in the respective

A Modular Approach for Efficient Simple Question Answering 241

Fig. 3. Schematic representation of GRU

norm. The parameter vector w* is estimated as w∗ = argmax(w ∈ RdL(w)).
If we estimate w* the parameter vector, we can then find the most likely tag a
sentence s* for a sentence x by s∗ = argmaxsp(s|x : w∗).

We train crf using Stanford Named Entity Recognizer (NER) [7], a tool that
labels word sequences in the sentence into four classes; person, organization, loca-
tion and non-entity. This tool extracts features such as current/previous/next
word, POS tag, character n-gram etc, and trains a crf model.

We tagged the question into four classes, the first three classes of (person,
organization, and location) were tagged as entity. So we ultimately have two tags
in our experiment of entity and non-entity and trained the stanford NER on the
training set and labeled the test set questions.

3.2 Entity Linking

The generated candidate entities are then linked to the actual knowledge base
node. We use 2M Freebase subset as our knowledge base. For linking the
extracted entity to the actual knowledge base node, we build different indexes
using dictionaries in python. First, a names index which maps all entity machine
identifiers (MID’s) in the Freebase subset to their names in the Freebase names
file [6]. Second, the inverted index to map any entity n-gram to all nodes in the
knowledge base, this association of entity n-grams to nodes in the knowledge
base is computed by term frequency inverse document frequency (tf-idf). For
example; assuming a node referring “Barack Obama” exists in the knowledge
base, the tf-ifd weights would be computed by; I(“Barack”) → {node: ei, score:
tf-idf(“Barack”, “Barack Obama”)} and I(“Barack Obama”) → {node: ei, score:
tf-idf(“Barack”, “Barack Obama”)} We perform this for every n-gram of every
entity node in the KB. We are able to generate a list of candidate entities with
their associated scores. Once we have a list of candidate entities, we use each
candidate node as a starting point to reach candidate answers. We limit our
search to a single hop for the purpose of the current approach and retrieve all
nodes that are reachable from the candidate where the path from is consistent
with the predicted relation.

242 H. Buzaaba and T. Amagasa

3.3 Relation Classification

We classify the question as one of the freebase knowledge base relation types.
There are 1,837 unique relation types in Freebase, And the task is to do a
large scale classification with 1,837 possible labels to assign the relation type
to the question. Assuming we have a question “how old is barack obama”, the
relation type which refers to the date of birth is “people/person/bornOn”. We
examine a model similar to that of entity detection. The difference is that relation
classification is not a tagging task, we therefore base the classification decision
on the output of the last hidden layer for prediction as shown in Fig. 3.

We also apply Convolutional Neural Networks CNN for relation classi-
fication, similar to Kim et al. [11]. We modify the multi-channel model described
in his paper to a single static channel instead, and apply the same model to our
task of relation classification. We adopt CNNs because of their ability to do
extract local features by sliding filters over the word embeddings.

The sentence is represented by concatenating words and padding where neces-
sary as follows; x1:n = x1⊕x2⊕....⊕xn, and we use convolutional filters to gener-
ate new features from a window of words as represented by ci = f(W.xi:i+h−1+b).
We apply the filter to each of the possible window of words in the sentence to
produce a feature map represented by c = [c1, c2, . . . , cn−h+1]. We then use the
max-over-time pool over the filter to take the maximum value as a feature cor-
responding to this particular filter. The idea is to capture the most important
feature, which is basically one with the highest value for each feature map. And
finally these features are passed on to the fully connected softmax layer whose
output is the probability distribution over labels. We are able to come up with a
relation type for each of the questions in the data set from the relation prediction
step.

3.4 End to End Question Answering

After generating the candidate entities with their respective scores, and the
relation types in the previous steps, we come up with all possible (entity, relation)
pairs, from which we believe we can get an answer to the question. The next
step is to filter out those entity nodes that do not seem to have an answer to
the question. For example if we had a question “how old is Barack Obama”
which has a relation type “people/person/bornOn”, to do filtering, we look
at the relation type, and all those candidate entity nodes with a different relation
type leading to another node are filtered out. Only those with a relation type
leading to another node similar to the one generated are kept and the entity
node with a high score in the remaining candidate list has an object entity node
which is the answer to the question.

4 Experiment and Results

4.1 Experimental Setup

We experiment on the SimpleQuestions benchmark [3], with Freebase as the
knowledge base [2]. We experiment on a 2M Freebase subset to be able to

A Modular Approach for Efficient Simple Question Answering 243

compare with previous work that applied a similar subset as the knowledge base.
In freebase knowledge base, entities are connected by predefined predicates con-
necting from the subject to the object. A triple (Subject, Predicate, Object)
denoted as (S, P, O) which describe a fact for example (Barack Obama,
people/person.bornOn, 8/4/1961) refers to the fact that Barack Obama’s
date of birth is 8th, April 1961. We use the training, validation and test splits
of 75,910, 10,845 and 21,687 questions respectively as provided by the data-
set in our experiment. We initialize the model word embeddings with a 300-
dimensional pre-trained vectors provided by Glove [15]. The pre-trained word
embeddings implicitly integrate word semantics inferred from large text corpus
based on the distributional hypothesis [17]. The pre-trained word embeddings
allows to find better matches between words in the question and subject labels
or relation URI’s. It also allows to handle unseen words during training when it
comes to testing.

We compute precision, recall and F1 for every sequence tags against the
ground truth for evaluation in entity detection. We evaluate recall for top results
at k (R@k) for both entity linking and relation prediction to see if the correct
answer appears in the top k results. The final prediction is marked as correct if
both entity and relation match the ground truth in end-to-end evaluation. We
follow Bodes et al. [3] to do this and we measure accuracy which is equivalent
to R@1.

We also use the Stanford Named Entity Tagger (NER) [7] a tool for label-
ing word sequences in the sentence to conduct the experiment with conditional
random field (crf).

4.2 Results

In this subsection, we present our results on the SimpleQuestions task and we
begin with the results on each individual component.

Entity Detection: Table 1 shows each models’ results on the task of entity
detection. We evaluate the precision, recall and F1-score on the token span level.
This means that the predicted entity token span exactly matches the ground
truth (a true positive span). The results reveal that RNN (LSTM & GRU)
perform better with F1-score of 92.5% for the GRU. It can also be noticed that
the crf result of 90.2% is comparable.

Entity Linking: Table 2 shows the performance of each model on the entity
linking task. The CRF entity linking results accuracy is comparable to both
LSTM and GRU. Although the crf may have performed slightly lower than the
LSTM and GRU on entity detection, the bottleneck is entity linking because
there are more entities in the knowledge graph with the same label which makes
it difficult to identify the correct entity.

244 H. Buzaaba and T. Amagasa

Table 1. Entity detection results for a
given model.

Model Split P (%) R (%) F1 (%)

LSTM Val 91.89 92.87 92.26

LSTM Test 91.08 91.21 91.53

GRU Val 92.56 93 92.78

GRU Test 92.09 92.92 92.5

CRF Val 90.71 89.92 90.36

CRF Test 90.72 89.8 90.2

Table 2. Entity linking results for a given
model.

Model Split R@1 R@5 R@10 R@20

LSTM Val 0.679 0.827 0.863 0.889

LSTM Test 0.662 0.811 0.849 0.876

GRU Val 0.676 0.825 0.86 0.885

GRU Test 0.661 0.808 0.848 0.876

CRF Val 0.663 0.809 0.845 0.871

CRF Test 0.649 0.796 0.834 0.861

Table 3. Relation prediction
results for a given model.

Model Split P (%) R@3 R@5

GRU Val 82.22 93.75 95.93

GRU Test 81.59 93.68 95.76

LSTM Val 81.76 93.73 95.85

LSTM Test 81.28 93.66 95.47

CNN Val 82.88 93.75 95.86

CNN Test 81.92 93.68 95.64

Table 4. End to end combination of entity
detection and relation prediction models.

Entity Relation Accuracy

BiLSTM BiGRU 74.64

BiLSTM CNN 74.63

BiLSTM BiLSTM 74.59

BiGRU BiGRU 74.54

BiGRU CNN 73.92

CRF CNN 73.42

CRF BiGRU 73.39

CRF BiLSTM 73.34

Model Description Accuracy

Yin et al. 2016 Max-pooling 76.4

Dai et al. 2016 Probabilistic 75.7

Lukovinikov 2017 Neural embedding 71.2

Golub and He 2016 Character-based 70.9

Bodes et al. 2015 Memory network 62.7

Relation Prediction: For the task of predicting the relation type of the ques-
tion, the relation or predicate is given in the data-set. We conduct a large scale
classification with 1,837 possible labels to assign a relation type to the question.
In Table 3 we can see that on precision, CNN out performs both RNN’s (LSTM
and GRUs). We however see that both RNN and CNN retrieval results (R@3)
are essentially similar but RNN better at (R@5).

Table 4 shows end-to-end results for various combinations of entity detec-
tion and relation prediction on test set. The best model combination which
achieves 74.64% accuracy is the BiLSTM for entity detection and BiGRU for
relation prediction. When we replace BiLSTM with CRF for entity detection,
the accuracy decrease by only 1.25 this shows that non neural network baselines
can still perform well. Despite the immense contribution of neural networks to
the meaningful improvements in the state of the art on the simple questions
data set, our results suggest that the improvements directly attributed to com-
plex neural networks are modest than previous researchers may have led the

A Modular Approach for Efficient Simple Question Answering 245

readers to believe. We also compare our results with existing state-of-art com-
plex models to examine the necessity of model complexity on this task. Our
results outperform the complex neural network models of Bodes et al.’s [3] mem-
ory network, Golub and He’s [8] attention-enhanced encoder-decoder framework
and Lukovinikov [14] complex character and word-level encoding. Our model is
however comparable to Dai et al. [6] and Yin et al. [19] which apply a separately
trained segmentation. Our best accuracy is less than 2 points away from the next
highest reported result in the literature. It is important to pay attention when
interpreting the results due to non-determinism associated with training neural
networks that can yield differences in accuracy Reimers and Gurevych [16]. It
was also demonstrated that for answer selection in question answering, issues
ranging from software versions, can significantly impact the accuracy Crane [5].

4.3 Training Time

Our observation is that the proposed method is quicker and efficient to train.
Training each of the component of entity detection and relation prediction for
50 epochs, using our PC, takes approximately 8 h. While it takes close to 6 days
to train for example Lukovinikov et al. [14] for the same number of epochs on a
similar PC.

5 Conclusion and Future Work

In this work we explore simple yet effective approach for simple question answer-
ing. We decompose the simple question answering task in sub-problems of entity
detection, entity linking and relation prediction and solve each separately using
simple baseline methods. Our results show that there is need to adequately exam-
ine simple baselines and take advantage of the problem structure before rushing
to sophisticated deep learning techniques at least for the simple question answer-
ing task.

References

1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1533–1544 (2013)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250. ACM (2008)

3. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1406.1078

246 H. Buzaaba and T. Amagasa

5. Crane, M.: Questionable answers in question answering research: reproducibility
and variability of published results. Trans. Assoc. Comput. Linguist. 6, 241–252
(2018)

6. Dai, Z., Li, L., Xu, W.: CFO: Conditional focused neural question answering with
large-scale knowledge bases. arXiv preprint arXiv:1606.01994 (2016)

7. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pp. 363–370. Asso-
ciation for Computational Linguistics (2005)

8. Golub, D., He, X.: Character-level question answering with attention. arXiv
preprint arXiv:1604.00727 (2016)

9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005)

10. Irsoy, O., Cardie, C.: Opinion mining with deep recurrent neural networks. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 720–728 (2014)

11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

12. Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.: Scaling semantic parsers with
on-the-fly ontology matching. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1545–1556 (2013)

13. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data (2001)

14. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 1211–1220. Interna-
tional World Wide Web Conferences Steering Committee (2017)

15. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

16. Reimers, N., Gurevych, I.: Reporting score distributions makes a difference:
Performance study of LSTM-networks for sequence tagging. arXiv preprint
arXiv:1707.09861 (2017)

17. Sahlgren, M.: The distributional hypothesis. Ital. J. Disabil. Stud. 20, 33–53 (2008)
18. Ture, F., Jojic, O.: No need to pay attention: Simple recurrent neural networks

work!(for answering “simple” questions). arXiv preprint arXiv:1606.05029 (2016)
19. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by

attentive convolutional neural network. arXiv preprint arXiv:1606.03391 (2016)
20. Yu, M., Yin, W., Hasan, K.S., Santos, C.D., Xiang, B., Zhou, B.: Improved

neural relation detection for knowledge base question answering. arXiv preprint
arXiv:1704.06194 (2017)

http://arxiv.org/abs/1606.01994
http://arxiv.org/abs/1604.00727
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1707.09861
http://arxiv.org/abs/1606.05029
http://arxiv.org/abs/1606.03391
http://arxiv.org/abs/1704.06194

Scalable Machine Learning in the R
Language Using a Summarization Matrix

Siva Uday Sampreeth Chebolu(B), Carlos Ordonez, and Sikder Tahsin Al-Amin

Department of Computer Science, University of Houston, Houston, TX 77204, USA
sivauday.sampreeth8@gmail.com

Abstract. Big data analytics generally rely on parallel processing in
large computer clusters. However, this approach is not always the best.
CPUs speed and RAM capacity keep growing, making small comput-
ers faster and more attractive to the analyst. Machine Learning (ML)
models are generally computed on a data set, aggregating, transforming
and filtering big data, which is orders of magnitude smaller than raw
data. Users prefer “easy” high-level languages like R and Python, which
accomplish complex analytic tasks with a few lines of code, but they
present memory and speed limitations. Finally, data summarization has
been a fundamental technique in data mining that has great promise
with big data. With that motivation in mind, we adapt the Γ (Gamma)
summarization matrix, previously used in parallel DBMSs, to work in
the R language. Γ is significantly smaller than the data set, but cap-
tures fundamental statistical properties. Γ works well for a remarkably
wide spectrum of ML models, including supervised and unsupervised
models, assuming dimensions (variables) are either dependent or inde-
pendent. An extensive experimental evaluation proves models on summa-
rized data sets are accurate and their computation is significantly faster
than R built-in functions. Moreover, experiments illustrate our R solu-
tion is faster and less resource hungry than competing parallel systems
including a parallel DBMS and Spark.

1 Introduction

Machine Learning has become popular and gained a lot of demand in the present
world with the availability of abundant data and abundant processing power.
There are a lot of tools and technologies like Python, R, Scala, Java, C# and
many more which compute these machine learning models. However, data sets
can be so large that they do not fit in the main memory. For these types of
data, Hadoop stack or distributed systems or DBMSs like Vertica, SciDB is a
popular choice to compute the Machine Learning models [10,15]. Contrary to
the popular belief, we propose that the size of the cleaned data set, rather than
its raw counterpart should dictate the data processing platform to be used. Data
cleaning strips off a lot of unwanted and inaccurate data. As a result, the size of
the data set is significantly reduced and with it, the need to use a heavyweight

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 247–262, 2019.
https://doi.org/10.1007/978-3-030-27618-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_19

248 S. U. S. Chebolu et al.

data processing platform like Hadoop. Therefore, with a refined data set, data
processing can be limited to a single system environment like, in our case, R.

With a vast package ecosystem coupled with extensive developer support,
R ticks all the right boxes when it comes to being a data analytics platform
[7]. However, R has few shortcomings of which memory management, speed and
efficiency are the most noticeable. While parallelism in R can be achieved by
using packages like parallel, the shortcoming becomes evident with an increasing
number of cores. The language design sometimes poses a great problem when
working with large data sets since the data has to be stored in physical memory.
With the dedicated physical memory, R cannot scale to deal with data sets
larger than the proportion of memory allocated to it and is forced to crash in
such cases. So, the physical memory limitation clearly outweighs the need to
address the issue of parallelization in R. In an attempt to address the above
limitation in R, we used the summarization technique in the first Phase of our
approach. But again, summarization technique can be used only for those models
which accept Gramian Matrix product like Linear Regression (LR), Principal
Component Analysis (PCA), Näıve Bayes (NB), K-means (KM) and few others.
Furthermore, we built upon the parallel database systems algorithm in [10] to
make it work in a serial scalable manner in R. Here, we implemented the models
from [10] and also explored new models like Näıve Bayes and K-means which
require a new gamma matrix, Diagonal Gamma, instead of the old ones stated in
[10]. The environment does not crash even for large data sets, works independent
of the physical memory allocated to the R environment and gives as accurate
results as the existing packages that compute the above models in R.

2 Definitions

This is a reference section which introduces definitions of input data sets and
models from mathematical perspective, R runtime and RCpp package. Each
subsection can be skipped by a reader familiar with the material.

2.1 Mathematical Definitions

First, we define the inputs given to the models. The most obvious one is the
input data set, interpreted as a matrix, which is defined to be a set of n column-
vectors. All the models take a d × n matrix as input. Let the input data set be
defined as X, which is considered to have n points, where each point is a vector
in R. Therefore, we can see X as a wide rectangular matrix. In the case of Linear
Regression (LR) and Principal Component Analysis (PCA), we take an extra
dimension (output variable Y) resulting a change in the dimensions of X to
(d + 1) × n, which we call X. We use i = 1...n and j = 1...d as matrix subscripts.
We augment X with an extra row of n 1s and call that as matrix Z ((d + 2) × n)
for mathematical convenience. Column-vectors and column-oriented matrices are
used for mathematical convenience because they allow simpler equations.

Scalable Machine Learning in R Using a Summarization Matrix 249

We use Θ to represent a statistical model in general. That is, Θ can be a
LR or PCA model as well as any of the clustering and classification models such
as Näıve Bayes (NB) and K-means (KM). PCA is an unsupervised model to
reduce dimensionality. LR is a fundamental supervised model, whose solution
helps in understanding and building other linear models. Näıve Bayes is another
classic supervised model, whose solution assigns a numerical value between 0
and 1 to each class label denoting the probability of data belonging to a specific
class. K-means is a clustering algorithm whose goal is to find k similar groups in
the data. The algorithm works iteratively to assign each data point to one of k
groups based on the features that are provided. Data points are clustered based
on feature similarity. Therefore, for each model, Θ = {list of matrices/vectors},
as follows. For LR: Θ = β where β is the vector or regression coefficients; for
PCA: Θ = U,D where U are the eigen vectors and D contains the squared
eigenvalues obtained from SVD; for NB: Θ = {π, μ, σ}, where π is the vector
of k class priors, μ is a set of k mean vectors and σ are k diagonal matrices
with standard deviations; and for KM: Θ = {W,C,R}, where W is a vector of
k (number of clusters) weights, C is a set of k centroid vectors and R is a set of
k variance matrices.

2.2 R Runtime and RCpp Package

R is a dynamic language for statistical computing that combines lazy functional
features and object-oriented programming [6,12]. In R, vectors are stored as one
contiguous block, matrices are 2-dimensional arrays of real numbers, which are
stored as one block in column major order dynamically allocated, Lists are the
most general ones and can have elements of diverse data types, including atomic
data types and nested data structures. R uses a dynamic interpreter and also it
utilizes C language for matrix and data frame operations and LAPACK library
for linear algebra and numerical methods. When R functions are called, the R
run-time creates nested variable environments, which are dynamically scoped.

The advantage of the RCpp package is its memory management. We can pass
values to and from R and RCpp. When we pass the values, only the reference
gets passed to the other side but not the actual value. So, memory consumption
is very efficient and the runtime is the same. We can even pass matrices, lists,
vectors and similar data to RCpp and return any of those from RCpp.

3 Theory and Algorithm

We present our main technical contribution in this section. First, we propose our
main algorithm and then we discuss it in details. Then we discuss the implemen-
tation of our algorithm in R and RCpp. Finally, we give the run time complexity
of our algorithm.

250 S. U. S. Chebolu et al.

3.1 Algorithm

Our main algorithm consists of two steps:

1. Phase 1: Compute summarization matrix: one matrix Γ or k matrices Γj .
2. Phase 2: Compute model Θ based on Gamma martix (matrices).

In phase 1, first, we review the Gamma matrix (Non-Diagonal Gamma) and
the statistics in it which was proposed in [10]. Matrix Γ (Gamma), defined
below, is a fundamental matrix which contains a complete, accurate and sufficient
summary. Then we describe the design and implementation of our main technical
contribution, the Diagonal Gamma matrix. Both Non-Diagonal Gamma and
Diagonal Gamma provides summarization for a different set of models which are
presented in phase 2. For PCA and LR, we need one full Γ matrix assuming
element off-diagonal is not zero. And for NB and KM, we need k matrices Γj

(k classes, or k clusters respectively), where each Γj is “diagonal” meaning we
assume Q is diagonal where off-diagonal elements are assumed to be zero. We
discuss both phases in details in the following sections.

3.2 Phase 1: Computing Summarization Matrices

First we review the sufficient statistics for X which are integrated to form the
Non-Diagonal Gamma Matrix, which are:

n = |X|, (1)

L =
n∑

i=1

xi, (2)

Q = XXT =
n∑

i=1

xi · xT
i (3)

Here, X is the data set, n counts total number of points in the data set, L is a
linear sum of xi and Q is a sum of vector outer product where xi is multiplied by
itself, i.e., Q is simply the “quadratic” sum of xi. As defined earlier in Sect. 2.1,
X is d×n, Z has (d+2) rows and n columns, where row [0] are 1s and row [d+1]
is Y . Hence, zi can be defined as zi = [1, xi, yi]. Then the Z matrix becomes:

Z =

⎡

⎣
1 1 ... 1
x1 x2 ... xn

y1 y2 ... yn

⎤

⎦ (4)

Matrix Γ (Gamma), which is defined below, is a fundamental Gamma matrix
which contains a complete, definite, and sufficient summary of X to efficiently
compute models like LR and PCA that have been previously defined. We define a
complementary Gamma matrix, Diagonal Gamma, in Sect. 3.2 for models assum-
ing variable independence, like Näıve Bayes and K-means.

Scalable Machine Learning in R Using a Summarization Matrix 251

Γ =

⎡

⎣
n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T

⎤

⎦ =

⎡

⎣
n

∑
xT

i

∑
yi∑

xi

∑
xix

T
i

∑
xiyi∑

yi

∑
yix

T
i

∑
y2

i

⎤

⎦ (5)

Here, Γ which can be computed in two ways from [10]. Alternative (1) is matrix-
matrix multiplications i.e. ZZT ; Alternative (2) is sum of vector outer products
i.e.

∑
i zi ·zT

i . So, Γ = ZZT =
∑n

i=1 zi ·zT
i . That is, the square of matrix Z gives

us Γ , which is significantly smaller than X. In general, if d << n, Γ comfortably
fits in main memory.

Diagonal Q Matrix Assuming Dimensions Are Independent: From [10],
it is clear that Non-Diagonal Gamma matrix, despite being iterative algorithms,
avoids reading the entire data sets at every iteration. But that approach cannot
be applied on models like Näıve Bayes (NB) or K-means (KM) which require
more than one summarization matrix and may also require to read the entire
data set more than once. For example, Näıve Bayes requires k summarization
matrices for a given data set, where k being the number of unique class labels
in the data set and K-means requires k matrices for summarization of a data
set with k as the number of clusters given by the user, i.e., one for each cluster.
Furthermore, these models do not require the complete computation of the Non-
Diagonal Gamma as described in Sect. 3.2. The reason behind that is, the LR
and PCA are computed in rotated space whereas in NB and KM we assume that
the dimensions are independent, making Gamma diagonal. Due to this reason,
we introduce another matrix, Diagonal Gamma, which helps to compute these
models. Here, we do not require the Y parameter for Naive Bayes and K-means
as used in LR and PCA. The major difference between the two forms of Gamma
is we do not require parameters off the diagonal in Diagonal Gamma matrix as
in Non-Diagonal Gamma matrix. So, we need only a few parameters out of the
whole Non-Diagonal Gamma, namely, n,L, LT , Q. That is, we require only a few
sub-matrices from Non-Diagonal Gamma, which can be visualized as:

Γdiag =

⎡

⎣
n LT 0
L Q 0
0 0 0

⎤

⎦, where Q =

⎡

⎢⎢⎣

Q11 0 0....... 0
0 Q22 0....... 0
0 0 Q33..... 0
0 0 0........ Qdd

⎤

⎥⎥⎦ (6)

Furthermore, if we see the above sub-matrix, we observe that if we compute
the terms in the lower triangle, we can get the whole sub-matrix just by copying
the L to LT , i.e., we need to compute the terms in the lower triangle and copy it
to the upper triangle. This is the major change in definition of the Non-Diagonal
Gamma to that of the Diagonal Gamma. Also, in Non-Diagonal Gamma, the
Q is computed completely. On the other hand, in Diagonal Gamma, the Q is
diagonal. From which we came up with the name of the matrices as Diagonal
and Non-Diagonal Gamma. So, Q is diagonal or non-diagonal but not Γ .

252 S. U. S. Chebolu et al.

3.3 Phase 2: Computing Models

Models are computed using the two versions of Gamma. One is with one Non-
Diagonal Gamma Matrix and another one is k-Diagonal Gamma Matrices. Both
of them were introduced previously.

Models Based on One Non-Diagonal Gamma:

Linear Regression (LR): From [10], the standard definition of LR is given
as Y = βTX + ε, where β is the column vector of regression coefficients and ε
represents the Gaussian error. X is a (d + 1) × n augmented matrix where we
have X with a row of n 1s. β can be defined as β̂ = (XXT)−1XY T . From the
discussed Non-Diagonal Gamma, we can rewrite this equation as

β̂ = Q−1(XY T) (7)

Principal Component Analysis (PCA): PCA is mainly implemented on a
data set to reduce noise and redundancy of dimensions. PCA can be computed
on the covariance matrix (V), or the correlation matrix (ρ), of the data set
from [4]. This model require two parameters. First is U , which is a set of d
orthogonal vectors, principal components of the data set, ordered in decreasing
order by their variance. Second is the diagonal matrix D2 which contains the
squared eigen values. From [10], we can compute ρ, the correlation matrix, from
the two parameters, D and U as ρ = UD2UT = (UD2UT)T . We can also
compute the covariance matrix as V = Q/n − LLT /n2. Then we compute PCA
by using Eigen decomposition of the ρ, which is a symmetric matrix factorization.
That is, we compute PCA from the correlation matrix by solving Singular Value
Decomposition (SVD) on it. Also, we express ρ in terms of the sufficient statistics
to compute SVD as follows:

ρab =
(nQab − LaLb)

(
√

nQaa − L2
a

√
nQbb − L2

b)
(8)

Models Based on k Diagonal Gammas:

Näıve Bayes (NB): The input for this model is a data set X and the output
is a Näıve Bayes classification model which contains C (mean per dimension),
R (variance per dimension), and W (prior per class). First, we take the data
set X as input in chunks of fixed size. In each chunk, we split the data based
on number of classes in the data set. We compute one gamma for each part
of the chunk and at last add up these Γ matrices with respect to the classes
and arrive at a final list of Γ matrices one for each class. We focus on k = 2
classes for NB. Then finally we have Γ0 for class 0 and Γ1 for class 1. We extract
Ng, Lg, Qg as defined in Sect. 3.2, from this final list of Γ s. So, we arrive at lists
of Ng, Lg, Qg from where we compute π, μ and σ per dimension per item in the
list separately like:

πg =
Ng

n
, (9)

Scalable Machine Learning in R Using a Summarization Matrix 253

μg =
Lg

Ng
, (10)

σg =
Qg

Ng
− diag[

LgL
T
g

N2
g

] (11)

Here, Ng = |Xg| and we take the diagonal of L · LT and Q, which can be
manipulated as a 1-dimensional array instead of a 2D array. These are the 3
parameters included in the Näıve Bayes model. Now, we can predict class labels
for new data using this model. For the prediction, for each point in the input
data, we compute a probability value per class using the model parameters and
assign the class with maximum probability. We compute the probability using,
Pxiclass

= (1/
√

2πσ2
gj

)e(−0.5(xi−μxi
)2/σ2

gj
).

K-means (KM): The input for this model is a data set X and the number of
clusters (k) and the output is three matrices C, R, W , containing the means,
the variances and the weights respectively for each cluster of X. For K-means
with k clusters, we have list of matrices as Γ1, Γ2, .., Γk, where k ≥ 2. Following
definitions from Sect. 3.2, we introduce similar model parameters Xj , Nj , Lj ,
Qj as the subset of X which belong to cluster j, the total number of points
per cluster (|Xj |), the sum of points in a cluster (

∑
∀xi∈Xj

xi) and the sum of
squared points in each cluster (

∑
∀xi∈Xj

xix
t
i) respectively. From these statistics,

we compute Cj , Rj , Wj as:

Cj =
Lj

Nj
, (12)

Rj =
Qj

Nj
− diag[

LjL
t
j

N2
j

], (13)

Wj =
Nj

n
(14)

Here Nj = |Xj| and we take diagonal of L · LT and Q, which can be treated as
vectors instead of a matrix. The algorithm iterates executing two steps starting
from random initialization until cluster centroids become stable.

Step 1 determines the closest cluster for each point and adds the point to it.
K-means uses Euclidean distance to determine the closest centroid to each point
xi which is defined as d(xi, Cj) = (xi − Cj)t(xi − Cj).

Step 2 updates all centroids Cj by computing the mean vector of points
belonging to cluster j. The cluster weights Wj and diagonal covariance matrices
Rj are also updated based on the new centroids. The quality of a clustering
solution is measured by the average quantization error q(C), defined in [8] (also
known as distortion and squared reconstruction error). Lower is the value of q(C),
better is the quality of clustering. q(C) = 1

n

∑n
i=1 d(xi, Cj), where xi ∈ Xj .

The K-means algorithm stops when centroids change by a marginal frac-
tion in consecutive iterations which is measured by the quantization error.

254 S. U. S. Chebolu et al.

With decreasing q(C) at each iteration, K-means is theoretically guaranteed to
converge, yet a threshold is set on the number of iterations to avoid excessively
long runs.

3.4 Computing Gamma Matrix and Machine Learning Models in R

We discuss how Γ is computed exploiting RCpp and how the models are com-
puted in R itself. Depending on the models, we choose between the Non-Diagonal
or the Diagonal Gamma matrix to compute at first.

Phase 1: This part is computed exploiting RCpp package. From Sect. 3.1, phase
1 takes are of computing the sum,

∑
i ziz

T
i . The main idea is to evaluate this

equation in C++ code instead of R code, following the same UDF idea presented
in [10].

First, we take the input data set (X) and split that into chunks of equal size.
Chunks are a subset of X so that chunk fits in RAM and it has many points.
If there are M chunks, then X is partitioned into X1,X2, ..,XM chunks, where
each chunk XI (uppercase i) fits in RAM. Regarding chunks most libraries in
R use data frames and therefore it is sort of a table, not a matrix. It seems
the conversion from data frame to matrix is done somewhere. We read text
files because they are the most common. However, our program would be more
efficient with binary files.

If the model to be computed is LR or PCA, we compute the Non-Diagonal
Gamma based on the type of data set (whether it is dense or sparse) for each
chunk. So, we have a list of Γ s. If the model is Näıve Bayes, we compute
the Diagonal Gamma, one for each class label for every chunk. If the model
K-means, for the first iteration and first chunk, we initialize the k cluster cen-
troids randomly and for successive iterations, we initialize the k cluster centroids
with that of the first chunk. Then, we assign a cluster number to each data point
and compute the Diagonal Gamma, one for each cluster in every chunk. Hence,
we have a list of list of k Γ s. Since Γ is additive, we can add all the interme-
diate Γ s to obtain a final Γ . This is straightforward for LR and PCA. But for
Näıve Bayes and K-means, since we have list of list of Γ s, we need to add the
Γ s corresponding to a given class/cluster respectively such that we arrive at a
final Γ which is a list of matrices representing each class/cluster.

Phase 2: In this part we compute each model (θ). While Phase 1 is basi-
cally exploiting RCpp, Phase 2 uses R itself “as is” (we use R existing func-
tions and operators). After obtaining the final Γ , we use Non-Diagonal Gamma
to compute LR and PCA and Diagonal Gamma to compute Näıve Bayes and
K-means using the mathematical equations discussed previously. Since the mod-
els LR, PCA, and NB do not need to converge to a best solution like K-means,
that will be the end of Phase 2 for them. On the other hand, K-means is not
trivial to compute as it needs to converge to a best solution by the reduc-
tion of the quantization error to a minimum value. So, we need to repeat the

Scalable Machine Learning in R Using a Summarization Matrix 255

Phase 1 and Phase 2 iteratively in order to achieve this. Every time we read the
data set, we take the cluster centroids from the previous pass, which improves
the accuracy of the model. This process terminates when there is no change
in the clusters formed from previous iteration. In summary, for LR, PCA, and
Näıve Bayes, we read each and every point in the data set only once but for
K-means, we read the data set multiple times until a best solution is achieved.
It is beyond the scope of this paper to justify why Γ eliminates the need to read
X multiple times in LR and PCA, but not in KM.

Here, the input data set X, intermediate computations and output model,
everything is a matrix. In summary, the Γ s are computed in Cpp exploiting
RCpp package and the models are computed in R itself. To compute LR and
PCA, we are forced to call R routines. But for NB and KM, we can compute it
ourselves, helped by the fact that diagonal Q simplifies computations in addition
to efficiency.

3.5 Time and Space Complexity Analysis

From [10], it is clear that the time complexity for the Phase 1 of the Non-Diagonal
Gamma with dense data is O(d2n) and sparse data is O(k2n), assuming k entries
in xi are non-zero on an average. In Phase 2, we compute the machine learning
models based on the Gamma from Phase 1. So, time for Phase 2 does not depend
on n and is Ω(d3), which for a dense matrix may approach O(d4), when the
number of iterations in the factorization numerical method is proportional to d.
This Non-Diagonal Gamma is used by models like LR and PCA.

A separate Gamma matrix, Diagonal Gamma, is used owing to the fact that
a major set of the traditional Non-Diagonal Gamma has little-to-no utility for
models like Näıve Bayes and K-means. Time complexity of Diagonal Gamma
computation is O(dn) as we compute only L and diagonal of Q of the whole
Non-Diagonal matrix. This time complexity applies for all the models utilizing
the Diagonal Gamma except K-means. The time complexity of K-means would
be O(kdn), where k is the number of clusters.

When we come to the space complexity, space required by Non-Diagonal
Gamma matrix in main memory with dense representation is O(d2). However,
it is O(kd) for K-means and O(d) for Näıve Bayes. In short, we can state that
Diagonal Γ consumes much less memory than full Γ . However, Diagonal Gamma
does not mean faster algorithms since KM requires multiple iterations.

4 Experimental Evaluation

We present an experimental evaluation of our R package and the machine learn-
ing models based on the Γ matrix. First, we show the models computed by our
R package are accurate, down to almost zero error. Second, we compare the
times from our package in R with those times obtained in three alternatives: a
columnar DBMS (Vertica [5]), well-known R functions computing each model
and the popular Hadoop stack system, Spark.

256 S. U. S. Chebolu et al.

4.1 Experimental Setup

Hardware and Software: The system and software configuration used for the
experiments is a four core 2.83 GHz system with Linux Ubuntu as operating
system with 4 GB physical memory and 294 GiB storage space.

Data Sets: The data sets which are used for the experiments are described
in Table 1. All the data sets are taken from the UCI Machine Learning repos-
itory. We also include the information about the models which utilize these
data sets. We replicated each of the data sets in order to get various com-
binations of n and d without altering statistical properties of the data. The
first one was sampled and replicated to get combinations of d = (9, 91) and
n = (0.5M, 1M, 10M), second was replicated to get the combinations of d = 30
and n = (0.2M, 1M, 10M, 100M) and the third one is replicated to get d = 4
and n = (0.1M, 1M, 10M, 100M).

Table 1. Base data sets description

Data set d n Description Used for model

CreditCard 30 285K Predict if there is raise in credit line Näıve Bayes

YearPredictionMSD 90 515K Predict if there is rain or not LR and PCA

Iris 3 150 To distinguish the flower species K-means

4.2 Accuracy Evaluation

Table 2 below shows the results of the experiments that were performed using
the two forms of Gamma. We compared the accuracy of model computations of
our package with similar packages in R, which is a popular language and envi-
ronment for statistical computing. We implemented four models in our package,
namely, LR, PCA, Näıve Bayes and K-means. For each model, we have a differ-
ent way of measuring the accuracy with the common underlying metric being
Relative Error. From Table 2, we understand that the results from the functions
of our package are almost an exact match with the output given by the currently
existing best packages in R.

For LR, we get an intercept and a β per attribute as an output for the model
computed by Gamma matrix. This is similar to the output given by lm(), the
preferred default routine in R for LR, for the same input data set. We then
compute the absolute differences among all the respective values of intercept
and βs, from which we compute the Relative differences. Finally, we report the
maximum of the relative differences among the intercept and the βs in Table 2.

For PCA, we get a diagonal matrix, D, of Eigen values and two ortho-normal
matrices, S and V, which are Eigen vectors of the given input matrix. Unlike
other models, we do not compute PCA completely in Cpp as it gives inaccu-
rate results. Rather we use pure R routines to compute SVD of the correlation
matrix generated from the Gamma matrix. The values in D depict the relative

Scalable Machine Learning in R Using a Summarization Matrix 257

importance of each column in S and V matrices. So, we imply on the point
that, for the computation of relative error, we take the values from D whose
value is greater than 1. We first find the absolute differences among the pairs of
corresponding values from the output of the Gamma matrices and that of the
default R routines, from which we compute the relative differences. We report
the maximum of these relative differences in Table 2.

In Näıve Bayes, we build a model to predict the class labels for the test data
set. For that, we compute two separate Näıve Bayes models on the given input
training data set using the default R routine and the aforementioned Gamma
functions. Consequently, we compute the prediction accuracy by finding the
degree to which the predictions made by the functions of our package conforms
to that from standard routine in R.

For K-means, we group the input data into k clusters, where k is pre-defined
by the user. We compute K-means with both the default R routine and the
previously discussed Gamma functions. The output from both the techniques
have three vectors, namely, Centers, Radii and Weights. We take the weight vec-
tors, sorted in decreasing order, from both the models and obtain the respective
absolute errors. We use this absolute error to compute the relative errors with
respect to the weight vector of the model computed from the default R routine.
We report the maximum value of relative error in Table 2.

Table 2. Accuracy of models on respective data sets.

Model Maximum relative error Data set used

LR 5.89E-10 YearPredictionMSD

PCA 4.75E-13 YearPredictionMSD

Näıve Bayes 0 CreditCard

K-means 4.7E-2 Iris

4.3 Time Performance Evaluation and Benchmarking

We compare the performance of the models in our proposed package with the
currently available best packages in R to compute the respective models, a similar
implementation done in Vertica, which is a very fast columnar database [5] and
also popular for big data analytics nowadays [1] and Spark which is the best
representative from the Hadoop world. Since Näıve Bayes and K-means are new
models that we explored in our research, there are no prior implementations of
these in Vertica. So, we made the comparisons with Vertica for LR and PCA only.

Tables 3 and 4 compares the time to compute PCA and LR on YearPrediction
data set with Vertuca, R and Spark. We can see that as the as the size of the
data set increases, the inbuilt R packages crash. One of the main reasons can be
attributed to the fact that it tries to load the whole data set into main memory,
eventually resulting in untimely aborts of the program. However, our package
overcome this problem by not loading the entire data set into the memory,
instead breaking the data set into chunks according to allocated memory. Also,

258 S. U. S. Chebolu et al.

though Vertica and Spark are able to compute the models even for large data
sets, they perform slower than our package in R. As n grows, the time complexity
of our method for LR and PCA is shown in Fig. 1.

Fig. 1. Time complexity to compute LR and PCA as n grows.

Table 5 compares the time to compute Näıve Bayes model in our package
with the one given by R. We see that R crashes for large values of n which is
not the case with our package. From Table 6, although the current packages in
R scale well for small data sets, they result in untimely aborts for large data
sets. As the size of data set increases, the performance of our package improves
greatly. Spark, on the other hand, is able to compute the models though it is
much slower than our package.

Table 3. Time to compute PCA on YearPrediction data set (Dense) (in secs)

n d R+ Γnon−diag (dense) R+ Γnon−diag (sparse) Vertica R Spark

0.5M 91 22 33 46 336 67

1M 91 66 80 115 575 130

10M 91 726 800 1290 Crashed 1074

1M 9 9 9 10 21 31

10M 9 91 75 110 205 286

100M 9 1018 1020 1560 Crashed 1780

Scalable Machine Learning in R Using a Summarization Matrix 259

4.4 Strengths and Weaknesses

Even though this model works efficiently for data sets with rows in the order of
millions, it does not work as intended with the billion or higher rowed counter-
parts. This issue is magnified with the K-means algorithm as it requires multiple
reads of the data set before returning the final clusters. Notwithstanding the long
execution times, it still gives accurate results in contrast to the existing packages
that result in untimely session aborts. As we see in the experimental results of
K-means, the existing most efficient package for K-means model in R is aborted
for a data set with five million rows or higher. In a similar manner, even for
Näıve Bayes, the most efficient package in R is aborted when a data set with
ten million rows is given as input while our solution returned accurate results
within a reasonable amount of time.

Table 4. Time to compute LR on YearPrediction Data set (Dense) (in secs)

n d R+ Γnon−diag (dense) R+ Γnon−diag (Sparse) Vertica R Spark

0.5M 91 22 36 46 276 67

1M 91 74 74 115 630 130

10M 91 720 828 1290 Crashed 1074

1M 9 6 6 10 24 31

10M 9 91 69 110 285 286

100M 9 941 928 1560 Crashed 1780

Table 5. Time to compute Näıve
Bayes on Credit card data set
(Dense) (in secs)

n d R+Γdiag R

0.2M 30 7 51

1M 30 40 158

10M 30 399 Crashed

100M 30 1132 Crashed

Table 6. Time to compute K-means on
Iris data set (Dense) (in secs)

n d R+ Γdiag R Spark

150 4 0 0 3.2

0.1M 4 6 0 7.5

1M 4 65 6 43.3

5M 4 380 Crashed 1370

10M 4 756 Crashed 3012

Our solution adapts to the local machine and customizes the chunk size
with respect to the available physical memory. The main drawback is that R
cannot be easily parallelized unlike the Hadoop stack or other parallel systems
to completely utilize the cores available in a system thus resulting in a decreased
performance.

5 Related Work

There are many techniques to improve the performance of the models PCA,
Näıve Bayes and K-means few of which are [14], which used decomposition of

260 S. U. S. Chebolu et al.

Classes via Clustering to improve Näıve Bayes, [3,13], which used the triangle
inequality and collaboration of compressed sensing theory and K-SVD approach
to accelerate K-means, [8,15], which did Fast PCA computation in a DBMS
with Aggregate UDFs and LAPACK and improved performance on MapReduce
environment. If we observe carefully, LR, Näıve Bayes or PCA does not require
any initialization unlike the K-means model which require the number of clusters
and their respective centroids to be initialized. If the initialization is bad, we
never converge at a solution.

Summarization of scalable Machine Learning algorithms was done in a paral-
lel manner in [10]. The authors of the [10] exploited HP Vertica’s parallelization
feature, similar to [11], to perform summarization on multiple systems simul-
taneously. We adapted the algorithms in [10] and implemented them such that
they are serial, scalable and are 99% accurate in R. We made use of the chunk-
ing ability in R to read the infinite amount of input data which also makes the
process faster. We removed the use of database system completely which is the
main component in [10]. In [9], Näıve Bayes is computed inside the database
with pure SQL queries. We adapted model computation from [9] and imple-
mented it in R. We compared our work with the most efficient ones in R and
have shown that our package is faster and reliable than the former. Alternatively,
there is another technology, Microsoft R Open, which is also designed to include
an updated R engine (R 3.2.2), new fuzzy matching algorithms, the ability to
write to databases via ODBC, and a streamlined install experience. This can
also be used to obtain some optimization in building the models. Computers,
nowadays have more physical memory, more computing power. So, using a single
system, our solution is better for millions of records with all the 4 models. The
algorithms programmed in R and C++ are presented in [2].

6 Conclusions

We introduced a powerful summarization matrix to compute fundamental ML
models in two phases: Phase 1 to compute one summarization matrix or multiple
summarization matrices and Phase 2 to update model parameters based on sum-
marization, where Phase 1 is I/O intensive and Phase 2 is CPU bound. Based
on our summarization matrix we developed an R package capable of computing
ML models with high accuracy, high speed, and no main memory limitations.
Specifically, our R package computes LR, PCA, NB and KM models in one pass
over the input data set, except for KM which requires iterative processing. The
main memory limitation is solved by reading the data set in small blocks (rela-
tive to available RAM) and incrementally updating summarization (with either
one summarization matrix or multiple summarization matrices). High speed is
achieved by computing the summarization matrix in high-performance C++
code, compiled and linked to run inside the R runtime. We introduced several
variants on the Gamma matrix to work with sparse data sets, diagonal and
non-diagonal variance matrices, as well as supervised and unsupervised models.
That is, we cover a wide spectrum of data sets and ML models, thereby offering

Scalable Machine Learning in R Using a Summarization Matrix 261

wide applicability. We presented interesting experiments to evaluate accuracy
and time performance. We show our summarization matrix produces practically
the same model, with negligible error, compared to standard R functions. On the
other hand, we show our R algorithms are much faster than R built-in functions,
removing main memory limitations, but preserving the ease of use. Extensive
benchmarks show our package is faster than competing parallel systems: a par-
allel DBMS and the popular Spark system. In short, our R package opens the
possibility of analyzing large data sets on an average personal computer.

Even though our research proves we can get better performance and scalable
computing in the R language beyond RAM limits with single-threaded pro-
cessing, there are many opportunities for future research. We need to explore
non-linear ML models, like logistic regression and Support Vector Machines. We
need to explore mechanisms to parallelize summarization inside the R runtime,
via parallel C or C++ code running on multicore CPUs. Our approach has the
promise to be applied in other high-level languages including Python, Matlab,
and Javascript, being Python our first target. Given extensive past research
work on parallel processing on big data it is worth investigating a data set size
threshold to move processing from a single machine to a parallel cluster.

Acknowledgements. The second author would like to thank the guidance of Simon
Urbanek, from ATT Labs, to understand the R language runtime source code.

References

1. Al-Amin, S.T., Ordonez, C., Bellatreche, L.: Big data analytics: exploring graphs
with optimized SQL queries. In: Elloumi, M., et al. (eds.) DEXA 2018. CCIS,
vol. 903, pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99133-7 7

2. Chebolu, S.U.S.: A General Summarization Matrix for Scalable Machine Learning
Model Computation in the R Language. Master’s thesis, University of Houston
(2019)

3. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Machine Learn-
ing International Conference, vol. 20, p. 147 (2003)

4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 1st
edn. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

5. Lamb, A., et al.: The vertica analytic database: C-store 7 years later. Proc. VLDB
Endow. 5(12), 1790–1801 (2012)

6. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the design of the R lan-
guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 104–131. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7 6

7. Ordonez, C., Johnson, T., Urbanek, S., Shkapenyuk, V., Srivastava, D.: Integrating
the R language runtime system with a data stream warehouse. In: Benslimane, D.,
Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA
2017. LNCS, vol. 10439, pp. 217–231. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-64471-4 18

8. Ordonez, C., Omiecinski, E.: Efficient disk-based K-means clustering for relational
databases. IEEE Trans. Knowl. Data Eng. (TKDE) 16(8), 909–921 (2004)

https://doi.org/10.1007/978-3-319-99133-7_7
https://doi.org/10.1007/978-3-319-99133-7_7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1007/978-3-319-64471-4_18
https://doi.org/10.1007/978-3-319-64471-4_18

262 S. U. S. Chebolu et al.

9. Ordonez, C., Pitchaimalai, S.: Bayesian classifiers programmed in SQL. IEEE
Trans. Knowl. Data Eng. (TKDE) 22(1), 139–144 (2010)

10. Ordonez, C., Zhang, Y., Cabrera, W.: The Gamma matrix to summarize dense and
sparse data sets for big data analytics. IEEE Trans. Knowl. Data Eng. (TKDE)
28(7), 1906–1918 (2016)

11. Raychev, V., Musuvathi, M., Mytkowicz, T.: Parallelizing user-defined aggrega-
tions using symbolic execution. In: Proceedings of the 25th Symposium on Oper-
ating Systems Principles, pp. 153–167. ACM (2015)

12. Stadler, L., Welc, A., Humer, C., Jordan, M.: Optimizing R language execution
via aggressive speculation. In: Proceedings of the 12th Symposium on Dynamic
Languages, DLS 2016, pp. 84–95 (2016)

13. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.: SMEM algorithm for mixture
models. Neural Comput. 12(9), 2109–2128 (2000)

14. Vilalta, R., Rish, I.: A decomposition of classes via clustering to explain and
improve naive bayes. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski,
L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 444–455. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39857-8 40

15. Zhang, Y., Ordonez, C., Cabrera, W.: Big data analytics integrating a parallel
columnar DBMS and the R language. In: Proceedings of IEEE CCGrid Conference
(2016)

https://doi.org/10.1007/978-3-540-39857-8_40

ML-PipeDebugger: A Debugging Tool
for Data Processing Pipelines

Felix Kossak(B) and Michael Zwick

Software Competence Center Hagenberg, Hagenberg im Mühlkreis, Austria
{felix.kossak,michael.zwick}@scch.at

https://www.scch.at

Abstract. Data pre-processing for data analysis usually requires a con-
siderable number of interdependent steps, many of which are liable to
errors or to introduce unwanted biases. Such errors can lead to cases
where predictions for similar data instances differ unexpectedly much.
An important question is then to find out where in the data processing
pipeline the deviation was caused. We present a tool that can help iden-
tify critical data processing steps, allowing to “debug” or improve data
pre-processing and model generation. More generally, the tool gives a
view of how different data instances behave in relation to each other
throughout a pipeline. The task to identify critical steps turns out
to be rather complex, mostly because features of different types and
ranges have to be compared, because required statistical measures must
be obtained from often small samples, and because time series can be
involved.

Keywords: Data analysis · Machine learning · Data pre-processing ·
Data processing pipeline · Debugging

1 Introduction

“Preparing input for a data mining investigation usually consumes the bulk
of the effort invested in the entire data mining process” [10, p. 52]. Probably
everyone engaged in data analysis will agree to this sentence; still, little research
effort is invested in this area. Due to painful experiences in industrial research
projects and lack of explicit tools, we have found it necessary to put considerable
efforts into a debugging tool for data pre-processing, which we present here.

Data pre-processing for machine learning and other data analysis applications
usually requires a considerable number of interdependent steps, many of which
are liable to errors or to introduce unwanted biases. The different pre-processing
steps form a so-called pipeline, which can be modelled as a directed graph that

The research reported in this paper has been supported by the Austrian Ministry for
Transport, Innovation and Technology, the Federal Ministry for Digital and Economic
Affairs, and the Province of Upper Austria in the frame of the COMET center SCCH.

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 263–272, 2019.
https://doi.org/10.1007/978-3-030-27618-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_20&domain=pdf
http://orcid.org/0000-0002-0999-1686
http://orcid.org/0000-0001-6549-6164
https://doi.org/10.1007/978-3-030-27618-8_20

264 F. Kossak and M. Zwick

represents the dependencies of generated features on raw input features and
other, intermediately generated features. Such a graph can be branched. It could
even contain cycles, though our work currently focuses on acyclic graphs.

In machine-learning applications, we have time and again encountered cases
where apparently similar data instances lead to considerably deviating predic-
tions. The question then arises where in the data processing pipeline that devi-
ation was caused. This, in turn, requires the possibility to trace particular data
instances, and pairs of data instances, through the pipeline in a way that allows
to judge, for each feature, how similar or dissimilar particular values are.

This can best be seen in Fig. 1, which was generated by the tool ML-
PipeDebugger which we present in this paper. Here, two data instances are
followed through a pipeline by depicting their differences, according to some dif-
ference measures, at each feature. The features are given on the x-axis. The first
few features show low differences, while the last three show high differences, with
a considerable jump in between. This can serve as a hint that the 6th feature
may be to blame for the deviation of the prediction (last feature).

Fig. 1. Example of the development of value differences of two data instances through a
pipeline. The first few features show low differences, the last three show high differences.

ML-PipeDebugger (for “Machine-Learning data-processing Pipeline Debug-
ger”) is a software prototype whose primary goal is to help identify exactly where
in a given pipeline unexpectedly deviating predictions by amachine-learning appli-
cation originated. More generally, the tool gives an overview of the behaviour of
particular (pairs of) data instances throughout data processing.

The task turned out to be surprisingly complex, and this paper is to point
out the challenges involved and the solutions we have developed.

The major source of complexity is the need to compare values for features of
different types and data distributions and to find comparable difference measures
for them. Data types may include scalars as well as time series. How can we say
that, say, values (0.21, 0.24) for a scalar feature a are to be considered similar
while two time series like those plotted in Fig. 2 are to be judged as considerably
different in comparison with the values for a?

ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines 265

Fig. 2. Two time series to be judged as “considerably deviating”.

A related challenge is to obtain significant statistics from often small sam-
ples. As we shall see in Sect. 3, we need certain statistics for computing compa-
rable data differences. However, in modern industrial production, batches can
be rather small, and often only data from tests are available, with even smaller
sample sizes. This situation is even aggravating in the course of tendencies sum-
marised by the slogan “Industry 4.0”, with automation enabling arbitrarily small
batch sizes (cf. e.g. [7, p. 21]). We thought about how to e.g. combine data from
different settings without rendering the resulting statistics irrelevant.

An additional source of complexity is due to time series, which are important
in industrial settings: they arise e.g. in cyclic manufacturing processes and can
represent such diverse data as pressure curves or trends in quality measures.

In the rest of this paper, we first discuss requirements for the presented tool
which we have assembled from concrete needs as well as more general consider-
ations (Sect. 2). Section 3 describes the main challenges for realisation, and how
we dealt with them. Section 4 reports on the results we have obtained with the
tool so far, and Sect. 5 summarises and discusses ongoing work.

1.1 Related Work

We have failed to find a problem setting or approach sufficiently similar to ours
in the literature; we will briefly explain how some similar-looking settings differ
from the one tackled by the tool presented here.

A similarity of our work with delta debugging is rather superficial. Also delta
debugging tries to narrow down the source of a bug from a multitude of pos-
sibilities, but it works in a different way and usually also in different settings.
To give just one example, Gulzar et al. [6] have proposed a debugging tool for
data-intensive scalable computing based on delta debugging; it tries to find sin-
gle records that cause a fault, while we are interested in the relative behaviour of
pairs of records and in identifying problematic vertices in a pipeline. More gen-
erally, typical issues of data provenance are not relevant for our needs. (For an
overview of provenance in the context of data processing workflows, see e.g. [4].)

266 F. Kossak and M. Zwick

Chen et al. [3] tackle a networking problem which is similar to our goal:
Given two similar packages which were differently routed, they want to find
the exact location where they were treated differently. They have developed
a concept for analysing “provenance trees” – not unlike our data processing
pipelines. However, they do not share our particular challenges like comparison
of differently typed and distributed data or the handling of time series, and we
could not draw any lessons from their paper for our work.

Carbin and Rinard [2] have worked to automatically identify “regions” in
complex programme input and corresponding regions of code where small dif-
ferences can lead to big differences in output. But they analyse input on a byte
level, with challenges completely different from those we are concerned with.

Wang et al. [9] have presented “a diagnostic tool for data errors”, whose goal
is to explain “where and how [...] errors happen in a data generative process”.
Their approach is based on “finding common properties among erroneous ele-
ments” to identify systematic causes of data errors. Their respective extraction
of “a hierarchical structure of features” is not relevant for us as we assume a
pipeline to be given; however, we may consider their “Bayesian analysis to esti-
mate the causal likelihood of a set of features being associated with the causes
of the errors” for future work (see Sect. 5).

2 Requirements

We will now list the most important requirements for ML-PipeDebugger, which
were developed in the context of industrial machine-learning projects and sup-
plemented with more general considerations. Some additional requirements will
be discussed in Sect. 5. We start with a glossary of important terms.

2.1 Glossary

Data instance. An array of values, for different data attributes, pertaining to a
single application case.

Data attribute. A variable of a fixed data type which describes one dimension
of a data instance. We distinguish between input, intermediate, and output
attributes. Note that while we used the more general notion of “feature” in
the introduction, we will distinguish between data attributes and data char-
acteristics (see below) from now on.

Data characteristic. A measure of a data attribute which allows for direct
comparison between two data instances. For each data attribute, multiple
characteristics can be defined. An example is the maximum of a time series;
the most simple (and common) example is the identity function. The com-
putation of a data characteristic for a particular data attribute may involve
values for other data attributes as well – e.g. the value of a time series at a
point where another time series attribute is zero.

Data dependency. A data dependency of a data attribute a is any other data
attribute on whose value the value of a depends.

ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines 267

Pipeline. A data processing pipeline in the form of a directed graph with
data characteristics as vertices and data dependencies of the respective data
attributes as edges. Every data instance is transformed in every vertex along
some path (or multiple paths) until it reaches an output vertex.

Difference measure. A function which takes two values of a data characteris-
tic and returns a scalar. For scalars, the canonical difference measure is the
absolute value of the arithmetic difference.

Difference statistics. Statistics for difference measures over all possible com-
binations of two data instances out of a given set; needed for normalisation.

2.2 Requirements

R1: The Goal of ML-PipeDebugger. ML-PipeDebugger SHALL facilitate
the detection of a step in the data processing pipeline of a machine learning
application where derived features or predictions for similar input data start
diverging considerably. [...]

R8: Visualisation. The relative divergence of values of data characteristics of
two given data instances throughout a given pipeline SHALL be visualised in
order to facilitate visual detection of steps in the pipeline where derived data
for similar instances start diverging.

R25: Time series: Interpolation. It may happen that two time series that
are values of the same data attribute [...] have different time points [...]. In
such a case, [...] ML-PipeDebugger SHALL use linear interpolation along the
time axis to enable comparison of those two time series.

R27: Time series: Comparison. When computing a difference measure for
two time series, it SHALL be possible to define a common starting point
from which on the time series shall be compared. This starting point may
correspond to different time points in each of the time series.

It SHALL be possible to define such a common starting point dynamically
(at runtime), based (e.g.) on values of other data attributes.

3 Challenges and Solutions

Identifying a point in a data processing pipeline where data transformation leads
to unexpected divergence of instances with similar input values requires to define
a notion of similarity for different data types and distributions, but also to make
all these different notions of similarity comparable among each other. In this
section, we describe the different challenges we have encountered in the context
of industrial applications and how we have met them.

3.1 Compare Data Attributes of Different Types and Distributions

In order to be able to compare values from different types or data distributions,
the values must be transformed into the same data type and range. Ideally, the
data of the different data attributes should even have the same distribution. We
achieved this with the following basic steps:

268 F. Kossak and M. Zwick

– The difference is always a real (float) number (which is natural anyway).
– Differences are normalised in the same way, thus are transformed into similar

ranges and distributions.

It may be the case that a data attribute is not relevant for other attributes that
depend on it in its raw form but in a transformed form. For instance, a time
series may not be relevant in its entirety, but its value at a certain time point
may be relevant, or its maximum, etc. However, relevant data transformation
modules may be given in black-box or immutable form. Therefore, a user must
be able to define “data characteristics” that reconstruct such transformations.

3.2 Difference Measures for Different Data Types

For scalar values, the canonical difference measure is the absolute arithmetical
difference. But most of the important data attributes that we have been deal-
ing with are ranging over time series, for which a variety of different similarity
measures has been proposed, with research still going on. See [5] for an overview.

Important for the presented tool is that most of the more advanced measures
only make sense after transformation of the time series – in particular, compres-
sion. Also for compression, various methods have been proposed. In practice, a
suitable combination of transformation and difference measure must be found
through experimentation. Consequently, users must be able to define difference
measures and preceding transformations separately.

3.3 Normalisation

Normalisation of difference measures aims to achieve similar data ranges and
distributions for differently typed and ranged data characteristics, under the
assumption that the characteristics themselves are following similar distribu-
tions.

Normalisation requires statistical measures. Usually we transform the data
such that zero represents the arithmetic mean and the standard deviation is 1,
but ML-PipeDebugger also provides other standard functions.

Statistics like the mean and the standard deviation must be calculated from
a sufficiently large sample of differences. However, in modern industrial produc-
tion, batch sizes can be fairly small, and we have found that relatively small
differences between the batches can already be problematic.

One solution we came up with is to combine data for different but similar
batches (or other input parameters) in the following way: Differences are only
computed within data for the same batch, but differences from different (yet
similar) batches are combined to compute the statistics. This is based on the
assumption that while data attribute values for different batches may vary too
much, their differences within one batch do not vary significantly from differences
within another batch. (This assumption may not always be fulfilled, though.) To
this end, ML-PipeDebugger allows users to either provide structured data sets
for the computation of difference statistics or to provide criteria for partitioning.

ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines 269

3.4 Additional Pre-processing of Time Series

Certain pre-processing is necessary for time series to make them comparable,
and additional, user-defined pre-processing may be desired. The following steps
have turned out to be necessary in practice:

– Interpolation to align time points;
– Pruning (user-defined, possibly data-dependent); and
– Additional pruning of the longer time series to obtain equal length.

3.5 Compute and Normalise Differences

For the computation of comparable differences of a particular pair of data
instances, we compute the raw difference (including the application of the char-
acteristic function and the transformation of time series) and then apply normali-
sation. Because the computation of the statistics can be quite time-intensive, this
has to be triggered by the user as a separate step. The statistics are then stored
on disk and can be used for all normalisations concerning the same pipeline,
provided the data fall into the same populations as those used for the statistics.

3.6 Implementation and User Interface

ML-PipeDebugger is implemented in Python 3.6. Scripts are provided for:

– Defining a pipeline (including difference measures, normalisation functions,
and pre-processing functions);

– Computing difference statistics;
– Creating difference plots and documents with collections of plots and ancillary

information;
– Automatically scanning large data for anomalies (currently in the test phase).

As an output example, Fig. 3 shows part of a document which includes a differ-
ence plot (top left), a representation of the pipeline (top right), and comparison
plots of all the data characteristics of the pipeline. In the difference plot, the
horizontal lines mark the mean difference (in the data used to compute the
statistics) and +/− the standard deviation.

4 Practical Results

ML-PipeDebugger has been used with industrial production data which, how-
ever, cannot be published. But we have additionally created artificial data, which
also allowed us to purposefully construct good test cases. We have strived to ren-
der the artificial data close to real data, and results are actually similar. Time
series were modelled as splines of different shape types, with separate random
jitter. The scenario presented here simulates machine data generated during pro-
duction and a quality measure for the items produced. Data types include time
series and scalars.

270 F. Kossak and M. Zwick

Fig. 3. Example of a difference plot together with a depiction of the pipeline (top right)
and comparison plots for all data characteristics (only the first two are shown here).

Apart from a number of similar data instances for the statistics, we also
produced, amongst others, a pair of data instances which are intentionally similar
with respect to the first couple of data characteristics but dissimilar with respect
to the some of the last ones. Figure 4 shows two pairs of time series of these
instances. In the first case, the data are to be considered as similar, while in the
second case, as considerably diverging.

Figure 1 (see Introduction) shows the respective difference plot. We can see
how the relative difference jumps from the 5th data characteristic (more than one
standard deviation below the mean) to the 6th (about one standard deviation
above the mean) and further to the 7th data characteristic. The differences of
the time series were thereby calculated with dynamic time warping (DTW) after
simple downsampling. (For a discussion of DTW, see e.g. [1], Sect. 2.6.3.)

Fig. 4. Example of two similar and two considerably diverging time series.

ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines 271

Results for real industrial data look very similar to these artificially created
examples and could actually be used to identify problematic steps in data pro-
cessing pipelines for real-world machine learning applications.

4.1 Limitations

The most serious problem we have encountered in real-life employment of ML-
PipeDebugger is that we often struggle to get enough data for statistics. Only
expert knowledge in combination with experimentation can show to what degree
data for different batches can be combined for this purpose. Yet we have obtained
interesting results, indicating that the algorithms used are not very sensitive to
the degree of significance of those statistics.

A temporal limitation is given by the need for experimentation and research
to find suitable difference measures for particular time series attributes.

Furthermore, the computation of difference statistics can take a long time for
real industrial data – in our settings, often more than an hour with a single but
relatively powerful workstation. These statistics must be computed separately
for every distance measure that is to be tested. The same holds for other custom
functions such as “characteristic functions” and pruning functions for time series.

5 Conclusion and Outlook

We have presented ML-PipeDebugger, a software tool for debugging data pre-
processing pipelines for data analysis. The importance of such a tool is stressed
by the fact that data pre-processing makes up “the bulk of the effort” in data
analysis (cf. [10]). We have shown how this tool can visualize the development
of relative differences of two data instances as they are processed in a pipeline,
which can be used to analyse unexpectedly diverging predictions. The special
challenges we have tackled include the comparison of features of different data
types and distributions, including time series-type features, and the computation
of significant statistics from partially inhomogeneous data.

5.1 Ongoing and Future Work

The ultimate goal of ML-PipeDebugger is to detect suspicious cases like the
one shown in Sect. 4 automatically. That is, it should be possible to run a batch
process that scans new data instances and flags cases where the pipeline seems to
behave suspiciously. In addition to a pipeline and a data source, the user should
be able to define thresholds for outlier-detection in terms of a percentage of
standard deviation: one below which input attribute values are to be considered
as similar, and one above which output attribute values should be considered as
considerably diverging. Any pair of data instances for which all input attributes
are similar and at least one output attribute is dissimilar in this sense should
be flagged by the script, and the “first” intermediate attribute with respect to
data dependencies where the same threshold as that for output attributes is

272 F. Kossak and M. Zwick

exceeded should be highlighted (if it exists). Alternatively, one might give a
different threshold for intermediate attributes.

As of the time of submission of this paper, this automatic search is in the
test phase. Additionally, a document with difference plot and attribute plots as
presented above should be generated automatically for a flagged pair of instances.

Amongst others, such an automated detection of problematic cases could
contribute to the challenge of “prioritiz[ing] user attention” to “important”
data slices in the course of machine-learning iteration cycles as described in
[8, Sect. 3.2.1].

Bayesian analysis similar to that proposed in [9] might be used to refine the
flagging of suspicious intermediate attributes. This may be useful if there are
several candidates for a suspected cause of divergence.

We are also planning to publish ML-PipeDebugger as a Python package, as
well as the source code, after licensing has been accorded with all stakeholders.

References

1. Al-Naymat, G.H.: New methods for mining sequential and time series data.
Ph.D. thesis, University of Sydney (2009). https://doi.org/10.1.1.877.2611,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.877.2611&rep=rep1&
type=pdf

2. Carbin, M., Rinard, M.: Automatically identifying critical input regions and code
in applications. In: Proceedings of the 19th International Symposium on Software
Testing and Analysis (ISSTA 2010), pp. 37–48 (2010)

3. Chen, A., Wu, Y., Haeberlen, A., Zhou, W., Loo, B.T.: The good, the bad, and the
differences: better network diagnostics with differential provenance. In: Proceedings
of SIGCOMM 2016, pp. 115–128 (2016). https://doi.org/10.1145/2934872.2934910

4. Fernando, T.: WorkflowDSL: scalable workflow execution with provenance. Master
thesis, KTH Royal Institute of Technology, School of Information and Communica-
tion Technology, Stockholm, Sweden (2017). http://www.diva-portal.org/smash/
get/diva2:1149093/FULLTEXT01.pdf

5. Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24, 164–181
(2011). https://doi.org/10.1016/j.engappai.2010.09.007

6. Gulzar, M.A., Interlandi, M., Han, X., Li, M., Condie, T., Kim, M.: Automated
debugging in data-intensive scalable computing. In: Proceedings of SoCC 2017, pp.
520–534 (2017). https://doi.org/10.1145/3127479.3131624

7. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the
strategic initiative INDUSTRIE 4.0, April 2013. https://www.din.de/blob/76902/
e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-
4-0-data.pdf

8. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle challenges in
production machine learning: a survey. SIGMOD Rec. 47(2), 17–28 (2018)

9. Wang, X., Dong, X.L., Meliou, A.: Data X-RAy: a diagnostic tool for data errors.
In: Proceedings of SIGMOD 2015, pp. 1231–1245 (2015). https://doi.org/10.1145/
2723372.2750549

10. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, 2nd edn. Morgan Kaufmann, Burlington (2005)

https://doi.org/10.1.1.877.2611
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.877.2611&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.877.2611&rep=rep1&type=pdf
https://doi.org/10.1145/2934872.2934910
http://www.diva-portal.org/smash/get/diva2:1149093/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1149093/FULLTEXT01.pdf
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1145/3127479.3131624
https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf
https://doi.org/10.1145/2723372.2750549
https://doi.org/10.1145/2723372.2750549

Temporal, Spatial, and High
Dimensional Databases

Correlation Set Discovery on Time-Series
Data

Daichi Amagata(B) and Takahiro Hara

Osaka University, Osaka, Japan
{amagata.daichi,hara}@ist.osaka-u.ac.jp

Abstract. Time-series data analysis is essential in many modern appli-
cations, such as financial markets, sensor networks, and data centers, and
correlation discovery is a core technique for the analysis. In this paper,
we address a novel problem that computes a k-sized time-series dataset
where the minimum Pearson correlation of any two time-series in the set
is maximized. This problem discovers a group of time-series, which are
highly correlated with each other, from a given time-series dataset with-
out any prior knowledge, thus helps many analytical applications. We
show that this problem is NP-hard, and design an approximate heuris-
tic solution that provides a high quality result with fast response time.
Extensive experiments on real and synthetic datasets verify the efficiency,
effectiveness, and scalability of our solution.

Keywords: Time-series · Correlation set

1 Introduction

In the IoT era, many data can be represented as time-series, i.e., sequences
of data points obtained by successive measurements. Time-series analysis is an
important task in many applications, such as financial markets [14] and sensor
networks [25]. In this paper, we focus on correlation discovery, which is also
known to be an important tool for time-series analysis [6,17,20], and address a
novel problem of correlation set discovery from a time-series dataset.

For many data mining and discovery tasks, it is interesting to discover an
unknown pattern from a given time-series dataset [1,8,11], because such a pat-
tern would be a rule and/or feature of the dataset. In this paper, we consider
that a set of time-series, which are highly correlated with each other, indicates
a pattern. Because of the large size of the dataset, it is infeasible to obtain the
set by visual inspection. Efficient extracting such a set from a given time-series
dataset is therefore an interesting problem. Besides, if the obtained set size is
still large, it may be hard to analyze, which requires that user can limit the
result size. Let ρ(t, t′) be the Pearson correlation between two time-series t and
t′. Given a result size k, a user-specified threshold θ, and a set of time-series
data T , our problem is to compute a set A ⊂ T such that |A| = k, for ∀t, t′ ∈ A,
ρ(t, t′) ≥ θ, and the minimum ρ(t, t′) is maximized.
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 275–290, 2019.
https://doi.org/10.1007/978-3-030-27618-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_21

276 D. Amagata and T. Hara

-1.5

-0.5

0.5

1.5

2.5

0 20 40 60 80 100 120

(a) Correlated time-series in Google

-1

1

3

5

7

9

0 25 50 75 100 125 150 175 200 225 250 275 300 325

(b) Correlated time-series in GreenHouseGas

Fig. 1. Time-series datasets provided by our algorithm where k = 25 and θ = 0.8

Our problem can be used in many applications, e.g., pattern (rule) discovery,
feature extraction, data exploration, and scientific observation. For example,
Fig. 1 illustrates two sets of z-normalized time-series (identified by our algo-
rithm).

Figure 1(a) illustrates a set of 25 time-series in Google dataset (the CPU
rate of each machine in Google compute cells) [19]. To achieve high performance
computing in data centers, it is important to take into account the correlation of
resource utilization (correlated machines should be located in different servers)
[9]. By discovering a correlation group (e.g., Fig. 1(a)), administrators can know
the machine group that should be divided for performance tuning. This example
shows that our problem brings benefits to data center applications.

Environmental analysis is also an application of our problem. It has recently
been found that greenhouse gas emissions are spatially correlated (e.g., industrial
region) [10]. Investigating how far each emission affects others is also interesting
from a scientific viewpoint. Correlation set discovery achieves this by identifying
areas where correlated time-series have been observed (e.g., as in Fig. 1(b)).
This result is also important for policy makers to establish new environmental
protection policies in those areas.
Challenge. In fact, this problem is NP-hard, so exact solutions are impractical,
suggesting that approximate heuristic approaches are necessary. To design such
a heuristic algorithm, we have to address the following challenges.

(1) High quality result (effectiveness). Since the optimal result is not obtained
practically, a heuristic algorithm needs to have insights that can be used
to discover a data space where time-series in the space are correlated. An
intuitive approach is to explore such data spaces in offline pre-processing
time. However, thresholds θ are normally different for each user, thus pre-
processing for specific thresholds does not make sense.

Correlation Set Discovery on Time-Series Data 277

(2) Computational efficiency. In the above applications, users may explore a
correlation set with varying k and θ. To enable interactive explorations, an
algorithm should provide a high quality result with fast response time.

Contributions. We overcome these non-trivial challenges and propose an effi-
cient greedy algorithm. Our contributions are summarized as follows.

– We address the problem of computing a correlation set on time-series data
(Sect. 2). To the best of our knowledge, we are the first to tackle this problem.

– We show that this problem is NP-hard, and propose a heuristic approximate
algorithm (Sect. 3). Our greedy algorithm employs locality-sensitive hashing
to obtain an approximate result with fast response time. Theoretical analysis
shows that the algorithm has linear scalability with respect to |T |, l, and k,
where T is the set of time-series and l is the time-series length. This result
shows a better performance than that of a baseline which employs existing
technique and incurs quadratic time w.r.t. |T |.

– The results of our experiments using real and synthetic datasets demonstrate
the efficiency, effectiveness, and scalability of our solution (Sect. 4).

In addition to the above contents, we discuss related work in Sects. 2 and 5
concludes this paper.

2 Preliminary

2.1 Problem Definition

A time-series t is described as t = (t[1], t[2], ..., t[l]), where t[i] is a real value
and l is the length of t. We assume that the length of each time-series in a
given dataset T is the same [17] and all time-series in T are z-normalized1 in
advance like the real datasets in UCR time-series data archive2. (Note that
normalizing time-series by z-normalization is currently common assumption to
measure time-series similarity and obtain meaningful results [23,24,26].) Let
‖t, t′‖ be the Euclidean distance between two z-normalized time-series t and t′.
The Pearson correlation between t and t′, ρ(t, t′), is obtained as follows [17].

ρ(t, t′) = 1 − ‖t, t′‖2
2l

We here define correlation set Tθ.

Definition 1 (Correlation set). Given a threshold θ and a set of time-
series data T, a correlation set Tθ ⊆ T satisfies that ∀t, t′ ∈ Tθ, ρ(t, t′) ≥ θ.

1 https://en.wikipedia.org/wiki/Standard score.
2 https://www.cs.ucr.edu/∼eamonn/time series data 2018/.

https://en.wikipedia.org/wiki/Standard_score
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

278 D. Amagata and T. Hara

The idea for selecting the Pearson correlation as similarity measure is twofold.
First, its computational cost is linear to l, i.e., O(l). The representative simi-
larity measures for time-series are the Euclidean distance (which corresponds to
the Pearson correlation) and dynamic time warping (DTW) [21]. Unfortunately,
DTW incurs O(l2) time to measure the similarity between two time-series. Sec-
ond, ρ(t, t′) ∈ [−1, 1], thereby specifying θ is not a difficult task (although DTW
does not have such a bound).

It is desirable for users to be able to specify a result size k, in order to
obtain a reasonable sized correlation set for easy data exploration and pattern
discovery. One of the most interesting correlation set T ∗

θ is the one of size k
that maximizes the minimum Pearson correlation between time-series in the set,
which is formally described as:

T ∗
θ = argmax

Tθ⊆T, |Tθ|=k

f(Tθ) (1)

f(Tθ) = min
t,t′∈Tθ

ρ(t, t′) (2)

where Tθ is a correlation set. If there is no correlation set of size k in a given
time-series set T , it is reasonable to provide the correlation set of the largest
size, i.e.,

T ∗
θ = argmax

Tθ⊆T
|Tθ|. (3)

Ties are broken by selecting the correlation set that maximizes Eq. (2). Now we
are ready to define the problem in this paper and its hardness.

Definition 2 (Correlation set discovery problem). Given a set of time-
series data T , a result size k, and a threshold θ, this problem is to discover the
correlation set A that follows Eq. (1) if there is a correlation set of size k in T .
Otherwise, this problem is to discover the correlation set A that follows Eq. (3).

Theorem 1 (Hardness). The correlation set discovery problem is NP-hard.

Proof. We first assume that there is at least a correlation set of size k in T .
We show that our problem corresponds to the k-dispersion problem [18] in this
case. The k-dispersion problem is defined as follows: Given a node set V =
{v1, v2, ..., v|V |}, this problem is to find a subset V ′ of V with |V ′| = k such that
minv,v′∈V ′ dist(v, v′) is maximized. This problem is shown to be NP-hard. In
our problem, each time-series t and the Pearson correlation ρ(t, t′) respectively
correspond to a node v and dist(v, v′). This concludes that computing Eq. (1)
is NP-hard. Next, we assume that there is no k-sized correlation set in a given
T . In this case, we have to compute Eq. (3). Consider that a time-series t is a
node v and if ρ(t, t′) ≥ θ, there is an edge between v and v′. Now this problem
corresponds to finding the maximum clique in a graph, which is also well known
to be NP-hard. Theorem 1 therefore holds. �

Correlation Set Discovery on Time-Series Data 279

Due to Theorem 1, it is not feasible to obtain the optimal answer. Hence, we
need to design a heuristic algorithm that can efficiently provide an approximate
answer set A with high f(A). Note that it is impossible to know in advance
whether or not there is a correlation set of size k in a given T . We therefore
focus on designing an algorithm that can obtain a result set A incrementally to
guarantee that A is a correlation set.

2.2 Related Work

The Pearson correlation is a core similarity function, thereby correlation discov-
ery on time-series data has been extensively studied. Literatures [2,6,17,20,27]
tackled the problem of discovering (all) correlation pairs. Among them, the most
similar to our problem is [17], so we extend the algorithm proposed in [17] for
our problem. We compare our algorithm with the extended algorithm, and con-
firm that computing all correlation pairs does not support efficient correlation
set discovery. Our experimental results show that our algorithm significantly
outperforms the extended algorithm.

One of other related works is motif discovery. The motif of a given time-
series is the most correlated pair of subsequences. Efficient motif discovering
algorithms have been proposed for in-memory data [11,16,22] and disk-resident
data [15]. Matrix profile project, e.g., [12,17,23], achieves fast motif discovery.
However, these works focus only on a single pair, thereby we do not consider
their solutions. This discussion also suggests that our problem is different from
finding some similar, e.g., kNN, time-series to a given query time-series [7].

3 Proposed Algorithm

This section presents our proposed algorithm Greedy-L. This algorithm employs
a novel approach, i.e., greedy heuristic combined with locality sensitive hashing.

3.1 Greedy Heuristic Framework

First, we introduce the framework of the greedy heuristic, and we use the nota-
tions in the proof of Theorem1. Given k and a node set V , this greedy heuristic
computes a result set V ′ as follows.

1. Insert the pair of nodes (v, v′) with the maximum distance into V ′.
2. Consider an objective function f(V ′, v) = minv′∈V ′dist(v, v′). Insert the node

v ∈ V \V ′ into V such that v maximizes f(V ′, v).
3. Iterate the above operation until |V ′| becomes k.

This approach can provide an approximate answer in polynomial time, and
existing experimental results show that it provides a high quality result in prac-
tice [4]. However, straightforward adaptation of this approach to our prob-
lem is not efficient. This is because the first operation needs O(l|T |2) time
and each iteration needs O(kl|T |) time, so the straightforward approach incurs
O(l(|T |2 + k2|T |)) time.

280 D. Amagata and T. Hara

3.2 Locality Sensitive Hashing

The above approach incurs quadratic time cost. We break this quadratic barrier
by optimizing LSH (locality sensitive hashing) usage. We here define LSH.

Definition 3 (Locality-sensitive hashing). Given a distance r, an approx-
imate ratio c (c > 1), and two probabilities p1 and p2 (p1 > p2), a hash function
h is (r, cr, p1, p2)-sensitive, if it satisfies the following both conditions:

– If ‖t, t′‖ ≤ r, then Pr[h(t) = h(t′)] ≥ p1;
– If ‖t, t′‖ ≥ cr, then Pr[h(t) = h(t′)] ≤ p2.

The LSH function commonly used in the Euclidean space is shown below [3].

h(t) = 	a · t + bw

w

 (4)

Note that a is a random vector with each dimension independently chosen from
the standard normal distribution N (0, 1), and its length is l. b is a real number
randomly chosen from [0,w), and w is a real number that represents the width
of h. Recall that we are interested in time-series t and t′ satisfying ρ(t, t′) ≥ θ,
thus their hash values should be the same (or very close). To this end, we set

w =
√

2l(1 − θ). (5)

Let θE =
√

2l(1 − θ), and let d = ‖t, t′‖. [3] shows that Pr[h(t) = h(t′)] can be
obtained as follows:

p(d) = Pr[h(t) = h(t′)]

=
∫ θE

0

1
d
f2(

x

d
)(1 − x

θE
)dx

= 2norm(
θE

d
) − 1 − 2√

2π

d

θE
(1 − e− θ2

E
2d2) (6)

where f2(z) = 2√
2π

e− z2
2 and norm(·) is the cumulative distribution function of

a random variable following N (0, 1). Note that h(t) has the following lemma [5].

Lemma 1. The LSH obtained from Eq. (4) is (θE, cθE, p(θE), p(cθE))-sensitive.

Because h(·) provides the same (or similar) hash values if two time-series
are very similar, it is intuitive that we do not need to compare two time-series
with totally different hash values. However, it is important to note that using
a single h(·) cannot avoid unnecessary computation well, because many time-
series with far distance (i.e., low Pearson correlation) may have the same hash
values. To avoid this, a compound LSH function G(t) = (h1(t), h2(t), ..., hm(t))
is employed, where each component of G(t) is h(t) and independently generated
[3]. We consider that G(t) is a key of t, and two time-series with high Pearson
correlation would have the same or similar keys.

It is important to note that existing studies utilize LSH as indices, i.e., offline
processing, but we utilize LSH for online processing to deal with arbitrary θ, see
Eq. (5).

Correlation Set Discovery on Time-Series Data 281

3.3 Main Techniques

Assume that each time-series t ∈ T is assigned its key K and is inserted into
the bucket with key K, BK . One may consider the following simple combination
of the greedy heuristic and LSH. We compute a pair of two time-series 〈ti, tj〉,
which is firstly added to A, by using LSH. In other words, if we compute the pair
with the highest Pearson correlation for ∀BK ∈ B, where B is the set of buckets,
we can obtain 〈ti, tj〉. Then we compute t∗ = argmaxt∈T\Af(A, t), where

f(A, t) = min
t′∈A

ρ(t, t′),

by scanning T , and t∗ is inserted into A. This operation is iterated until |A|
becomes k.

Although this seems to reduce computational cost, it is not sufficient. In each
iteration, we compute t∗ based on the intermediate A, so the pair 〈ti, tj〉, which
is firstly added to A, has a large influence on the final quality and size of A. Due
to this property, 〈ti, tj〉 has to satisfy the following requirements.

– ρ(ti, tj) is high as much as possible: Because f(A), which is described in
Eq. (2), has submodularity, i.e., f(A) ≥ f(A ∪ {t}), the first pair should have
high Pearson correlation. Otherwise, the quality of the final result becomes
low.

– 〈ti, tj〉 exists in a large group of time-series which are correlated with each
other: This requirement is necessary to provide A such that |A| = k.

We below elaborate how to discover such a pair. Assume that each time-
series t in T is assigned a key K by G(t). For each bucket BK ∈ B, we compute
the highest Pearson correlation in BK denoted by ρK . Recall that higher ρK

is better due to the submodularity of f(A). We next consider the size of the
adjacent buckets which are defined below.

Definition 4 (Adjacent bucket). Given a set of buckets B and a bucket
BK ∈ B, each bucket BK′ which is an adjacent bucket of BK , satisfies that
|{i |hK

i = hK′
i }| = m − 1 where hK

i (hK′
i) is the i-th hash value of K (K ′).

Let Bθ be the set of buckets BK such that ρK ≥ θ. We retrieve the adjacent
buckets of BK in Bθ and compute sK which is the summation of their sizes (the
number of time-series in the buckets) and |BK |. More formally,

sK = |BK | +
∑

|BK′ |,

where BK′ is an adjacent bucket of BK . Recall that time-series in the same
bucket or buckets with similar keys tend to be correlated. Therefore, if sK is
large, time-series in BK would exist in a large group of time-series which are
correlated with each other. Based on the above idea, we select the pair of two
time-series with the highest Pearson correlation in BK where ρK · sK

|T | is the
maximum among Bθ. (Because ρK ∈ [θ, 1], sK has to be normalized and |T | is
used to achieve this.) The complexity of this operation is as follows.

282 D. Amagata and T. Hara

Lemma 2. We can select the first two time-series with O(ml|T |) time.

Proof. Computing G(·) for each time-series needs O(ml) time, thus the hashing
incurs O(ml|T |) time. Let β be the number of buckets ∈ B where |BK | ≥ 2, and
let n be the average number of time-series in BK . To obtain 〈t, t′〉, we need
O(βn2). However, by setting a sufficiently large constant as m, n can be very
small, so we have O(βn2) � O(ml|T |). We can compute the first two time-series
by scanning Bθ, and |Bθ| ≤ |T |. Then, we can conclude that the time complexity
is O(ml|T |). �

Next, we consider how to efficiently find a time-series which has high Pearson
correlation with each time-series in an intermediate result A. Our idea is simple
yet effective. Because two time-series with high Pearson correlation share the
same or similar key, promising time-series, which can be the next result t∗, exist
in the adjacent buckets of the buckets in which the time-series ∈ A exist. We
compute t∗ from the set of the buckets denoted by S, and its time complexity is
O(l|S|).
Lemma 3. We can obtain t∗ = argmaxt∈S\Af(A, t) with O(l|S|) time.

Proof. Assume that a time-series t is in A and A = {t}, and for ∀ti ∈ S\{t},
we compute ρ(t, ti). Assume further that t∗ = t′ and each time-series ti caches
f(A, t). When we find the next t∗, we can obtain the exact f(A, ti) of a given
ti ∈ S\A by comparing ρ(t′, ti) with the cached value, which needs only O(l)
time. Thus we can obtain t∗ with O(l|S|) time. �

Besides, a lower-bound of the existing probability of a time-series t, which sat-
isfies that f(A, t) ≥ θ, in S is obtained as follows.

Lemma 4. We have

Pr[t ∈ S, f(A, t) ≥ θ] ≥ p(θE)m + p(θE)m−1(1 − p(θE))m.

Proof. From Eq. (6) and Definition 4. �

3.4 Algorithm Description

Algorithm 1 details Greedy-L. Greedy-L first obtains the key of each time-series
(lines 1–2). Then Greedy-L computes 〈t, t′〉, where t, t′ ∈ BK and ρ(t, t′) · sK

|T | is
the maximum in Bθ (lines 3–17). The pair 〈t, t′〉 is inserted into A. Greedy-L
retrieves the next result t∗ from S which is the union of BK such that t, t′ ∈ BK

and the adjacent buckets of BK . Also, for each iteration (lines 20–26), after
Greedy-L inserts t∗ = argmaxt∈S\Af(A, t) into A, BK , where t∗ ∈ BK , and its
adjacent buckets are inserted into S (line 24). This is repeated until |A| becomes
k or Greedy-L identifies that �t ∈ S such that f(A, t) ≥ θ.

Now we show our main result: the time complexity of Greedy-L is linear to
each parameter and breaks the quadratic barrier.

Correlation Set Discovery on Time-Series Data 283

Algorithm 1: Greedy-L
1 for ∀t ∈ T do
2 BK ← BK ∪ {t} where K = (h1(t), h2(t), ..., hm(t))

3 Bθ ← ∅, P ← ∅
4 for ∀BK ∈ B where |BK | ≥ 2 do
5 tK , t′

K ← ∅, ρK ← −1
6 for ∀ti ∈ BK do
7 for ∀tj ∈ BK do
8 if ρK < ρ(ti, tj) then
9 ρK ← ρ(ti, tj), 〈tK , t′

K〉 ← 〈ti, tj〉

10 if ρK ≥ θ then
11 Bθ ← Bθ ∪ BK

12 P ← P ∪ 〈ρK , tK , t′
K〉

13 t, t′ ← ∅, μ = 0
14 for ∀BK ∈ Bθ do
15 sK ← |BK | +

∑ |BK′ | where BK′ ∈ Bθ is the nearest bucket of BK

16 if ρK · sK
|T | > μ then

17 μ ← ρK · sK
|T | , 〈t, t′〉 ← 〈tK , t′

K〉

18 A ← 〈t, t′〉
19 S ← BK ∪ BN

K′ where t, t′ ∈ BK and BN
K′ is the set of the nearest bucket of BK

in B
20 while |A| < k do
21 t∗ ← argmax

t∈S\A

f(A, t)

22 if f(A, t∗) ≥ θ then
23 A ← A ∪ {t∗}
24 S ← S ∪ BK ∪ BN

K′ where t∗ ∈ BK and BN
K′ follows line 19

25 else
26 break

Theorem 2. Greedy-L needs O(ml|T |+kl|S|) time to provide A, where S ⊆ T .

Proof. From Lemma 2, lines 1–17 need O(ml|T |) time. To obtain sK , we need
to find the adjacent buckets of BK . We cache the value range of each LSH hi,
and z-normalization provides the fact that the range is very small as shown in
Fig. 1. Thus sK is obtained by O(m) time, i.e., lines 14–17 incurs O(m|Bθ|) time,
and O(m|Bθ|) � O(ml|T |). Lines 19, 21, and 24 respectively need O(l|S|) time.
As a result, the time complexity of Greedy-L is O(ml|T | + kl|S|). �

Discussion. We exploit the adjacent buckets to effectively select buckets for the
candidates of the result. One may consider about employing near buckets that
share (m − m′) LSHs with a given bucket. If we employ this, Greedy-L loses its
efficiency significantly due to large increase of S (the number of near buckets

284 D. Amagata and T. Hara

of a given bucket is
(

m
m′

)
). Besides, specifying an appropriate m′ is not trivial.

Greedy-L therefore employs the adjacent buckets.
We next show that Greedy-L is a parallel-friendly framework. Recall that each

LSH in G(·) is independently generated. This computation can be parallelized.
Also, it can be seen that computing ρK , sK , and t∗ is parallelized by dividing
B, Bθ, and |S| into some pieces.

4 Experiments

We present our empirical study that evaluates the performance of Greedy-L.

4.1 Setting

Datasets. In our experiments, we used two real datasets and a synthetic dataset
introduced below.

– GreenHouseGas [13]: This dataset has 46,736 time-series, and each time-series
consists of 327 green house gas concentrations.

– Google: This dataset consists of 10,380 time-series (CPU rates of machines
in Google compute cells) with length 128.

– Rand: This dataset is generated by a random walk technique. When gener-
ating a time-series t, we randomly choose the first value (t[1]) in {−1, 1}.
The subsequent value is generated by t[i + 1] = t[i] + N (0, 1) [16]. We set
|T | = 100, 000 and l = 1, 000 by default.

(We conducted experiments on other datasets but omit their results because
they are consistent.) When we use a dataset, all time-series in the dataset are
memory-resident.
Algorithms. We evaluated the following algorithms.

– Greedy-M: this is an extended version of [17], which is a state-of-the-art
online algorithm to compute all time-series pairs whose Pearson correlation
satisfies θ. Greedy-M employs this technique and the greedy heuristic intro-
duced in the beginning of the proposed algorithm section, to compute A.

– Greedy-L: the proposed algorithm in this paper.
– Greedy-L−: this algorithm utilizes LSH only to obtain the first two time-

series. The greedy heuristic is also employed in each iteration to update the
result set.

– Greedy-L (wobs): this algorithm normally executes the same operations as
those in Greedy-L, but selects the first bucket BK such that ρK is the highest
among B.

All algorithms were implemented in C++, and all experiments were conducted
on a PC with Intel Xeon E5-2687W v4 processors (3.0 GHz) and 512 GB RAM.
Criteria. We measured the average of each metric introduced below. We run
the algorithms 50 times for each experiment.

Correlation Set Discovery on Time-Series Data 285

– Running time (efficiency). This metric is defined as the time to provide a
correlation set A.

– F (A) = f(A) · |A|
k (effectiveness). Although the above algorithms guarantee

that A is a correlation set, they do not guarantee that |A| = k. It is unfair
to compare algorithms based on f(A), since the algorithms may provide
different result size. We therefore normalize f(A) by |A|

k .

Recall that, as shown in Theorem 1, the exact answer A∗ is not obtained prac-
tically, so comparing F (A), where A is provided by our solution, with F (A∗) is
impossible.

4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m (GreenHouseGas)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−

(a) Running time (Green-
HouseGas)

2 3 4 5 6 7 8
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

m (Google)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−

(b) Running time
(Google)

8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

m (Rand)
R

un
ni

ng
 ti

m
e

[s
ec

]

Greedy−L (wobs)Greedy−L

Greedy−L−

(c) Running time (Rand)

4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L−

(d) F (A) (GreenHouse-
Gas)

2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m (Google)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L−

(e) F (A) (Google)

8 9 10 11 12 13 14 15 16
0.7

0.75

0.8

0.85

0.9

0.95

1

m (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L−

(f) F (A) (Rand)

Fig. 2. Impact of m

Table 1. Tuning m for each algorithm

Algorithm GreenHouseGas Google Rand

Greedy-L 8 6 13

Greedy-L− 13 5 11

Greedy-L (wobs) 6 4 13

286 D. Amagata and T. Hara

4.2 Result

By default, θ = 0.8, k = 20 in the cases of GreenHouseGas and Google, and
k = 100 in the case of Rand.
Varying m. We first tune m (the number of h(·) in the compound LSH function)
of Greedy-L−, Greedy-L, and Greedy-L (wobs) for each dataset by using the
default parameter setting. Figure 2 illustrates the impact of m. We can see that
m affects the performances of the three algorithms. For example, when m is
small, there is a large number of time-series in the same bucket, so computing
the first two time-series which will be in A needs long time. Figures 2(d) and (f)
show that Greedy-L− and Greedy-L provide stable F (A) (but Greedy-L (wobs)
does not). On the other hand, Fig. 2(e) shows that Greedy-L provides bad result
quality when m is small. When m is small, there are many non-correlated time-
series in the same bucket. In this case, sK cannot reflect data distribution. Based
on the result, we set m as shown in Table 1. (F (A) is prioritized.)

5 10 15 20 25 30
10−1

100

101

102

103

k (GreenHouseGas)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−Greedy−M

(a) Run time (Green-
HouseGas)

5 10 15 20 25 30
10−2

10−1

100

101

102

k (Google)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−Greedy−M

(b) Run time (Google)

0 50 100 150 200 250 300
100

101

102

103

104

105

k (Rand)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(c) Run time (Rand)

5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

k (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(d) F (A) (GreenHouse-
Gas)

5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

k (Google)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(e) F (A) (Google)

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1

k (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(f) F (A) (Rand)

Fig. 3. Impact of k

Varying k. Figures 3(a) and (b) show that all the algorithms are not affected by
k. Since Greedy-M incurs the overhead from computing all pairs Pearson corre-
lation, i.e., O(l|T |2), it is reasonable. The other algorithms have two main com-
putational overheads: hashing and iteration. When k is small, hashing becomes

Correlation Set Discovery on Time-Series Data 287

a dominant factor, thereby the result is obtained. When k is large, on the other
hand, the running time of the algorithms except Greedy-M increases as shown in
Fig. 3(c). We see that Greedy-L scales better than Greedy-L−, because Greedy-
L− scans the whole dataset in each iteration. Note that Greedy-L runs up to
1,500 times faster than Greedy-M.

Let us focus on result quality, and Figs. 3(d) and (e) show that Greedy-L
provides the best result among the four algorithms. (Because Rand has many
correlated time-series, the four algorithms provide almost the same result, as
shown in Fig. 3(f).) In particular, Greedy-M, Greedy-L−, and Greedy-L (wobs)
fail to return a good result in the case of GreenHouseGas. In this dataset, the
pair of two time-series with the highest Pearson correlation exists in a very
small group. The three algorithm (often) return this set, but Greedy-L can avoid
this situation and provides a larger group by exploiting LSH, which verifies the
effectiveness of our approach. (Recall that the result obtained by Greedy-L is
illustrated in Fig. 1.)
Varying θ. Figure 4 shows the impact of threshold. As shown in Figs. 4(a),
(b) and (c), as θ increases, running time of each algorithm decreases. Even in
this case, Greedy-M is very slow and the other algorithms keep outperforming
Greedy-M significantly.

0.7 0.75 0.8 0.85 0.9
10−1

100

101

102

103

threshold (GreenHouseGas)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−Greedy−M

(a) Running time (Green-
HouseGas)

0.7 0.75 0.8 0.85 0.9
10−2

10−1

100

101

102

threshold (Google)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−L−Greedy−M

(b) Running time
(Google)

0.7 0.75 0.8 0.85 0.9
100

101

102

103

104

threshold (Rand)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(c) Running time (Rand)

0.7 0.75 0.8 0.85 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

threshold (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(d) F (A) (GreenHouse-
Gas)

0.7 0.75 0.8 0.85 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

threshold (Google)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(e) F (A) (Google)

0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

threshold (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L−Greedy−M

(f) F (A) (Rand)

Fig. 4. Impact of θ

288 D. Amagata and T. Hara

0 100 200 300 400 500
10−1

100

101

102

103

104

Cardinality [K] (Rand)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(a) Varying |T |
500 1000 1500 2000 2500 3000

100

101

102

103

104

length (Rand)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L−

(b) Varying l

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

#core (Rand)

R
un

ni
ng

 ti
m

e
[s

ec
]

Greedy−L

(c) Varying the number of
cores

Fig. 5. Scalability test

Figures 4(d) and (e) show that the Greedy-L (wobs) often returns a worse
result than the other algorithms. As well as Greedy-L, Greedy-L (wobs) finds the
next result (i.e., t∗) only from a subset of T , and the subset is also dependent
on the first two time-series of A. This result implies that ignoring sK misses
identifying a group of time-series, and Greedy-L (wobs) cannot be robust.
Varying |T |, l, and the Number of Cores. We also investigate the scalabil-
ity to the size of a given dataset, the length of a time-series, and the number of
available CPU cores by using Rand. (We used OpenMP to support paralleliza-
tion.) The results are respectively shown in Figs. 5(a), (b) and (c). (We omit the
results of F (A) because they are almost consistent like Fig. 4(f).) Recall that
the time complexity of Greedy-M is O(|T |2l), so its running time is significantly
large, which is shown in Fig. 5(a) (we omit the result of Greedy-M in the cases
of |T | = 250, 000 and |T | = 500, 000). Since the time complexities of the other
algorithms are linear to |T |, the experimental results follow this fact. Impact of
l also has this case.

Figure 5(c) shows that Greedy-L reduces its running time with increase of
available cores. For example, by using 8 cores, its running time becomes approx-
imately 3 times faster than the case of using only 1 core.

Remark. As Theorem 2 also argues, Greedy-L significantly outperforms the
approach using existing techniques. In addition, Greedy-L provides a high quality
result, i.e., A with high f(A), in practice, meaning that Greedy-L satisfies the
two important requirements, effectiveness and efficiency.

5 Conclusion

In this paper, we addressed a novel problem of discovering a correlation set on
time-series data. We showed that this problem is NP-hard, and proposed an
efficient greedy heuristic algorithm, Greedy-L. Greedy-L employs locality sensi-
tive hashing to reduce running time. In particular, we devised a novel technique
that exploits locality-sensitive hashing to discover a large group of time-series
which are correlated with each other. The experimental results demonstrate the
efficiency, effectiveness, and scalability.

Correlation Set Discovery on Time-Series Data 289

Acknowledgment. This research is partially supported by JSPS Grant-in-Aid for
Scientific Research (A) Grant Number 18H04095, JSPS Grant-in-Aid for Young Scien-
tists (B) Grant Number JP16K16056, and JST CREST Grant Number J181401085.

References

1. Amagata, D., Hara, T.: Mining top-k co-occurrence patterns across multiple
streams. TKDE 29(10), 2249–2262 (2017)

2. Cole, R., Shasha, D., Zhao, X.: Fast window correlations over uncooperative time
series. In: KDD, pp. 743–749 (2005)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: SoCG, pp. 253–262 (2004)

4. Drosou, M., Pitoura, E.: Diversity over continuous data. IEEE Data Eng. Bull.
32(4), 49–56 (2009)

5. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: SIGMOD, pp. 541–552 (2012)

6. Guo, T., Sathe, S., Aberer, K.: Fast distributed correlation discovery over streaming
time-series data. In: CIKM, pp. 1161–1170 (2015)

7. Huang, Q., Feng, J., Zhang, Y., Fang, Q., Ng, W.: Query-aware locality-sensitive
hashing for approximate nearest neighbor search. PVLDB 9(1), 1–12 (2015)

8. Kato, S., Amagata, D., Nishio, S., Hara, T.: Monitoring range motif on streaming
time-series. In: DEXA, pp. 251–266 (2018)

9. Kim, J., Ruggiero, M., Atienza, D., Lederberger, M.: Correlation-aware virtual
machine allocation for energy-efficient datacenters. In: DATE, pp. 1345–1350
(2013)

10. Li, L., Hong, X., Tang, D., Na, M.: GHG emissions, economic growth and urban-
ization: a spatial approach. Sustainability 8(5), 462 (2016)

11. Li, Y., Yiu, M.L., Gong, Z., et al.: Quick-motif: an efficient and scalable framework
for exact motif discovery. In: ICDE, pp. 579–590 (2015)

12. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.: Matrix profile x: VALMOD-scalable
discovery of variable-length motifs in data series. In: SIGMOD, pp. 1053–1066
(2018)

13. Lucas, D., et al.: Designing optimal greenhouse gas observing networks that con-
sider performance and cost. Geosci. Instrum. Methods Data Syst. 4(1), 121 (2015)

14. Marti, G., Andler, S., Nielsen, F., Donnat, P.: Clustering financial time series: how
long is enough?. In: IJCAI, pp. 2583–2589 (2016)

15. Mueen, A., Keogh, E., Bigdely-Shamlo, N.: Finding time series motifs in disk-
resident data. In: ICDM, pp. 367–376 (2009)

16. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time
series motifs. In: SDM, pp. 473–484 (2009)

17. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series
data. In: SIGMOD, pp. 171–182 (2010)

18. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Facility dispersion problems: heuris-
tics and special cases. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991.
LNCS, vol. 519, pp. 355–366. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0028275

19. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+
schema, pp. 1–14. Google Inc., White Paper (2011)

20. Tsytsarau, M., Amer-Yahia, S., Palpanas, T.: Efficient sentiment correlation for
large-scale demographics. In: SIGMOD, pp. 253–264 (2013)

https://doi.org/10.1007/BFb0028275
https://doi.org/10.1007/BFb0028275

290 D. Amagata and T. Hara

21. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidi-
mensional time-series. VLDB J. 15(1), 1–20 (2006)

22. Yankov, D., Keogh, E., Medina, J., Chiu, B., Zordan, V.: Detecting time series
motifs under uniform scaling. In: KDD, pp. 844–853 (2007)

23. Yeh, C.C.M., Kavantzas, N., Keogh, E.: Matrix profile vi: meaningful multidimen-
sional motif discovery. In: ICDM, pp. 565–574 (2017)

24. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: ICDM, pp. 1317–
1322 (2016)

25. Yi, X., Zheng, Y., Zhang, J., Li, T.: ST-MVL: filling missing values in geo-sensory
time series data. In: IJCAI, pp. 2704–2710 (2016)

26. Zhu, Y., et al.: Matrix profile ii: exploiting a novel algorithm and GPUs to break
the one hundred million barrier for time series motifs and joins. In: ICDM, pp.
739–748 (2016)

27. Zhu, Y., Shasha, D.: Statstream: statistical monitoring of thousands of data
streams in real time. In: VLDB, pp. 358–369 (2002)

Anomaly Subsequence Detection
with Dynamic Local Density

for Time Series

Chunkai Zhang(B), Yingyang Chen, and Ao Yin

Department of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China

ckzhang812@gmail.com, yingyang chen@163.com, yinaoyn@126.com

Abstract. Anomaly subsequence detection is to detect inconsistent
data, which always contains important information, among time series.
Due to the high dimensionality of the time series, traditional anomaly
detection often requires a large time overhead; furthermore, even if the
dimensionality reduction techniques can improve the efficiency, they will
lose some information and suffer from time drift and parameter tuning.
In this paper, we propose a new anomaly subsequence detection with
Dynamic Local Density Estimation (DLDE) to improve the detection
effect without losing the trend information by dynamically dividing the
time series using Time Split Tree. In order to avoid the impact of the
hash function and the randomness of dynamic time segments, ensemble
learning is used. Experimental results on different types of data sets ver-
ify that the proposed model outperforms the state-of-art methods, and
the accuracy has big improvement.

Keywords: Time series · Anomaly detection · Local Density

1 Introduction

The time series data is stored in the order of the data generation time, and is
dynamic and massive. We are interested in finding the abnormal subsequence
in complete time series, in other words, anomaly subsequences are inconsistent
with the shape of most other subsequences. Anomaly detection for time series is
an analysis of inconsistent data with normal data, which always represents an
emergency or fault. Itc is applied in many application domains, ranging from
financial data [15,19], Electrocardiogram (ECG) data [1,22] to sensor data [8].
For example, analysis of ECG data can timely monitor patients’ heart health
such as arrhythmia, ventricular atrial hypertrophy, myocardial infarction [13]
before diagnosis process. Therefore, timely detection of abnormal data contained
in the data is of great significance.

A rich body of literature exist on detecting time series anomalies, however,
existing anomaly detection methods [11,17,18,23] still suffer from a lot of prob-
lems. Time series is often high-dimensional data, therefore the calculations in
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 291–305, 2019.
https://doi.org/10.1007/978-3-030-27618-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_22

292 C. Zhang et al.

the original data storage format often require large storage and computational
overhead. In recent years, the different time series data representation meth-
ods were proposed to achieve the purpose of dimensionality reduction. Discrete
Fourier Transformation (DFT) [5] can convert time series of length n into m
coefficients by discrete Fourier transform method; Discrete Wavelets Transfor-
mation (DWT) [3] is a multi-resolution representation of the data signal but
can only be used in time series of integer powers of length 2; and Piecewise
Aggregate Approximation (PAA) [6] divides the time series into equal length
segments, then takes the average for each segment. As for Symbolic Aggregate
Approximation (SAX) [10], it maps the mean of the segments to a symbolic
representation based on PAA as other variants, ESAX [11] and SAX-TD [23].
All these methods can reduce the dimensionality but losing information on local
time segment. However, there are some problem that the size of the window
needs to be set manually, which requires the relevant expert knowledge [22].
And the average in the sliding window will lose some important information.
In addition, these methods have not pay much attention to time drift problem,
which will get wrong anomaly subsequence if using Euclidean distance, and the
details will be discuss in Sect. 2.

We also need to perform anomaly calculations on the representation of time
series. The simplest and straightforward method of anomaly subsequence detec-
tion is to calculate the similarity between each pair of subsequences by double-
loop violence, and treat the most dissimilar subsequences with most other sub-
sequences as abnormal subsequences [7]. In order to improve the efficiency of the
brute force algorithm, Keogh et al. proposed HOT SAX [7] to construct an index
tree using SAX symbol sequences to optimize the search order of candidate.
Li et al. [9] proposed BitClusterDiscord, who used binary representation to
approximate the trend information then use K-media clustering and two prun-
ing strategies to reduce the number of similarity calculations. Senin et al.
[21] proposed Rare Rule Anomaly to discrete the time series into symbol and
derive context-free grammar to discover algorithmic irregularities associated with
exceptions. Ren et al. proposed PAPR-RW [17] based on PAPR representation
and random walk model [12] to convert time series into similar matrices. All
these method use sliding window to split time series into subsequence while set
the size of window manually. Once the window setting is not good enough to
different kind of data sets, it is easy to detect wrong anomaly subsequence.

In this paper, we propose a novel anomaly subsequence detection of Dynamic
Local Density Estimation (DLDE) where TSTree is used to dynamically divide
the time series, and hash function to improve the efficiency. In order to avoid the
influence of the hash function and the randomness of dynamic time segments,
ensemble learning is used in our method. And this algorithm can improve the
effect of detection without losing the time series trend information by dynamic
segment and has less parameters.

The contribution of this paper can be summarized as follows.

(1) An anomaly detection algorithm is proposed to solve the time drift problem
inspired by the idea of DTW. And the detection effect can be improved

Anomaly Subsequence Detection with Dynamic Local Density 293

without losing the trend information because this algorithm does not com-
press the original time series.

(2) We propose a novel data structure named Time Split Tree (TSTree) and
introduce the three techniques in DLDE, Time Split Tree for time series
randomly division, Hash Table for similarity measurement that the data
points with the same hash value are similar data points, and Ensemble
Learning to ensure the stability of algorithm.

(3) Our algorithm is analyzed with solid theoretical explanation and experimen-
tally verified the effectiveness of the algorithm. DLDE outperforms other
state-of-art algorithms on different types of data sets in accuracy.

The rest of paper is organized as follows. Section 2 sets up the problem def-
initions for anomaly detection in time series. Section 3 proposes the Dynamic
Local Density Estimation algorithm. Experimental results are reported in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Problem Statement

Dynamic time warping (DTW) is a dynamic programming technique which can
handle nonlinear alignments and local drift time [25] with different length subse-
quences caused by timeline scaling, amplitude shift and linear drift. Amplitude
shift is ampliotude baseline is different with two similar time series. Timeline
scaling means time series scaling proportionally on the timeline. Linear drift
shows a trend od linear increasing or decreasing for time series. If the corre-
sponding subsequences in two time series do not represent the same meaning,
it is unreasonable to calculate their similarity by means of Euclidean distance.
In order to reduce the time complexity, warping function [16] was proposed as
shown in Fig. 1(a). After adding the optimization width limit, the most similar
data points can be found only within a certain segment.

(a)

R

(b)

Fig. 1. The (a) is the DTW calculation matrix with adjustment window R (green
window), C and Q are the two time series. The (b) is the example of DTW calculates
schematics in all data sets. (Color figure online)

294 C. Zhang et al.

The anomaly detection based on DTW needs to calculate the similarity of
any two subsequences and the time complexity is O(mnN2). If adding the search
scope limit window R, the calculation process is shown in Fig. 1(a). In Fig. 1(b),
suppose we should detect whether the time series Q has anomaly or not, and
the other series are T1 ∼ Tn, the adjustment window is R. Take the q5 as an
example, finding the minimum distance in the limited R window from T1 to
Tn. From the perspective of anomaly detection, the larger of distance between
q5 and other data points, the more abnormal the point is. In other words, if
there is no similar data point in the adjustment window, the test point should
be an anomaly. Therefore, inspired by the idea above, we propose a method
to quickly evaluate the similarity of subsequence. Based on this method, an
anomaly subsequence detection algorithm for dynamic local density estimation
is proposed.

3 The Proposed Algorithm

Based on the analysis of dynamic time warping similarity calculation in Sect. 2,
we propose a time series anomaly subsequence detection algorithm, Dynamic
Local Density Estimation(DLDE) to divide the time series randomly and evalu-
ate the degree of anomaly for data points through dynamic local density of each
data point in the subsequence.

3.1 Basic Concept and Definitions

Definition 1 (Time Split Tree (TSTree)). TSTree randomly divides a time
series into several dynamic time segments, each of which is located at the leaf
node.

The process is as follows: there is a time series {t1 ∼ td}, randomly choose time
point st as a split point, and divide all time points before st into Tl while others
in Tr. Recursively the above process until the stop conditions:

(1) The length of the time segment at the leaf node is less than or equal to 3.
(2) The depth of the tree is equal to log2(d).

Give an example of the TSTree. Assuming that the time points of the Q
time series are t1 to t20, and the divided result is shown in Fig. 2. Select t9 as
the split node for root, and divide t1 ∼ t8 to left subtree, and t9 ∼ t20 to the
right subtree.

Definition 2 (Dynamic Time Segment R). Inspired by limit window R in
DTW in Fig. 1, Dynamic time segment refers to a continuous time segment in
a subsequence that is used to find the most similar data points, such as R =
{ts, ts+1, ..., te}(1 ≤ s ≤ e).

Anomaly Subsequence Detection with Dynamic Local Density 295

t9

t6 t14

t<t9 t t9

t4 t6~t8

t<t6 t t6

t1~t3 t4~t5

t<t4
t t4

t11 t17

t<t14
t t14

t9~t10 t11~t13

t<t11 t t11

t14~t17 t17~t20

t<t17 t t17

Qt1~t3 Qt4~t5 Qt9~t10 Qt11~t13 Qt14~t17 Qt17~t20

Fig. 2. The structure of TSTree, the circle node represents an internal node, and a
rectangle node represents a leaf node.

Definition 3 (Hash Function). The data set Qt1∼td at d time points can be
mapped to d hash table HashTablet1∼td by hash function (Eq. (1)). If two data
points have the same hash function value, the two data points are similar.

hash(p) = �p + r

w
� (1)

where p is the time point, w is the hash function width parameter randomly
sampled from the range [1.0/log2(N), 1 − 1.0/log2(N)], and r is a parameter
randomly selected from the range [0, w].

Definition 4 (Similarity Time Point Set). Suppose pr is the value of time
point tr and there is a dynamic time segment R = ts, ..., te and the corresponding
dataset Qts∼te with HashTablets∼te . The similarity time point set is calculated
as

N(pr) = {tj |tj ∈ [ts, te], hash(pr) ∈ HashTabletj} (2)

Definition 5 (True Similarity Relation). Due to the randomness of the hash
function, the set N(pr) may contains points that are not true similarity relation-
ship with pr. Therefore, h random hash function are used to find the intersection
of N(pr), which is the true similarity relation set as shown in Eq. (3).

TN(pr) = N1(pr) ∩ N2(pr) ∩ ... ∩ Nh(pr) (3)

Definition 6 (Local Density). Local density density(Qtj , qi) refers to the
number of similar data points qi in the data point set Qtj .

density(Qtj , qi) = count{hash(Qk,tj) = hash(qi)|k < N,Qk,tj ∈ Qtj} (4)

Definition 7 (Dynamic Local Density). Dynamic Local Density refers to
evaluating the local density of data points qi in corresponding dynamic time
window

Density(qi) =
1

|TN(qi)|
∑

tj∈TN(qi)

density(Qtj , qi) (5)

296 C. Zhang et al.

3.2 Anomaly Detection Algorithm in Time Series

The above section introduces the proposed definition and data structure, in this
section, we are going to introduce the dynamic local density estimation, which
is the core of the our algorithm. To determine the anomaly of the time series, we
evaluate the local density of time series by evaluating the local density of each
data point within the dynamic time segment.

(1) Divide dynamic time segment.
Dynamic density estimation is to evaluate the local density of data points

through dynamic time segments. Therefore, dividing the time series into multi-
ple disjoint time segments is the first step. We randomly construct TSTrees to
dynamically divide time series and each leaf contains one segment. The pseudo-
code are shown in Algorithm 1.

Algorithm 1. Build TSTree (Init TSTree)
Require:

Time Series Data Set Qt1−td ;
First Time Point, t1, The End Time Point, td;
Hight Limit, hlimit, Size Limit, slimit;
Current tree height, heightcur;

Ensure:
A Time Split Tree, TSTree;

1: if td-t1 ≤ slimit or heightcur ≥ hlimit then
2: Return TreeNode(t1˜td);
3: end if
4: Randomly select a split time point, st
5: Build Left Tree, Init TSTree(t1, st − 1, hlimit, slimit)
6: Build Right Tree, Init TSTree(st, td, hlimit, slimit)
7: Return TSTree;

(2) Build a hash table.
After dividing the time series into dynamic time segments, we need to use

hash function to map data points to hash table in each segment, which can
quickly estimate the local density of data points. Suppose the time segment
on a leaf node in TSTree is ts ∼ te. First, h number of hash functions should
be generate as {hash1(.), hash2(.), ..., hashh(.)} following the Eq. (1). Then, all
these hash functions can map leafs to h number of hash tables. Each hash table
is a two-dimensional array as Eq. (6), and each element in the hash table is
stored in the form of Key-Value, Key (keyi,r) represents the hash value, and
Value (vali,r) represents the number of times this hash value appears in the
data set. The bigger of val1,s, the more data points will be map to key1,s at ts,
and the more likely the corresponding original data point is normal; otherwise,
the smaller of val1,s, the more likely the original data is anomaly. The width
is equal to the length of the time segment contained in the leaf node, and the
length of each column may be different.

Anomaly Subsequence Detection with Dynamic Local Density 297

HashTablej =

⎡

⎢⎢⎢⎢⎣

(key1,s, val1,s) ... (key1,r, val1,r) ... (key1,e, val1,e)
...

(keyk,s, valk,s) ... (keyk,r, valk,r) ... (keyk,e, valk,e)
...

(keyx1,s, valx1,s) ... (keyxr,r, valxr,r) ... (keyxe,e, valxe,e)

⎤

⎥⎥⎥⎥⎦

(6)
The above process uses one hash function to map one leaf node data. In order

to calculate the true similarity of the data points on the leaf nodes, h hash tables
need to be constructed for each node.

(3) Calculate the dynamic local density of data points
The formula for calculating the dynamic local density of a data point is

described in Definition 7. And the Algorithm 2 describes the detailed calculation
process after a dynamic time segmentation.

Algorithm 2. Calculate the local density at each time point in the time series.
Require:

Time Point, pi,corresponding time ti and TSTree, tree;
Ensure:

The local density of pi, Density(pi);
1: Density(pi) = 0;
2: Query the leaf node where ti located;
3: Leaf node ts contains the start time point of the time period;
4: Leaf node te contains the end time point of the time period;
5: Hash(.) = {hash1(.), hash2(.), ..., hashh(.)};// H hash functions are contained in;
6: TN(qi) ← a collection of all time points from ts to te;
7: for each hashj(.) in Hash(.) do
8: ksyi,j = hashj(qi);// calculate the hash value of pi;
9: for each t = ts to te do

10: if ki,j in HashTablei,t(.) → ksys() then
11: Nj(qi) ← t;
12: end if
13: end for
14: TNqi ← TN(qi) ∩ Nj(qi);
15: end for
16: for t in TN(qi) do
17: for each hashj(.) in Hash(.) do
18: keyi,j = hashj(qi);
19: Density(pi)+ = HashTablej,t → get(keyi,j)
20: end for
21: end for
22: Return Density(pi);

(4) Calculate the local density of the subsequence
Step 3 completes the dynamic local density estimation of a data point; then

the local density of the time series P is estimated as shown in Eq. (7), where d

298 C. Zhang et al.

is the length of time series P and Density(pi) is calculated by Definition 7. We
can see that if the Density(P) value is larger, it indicates that the data points
in the time series P are similar to most of the time series data points in the data
set, therefore, the time sequence P is more likely to be a normal time series.

Density(P) =
1
d

d∑

i=1

Density(pi) (7)

(5) Use Ensemble learning to determine the anomaly
Steps 1 to 4 evaluate the anomaly of each subsequence in the data set by

dividing the subsequences into disjoint dynamic time segments once. However,
since the data stored by TSTree is randomly segmented, if there is only one
TSTree, the algorithm will not get a stable calculation result. Therefore, the
idea of using ensemble learning is proposed to construct m TSTrees to form
TSForest. The score of the subsequence P is calculated by TSForest as the
dynamic density mean of m TSTree evaluations, and the formula for calculating
the score of the subsequence is as shown in Eq. (8). The smaller the subsequence
P is, the more likely subsequence P is an abnormal subsequence.

Score(P) =
1
m

∑
Density(P) (8)

Algorithm 3. DLDE anomaly detection algorithm in time series.
Require:

Time Series P , Subsequence Length, s, Hash Table Number h, TSTree Number m;
Ensure:

The anomaly score of each subsequence, Score;
1: n ← The length of P ;
2: Dividing the time series P into a time series set Q according to the subsequence

length s;
3: for i = 1 to m do
4: Build TSTree;
5: Initialize h hash functions for each leaf node of TSTree;
6: Constructing a hash table on each leaf node;
7: end for
8: for each subsequence in Q do
9: for each TSTree in TSForest do

10: Calculating Density(Qi);
11: end for
12: Score ← Mean(Density(Qi))
13: end for
14: Return Score;

Anomaly Subsequence Detection with Dynamic Local Density 299

3.3 Analysis

Time Complexity. Suppose the size of time series data set is N , and the length
of subsequence is d. The time to build m TSTree needs O(m ∗ log2(d)) and the
time complexity of h Hash Table is O(N ∗m ∗ d ∗ h), therefore, in the detection
process, the time complexity is O(N ∗m ∗ d ∗ h ∗ log2(d)). It is verified in Sect. 4
that m and h can achieve convergence by taking a small constant algorithm.

Space Complexity. DLDE takes advantage of the data structure of the TSTress
and the Hash Table. The TSForest composed by m TSTrees and the data in every
leaf node needs h Hash Tables to represent. Therefore, the space complexity
required by the algorithm is O(m ∗ h ∗ d ∗ const), where const represents the
number of hash values.

4 Experimental Evaluation

In this section, the data sets and the evaluation metrics are introduced first. For
comparability, we implemented all experiments on our workstation with 2.5 GHz,
64 bits operation system, 4 cores CPU and 16 GB RAM.

4.1 Evaluation Metrics and Experimental Setup

Data Sets: The time series data sets in the experiments are selected from
the UCR Time Series Repository [4] and the BIDMC Congestive Heart Failure
Database [2]. In UCR, the ECG data and the SENSOR data set are typical
time series data sets; MOTION is the sequence data generated by the action,
the IMAGE data can extract the time series data. These data sets are described
in Table 1. In our experiments, we follow the split subsequences as provided by
UCR. For balanced data, we will significantly under-sampling one of two classes
to obtain minority (anomaly class). For example, in ECG5000 2 3 we choose
class 2 as normal and class 3 as anomaly.

Experimental Setup: We select five anomaly detection algorithms, Rela-
tive Density Outlier Score (RDOS) [24], Fast Variance Oulier Angle (FastVOA)
[14], Internal [18] and Piecewise Aggregate Pattern Representation (PAPR) [17].
RDOS is the anomaly detection algorithms based on local density, FastVOA is an
algorithm based on angle variance. Internal and PAPR are two anomaly detection
algorithms based on interval division. The parameter settings of the above com-
parison algorithm are set according to the reference. For RDOS, the neighbors
number will be set to 10. For FastVOA, we will set the hash number to 100. For
PAPR, we will set the three parameters wc = 0.3, wd = 0.4, wr = 0.3. All these
compared algorithms and DLDE are executed for 50 times to get stable results.

4.2 Accuracy

The aim of this experiment is to compare DLDE with other methods in terms
of Area Under Curve (AUC). AUC is commonly used for evaluating anomaly

300 C. Zhang et al.

Table 1. The description of UCR time series data sets.

No. Data sets Size Length Anomaly rate Type

1 DistalPhalanxOutlineCorrect 876 80 38.47% Image

2 ECG200 200 96 33.50% ECG

3 HandOutlines 1370 2709 36.13% Image

4 Lighting2 121 637 39.66% Sensor

5 MoteStrain 1272 84 46.14% Sensor

6 SonyAIBORobotSurfaceII 980 65 38.36% Sensor

7 ToeSegmentation2 166 343 25.30% Motion

8 ECG5000 2 3 1863 140 5.15% ECG

9 ECG5000 2 4 1961 140 9.89% ECG

10 ECG5000 2 5 1791 140 1.34% ECG

11 StarLightCurves 2 1 427 1024 35.59% Sensor

12 DiatomSizeReduction 2 1 132 345 25.75% Image

13 DiatomSizeReduction 3 1 133 345 25.56% Image

14 DiatomSizeReduction 4 1 125 345 27.20% Image

detection algorithm. The experiment results are recorded in Table 2, and the
best results are highlighted in bold font. NA indicates that this algorithm cannot
be calculated on this data set in the current experimental environment. From
this table, we can find that DLDE has better results than other algorithms on
the most of all data sets (12/14). It is indicated that DLDE is able to detect
anomalies efficiently that other baselines are difficult to detect.

For further analysis of experimental results, the data sets in Table 1 are
divided into four parts according to the length, the average of each four parts
are the final results of each algorithm on different length of data sets. The RDOS
algorithm does not get running results on two data sets which are not be con-
sidered in the condition of more than 1000 part. From the experimental results
in the Fig. 3(a), we can find that the algorithm DLDE can obtain better experi-
mental results on time series data sets of different lengths. The results are shown
in Fig. 3(b), it indicates that DLDE performs better on the first three types of
data sets than other algorithms.

To test the impact of different data types on experimental results, the data
set in Table 1 is divided into four parts: ECG, MOTION, IMAGE, SENSOR.
ECG data and SENSOR data sets are typical time series data sets; MOTION is
sequence data generated by actions; IMAGE data can extract time series data.
The average of the experimental results of each algorithm on the four data sets
is calculated separately as Fig. 3(b). It can be seen from the figure that DLDE
performs better than the other algorithms on the first three types of data sets.

Anomaly Subsequence Detection with Dynamic Local Density 301

Table 2. AUC Performance. The best AUC scores are highlighted in bold.

No. DLDE RDOS FastVOA Internal PAPR-RW

1 0.705 0.646 0.702 0.632 0.693

2 0.875 0.658 0.84 0.609 0.788

3 0.815 NA 0.772 0.576 0.734

4 0.764 0.611 0.697 0.599 0.653

5 0.848 0.529 0.730 0.579 0.724

6 0.796 0.52 0.715 0.486 0.571

7 0.736 0.717 0.720 0.671 0.777

8 0.861 0.669 0.861 0.659 0.837

9 0.735 0.591 0.716 0.668 0.714

10 0.870 0.904 0.93 0.823 0.838

11 0.966 NA 0.833 0.769 0.750

12 1.00 0.652 0.970 1.00 0.998

13 0.901 0.774 0.853 0.677 0.761

14 1.00 0.768 0.971 1.00 1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<=100 <=500 <=1000 >1000

AU
C

The length of Time Series
DLDE RDOS FastVOA Internal PAPR-RW

(a) Comparison results of each algo-
rithm on different length time series
data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image Sensor ECG Mo on

AU
C

The type of Time Series

DLDE RDOS FastVOA Internal PAPR-RW

(b) Comparison results of each algo-
rithm on different type of time series
data.

Fig. 3. Comparison of various experiments on AUC.

4.3 Parameter Analysis

Dynamic Window m. In the DLDE algorithm, the dynamic time segment
window is randomly divided, in order to ensure the stability of the algorithm,
we choose to use the idea of ensemble learning. That is randomly divide m times,
and the final test result of the algorithm is the average of the number of runs.
In this experiment, the sensitivity of the DLDE algorithm to the parameter m
will be verified. When m is taken from 1 to 50, the variation of the AUC index
on different data sets is recorded. Parameter m is tested under each parameter
condition, the average value of the program running 50 times is taken as the
final result and recorded in Fig. 4(a). In this figure, it can be noted that the

302 C. Zhang et al.

experimental results of DLDE are basically in a stable trend on the data set of
all algorithms, that is, the AUC index of the algorithm is basically convergent
when m reaches 10. Therefore, this experiment proves that the algorithm does
not require a lot of random division of dynamic time segments, and the algorithm
has better stability.

Hash Number h. We construct a hash table at the leaf node with h p-stable
local-sensitive hash functions [20]. This hash defines a boundary region, and all
values in this region have the same hash value. To avoid the instability of random
hash functions, we use multiple random hash functions. The intersection of sim-
ilar sets of data points computed by the generated plurality of hash functions
is a final set of similar data points that can more accurately measure similar
relationships between data points. It is proved in the Fig. 4(b) that when h is
taken from 1 to 108, the algorithm can achieve convergence as long as m and h
take a small constant.

0.5

0.6

0.7

0.8

0.9

1 9 17 25 33 41 49

A
U
C

m

ECG200

MoteStrain

Lighting2

ToeSegmentation2

DistalPhalanxOutlineCorrect

SonyAIBORobotSurfaceII

(a) Sensitivity analysis of DLDE to pa-
rameter m.

0.5

0.6

0.7

0.8

0.9

1 2 8 16 24 36 48 56 64 72 80 88 96 108

A
U
C

h

ToeSegmentation2

MoteStrain

SonyAIBORobotSurfaceII

Lighting2

ECG200

DistalPhalanxOutlineCorrect

(b) Sensitivity analysis of DLDE to pa-
rameter h.

Fig. 4. The parameters analysis of dynamic window m and hash number h.

Computational Time. In order to calculate the consumption time, we selected
8 data sets for testing. We calculate the percentage of calculation time for the
five methods in each data set. As can be seen from the Fig. 5, DLDE has a better
effect on the short length of the subsequence, and PAPR has a better effect on
the long length of the subsequence, and the average performance of other data
sets is relatively nearly.

4.4 Performance on ECG Data

In this section, we will demonstrate the effectiveness of our algorithm on ECG
data selected from BIDMC Congestive Heart Failure Database. We select two
ECG records from this database, chfdb01 275 and chfdb13 45590. These two
ECG data contains two ECG signal, and each record contain one anomaly sub-
sequence.

In this experiment, we use the data of one minute length in two data sets
as experimental data, and divide the whole time series into 15 sub-time series
according to the cycle per second. We will verify the difference between the

Anomaly Subsequence Detection with Dynamic Local Density 303

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DLDE RDOS FastVOA Interval PAPR

Fig. 5. Comparison results of each algorithm on different length time series data

scores calculated by the method proposed in this paper, and use the line graph
to visualize this difference. Since the results calculated by our methods is the
density of the subsequence, the score should convert into the abnormal score of
the subsequence by using Eq. (9).

anomaly score(P) = 1 −
∑ pi − min(P)

max(P) − min(P)
(9)

These two ECG data are shown in Fig. 6, and the anomaly subsequences are
shown in red line. The anomaly scores of each subsequence calculated by DLDE
are shown in the dark red line below. It can be clearly found that the higher
anomaly score is corresponded to true anomaly subsequence, and other score
are around 0.5. We rank the anomaly scores of each subsequence to determine
the anomalies in the data, thus avoiding the occurrence of missed detection.
Therefore, these results can demonstrate the effective of our algorithm.

(a) ECG1 in chfdb01 275 (b) ECG2 in chfdb01 275

(c) ECG1 in chfdb13 45590 (d) ECG2 in chfdb13 45590

Fig. 6. The results on ECG data chfdb01 275 and chfdb13 45590

304 C. Zhang et al.

5 Conclusion

In this paper, we propose a novel anomaly subsequence detection algorithm based
on dynamic local density estimation (DLDE), which inspired by the idea of the
similarity calculation method of dynamic time warping. The anomaly detection
algorithm divides the time series with TSTree and uses the random hash func-
tion to quickly estimate the local density of the data points in the dynamic time
segment. In order to avoid the randomness of dynamic time segments and hash
functions, the idea of ensemble learning is adopted to ensure that the algorithm
can obtain more stable detection results. Experimental results show that the pro-
posed DLDE method performs better on different types of data sets than other
baselines. In the future work, we need to consider whether can set the automatic
time segmentation method to reduce the process of algorithm ensemble learning.

Acknowledgment. This study was supported by the Shenzhen Research Council
(Grant No. 369 JSGG20170822160842949, JCYJ20170307151518535).

References

1. Argyro, K., George, M., Christophoros, N.: Heartbeat time series classification
with support vector machines. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE
Eng. Med. Biol. Soc. 13(4), 512–8 (2009)

2. Baim, D.S., et al.: Survival of patients with severe congestive heart failure treated
with oral milrinone. J. Am. Coll. Cardiol. 7(3), 661–670 (1986)

3. Chan, K.P., Fu, W.C.: Efficient time series matching by wavelets. In: International
Conference on Data Engineering (1999)

4. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.
ucr.edu/∼eamonn/time series data/

5. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases, vol. 23. ACM (1994)

6. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inform. Syst. 3(3),
263–286 (2001)

7. Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time series
subsequence. In: Null, pp. 226–233. IEEE (2005)

8. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality
guarantees. In: International Conference on Data Engineering (2003)

9. Li, G., Bräysy, O., Jiang, L., Wu, Z., Wang, Y.: Finding time series discord based
on bit representation clustering. Knowl. Based Syst. 54, 243–254 (2013)

10. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time
series, with implications for streaming algorithms. In: ACM Sigmod Workshop
on Research Issues in Data Mining & Knowledge Discovery (2003)

11. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an exper-
imental comparison of time-series analysis and supervised learning. IEEE Trans.
Intell. Transp. Syst. 14(2), 871–882 (2013)

12. Moonesinghe, H.D.K., Tan, P.N.: Outlier detection using random walks. In: IEEE
International Conference on Tools with Artificial Intelligence (2006)

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

Anomaly Subsequence Detection with Dynamic Local Density 305

13. Ocak, H.: Automatic detection of epileptic seizures in eeg using discrete wavelet
transform and approximate entropy. Expert Syst. Appl. 36(2), 2027–2036 (2009)

14. Pham, N., Pagh, R.: A near-linear time approximation algorithm for angle-based
outlier detection in high-dimensional data. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
877–885. ACM (2012)

15. Rahmani, A., Afra, S., Zarour, O., Addam, O., Koochakzadeh, N., Kianmehr, K.,
Alhajj, R., Rokne, J.: Graph-based approach for outlier detection in sequential
data and its application on stock market and weather data. Knowl. Based Syst.
61(1), 89–97 (2014)

16. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Keogh, E.: Searching
and mining trillions of time series subsequences under dynamic time warping. In:
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2012)

17. Ren, H., Liu, M., Li, Z., Pedrycz, W.: A piecewise aggregate pattern representation
approach for anomaly detection in time series. Knowl. Based Syst. 135, 29–39
(2017)

18. Ren, H., Liu, M., Liao, X., Li, L., Ye, Z., Li, Z.: Anomaly detection in time series
based on interval sets: anomaly detection in time series. IEEE Trans. Electr. Elec-
tron. Eng. 13(9), 757–762 (2018)

19. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial
time series with micro-blogging activity. In: ACM International Conference on Web
Search & Data Mining (2012)

20. Sathe, S., Aggarwal, C.C.: Subspace outlier detection in linear time with ran-
domized hashing. In: 2016 IEEE 16th International Conference on Data Mining
(ICDM), pp. 459–468, December 2016, https://doi.org/10.1109/ICDM.2016.0057

21. Senin, P., et al.: Time series anomaly discovery with grammar-based compression.
In: EDBT, pp. 481–492 (2015)

22. Sivaraks, H., Ratanamahatana, C.A.: Robust and accurate anomaly detection in
ECG artifacts using time series motif discovery. Comput. Math. Methods Med.
2015, 453214 (2015)

23. Sun, Y., Li, J., Liu, J., Sun, B., Chow, C.: An improvement of symbolic aggregate
approximation distance measure for time series. Neurocomputing 138(11), 189–198
(2014)

24. Tang, B., He, H.: A local density-based approach for outlier detection. Neurocom-
puting 241, 171–180 (2017)

25. Yuan, Y., et al.: Development and application of a modified dynamic time warping
algorithm (DTW-S) to analyses of primate brain expression time series. BMC
Bioinform. 12, 347 (2011). https://doi.org/10.1186/1471-2105-12-347

https://doi.org/10.1109/ICDM.2016.0057
https://doi.org/10.1186/1471-2105-12-347

Trajectory Similarity Join for Spatial
Temporal Database

Tangpeng Dan1,2,3, Changyin Luo1,2,3(B), Yanhong Li4, and Chenyuan Zhang1

1 School of Computer, Central China Normal University, Wuhan, China
tangpengdan@mails.ccnu.edu.cn,changyinluo@mail.ccnu.edu.cn

2 Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,
Central China Normal University, Wuhan, China

3 National Language Resources Monitor and Research Center for Network Media,
Central China Normal University, Wuhan, China

4 College of Computer Science, South-Central University for Nationalities,
Wuhan, China

Abstract. The trajectory similarity join aims to find similar trajectory
pairs from two large collections of trajectories. This join targets applica-
tions such as trajectory near-duplicate detection, ridesharing recommen-
dation and so on. Extensive works have been conducted on addressing
this join. However, most of them only focus on spatial dimension with-
out combining temporal range together. To address problem, this paper
proposes a novel two-level grid index which takes both spatial and tempo-
ral range into account when processing spatial-temporal similarity join,
and signature based dynamic grid warping (SDGW) approach to evalu-
ate the spatial similarity for trajectory pairs. Some pruning approaches
are developed to improve the query processing. In addition, extensive
experiments are conducted to verify the efficiency and scalability of our
methods.

Keywords: Spatial-temporal database · Two-level grid index ·
Trajectory similarity join

1 Introduction

With the advancement of GPS-based mobile devices and online map-techniques
services (e.g., Google Maps), it is convenient to produce, collect and share trajec-
tories. More and more social network platforms, such as Twitter, Facebook, are
supporting trajectory queries and sharing services. Furthermore, a taxi or Uber
car generate a trajectory from pick-up point to drop-off point. The availability
of massive trajectory data motivates new studies in spatial and temporal data
analysis.

Trajectory similarity join, which, given two sets of trajectories and a simi-
larity threshold θ, returns all the trajectory pairs with similarity above θ. By
recording a series of key points of a trajectory along the road network at a fixed
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 306–321, 2019.
https://doi.org/10.1007/978-3-030-27618-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_23

Trajectory Similarity Join for Spatial Temporal Database 307

Fig. 1. Example of spatial temporal join query

Fig. 2. Trajectory similarity methods

region, trajectory join can be recorded using in many applications, such as data
cleaning [12], taxi recommending system [10], traffic condition analysis [16]. As
shown in Fig. 1, in order to reduce the redundancy, similarity join can be used
to data cleaning. Given a query trajectory {q}, we may find two highest ranked
similar trajectories {T1, T2}, and only keep the most similar T1 as the represen-
tative trajectory. In the literatures, many studies have been proposed to address
the problem of trajectory similarity join [1,12,18,19], and they have their own
merits. However, they seldom take both spatial and temporal similarity in a
continuous manner.

Example 1. An example depicted in Fig. 1, the query trajectory Q = {q} can
be regarded as a historical trajectory of a passenger. P = {T1, T2, T3} is the
set of Uber1 trajectories. Every trajectory has some sample points associated
with the earliest arrival time and the latest arrival time. If the recommendation

1 https://www.uber.com/.

https://www.uber.com/

308 T. Dan et al.

system adopts the traditional trajectory similarity join approaches that do not
take temporal factor into account, it will return (q, T2) and (q, T1) as a result.
Because they are spatially close to each other. If the temporal domain is also
taken into consideration in recommendation, because the departure time interval
of q is (7 : 30, 9 : 01) while that of T2 is (13 : 10, 14 : 26). Thus, T2 is not matched
to q, the system should only return T1 as a top-1 similarity trajectory.

Furthermore, when evaluating spatial similarity between two trajectories,
methods discussed above are inefficient. As shown in Fig. 2a, if adopting point-
to-point similarity method [18,19], we need to evaluate their spatial similarity by
computing the shortest road network distance for each closest point pairs (e.g.,
v1
1 to vq

1, v1
2 to vq

2). However, due to different sampling rates or vehicular speeds,
these points may not be aligned well, thus this method consumes much more
memory and computation time. In order to address this problem, we propose
a Signature based Dynamic Grid Warping (SDGW) method in Sect. 4.3, and
evaluate the similarity between T1 and q by computing the shortest network
distance from a sample point on T1 to the closest signature of the sample point
on q, which is more efficient. To summarize, our contributions can be summarized
as follows.

– We propose a two-level grid index which takes both spatial proximity and time
range into account when processing trajectory spatial-temporal similarity join
queries.

– We develop a time-first searching framework to prune unpromising trajectory
pairs in an efficient way, and then adopt signature based dynamic grid warping
(SDGW) approach to evaluate the spatial similarity for trajectory pairs.

– A set of experiments on real data are conducted to study the efficiency of our
methods.

2 Related Works

A number of trajectory similarity measurement functions have been proposed,
which can be roughly grouped into two types: (1) The spatial based metrics, such
as the Closest-Pair Distance (CPD) [13] and the One Way Distance (OWD) [9].
These metrics directly use the Euclidean distance for corresponding sample
point pairs to define the similarity. (2) The spatio-temporal metrics, such as
the Dynamic Time Warping (DTW) [1,15], the Longest Common Sub Sequence
(LCSS) [21], the Sequence Weighted Alignment model (Swale) [11], the Most
Similar Trajectory (DISSIM) [5], the model-driven assignment (MA) [16], and
the Edit Distance with Projections (EDwP) [14]. Specifically, the One Way Dis-
tance (OWD) [9] focuses on shape similarity for trajectories in grid representa-
tions. OWD of two grid trajectories is the sum of distances from the grids where
one trajectory’s sample points reside in to the grids of the other trajectory. The
Closest-Pair Distance(CPD) [13] is a variation of Euclidean Distance which was
introduced to find closest trajectories for given query in spatial networks. The
Dynamic Time Wrapping (DTW) [1,23] distance allows some sample points to

Trajectory Similarity Join for Spatial Temporal Database 309

repeat in order to achieve the best alignment, i.e., one point in one trajectory
can match multiple points in another trajectory. DTW was claimed to be vul-
nerable to noises since some noise points can introduce large distance between
trajectories. However, the authors of [22] argued and experimentally proved that
DTW on average is comparative to other similarity measurements on large data
sets. The Longest Common Sub Sequence (LCSS) [21] is used to eliminate the
effect of noise points. The LCSS method skips points (taking them as noises) if
their distance exceeds a matching threshold. Edit Distance with Real Penalty
(ERP) [7] uses a threshold θ to quantify a match, and gaps between matched
sub-trajectories are assigned penalties to reveal the dissimilarity. As an improve-
ment, Edit Distance on Real Sequence (EDR) [8] combines the strength of DTW
and ERP. It handles time shifting and computes distance using a constant ref-
erence point.

Trajectory similarity joins can be used such as data cleaning, navigation sys-
tem, and road planning [9,19,21]. In general, in order to measure spatial tempo-
ral similarity between two trajectory sets, people use a time interval threshold
to constrain the temporal proximity of two trajectories (in a fixed manner) and
can be classified into two categories. Studies in the first category (e.g., [3,6–8])
eliminate trajectory pairs that are temporally further apart than a threshold.
We generalize this category of studies and compute temporal similarity by sum-
marizing temporal proximities of sample point pairs from two trajectories in a
continuous manner, thus obviating the need for a time threshold. Studies in the
other category (e.g., [2,24]) utilize a sliding window (such as “ten minutes from
now” or “yesterday between 2 and 3 PM”) for all trajectories and eliminate
pairs of trajectories with times that fall outside the window. For the remaining
pairs, only spatial proximity is considered. Furthermore, unlike existing trajec-
tory similarity joins [2,3,6,24], the trajectory similarity join is applied in spatial
networks because in many practical scenarios, objects (e.g., taxies and passen-
gers) move in road networks rather than in Euclidean space. Considering the
different sampling rates or different vehicular speeds, the sample points in sim-
ilar trajectories may not be aligned, a bi-directional mapping similarity (BDS)
metric is proposed [12], which allows a sample point of a trajectory to align to
the closest location (which may not be a sample point) on the other trajectory,
and vice versa. However, their methods may not work well for the scenarios
where the timestamp is important.

The most relevant work is proposed in TS-Join [17], a two-phase algorithm
was developed based on a divide-and-conquer strategy. The authors proposed
an upper bound and a heuristic scheduling strategy to prune the search space
effectively. In TS-Join, every sample point on each trajectory has a only times-
tamp. However, in our work, every sample point has a time period. Therefore,
TS-Join may not work well in our setting.

3 Problem Definition

Before formulating the problem of spatial-temporal trajectory similarity, some
definitions are given as follows.

310 T. Dan et al.

Definition 1. Trajectory. A trajectory T has several sample points, which are
arranged in spatial sequence. Each sample point is marked with an estimated
arrival time, (e.g., Didi Chuxing has estimated arrival time for each destination)
we define T as Ti =

{
vi
1, v

i
2, v

i
3, · · · , vi

n

}
, where vi

nis a sample point on Ti, vi
n =

[pn, (tns, tne)], pn is the spatial location, (tns, tne) indicates the earliest arrival
time and the latest arrival time for pn.

Note that, for a sample point pn, we could set its estimated arrival time to tns,
and assign its real arrival time to tne. Thus, (tns, tne) for pn can be obtained.

Given two trajectories Ti and Tj , a sample point vi
n on Ti, Sdis(vi

n, vj
n) is

the shortest road network distance from vi
n to the sample point vj

n on Tj . sdn
i→j

is defined as follows.

sdn
i→j = min

vi
n∈Ti,v

j
n∈Tj

{Sdis(vi
n, vj

n)} (1)

Definition 2. Bi-Directional spatial Similarity Function. Given trajecto-
ries Ti and Tj, trajectory-spatial similarity function is defined as follows. We
extend Euclidean based trajectory similarity [4] to make it fit into spatial net-
works.

Ssim(Ti, Tj) =

|Ti|∑

k=1

e−sdk
i→j

|Ti| +

|Tj |∑

k=1

e−sdk
j→i

|Tj | (2)

Here, |T | denotes the number of sample points in a trajectory. We use e−x

function to measure the similarity for each sample point on trajectory pair. e−x

is a monotonically decreasing function, if x = 0, e−x = 1. If x > 0, e−x < 1. If
the shortest distance from each sample point on Ti to the corresponding point on
Tj is 0, that is sdk

i→j = 0, they are completely coincident, the similarity of Ti and

Tj reaches maximum. Otherwise,
∑|Ti|

k=1 e
−sdki→j

|Ti| is less than 1, Ssim(Ti, Tj) < 2.
Similarly, temporal distance tdn

i→j denotes the minimum temporal dis-
tance between a sample point vi

n on Ti to Tj , which is defined as Eq. 3, where rt
is the threshold time, and

∣
∣vi

n.tne − vj
n.tns

∣
∣ ≤ rt.

tdn
i→j =

⎧
⎪⎨

⎪⎩

min{|vi
n.tne−vj

n.tns|,|vi
n.tne−vi

n.tns|,|vj
n.tne−vj

n.tns|}∣
∣
∣max

{
vi
n.tne,v

j
n.tne

}
−min

{
vi
n.tns,v

j
n.tns

}∣
∣
∣

if
∣
∣
∣vi

n.tne − vj
n.tns

∣
∣
∣ ≤ rt

+∞ if
∣
∣
∣vi

n.tne − vj
n.tns

∣
∣
∣ > rt

(3)

Definition 3. Bi-Directional temporal Similarity Function. Given tra-
jectories Ti and Tj, trajectory-temporal similarity function is defined as follows.

Tsim(Ti, Tj) =

|Ti|∑

k=1

e−tdk
i→j

|Ti| +

|Tj |∑

k=1

e−tdk
j→i

|Tj | (4)

Trajectory Similarity Join for Spatial Temporal Database 311

The value of Tsim(Ti, Tj) is in [0, 2]. Based on Definitions 2 and 3, we give
a linear combination method to combine spatial and temporal similarities as
follows.

Definition 4. Spatial Temporal Similarity Score.

STsim(Ti, Tj) = λ · Ssim(Ti, Tj) + (1 − λ) · Tsim(Ti, Tj) (5)

Parameter λ ∈ [0, 1] controls the relative importance of the spatial and temporal
similarities.

Definition 5. Spatial Temporal Similarity Joins. Given two sets of tra-
jectories P and Q, a similarity threshold θ, find all similar trajectory pairs
< Ti ∈ P, Tj ∈ Q > such that STsim(Ti, Tj) ≥ θ.

4 Our Solution

4.1 Two-Level Grid Index

In order to efficiently utilize temporal and spatial information to compute trajec-
tory similarity, we build a two-level grid index to organise the trajectories. The
first level of the index mainly stores temporal information, and the second level
stores spatial information. At first, we describe how to organize the temporal
domain in the first level.

Because most movements occur daily, in this work, the value of a temporal
domain is set to be within 24 h and the date is not taken into consideration.
Considering people always go out and work at daytime, while there is a few
activity at night, thus, we partition the temporal domain into m time slots for
the daytime, and a larger time slot for the night, each of which corresponds to
a leaf node. As shown in Fig. 3, we build up a tree structure in a bottom-up
manner.

1n

2n

3n

5n

6n

7n

8n

7:00

0:00

9:00

12:00

14:00

16:00

18:00

22:00

24:00

13n

14n

9n

10n

11n

12n

15n

4n

1T

2T

3T

1
1v 1

2v

1
3v

1
4v

2
1v

2
2v

2
3v

2
4v

3
1v

3
2v

3
3v

3
4v

3
5v

Fig. 3. Two-level grid index

312 T. Dan et al.

Example 2. Considering T1, T2 and T3 in Fig. 3, suppose their time ranges are
r(T1) = (9 : 07, 10 : 20), r(T2) = (9 : 36, 11 : 10) and r(T3) = (9 : 54, 11 : 52),
respectively, n3 is the only choice because r(T1)∪r(T2)∪r(T3) ⊆ r(n3). Suppose
there is a trajectory T4 and its associated time interval is r(T4) = (5 : 35, 8 : 20),
then T4 should be stored in n12. Because the time range of T4 has already crossed
n1 and n2 and their parent node is n12.

At the second level, inspired by index methods in [9,20], we adopt the grid-
based method to index trajectories.

4.2 Time First Searching Framework

Considering the inefficiency of pruning dissimilarity pairs in spatial domain, we
propose a time-first search framework in Algorithm 1. Specifically, we find all the
trajectories in every leaf node of the first level of our index, if their time periods
are less than the threshold time rt, verify the similarity for each trajectory pair
in this node. Otherwise, we prune this trajectory pair based on following lemma:

Lemma 1. Given a similarity threshold θ and Parameter λ defined in Eq. 5, if
Tsim(Ti, Tj) < θ−2λ

1−λ , the trajectory pair (Ti, Tj) cannot be similar on temporal
domain, we prune it directly.

Proof. Suppose there is a trajectory pair Ti and Tj having maximum similarity,
that is, they are completely coincident, therefore, sdk

i→j = 0 and e−sdk
i→j = 1.

Based on this we have:

max{Ssim(Ti, Tj)} = max{

|Ti|∑

k=1

e−sdk
i→j

|Ti| +

|Tj |∑

k=1

e−sdk
j→i

|Tj | } = 2

Combining with λ · Ssim(Ti, Tj) + (1 − λ) · Tsim(Ti, Tj) ≥ θ, we have

⇒ Tsim(Ti, Tj) ≥ θ − λ · Ssim(Ti, Tj)
1 − λ

=
θ − λ · 2
1 − λ

Therefore, if Tsim(Ti, Tj) < θ−2λ
1−λ , Ti and Tj cannot be similar on temporal

domain. Lemma 1 is proved.

As shown in Fig. 3, not all the trajectories are in the same partitioned time
period in our index, we need to find their public time range through the merging
operation. For example, suppose there are three nodes na, nb and their parent
node nc in the first level-grid, a trajectory pair (Ti,Tj) may has three cases: (i)
one item is in na or nb and the other is in nc (i.e., range(Ti) ⊆ range(na) and
range(Tj) ⊆ range(nc)); (ii) both of them are in nc (i.e., range(Ti) ⊆ range(nc)
and range(Tj) ⊆ range(nc)); (iii) one item is in na and the other is in nb (i.e.,
range(Ti) ⊆ range(na) and range(Tj) ⊆ range(nb)). In the first two cases,
because their time intervals have intersection, we compute them direct. For the
third case, although their time intervals have no intersection, reference to Eq. 3,
their time intervals difference is less than the threshold time rt, they may be
similar to each other in temporal domain. Therefore, they should be merged into
their parent node (lines 7–10).

Trajectory Similarity Join for Spatial Temporal Database 313

Algorithm 1. Time-First Searching Framework
Input: two-level grid index Tr, trajectory set T , threshold time rt, λ
Output: A= { (Ti, Tj)| STsim(Ti, Tj) ≥ θ, ∀Ti ∈ T, ∀Tj ∈ T}

1 we adopt pre-order traversal to search leaf node in Tr;
2 for each leaf node in Tr do
3 for each trajectory pair (Ti, Tj) in node do
4 compute their temporal similarity Tsim(Ti, Tj) on Eq.3 and Eq.4

5 if Tsim(Ti, Tj) < θ−2·λ
1−λ

then

6 prune it based on Lemma 1

7 if The temporal distance between n and n.sibling ≤ rt then
8 merge n and n.sibling into n.parent;
9 find qualified trajectories in n.parent;

10 spatial similarity search(T , θ, λ);

11 else if The temporal distance between n and n.parent ≤ rt then
12 find qualified trajectories in n.parent;
13 spatial similarity search(T , θ, λ);

14 else if n.time range ≤ rt then
15 spatial similarity search(T , θ, λ);

16 return A;

4.3 Signature Dynamic Grid Warping

After computed the temporal similarity, it needs to evaluate the spatial similarity
for these candidate trajectories. Before introducing SDGW method, we first
present how to generate signature for a sample point and trajectory respectively.

Giving a sample point vi
n and its influence radius rd, the influence zone of

vi
n is defined with vi

n as the center and rd as the radius. The grids intersected
with the influence zone of vi

n ∈ Ti are stored in the second-level grid index. Let
g denote grid cell. For a sample point vi

n ∈ Ti , its signature is defined in Eq. 6.

Gr(vi
n) = {g|Sdis(vi

n, g) ≤ rd} (6)

Sdis(vi
n, g) =

{
min Sdis(vi

n, l) vi
n /∈ g

0 vi
n ∈ g

(7)

where l is a side of a grid cell g.
As shown in Fig. 4(a), the signature for vi

n is Gr(vi
n) = {g12, g22, g32, g13,

g23, g33}. If any location at trajectory Tj does not fall in any grid in Gr(vi
n), so

the shortest road network distance from vi
n to Tj is large than rd, we can infer Ti

and Tj can not be similar. Next, we discuss how to check whether the trajectory
Tj has a location falling in Gr(vi

n). For a trajectory Tj , its signature is defined
as follows.

Gt(Tj) = {g|g ∩ Tj 	= ∅} (8)

314 T. Dan et al.

1 2 3 4 5 6
1
2
3
4
5
6

rd3
iv

3 13(,)iSdis v g
1 2 3 4 5 6

1
2
3
4
5
6

() ()r i
na G v () ()t

ib G T

iT

61g

5

w

1
iv

2
iv 3

iv

4
iv

5
ivjT

3(,)j i
nsd v v

3(, ())j r i
nsd v G v

j
nv

iT

Fig. 4. Signature for a point and a trajectory (Color figure online)

In Fig. 4(b), all the green grids along Tj compose Gt(Tj). We build a sorted
list for each cell g to store the vertex-IDs of all the vertices located in it.

Lemma 2. For each sample point vi
n on Ti, if Gr(vi

n)∩Gt(Tj) = ∅, the trajectory
pair (Ti, Tj) cannot be a similar pair. We prune it directly.

Proof. If Gr(vi
n) ∩ Gt(Tj) = ∅, the shortest road network distance from vk

n to Tj

is larger than rd. Based on Definition 2, Ti and Tj cannot be similar. Lemma is
proved.

Dynamic Time Warping (DTW) [1,15] is efficient to calculate the distance
between sequences whose lengths and/or sampling rates are different. Specifi-
cally, DTW is a transformation that allows sequences to be stretched along the
time axis to minimize the distance between the sequences. The distance of DTW
is calculated by dynamic programming. Inspired by its idea, we propose a novel
SDGW method based on signature to retrieve the similarity trajectory pairs on
trajectory database.

DTW is feasible of evaluating the similarity of time sequences with dif-
ferent length. Supposed two trajectories Ti = {vi

1, v
i
2, . . . , v

i
m} and Tj =

{vj
1, v

j
2, . . . , v

j
n}, m and n is number of sample points in Ti and Tj respectively.

The shortest road network distance is employed to measure similarity between
Ti and Tj , and the dynamic programming function is given as follows:

DTW (Ti, Tj) = l(m,n) (9)

l(p, q) = sd(vi
p, v

j
q) + min{l(p − 1, q), l(p − 1, q − 1), l(p, q − 1)} (10)

l(0, 0) = 0, l(p, 0) = l(0, q) = ∞
(p = 1, . . . ,m; q = 1, . . . , n)

where sd() denotes the shortest road network distance between sample point vi
p

and vj
q . p and q denotes p-th and q-th sample point in Ti and Tj , respectively.

l(m,n) is the cumulative distance from (0, 0) to (m,n). However, it is expen-
sive to compute the value of sd(). To address this problem, we optimize this
computation process as in Eq. 12.

Trajectory Similarity Join for Spatial Temporal Database 315

SDGW (Ti, Tj) = l(m,n) (11)

l(p, q) = sd(vi
p, G

r(vj
q)) + min{l(p − 1, q), l(p − 1, q − 1), l(p, q − 1)} (12)

Specifically, sd(vi
p, G

r(vj
q)) is employed instead of sd(vi

p, v
j
q) in dynamic pro-

gramming process. As shown in Fig. 4a, the computation cost of sd(vi
p, G

r(vj
q))

is much lower than that sd(vi
p, v

j
q).

1
j

jSignature for v in T

1()r jG v

jT

iT

1
jv

2
jv

3
jv 4

jv

1
iv

2
iv

3
iv

4
iv 5

iv 6
iv

() ,i jb Grid pair matching between T T() a Computing process and warping path

6
iv

5
iv

4
iv

3
iv

2
iv

1
iv

1()r jG v 2()r jG v 3()r jG v 4()r jG v

jT

iT

2

1

3

6

1

2

1

5

7

2

4

3

7

1

2

4

9

4

5

6

4

2

3

12 5 9 10

3 6 14 12

9 5 9 11

12 12 7 11

13

15

17 8 13

14 15 13

2()r jG v 4()r jG v3()r jG v

Fig. 5. Example of SDGW method (Color figure online)

Because of sd(vi
p, G

r(vj
q)) ≤ sd(vi

p, v
j
q), so SDGW (Ti, Tj) ≤ DTW (Ti, Tj),

based on Eq. 2, the similarity computed by SDGW method is the upper bound
of Ssim(Ti, Tj).

Figure 5a depicts the detail of SDGW, when reaching the last stage, we get
l(m,n) = 13. If backtracking from last stage, we can obtain the optimal solution.
For instance, let focus on (vi

3, G
r(vj

2)), the number in the center of matrix grid
is the shortest road distance, and the number in the upper right corner means
the cumulative distance from (0, 0) to (vi

3, G
r(vj

2)), i.e., 5. Blue grids represent
the warping path, and red arrows indicate every stage that we find the sum of
the shortest road network distance.

Figure 5b shows the matching process between Ti and Tj . SDGW avoids com-
puting spatial distance point to point, the matching process is transformed to
point to signature without synchronism, and is more efficient similarity measure-
ment.

According to Definitions 2 and 3, the computation cost of Tsim(Ti, Tj) is much
cheaper and easier than that of Ssim(Ti, Tj), thus, we compute it first. Suppose
Tsim(Ti, Tj) is obtained, we propose the following lemmas to prune the dissimilar
trajectory pairs.

Lemma 3. When Tsim(Ti, Tj) is computed, based on sd(vi
p, G

r(vj
q)) and sd(vj

q ,

Gr(vi
p)) obtained at each step of SDGW, if

∑
p e

−sd(vi
p,Gr(vj

q))

|Ti| +
∑

q e
−sd(vj

q,Gr(vi
p))

|Tj | <
θ−(1−λ)·Tsim(Ti,Tj)

λ , this trajectory pair cannot be similar, we prune it.

316 T. Dan et al.

Proof. If Ti and Tj are similar, we have Ssim(Ti, Tj) ≥ θ−(1−λ)·Tsim(Ti,Tj)
λ .

Because of sd(vi
p, G

r(vj
q)) ≤ sd(vi

p, v
j
q) = sdp

i→j ,
∑

p e
−sd(vi

p,Gr(vj
q))

|Ti| +
∑

q e
−sd(vj

q,Gr(vi
p))

|Tj | ≥
∑

p e
−sd

p
i→j

|Ti| +
∑

q e
−sd

q
j→i

|Tj | . So, if
∑

p e
−sd(vi

p,Gr(vj
q))

|Ti| +
∑

q e
−sd(vj

q,Gr(vi
p))

|Tj | <
θ−(1−λ)·Tsim(Ti,Tj)

λ , Ti and Tj cannot be similar. Lemma is
proved.

Lemma 4. When Tsim(Ti, Tj) is evaluated, if e
−max

vi
p∈Ti,v

j
q∈Tj

{sdq
j→i} +

∑

vi
p∈Ti,v

j
q∈Tj

e
−sd

q
j→i

|Tj | ≥ θ−(1−λ)Tsim(Ti,Tj)
λ , Ti and Tj are similar.

Proof. Assume that sdp
i→j = Sdis(vi

p, v
j
q), where vj

q is the sample point spatially
closest to vi

p among all sample points in Tj . According to Eq. 1, for the sample
point vj

q , we have that

sdp
i→j ≤ sdq

j→i ≤ max
vi
p∈Ti,v

j
q∈Tj

{sdq
j→i}

By substituting it into Eq. 2, we estimate the following equation

∑

vi
p∈Ti,v

j
q∈Tj

e−sdp
i→j ≥ |Ti| · e

−max
vi
p∈Ti,v

j
q∈Tj

{sdq
j→i} ⇒

Ssim(Ti, Tj) ≥ e
−max

vi
p∈Ti,v

j
q∈Tj

{sdq
j→i} +

∑

vi
p∈Ti,v

j
q∈Tj

e
−sd

q
j→i

|Tj |

(13)

Thus, if e
−max

vi
p∈Ti,v

j
q∈Tj

{sdq
j→i} +

∑

vi
p∈Ti,v

j
q∈Tj

e
−sd

q
j→i

|Tj | ≥ θ−(1−λ)Tsim(Ti,Tj)
λ , we

have Ssim(Ti, Tj) ≥ θ, Ti and Tj are similar. Lemma 4 is proved.

4.4 Trajectory Similarity Search Algorithm

The searching process of trajectory similarity join is shown in Algorithm2, which
is composed of building (Lines 2 to 4) and refinement (Lines 5, 9, 14).

In order to filter out all the unqualified trajectories, we should first generate
the signature sets for all sample points and trajectories (Lines 3 to 4). After
builded these sets, Lemma 2 can be employed to prune the dissimilar trajec-
tory pairs (Line 6). Then, SDGW method is adopted to compute their spatial
similarity. When Tsim(Ti, Tj) is obtained, Lemma 3 is used to further prune
the dissimilar pairs. Next, Lemma 4 can be employed to find a part of simi-
lar pairs (Line 11). At last, for the rest candidate trajectory pairs, we compute
STsim(Ti, Tj) for each of them directly, if its similarity is larger than θ, we add
it into result set A (Line 15).

Trajectory Similarity Join for Spatial Temporal Database 317

5 Experiments

5.1 Experimental Settings

In this section, we evaluate the performance of our methods. All of the algorithms
are implemented in C++. And the experiments are run on a PC with 3.4 GHz
Intel Core I7-6700, 16 GB RAM memory. We use real spatial network, namely
New York Road Network (NRN)2. It contains more than 95,500 vertices and
260,800 edges. The graphs are stored using adjacency lists. In NRN, we use real
taxi trajectory data set from New York (see footnote 2). The trajectories denote
the taxi trips, and their average length (number of vertices) is 80. Because every
sample point has a timestamp in our setting, in order to construct time period
for every sample point, we randomly add or subtract its time stamp within [0, 15]
minutes. In experiments, we mainly examine our proposed techniques in filtering
and refinement steps. At first, we evaluate candidate set generation techniques
in filtering step. Our method is named Two-level. Two classic methods are
reproduced as our control groups. Specifically, we name TF-matching [17] as
TF-Match, this method searches the trajectory join with every sample point
having a timestamp, we extend it to our time setting. The other one employing

Algorithm 2. Trajectory Similarity Search
Input: Two trajectory sets Ti and Tj , similarity threshold θ, maximal

trajectory distance rd, parameter λ
Output: A= { (Ti, Tj)| STsim(Ti, Tj) ≥ θ}

1 A← ∅;
2 for each (Ti, Tj) in Candidate do
3 build Gr(vi

n) and Gr(vj
n) for all vi

n and vj
n on Ti and Tj respectively;

4 build signature set Gt(Tj) for Tj ;

5 if Gr(vi
n) ∩ Gt(Tj) = ∅ then

6 prune it based on Lemma 2

7 compute SDGW (Ti, Tj) and SDGW (Tj , Ti) by SDGW method;
8 compute temporal similarity Tsim(Ti, Tj) by Eq.4

9 while
∑

k e
−sd(vi

k,Gr(vj
k
))

|Ti| +
∑

k e
−sd(vj

k
,Gr(vi

k))

|Tj | ≥ θ−(1−λ)·Tsim(Ti,Tj)

λ
do

10 if e
−max

vi
k

∈Ti,v
j
k

∈Tj
{sdk

j→i}
+

∑
k e

−sdkj→i

|Tj | ≥ θ−(1−λ)Tsim(Ti,Tj)

λ
then

11 A.add(Ti, Tj) based on Lemma 3 and Lemma 4;
12 else
13 compute STsim(Ti, Tj) by Eq.5;
14 if STsim(Ti, Tj) ≥ θ then
15 A.add(Ti, Tj);

16 return A;

2 https://lab-work.github.io/data/.

https://lab-work.github.io/data/

318 T. Dan et al.

Strain-Join in [12] is called Strain, we use this method to do spatial similarity
search. We compare the number of searched trajectories and runtime by varying
the four parameters: CR threshold θ, influence radius rd, grid width w and the
number of candidate trajectories |P |. At second, we evaluate the methods in
refinement step. The method proposed in Sect. 4.3 is called SDGW method
and the approach based original DTW is named DTW method. We compare
their memory cost by varying the four parameters: CR threshold θ, preference
parameter λ, influence radius rd, grid width w. Due to space limitation, only
parts of experiment results are listed in the following subsection.

5.2 Various Testing

As shown in Fig. 6a, as the threshold increases, the number of searched trajec-
tories grows fewer. The reason is obvious, a lager threshold θ helps us to filter
more dissimilarity trajectory pairs. In Fig. 6b, as rd increases, the number of
searched trajectories is rising. This is mainly because: (i) a lager rd means more
trajectories need to be computed and (ii) influence grid set in Eq. 6 depends on
rd, with the increasing of rd, Gr(vi

n) covers more grids. As in Fig. 6c, the number
of the searched trajectories are growing as w is increasing. A larger |P | causes
more trajectory pairs to be searched in Fig. 6d. Figure 7a–d show the runtime
on NRN dataset when varying four parameters. It is easy to see that the more
trajectories we search, the more time we spend. The variation trend on runtime
keeps broadly consistent with the number of the searched trajectories in Fig. 6.
However, as w and Rd increase, the runtime reduces. This is because larger w
leads to fewer grids which saves processing time for constructing signature set,
and larger Rd helps reduce the computation cost of spatial similarity.

1.50 1.55 1.60 1.65

800

900

1000

1100

1200

N
um

be
r o

f s
ea

rc
he

d
tra

je
ct

or
ie

s

Threshold

 Two-level
 TF-match
 Strain

(a) Rd = 40m = w

20 40 60 80 100
600

800

1000

1200

N
um

be
r o

f s
ea

rc
he

d
tra

je
ct

or
ie

s

Influence Rd

 Two-level
 TF-Match
 Strain

(b) θ = 0.5, w = 40m

20 40 60 80 100
750

800

850

900

950

N
um

be
r o

f s
ea

rc
he

d
tra

je
ct

or
ie

s

Grid width

 Two-level
 Strain

(c) Rd = 100m

0.5M 1.0M 1.5M 2.0M

1200

1600

2000

2400

N
um

be
r o

f s
ea

rc
he

d
tra

je
ct

or
ie

s

Cardinality |P|

 Two-level
 TF-Match
 Strain

(d) Rd = 40m = w

Fig. 6. Evaluating filtering: number of searched trajectories on NRN

The results of evaluating refinement on memory cost are shown in Fig. 8.
In each figure, DTW consumes more memory than SDGW. The reason is that,
DTW employs the point-to-point method in dynamic programming process to
measure the similarity for the trajectory pairs, the computation of the spatial
distance between a sample point on Ti to the other trajectory Tj is expensive.
However, SDGW computes sd(vi

p, G
r(vj

q)) instead of sd(vi
p, v

j
q) in dynamic pro-

gramming process, its cost is much lower than that sd(vi
p, v

j
q). As a result, SDGW

has better performance than DTW in this experiment.

Trajectory Similarity Join for Spatial Temporal Database 319

1.50 1.55 1.60 1.65

3000

3500

4000

4500

R
un

tim
es

(s
)

Threshold

 Two-level
 TF-Match
 Strain

(a) Rd = 40m = w

20 40 60 80 100
2400

2800

3200

3600

4000

4400

4800

R
un

tim
es

(s
)

Influence Rd

 Two-level
 TF-Match
 Strain

(b) θ = 0.5, w = 40m

20 40 60 80 100
2800

3000

3200

3400

3600

3800

R
un

tim
e(

s)

Grid width

 Two-level
 Strain

(c) Rd = 100m

0.5M 1.0M 1.5M 2.0M

5000

5500

6000

6500

7000

R
un

tim
es

(s
)

Cardinality |P|

 Two-level
 TF-Match
 Strain

(d) Rd = 40m = w

Fig. 7. Evaluating filtering: runtime on NRN

0.35 0.40 0.45 0.50 0.55 0.60
0

100

200

300

400

500

M
em

or
y

co
st

(M
B

)

Threshold

 SDGW method
 DTW method

(a) Rd = 40m = w

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

M
em

or
y

co
st

(M
B

)

Preference parameter

 SDGW method
 DTW method

(b) λ

20 40 60 80 100
0

100

200

300

400

500

600

700

M
em

or
y

co
st

(M
B

)
Influence Rd

 SDGW method
 DTW method

(c) θ = 0.5, w = 40m

20 40 60 80 100
0

200

400

600

800

M
em

or
y

co
st

(M
B

)

Grid width

 SDGW method
 DTW method

(d) Rd = 40m = w

Fig. 8. Evaluating refinement: memory cost

6 Conclusion

In this paper, we study a novel trajectory similarity join in road networks. To
process the trajectory similarity efficiently, a novel index, searching algorithm
and pruning method are developed. Experimental results show that our meth-
ods can gain good performance. Our future work will study how to extend our
methods to various distributed environments.

Acknowledgments. This work is supported in part by Hubei Natural Science Foun-
dation under Grant No. 2017CFB135, and the Fundamental Research Funds for
the Central Universities under Grants No. CCNU18QN017, CZZ17003, and Teaching
Research Projects NO. JYX17032, and NSFC Grant No. 61309002.

References

1. Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.: Anticipatory DTW
for efficient similarity search in time series databases. Proc. VLDB 2(1), 826–837
(2009)

2. Bakalov, P., Hadjieleftheriou, M., Keogh, E.J., Tsotras, V.J.: Efficient trajectory
joins using symbolic representation. In: International Conference on Mobile Data
Management (2005)

3. Bakalov, P., Tsotras, V.J.: Continuous spatiotemporal trajectory joins. In:
Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp.
109–128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79996-
2 7

https://doi.org/10.1007/978-3-540-79996-2_7
https://doi.org/10.1007/978-3-540-79996-2_7

320 T. Dan et al.

4. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by
locations: an efficiency study. In: International Conference on Management of Data,
pp. 255–266. Association for Computing Machinery Special Interest Group (2010)

5. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory
search. In: IEEE International Conference on Data Engineering (2007)

6. Hui, D., Trajcevski, G., Scheuermann, P.: Efficient similarity join of large sets of
moving object trajectories. In: International Symposium on Temporal Representa-
tion and Reasoning (2008)

7. Lei, C., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings
of the VLDB, pp. 792–803 (2004)

8. Lei, C., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 491–502 (2005)

9. Lin, B., Su, J.: Shapes based trajectory queries for moving objects, pp. 21–30
(2005)

10. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application
developments. Decis. Support Syst. 74(C), 12–32 (2015)

11. Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time
series similarity. In: ACM SIGMOD, pp. 569–580 (2007)

12. Na, T., et al.: Signature-based trajectory similarity join. IEEE Trans. Knowl. Data
Eng. 29(4), 870–883 (2017)

13. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of the VLDB, vol. 29, pp. 802–813 (2003)

14. Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and
matching trajectories under inconsistent sampling rates. In: IEEE ICDE, pp. 999–
1010 (2015)

15. Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under
the time warping distance. In: Twenty-Fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (2005)

16. Sankararaman, S., Agarwal, P.K., Mølhave, T., Pan, J., Boedihardjo, A.P.: Model-
driven matching and segmentation of trajectories. In: Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pp. 234–243 (2013)

17. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory simi-
larity join in spatial networks. Proc. VLDB 10(11), 1178–1189 (2017)

18. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajec-
tory search for trip recommendation. In: EDBT, pp. 156–167 (2012)

19. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized
trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

20. Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geo-
graphical search on the web. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535331 13

21. Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional
trajectories. In: IEEE ICDE, pp. 673–684 (2002)

22. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

https://doi.org/10.1007/11535331_13

Trajectory Similarity Join for Spatial Temporal Database 321

23. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: IEEE ICDE, pp. 201–208 (1998)

24. Yun, C., Patel, J.M.: Design and evaluation of trajectory join algorithms. In: ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (2009)

Knowledge Discovery

Multiviewpoint-Based Agglomerative
Hierarchical Clustering

Yuji Fujiwara and Hisashi Koga(B)

University of Electro-Communications, Tokyo 182-8585, Japan
koga@sd.is.uec.ac.jp

Abstract. The cosine similarity is a similarity measure useful for docu-
ment clustering. The cosine similarity between two points is determined
by the angle between their corresponding vectors observed from the sin-
gle reference viewpoint, the origin. Recently, Nguyen et al. [6] proposed a
new similarity measure called MVS (MultiViewpoint-based Similarity) in
which the vectors are observed from multiple viewpoints. They incorpo-
rated MVS into some non-hierarchical clustering algorithm and showed
that MVS outperforms the original cosine similarity. This paper proposes
an agglomerative hierarchical clustering which couples the average-link
method with MVS. Despite MVS is more complex than the cosine simi-
larity, our clustering algorithm achieves the same time complexity as the
average-link method with the cosine similarity by computing the inter-
cluster similarity smartly. Interestingly, our algorithm can be expanded
to control the size fairness among clusters. Experimentally in document
clustering, our algorithm outputs more accurate clustering results than
the average-link method with the cosine similarity almost without length-
ening the running time.

Keywords: Hierarchical clustering · Multiview · Similarity measure ·
Time complexity

1 Introduction

Clustering is a powerful tool for unsupervised data analysis; it provides an insight
into the characteristics of the given data by classifying them into several groups.
Because of its usefulness, clustering has been used in various application areas
such as biology, multimedia analysis and natural language processing. The pri-
mary principle of clustering is to make similar data belong to the same cluster.
Therefore, the similarity measure between two data is significant for cluster-
ing. The cosine similarity is a representative similarity measure for points in a
multi-dimensional space and judges the similarity between two points di and dj
from the angle between their associated vectors starting from the origin. The
cosine similarity is suitable for classifying high-dimensional sparse vectors which
emerge in document analysis, market basket analysis, and so on.

Recently, Nguyen et al. [6] noticed that the cosine similarity observes all
the vectors from the single reference viewpoint, i.e., the origin and proposed a
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 325–340, 2019.
https://doi.org/10.1007/978-3-030-27618-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_24

326 Y. Fujiwara and H. Koga

new similarity measure using multiple viewpoints chosen from the dataset to be
analyzed. They named this similarity as the MultiViewpoint-based Similarity
(MVS). Then, they designed a non-hierarchical clustering algorithm exploiting
MVS which resembles the k-means and showed that their clustering algorithm
outputs more adequate clustering results than the spherical k-means [2] which is
a variant of the k-means based on the cosine similarity. Hereafter, we abbreviate
the cosine similarity as CS.

Conventionally, clustering methods are categorized into two types: hierarchi-
cal and non-hierarchical clustering. The agglomerative hierarchical clustering has
an advantage over most non-hierarchical clustering algorithms that the number
of clusters need not be specified in advance. On the other hand, its computational
complexity tends to be large.

Our main contribution is to incorporate MVS into the agglomerative hierar-
chical clustering. In particular, we propose an agglomerative hierarchical clus-
tering algorithm which couples the average-link method [9] with MVS. Multiple
viewpoints in MVS are expected to slow down the running speed of the average-
link method. Nonetheless, our algorithm achieves the same time complexity as
the average-link method with CS, supported by our novel means to compute the
inter-cluster similarity efficiently. Remarkably, our clustering algorithm can be
easily expanded, so that the size fairness among clusters may be controllable. In
the task of document clustering, our algorithm outputs more accurate cluster-
ing results than the average-link method with CS almost without increasing the
running time.

This paper is organized as follows. Section 2 describes (1) MVS proposed in
[6] and (2) the average-link method both of which are components of our new
algorithm. Then, Sect. 3 presents our algorithm. Section 4 reports the experimen-
tal evaluation. Section 5 reviews related works. Section 6 concludes this paper.

2 Preliminaries

2.1 MVS (MultiViewpoint-Based Similarity Measure)

This subsection explains the MVS proposed in [6]. Similarly to CS, MVS treats
points on the surface of the unit hypersphere. Let di and dj be such points.
The cosine similarity CS(di, dj) between di and dj equals their inner product
dTi dj = (di −0)T(dj −0), where 0 is the origin. Thus, CS measures the similarity
between di and dj , while specifying the origin as the only reference viewpoint.

By contrast, MVS moves the reference viewpoint to various points in the
dataset S to be analyzed, thereby obtaining a similarity value adaptive to S.
[6] defines MVS as a similarity measure for two points in the identical cluster.
Concretely, MVS between di and dj belonging to the same cluster r is defined
as the average of inner products between their associated vectors starting from
multiple viewpoints in S outside r. See Eq. (1). In (1), dh symbolizes the view-
point and n denotes the number of points in S. Throughout this paper, for a
cluster r, we denote the set of members in r by Sr and nr = |Sr|.

Multiviewpoint-Based Agglomerative Hierarchical Clustering 327

MVS(di, dj | di, dj ∈ Sr) =
1

n − nr

∑

dh∈S\Sr

(di − dh)T(dj − dh). (1)

MVS considers it reasonable that di and dj belong to the same cluster r, if
they look similar from the viewpoints outside r. In this way, MVS evaluates the
validness to categorize two points in the dataset S into the same cluster based
on their similarity value observed not from the origin which is independent of S,
but from the viewpoints in S itself.

As dh ∈ S\Sr is a unit vector, Eq. (1) is rewritten as Eq. (2), where CS\Sr

is the centroid of the points in S\Sr.

MVS(di, dj | di, dj ∈ Sr) = dTi dj − dTi CS\Sr
− dTj CS\Sr

+ 1. (2)

From Eq. (2), it holds for two points dj and dl that MVS(di, dj) > MVS(di, dl)
iff CS(di, dj) − dTj CS\Sr

> CS(di, dl) − dTl CS\Sr
. Therefore, even if CS(di, dj) <

CS(di, dl), MVS(di, dj) can be greater than MVS(di, dl), if dl is close to the outer
centroid CS\Sr

enough to leave r. Thus, MVS is a similarity measure which adds
to CS a new term which evaluates if the two points should group together.

Nguyen et al. [6] proposed a non-hierarchical clustering algorithm MVSC
based on MVS. MVSC tries to minimize the objective function F =

∑C
r=1 nr[∑

di,dj∈Sr
MVS(di,dj)

n2
r

]
, where C is the number of clusters. In [6], MVSC outper-

formed the spherical k-means based on CS [2] in document clustering. Thus,
MVS could improve the clustering quality by being adaptive to the dataset S.

On the other hand, MVS has a drawback that it is heavier to compute than
CS. Since vector inner products must be computed (n − nr) times in (1), the
time complexity of MVS is as n times large as that of CS in the worst case, if
MVS is implemented straightforwardly.

2.2 Average-Link Method

The average-link method is a well-known agglomerative hierarchical clustering
algorithm and widely used in many practical applications because of its robust-
ness against outliers. The agglomerative hierarchical clustering initially regards
every point in S as a single cluster. Thus, there exist n clusters in the beginning.
Then, in the agglomeration step, it repeats merging the most similar cluster
pair. This agglomeration step continues until only one cluster remains. Then,
this history of cluster merging is outputted as the clustering result. From this
history, we can extract the clustering results for any number of clusters.

In the average-link method, the similarity value Simab between two clusters
a and b is defined as the average similarity value between all the point pairs one
of which comes from a and the other of which comes from b, as in Eq. (3).

Simab =
1

nanb

∑

di∈Sa

∑

dj∈Sb

sim(di, dj). (3)

328 Y. Fujiwara and H. Koga

1: Initialize the similarity matrix A whose size equals n× n
2: while the number of cluster > 1 do
3: Find the most similar cluster pair a, b
4: Merge a and b to form a new cluster c
5: for cluster k other than c do
6: Update the cluster similarity between c and k

Fig. 1. Average-link Method

Figure 1 outlines the average-link method. In the initialization step, each point
forms a single cluster and the similarity values between all the points (i.e., clus-
ters) are kept in the similarity matrix A whose size equals n×n. In the agglom-
eration step, the most similar pair of clusters are found from the matrix A and
merged into a new cluster. Suppose that the most similar pair of clusters a and
b are merged into a new cluster c. After c is formed, we must update the matrix
A to memorize the similarity value Simkc between c and every other cluster k
which is currently registered to A. It is known that Simkc is represented by a
weighted sum of Simka and Simkb in Eq. (4). Since Simka and Simkb have been
already stored in A, Simkc is computable in O(1) time.

Simkc =
na

nc
Simka +

nb

nc
Simkb. (4)

Now, consider the time complexity of the average-link method in Fig. 1, when
CS is used. Let m be the dimensionality of vectors. Since the initialization of A
computes CS between all the point pairs and it takes O(m) time to calculate an
inner product between two m-dimensional vectors, the initialization of A finishes
in O(mn2) time.

As for the agglomeration step, the most similar cluster pair is found in
O(n log n) time at the third line, by using heap structures. Then it costs O(n)
time to update A about a new cluster c at the 5th and 6th lines, since the FOR
statement there evaluates Eq. (4) less than n times. Because the average-link
method performs the cluster merging just n−1 times, its whole time complexity
grows O(mn2 + (n log n + n) × (n − 1)) = O(mn2 + n2 log n) together with the
initialization of A.

3 Multiviewpoint-Based Hierarchical Clustering

MVS realized more accurate clustering than CS for non-hierarchical clustering
[6]. It is natural to expect that MVS is superior to CS also for hierarchical
clustering. Hence, this paper designs a clustering algorithm which introduces
MVS to the average-link method. As will be explained later, our algorithm has
the next two merits.

– Supported by MVS, our algorithm excels to the average-link with CS in terms
of classification accuracy. In addition, despite MVS is more complex than CS,

Multiviewpoint-Based Agglomerative Hierarchical Clustering 329

our algorithm theoretically achieves the same time complexity as the average-
link method with CS.

– Our clustering algorithm can be easily expanded, so that the size fairness
among clusters may be controllable.

Hereafter, our average-link method with MVS is named as MVS-AVE, while the
standard average-link method with CS is referred to as CS-AVE.

3.1 Similarity Measure Between Clusters

To apply MVS to the average-link method, it seems at a glance that we have
only to replace the function sim(,) with MVS in the definition of inter-cluster
similarity in Eq. (3) like Eq. (5) below.

Simab =
1

nanb

∑

di∈Sa

∑

dj∈Sb

MVS(di, dj). (5)

However, Eq. (5) is not well-defined, because MVS is computed between di and
dj which come from different clusters. Recall that MVS in Eq. (1) is originally
defined for two points belonging to the same cluster. To solve this problem, we
consider a virtual big cluster which includes both the two clusters a and b and
formalize MVS(di,dj |di ∈ Sa, dj ∈ Sb) inside the big cluster. See Eq. (6). Note
that Sa ∪ Sb expresses the members in the virtual cluster and its cardinality
equals na + nb.

MVS(di, dj |di ∈ Sa, dj ∈ Sb) =
1

n − na − nb

∑

dh∈S\(Sa∪Sb)

(di−dh)T(dj−dh). (6)

3.2 Operations to Be Modified in Average-Link Method

To introduce MVS, operations in the average-link method must be corrected,
if they compute the inter-cluster similarity. The average-link method contains
two such operations: (I) the initialization of the similarity matrix A and (II) the
update of A after merging the most similar cluster pair. First, let us review how
large the time complexity of MVS-AVE grows if the above operations are naively
implemented.

To initialize A, MVS must be computed between all the point pairs. Thus,
MVS is to be computed O(n2) times. Here, a single MVS computation between
two single-point clusters consumes O(mn) time, since the inner product between
m-dimensional vectors is calculated just n−2 times in Eq. (6). After all, O(n2 ×
mn) = O(mn3) time is necessary to initialize A.

Second, consider the update of A after merging the most similar cluster pair
into the new cluster c: Unfortunately, MVS-AVE cannot rely on the similarity
update formula (4) any more, because Eq. (4) presumes that the similarity does
not depend on the cluster membership, which is not the case for MVS. For
example, if di ∈ Sa and dj ∈ Sb, MVS(di, dj) = 1

n−na−nb

∑
dh∈S\(Sa∪Sb)

(di −

330 Y. Fujiwara and H. Koga

dh)T(dj − dh). However, if the cluster a is merged with another cluster c at
this moment. Then, MVS(di, dj) changes to 1

n−na−nb−nc

∑
dh∈S\(Sa∪Sb∪Sc)

(di −
dh)T(dj − dh). Thus, MVS(di, dj) depends on the members of the two clusters
holding di and dj .

Without Eq. (4), if we calculate Simkc according to Eq. (5), the time to
compute Simkc increases up to O(mn3) in the worst case, since MVS whose
time complexity equals O(m(n − nk − nc)) are to be computed nk × nc = O(n2)
times. Since MVS-AVE merges a pair of clusters just n − 1 times and Eq. (5)
is evaluated at most n times at each cluster merging, it takes O(mn5) time for
MVS-AVE to update A during the whole running period.

3.3 How to Shrink the Running Time

The previous subsection concluded that, if naively implemented, MVS-AVE runs
by far slower than CS-AVE. This subsection explains our novel techniques to
accelerate the initialization and the update of the similarity matrix A, which
reduce the time complexity of MVS-AVE to O(mn2 + n2 log n) and make it
comparable to CS-AVE.

3.3.1 Initialization of Similarity Matrix A

Here, we introduce a technique to initialize A in O(mn2) time like CS-AVE.
When MVS-AVE initializes A, there are n single-point clusters. Then, based on
Equations (5) and (6), the similarity between the i-th clusters with di and the
j-th cluster with dj is described as Eq. (7). Note that |di| = |dj | = |dh| = 1. Let
D =

∑
di∈S di symbolize the vector sum of all the data in S.

Simij = MVS(di, dj) =
1

n − 2

∑

dh∈S\(di∪dj)

(dTi dj − dTi dh − dTj dh + 1)

=
1

n − 2
{
(n − 2)dTi dj − dTi (D − di − dj) − dTj (D − di − dj) + (n − 2)

}

=
1

n − 2
(ndTi dj − dTi D − dTj D + n). (7)

If the value of D is known, Eq. (7) is obtained in O(m) time by calculating
the inner product between m-dimensional vectors three times. By processing all
the elements in the n × n matrix A in this way, we can initialize A in O(mn2)
time. Although it takes O(mn) time to compute D, we may compute D only
once at the very beginning. Thus, MVS-AVE can initialize the matrix A in
O(mn2 + mn) = O(mn2) time, which is the same time complexity as CS-AVE.

Further Reduction of Inner Product Computation: Though we have
shown that both MVS-AVE and CS-AVE initialize A in O(mn2) time, strictly
speaking, MVS-AVE runs as three times slowly as CS-AVE, because the inner
product is computed three times in deriving MVS(di, dj) and once in deriving
CS(di, dj). Because the dimensionality m is enormous in document clustering,

Multiviewpoint-Based Agglomerative Hierarchical Clustering 331

the O(mn2) term often dominates the running time of the average-link method.
Thus, it is problematic to neglect this constant-time gap.

Therefore, we devise a novel technique for MVS-AVE which initializes A by
computing the inner product just

(
n
2

)
times. Note that CS-AVE also computes

the inner product just
(
n
2

)
times to fulfill A whose size is n × n. Therefore,

MVS-AVE performs exactly the same number of m-dimensional inner product
computations as CS-AVE. The main idea of our technique is to precalculate dTi D
and dTj D in Eq. (7). Our technique executes the 3 next steps in order.
(Step 1): It first computes the cosine similarity between all the point pairs.
(Step 2): Then, for 1 ≤ i ≤ n, dTi D is calculated by summing up CS(di, dj) for
1 ≤ j ≤ n. That is, dTi D =

∑n
j=1 CS(di, dj).

(Step 3): For any pair of i and j, MVS(di, dj) is instantly obtained by subtracting
dTi D and dTj D from nCS(di, dj) + n.

In (Step 2), because CS(di, dj) is known for any j, dTi D is computed in O(n)
time. Thus, (Step 2) finishes in O(n × n) = O(n2) time which is by far less than
O(mn2). (Step 3) also terminates in O(n2) time, because each MVS(di, dj) is
computed in O(1) time.

The m-dimensional inner product is computed only in (Step 1) and never
computed in (Step 2) nor (Step 3). Since (Step 1) simply computes the cosine
similarity between all the point pairs, the inner product is computed just

(
n
2

)

times. Thus, MVS-AVE performs exactly the same number of inner product
computations as CS-AVE. The whole time complexity for MVS-AVE to initialize
A remains O(mn2 + n2) = O(mn2).

3.3.2 Update of Similarity Matrix A after Merging Clusters
From now on, we first present a new similarity update formula specific to MVS-
AVE and then prove that the new formula can be efficiently computed.

Consider the situation in which the two clusters a and b are merged into
a new cluster c in MVS-AVE’s running. Theorem 1 below states that Simkc

between the clusters k and c can be described with Simka and Simkb. Here, Da

and na denote the vector sum and the number of vectors in the cluster a.

Theorem 1. Simkc is described with using Simka and Simkb as Eq. (8).

1
(na + nb)(n − nk − na − nb){
na(n − nk − na)Simka + nb(n − nk − nb)Simkb + 2

(
DT

a Db − nanb

)}
. (8)

Proof. Due to space limitations, we outline the proof here. Because MVS(di, dj |
di ∈ Sk, dj ∈ Sc) = 1

n−nk−nc

∑
dh∈S\(Sk∪Sc)

(di − dh)T(dj − dh), we have

Simkc =
1

nknc(n − nk − nc)

∑

di∈Sk

∑

dj∈Sc

∑

dh∈S\(Sk∪Sc)

(di − dh)T(dj − dh). (9)

332 Y. Fujiwara and H. Koga

In Eq. (9),
∑

di∈Sk

∑
dj∈Sc

∑
dh∈S\(Sk∪Sc)

(di − dh)T(dj − dh) is equivalent with

∑

di∈Sk

⎧
⎨

⎩
∑

dj∈Sa

∑

dh∈S\(Sk∪Sa∪Sb)

(di − dh)T(dj − dh)

+
∑

dj∈Sb

∑

dh∈S\(Sk∪Sa∪Sb)

(di − dh)T(dj − dh)

⎫
⎬

⎭ . (10)

By rewriting the first term of Eq. (10) as
∑

di∈Sk

∑
dj∈Sa

∑
dh∈S\(Sk∪Sa)

(di −
dh)T(dj −dh)−∑

di∈Sk

∑
dj∈Sa

∑
dh∈Sb

(di−dh)T(dj −dh), it can be represented
as a term including Simka along with the residual. In the same way, the second
term of Eq. (10) is represented as a term including Simkb combined with the
residual. These two residuals correspond to 2

(
DT

a Db − nanb

)
in Eq. (8). ��

Given Eq. (8), one may think that MVS-AVE can be easily realized by mem-
orizing the vector sum Da for each cluster a. Although this approach is surely
feasible, it will make MVS-AVE slower than CS-AVE, because it takes O(m)
time to evaluate the update formula Eq. (8) owing to the inner product DT

a Db.
This is in contrast to the fact that CS-AVE computes the update formula Eq. (4)
in O(1) time. Since the agglomerative hierarchical clustering evaluates the sim-
ilarity update formula O(n2) times during the agglomeration phase, MVS-AVE
consumes O(mn2) time to update A in total, whereas CS-AVE consumes O(n2)
time. Under the condition that both MVS-AVE and CS-AVE initialize A in
O(mn2) time, if MVS-AVE only spends O(mn2) time to update A, the running
time of MVS-AVE will become substantially longer than that of CS-AVE.

To escape from the above undesired situation, we develop a more refined
method to update A in O(n2) time rather than O(mn2) time. This refined
method maintains an n×n matrix B such that Bij memorizes the inner product
value between the vector sum of the i-th cluster and that of the j-th cluster. The
matrix B is initialized at no cost because our MVS-AVE has already computed
dTi dj for 1 ≤ i, j ≤ n, i �= j in the middle of initializing A.

In the agglomeration step, if a new cluster c is formed by merging two clus-
ters a and b, we must update B by computing DT

c Dk for every remaining cluster
k �= c. We would emphasize that DT

c Dk is notably computed in O(1) time
by summing up DT

a Dk and DT
b Dk, because DT

c Dk =
∑

di∈Sc

∑
dj∈Sk

dTi dj =∑
di∈(Sa∪Sb)

∑
dj∈Sk

dTi dj =
∑

di∈Sa

∑
dj∈Sk

dTi dj +
∑

di∈Sb

∑
dj∈Sk

dTi dj =
DT

a Dk + DT
b Dk. DT

a Dk and DT
b Dk were saved in B before this cluster merg-

ing and taken out in O(1) time. In the same way as A, the matrix B is updated
at most n2 time in MVS-AVE’s running. Thus, the total time necessary to main-
tain B grows O(n2).

Now that the update formula Eq. (8) is computed in O(1) time by looking
up DT

a Db in B, the total time to update A does not go beyond O(n2).

Multiviewpoint-Based Agglomerative Hierarchical Clustering 333

3.4 Time Complexity of MVS-AVE

Here, let us confirm our MVS-AVE completes in O(mn2 + n2 log n) time in the
same way as CS-AVE. First, MVS-AVE initializes the matrix A in O(mn2 +n2)
time, as explained in Sect. 3.3.1. Next, as for the cluster merging,

– The most similar cluster pair is sought from A in O(n log n) time per clus-
ter merging, which does not differ from CS-AVE at all. Because MVS-AVE
iterates the cluster merging n−1 times, the total time incurred in the agglom-
eration phase gets O((n − 1) × n log n) = O(n2 log n).

– The two matrices A and B are both updated in O(n2) time during the agglom-
eration phase, as discussed in Sect. 3.3.2.

As a whole, MVS-AVE achieves the time complexity of O(mn2 +n2 +n2 log n+
n2) = O(mn2 + n2 log n).

3.5 Balancing the Cluster Size

In general, a clustering result is not favored by practical data analysts, if it
contains too large clusters and too small clusters simultaneously. The analysts
implicitly expect that generated clusters are similar in size. In fact, some clus-
tering algorithms use mechanisms to prevent too small clusters. For example,
the famous Normalized Cuts [8] adjusted the definition of graphcut size not to
form isolated single-point clusters. The conventional hierarchical agglomerative
clustering does not provide any means to prevent too small clusters.

Uniquely and interestingly, our MVS-AVE can be expanded to balance the
cluster size. What has to be done is to subtract a constant λ from all the elements
in A, when A is initialized, as shown in Eq. (11). Here, λ is a positive real
parameter specified by the user. As λ increases, the cluster size is more balanced.

Simij = MVS(di, dj) − λ. (11)

Why the above mechanism balances the cluster size is explained in the next
way. In the update formula specific to MVS-AVE in Eq. (8), the coefficients for
Simka and Simkb are na(n−nk−na)

(na+nb)(n−nk−na−nb)
and nb(n−nk−nb)

(na+nb)(n−nk−na−nb)
respectively.

The point is that the sum of these two coefficients becomes

(na + nb)(n − nk − na − nb) + 2nanb

(na + nb)(n − nk − na − nb)

and strictly greater than 1. Therefore, every time Eq. (8) is called, the term of
−λ is amplified. As the result, the similarity values in A have a tendency to
become lower when they are related to large clusters which have experienced
cluster merging many times than to small clusters which have undergone cluster
merging few times. Thus, small clusters have more chances to be chosen as the
objective of cluster merging than large clusters. In this way, a balanced cluster
partition is created.

334 Y. Fujiwara and H. Koga

We remark that the conventional average-link method does not possess this
interesting property, because, in the similarity update formula Eq. (4), the sum
of coefficients of Simka and Simkb equals na

nc
+ nb

nc
= 1. Therefore, if we subtract

λ from all the elements in A, Eq. (4) does not amplify the term of −λ.

4 Experimental Evaluation

This section compares our MVS-AVE with CS-AVE in the task of document
clustering and shows that our MVS-AVE achieves a higher classification accuracy
than CS-AVE almost without increasing the running time.

The experimental platform is a PC (CPU: Intel Core i7 3.6 GHz, OS: Ubuntu
16.04, memory 16 GB). The program codes are compiled with g++ accompanied
by the O2 optimization option. In the program codes, we optimize the module to
compute vector inner product for high-dimensional sparse vectors having many
0 coordinate values, since the document clustering needs to handle them: Let
x = (x1, x2, · · · , xm) and y = (y1, y2, · · · , ym) be two m-dimensional vectors.
Then, xTy =

∑m
i=1 xiyi. Here, if xi = 0 or yi = 0, xiyi trivially does not

influence xTy. Therefore, our module accelerates the inner product computation
for sparse high-dimensional vectors by skipping the multiplication xiyi and the
addition of xiyi to

∑i−1
j=1 xjyj , if either xi = 0 or yi = 0.

4.1 Dataset

Our experiments use the 18 datasets in Table 1 all of which are publicly available
at the web site for the CLUTO clustering toolkit [4]. They have been utilized in
many previous researches including [6] from which MVS originates.

In Table 1, the symbols c, n, and m represent the class number, the number
of objects and the dimensionality of feature vectors in order. m is determined
from the word vocabulary, after removing the stop words and discarding too
frequent words which appear in more than 99.5% of the documents and too
rare words which appear in only one document. After m is fixed, a document is
transformed to a feature vector each of whose coordinate values expresses the
TF-IDF value of the word responsible for the single dimension. In the last, all
the feature vectors are normalized to unit vectors.

4.2 Comparison with CS-AVE

Now, let us compare MVS-AVE with CS-AVE in terms of classification accu-
racy and running time: The classification accuracy for a clustering algorithm
is measured by how consistent the clustering result is with the data parti-
tion induced from the ground-truth class labels assigned to the dataset, under
the setting that the cluster number equals the the class number c. The consis-
tency degree is measured with NMI (Normalized Mutual Information) defined as
NMI(X,Y) = I(X,Y)√

H(X)H(Y)
, where X corresponds to the clustering result and Y

Multiviewpoint-Based Agglomerative Hierarchical Clustering 335

Table 1. Dataset for experiments

Dataset Source c n m

fbis TREC 17 2,463 2,000

hitech TREC 6 2,301 13,170

k1a WebACE 20 2,340 13,859

k1b WebACE 6 2,340 13,859

la1 TREC 6 3,204 17,273

la2 TREC 6 3,075 15,211

re0 Reuters 13 1,504 2,886

re1 Reuters 25 1,657 3,758

tr31 TREC 7 927 10,127

reviews TREC 5 4,069 23,220

wap WebACE 20 1,560 8,440

la12 TREC 6 6,279 21,604

new3 TREC 44 9,558 36,306

sports TREC 7 8,580 18,324

tr11 TREC 9 414 6,424

tr12 TREC 8 313 5,799

tr23 TREC 6 204 5,831

tr45 TREC 10 690 8,260

corresponds to the ground-truth data partition. H(X) = −∑
i P (xi) log P (xi)

is an entropy of the variable X and I(X,Y) =
∑

i

∑
j P (xi, yj) log P (xi,yj)

P (xi)p(yj)
is

the mutual information between X and Y . NMI takes a value in the range from
0 to 1. Intuitively, the NMI reflects the correlation of the clustering result X to
the distribution Y of the ground-truth class labels.

The left half of Table 2 summarizes the classification accuracy for MVS-AVE,
CS-AVE and BMVS-AVE which will be discussed later in Sect. 4.4 for various
datasets. MVS-AVE defeats CS-AVE for 13 out of the 18 datasets. Moreover, the
gap of NMI tends to be larger when MVS-AVE exceeds CS-AVE than when CS-
AVE defeats MVS-AVE. The average NMI value becomes 0.456 for MVS-AVE
and 0.409 for CS-AVE.

Next, the right half of Table 2 presents the running time of MVS-AVE and
that of CS-AVE with their ratio, where the running time is the average over three
trials. Remarkably, MVS-AVE augments the running time by at most 2.3% as
compared with CS-AVE for any dataset.

Thus, MVS-AVE successfully incorporates the high preciseness of MVS into
the average-link method with very little overhead.

336 Y. Fujiwara and H. Koga

4.3 Effect of Precalculating dT
i D and dT

j D

Section 3.3.1 developed a technique to speed up the initialization of the matrix
A by precalculating dTi D and dTj D and reducing the frequency of vector inner
product computations to 1

3 . We investigate if this technique helps to shrink the
running time by comparing the next two methods to initialize A:

Table 2. Classification accuracy and running time: The bold figures show which of
MVS-AVE or CS-AVE is better with regard to classification accuracy.

Dataset Accuracy Running time (sec)

MVS-AVE CS-AVE BMVS-AVE MVS-AVE CS-AVE Ratio (MVS-AVE
CS-AVE

)

fbis 0.570 0.561 0.584 21.25 21.13 1.006

hitech 0.250 0.059 0.255 17.03 17.02 1.001

k1a 0.556 0.550 0.556 21.90 21.74 1.007

k1b 0.710 0.666 0.710 17.65 17.52 1.007

la1 0.383 0.316 0.376 42.96 42.27 1.016

la2 0.374 0.390 0.466 37.14 36.90 1.007

re0 0.312 0.296 0.312 4.427 4.394 1.008

re1 0.540 0.568 0.540 6.165 6.078 1.014

tr31 0.670 0.527 0.670 1.493 1.470 1.016

reviews 0.410 0.034 0.420 85.97 85.10 1.010

wap 0.554 0.539 0.554 5.676 5.661 1.003

la12 0.367 0.381 0.426 291.4 291.3 1.000

new3 0.535 0.487 0.535 984.8 979.1 1.006

sports 0.242 0.106 0.238 692.8 679.8 1.019

tr11 0.645 0.633 0.645 0.180 0.176 1.023

tr12 0.472 0.523 0.553 0.096 0.094 1.021

tr23 0.252 0.223 0.260 0.045 0.044 1.023

tr45 0.363 0.495 0.558 0.663 0.649 1.022

Ave. 0.456 0.409 0.481

– Method 1 which precalculates D, i.e., the vector sum of all the points. Method
1 computes the three inner products dTi dj , dTi D and dTj D to obtain Simij =
MVS(di, dj) in Eq. (7).

– Method 2 which precalculates dTi D and dTj D after computing the cosine sim-
ilarity between all the point pairs. Method 2 has only to compute the one
inner product dTi dj to obtain MVS(di, dj).

Table 3 shows the running time necessary for the two methods to initialize
A for every dataset.Though we imagined that Method 1 is three times slower
than Method 2 due to the frequency of inner product computations, Method 1
is much slower than we expected. For example, for the new3 dataset, Method 1
spent about 40 times longer time than Method 2.

We consider that this result is caused by the optimization to compute the
inner product for high-dimensional sparse vectors. Although each di is sparse,

Multiviewpoint-Based Agglomerative Hierarchical Clustering 337

D =
∑

i di is not sparse any more. Therefore, the optimization technique works
effectively in computing dTi dj but not in computing dTi D or dTj D. Thus, it ben-
efits Method 2 much more than Method 1. Obviously, MVS-AVE cannot run as
fast as CS-AVE with Method 1. Therefore, precalculating dTi D and dTj D abso-
lutely helps MVS-AVE to achieve the running speed comparable to CS-AVE.

Table 3. Time necessary to initialize A

Dataset Running time (sec) Dataset Running time (sec)

Method 1 Method 2 Method 1 Method 2

fbis 21.2 3.329 reviews 387.2 12.91

hitech 72.61 3.025 wap 22.64 1.180

k1a 77.77 2.750 la12 846.2 24.17

k1b 57.18 2.753 new3 3214 81.59

la1 69.19 5.511 sports 1328 42.87

la2 152.4 5.01 tr11 1.531 0.129

re1 11.33 0.576 tr23 0.376 0.036

tr31 10.60 0.688 tr45 5.132 0.397

4.4 Evaluation of Function to Balance Cluster Size

In the last, we evaluate the function to balance the cluster size in Sect. 3.5. MVS-
AVE exploiting this function is referred to as BMVS-AVE (Balanced MVS-AVE).
We examine if BMVS-AVE improves the size fairness among clusters against the
standard MVS-AVE.

Given a clustering result, we judge the balance of the cluster size from the
fairness index n2

C
∑C

i=1 n2
i

. Here, C is the number of clusters and ni is the number
of points in the i-th cluster (1 ≤ i ≤ C). The fairness index takes a value in the
range [0,1] and becomes the maximum value of 1, if the C clusters evenly hold
n
C points.

Table 4 shows the fairness index for BMVS-AVE and MVS-AVE. In this
experiment, we change the parameter λ in BMVS-AVE in the range from 2

n to
10
n . When λ = 2

n , as compared with MVS-AVE, the fairness index of BMVS-AVE
becomes higher for 9 datasets and lower for only one dataset “reviews”. For the
rest of the datasets, BMVS-AVE outputs the same clustering result as MVS-
AVE. As λ increases up to 10

n , we observed that the fairness index also has a
tendency to increase, though it does not augment monotonically. When λ = 10

n ,
BMVS-AVE attains a higher fairness index than MVS-AVE for 15 datasets.
These results show that our function to balance the cluster size works well.

As a side effect, for λ = 2
n , BMVS-AVE yielded an average classification

accuracy of 0.481 which is higher than MVS-AVE and outperforms CS-AVE for
17 out of the 18 datasets as summarized in Table 2.

338 Y. Fujiwara and H. Koga

5 Related Works

In the past decade, multi-view clustering has been intensively studied [1,10].
The multi-view clustering treats data characterized by multiple heterogeneous
features acquired through distinct sensors. In this context, a view means a sen-
sor or a feature detector. The multi-view clustering aims to ensemble multiple
clustering results each of which is for a single view and to get a clustering result
more refined than the single-view counterparts.

Table 4. Fairness index: The bold figures indicate that BMVS-AVE has a higher
fairness index than MVS-AVE.

Dataset Fairness index Dataset Fairness index

MVS-AVE BMVS-AVE MVS-AVE BMVS-AVE

λ = 2/n λ = 10/n λ = 2/n λ = 10/n

fbis 0.299 0.322 0.325 reviews 0.385 0.382 0.385

hitech 0.483 0.492 0.567 wap 0.291 0.291 0.297

k1a 0.254 0.254 0.251 la12 0.272 0.373 0.372

k1b 0.343 0.343 0.467 new3 0.314 0.314 0.314

la1 0.373 0.377 0.526 sports 0.189 0.191 0.368

la2 0.285 0.384 0.395 tr11 0.507 0.507 0.510

re0 0.453 0.453 0.474 tr12 0.232 0.297 0.878

re1 0.258 0.258 0.356 tr23 0.465 0.472 0.651

tr31 0.561 0.561 0.577 tr45 0.156 0.291 0.487

Multiviewpoint-based similarity (MVS) in this paper is very different from
the above multi-view clustering. MVS does not care about the sensors. Rather,
MVS aims to produce a similarity measure adaptive to the given dataset by
migrating the reference point from the origin to the points in the dataset. Speak-
ing of MVS, Yan et al. [11] developed a semi-supervised clustering based on MVS.
The previous work which is the most related to our work is by Ravoori et al. [7]
which claimed that they embed MVS into the average-link method. However, [7]
does not mention how they incorporated MVS into the average-link method at
all. In other words, the contents in Sect. 3 of our paper is completely missing. In
fact, the standard average-link method in Fig. 1 in our paper is treated as their
proposed method. As a result, neither Eq. (6) which extends MVS to measure
the similarity between two points coming from different clusters nor the similar-
ity update formula in Eq. (8) is presented. They never discussed the theoretical
time complexity nor evaluated the running time experimentally.

Some researches pursued effective similarity measures for document cluster-
ing. For example, the pairwise-adaptive similarity [3] picks up some dimensions in
the feature vectors and computes the cosine similarity from the chosen dimen-
sions only. Here, the chosen dimensions change, depending on the two points
between which the similarity is to be calculated. The similarity measure in [5]

Multiviewpoint-Based Agglomerative Hierarchical Clustering 339

penalizes the dimensions for which one of the two points solely takes a non-
zero value and assigns a minus constant for such dimensions. These similarity
measures enhance the clustering accuracy as compared with CS, though they
sacrifice the running speed due to their intricacy.

Our research is novel in that, under the framework of hierarchical cluster-
ing, we succeeded in outperforming CS in terms of clustering accuracy without
sacrificing the running speed.

6 Conclusion

This paper proposes an agglomerative hierarchical clustering named MVS-AVE
which couples the average-link method with the multiviewpoint-based similarity
(MVS) [6]. Because MVS is a complex similarity measure, it has some risk of
increasing the running time of clustering. Nonetheless, by elaborating the pro-
cedures to initialize and update the similarity matrix, our MVS-AVE cluster-
ing algorithm achieves the computational time complexity of O(mn2 + n2 log n)
which is exactly the same as CS-AVE, the standard average-link algorithm with
the cosine similarity. Experimentally, in the task of document clustering, MVS-
AVE yields a better classification accuracy than CS-AVE with increasing the
running time by at most 2.3%. Interestingly, MVS-AVE can be expanded to
control the size fairness among clusters simply by subtracting a constant λ from
all the elements in the similarity matrix at the beginning.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP18K11311, 2019.

References

1. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: Inter-
national Joint Conference on Artificial Intelligence (2013)

2. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42(1–2), 143–175 (2001)

3. D’hondt, J., Vertommen, J., Verhaegen, P.A., Cattrysse, D., Duflou, J.R.: Pairwise-
adaptive dissimilarity measure for document clustering. Inf. Sci. 180(12), 2341–
2358 (2010)

4. Karypis, G.: CLUTO - a clustering toolkit. Minnesota University Minneapolis
Department of Computer Science, Technical report (2002)

5. Lin, Y., Jiang, J., Lee, S.: A similarity measure for text classification and clustering.
IEEE Trans. Knowl. Data Eng. 26(7), 1575–1590 (2014). https://doi.org/10.1109/
TKDE.2013.19

6. Nguyen, D.T., Chen, L., Chan, C.K.: Clustering with multiviewpoint-based simi-
larity measure. IEEE Trans. Knowl. Data Eng. 24(6), 988–1001 (2012)

7. Ravoori, D.T., Chen, Z.: Multi-view meets average linkage: exploring the role of
metadata in document clustering. Int. J. Inf. Retr. Res. 5(2), 26–42 (2015)

8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

https://doi.org/10.1109/TKDE.2013.19
https://doi.org/10.1109/TKDE.2013.19

340 Y. Fujiwara and H. Koga

9. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic rela-
tionships. Univ. Kansas Sci. Bull. 38, 1409–1438 (1958)

10. Tao, H., Hou, C., Liu, X., Liu, T., Yi, D., Zhu, J.: Reliable multi-view clustering.
In: AAAI Conference on Artificial Intelligence (2018)

11. Yan, Y., Chen, L., Nguyen, D.T.: Semi-supervised clustering with multi-viewpoint
based similarity measure. In: The 2012 International Joint Conference on Neural
Networks (IJCNN) (2012)

Triplet-CSSVM: Integrating Triplet-Sampling
CNN and Cost-Sensitive Classification

for Imbalanced Image Detection

Jiefan Tan, Yan Zhu(&), and Qiang Du

School of Information Science and Technology,
Southwest Jiaotong University, Chengdu 611756, China
tanjiefan@163.com, yzhu@swjtu.edu.cn,

duqiang_swjtu@163.com,

Abstract. In real-world applications, image classes are often imbalanced,
which result in detection performance decline and quite different misclassifi-
cation costs. In order to deal with these issues, cost-sensitive learning based on
manually designed features has been studied for many years. With the rapid
development of Deep Learning, more comprehensive methods, such as CNN
and RNN, have proven their strength on feature extraction and classification. In
this paper, we develop triplet-sampling CNN to automatically obtain a great
many in-depth features from images. Cost-sensitive SVM (CSSVM) is applied
to deal with the classification performance degradation caused by imbalanced
image dataset. Furthermore, two techniques are integrated as Triplet-CSSVM
for classifying images accurately even over imbalanced image set. This
approach can overcome the disadvantages of the conventional features extrac-
tion and improve the overall classification performance comparing with several
other related schemes.

Keywords: Imbalanced image data � Image classification � Triplet loss CNN �
Cost-Sensitive SVM

1 Introduction

Image classification has become one of the research hotspots because of the increase of
multimedia data. However, one big issue influences the performance of image classi-
fication, i.e., image data is imbalanced in many cases, where the size of majority class
is much bigger than that of minority class, for example, spammed images detection,
cancer patients identification based on MRI (Magnetic Resonance Imaging) images. In
such cases, applying traditional classification algorithms will result in serious problems
as follows.

Decision Performance Decline: Most of conventional classification methods like
SVM perform well based on the balanced datasets. When the data set is imbalanced,
their performance, especial on the minority class, may lower down greatly.

Misclassification Cost: In a scenario of medical diagnosis of a certain cancer, there
are only 10 cancer patients as positive samples, and 90 healthy persons as negative

© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 341–350, 2019.
https://doi.org/10.1007/978-3-030-27618-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_25

samples. Using a normal classification method to identify the cancer patients, the
overall accuracy rate will be higher than 90% when 90 healthy persons are correctly
identified, even though only one cancer patient out of 10 is detected. Such accuracy is
illusory and the good chance for saving many cancer patients’ life may be lost due to
misclassification. Therefore, misclassification of the minority class usually leads to
“small data, big trouble”.

In traditional machine learning, there are two kinds of methods to solve the
problems of imbalanced classification. One is rescaling methods, including threshold
usage, re-sampling and weighting-based methods. Another is cost-sensitive algorithms,
which directly assign the much higher cost as a punishment factor to the minority class
than to the majority one, if the misclassification appears.

Threshold methods use a threshold value to classify samples into positive or
negative if the cost-sensitive classifiers can produce probability estimations. Zhou and
Liu studied the training effect of sampling and threshold-moving in cost-sensitive
neural networks [1]. Their experiments showed that threshold-moving is a good way in
training cost-sensitive neural networks. Re-sampling [2] is a common method to deal
with imbalanced data classification at the dataset level. Wolf and Martin [3] proposed
Feature KO and applied it to GentleBoost for solving the problem of imbalanced class
size. Ting [4] introduced an instance-weighting method to induce cost-sensitive trees,
which is simple and effective in implementation. Rescaling methods change the dis-
tribution of data set and can improve the classification.

Cost-sensitive classification algorithms can tackle performance degradation over
imbalanced data set without rescaling, such as cost-sensitive support vector machine
(CSSVM). C4.5CS and Metacost [5] are the earliest cost-sensitive learning methods.
Ali et al. [6] developed an effective cost-sensitive classifier with Gentleboost ensemble
(Can-CSC-GBE) for finding breast cancer using protein amino acid features. This
method has effectively reduced the misclassification costs and thereby improved the
overall classification performance. In traditional machine learning, e.g. [5, 6], data is
usually represented as hand-craft features or shallow features, which are easily inter-
fered by human factors. Deep learning can solve such a problem well.

Deep learning is an advanced area of machine learning and it has recently achieved
great success due to its high learning capacity. It has been increasingly applied to
multimedia classification, Natural Language Processing (NLP) and so on. Convolution
Neural Networks (CNN) is a kind of deep learning methods based on multilayer neural
network which is specially designed for image classification and recognition. There are
many famous CNN models, such as LeNet, AlexNet, VGG-Net, and GoogLeNet.

As to the classification of imbalanced data, there are a few researches based on
CNN. Huang et al. [7] extended triplet loss [8] to Quintuplet loss to learn the in-depth
features. Their method is more conducive to the minority class and shows good per-
formance on several imbalanced datasets. However, this method cannot directly extract
in-depth features from images.

In this paper, we combine deep learning approach with cost-sensitive classification
to obtain the in-depth features automatically and to deal with imbalanced image
classification problem. The image features are extracted from the training model by
triplet-sampling CNN, which is modified by integrating triplet-sampling technique and
triplet loss from [8] with CNN. Based on the extracted rich features, cost-sensitive
SVM (CSSVM) is applied to complete the imbalanced image classification.

342 J. Tan et al.

The rest parts of the paper are organized as follows: in Sect. 2 the relevant tech-
niques including triplet-sampling CNN and CSSVM are introduced. Section 3 dis-
cusses our approach. The experiments are conducted in Sect. 4 for comparing our work
with other relevant methods. Section 5 summarizes the research and point out the
future work.

2 Discussion on Relevant Techniques

Two key problems must be addressed as to the imbalanced image classification. One is
how to obtain the rich and prominent features; another is how to reduce the impact of
data imbalance on detection. Triplet loss CNN is developed in this paper to learn the in-
depth features of image data. Cost-sensitive classification is applied to improve
detection performance over imbalanced image set.

2.1 Triplet Loss CNN

Several CNN techniques can deal with classification problem well with tens of thou-
sands of iterations. Taking VGG-16 as an example, it consists of five convolution
groups for feature learning, and two fully-connected layers for classification. Behind
the fully-connected layer is softmax layer which is the error function to optimize the
CNN model. For example, the input picture is expressed as a vector V and vi is the i

th

element. When it is classified as class k, the softmax value of this picture is as follows:

Sk ¼ evkP
i e

vi
ð1Þ

The loss is: Loss ¼ � ln Sk ð2Þ

Schroff et al. [8] proposed a novel error function, triplet loss, which is based onmetric
learning for CNN. In this method, images are mapped to the Euclidean Space. If the
distance of two images is closed in the Euclidean Space, the two images are very similar.
The intra-class distances are reduced and the inter-class distances are extended by the
triplet loss. The other parts of triplet loss CNN are as same as the traditional CNNs.

The structure of triplet loss CNN is shown in Fig. 1. This network consists of batch
input layer, deep CNN and L2 normalization. L2 normalization produces an embedding
f(x). The network is optimized by triplet loss during training.

Fig. 1. Triplet loss CNN structure [8].

Tiplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive Classification 343

Figure 2 shows the triplet sampling which comes with triple loss. Each triplet
consists of three samples: anchor, positive and negative. For standard triplet, the
positive sample ðxpÞ and the anchor ðxaÞ are in the same class and the negative one ðxnÞ
is in the different class of the anchor ðxaÞ. The triplet loss minimizes the distance
between the positive and the anchor and maximizes the distance between the anchor
and the negative. The mathematic expression is shown in Eq. (3).

xai � xpi
�� ���� ��2

2 þ a\ xai � xni
�� ���� ��2

2; 8 xai ; x
p
i ; x

n
i

� � 2 T ð3Þ

In Eq. (3), a is the margin between positive and negative pairs. T denotes all triplet
tuples in the training data set. In the embedding space, the goal is to minimize the
Euclidean distance. Although the aim of triplet loss is to get a better performance of
image recognition, it also cannot avoid the negative effect from imbalanced dataset.

loss ¼
XN

i
f xai
� �� f xpið Þ�� ���� ��2

2� f xai
� �� f ðxni Þ

�� ��2
2 þ a

h i
þ

ð4Þ

2.2 Quintuplet Loss CNN

To solve the problem of imbalanced data, Huang et al. [7] extended triplet loss to
Quintuplet loss. Based on this structure, the in-depth features obtained are more con-
ducive to the minority class and can help classifiers to perform very well on several
imbalanced data sets.

Compared with triplet loss, Quintuplet loss CNN needs some preparations, such as,
clustering based on k-means using the learned features from the previous round of
alternation [7], hand-crafted features in the first round. A quintuplet (See Fig. 3)

Fig. 2. Triplet sampling [8].

Fig. 3. Quintuplet sampling [7].

344 J. Tan et al.

consists of five samples: anchor ðxiÞ, the most distant neighbor of anchor within-cluster
ðxpþi Þ, the nearest neighbor of anchor within-class but between-clusters ðxp�i Þ, the most
distant neighbor of the anchor within-class but between-clusters ðxp��

i Þ and the nearest
neighbor of the anchor between-class ðxni Þ. Quintuplet loss wants to obtain a rela-
tionship as follows.

f xið Þ � f x pþi

� ��� ���� ��2
2\ f xið Þ � f x p�ið Þj jj j22

\ f xið Þ � f x p��
ið Þj jj j22\ f xið Þ � f x ni

� ��� ���� ��2
2

ð5Þ

Quintuplet loss CNN minimizes both distance within-class and within-cluster to
build a clear demarcation between classes with most discriminative samples. Strictly
speaking, Quintuplet loss CNN is a kind of re-sampling method. However, Quintuplet
loss CNN cannot be used to train images directly, because it actually is applied on the
clusters, which are built based on the feature set obtained from the image preprocessing.

2.3 Cost-Sensitive SVM

Support Vector Machine (SVM) is a popular machine learning method. Many studies
focus on improving its performance, such as [9]. To deal with the imbalanced data
classification, the most widely researched approach is to modify the SVM algorithm to
be cost sensitive [10]. This consists of different penalty factors Cp and Cn for the
misclassification cost of positive and negative samples. Assumed that the training set is
as RN ¼ xi; yið Þf gi¼1;...;n and the hyper-plane is as wT:xð Þþ b ¼ 0;w 2 RN; b 2 R. The
cost-sensitive SVM can be represented as,

argmin
w;b;d

1
2 wj jj j2 þC Cp

P
ijyi¼pf g di þCn

P
ijyi¼nf g di

h i

ðsubject to yi wTxi þ bð Þ� 1� di: i ¼ 1; 2. . .lÞ
ð6Þ

In Eq. (6) the misclassification cost Cp and Cn are given by domain knowledge and
appear as precise values. While in many real-world applications, it is difficult to get the
precise value of Cp and Cn.

3 Our Method Triplet-CSSVM

The proposed method is divided into two modules: Triplet-sampling CNN is used for
learning feature, and CSSVM is for detecting images based on imbalanced data set.

3.1 Feature Extraction Based on Triplet-Sampling CNN

Because Quintuplet loss CNN is not suitable to produce features, we combined triplet
loss CNN with re-sampling method to learn the in-depth features from images directly,
which is named as triplet-sampling in this paper.

Tiplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive Classification 345

The triplet-sampling method is explained with Fig. 4. A triplet is chosen from the
imbalanced dataset. If the selected triplets are not appropriate, it will result in a rather
slow convergence. To solve this problem, re-sampling method is applied for selecting
triplet, where the number of anchors selected from the majority-class must be equal to
that selected from the minority-class in one batch. For example, if five triplets are built
and their anchors are taken from the minority-class samples, the other five triplets
should be built with the anchors taken from the majority-class samples in the same
batch. Therefore the training data set of CNN could be balanced by building triplets.

The aim of triplet loss is to learn an embedding f(x) to minimize the Euclidean
distances between xa and xp and also to maximize the Euclidean distances between xa

and xn over the iterations. We discard the margin a between positive and negative pairs
to save the calculation time. So Eq. (4) is changed to Eq. (7).

loss ¼
XN

i
f xai
� �� f xpið Þ�� ���� ��2

2� f xai
� �� f ðxni Þ

�� ��2
2

h i
þ

ð7Þ

Given an imbalanced training dataset, the same number of anchors is selected from
the minority and the majority class. The corresponding triplets are constructed in the
batch according to the anchors. The selected triplets are fed into CNN to obtain an
embedding f(x), which then is normalized by L2. The triplet loss is computed by
Eq. (7) afterwards. After hundreds of thousands of iterations, features are extracted
from image training dataset.

The procedure is shown in Fig. 5 and the extraction method is described in Pro-
cedure 1. Firstly, the CNN is pre-trained to initialize parameters in the network. Then
the softmax layer of CNN (error function) is replaced by triplet loss layer and the
triplets are selected from the batches to fine-tune the triplet-sampling CNN. The feature
vectors generated by using triplet-sampling CNN only have 512 dimensions.

Fig. 4. Embed triplet sampling in terms of binary classification.

Fig. 5. The feature extraction module.

346 J. Tan et al.

Procedure 1 Feature Extraction

Algorithm: Triplet-Sampling CNN
Input: Imbalanced image training dataset
1: Pre-training model with softmax loss. Initialize the parameters of CNN
2: Replace softmax layer with triplet loss layer
3: for each iteration do
4: Generate triplets equally from majority and minority classes of the dataset
5: Encoding embedding f(x) from image x into Euclidean Space
6: L2 normalization for embedding
7: Optimize f(x) by minimizing the loss (Eq (7))
8: end for

Output: The embedding model f(x)

3.2 Image Classification in Terms of CSSVM

Cost-sensitive support vector machine (CSSVM) algorithm is conducted to classify
images based on the features extracted in Sect. 3.1. CSSVM aims to reduce the mis-
classification cost and improve the performance.

The cost model of Eq. (8) is adopted from paper [11]. The cost of correct classi-
fication is set to 0, i.e., C (1, 1) = C (0, 0) = 0. And the value of misclassification cost
of the minority class depends on the imbalanced ratio.

Cp ¼ number of yi ¼ n
number of yi ¼ p

; Cn ¼ 1 ð8Þ

Where yi represents the class label of a sample i. Cp and Cn denote the cost of the
positive class (the minority) and negative class (the majority), respectively.

Procedure 2 shows the procedure of cost-sensitive classification based on CSSVM.

Procedure 2 Cost-Sensitive Classification
Algorithm: CSSVM
Input: Image features; misclassification cost: Cp, Cn; slack penalty C.
1 for each iteration do
2 train dataset to get hyper-plane
3 Optimize by minimizing Eq (6)
4 end for
Output: Classification result

Tiplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive Classification 347

4 Experimental Results and Discussion

Two groups of experiments are conducted to comparing Triplet-CSSVM with the other
different combinations of CNN and SVM, and with Quintuplet as well.

All experiments are carried out on Caffe [12] which is one of the most famous deep
learning frameworks in recent years. Our experiments ran on GeForce GTX 960.

Evaluation Criteria: Precision and Recall based on Confusion Matrix are used as the
criteria. Besides, the Receiver Operating Characteristic (ROC) curve and the Area
Under the ROC Curve (AUC) are commonly used for assessing the performance of a
classifier, as ROC curve and AUC can treat the minority class and the majority class
fairly. We have to omit the results based on ROC and AUC due to the space limitation,
but their results are similar to that based on Precision, Recall and F-Score.

Imbalanced Dataset: FaceScrub is used as the training dataset in our experiments,
which is a large face dataset containing over 100,000 face images of 530 people, about
200 images per person. Two classes of images are chosen to conduct binary classifi-
cation. For example, 141 images of “AaronEckhart” and 47 images of “AdamBrody”
are used to build an imbalanced dataset. The cost of “AaronEckhart” is 3 and the cost
of “AdamBrody” is 1 in terms of Eq. (8).

4.1 Comparison with the Different Combinations of CNN and SVM

The comparison results between our method and VGGNet-SVM, VGGNet-CSSVM
and Triplet-SVM are shown in Table 1. When the classification method is the same (1
vs 3, 2 vs 4), the learning capability of triplet-sampling CNN is obviously better than
that of VGGNet. Our approach shows a sharp contrast with conventional VGGNet-
SVM, where the precision has increased by 31% and the recall has increased by 71%
with 1:3 imbalanced rate. When investigating the effectiveness of cost-sensitive
algorithm, our approach outperforms Triplet-SVM.

4.2 Comparison with Quintuplet

A comparison experiment between Quintuplet [7] and our approach is performed on
MNIST-rot-back-image dataset [13]. The results (the mean of the per-class accuracy in
percentage) are shown in Table 2. MNIST dataset is a balanced dataset with 10 digit

Table 1. The comparison results.

Method Imbalanced image dataset
Precision Recall F-Score

1. VGGNet-SVM 0.21 0.22 0.22
2. VGGNet-CSSVM 0.41 0.61 0.49
3. Triplet-SVM 0.47 0.57 0.52
4. Triplet-CSSVM (our approach) 0.52 0.93 0.67

348 J. Tan et al.

classes. We construct a Gaussian-like imbalanced sample set by randomly removing
data from the original data set using different percentages, such as 20% or 40% (ref.
Data Remove in Table 2).

The results show that Quintuplet and Triplet-CSSVM have similar performance
when the dataset is balanced (Data Remove = 0). If the dataset is imbalanced (Data
Remove = 20% or 40%), Triplet-CSSVM outperforms Quintuplet. Besides, Triplet-
CSSVM can perform similarly with it, if the combination of Quintuplet, resampling,
and cost is applied [7]. The advantage of Triplet-CSSVM is that the rich features can be
obtained directly from the original images. But Quintuplet should be applied only after
features have been extracted and clusters have been built in other stages.

5 Conclusion

In a lot of real world applications, the size of different data classes has clear distinction
which is the problem of the imbalanced dataset. Many conventional classification
algorithms perform well on the balanced image dataset, but decline greatly on the
imbalanced one. One of main reasons is that they do not consider different costs
(damages) when incorrectly classifying the images. Integrating the misclassification
costs with the detection algorithms is a feasible way to improve the performance.

In this paper, we tackle two problems by using Triplet-CSSVM approach. On the
one hand, in-depth image features are extracted from imbalanced dataset by integrating
triplet-sampling and CNN. On the other hand, the detection performance in terms of
imbalanced image set is improved clearly based on the learnt features with triplet-
sampling CNN and by using Cost-Sensitive SVM. Our method outperforms several
relevant techniques, such as VGGNet-CSSVM, Triplet-SVM, and also Quintuplet loss
CNN.

In the future, an integrated deep learning approach for feature learning and cost-
sensitive classification should be studied.

Acknowledgement. This work is supported by the Sichuan Science and Technology Program
(No 2019YFSY0032) of China.

References

1. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the
class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2005)

Table 2. Classification results of triplet-CSSVM and Quintuplet.

Data Remove (%) 0 20 40

Quintuplet [7] 77.62 72.26 65.27
Quintuplet + resample + cost [7] 77.64 75.58 70.13
Triplet-CSSVM (our approach) 77.65 75.55 70.23

Tiplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive Classification 349

2. Good, P.: Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypotheses. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-9863-7

3. Wolf, L., Martin, I.: Robust boosting for learning from few examples. In: Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 359–364. IEEE Computer Society, San Diego (2005)

4. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. IEEE Trans.
Knowl. Data Eng. 14(3), 659–665 (2002)

5. Domingos, P.: MetaCost: a general method for making classifiers cost-sensitive. In:
Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 155–164. ACM, San Diego (1999)

6. Ali, S., Majid, A., Javed, S.G.: Can-CSC-GBE: developing cost-sensitive classifier with
gentleboost ensemble for breast cancer classification using protein amino acids and
imbalanced data. Comput. Biol. Med. 73, 38–46 (2016)

7. Huang, C., Li, Y., Chen, C. L, et al.: Learning deep representation for imbalanced
classification. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5375–5384. IEEE Computer Society, Las Vegas (2016)

8. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition
and clustering. In: Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 815–823. IEEE Computer Society, Boston (2015)

9. Shalev-Shwartz, S., Singer, Y., Srebro, N., et al.: Pegasos: Primal estimated sub-gradient
solver for svm. Math. Program. 127(1), 3–30 (2011)

10. Cao, P., Zhao, D., Zaiane, O.: An Optimized Cost-Sensitive SVM for Imbalanced Data
Learning. In: Pei, J., Tseng, Vincent S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013.
LNCS (LNAI), vol. 7819, pp. 280–292. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37456-2_24

11. Wang, K.J., Makond, B., Wang, K.M.: An improved survivability prognosis of breast cancer
by using sampling and feature selection technique to solve imbalanced patient classification
data. BMC Med. Inform. Decis. Mak. 13, 124 (2013)

12. Deep learning framework by BAIR. http://caffe.berkeleyvision.org/. Accessed 12 Mar 2019
13. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/. Accessed 14 June

2019

350 J. Tan et al.

http://dx.doi.org/10.1007/978-1-4419-9863-7
http://dx.doi.org/10.1007/978-3-642-37456-2_24
http://dx.doi.org/10.1007/978-3-642-37456-2_24
http://caffe.berkeleyvision.org/
http://yann.lecun.com/exdb/mnist/

Discovering Partial Periodic High Utility
Itemsets in Temporal Databases

T. Yashwanth Reddy1, R. Uday Kiran2,3(B), Masashi Toyoda2,
P. Krishna Reddy1, and Masaru Kitsuregawa2,4

1 International Institute of Information Technology, Hyderabad, Hyderabad, India
yashwanth.t@research.iiit.ac.in, pkreddy@iiit.ac.in

2 The University of Tokyo, Tokyo, Japan
{uday rage,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp

3 National Institute of Information and Communications Technology, Tokyo, Japan
4 National Institute of Informatics, Tokyo, Japan

Abstract. High Utility Itemset Mining (HUIM) is an important model
with many real-world applications. Given a (non-binary) transactional
database and an external utility database, the aim of HUIM is to discover
all itemsets within the data that satisfy the user-specified minimum util-
ity (minUtil) constraint. The popular adoption and successful industrial
application of HUIM has been hindered by the following two limitations:
(i) HUIM does not allow external utilities of items to vary over time and
(ii) HUIM algorithms are inadequate to find recurring customer purchase
behavior. This paper introduces a flexible model of Partial Periodic High
Utility Itemset Mining (PPHUIM) to address these two problems. The
goal of PPHUIM is to discover only those interesting high utility item-
sets that are occurring at regular intervals in a given temporal database.
An efficient depth-first search algorithm, called PPHUI-Miner (Partial
Periodic High Utility Itemset-Miner), has been proposed to enumerate
all partial periodic high-utility itemsets in temporal databases. Experi-
mental results show that the proposed algorithm is efficient.

Keywords: Data mining · Pattern mining · Utility Itemset Mining ·
Periodic itemsets

1 Introduction

High Utility Itemset Mining (HUIM) is an important model in data mining.
HUIM algorithms discover all interesting itemsets whose utility (profit) in a
transactional database is no less than the user-specified minimum utility (minU-
til) constraint. The utility of an itemset is the summation of its utilities in all
the transactions. The classic application of HUIM is market-basket analysis.
HUIM has many other applications, such as website click stream analysis, cross-
marketing and bio-medical applications [3]. HUIM has also inspired several other
important data mining tasks such as high-utility occupancy pattern mining [4]
and high-utility periodic pattern mining [1].
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 351–361, 2019.
https://doi.org/10.1007/978-3-030-27618-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_26

352 T. Yashwanth Reddy et al.

The popular adoption and successful industrial application of HUIM has been
hindered by the following two obstacles: (i) Most previous studies on HUIM
implicitly assume that the external utilities of the items do not change over time
in the entire database. However, this is the seldom in real-world applications.
In many applications, items’ external utilities can vary with respect to time.
For example, the prices of items in an eCommerce application can raise and/or
fall depending on supply and demand. (ii) In many applications, high utility
itemsets that are occurring at regular intervals can provide useful information
to the users. For instance, in an eCommerce store, customers buy certain items
(e.g. diapers and soaps) on a weekly or monthly basis. The knowledge pertaining
to such periodically purchased high utility itemsets can facilitate an eCommerce
application to improve its sales. Unfortunately, most studies on HUIM fail to
discover such periodically occurring high utility itemsets in the data.

This paper makes an effort to address the above mentioned two issues. This
paper introduces a novel model of Partial Periodic High Utility Itemset (PPHUI)
in temporal databases. A temporal database not only facilitate multiple trans-
actions to appear the same timestamp, but also facilitates irregular time gaps
between the consecutive transactions. Partial Periodic High Utility Itemset Min-
ing (PPHUIM) allows items’ external utility values to vary overtime. Thus,
addressing the first obstacle of HUIM. The PPHUIM tries to address the second
obstacle of HUIM by finding partial periodically occurring high utility item-
sets in temporal databases. A fast algorithm, called Partial Periodic High Util-
ity Itemset-Miner (PPHUI-Miner), has been introduced to discover all PPHUIs
by proposing new pruning techniques. Experimental results demonstrate that
PPHUI-Miner is not only memory and runtime efficient, but also highly scalable
as well.

The rest of the paper is organized as follows. Related work is presented
in Sect. 2. Section 3 introduces the proposed model of PPHUIM. The proposed
is presented in Sect. 4. Experimental results are reported in Sect. 5. Section 6
provides conclusions.

2 Related Work

High Utility Itemset Mining: Yao et al. [12] described HUIM by taking
into account the importance of items and their occurrence frequency in every
transaction. Since then, several algorithms have been proposed to discover high
utility itemsets in transactional databases [2,7–9,11] and sequence databases
[14]. To circumvent the fact that the utility is not anti-monotonic and to find
all high utility itemsets, several HUIM algorithms (e.g. Two-Phase [9] and UP-
Growth+) have employed Transaction Weighted Utilization (TWU) to reduce
the search space. The TWU measure represents an upper bound on the utility
of itemsets. Recently, algorithms like EFIM [13] introduced by proposing tighter
measures to calculate upper bound on the utility of itemsets than TWU .

Periodic High Utility Itemset Mining: Tanbeer et al. [10] have intro-
duced a model to find periodic-frequent itemsets in transactional databases.
Philippe et al. [1] have extended the model [10] to discover full periodic high

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 353

utility itemsets in a transactional database (i.e., a database in which transac-
tions occur at a fixed time interval). This model discovers all periodic item-
sets within the transactional database that satisfy the user specified minimum
utility (minUtil), minimum average periodicity (minAvgPer), maximum aver-
age periodicity (maxAvgPer), minimum period (minPer) and maximum period
(maxPer). This model suffers from the following limitations: (i) If an itemset has
one instance where period (or inter-arrival time) is more than the user-specified
maxPer, the corresponding itemset is considered as an uninteresting itemset.
(ii) This model assumes time gap between two consecutive transactions is con-
stant, which is not the case in real-world databases and It requires too many
input parameters from the user.

A model has been proposed in [6] to find partial periodic itemsets in temporal
databases. It can overcome limitations of model proposed in [1]. However, the
model [6] disregards the importance of the items and their occurrence frequency
in every transaction.

The proposed model of PPHUI mining does not suffer from any of the above
mentioned limitations. A part from extracting PPHUI from a given transactional
database, the proposed model is different from the model proposed in [1] as that
model employs different measures to find periodic high utility itemsets.

3 Proposed Model

Let I = {i1, i2, · · · , im}, m ≥ 1, be a set of items. Let X ⊆ I be an itemset. An
itemset containing k items is known as k-itemset. A transaction Ttid = (tid, ts, Y)
is a triplet, where tid ∈ R+ represents the transactional identifier, ts ∈ R+

represents the timestamp of corresponding transaction and Y ⊆ I is an itemset.
A temporal database, denoted as TDB, represents a set of transactions. That
is, TDB = {T1, T2, · · · , Tn}, 1 ≤ n. Let p(ij , tid) denote the external utility of
an item ij ∈ I in a transaction whose transaction identifier is tid. Let P (ij) =
{p(ij , 1), p(ij , 2), · · · , p(ij , n)} denote the set of all external utility values of ij
in the data. The (external) utility database, UD, is the set of external utility
values of all items in I. That is, UD =

⋃

ij∈I

P (ij). Every item ij ∈ Ttid has

a positive number q(ij , tid), called its internal utility. The internal utility of
an item generally represents its frequency in a transaction and external utility
represents cost/profit of item in a transaction.

Example 1. Let I = {a, b, c, d, e, f, g, h, i, j} be the set of items. The set of items
‘d’ and ‘f ’, i.e., {d, f} (or df , in short) is an itemset. This itemset contains
two items. Therefore, it is a 2-itemset. A temporal database generated from I is
shown in Table 1. This database contains 8 transactions. The minimum and max-
imum timestamps of the transactions in this database are 1 and 12, respectively.
It can be observed that temporal databases not only allow multiple transactions
to share a common timestamp, but also encourage irregular time gaps between
the consecutive transactions. Thus, a temporal database generalizes a transac-
tional database by taking into account the temporal occurrence information of

354 T. Yashwanth Reddy et al.

Table 1. Temporal database

tid ts items

1 1 (a, 1), (b, 2), (c, 1)

2 3 (a, 2), (b, 2), (e, 2), (h, 1)

3 4 (c, 1), (d, 3), (f, 2)

4 6 (b, 1), (d, 2), (e, 3), (f, 1), (g, 2), (h, 3)

5 7 (c, 3), (f, 1), (g, 1)

6 7 (i, 1), (j, 3)

7 9 (a, 1), (b, 1), (d, 2), (f, 1), (g, 2)

8 12 (c, 3), (d, 1), (e, 1), (f, 2), (g, 2)

Table 2. External utility database

tid a b c d e f g h i j

1 200 100 50 0 0 0 0 0 0 0

2 50 100 0 0 100 0 0 100 0 0

3 0 0 200 200 0 200 0 0 0 0

4 0 200 0 200 150 300 100 200 0 0

5 0 0 100 0 0 150 50 0 0 0

6 0 0 0 0 0 0 0 0 40 20

7 150 300 0 200 0 300 200 0 0 0

8 0 0 50 200 300 50 200 0 0 0

the transaction. Table 2 shows the external utilities (or prices/profit) of all items
in every transaction. Let the currency of these prices be Japanese Yen (�). The
external utility of an item d in the third transaction, i.e., p(d, 3) = 200�. The
internal utility of an item d in the third transaction T3, i.e., q(d, 3) = 3.

Definition 1 (Utility of an item in a transaction). The utility of an item
ij in a transaction Ttid denoted as u(ij , Ttid) = p(ij , Ttid) × q(ij , Ttid).

Definition 2 (Utility of an itemset in a transaction). The utility of an
itemset X in a transaction Ttid, denoted as u(X,Ttid) = Σi∈Xu(i, Ttid).

Definition 3 (Utility of an itemset in a database). The utility of an item-
set X in the database TDB, denoted as u(X) = ΣTtid∈g(X)u(X,Ttid), where
g(X) is the set of transactions containing X.

Example 2. Continuing the previous example, the utility of ‘d’ in third trans-
action T3, i.e., u(d, T3) = p(d, T3) × q(d, T3) = 200 × 3 = 600�. The utility of
itemset df in T3, u(df, T3) = u(d, T3) + u(f, T3) = 600� + 400� = 1000�. In
Table 1, the itemset df has appeared in the transactions T3, T4, T7 and T8. There-
fore, g(x) = {T3, T4, T7, T8}. The utility of df in each of these three transactions:
u(df, T3) = 1000�, u(df, T4) = 700�, u(df, T7) = 700� and u(df, T8) = 300�.
Therefore, the utility of df in the database, u(df) = 2700�.

Definition 4 (Periodic appearance of X). Let TSX = {tsXa , tsXb , · · · , tsXc },
tsmin ≤ tsxa ≤ tsxb ≤ tsxc ≤ tsmax, be an ordered list of timestamps in which
X appeared in TDB. The terms tsmin and tsmax represent the minimal and
maximal timestamps in TDB. Let tsXj , tsXk ∈ TSX , tsmin ≤ tsXj ≤ tsXk ≤ tsmax,
denote any two consecutive timestamps in TSX . The time difference between
tsXk and tsXj is referred to an inter-arrival time of X, and denoted as iatXp ,
p ≥ 1. That is, iatXp = tsXk − tsXj . Let IATX = {iatX1 , iatX2 , ..., iatX|TSX |−1},
be the list of all inter-arrival times of X in TDB. An inter-arrival time of X
is said to be periodic (or interesting) if it is no more than the user-specified
maximum-inter arrival time (maxIAT). That is, an iatXk ∈ IATX is said to
be periodic if iatXk ≤ maxIAT .

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 355

Example 3. In Table 1, the itemset df has appeared in the transactions T3, T4,
T7 and T8. Therefore, the set of timestamps of these four transactions, i.e.,
TSdf = {4, 6, 9, 12}. The inter-arrival times of ‘df ’ are: iatdf1 = 6−4 = 2, iatdf2 =
9 − 6 = 3, iatdf3 = 12 − 9 = 3. Thus, IAT df = {iatdf1 , iatdf2 , iatdf3 } = {2, 3, 3}. If
the user-specified maxIAT = 3, then iatdf1 is considered interesting (or periodic)
occurrence of df within the database because iatdf1 ≤ maxIAT . Similarly, iatdf2
and iatdf3 are also periodic occurrences of df .

Definition 5 (Periodic-Support of itemset). Let IATX ⊆ IATX be the
set of all inter-arrival times that have value no more than maxIAT . That is,
IATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ maxIAT , then iatXk ∈
IATX . The periodic-support of X, denoted as PS(X) = |IATX |.
Example 4. Continuing with the previous example, IAT df={iatdf1 , iatdf2 , iatdf3 }.
Therefore, the periodic support of ‘df ’, i.e., PS(df) = |IAT df | = 3. In other
words, the itemset ‘df ’ has appeared 3 times periodically within the data.

The periodic-support, as defined above, determines the number of periodic
occurrences of an itemset in the database. An inter-arrival time of an item-
set can be expressed in percentage of (tsmax − tsmin). The periodic-support of
an itemset also can be expressed in percentage of |TDB| − 1, where |TDB| − 1
represents the maximum periodic-support an itemset can have in the database.

Definition 6 (Partial Periodic High Utility Itemset X). An itemset X
is a Partial Periodic High Utility Itemset (PPHUI) if u(X) ≥ minUtil and
PS(X) ≥ minPS, where minUtil and minPS represent the user-specified min-
imum utility and minimum periodic-support, respectively.

Example 5. If the user-specified minUtil = 1500�, maxIAT = 6 and minPS =
2, then the itemset ‘df ’ is a PPHUI because u(df) ≥ minUtil and PS(df) ≥
minPS. All PPHUIs generated from Table 1 are shown in Table 4.

Problem Statement: Given a temporal database (TDB), an external utility
database (UD) and the user-specified minUtil, maxIAT and minPS, the prob-
lem of finding PPHUIs involve discovering all itemsets in TDB whose utility
and periodic-support is no less than the user-specified minUtil and minPS,
respectively.

4 Proposed Approach

The problem is to develop an efficient approach for discovering partial peri-
odic high utility itemsets (PPHUIs) in Temporal Database subject to minUtil,
minPS and maxIAT constraints. Given n data items, a näıve way to find
PPHUIs is to mine set of all possible 2n − 1 combinations of items and test
for minUtil, minPS and maxIAT constraints. Notably, such an approach suf-
fers from exponential complexity. The basic idea is to define pruning techniques

356 T. Yashwanth Reddy et al.

Table 3. TWU values of items in Table 1

Item f d g b e c a h i j

TWU 6750 6250 5550 4950 3900 3300 2800 2750 100 100

PS 4 3 3 3 2 3 2 1 0 0

Table 4. PPHUIs generated from Table 1 at minUtil = 2000, PS = 2, maxIAT = 6

Itemset d f g ab cf dg df fg dfg

Utility 1600 1250 1250 1150 1300 2200 2700 2100 2900

PS 3 4 3 2 2 2 3 3 3

based on Transaction Weighted Utilization (TWU), Periodic Support (PS) and
Remaining Utility and proposed efficient approach to mine PPHUI. We briefly
explain these techniques and discuss the proposed approach.

i. Pruning using TWU :
We carry out the pruning based on TWU [9]. The notion of TWU is defined

as follows.

Definition 7 (Transaction Weighted Utilization (TWU)). The transac-
tion utility (TU) of a transaction Ttid is the sum of the utility of all items in Ttid.
i.e. TU(Ttid) = Σx∈Ttid

u(x, Ttid). The transactional-weighted utilization (TWU)
of an itemset X is defined as the sum of the transaction utility of transactions
containing X, i.e. TWU(X) = ΣTc∈g(X)TU(Tc).

Example 6. Consider the first transaction in Table 1. The transaction utility of
T1, denoted as TU(T1), is the total revenue generated by all its items. That is,
TU(T1) = u(a, 1)+u(b, 2)+u(c, 1) = 200+200+50 = 450�. In other words, the
first transaction has generated the revenue of 450�, Similarly, the transaction
utility of T2, T3, T4, T5, T6, T7 and T8 are 600, 1200, 2150, 500, 100, 1750 and
1150 respectively. Consider the item ‘d,’ which is appearing in the transactions
T3, T4, T7 and T8. The TWU of d, i.e., TWU(d) = TU(T3)+TU(T4)+TU(T7)+
TU(T8) = 6250�.

The pruning rule based on TWU is as follows. It can be observed that the
TWU of item conveys the crucial information that it is equivalent to atmost
utility that an item can generate by combining with other items in the database.
TWU measure can be used to identify the items, whose supersets may generate
PPHUIs. We ignore the extensions of items ij ∈ I whose TWU(ij) < minUtil.

ii. Pruning using PS:
We prune the itemsets based on the value of PS. Periodic-Support has

anti-monotonic property that is an itemset cannot have PS greater than PS
of its subsets. So, we can ignore extensions of those items/itemsets X, whose
PS(X) < minPS.

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 357

iii. Pruning using Remaining Utility:
We carry out the pruning based on the notion of Remaining Utility. We define

the notion of Remaining Utility and define the notion of utility list.

Definition 8 (Remaining utility). Let � be any total order on items from
I and X be the itemset. The remaining utility of X in a transaction Ttid is
defined as rU(X,Ttid) = Σi∈Ttid∧i�x∀x∈Xu(i, Ttid).

Definition 9 (Utility-list). Let � be any total order on items from I. The
utility-list of an itemset X in a database D is denoted as UL(X) and defined
as a set of tuples such that there is a tuple < tid, ts, iutil, rutil > for each
transaction Ttid containing X. The iutil element of a tuple is utility of X in
Ttid. i.e., u(X,Ttid). The rutil element of a tuple is the remaining utility (see
Definition 8).

Example 7. For this example � be lexicographical order i.e. (i � h � g � f �
e � d � c � b � a) Remaining utility of df in T4 is rU(df, T4) = u(g, T4) +
u(h, T4) = 2 × 100 + 3 × 200 = 800.

For pruning, we use Remaining utility measure to overestimate the utility
value of itemset. Let X be an itemset. If Σiutil + Σrutil < minUtil, where
iutil, rutil ∈ ul(X), X and its extensions are low utility. So, such patterns can
be pruned. The proof that the sum of iutil and rutil values of utility list an
itemset X is an upper bound on the utility of X and its extensions is provided
in [8].

The proposed PPHUI-Miner employs depth-first search of set enumeration
tree and prunes patterns based on preceding pruning techniques.

Algorithm 1. PPHUI-Miner
1: Input: TDB: a temporal database; UD: a external utility database; minUtil: a

user-specified minimum utility constraint; maxIAT : a user-specified period con-
straint; minPS: a user-specified periodic-support constraint.

2: Output: A set of partial periodic high-utility itemsets.
3: Let α denote the itemset that needs to be extended. Initially, set α = ∅;
4: Scan TDB to compute TWU({ij}), PS({ij}) for each items ij ∈ I;
5: I∗ = {ij |ij ∈ I ∧ TWU(ij) ≥ minUtil ∧ PS(ij) ≥ minPS};
6: Let us call I∗ as candidate items;
7: Let � be the total order of TWU descending values on candidate items;
8: Scan TDB to build the utility list(UL) of each item ij ∈ I∗;
9: Primary(α) = {ij |ij ∈ I∗ ∧ ∀x ∈ α, ij � x};

10: Search (UL, α, Primary(α), minUtil, maxIAT , minPS);

The Approach: PPHUI-Miner presented in Algorithms 1 and 2. We first scan
the database to measure TWU and PS values for all items within the database.
Table 3 shows the TWU amd PS values determined for all items after scanning
the database. Next, we prune the items in the list that have PS value less

358 T. Yashwanth Reddy et al.

than minPS and/or TWU value less than minUtil. The remaining items in the
list are considered as candidate items and sorted in TWU descending order
of items. After finding candidate items and establishing � total order (i.e.,
TWU descending order of items), the utility list (refer Definition 9) by scanning
the database second time. The Primary(α) contains the candidate items, which
are � than every item in α.

After building the utility lists of candidate items, we call recursive search with
α and UL utility list of candidate items. Next, we expand search by combining
α with Primary(α) one by one using DFS technique. If ix ∈ Primary(α), we
build utility list of β(α∪ ix). We check utility and periodic support of β from the
above utility list. Then we have two cases: (i) if β is PPHUI, then Primary(β)
is generated and β is further extended by calling recursive search (ii) if β is not
PPHUI, it may fail to satisfy either minPS or minUtil values. In the former
case (i.e., when β fails to satisfy minPS), we stop performing depth-first search
on α. In the latter case (i.e., when β fails to satisfy only minUtil), we calculate
its remaining utility value. If this value is greater than minUtil, we continue
exploring β same as in first case. If remaining utility of β is less than minUtil,
then we stop exploring that branch in the DFS tree.

Algorithm 2. The search procedure
1: Input: α: an itemset; UL: utility lists of candidate items; UL(α): utility list of α;

Primary(α): Extension items of α; minUtil; maxIAT ; minPS.
2: Output: A set of periodic high-utility itemsets.
3: for ∀ itemsets β=α ∪ ij , ij ∈ Primary(α); do
4: Calculate utility list of β from utility lists of α and ij ;
5: Calculate utility and periodic support of β from utility list above;
6: if U(β) + rU(β) ≥ minUtil ∧ PS(β) ≥ minPS then
7: if U(β) ≥ minUtil then
8: Output β;
9: end if

10: generate itemset Primary(β);
11: Search(β, UL, UL(β), Primary(β), minUtil, maxIAT , minPS);
12: end if
13: end for

5 Experimental Results

Since there exists no algorithm to find PPHUIs in temporal databases, we only
evaluate the proposed PPHUI-Miner algorithm using both synthetic and real-
world databases. Please note that we are not comparing the proposed PPHUI-
Miner algorithm against the Periodic High Utility Mining (PHM) algorithm. It
is because PHM employs different measures to find interesting itemsets.

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 359

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

#P
P

H
U

I

minUtil (*1000)
(a) Retail

PS=500
PS=800

PS=1000

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

#P
P

H
U

I

minUtil (*1000)
(b) T10I4D100K

PS=500
PS=1000
PS=1500

Fig. 1. PPHUI generated in Retail and T10I4D100k databases.

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

minUtil (*1000)
(a) Retail

PS=500
PS=800

PS=1000

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

minUtil (*1000)
(b) T10I4D100K

PS=500
PS=1000
PS=1500

Fig. 2. Time taken by PPHUI-miner for Retail and T10I4D100k databases.

The algorithms, PHM and PPHUI-Miner, were written in C++ and exe-
cuted on i5 1.5 GHz processor, with 16 GB ram. The experiments have been con-
ducted using both synthetic (T10I4D100K) and real-world (Retail) databases.
The Retail and T10I4D100K databases are available on SPMF toolkit.

The maxIAT value for Retail database is fixed at 500 and for T10I4D100K
database is fixed at 1000. We are not reporting results by varying maxIAT
value due page limitation. But in general, we observed that increase in maxIAT
increases number of PPHUIs generated [5].

Figure 1(a) and (b) show the number of PPHUIs generated by PPHUI-Miner
in different databases at different minUtil and minPS values. It can be observed
that increase in minUtil and/or minPS results in the decrease of PPHUIs
as many itemsets fail to satisfy the increased minUtil and/or minPS values.
Figure 2(a) and (b) show the runtime requirements of PPHUI-Miner in dif-
ferent databases at different minUtil amd minPS values. It can be observed
that increase in minUtil and/or minPS results in the decrease of runtime for

360 T. Yashwanth Reddy et al.

PPHUI-Miner algorithm. It is because many itemsets fail to satisfy the increased
minUtil and/or minPS values. Similar behaviour is observed in case of memory
consumption, but due page limitation we are not including graphs of memory
consumption. Overall, it can be observed from the results that PPHUI-Miner
algorithm can efficiently discover PPHUIs in very large databases even at low
minUtil and minPS values.

6 Conclusions and Future Work

In this paper, we have studied the problem of finding partial periodic high utility
itemsets in temporal databases. A fast algorithm has also been presented to find
all PPHUIs. The proposed approach employs pruning techniques to improve
efficiency (or computational cost). As a part of future work, we looking to develop
more efficient algorithms to discover Partial Periodic High Utility itemsets in
other databases like uncertain database.

References

1. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: PHM: mining periodic
high-utility itemsets. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp.
64–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1 6

2. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility item-
set mining using estimated utility co-occurrence pruning. In: Andreasen, T., Chris-
tiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502,
pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1 9

3. Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Hong, T., Fujita, H.: A survey of
incremental high-utility itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 8(2), 1–23 (2018)

4. Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Philip, S.Y.: HUOPM: high-
utility occupancy pattern mining. IEEE Trans. Cybern. (2019)

5. Uday Kiran, R., Yashwanth Reddy, T., Fournier-Viger, P., Toyoda, M., Krishna
Reddy, P., Kitsuregawa, M.: Efficiently finding high utility-frequent itemsets using
cutoff and suffix utility. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang,
S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 191–203. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16145-3 15

6. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: Proceedings of the 29th SSDBM, p. 30. ACM
(2017)

7. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing app-
roach for mining high utility itemsets. KAIS 38(1), 85–107 (2014)

8. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
Proceedings of the 21st ACM CIKM, pp. 55–64. ACM (2012)

9. Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of
high utility itemsets. In: PAKDD, pp. 689–695 (2005)

10. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-
frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–
253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 24

https://doi.org/10.1007/978-3-319-41561-1_6
https://doi.org/10.1007/978-3-319-08326-1_9
https://doi.org/10.1007/978-3-030-16145-3_15
https://doi.org/10.1007/978-3-642-01307-2_24

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 361

11. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. TKDE 25(8), 1772–1786 (2013)

12. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SIAM, pp. 482–486 (2004)

13. Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and
memory efficient algorithm for high-utility itemset mining. KAIS 51(2), 595–625
(2017)

14. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.: Efficient mining
of high-utility sequential rules. In: Perner, P. (ed.) MLDM 2015. LNCS (LNAI),
vol. 9166, pp. 157–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21024-7 11

https://doi.org/10.1007/978-3-319-21024-7_11
https://doi.org/10.1007/978-3-319-21024-7_11

Using Mandatory Concepts
for Knowledge Discovery
and Data Structuring

Samir Elloumi1(B), Sadok Ben Yahia1,2 , and Jihad Al Ja’am3

1 Faculty of Sciences of Tunis, University of Tunis El Manar, LR11ES14,
Tunis, Tunisia

samir.elloumi@fst.utm.tn
2 Department of Software Sciences, Tallinn University of Technology,

Akadeemia tee 15a, 12618 Tallinn, Estonia
3 Qatar University, Doha, Qatar

jaam@qu.edu.qa

Abstract. A data scientist could apply several machine learning
approaches in order to discover valuable knowledge from the data. While
applying several techniques, he might discover that some pieces of knowl-
edge are invariant, what ever the technique he used. We consider such
knowledge as mandatory concepts, i.e., unavoidable knowledge to be dis-
covered. As interesting property, a mandatory concept is characterized by
a non-shared isolated point, that relates pieces of data, e.g., an object to
a property, a document to specific words, an image to a specific topic, etc.
Hence, the isolated points allow to make the distinction between the con-
cepts. In this paper, we present a new approach for mandatory concepts
extraction by making a level-based properties composition. Hence, the
N-Composites isolated points are identified and constitute a key element
for mandatory concept localization. We experiment our new algorithm
by considering the coverage quality metrics.

Keywords: Mandatory formal concepts ·
N-Composites isolated points · Conceptual coverage

1 Introduction

Mandatory concepts (MC) play an important role in data mining as they allow
to discover regular structures from data, based on Formal Concept Analysis
(FCA). They are qualified as mandatory because they belong to any conceptual
coverage of a formal context (FCT) [3]. From Relational Algebra (RA) perspec-
tive, a MC contains at least one isolated point as introduced by Riguet [17]. As a
mathematical background, FCA and RA have been already combined and used
to discover regularities in data [11]. In fact, a FC represents the atomic regular
structure for decomposing a binary relation (BR). Riguet’s difunctional relation
[17], whose elements are defined as isolated points, describes invariant regular
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 362–375, 2019.
https://doi.org/10.1007/978-3-030-27618-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_27&domain=pdf
http://orcid.org/0000-0001-8939-8948
http://orcid.org/0000-0003-0989-4648
https://doi.org/10.1007/978-3-030-27618-8_27

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 363

structures that could be used for database decomposition and Textual Features
Selection (TFS) [4]. Furthermore, an isolated point belongs to a unique formal
concept (FC) that should exists in any conceptual coverage. Any FCA-based
knowledge discovery process considers necessarily such concepts. As a matter of
fact, several approaches have been proposed to locate the mandatory concepts in
a formal context and have proposed strategies to build the conceptual coverage.
In this paper we present alternatives for the conceptual coverage construction
and we discuss their main characteristics and features. Nevertheless, finding the
most efficient strategy remains a challenging perspective. As our main contri-
bution, we introduce the mathematical properties related to isolated points and
we propose a new approach for locating them while ensuring, level by level, the
FCT coverage. The remainder of this paper is organized as follows: In Sect. 2,
we present the mathematical background related to FCA and RA. In Sect. 3,
we present the related work for conceptual coverage building, particularly based
on isolated points. Our main contribution is thoroughly described in Sect. 4,
in which we present the N-composites isolated points properties as well as the
extraction algorithm. The results of the experimental evaluation are discussed
in Sect. 5 before concluding and sketching some issues of future work in Sect. 6.

2 Mathematical Background

FCA is a mathematical tool for analyzing data and formally representing concep-
tual knowledge [6]. FCA helps forming conceptual structures from data. These
structures such as: Closed itemset, Generic bases, Minimal Generators, etc., are
very useful for data mining [2]. In the following, we recall the basic concepts of
this theoretical framework.

2.1 FCA Background

Definition 1. Formal Context: A formal context (FCT) is a triplet K =
(X ,Y,R), where X represents a finite set of objects or transactions, Y is a
finite set of attributes (or items) and R is a binary (incidence) relation (i.e.,
R ⊆ X × Y). Each couple (x, y) ∈ R expresses that the object, or transaction,
x ∈ X contains the item y ∈ Y.

Example 1. Let’s consider the FCT presented in Table 1 where X =
{o0, o1, o2, o3, o4, o5, o6} is a set of objects and Y = {a, b, c, d, e, f, g, h} is a set
of properties.

Definition 2. Itemset: An itemset is a set of items included in Y and repre-
senting an object or a transaction. In the sequel, we denote by I the power set
of Y.

Definition 3. Galois Connection: We define two functions, f and g, sum-
marizing the links between subsets of objects and subsets of properties induced by
R. Thus,

364 S. Elloumi et al.

Table 1. A Binary relation illustrating a Formal Context

a b c d e f g h

o0 1 1 1 1 0 0 0 0

o1 0 0 0 1 1 0 0 0

o2 0 0 1 0 0 0 0 0

o3 1 1 0 0 0 1 1 0

o4 0 0 1 0 0 1 1 0

o5 0 0 0 0 0 1 1 0

o6 0 0 0 0 0 0 0 1

– f : P(X) → (P(Y) = I), f(X) = {y ∈ Y|∀x ∈ X, (x, y) ∈ R,X ⊆ X},
– g : (P(Y) = I) → P(X), g(Y) = {x ∈ X |∀y ∈ Y, (x, y) ∈ R, Y ⊆ Y}.

The operators f and g form a Galois connection between the sets I and P(X)
[1]. Consequently, both compound operators f ◦g and g ◦f are closure operators
defined respectively on P(X) and I. The operator f ◦ g generates closed subsets
of objects and g ◦ f generates closed subsets of properties or items called closed
itemsets [14]. Operators f and g satisfy for any subsets A,A1, A2 ⊆ X , and
B,B1, B2 ⊆ Y:

A1 ⊆ A2 ⇒ f(A2) ⊆ f(A1),
B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1),
A ⊆ g ◦ f(A),
B ⊆ f ◦ g(B).

Definition 4. Formal Concept: A formal concept C = (A,B) is a pair where
A ⊆ X , B ⊆ Y/A = g(B) and B = f(A). Set A is called the extent of C, and
set B is called its intent [6]. A formal concept is also called maximal rectangle
or a non-enlargeable rectangle [10,11].

Example 2. From the BR presented in Table 1, the following pair (A,B) =
({o3, o4, o5}, {f, g}) is a FC since we have f(A) = B and g(B) = A. The set
B is a closed itemset.

2.2 Difunctionality

In the sequel, we recall some important definitions related to the difunctionality,
as a closed notion to an uniformity aspect, that we may find or extract from
binary relations. We focus on difunctional and fringe relations. Let us consider
two sets X and Y, a BR R as subset of the Cartesian product of X and Y. We
start by presenting the following definitions:

Definition 5. Difunctional Relation [6]: Let R be a BR. R is said to be
difunctional iff R ◦ R−1 ◦ R = R where ◦ stands for the relative product and

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 365

R−1 is the inverse of R. R can be written in block diagonal form by suitably
rearranging rows and columns. This means that a difunctional relation presents
uniformity of the association of objects and properties.

Even though a BR is not always uniform as a difunctional, Riguet proved that
there is an interesting difunctional embedded in it, which is generally not empty
[17]. This relation is called a fringe relation defined as follows.

Definition 6. Fringe Relation [17]: A fringe relation is a difunctional rela-
tion embedded in a BR R and computed by R ◦ R−1 ◦ R ∩ R. It is denoted Rd.
Moreover, a fringe relation is composed by a set of points contained in just one
maximal rectangle inside the relation R which can play an important role in
different applications.

Example 3. In Table 2, we present the fringe relation corresponding to the BR R
illustrated in Table 1. The difunctionality aspect is observed in the fringe relation
as a sparse sub-relation.

Table 2. The Fringe relation corresponding to the BR presented in Table 1

e c f g h a b d

o0 0 0 0 0 0 0 0 0

o1 1 0 0 0 0 0 0 0

o2 0 1 0 0 0 0 0 0

o3 0 0 0 0 0 0 0 0

o4 0 0 0 0 0 0 0 0

o5 0 0 1 1 0 0 0 0

o6 0 0 0 0 1 0 0 0

The elements belonging to a fringe relation are called isolated points and their
usefulness are shown in extracting optimal coverage of formal contexts [4].

3 Related Work

The first attempt to define a lattice theory as a mathematical model was made
by Birkhoff [8] in the 1940s. An underlying deep concept is the notion of the
Galois connection that emerged in the early 40s after a long period of gestation
that started at the beginning of the previous century. Later, the researches have
demonstrated how concept lattices formalize conceptual structures by coding any
kind of duality, such as the duality between the intent and the extent of a con-
cept. Application in data analysis using this duality for analyzing questionnaire
data was done by Barbut and Monjardet in the domain of social sciences [1].

366 S. Elloumi et al.

The concept lattice, also named the “Galois lattice”, was promoted by Wille,
and then extended to FCA [6]. FCA mathematical settings have recently been
shown to provide a theoretical framework for the efficient resolution of many
practical problems, e.g., data mining, conceptual reasoning, software engineer-
ing and information retrieval, to cite but a few. The reader is referred to [16]
to a critical overview of the myriad of applicative cases of FCA. An interesting
problem is to find a representation of a formal context by a minimal number of
concepts. By considering only the isolated points, we may obtain an optimal, or
a reduced formal context representation reflecting the potentially most relevant
knowledge that might be discovered. In this respect, finding optimal coverage of
a binary relation is known to be NP-hard problem [7]. Nevertheless, we witness
a large number of work interested in tackling such a problem. Belkhiter et al.
[13] introduced an optimal rectangular decomposition of a binary relation as well
as an application to documentary databases. The introduced decomposition is
based on the election of optimal maximal rectangles (or equivalently formal con-
cepts) that achieve a maximal gain in storage space terms. Later Kcherif et al.
[11] introduced a rectangular decomposition approach based on the Riguet’s
difunctional relation [17]. The computation of this difunctional is reduced to
the determination of a set of isolated points allowing the determination of the
minimal set of rectangles covering a given binary relation. An extended isolated
points based version, called genCoverage, was proposed in [4] by considering the
extended context notion. Belohlavek and Vychodil [3] tackled the same issue
by attempting to solve the Boolean factor analysis problem by proposing a new
method of decomposition an n×m binary matrix I into a Boolean product A◦B
of an n × k binary matrix A and a k × m binary matrix B with k as small as
possible. Mouakher and Ben Yahia [12] have introduced a new approach, based
on a greedy algorithm, for the extraction of an optimal covering of a binary
relation. The latter approach relies on the formal concept lattice representation.
The guiding idea of Mouakher and Ben Yahia’s approach is that the cov-
erage should not be extracted regardless of the quality of knowledge that may
be drawn from it. That’s why the authors introduced a gain function based on
the assessment of the correlation of the intent part of pertinent formal concepts.
Generally, the number of formal concepts grows exponentially with the size of
the matrix (i.e. binary relation) [9]. Fortunately, the use of mandatory concepts,
allows to select an information with minimal loss set of few relevant concepts in
polynomial time. The extraction of the coverage of a binary relation R relies on
the use of the Fringe relation. It has the advantage of helping discover isolated
properties, e.g. those single properties belonging to only one concept. Moreover,
from the given coverage, we may regenerate any concept belonging to the lattice
of concepts. We may also generalize Galois Connection operators to be applied
on any conceptual minimal coverage. In this way, for information retrieval pur-
poses, it is possible to use parallel processing or cloud computing to make fast
cooperative algorithms. In the following, we introduce our new approach for
conceptual coverage construction based on N-composites isolated points.

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 367

4 Conceptual Coverage Based on N-Composites Isolated
Points

As our main contribution, we propose to use the isolated points for producing
progressively the conceptual coverage. More specifically, we propose to discover
the FC for different levels (l1, l2 . . . , lN) of i properties combinations, where
i ∈ [1, N] and N is the maximal number of properties to be combined together.
In practice, N = 2 means that the properties in the formal context are combined
2 by 2 in order to locate the 2-composite isolated points. For each level li we
show how the i-composite-isolated points are located and their corresponding FC
is extracted. In the following, we present necessary definitions related to isolated
points. We recall some of their useful properties and we present a novel approach
for obtaining N-composite ones.

Definition 7. Isolated Point [11]: Let R be a BR and Rd its associated fringe
relation. If p = (x, y) ∈ Rd then p is called an isolated point. An isolated point
belongs to only one formal concept and the latter is called an isolated concept.

Example 4. With respect to the BR presented in Table 1, the FC C = (A,B) =
({o3, o4, o5}, {f, g}) is an isolated one since (o5, g) is an isolated point.

Proposition 1. Let p = (x, y) be an isolated point in a FC C = (A,B). The
following properties are satisfied [5]:

g({y}) = A
f({x}) = B
f ◦ g({y}) = B
g ◦ f({x}) = A

Remark 1. From Proposition 1, particularly the expression f◦g({y}) = B means
that if an object o in X contains the property y, then it contains necessarily
all properties in B. Hence we have the implication y → B\{y}. The property
y could be selected as an interesting candidate representing all properties in B
since they are implied by y.

Definition 8. Composite Properties [5]: Let (X ,Y,R) be a FCT, and let
SP ⊆ Y, i.e., a subset of properties such that |SP | ≥ 2. A composition of
the properties of SP defines a new composite property, denoted by CPSP =
p1.p2 . . . pn, n = |SP |, pi ∈ SP, i = 1 . . . n, which can be added to the set Y. This
new property CPSP can be used to define an extended context as well as to select
a composite label for a formal concept when a single label cannot be assigned.

Definition 9. N-Composite Property: Let N be a positive integer and SP ⊆
Y. A N-Composite property denoted by NCPSP is a CPSP such that |SP | = N .

368 S. Elloumi et al.

Table 3. Composite properties extracted for different levels

N-composites properties Examples

1-composite {a}, {b}, {f}, {g}
2-composite {a, b}, {f, g}{d, e}
3-composite {a, b, c}, {f, g, h}

Definition 10. Expanded context: Let FCT = (X ,Y,R) be a Formal con-
text, and let NCPSP be a N-Composite property. NCPSP can be added to the
set Y to define an expanded context: EXP(FC,SP) = (X ,Y ∪NCPSP ,R′) where
R′ = R ∪ {(x,NCPSP)|(x, y) ∈ R,∀y ∈ SP}.
Definition 11. N-Composite property isolated point: Let FC = (X ,Y,R)
and NCPSP be a N-Composite property. NCPSP is a N-composite Isolated point
if there exists x ∈ X |(x,NCPSP) is an isolated point in the expanded context
EXP(FC,SP).

Remark 2. Why it is important to make properties composition?
There are two main reasons:

– Discover the hidden regularity in the data implied by the N-composite isolated
points.

– Discover additional isolated concepts in order to cover more objects in a
FCT. Note that for some applications, the coverage criteria is not the most
important aspect. We are more focusing on extracting FC without having
necessarily 100% of coverage percentage.

Remark 3. How could we make properties composition?
The isolated points have some important properties that would prevent any ran-
domized properties combination. In particular, we would check whether some
properties combinations are useless or not, mainly when isolated points are
involved. As depicted in Fig. 1, we distinguish three cases for isolated points
combination as illustrated by y1.y2:

– Case 1: The isolated points belong to two distinct concepts. Therefore the
intersection between the concepts is empty and it is useless to make the
isolated points composition. The Proposition 2 formalizes the case 1.

– Case 2: The composition y1.y2 is not empty and we would check if some
additional isolated points might be derived.

– Case 3: Even if y1.y2 is not empty, the composition is useless. In fact, the
isolated point (x2, y2) belongs to an already covered concept.

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 369

Fig. 1. Three cases for Isolated points compositions

Proposition 2. Let p1 = (x1, y1) and p2 = (x2, y2) be two isolated points in
two distinct concepts C1 = (A1, B1) and C2 = (A2, B2). Let SP = {y1, y2}
and 2CPSP its corresponding 2-composite property. The following property is
satisfied:

– If A1 ∩ A2 = ∅ then 2CPSP is empty, i.e., g({SP}) = ∅. Roughly speaking,
no 2-composite isolated point is derivable.

Remark 4. Two points worth noting need to be outlined:

– The previous proposition is important in properties composition algorithm.
Indeed, it shows that it is useless to make a composition between two isolated
points when they belong to two distinct formal concepts.

– As long as we increase the value of N, for the N-Composite properties, we
got, normally, new FC covering additional elements in the FCT. It depends
on how the algorithm considers the properties combination. Furthermore, in
practice, when the size of the data is high, it could be recommended to limit
the value of N to a small value (e.g., 2 or 3) even in the case of non-covering
the whole FCT.

4.1 Main Algorithm

The pseudo-code presented in Algorithm 1 reflects the steps we follow to compute
the N-composite isolated properties and to derive the conceptual coverage. First,
we identify the set of isolated points and their corresponding concepts. If the
formal context is not covered and the composition level N is not reached, then we
iterate on the remaining set of composite words and only keep those representing
the isolated points.

– In lines 2–8: we prepare the closures sets related to objects and properties
respectively.

– In lines 9–13: we locate the current level-composite isolated point w.r.t the
properties presented in Proposition 2. We update the coverage Cov and we
remove the covered elements from ListNonCovered.

– In lines 16–19: we combine (i+1) properties as new composite isolated points
candidates. We relate this part to the Remark 3 and to Proposition 2.

370 S. Elloumi et al.

Input: - FCT: Formal Context , N: Max Level
Output: - Cov: Coverage represented as a set of Formal Concepts

1 begin
2 Cov ← NULL
3 //Phase 1: prepare the hMaps OL and PCLosure (or dictionaries as

presented in Python)
4 OL ← {objId : [properties] for objId in FCT.objects }
5 PClosure ← {p: [g(p), f ◦ g(p)] for p in FCT.properties }
6 //Phase 2:
7 level ← 1
8 ListNonCovered ← OL while (level ≤ N) and

NotEmpty(ListNonCovered) do
9 composites ← ExtractCompositeIsolated(PClosure,level)

10 //For level 1, the composites correspond to the isolated points in the
Fringe relation

11 Cov ← Cov ∪ f ◦ g(composites)
12 ListNonCovered.Remove(Concepts(composites))
13 level ← level+1
14 PClosure.addNewLevel(level)
15 i ← 0
16 while (i ≤ PClosure.level) do
17 ListComposites ← Combine(i,PClosure,level)
18 PClosure.add(ListComposites)

19 return Cov

Algorithm 1: N-Composites Coverage Algorithm

Complexity Analysis. Regarding the complexity analysis, let n = |X | and
m = |Y| be respectively the number of objects and the number of properties in
the FCT.

– In phase 1, the hMaps preparation require n × m operations in to build OL
and PClosure.

– In phase 2, the algorithm performs the PClosure traversal and locates the
level-composite isolated points. In the worst case, we have M = max(N,T)
where N is the ‘Max Level’ specified by a user and T is the traversals num-
ber. Let us consider a composition level i for which |PClosure| = mi. The
PClosure property composition requires mi +(mi − 1)+ (mi − 2)+ . . .+1 =
mi(mi+1)

2 operations. Hence, there are
M∑

i=1

mi(mi+1)
2 operations.

4.2 Illustrative Example

Let us consider the FCT given by Table 1. Figure 2 depicts the different phases
of Algorithm 1. In phase 1, ‘PClosure’ and ‘OL’ were built. PClosure contains
the properties, their closures and their associated objects obtained by Galois

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 371

connection. OL indicates the properties for each object. In phase 2, we have two
levels. At level 1, the “ExtractCompositeIsolated()” routine returns the set of
1-Composite isolated points. Since, with the obtained formal concepts from the
isolated points, we do not cover the initial formal concepts, we move to combining
at Level 2. At that level, the “combine()” routine combines 2 properties, w.r.t the
Remark 3 and the Proposition 2, and returns the “ListComposites”. The latter
represents the new composite isolated points candidates. In the second iteration,
the “ExtractCompositeIsolated()” returns the 2-composite isolated points and
the context is entirely covered. The N-composite Algorithm output represents
the set of isolated concepts. Hence, we have a partial-total FCT coverage, so it
informs about the coverage percentage; As we can see in Fig. 2, at level 1, the
1-composite isolated points {(o2, c), (o1, e), {(o5, g), (o5, f)}, (o6, h)} are associ-
ated, respectively, to the formal concepts {C1, C2, C4, C6}. They cover 12/17 or
(70.58%) elements in the FCT given by Table 1. At level 2, the 2-composite iso-
lated points are associated to the additional concepts {C0, C3, C5}. Hence, we
achieve 100% coverage.

Fig. 2. Illustrative example

372 S. Elloumi et al.

5 Experimental Results

Our results show the efficiency of the proposed algorithm. The implementation
of the solution was realized and executed on a laptop i7-3610 QM 2.3 GHz, 8 GB
of RAM, and Windows 7. The results concern some Benchmark datasets
furnished by the UC Irvine Machine Learning Database Repository1. They are
used extensively within the data mining and machine learning communities.
Moreover, they are considered dense (i.e., yielding a large number of formal con-
cepts even for a small number of objects and attributes). In Table 4, we present
the number of N-composite isolated points, the execution time and the coverage
percentage while increasing the composition level for different data sets. At level
1, the number of N-composite isolated points varies from 0 to 10. This reduced
value reflects the absence of isolated points in the dense data sets. As long as
we make the properties composition by 2 up to 5, the hidden data regularity is
discovered and the concepts number increases. In most cases, starting from the
level 3, more than 80% of the data is covered. In terms of temporal complexity,
we remark that the time increases as the level does. This is due to the multi-
ple combinations between properties to be considered in order to discover the
N-composites isolated points. At level 1, the execution time reflects one data
set traversal which corresponds to the results cited in the MingenCoverage [4].
Starting form level 2, the execution time obtained for 100% coverage is slightly
reduced which is explained by the reduction of the combination between prop-
erties as indicated in Proposition 2. In terms of coverage quality compared with
kcherif [11] and genCov [5] approaches, Fig. 3 shows the number of formal
concepts (for 100% coverage), the execution time, the number of concepts and
the coupling-cohesion [15] Fig. 3 shows that the number of generated concepts
of N-composites is slightly less great rather than that flagged out by GenCov
[5] except for the post-operative dataset. This result matches the predicted
one since both approaches build the coverage by considering the isolated points.
The difference between them is caused by the traversal strategy of the composed
properties, to be identified as elements in isolated points. In the GenCov pro-
cedure, the composed properties were generated according to the sorted matrix
rows elements. Nevertheless, in N-composites the composed properties were
incrementally generated as isolated points candidates, level by level. Regard-
ing the concepts number, we observe that the N-composites and GenCov
are much close to each other. However, N-composites outperform the other
approaches for different datasets in terms of execution time. The coupling and
cohesion might reflect the robustness of different methods. At a glance, we can
see that most values are overlapping for reduced density datasets. As long as
the density is rising N-composites slightly outperforms the other approaches
in terms of cohesion. Besides, the obtained values for the coupling are still the
same except for the operative datasets known for its high density. It is important
to mention that the obtained results may not outperform all those reported in
the surveyed literature, yet they appear to be adhering to acceptable standards.

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 373

Fig. 3. Comparison between N-Composites and the other approaches

Table 4. Feature evolution w.r.t. the coverage percentage

Level #N-Composites Time (ms) Coverage percentage

Lenses 1 0 - -

2 4 29 16.66%

3 11 34 45.83%

4 24 33 100.00%

Car 1–3 0 - 00.00%

4 1724 668 100.00%

Hayes-Roth 1 0 - -

2 52 70 50.75%

3 78 79 100.00%

Lung-Cancer 1 10 160 31.00%

2 32 1154 100.00%

Dermatology 1 0 - -

2 155 2470 42.62%

3 332 26493 91.25%

4 363 35268 99.72%

5 364 36899 100.00%

Zoo 1 4 79 19.60%

2 33 94 61.71%

3 47 119 74.70%

4 52 133 99.65%

374 S. Elloumi et al.

Nevertheless, the proposed approach often gives the minimal coverage of the
binary relation. It also provides labels for all formal concepts, which could be
elementary or composite ones.

6 Conclusion and Perspectives

We have introduced the notion of N-composites isolated points as a key element
for discovering mandatory concepts and building a formal context conceptual
coverage. Since the mandatory concepts should exist in any conceptual cover-
age, naturally we proposed to locate them at first. We proposed to locate these
mandatory concepts while increasing the composition level. From the experimen-
tal results, we have concluded that a reduced value of N (between 1 and 4) allows
extracting a high FCT coverage percentage, e.g., more than 90% for N = 4. The
main challenge for this approach is to reduce the algorithm complexity by mini-
mizing the properties combination while ensuring a high coverage quality. For the
near future, we started implementing a parallel version of N-composites within
the spark framework and we are investigating its application in Text Analytics.

Acknowledgement. This work was made possible by the NPRP grant #10-0205-
170346 from the QNRF (Qatar) and to the Astra funding program Grant 2014-
2020.4.01.16-032.

References

1. Barbut, M., Monjardet, B.: Ordre et classification. Algèbre et Combinatoire.
Hachette, Tome II (1970)

2. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Lloyd, J., et al.
(eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44957-4 65

3. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–10 (2010)

4. Elloumi, S., Ferjani, F., Jaoua, A.: Using minimal generators for composite isolated
point extraction and conceptual binary relation coverage: application for extracting
relevant textual features. Inform. Sci. 336, 129–144 (2016)

5. Ferjani, F., Elloumi, S., Jaoua, A., Ben Yahia, S., Ismail, S., Ravan, S.: Formal
context coverage based on isolated labels: an efficient solution for text feature
extraction. Inform. Sci. 188, 198–214 (2012)

6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completness. W. H. Freeman & Co., New York (1979)

8. Birkhoff, G.: Lattice Theory, 1st edn. American Mathematical Society, Providence
(1965)

9. Godin, R., Mineau, G.W., Missaoui, R., Mili, H.: Méthodes de Classification Con-
ceptuelle Basées sur le Treillis de Galois et Applications. Revue d’intelligence Arti-
ficielle 9(2), 105–137 (1995)

https://doi.org/10.1007/3-540-44957-4_65
https://doi.org/10.1007/978-3-642-59830-2

Using Mandatory Concepts for Knowledge Discovery and Data Structuring 375

10. Jaoua, A., Elloumi, S., Hasnah, A., Jaam, J., Nafkha, I.: Discovering regularities in
databases using canonical decomposition of binary relations. J. Relational Methods
Comput. Sci. (JoRMiCS) 1, 217–234 (2004)

11. Kcherif, R., Gammoudi, M., Jaoua, A.: Using difunctional relations in information
organization. Inf. Sci. 125, 153–166 (2000)

12. Mouakher, A., Ben Yahia, S.: Anthropocentric visualisation of optimal cover of
association rules. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proceedings of the 7th
International Conference on Concept Lattices and Their Applications (CLA 2010),
Sevilla, Spain, pp. 211–222, October 2010

13. Bourhfir, N.B., Gammoudi, C., Jaoua, A., Thanh, N.L., Reguig, M.: Décomposition
rectangulaire optimale d’une relation binaire: application aux bases de données
documentaires. INFOR Inf. Syst. Oper. Res. 32(1), 33–54 (1994)

14. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inform. Syst. J. 24(1), 25–46 (1999)

15. Paul, G., Scott, D.: New coupling and cohesion metrics for evaluation of software
component reusability. In: Proceedings of the 9th International Conference for
Young Computer Scientists (ICYCS 2008), Hunan, China, pp. 1181–1186, 18–21
November 2008

16. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis
in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16),
6538–6560 (2013). https://doi.org/10.1016/j.eswa.2013.05.009

17. Riguet, J.: Relations binaires, fermetures et correspondances de galois. Bull. Soc.
Math. France 78, 114–155 (1948)

https://doi.org/10.1016/j.eswa.2013.05.009

Topological Data Analysis with ε-net
Induced Lazy Witness Complex

Naheed Anjum Arafat1(B), Debabrota Basu2, and Stéphane Bressan1

1 School of Computing, National University of Singapore, Singapore, Singapore
naheed anjum@u.nus.edu

2 Department of Computer Science and Engineering,

Chalmers University of Technology, Göteborg, Sweden

Abstract. Topological data analysis computes and analyses topological
features of the point clouds by constructing and studying a simplicial rep-
resentation of the underlying topological structure. The enthusiasm that
followed the initial successes of topological data analysis was curbed by
the computational cost of constructing such simplicial representations.
The lazy witness complex is a computationally feasible approximation of
the underlying topological structure of a point cloud. It is built in refer-
ence to a subset of points, called landmarks, rather than considering all
the points as in the Čech and Vietoris-Rips complexes. The choice and
the number of landmarks dictate the effectiveness and efficiency of the
approximation.

We adopt the notion of ε-cover to define ε-net. We prove that ε-net,
as a choice of landmarks, is an ε-approximate representation of the point
cloud and the induced lazy witness complex is a 3-approximation of
the induced Vietoris-Rips complex. Furthermore, we propose three algo-
rithms to construct ε-net landmarks. We establish the relationship of
these algorithms with the existing landmark selection algorithms. We
empirically validate our theoretical claims. We empirically and compar-
atively evaluate the effectiveness, efficiency, and stability of the proposed
algorithms on synthetic and real datasets.

1 Introduction

Topological data analysis computes and analyses topological features of gener-
ally high-dimensional and possibly noisy data sets. Topological data analysis
is applied to eclectic domains namely shape analysis [6], images [2,22], sensor
network analysis [8], social network analysis [3,24,25,27], computational neuro-
science [21], and protein structure study [19,30].

The enthusiasm that followed the initial successes of topological data anal-
ysis was curbed by the computational challenges posed by the construction of
an exact simplicial representation, the Čech complex, of the point cloud. A sim-
plicial representation facilitates computation of basic topological objects such
as simplicial complexes, filtrations, and persistent homologies. Thus, researchers

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 376–392, 2019.
https://doi.org/10.1007/978-3-030-27618-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_28

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 377

devised approximations of the Čech complex as well as its best possible approxi-
mation the Vietoris-Rips complex [7,10,26]. One of such computationally feasible
approximate simplicial representation is the lazy witness complex [7]. The lazy
witness complex is built in reference to a subset of points, called landmarks. The
choice and the number of landmarks dictate the effectiveness and efficiency of
the approximation.

We adopt the notion of ε-cover [18] from analysis to define and present the
notions of ε-sample, ε-sparsity, and ε-net (Sect. 4) to capture bounds on the
loss of topological features induced by the choice of landmarks. We prove that
an ε-net is an ε-approximate representation of the point cloud with respect to
the Hausdorff distance. We prove that the lazy witness complex induced by an
ε-net, as a choice of landmarks, is a 3-approximation of the induced Vietoris-
Rips complex. ε-net allows us to provide such approximation guarantees for lazy
witness complex (Sect. 4.2) which was absent in the literature. Furthermore,
we propose three algorithms to construct ε-net as landmarks for point clouds
(Sect. 5). We establish their relationship with the existing landmark selection
algorithms, namely random and maxmin [7]. We empirically and comparatively
show that the size of the ε-net landmarks constructed by the algorithms varies
inversely with ε and agrees with the known bound on the size of ε-net [20].

We empirically and comparatively validate our claim on the topological
approximation quality of the lazy witness complex induced by the ε-net land-
marks (Sect. 6). Furthermore, we empirically and comparatively validate the
effectiveness, efficiency and stability of the proposed algorithm on representative
synthetic point clouds as well as a real dataset. Experiments confirm our claims
by showing equivalent effectiveness of the algorithms constructing ε-net land-
marks with the existing maxmin algorithm. We also show the ε-net landmarks
to be more stable than those selected by the algorithms maxmin and random
as ε-net incurs narrower confidence band in the persistent landscape topological
descriptor. We conclude (Sect. 7) with the theoretical and experimental pieces
of evidence that validate the ε-nets constructed as a stable and effective way to
construct landmarks and to induce lazy witness complexes.

2 Related Works

Applications of TDA. TDA is applied in different domains mostly on rela-
tively small datasets and up to dimension 2 due to computational intractability of
the popular Čech and Vietoris-Rips complexes. [6] computed homology classes at
dimension 0 for their proposed tangential filtration of point clouds of handwritten
digits for image classification (dataset size ∼69–294). [28] used the persistence
pairs at dimension 0 for segmenting mesh on benchmark mesh segmentation
datasets (size ∼50000). Researchers applying TDA to network analysis focus
on characterising networks using features computed from persistence homology
classes. [3] and [25] computed persistence homology at dimension 0,1 and 2 of
the clique filtration to study weighted collaboration networks (size ∼36000) and
weighted networks from different domains (size ∼54000) respectively. In bio-
logical networks, [11] clustered gene co-expression networks (size ∼400) based

378 N. A. Arafat et al.

on distances between Vietoris-Rips persistence diagram computed on each net-
work. In molecular biology, persistent homology reveals different conformations
of proteins [19,30] based on the strength of the bonds of the molecules.

Input
Data

Computation of
Topological

Representations

Aggregation of
Representations

Applications Representation of
Topological Features

Computation of
Topological Features

Topological
Representations

Persistent
Homology
Classes

Topological
Descriptors

Filtration

Fig. 1. Components of topological data analysis.

Topological Approximation. Computational infeasibility of the Čech complex
and Vietoris-Rips complex motivates the development of approximate simplicial
representations such as the lazy witness complexes, sparse-Rips complex [26]
and graph induced complex (GIC) [10]. Sparse-Rips complex [26] perturbs the
distance metric in such a way that when the regions covered by a point can be
covered by its neighbouring points, that point can be deleted without changing
the topology. Given a graph constructed on a point cloud as input, the graph
induced complex is a simplicial complex built on a subset of vertices, where
the vertices of a k-simplex are the nearest neighbours of a clique-vertices of a
k-clique [10]. Due to their computational benefits, lazy witness complex and
graph induced complexes have found applications in studying natural image
statistics [7] and image classification [9].

Applications of ε-net. The concept of ε-net is a standard concept in analysis
and topology [18] originating from the idea of (δ, ε)-limits formulated by Cauchy.
Nets have been used in nearest-neighbor search [20]. [15] proposed the Net-tree
data structure to represent ε-nets at all scales of ε. Net-tree is used to construct
approximate well-separated pair decompositions [15] and approximate geometric
spanners [15]. The simplicial complexes in the graph induced complex are nets.
Sparse-Rips filtration constructs a net-tree on the point-cloud to decide which
neighbouring points to delete. [14] used ε-net for manifold reconstruction.

3 Topological Data Analysis

Topological data analysis is the study of computational models for efficient and
effective computation of topological features, such as persistent homology classes,
from different datasets, and representation of the topological features using dif-
ferent topological descriptors, such as persistence barcodes, for further analysis
and application [12,23]. In this section, we represent the computational blocks
of topological data analysis in Fig. 1 and further describe each of the blocks.

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 379

Topological data analysis computes the topological features, such as per-
sistent homology classes, by computing the topological objects called simpli-
cial complex for a given dataset. A simplicial complex is constructed using
simplices. Formally, a k-simplex is the convex-hull of (k + 1) data points. For
instance, A 0-simplex [v0] is a single point, a 1-simplex [v0v1] an edge, and a
2-simplex [v0v1v2] a filled triangle. A k-homology class is an equivalent class
of such k-simplicial complexes that cannot be reduced to a lower dimensional
simplicial complex [12]. In order to compute the k-homology classes, a practi-
tioner does not have direct access to the underlying space of the point cloud and
it is combinatorially hard to compute the exact simplicial representation of Čech
complex [31]. Thus, different approximations of the exact simplicial representa-
tion are proposed: Vietoris-Rips complex [17] and lazy witness complex [7].

The Vietoris-Rips complex Rα(D), for a given dataset D and real num-
ber α > 0, is an abstract simplicial complex representation consisting of such
k-simplices, where any two points vi, vj in any of these k-simplices are at dis-
tance at most α. Vietoris-Rips complex is the best possible (

√
2-)approximation

of the Čech complex, computable with present computational resources, and is
extensively used in topological data analysis literature [23]. Thus, we use the
Vietoris-Rips complex as the baseline representation in this paper. In the worst
case, the number of simplices in the Vietoris-Rips complex grows exponentially
with the number of data points [23,31]. Lazy witness complex [7] approximates
the Vietoris-Rips complex by constructing the simplicial complexes over a sub-
set of data points L, referred to as the landmarks. Formally, given a positive
integer ν and real number α > 0, the lazy witness complex LWα(D,L, ν) of
a dataset D is a simplicial complex over a landmark set L where for any two
points vi, vj of a k-simplex [v0v1 · · · vk], there is a point w whose (dν(w) + α)-
neighborhood1 contains vi, vj . In the worst case, the size of the lazy witness
complexes grows exponentially with the number of landmarks. Less number of
landmarks facilitates computational acceleration while produces a bad approx-
imation of Vietoris-Rips with loss of topological features. Thus, the trade-off
between the approximation of topological features and available computational
resources dictates the choice of landmarks.

As the value of filtration parameter α increases, new simplices arrive and
the topological features, i.e. the homology classes, start to appear. Some of the
homology classes merge with the existing classes in a subsequent simplicial com-
plex, and some of them persist indefinitely [12]. In order to capture the evolution
of topological structure with scale, topological data analysis techniques construct
a sequence of simplicial complex representations, called a filtration [12], for an
increasing sequence of α’s. In a given filtration, the persistence interval of a
homology class is denoted by [αb, αd), where αb and αd are the filtration val-
ues of its appearance and merging respectively. The persistence interval of an
indefinitely persisting homology class is denoted as [αb,∞).

Topological descriptors, such as persistence diagram [12] and persistence
landscapes [1] represent persistence intervals as points and functions respectively

1 dν(w) is the distance from point w ∈ D to its ν-th nearest point in L.

380 N. A. Arafat et al.

in order to draw qualitative and quantitative inference about the topological fea-
tures. Distance measures between persistent diagrams such as the bottleneck and
Wasserstein distances [12] are often used to draw quantitative inference. The
bottleneck distance between two diagrams is the smallest distance d for which
there is a perfect matching between the points of the two diagrams such that any
pair of matched points are at distance at most d [12]. The Wasserstein distance
between two diagrams is the cost of the optimal matching between points of the
two diagrams [12].

4 ε-net

As we discussed in Sect. 3, topological data analysis of a dataset begins with
the computation of simplicial complex representations. Though Vietoris-Rips is
the best possible approximation of the Čech complex, it incurs an exponential
computational cost with respect to the size of the point cloud. Thus, lazy wit-
ness complex is often used as a practical solution for scalable topological data
analysis. Computation of lazy witness complex is dependent on the selection of
landmarks. Selection of landmarks dictates the trade-off between effectiveness,
i.e. the quality of approximation of topological features, and efficiency, i.e. the
computational cost of computing the lazy witness complex.

ε-cover is a construction used in topology to compute the inherent proper-
ties of a given space [18]. In this paper, we import the concept of ε-cover to
define ε-net of a point cloud. We use the ε-net of the point cloud as the land-
marks for constructing lazy witness complex. We show that ε-net, as a choice
of landmarks, has guarantees such as being an ε-approximate representation of
the point cloud, its induced lazy witness complex being a 3-approximation of its
induced Vietoris-Rips complex, and also bounding the number of landmarks for
a given ε. These guarantees are absent for the other existing landmark selection
algorithms (Sect. 5) such as random and maxmin algorithms.

4.1 ε-net of a Point Cloud

ε-cover is a set of subsets of a point cloud in an Euclidean space such that these
subsets together cover the point cloud, but none of the subsets has a diameter
more than ε.

Definition 1 (ε-cover [18]). An ε-cover of a point cloud P is the set of Pi’s
such that Pi ⊆ P , P = ∪iPi, and diameter2 of Pi is at most ε ≥ 0 for all i.

When the sets in the 2ε-cover of P are Euclidean balls of radius ε, the set of
centres of the balls is termed as an ε-sample of set P .

Definition 2 (ε-sample [14]). A set L ⊆ P is an ε-sample of P if the collection
{Bε(x) : x ∈ L} of ε-balls of radius ε covers P , i.e. P = ∪x∈LBε(x).
2 The diameter diam(Pi) of a set Pi ⊆ P is defined as the largest distance d(x, y)

between any two points in x, y ∈ Pi.

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 381

According to the definition of ε-sample, P is an ε-sample of itself for ε = 0. For
decreasing further computational expense, it is desirable to have an ε-sample is
sparse that means it contains as less number of points as possible. An ε-sparse
subset of P is a subset where any two points are at least ε apart from each other.

Definition 3 (ε-sparse). A set L ⊂ P is ε-sparse if for all x, y ∈ L, d(x, y) > ε.

An ε-net of set P is an ε-sparse subset of P which is also an ε-sample of P .

Definition 4 (ε-net [18]). Let (P, d) be a metric space and ε ≥ 0. A subset
L ⊂ P is called an ε-net of P if L is ε-sparse and an ε-sample of P .

4.2 Properties of ε-nets

ε-net of a point cloud comes with approximation guarantees irrespective of its
algorithmic construction. An ε-net of a point cloud of diameter Δ in Euclidean
space RD is an ε-approximation of the point cloud in Hausdorff distance. The lazy
witness complex induced by an ε-net is a 3-approximation of the Vietoris-Rips
complex on that ε-net. Furthermore, the size of an ε-net is at most (Δ

ε)θ(D) [20].
Here, we establish the first two approximation guarantees of ε-net theoretically.

Point-Cloud Approximation Guarantee of an ε-net. We use Lemma 1 to
prove that the ε-net of a point cloud P is an ε-approximate representation of
that point cloud in Hausdorff distance.

Lemma 1. Let L be an ε-net of point cloud P . For any point p ∈ P , there exists
a point q ∈ L such that the distance d(p, q) ≤ ε.

Theorem 1. The Hausdorff distance between the point cloud P and its ε-net
L ⊆ P is at most ε.

Proof. For any l ∈ L, there exists a point p ∈ P such that d(l, p) ≤ ε, by defini-
tion of Bε(l). Hence, minl∈L d(l, p) ≤ ε, and thus, maxp∈P minl∈L d(l, v) ≤ ε.
For any p ∈ P , there exists a landmark l ∈ L such that d(l, p) ≤ ε, by
Lemma 1. Thus, maxl∈L minp∈P d(l, p) ≤ ε. Hence the Hausdorff distance
dH(P,L) between P and L, defined as the maximum of maxl∈L minp∈P d(l, p)
and maxp∈P minl∈L d(l, p) is bounded by ε.

Topological Approximation Guarantee of an ε-net Induced Lazy Wit-
ness Complex. In addition to an ε-net being an ε-approximation of the point-
cloud, we prove that the lazy witness complex induced by the ε-net landmarks
is a good approximation (Theorem 2) to the Vietoris-Rips complex on the land-
marks. This approximation ratio is independent of the algorithm constructing
the ε-net. As a step towards Theorem 2, we state Lemma 2 that follows from
the definition of the lazy witness complex and ε-sample. Lemma 2 establishes
the relation between 1-nearest neighbour of points in an ε-net.

382 N. A. Arafat et al.

Lemma 2. If L is an ε-net landmark of point cloud P , then the distance d(p, p′)
from any point p ∈ P to its 1-nearest neighbour p′ ∈ P is at most ε.

Theorem 2 shows that the lazy witness complex induced by the landmarks in
an ε-net is a 3-approximation of the Vietoris-Rips complex on those landmarks
above the value 2ε of filtration parameter.

Theorem 2. If L is an ε-net of the point cloud P for ε ∈ R
+, LWα(P,L, ν = 1)

is the lazy witness complex of L at filtration value α, and Rα(L) is the Vietoris-
Rips complex of L at filtration α, then Rα/3(L) ⊆ LWα(P,L, 1) ⊆ R3α(L) for
α ≥ 2ε.

Proof. In order to prove the first inclusion, consider a k-simplex σk =
[x0x1 · · · xk] ∈ Rα/3(L). For any edge [xixj] ∈ σk, let wt be the point in P
that is nearest to the vertices of [xixj] and wlog, let the point corresponding
to that vertex be xj . Since wt is the nearest neighbour of xj , by Lemma 2,
d(wt, xj) ≤ ε ≤ α

2 . Since [xixj] ∈ Rα/3, d(xi, xj) ≤ α
3 < α

2 . By triangle
inequality, d(wt, xi) ≤ α

2 + α
2 ≤ α. Hence, xi is within distance α from wt.

The α-neighbourhood of point wt contains both xi and xj . Since d1(wt) > 0,
the (d1(wt) + α)-neighbourhood of wt also contains xi, xj . Therefore, [xixj] is
an edge in LWα(P,L, 1). Since the argument is true for any xi, xj ∈ σk, the
k-simplex σk ∈ LWα(P,L, 1).

In order to prove the second inclusion, consider a k-simplex σk =
[x0x1 · · · xk] ∈ LWα(P,L, 1). Therefore, by definition of lazy witness complex,
for any edge [xixj] of σk there is a witness w ∈ P such that, the (d1(w) + α)-
neighbourhood of w contains both xi and xj . Hence, d(w, xi) ≤ d1(w)+α ≤ ε+α
(by Lemma 2) ≤ 3α/2. Similarly, d(w, xj) ≤ 3α/2. By triangle inequality,
d(xi, xj) ≤ 3α. Therefore, [xixj] is an edge in R3α(L). Since the argument is
true for any xi, xj ∈ σk, the k-simplex σk ∈ R3α(L).

Discussion. Theorem 2 implies that the interleaving of lazy witness filtration
LW = LWα(L) and the Vietoris-Rips filtration R = Rα(L) occurs when α > 2ε.
As a consequence, the weak-stability theorem [4] implies that the bottleneck dis-
tance between the partial persistence diagrams Dgm>2ε(LW) and Dgm>2ε(R)
is upper bounded by 3 log 3. In Sect. 6, we empirically validate this bound.

Size of an ε-net. The size of an ε-net depends on ε, the diameter of the point-
cloud and the dimension of the underlying space [15,20]. If a point cloud P ⊂ R

D

has diameter Δ, the size of an ε-net of P is (Δ
ε)θ(D) [20]. The size of an ε-net

does not depend on the size of the point cloud. In Sect. 6, we empirically validate
this bound for the ε-net landmarks generated by the proposed algorithms. The
framework of ε-net along with its approximation guarantees lead to the question
of its algorithmic construction as landmarks.

5 Construction of an ε-net

The näıve algorithm [16] to construct an ε-net selects the first point l1 uniformly
at random. In i-th iteration, it marks the points at a distance less than ε from

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 383

the previously selected landmark li−1 as covered, and selects the new point
li from the unmarked points arbitrarily until all points are marked [15]. The
fundamental principle is to choose, at each iteration, a new landmark from the
set of yet-to-cover points such that it retains the ε-net property. We propose
three algorithms where this choice determines the algorithm.

5.1 Three Algorithms: ε-net-rand, ε-net-maxmin, and (ε, 2ε)-net

The algorithm ε-net-rand, at each iteration, marks the points at a distance
less than ε from the previously chosen landmark as covered and chooses a new
landmark uniformly at random from the unmarked points. The algorithm ε-
net-maxmin, at each iteration, marks the points at a distance less than ε from
the previously chosen landmark as covered and chooses the farthest unmarked
point from the already chosen landmarks. It terminates when the distance to
the farthest unmarked point is no more than ε. The algorithm (ε, 2ε)-net, at
each iteration, marks the points at a distance less than ε from the previously
chosen landmark as covered, and chooses a landmark uniformly at random from
those unmarked points whose distance to the previously chosen landmark is at
most 2ε. If there are no unmarked points at a distance in-between ε and 2ε from
the previous landmark, it searches for unmarked points at a distance between
2ε and 4ε, 4ε and 8ε, and so on, until it either finds one to continue as before or
all points are marked. The pseudo-code for (ε, 2ε)-net is in Algorithm 1.

(ε, 2ε)-net attempts to cover the point-cloud with intersecting balls of radius
ε, whereas ε-net-maxmin attempts to cover the point-cloud with non-intersecting
balls of radius ε. ε-net-rand does not maintain any invariant.

ε-net-rand and (ε, 2ε)-net have the time-complexity of O(1
εD) and

O(1
εD log(1ε)) respectively. Their run-time does not depend on the size of the

input point cloud. On the other hand, the run-time of ε-net-maxmin depends
on the size of the point-cloud as it has to search for the farthest point from
the landmarks at each iteration. On a point cloud of sinze n, ε-net-maxmin has
O(n

εD) time-complexity.

5.2 Connecting ε-net to Random and Maxmin Algorithms

De Silva et al. [7] proposed random and maxmin algorithms for point clouds.

Random. Given a point cloud P , the algorithm random selects |L| points uni-
formly at random from the set of points P . This algorithm is closely related to
ε-nets. Given the number of landmarks K > 1, the set of landmarks selected
by random is δ-sparse where δ is the minimum of the pairwise distances among
the landmarks. However, the same choice of K may not necessarily make the
landmarks a δ-sample of the point cloud.

The ε-net-rand algorithm is a modification of random that takes ε as a param-
eter instead of K and use ε to put a constraint on the domain of random choices.
It continues to select landmarks until all points are marked to ensure the ε-
sample property. The proof sketch of the fact that the constructed landmarks
are ε-sparse and ε-sample is as follows:

384 N. A. Arafat et al.

Algorithm 1 Algorithm (ε, 2ε)-net
Input: Point cloud P = {p1, p2, · · · , pn}, n × n Distance matrix D, parameter ε.
Output: Set of Landmarks L.
1: Select the initial landmark l1 uniformly at random from P .
2: Initialize L = {l1}.
3: Let N1

(ε,2ε) be the set of points at a distance between ε and 2ε from l1.

4: Initialize candidate landmarks C1 = N1
(ε,2ε).

5: i = 1.
6: repeat
7: Let N i

≤ε be the set of points at a distance less than ε from li.
8: Mark all the points in N i

≤ε as covered.
9: Let Cu

i be the set of unmarked points in Ci.
10: if Cu

i is empty then
11: Find the first δ = [1, 2, · · · , log(�Δ/2ε�)] for which N i

(2δε,2δ+1ε) contains any
unmarked point.

12: Set Ci = Ci ∪ N i
(2δε,2δ+1ε).

13: end if
14: Select li+1 uniformly at random from Cu

i .
15: Insert li+1 to L.
16: Ci+1 = Ci ∪ N i+1

(ε,2ε).
17: i = i + 1.
18: until all points are marked

Proof. The ε-net-rand algorithm does not terminate until all points are marked
as covered. Hence the set of landmarks selected by ε-net-rand is an ε-sample,
since otherwise, there would have been unmarked points. The pairwise distance
between any two landmarks cannot be less than ε; otherwise, one of them would
have been marked by the other and the marked point would not be a landmark.
Hence the set landmarks selected by ε-net-rand is ε-sparse.

Maxmin. The maxmin algorithm selects the first landmark l1 uniformly at
random from the set of points, P . Following that; it selects the point which
is furthest to the present set of landmarks at each step till a given number of
landmarks, say |L|, are chosen. If Li−1 = {l1, l2, . . . , li−1} is the set of already
chosen landmarks, it selects such a point u ∈ P\Li−1 as the ith landmark that
maximises the minimum distance from the present set of landmarks Li−1. Mathe-
matically, li � arg maxu∈P\Li−1

minv∈Li−1 d(u, v). The maxmin algorithm selects
landmarks such that the point cloud is covered as vastly as possible.

The maxmin algorithm is closely related to ε-net. Given the number of land-
marks K > 1, the set of landmarks selected by maxmin is δ-sparse where δ
is the minimum of the pairwise distances among the landmarks chosen. How-
ever, that choice of K may not necessarily make the landmarks a δ-sample of
the point cloud. The ε-net-maxmin algorithm is a modification of maxmin that
takes ε as a parameter instead of K and uses ε to control sparsity among the

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 385

landmarks. It terminates when the minimum of the pairwise distances among
the landmarks drops below ε to ensure the ε-sample property of the landmarks
chosen. The proof sketch of the resulting landmarks being ε-sparse and ε-sample
is as follows:

Proof. The ε-net-maxmin algorithm, at each iteration, selects only that point
as a landmark whose minimum distance to the other landmark points is the
largest among all unmarked points. If such a point’s minimum distance to the
other landmark points is no more than ε, the algorithm terminates. Hence the
set of landmarks selected by ε-net-maxmin must be ε-sparse. A point that is not
a landmark must be covered by some landmark point already. Otherwise, its
minimum distance to the landmark set would have been at least ε, and hence
would have been the only unmarked point available to be selected as a new
landmark by ε-net-maxmin. Therefore the set of landmarks selected by ε-net-
maxmin is also ε-sample of the point cloud.

6 Empirical Performance Evaluation

We implement the pipeline illustrated in Fig. 1 to empirically validate our theo-
retical claims and also the effectiveness, efficiency, and stability of the algorithms
that construct ε-net landmarks compared to that of the random and maxmin
algorithms. We test and evaluate these algorithms on two synthetic point cloud
datasets, namely Torus and Tangled-torus, and a real-world point cloud dataset,
namely 1grm. On each input point cloud, we compute the lazy witness filtration
and Vietoris-Rips filtration induced by the landmarks, as well as the Vietoris-
Rips filtration induced by the point cloud.

On each dataset, as we vary parameter ε of the algorithms constructing ε-
nets, we study the relationship between ε to the number of landmarks, the quality
of the topological features approximated by the lazy witness filtration induced
by those landmarks, as well as the stability of those approximated features. As
the algorithms maxmin and random require the number of landmarks a priori,
for the sake of comparison, we use the same number of landmarks as that of the
corresponding ε-net algorithm for a given ε.

We compute the quality of the features approximated by an algorithm in
terms of the 1-Wasserstein distance between the lazy witness filtration induced
by the landmarks selected by that algorithm to those of a Vietoris-Rips filtration
on the same dataset. As there are elements of randomness in the algorithms, we
run each experiment 10 times and compute distances averaged over the runs.

We compute the stability of the features approximated by the algorithms in
terms of the 95% confidence band corresponding the rank 1 persistence landscape
using bootstrap [5]. We use persistence landscape to validate the stability of
the filtrations because unlike persistence diagrams and barcodes, two sets of
persistence landscapes always have unique mean and by strong law of large
numbers the empirical mean landscapes of sufficiently large collection converge
to its expected landscapes [1].

386 N. A. Arafat et al.

6.1 Datasets and Experimental Setup

Datasets. We use the datasets illustrated in Fig. 2 for experimentation. The
dataset Torus is a point cloud of size 500 sampled uniformly at random from
the surface of a torus in R

3. The torus has a major radius of 2.5 and minor
radius of 0.5. The dataset Tangled-torus is a point cloud of size 1000 sampled
uniformly at random from two tori tangled with each other in R3. Both tori
has a major radius of 2.5 and minor radius of 0.5. The dataset 1grm is the
conformation of the gramicidin-A protein. It has a helical shape. Gramicidin-A
has two disconnected chains of monomers consisting of 272 atoms.

Fig. 2. (left) Torus, (middle) Tangled-torus, and (right) 1grm Dataset

Experimental Setup. We implement the experimental workflow in Matlab
2018a (with 80 GB memory limit). All experiments are run on a machine with
an Intel(R) Xeon(R)@2.20GHz CPU and 196 GB memory. We use the Javaplex
library [29] to construct lazy witness filtrations and to compute their persistence
intervals. We use the Ripser library to construct the Vietoris-Rips filtrations
and to compute their persistence intervals. We use R-TDA package [13] to com-
pute bottleneck and Wasserstein distances, and 95% confidence band for the
landscapes. We set the lazy witness parameter ν = 1 in all computations.

6.2 Validation of Theoretical Claims

Number of Landmarks Generated by the ε-net Algorithms. In Fig. 3, we
illustrate the relation between the number of landmarks generated by the ε-net
algorithms and ε on Torus dataset. Each algorithm is run 10 times for each ε,
and the mean and standard deviation are plotted. We observe that the number
of landmarks decreases as ε increases. We also observe that, for a fixed ε, the
average number of landmarks selected by the ε-net algorithms is more or less
stable across different algorithms. We use the number of landmarks of an ε-net-
maxmin to fit a curve with values Δ = 5.9 (the diameter of Torus) and coefficient
θ(D) = 1.73 (found from fitting with 95% confidence). This observation supports
the theoretical bound of (Δ

ε)θ(D).

Topological Approximation Guarantee. In order to validate Theorem 2
on dataset Torus, we compute the bottleneck distance between the persistence
diagram of the lazy witness filtration and that of the Vietoris-Rips filtration

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 387

0 1 2 3 4 5 6
0

20

40

60

80

100

120
N

um
be

r o
f L

an
dm

ar
ks

-net-maxmin

-net-rand

(,2)-net

fitted curve ((D) = 1.73)

Fig. 3. Number of landmarks gener-
ated by the ε-net algorithms vs. ε on
Torus dataset.

0 2 4 6
0

2

4

-n
et

-m
ax

m
in

B
ot

tle
ne

ck
 d

is
t.

dim0

0 2 4 6
0

2

4

-n
et

-m
ax

m
in

B
ot

tle
ne

ck
 d

is
t.

dim1

0 2 4 6
0

2

4

-n
et

-m
ax

m
in

B
ot

tle
ne

ck
 d

is
t.

dim2

0 2 4 6
0

2

4

-n
et

-r
an

d
B

ot
tle

ne
ck

 d
is

t.

0 2 4 6
0

2

4

-n
et

-r
an

d
B

ot
tle

ne
ck

 d
is

t.

0 2 4 6
0

2

4

-n
et

-r
an

d
B

ot
tle

ne
ck

 d
is

t.

0 2 4 6
0

2

4

(
,2

)-
ne

t
B

ot
tle

ne
ck

 d
is

t.

0 2 4 6
0

2

4

(
,2

)-
ne

t
B

ot
tle

ne
ck

 d
is

t.

0 2 4 6
0

2

4

(
,2

)-
ne

t
B

ot
tle

ne
ck

 d
is

t.

Fig. 4. Topological approximation
guarantee of ε-net constructed by the
algorithms on Torus dataset.

induced by the ε-net landmarks for different values of ε. For each ε and algorithm,
we generate 10 sets of ε-net landmarks, compute their corresponding persistence
diagrams and plot the mean and standard deviation of the bottleneck distances
in Fig. 4. Since the theorem is valid for α ≥ 2ε, we exclude the homology classes
born below 2ε before the distance computation. The algorithms satisfy the bound
as the distances are always less than the theoretical bound of 3 log 3. Since the
plots on the other datasets support these claims, for the sake of brevity, we omit
them.

6.3 Effectiveness and Efficiency of Algorithms Constructing ε-nets

For each ε, we compute the 1-Wasserstein distance between the persistent dia-
grams of the lazy witness filtration induced by each ε-net landmarks and that of
the Vietoris-Rips filtration induced by the whole point cloud. We compute the
mean distance and mean CPU-times across 10 runs. Unlike ε-net algorithms, the
existing landmark selection algorithms take the number of landmarks as input.
Since the average number of landmarks selected by the ε-net algorithms does not
vary much across different algorithms (Fig. 3), for each ε, we take the same num-
ber of ε-net-maxmin landmarks as parameters to select the random and maxmin
landmarks. Figure 5 illustrates result on Torus dataset.

We observe that maxmin performs well in dimensions 0 and 2 whereas (ε, 2ε)-
net has competitive effectiveness. In dimension 1, we observe that ε-net-maxmin
achieves the lowest minimum, whereas random achieves the highest minimum.
All the ε-net algorithms has two local minima, the first of which at around ε = 0.5
and the second in between ε = 2 to ε = 4. The first local minimum is due to the
minor radius. As for the explanation of the second local minimum, it is sufficient
to either cover the inner diameter of 5 or the outer diameter of 6 to capture
the cycle. A 2.5- to 3-sparse sample suffices to do so. The performance of the
maxmin and random landmarks is not as explainable as the ε-net landmarks.
In terms of efficiency, we observe that that (ε, 2ε)-net algorithm has the lowest

388 N. A. Arafat et al.

ε

49.8

50.0

50.2

50.4

ε-n
et
-m

ax
m
in

M
ea
n
1-
wa

ss
.d

ist
.

dim. 0

ε

5.6

5.8

6.0

6.2

6.4

6.6

M
ea
n
1-
wa

ss
.d

ist
.

dim. 1

ε
0.6

0.8

1.0

1.2

1.4

1.6

M
ea
n
1-
wa

ss
.d

ist
.

dim. 2

ε

0.02

0.03

0.04

0.05

0.06

0.07

M
ea
n
CP

U-
tim

e(
m
s)

Efficiency

ε

49.8

50.0

50.2

50.4

ε-n
et
-ra

nd
M
ea
n
1-
wa

ss
.d

ist
.

ε

5.6

5.8

6.0

6.2

6.4

6.6

M
ea
n
1-
wa

ss
.d

ist
.

ε
0.6

0.8

1.0

1.2

1.4

1.6

M
ea
n
1-
wa

ss
.d

ist
.

ε

0.02

0.03

0.04

0.05

0.06

0.07

M
ea
n
CP

U-
tim

e(
m
s)

2 4 6

ε

49.8

50.0

50.2

50.4

(ε
,2

ε)
-n
et

M
ea
n
1-
wa

ss
.d

ist
.

2 4 6

ε

5.6

5.8

6.0

6.2

6.4

6.6
M
ea
n
1-
wa

ss
.d

ist
.

2 4 6

ε

0.6

0.8

1.0

1.2

1.4

1.6

M
ea
n
1-
wa

ss
.d

ist
.

2 4 6

ε

0.02

0.03

0.04

0.05

0.06

0.07

M
ea
n
CP

U-
tim

e(
m
s)

(a) Effectiveness and Efficiency of the ε-net algorithms on Torus
dataset.

Num. of Landmarks
49.6

49.8

50.0

50.2

50.4

m
ax

m
in

M
ea
n
1-
wa

ss
.d

ist
.

dim. 0

Num. of Landmarks
6.0

6.2

6.4

6.6

6.8

M
ea
n
1-
wa

ss
.d

ist
.

dim. 1

Num. of Landmarks
0.6

0.8

1.0

1.2

1.4

1.6

M
ea
n
1-
wa

ss
.d

ist
.

dim. 2

Num. of Landmarks
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea
n
CP

U-
tim

e(
m
s)

Efficiency

50100

Num. of Landmarks

49.6

49.8

50.0

50.2

50.4

ra
nd

om
M
ea
n
1-
wa

ss
.d

ist
.

50100

Num. of Landmarks

6.0

6.2

6.4

6.6

6.8

M
ea
n
1-
wa

ss
.d

ist
.

50100

Num. of Landmarks

0.6

0.8

1.0

1.2

1.4

1.6

M
ea
n
1-
wa

ss
.d

ist
.

50100

Num. of Landmarks

0.000

0.005

0.010

0.015

0.020

0.025

0.030
M
ea
n
CP

U-
tim

e(
m
s)

(b) Effectiveness and Efficiency of the existing algorithms on Torus
dataset.

Fig. 5. Torus dataset.

run-time among all the ε-net algorithms. The (ε, 2ε)-net algorithm has competi-
tive effectiveness and better efficiency among the proposed algorithms. Figure 6
illustrates the results for 1grm dataset. We observe that (ε, 2ε)-net achieves the
smallest loss in dimensions 0 and 1. In dimension 2, maxmin achieves the small-
est loss. ε-net-rand takes the smallest CPU-time among all the ε-net algorithms.
We observe that the effectiveness of (ε, 2ε)-net and efficiency of ε-net-rand in the
results on Tangled-torus dataset. We omit the plots due to space limitation.

Despite providing better efficiency and equivalent effectiveness on the
datasets under study, the performance of the maxmin algorithm is less pre-
dictable and less explainable than the ε-net algorithms. Among the ε-net algo-
rithms, (ε, 2ε)-net has better effectiveness at the expense of little loss in efficiency,
whereas ε-net-rand has better efficiency than the others with effectiveness com-
parable to ε-net-maxmin.

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 389

ε

194

195

196

197

ε-n
et-

ma
xm

in
Me

an
1-w

ass
.d

ist
.

dim. 0

ε

21.0

21.5

22.0

22.5

23.0

Me
an

1-w
ass

.d
ist

.

dim. 1

ε

2.4

2.6

2.8

3.0

3.2

Me
an

1-w
ass

.d
ist

.

dim. 2

ε

0.02

0.04

0.06

0.08

Me
an

CP
U-

tim
e(m

s)

Efficiency

ε

194

195

196

197

ε-n
et-

ran
d

Me
an

1-w
ass

.d
ist

.

ε

21.0

21.5

22.0

22.5

23.0

Me
an

1-w
ass

.d
ist

.

ε

2.4

2.6

2.8

3.0

3.2

Me
an

1-w
ass

.d
ist

.

ε

0.02

0.04

0.06

0.08

Me
an

CP
U-

tim
e(m

s)

10 20 30

ε

194

195

196

197

(ε,
2ε)

-ne
t

Me
an

1-w
ass

.d
ist

.

10 20 30

ε

21.0

21.5

22.0

22.5

23.0

Me
an

1-w
ass

.d
ist

.

10 20 30

ε

2.4

2.6

2.8

3.0

3.2

Me
an

1-w
ass

.d
ist

.

10 20 30

ε

0.02

0.04

0.06

0.08

Me
an

CP
U-

tim
e(m

s)

(a) Effectiveness and Efficiency of the ε-net algorithms on 1grm dataset.

Num. of Landmarks

194

195

196

197

ma
xm

in
M
ea
n
1-w

as
s.

dis
t.

dim. 0

Num. of Landmarks

21

22

23

24

M
ea
n
1-w

as
s.

dis
t.

dim. 1

Num. of Landmarks

2.4

2.6

2.8

3.0

3.2

M
ea
n
1-w

as
s.

dis
t.

dim. 2

Num. of Landmarks
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

M
ea
n
CP

U-
tim

e(m
s)

Efficiency

2550

Num. of Landmarks

194

195

196

197

ra
nd

om
M
ea
n
1-w

as
s.

dis
t.

2550

Num. of Landmarks

21

22

23

24

M
ea
n
1-w

as
s.

dis
t.

2550

Num. of Landmarks

2.4

2.6

2.8

3.0

3.2

M
ea
n
1-w

as
s.

dis
t.

2550

Num. of Landmarks

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

M
ea
n
CP

U-
tim

e(m
s)

(b) Effectiveness and Efficiency of the existing algorithms on 1grm dataset.

Fig. 6. 1grm dataset.

0 2 4 6 8

0.0
0.2

0.4
0.6

ε−net−maxmin

α

ε = 0.8

0 2 4 6 8

0.0
0.2

0.4
0.6

ε−net−rand

α

ε = 0.8

0 2 4 6 8

0.0
0.2

0.4
0.6

(ε,2ε)−net

α

ε = 0.8

0 2 4 6 8

0.0
0.2

0.4
0.6

maxmin

α

Median #landmark = 53

0 2 4 6 8

0.0
0.2

0.4
0.6

random

α

Median #landmark = 53

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 0.9

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 0.9

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 0.9

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 41

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 41

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 31

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 31

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1.1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1.1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

ε = 1.1

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 25

0 2 4 6 8

0.0
0.2

0.4
0.6

α

Median #landmark = 25

Fig. 7. 95% confidence band of the rank one persistence landscape at dimension 1 of the
lazy witness filtration induced by the landmark selection algorithms on Tangled-torus
dataset.

6.4 Stability of the ε-net Landmarks

In Fig. 7, we vary ε and plot the rank 1 persistence landscape at dimension 1
and its 95% confidence band corresponding to the lazy witness filtration induced
by the different landmark selection algorithms. For maxmin and random, we

390 N. A. Arafat et al.

take the same number of landmarks as that in the corresponding ε-net-maxmin
landmarks. The rank 1 persistent landscape is a functional representation of
the most persistent homology class, which we observe from Fig. 7 in the form
of a peak for all the algorithms. The x-axis represents the value of filtration
parameter and y-axis represents function values. We observe that the ε-net-
maxmin has similar confidence bands as maxmin, whereas the confidence bands
of ε-net-rand and (ε, 2ε)-net are often narrower than both maxmin and random.
Random has the widest confidence band among all. The confidence bands of
maxmin are in-between these two extremes. This observation implies that the ε-
net algorithms are more stable than the existing algorithms. We observe similar
stability results on other datasets that we omit due to space limitation.

7 Conclusion

We use the notion of ε-net to capture bounds on the loss of the topological
features of the induced lazy witness complex. We prove that ε-net is an ε-
approximation to the original point cloud and the lazy witness complex induced
by ε-net is a 3-approximation to the Vietoris-Rips complex on the landmarks
for values of filtration parameter beyond 2ε. Such quantification of approxima-
tion for lazy witness complex was absent in literature and is not derivable for
algorithms limiting the number of landmarks.

We propose three algorithms to construct ε-net landmarks. We show that the
proposed ε-net-rand and ε-net-maxmin algorithms are variants of the algorithm
random and maxmin respectively, which ensures the constructed landmarks to be
an ε-sample of the point cloud. We empirically and comparatively show that the
sizes of the landmarks that our algorithms construct agree with the bound on the
size of ε-net. We empirically validate our claim on the topological approximation
guarantee by showing that beyond 2ε filtration value, the bottleneck distances
are bounded by 3 log 3. Furthermore, we empirically and comparatively validate
the effectiveness, efficiency and stability of the proposed algorithms on repre-
sentative synthetic point clouds as well as a real dataset. Experiments confirm
our claims by showing equivalent effectiveness of the algorithms constructing
ε-net landmarks at the cost of a little decrease in efficiency but offering better
stability.

Acknowledgement. This work is supported by the National University of Singapore
Institute for Data Science project WATCHA: WATer CHallenges Analytics.

References

1. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J.
Mach. Learn. Res. 16(1), 77–102 (2015)

2. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior
of spaces of natural images. Int. J. Comput. Vision 76(1), 1–12 (2008)

3. Carstens, C.J., Horadam, K.J.: Persistent homology of collaboration networks.
Math. Probl. Eng. 2013(6), 1–7 (2013)

Topological Data Analysis with ε-Net Induced Lazy Witness Complex 391

4. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity
of persistence modules and their diagrams. In: Proceedings of the Twenty-Fifth
Annual Symposium on Computational Geometry, pp. 237–246. ACM (2009)

5. Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Subsam-
pling methods for persistent homology. In: International Conference on Machine
Learning, pp. 2143–2151 (2015)

6. Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor
for curve point cloud data. Comput. & Graph. 28(6), 881–894 (2004)

7. De Silva, V., Carlsson, G.: Topological estimation using witness complexes. In:
Proceedings of the First Eurographics Conference on Point-Based Graphics, pp.
157–166. Eurographics Association (2004)

8. De Silva, V., Ghrist, R., et al.: Coverage in sensor networks via persistent homology.
Algebraic & Geom. Topology 7(1), 339–358 (2007)

9. Dey, T., Mandal, S., Varcho, W.: Improved image classification using topological
persistence. In: Proceedings of the Conference on Vision, Modeling and Visualiza-
tion, pp. 161–168. Eurographics Association (2017)

10. Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. Comput.
Geom. 48(8), 575–588 (2015)

11. Duman, A.N., Pirim, H.: Gene coexpression network comparison via persistent
homology. Int. J. Genomics 2018 (2018)

12. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. Am. Math.
Soc. (2010)

13. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA.
arXiv preprint. arXiv:1411.1830 (2014)

14. Guibas, L.J., Oudot, S.Y.: Reconstruction using witness complexes. Discrete &
Comput. Geom. 40(3), 325–356 (2008)

15. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

16. Har-Peled, S., Raichel, B.: Net and prune: a linear time algorithm for euclidean
distance problems. J. ACM 62(6), 44 (2015)

17. Hausmann, J.C., et al.: On the vietoris-rips complexes and a cohomology theory
for metric spaces. Ann. Math. Studies 138, 175–188 (1995)

18. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer Science & Business
Media, New York (2012)

19. Kovacev-Nikolic, V., Bubenik, P., Nikolić, D., Heo, G.: Using persistent homology
and dynamical distances to analyze protein binding. Stat. Appl. Genet. Mol. Biol.
15(1), 19–38 (2016)

20. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Dis-
crete algorithms, pp. 798–807 (2004)

21. Lee, H., Chung, M.K., Kang, H., Kim, B.N., Lee, D.S.: Discriminative persistent
homology of brain networks. In: 2011 IEEE International Symposium on Biomed-
ical Imaging: From Nano to Macro, pp. 841–844. IEEE (2011)

22. Letscher, D., Fritts, J.: Image segmentation using topological persistence. In:
Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp.
587–595. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-
2 73

23. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap
for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)

24. Patania, A., Petri, G., Vaccarino, F.: The shape of collaborations. EPJ Data Sci.
6(1), 18 (2017)

http://arxiv.org/abs/1411.1830
https://doi.org/10.1007/978-3-540-74272-2_73
https://doi.org/10.1007/978-3-540-74272-2_73

392 N. A. Arafat et al.

25. Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted
complex networks. PloS One 8(6), e66506 (2013)

26. Sheehy, D.R.: Linear-size approximations to the vietoris-rips filtration. Discrete &
Comput. Geom. 49(4), 778–796 (2013)

27. Sizemore, A., Giusti, C., Bassett, D.S.: Classification of weighted networks through
mesoscale homological features. J. Complex Netw. 5(2), 245–273 (2017)

28. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation
of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition-Workshops, pp. 45–52. IEEE (2010)

29. Adams, H., Tausz, A., Vejdemo-Johansson, M.: javaPlex: a research software pack-
age for persistent (Co)homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS,
vol. 8592, pp. 129–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44199-2 23

30. Xia, K., Wei, G.W.: Persistent homology analysis of protein structure, flexibility,
and folding. Int. J. Numer. Meth. Biomed. Eng. 30(8), 814–844 (2014)

31. Zomorodian, A.: Fast construction of the vietoris-rips complex. Comput. & Graph.
34(3), 263–271 (2010)

https://doi.org/10.1007/978-3-662-44199-2_23
https://doi.org/10.1007/978-3-662-44199-2_23

Analyzing Sequence Pattern Variants
in Sequential Pattern Mining

and Its Application to Electronic Medical
Record Systems

Hieu Hanh Le1(B), Tatsuhiro Yamada1, Yuichi Honda1, Masaaki Kayahara1,
Muneo Kushima2, Kenji Araki2, and Haruo Yokota1

1 Tokyo Institute of Technology, Tokyo, Japan
{hanhlh,yamada,honda,kayahara}@de.cs.titech.ac.jp,

yokota@cs.titech.ac.jp
2 University of Miyazaki Hospital, Miyazaki, Japan
{muneo kushima,taichan}@med.miyazaki-u.ac.jp

Abstract. Sequential pattern mining (SPM) is widely used for data
mining and knowledge discovery in various application domains, such as
medicine, e-commerce, and the World Wide Web. There has been much
work on improving the execution time of SPM or enriching it via consid-
ering the time interval between items in sequences. However, no study
has evaluated the sequence pattern variant (SPV) that is the original
sequence containing frequent patterns including variants, and studied the
factors that lead to the variants. Such a study is meaningful for medical
tasks such as improving the quality of a disease’s treatment method. This
paper proposes methods for evaluating SPVs and understanding variant
factors based on a statistical approach while considering the safety and
efficiency of sequences and the relating static and dynamic information
of the variants. Our proposal is confirmed to be effective by experimen-
tally evaluating the electronic medical record system’s real dataset and
feedback from medical workers.

Keywords: Sequential pattern mining · Sequence pattern variant ·
Electronic medical record system

1 Introduction

Sequential pattern mining (SPM), which discovers frequent patterns in the
sequence database is an important data-mining algorithm with various appli-
cation domains, such as medicine, e-commerce, and the World Wide Web [3,
7,8,10,12,15,16]. Given a database based on a set of sequences, the problem
is extracting frequent patterns in which the percentage of sequences contain-
ing them is greater than the predefined minimum support value, i.e., MinSup.
For example, from the electronic medical record system that contains a set of
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 393–408, 2019.
https://doi.org/10.1007/978-3-030-27618-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_29

394 H. H. Le et al.

medical treatment order sequences, SPM can extract the frequent patterns auto-
matically to generate clinical pathways, which can be used to review and improve
medical tasks at hospitals. SPM can also be used to generate frequent flows of
buying books and accessing websites; hence, it is useful for the recommended
applications.

There have been many works on improving the speed of discovering frequent
patterns [7,11] or considering the time interval between each item [4,5,14]. How-
ever, to our knowledge, studies on the sequence pattern variants (SPVs) have not
been performed yet. The SPV is the sequence that contains the frequent patterns,
and the frequent patterns include a number of variants. For example, in sequences
of medical treatment orders, the variant indicates branched medical treatment
in the clinical pathway. When there are two sequences, (EnterHospital →
BodyTest → Surgery → Injection → LeaveHospital) and (EnterHospital
→ NurseTask → Surgery → Prescription → LeaveHospital), (Surgery →
Injection → LeaveHospital) and (Surgery → Prescription → LeaveHospital)
are two frequent patterns, Injection and Prescription are called the variants
and the above two sequences are considered as SPVs. Studying the two SPVs
greatly benefits the medical tasks because SPVs can be quantitatively compared
between each other from the perspectives of safety and efficiency. Moreover,
understanding the reason that leads to the variants also helps improve the qual-
ity of medical treatment, such as in determining the optimal treatment to a
specific group of patients.

As a result, this paper aims to propose methods for quickly evaluating SPVs
and understanding the factors of variants in SPM and verifying their effective-
ness by experiments on an actual electronic medical record system dataset. To
reach the research goal, we chose a statistical analysis approach to quantify
the indicator score of each sequence based on safety and efficiency perspectives.
Specifically, we consider the complication and severity of the disease for safety
and the cost and average length of stay for efficiency. Moreover, to understand
the factors of the variants, we extract relating static and dynamic information of
the items in sequences and identify variants with significant differences by multi-
variate analysis. Additionally, because the task of mapping the frequent pattern
to its original sequences is very inefficient in current SPM, we also propose a new
SPM algorithm that mines the frequent patterns while retaining the sequence’s
identifier (SID). Last but not least, in the conventional visualization method [6],
there is a problem that SPVs which do not exist also were generated as results
of SPM. In this research, we propose a new visualization method to solve this
problem and enrich the information for better grasp the analyzed results.

The contributions of this paper are as follows.

– We proposed a new SPM that mines frequent patterns while maintaining
the sequence SID. It is confirmed through an experiment on a real dataset
that using the new SPM decreased the execution time compared with using
a method based on T-PrefixSpan.

Analyzing SPV in SPM and Its Application to EMR 395

– We proposed methods for evaluating SPVs by defining and calculating SPV’s
indicators, for understanding factors leading to variants by multivariate
analysis.

– When applying our proposed methods on real medical dataset, it is statisti-
cally confirmed that complication risk, severity risk, length of stay, and cost
can be used to quantitatively evaluate the safety and efficiency of SPVs. More-
over, the patient’s age and hospitalized period are two important factors of
variants. We gained positive feedback from medical workers regarding these
results.

– Visualization showing the results obtained positive feedback from medical
workers.

The remainder of this paper is organized as follows. Background knowledge
and related works are summarized in Sect. 2. The proposed methods and exper-
imental evaluation are described in Sects. 3 and 4. Conclusion and future works
are discussed in Sect. 5.

2 Background Knowledge and Related Works

This section gives a brief review of background knowledge about sequential pat-
tern mining, related works to improve the performance, and detect the variants
of extracted sequential patterns.

2.1 Sequential Pattern Mining (SPM)

A well-known SPM algorithm is a Priori-based frequent pattern-mining algo-
rithm [12]. However, it is very time-consuming with large data sets and gener-
ates many irrelevant patterns among its results. To exclude irrelevant patterns,
PrefixSpan [7] was proposed to mine the complete set of patterns while reduc-
ing the effort of candidate pattern generation by exploring prefix projection. To
improve efficiency further, CSpan [11] was proposed for mining closed sequential
patterns. This algorithm uses a pruning method called occurrence checking that
allows the early detection of closed sequential patterns during the mining.

2.2 Time Interval Sequential Pattern Mining

Initially, the proposed method of Agrawal et al. [12] did not consider the time
interval between items. For example, the injection was performed on January 1,
2019, the sequence for performing surgery the next day, and the sequence for per-
forming surgery three days after the injection was regarded as the same sequence.
Chen et al. proposed a mining method called TI-SPM for sequences where the
time interval is important, such as medical instructions, which should treat
the above two sequences as different things [16]. TI-SPM outputs TI-frequent
sequences by using sequence database, including a time interval, minimum sup-
port MinSup (0 ≤ MinSup ≤ 1), and a preset time interval TI-set.

396 H. H. Le et al.

T-PrefixSpan [14] is a method to extract frequent sequential patterns from
EMR logs that considers time intervals and the efficacy of medicines. T-CSpan [8]
further improves the speed performance by applying the idea of mining only
closed patterns. Based on T-CSpan, a study on the privacy protection during
mining has been performed [9].

2.3 Sequential Variant Extraction Visualization

As a method of detecting SPV, Honda et al. detected the common part of the
closed frequent pattern with the same number of items for each relative treatment
day [6]. For example, A,B,C,D,E are items then e = [[A], [B], [C,D], [E]] is the
set of frequent patterns with variants C and D (Fig. 1).

Fig. 1. Set e of frequent patterns that consider variants

3 Proposal

In order to evaluate the Sequential Pattern Variants (SPVs) and to discover
the factors of the variants, we propose several methods summarized in Fig. 2. At
first, from sequence database, we apply a SPM with retaining sequence ID (SID)
information for better analyzing time. Then, from the variants detected by the
existing method in [6], we generate SPVs and then calculate their indicator val-
ues using the information from the original sequences and other open national
databases. Next, we evaluate SPVs by using statistical approach to enable com-
paring the SPVs. Moreover, we also utilize statistical methods to detect the
factors of the variants. Finally, we visualize the evaluation for better grasp the
results.

3.1 SPM Retaining SID Information

It is necessary to obtain from the original sequence database (SDB) the original
information of the extracted frequent sequences for analyzing them using statis-
tical methods by comparing each sequence. However, the calculated cost to map
the extracted sequence to the original ones in SDB is very high. If the number
of sequences in SDB is N , the number of extracted frequent sequences is M , and
the sequence’s average length is L, then the cost becomes N ×M ×L. Hence, to
decrease the calculation cost, we propose a method to mine sequential sequences
while retaining the SID information in the mining sequences. Hence, we can get
the mapping information from the extracted frequent sequences. The costs of
the proposed method are just the space cost for M sequences and the cost for

Analyzing SPV in SPM and Its Application to EMR 397

Fig. 2. An overview of our proposed methods

Table 1. Sequence Database D with time information

SID T-sequence

1 <(A, 1), (B, 3), (C, 7), (E, 10)>

2 <(A, 1), (B, 4), (E, 7)>

3 <(A, 2), (B, 6), (B, 9)>

4 <(A, 2), (B, 5), (F, 10)>

5 <(A, 2), (B, 7)>

adding SIDs to the mining sequences. The proposed method becomes more effec-
tive when the SDB or the number of frequent sequences is large. Algorithm 1
shows the detailed algorithm that applies the idea of retaining SID during mining
in PrefixSpan. postfix(s, β) is the postfix of β in sequence s.

Consider an example of mining an SDB with time information as shown
in Table 1 with minimum support MinSup = 0.4. The number after the item
is the time that the item occurs in the database. According to T-PrefixSpan,
the extracted closed frequent sequences are <A>, , <A, (2, 3, 3, 3, 5), B>,
and <A, (2, 2, 2, 2, 3), B, (3, 5, 5, 5, 7), E>. The five values between each item are
the minimum, maximum, average, median, and most frequent value of time
intervals between successive items. However the outputs of Algorithm 1 are
{<A>,<1, 2, 3, 4, 5>}, {,<1, 2, 3, 4, 5>}, {<A, (2, 3, 3, 3, 5), B>,<1, 2, 3, 4,
5>}, and {<A, (2, 2, 2, 2, 3), B, (3, 5, 5, 5, 7), E>,<1, 2>}. The last set of num-
bers including in <> of the outputs are the SIDs of the original sequences that
contain the patterns. E.g., Sequence 1 and 2 contain the pattern of {<A,B,E>}.

398 H. H. Le et al.

Algorithm 1. SID-PrefixSpan
Input: SDB D, minimum support MinSup
Output: Frequent sequence P and a union of SetsidP {P, SetsidP }
Call: SID-PrefixSpan(<>, D, <>)
Procedure: SID-PrefixSpan(α,D |α,Setsidα)

1: B ← {{β, Setsidαβ } | (< sidα, s >⊆ D |α, β ∈ s) ∧ (Sup(β) ≥ Size(D) ×
Minsup), Setsidαβ ← ∀sidα such that β ∈ s}

2: for {β, Setsidαβ } ∈ B do
3: R ← {αβ, Setsidαβ }
4: return R
5: D |αβ← {< sidα, s′ >∈ D |α| s′ = postfix(s, β)}
6: Call SID-PrefixSpan(αβ, D |αβ , Setsidαβ)
7: end for

3.2 Sequence Pattern Variant Indicator Calculation

Sequence Pattern Variant Indicator. In Sect. 3.1, the SID information can
be obtained; however, the derived SIDs from the original frequent sequences may
be duplicated. We remove such duplicated SIDs for precise statistical analysis.
We propose the Indicator calculation of a frequent sequence shown in Eq. (1).
Here, the number of original sequences of the analyzing frequent sequence s is N ,
and indicator(k) is the aggregated value of information of an original sequence k.

Indicator(s) =
∑N

k=1 indicator(k)
N

(1)

Calculating Indicators in Electronic Medical Record System. In this
paper, we focus on safety and efficiency which are medically required when ana-
lyzing SPVs. As safety indicators, the complication risk (CR) that considers the
possibility of concurrently having more than one disease during the treatment.
Moreover, the severity risk (SR) is the safety indicator that discriminates the
seriousness of diseases. For the cost evaluation, we calculate the average cost for
gaining the treatment from the sequent variant and the average length of stay.
Therefore, indicator may be one of CR, SR, cost or length of stay.

Complication Risk (CR). Equation (2) calculates the CR indicator by using
the number of patients that received the treatment from analyzing the frequent
pathway N and the number of patients that had the complicated diseases NC .

CR =
NC

N
(2)

To calculate CR, we need SID information Setsid and the patient classifica-
tion open database called Diagnosis Procedure Combination (DPC). Here, DPC
is the Japanese comprehensive method based on diagnosis group classification,
contains the main disease and co-morbid complicated diseases.

Analyzing SPV in SPM and Its Application to EMR 399

Severity Risk (SR). SR can be calculated using Eq. (3). Here, N is the number
of patients receiving the treatment of the frequent path, and Sev(Xi) is the
aggregation of the severity of all the complicated diseases of a patient Xi. Severity
is considered by the average length of stay needed to treat the complicated
disease.

SR =
∑N

i=1 Sev(Xi)
N

(3)

The method calculates SR from DPC and the electronic score sheet of DPC.
The electronic score sheet of DPC defines the severity of each diseases by the
standard length of stay in the hospital for treatment, which is managed by
Japanese Ministry of Health, Labour and Welfare.

Average Cost (Costave). Assume that a patient Xi(i = 1, ..., N) receives a medi-
cal order Oj(j = 1, ..., k) with the cost of cost(Oj). Then, Cost(i) =

∑k
j=1 cost(j)

and the average cost that the patient Xi that receives the k medical orders is
defined in Eq. (4).

Costave =
∑N

i=1 Cost(i)
N

(4)

To calculate Costave, the necessary information can be obtained from the
medical order database of the hospital and the basic master database [2]. The
basic master database contains the unit cost for medical order and medicine
managed by national electronic receipt systems.

Average Length of Stay (Losave). The average length of stay (Losave) can be cal-
culated by using the dates of entering (InDate) and leaving (OutDate) the hos-
pital. Such information can easily be extracted from the medical order database.
Assuming that there are N patients of Xi(i = 1, ..., N), the average length of
stay of the sequent variant is derived from Eq. (5).

Losave =
∑N

i=1(OutDateXi
− InDateXi

+ 1)
N

(5)

3.3 Sequential Pattern Variant Evaluation

In this research, to evaluate the SPV in relation to safety and efficiency, we
applied the statistical method to perform the test of significant difference. CR
is a name variable; SR, Costave, and Losave are continuous variables; and the
distribution of every indicator is non-parametric. The detailed methods used for
the evaluation of each indicator in two-group and multigroup comparisons are
summarized in Table 2. In the multigroup comparison, if the test is performed
n times with a significance level of 0.05, then a multiplicity issue with α =
1 − (1 − 0.05)n would occur. Thus, only indicators that have a significance level
(p − value) lower than 0.05 is considered meaningful in comparisons.

400 H. H. Le et al.

Table 2. Statistical method using indicator evaluation

Indicator Two-group comparison Multigroup comparison

CR Fisher exact test Fisher exact test and Holm test

SR Mann–Whitney test Steel–Dwass test

Costave Mann–Whitney test Steel–Dwass test

Losave Mann–Whitney test Steel–Dwass test

3.4 Variant Factor Inference

At first, we extract the static and dynamic information of sequences as candidate
factors of the variants. Then, we identify which information is the factor by
multivariate analysis.

Fig. 3. Sequence information table

Extraction of Static and Dynamic Information Necessary for Mul-
tivariate Analysis. To infer the factors of variants, the static and dynamic
information of the sequences are considered. The static information is the infor-
mation in the sequence that always refers to the same value regardless of which
attribute is referenced. In contrast, the dynamic information is the information
that refers to different values when different attributes are referenced. We per-
formed multivariate analysis on both static and dynamic information to identify
the background factors of variants.

In this section, the method of representing sequence information and the
extract method are described. Sequence information is presented in a table
where the attributes are present in rows and attribute classifications are pre-
sented in columns. Figure 3 shows an example of a sequence information table.
The sequence information classification is the division when the elements of the
sequence are divided so the values of all the sequence information of all the ele-
ments belonging to the information division become equal. The value of static
information is constant regardless of the sequence information division; therefore,
the same value is shown in each row (attr1 and attr2 in Fig. 3). In contrast, the
value of the dynamic information varies depending on the information division,
as shown in attr3 and attr4 in Fig. 3.

Analyzing SPV in SPM and Its Application to EMR 401

To use sequence information (especially dynamic information) as explanatory
variables for multivariate analysis, it is necessary to determine the information
classification of the original sequence at the time of branching. Such informa-
tion classification can be derived as follows. First, for all sequences, a common
reference attribute is established. Next, the distance from the information clas-
sification of the reference attribute and the variant position on the frequent
sequence is calculated. Lastly, the information classification in the sequence that
is branched from the original sequence is inferred by using the information clas-
sification of the reference attribute on the original sequence and the calculated
distance (Fig. 3).

Fig. 4. Analyzed information table

Identification of Variants with Significant Differences by Multivari-
ate Analysis. By performing multivariate analysis using the sequence infor-
mation obtained in the previous section, it is possible to identify branches with
significant differences. First, an analysis information table is created from the
sequence information table of all original sequences, the information of the orig-
inal sequences, and their corresponding frequent sequences (Fig. 4). By selecting
the objective variable and explanatory variable set for each branch from the
analysis information table, multivariate analysis is performed.

In multivariate analysis, a frequent sequence corresponding to the original
sequence is used as an explanatory variable. This intuitively is an indicator
representing the direction of the variant. The sequence information is obtained
by using the information classification at the time of branching obtained from
the previous part. By performing this multivariate analysis on each variant in
the sequence, variants with significant differences and their factors are identified.
In Fig. 4, the red box is the objective variable, and the green box is the set of
explanatory variables.

For inferring the variant factor as a multivariate analyzing method, we
adapted the logistic regression analysis method, which has been widely used
for analyzing medical information. The significance level was also set to 0.05.
Patient’s age and hospitalized period were used as static information. The

402 H. H. Le et al.

weight, body temperature, and systolic blood pressure values of patients were
chosen to be dynamic information. We considered age as static information
because it mostly remained constant while the patients received treatment in
the hospital.

3.5 Visualization

In the conventional method [6], there is a problem that SPVs which do not exist
in the database also generated as results by SPM. For example, SPV is detected
and extracted from <A,B,C,D,E> and <A,F,C,G,E> and visualized as in
Fig. 5. However, <A,B,C,G,E> and <A,F,C,D,E> are also visualized even
they do not exist. Although it is meaningful from the viewpoint of discovering
new sequences, they cannot be considered in evident-based evaluation.

Fig. 5. Non-existing sequences also are visualized in traditional method

Therefore, in addition to this method, we introduce the concept of applying
Sanky diagram, which is an expression method for visualizing the flow of things
along with the progress of the process and time together. Thus, not only being
able to distinguish between frequent patterns extracted by SPM and those that
are not, but also only information of priority between items of the SPVs can
be represented by the size of the directed path. Moreover, accurate numerical
values of priorities, indicator values can be displayed through mouse operation,
by which enabling accurate and smooth grasp of SPV evaluation results.

Examples of our visualization method can be viewed at Experimental Eval-
uation section.

3.6 Handling of Medical Treatment Data

We represent an item in the form of a set of four elements of text (Type, Descrip-
tion, Code, and Name). Type is the type of medical treatment, Description is
the detailed record of the treatment, Code is a medicinal code representing the
unique efficacy of the medicine used, and Name is the name of the medicine. For
the treatment without using medicine, Code and Name are null. Moreover, we
delete the sequences that are not medically meaningful because they do not have
the surgeon treatment, which is considered an important order in our cases.

4 Experimental Evaluation

The effectiveness of our proposal described in Sect. 3 is verified by experiments
using real datasets from the University of Miyazaki Hospital. First, we check
whether performing SPM while retaining SID can reduce the execution time of

Analyzing SPV in SPM and Its Application to EMR 403

mining the sequential patterns and looking for the SIDs. Then, we check that
the proposed indicators are meaningful regarding the evaluation of an SPV from
the perspectives of safety and efficiency. Lastly, we verify whether the proposed
method can infer the background factor of an SPV.

4.1 Experimental Method and Environment

From the medical order database, we applied the SPM to obtain frequent pat-
terns. Then, we extracted the original SPVs, the variants existing at each pat-
terns and calculated their four indicators as described in Sect. 3.2. Next, we
applied statistical methods to conclude which indicators are meaningful when
evaluating the SPVs with regard to safety and efficiency. Lastly, we discuss the
analyzed results of inferring background factors for each variant. We only took
the original SPVs which consider the longest length because they contain the
maximum number of medical orders that are medically meaningful.

We used an Intel Core i7-7700 3.60 GHz CPU, 8 GB Memory, Windows 10,
Java 1.8 machine for measuring the execution time of extracting SPVs with SID.

4.2 Dataset

Our target data were medical treatment data coded as clinical pathways and
recorded from November 19, 1991, to October 4, 2015, in the EMR system
WATATUMI [13] in the Faculty of Medicine, University of Miyazaki Hospital.
The data do not include information that could uniquely identify a patient to
ensure patient privacy. When we extracted medical treatment data from patient
records, we used anonymous patient IDs that do not allow the recovery of patient
identification. In our research, the use of data from this EMR system for the
support of medical treatments is described in [1], which is the website of the
University of Miyazaki. Our research was approved by the Ethics Review Board
of the University of Miyazaki and the Research Ethics Review Committee of the
Tokyo Institute of Technology.

The target data for our experiments involved medical treatment pathways
for Transurethral Resection of a Bladder tumor (TUR-Bt). We chose TUR-Bt
because it is a clinical pathway for which the flow is not well defined. Table 3
shows the characteristics of the dataset.

Table 3. Characteristics of TUR-Bt datasets

The number of patients 394

The maximum clinical orders for each patient 179

The average clinical orders for each patient 49.79

The maximum length of stay (days) 20

The average length of stay (days) 7.40

404 H. H. Le et al.

Fig. 6. Execution time of extracting SPVs with SID

4.3 Experimental Results

SID-Retaining SPM. Figure 6 shows the execution time for extracting SPVs
with their SIDs with variable minimum support values (MinSup). The base
method is performing T-PrefixSpan to extract frequent clinical paths and then
looking for the SIDs of the original sequences that contain the extracted frequent
clinical paths. In contrast, the proposal performs T-PrefixSpan while retaining
SID information.

These results show that our proposal always reduces execution time. Espe-
cially, when MinSup was 0.1, the proposal significantly reduced by approxi-
mately 170 s (30%). With smaller MinSup values, a higher number of frequent
pathways are extracted, so the computation cost becomes higher.

SPV Safety and Efficiency Evaluation with Visualization. Figure 7 shows
an example of extracted SPVs with useful information such as medical orders,
type of order, and explanation of order. Because the compared SPVs are too long
to be fit in a figure, we focused only on the important parts. Table 4 summa-
rizes the statistical analysis results of the two SPVs. The statistically significant
results show that Seq2 has the lower average cost, compared with Seq1, because
the prescription of Cefazolin Na in Seq2 occurs one time higher than in Seq1
(3 vs. 2 times). Cefazolin Na is an antibiotic and more expensive than other
medicines. It was also confirmed in other results that CR, SR, and Losave also
had statistically significant results when comparing other SPVs. Due to the page
limitation, we do not include them it this paper.

The visualization of the results as shown in Fig. 7 has received positive feed-
back from medical workers that it can be used for quickly understanding the
differences of the compared SPVs.

Analyzing SPV in SPM and Its Application to EMR 405

Variant Factor Inference. There were totally six variants, and the back-
ground factors of two of them were identified through our proposed method.

Figures 8 shows the result relating to urgent test and verification test. Relat-
ing to urgent test, 75 patients received the urgent test, while seven patients did
not receive such orders during the treatment. The results show that because
of medical reasons, the doctors might discontinue such tests during treatment.
From this result, it is interesting that the proposal has a high potential for
extracting the timing when the clinical pathway has been changed in the past.

Relating to validation test, ten patients got the Cefazolin Na without receiv-
ing the body test. Typically, old patients should take this test from this result,
which agrees with the results, as the average age of the patients who received
this test was 58 years old.

Fig. 7. An example of extracted SPVs to be compared

Table 4. Evaluation of the two SPVs Fig. 7

Indicator Seq1 (#patients = 63) Seq2 (#patients = 55) p-value

CR 0.18 0.09 0.28

SR 6.94 7.44 0.25

Losave

(Lossd)
8.08
(2.46)

7.95
(2.80)

0.64

Costave

(Costsd)
6.60 × 106

(3.00 × 107)
4.29 × 106

(2.55 × 107)
0.0012

406 H. H. Le et al.

Fig. 8. An evaluation results of the two variants

5 Conclusion and Future Work

In this paper, we aimed to propose methods for evaluating sequential pattern
variants (SPV) and identifying the background factor of variants. We proposed
the SPM algorithm with retaining the original sequence identifier for shorter exe-
cution time; and the determination and calculation of SPVs’ indicators. More-
over, to understand the factor of variants, we introduced a multivariate analysis
method that analyzes the static and dynamic information, which was extracted
as candidate factors.

When applying the proposed methods to Electronic Medical Record Systems,
we take into consideration the complications, severity of diseases, cost of medical
orders, and length of stay of patients as indicators for SPVs from the perspectives
of safety and efficiency. We also chose patient’s age, hospitalized period, weight,
body, systolic blood pressure values as information of variants.

We used real datasets from the University of Miyazaki Hospital to verify
the effectiveness of our proposed methods. The experimental results show that
our methods were effective in evaluating the safety and efficiency of the SPVs
because all the proposed indicators were found to be meaningful. By analyzing
the background factors leading to the variants, the patient’s age and hospitalized
period were important to understand the SPVs. The results show a high potential
that our method can be used to discover the changes in past typical pathways
in treating diseases over multiple hospitals.

In future work, we will apply our proposed methods to larger datasets, such
as those from other hospitals, to increase the number of patients. Moreover,
other static and dynamic information such as gender and disease history will be
studied. We also want to verify the proposed effectiveness with other diseases.

Analyzing SPV in SPM and Its Application to EMR 407

Acknowledgement. This research has been supported by Health Labour Sciences
Research Grant (Ministry of Health, Labour and Welfare, Japan) and the Kayamori
Foundation of Information Science Advancement.

References

1. The Section of Medical Information at Faculty of Medicine University of Miyazaki
Hospital. http://www.med.miyazaki-u.ac.jp/home/jyoho/. Accessed 19 June 2019

2. Various Information of Medical Fee, Ministry of Health, Labour and Wel-
fare (Japan). http://www.iryohoken.go.jp/shinryohoshu/kaitei/. Accessed 19 June
2019

3. Fournier Viger, P., Lin, C.W., Rage, U., Koh, Y.S., Thomas, R.: A survey of
sequential pattern mining. Data Sci. Pattern Recogn. 1, 54–77 (2017)

4. Garg, N., Agarwal, S.: Process mining for clinical workflows. In: Proceedings of the
International Conference on Advances in Information Communication Technology
and Computing. pp. 5:1–5:5 (2016)

5. Hirate, Y., Yamana, H.: Sequential pattern mining with time intervals. In: Ng,
W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI),
vol. 3918, pp. 775–779. Springer, Heidelberg (2006). https://doi.org/10.1007/
11731139 90

6. Honda, Y., Kushima, M., Yamazaki, T., Araki, K., Yokota, H.: Detection and
visualization of variants in typical medical treatment sequences. In: Begoli, E.,
Wang, F., Luo, G. (eds.) DMAH 2017. LNCS, vol. 10494, pp. 88–101. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67186-4 8

7. Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth. In: Proceedings of the 17th International Conference on Data
Engineering, pp. 215–224 (2001)

8. Le, H.H., et al.: Fast generation of clinical pathways including time intervals in
sequential pattern mining on electronic medical record systems. In: Proceedings the
4th International Conference on Computer Science and Computational Intelligent,
pp. 1726–1731 (2017)

9. Le, H.H., Kushima, M., Araki, K., Yokota, H.: Differentially private sequential
pattern mining considering time interval for electronic medical record systems.
In: Proceedings of the 23rd International Database Engineering and Applications
Symposium, pp. 95–103 (2019)

10. Mooney, C., Roddick, J.: Sequential pattern mining: approaches and algorithms.
ACM Comput. Surv. 45, 19:1–19:39 (2013)

11. Raju, V.P., Varma, G.S.: Mining closed sequential patterns in large sequence
databases. Int. J. Database Manage. Syst. 7(1), 29–39 (2015)

12. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499 (1994)

13. System, C.C.: Denshi Karte System WATATUMI (Electronic Medical Records
WATATUMI. http://www.corecreate.com/02 01 izanami.html. Accessed 19 June
2019

14. Uragaki, K., et al.: Sequential pattern mining on electronic medical records with
handling time intervals and the efficacy of medicines. In: Proceedings of the 2016
IEEE Symposium on Computers and Communication, pp. 20–25. IEEE (2016)

http://www.med.miyazaki-u.ac.jp/home/jyoho/
http://www.iryohoken.go.jp/shinryohoshu/kaitei/
https://doi.org/10.1007/11731139_90
https://doi.org/10.1007/11731139_90
https://doi.org/10.1007/978-3-319-67186-4_8
http://www.corecreate.com/02_01_izanami.html

408 H. H. Le et al.

15. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large
datasets. In: Proceedings of the International Conference on Data Mining, pp.
166–177 (2003)

16. Chen, Y.-L., Chiang, M.-C., Ko, M.-T.: Discovering time-interval sequential pat-
terns in sequence databases. Expert Syst. Appl. 25(3), 343–354 (2003)

Web Services

Composing Distributed Data-Intensive
Web Services Using Distance-Guided

Memetic Algorithm

Soheila Sadeghiram(B), Hui Ma, and Gang Chen

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{Soheila.Sadeghiram,Hui.Ma,Aaron.Chen}@ecs.vuw.ac.nz

Abstract. Web services are fundamental elements of distributed com-
puting and allow rapid development of distributed applications. Data-
intensive Web services handle an enormous amount of data created by
different companies. Data-intensive Web service compositions (DWSC)
must fulfil functional requirements and optimise Quality of Service (QoS)
attributes, simultaneously. Evolutionary Computing (EC) techniques
allow for the creation of compositions that meets both requirements.
However, current approaches to Web service composition have overlooked
the impact of data transmission and the distribution of services, ren-
dering them ineffective when applied to distributed data-intensive Web
service composition DWSC. Especially, those approaches failed to con-
sider important information from the problem that enables us to quickly
determine the suitability of any solution. In this paper, we propose an
EC-based algorithm with novel crossover operators to effectively address
the above challenges. An evaluation is carried out and the results show
that our proposed method is more effective than the existing methods.

Keywords: Web Service Composition (WSC) · Distribution ·
Data-intensive · Problem-specific crossover

1 Introduction

Various service providers in different parts of the world prepare Web services,
i.e. software modules accessible by other programs over the Web to accomplish
a task [5]. Web services require some inputs and subsequently generate a set
of outputs after execution. In most cases, individual Web services are further
composed together through a Web Service Composition (WSC) process to create
new composite Web services, which consequently provide some new and complex
functionality [7]. Although many Web services deliver the same functionality,
non-functional properties, i.e. Quality of Service (QoS), such as response time
and cost (including communication time and cost), are discriminating factors
which must be considered explicitly for effective composition.

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 411–422, 2019.
https://doi.org/10.1007/978-3-030-27618-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_30

412 S. Sadeghiram et al.

Regarding the increasing quantities of available data on the Web, data-
intensive Web services are crucial requirements for many companies to facili-
tate performing large-scale data analysis. They generate a high volume of new
data as output. Therefore, Data-intensive Web Service Composition (DWSC)
will be heavily influenced by massive data transmission and present new chal-
lenges since the quality of a composite service is affected not only by the QoS of
component services but also by the locations of these Web services and the quan-
tity of data transferred among them. However, existing composition approaches
neglect the distribution of services over the network, i.e. they ignore the com-
munication among services and just consider moving data from a data centre
to a Web service, assuming that services are located in close proximity to each
other [6,7,20]. Such assumptions have been frequently and significantly violated
in practice. Specifically, it is highly desirable for a service composition system
to automatically compose selected services from a large service repository and
establish various service-oriented workflows. Unfortunately, this automated ver-
sion of the DWSC problem is NP-hard in nature [18]. It is therefore very hard (or
impossible) to solve large-scale DWSC problems by optimising the corresponding
QoS metrics within a limited time frame [9].

Evolutionary Computing (EC) is widely demonstrated to be capable of
automatically composing services with high quality, [2,6,7], to efficiently find
“good enough” composite services that meet users’ requirements [8]. Many EC
algorithms, such as Genetic Algorithm (GA) [10], Genetic Programming (GP)
[13] and Particle Swarm Optimisation (PSO) [11] have been used for WSC
[6,7,15,16]. In GA, operators can be applied without restrictions since the func-
tional correctness of the composition will be ensured through a decoding process.
Additionally, GA is more capable of maintaining a desirable balance between
solution quality and algorithm efficiency than PSO and integer linear program-
ming methods in [7] and [4], respectively. To further enhance the effectiveness
of EC algorithms, researchers hybridise EC with local search techniques [14].
This idea is called the Memetic Algorithm (MA) [14] and have been successfully
applied to finding high-quality solutions for WSC [7,19]. MAs were also shown to
clearly outperform simple EC on DWSC problems [15,17,20], where GA locates
the regions where the global optimum exists, and local search enables the popu-
lation to converge quickly to the optimum [17]. Therefore, in this paper, we will
utilise a GA-based memetic algorithm to solve the distributed DWSC problem.

In spite of the recent success in some of the GA-based memetic algorithms
for WSC and DWSC, only primitive forms of crossover, such as single-point
crossover, have been exploited [15,20]. Apparently, such crossover operators may
fail to effectively utilise solution structures in order to build high-quality solu-
tions, making it challenging for GAs to evolve composite services with consis-
tently increasing QoS. Therefore, new approaches, in particular, new crossover
operators must be developed to successfully tackle large-scale DWSC problems.
To fulfil this goal, in this paper, we will design crossover operators to generate
new offspring composite services that eliminate the bottleneck communication
links, i.e. the longest link between two adjacent services in a composite service.

Composing Distributed Data-Intensive Web Services 413

In DWSC, bottleneck links determine to a large extent the QoS of a compos-
ite service. We will further develop an MA-based service composition algorithm
that not only resolves bottleneck links but also preserves promising common
sub-components in existing solutions while using them to build new composite
services. Driven by those two ideas, the contributions of this paper are as follow:

(1) We will develop a new memetic algorithm armed with carefully designed
crossover operators which will help to build new and high-quality composite
services; (2) We will investigate the effectiveness of utilising domain knowledge,
in the MA through crossover operators; (3) We will investigate the effectiveness
of preserving promising sub-solutions among existing composite services in order
to pass valuable information through generations by crossover operators; (4) We
will conduct empirical comparisons between our proposed MA and several state-
of-the-art MA methods proposed for composition problems.

A summary of this work has been previously accepted as a poster paper.

2 Related Work

Some of the existing approaches have focused on fully-automated DWSC [15,20].
However, those approaches have utilised blind recombination methods. For
instance, [6,7,15,20] assign crossover points randomly and do not define which
part of the solution should be maintained unchanged and passed to the next
generation. A crossover where a random crossover point for each parent is deter-
mined (i.e., indices are independently chosen for the two parents) in [7]. After-
wards, each parent is split from the index point into a prefix and a suffix.
In order to generate offspring, a parent is embedded within the prefix and the
suffix of the other parent. Figure 3 illustrates an example of this crossover
operator.

Different from existing WSC problems, the data size and the location of ser-
vices are of great importance to DWSC due to their strong influence on the
communication cost and time. As far as we know, the only existing approach
which has considered communication characteristics for fully-automated DWSC
is a clustering-based GA algorithm [15], where the information regarding the
distribution of services is exploited to cluster existing services in a given repos-
itory. The clustered services are further used to generate the initial population
of candidate composite services. In fact, this paper only used service location
information when building the initial GA population. In this paper, however, we
will explicitly and continuously use service location information to build new and
better composite services with the help of newly designed crossover operators.

3 Problem Definition and Objective Function

In this section, first, we present the definition of the DWSC problem includ-
ing basic concepts and terminology. Afterwards, we will present the objective
function of the DWSC problem. First, we define the basic concepts involved in

414 S. Sadeghiram et al.

understanding the DWSC problem. These concepts have been introduced previ-
ously in [15], and described in more details in [17].

A data-intensive Web service is a tuple Si = (Ii, Oi, QoSi, Di, li), where
Si is the ith service in a repository R. Ii is a set of inputs, and Oi is a set of
outputs of service Si. QoSi is the set of quality attributes of the service which
describes non-functional properties that are important to the DWSC problem.
In this paper, for each Web service, we consider Ti and Ci, which refer to the
total time and cost required for executing service Si. Di is the set of m data
items dj , j ∈ {1, ...,m} required by service Si and li is the location of Si.

A service repository R consists of a finite collection of Web services Si, i ∈
{1, ..., n}. A service request (also called a composition task) is a tuple T =
(IT , OT) where IT is a set of inputs provided by a user, and OT is a set of task
outputs expected by the user to be produced by the composite service.

For a given task T , we need to find a composition that fulfils IT and produces
OT . A composite service is often represented as a Directed Acyclic Graph (DAG)
which includes a set of n services that could jointly accomplish the required task,
where two special services can be used to represent the overall composition’s
inputs and outputs: a start service S0 with I(S0) = ∅ and O(S0) = IT , and an
end service Sn+1 with I(Sn+1) = OT and O(Sn+1) = ∅. In a composite Web
service, there is a communication link between S and S′ if there is a direct edge
in the DAG that connects S and S′ together. In this paper, composite services
can support both parallel and sequential constructs.

Transferring and accessing data during the execution of a composite data-
intensive Web service requires a significant amount of time, which, along with
the quality of single Web services, affect the performance of the composite ser-
vice. The following components will be utilised in the definition of the objective
function. To further understand those components, Fig. 1 illustrates an example
of a composite service and the time and cost involved in executing it, where
for simplicity all associated time and cost components are shown only for one
Web service, one connection link and one data item. In the following, we list the
variables that contribute to the total cost and total execution of a composite ser-
vice. For more information about the definition of these components refer to [17]:
Server access latency (Tsal), Data execution time (Tproc), Service cost (Cs),
Data cost(Cprov), Data transfer time (Tt), Propagation delay (Tp) (including
Tpd and Tps), and Communication cost (Cc) (including Ccs and Ccd).

Correspondingly, the total execution time and cost of a Web service Si, i.e.,
Ti and Ci, (including data-related time and cost) are calculated in Eqs. (1) and
(2), respectively.

Ti =
m∑

j=1

(Tpddj
+ Tsaldj

+ Tprocdj
+ Tt) (1)

Ci =
m∑

j=1

(Ccddj
+ Cddj

+ Cs) (2)

In the above functions, m is the total number of data items in Di.

Composing Distributed Data-Intensive Web Services 415

The overall cost is obtained by summing up the costs of all services in the
composition, i.e., nodes (services) and associated costs for edges (communication
links) in the graph, as shown in Eq. (3):

Ctotal =
NODE∑

i=1

Ci +
EDGE∑

i=1

Ccsi (3)

Ccs is the communication cost. NODE and EDGE are the total numbers of
nodes (Web services) and edges (links between services) included in that com-
position, respectively.

Response time Ttotal is the time of the most time-consuming path in the
composition. Assuming h is the number of paths in a composite service, Np and
Ep are the number of nodes and edges in a path p, respectively. The overall time
is defined as in Eq. (4):

Ttotal =
h

max
p=1

(
Np∑

i=1

Ti +
Ep∑

i=1

Tpsi) (4)

The goal is to minimise the objective function in Eq. (5) by producing a
suitable composite service constructed from the repository R. Accordingly, the
best solution will be a composition with a minimum value of F . for a detailed
description of computing the objective function refer to [17].

F = wT̂total + (1 − w)Ĉtotal (5)

where T̂total and Ĉtotal are normalised values of Ttotal and Ctotal, respectively.
w is a positive weight to be determined by users who requested for a service
composition to be performed. Therefore, the DWSC problem formulated in this
section explicitly considers both the distribution of data and services over distant
locations. During the process of building high-quality composite services, we
must carefully manage the cost and delay caused by massive data communication
among data centres and services, which is the central focus of this paper.

4 Representation of Solutions and the Decoding

We will utilise indirect representation, i.e. sequences, for representing chromo-
somes of GA (each individual solution in GA is called a chromosome). It is
shown that the indirect representation outperformes other representations, such
as graph and tree, both in efficiency and effectiveness for WSC [7], because it
allows the optimisation to be carried out without any restrictions and functional
constraints are enforced easily through a separate decoding step to transform
sequences into an executable composite service in form of DAGs, i.e., a feasible
workflow [7,15]. An example of the backward decoding of a service sequence
(where the solution is built gradually from the end service, Sn+1 to the start
service S0) is illustrated in Fig. 2. Redundant services, which have not been used
in the solution, will be removed from the sequence after the decoding. Addition-
ally, duplicated services added to the sequence through our EC operators which
will be removed during the decoding process.

416 S. Sadeghiram et al.

Fig. 1. A composite service and its
components.

Fig. 2. Backward decoding (note that
the sequence is traversed as many times
as possible).

5 Distance-Guided Memetic Algorithm for DWSC

GAs employ the current population to locate a promising region [10], where the
function F calculated in Sect. 3 will be used as the fitness measure. The initial
population is created by randomly ordering all the services in the repository to
form sequences. GAs rely heavily on crossover operators to derive an offspring
population by combining parts of existing solutions. New solutions may also
be modified by other operators, such as mutation, before being added to the
new population. Algorithm1 presents the pseudocode of our new algorithm. To
investigate the potential of crossover operators, we will design three crossover
operators. The relative distance of services is clearly important information to
DWSC that we will on a continual basis throughout the full evolutionary process.

Algorithm 1: Memetic Algorithm for DWSC
Input : Service Repository (R), Task (T), Number of Generations (G)
Output: A Service Composition Solution

1: Generate sequences with randomly ordered services in R;
2: Apply decoding to sequences to create a composite service for each sequence, and

calculate their fitness;
3: Update sequences by removing redundant services not used during the decoding;
4: while number of iterations < G do
5: Use tournament selection to select individuals based on their fitness values;
6: Apply a distance-guided crossover operator to the tournament winners;
7: Apply mutation operator to the tournament winners;
8: Apply local search operator to the tournament winners;

9: end
10: return SequenceWithBestFitness;

In this paper, efforts will be put into the development of new crossover opera-
tors to improve the performance of MAs. In fact, three distance-guided crossover
operators will be developed to utilise domain knowledge in the form of bottle-
neck, i.e. the longest communication, links. It is expected that the integration
of MA and our crossover operators will enable us to build new algorithms that
will significantly outperform several state-of-the-art algorithms in terms of both
solution quality and efficiency [7,16].

Composing Distributed Data-Intensive Web Services 417

The new crossover operators will be created from a baseline operator, (B-
MA), which has been widely used in recent MAs for WSC [7], which has been
explained in Sect. 2. To design three new crossover operators, we focus on the
bottleneck link. Since the distance of every communication link is the deciding
factor in obtaining the crossover point, we call it distance-guided crossover. We,
therefore, set the crossover point based on the longest distance between any
two consecutive services in the service sequence. Following this idea, we first
introduce distance-guided single-point crossover operators. We will then enhance
it either with the LCS heuristic so as to preserve good sub-solutions (or building
blocks) in the offspring solutions or with distance-guided two-point crossover.

Distance-Guided Single-Point Crossover: this crossover uses the location of ser-
vices as the key decision factor. As illustrated in Fig. 4, this crossover is very simi-
lar to B-MA; however, distance-guided single-point crossover picks the crossover
point based on the distance of services to each other. For example, in Fig. 4,
the largest distance in Parent1 is 150 km which is between service b and ser-
vice c, and 140 km for Parent2 between service e and service g. The aim of this
crossover is to enhance the fitness of the offspring by eliminating the bottleneck
links of parents. To achieve this goal, parents are broken apart from the longest
communication distance point.

Distance-Guided Two-Point Crossover: different from the crossover operator
above, for this two-point crossover operator, the crossover points in each parent
are chosen based on the first and second longest distances between any pair of
consecutive services. Using these two crossover points, each parent is split into
three parts. In order to produce offspring, portions of the first parent are com-
bined with those of the second parent, one in between. An example of distance-
guided two-point crossover is illustrated in Fig. 5. Two offspring differ from each
other in the order of combination. The diversity between children and parents
is expected to be increased through a three-part combination mechanism.

Distance-Guided LCS Crossover: as illustrated in Fig. 6, a heuristic is incor-
porated in this crossover operator to preserve the promising part of each par-
ent, which will be inherited directly by their children without any change. This
new heuristic is called the longest common sub-sequence (LCS), i.e. the longest
sequence of services which appears in both parents. To avoid any change to LCS,
the crossover point is selected in the same way as the distance-guided single-point
crossover operator except that this point cannot be inside the LCS. In that way,
children can easily preserve good sub-solutions embedded in the LCS.

418 S. Sadeghiram et al.

Fig. 3. Index crossover Fig. 4. Distance-guided single-point
crossover

6 Evaluation and Experiment Design

In this section, we will conduct experimental evaluations to examine the effec-
tiveness of all the three newly developed crossover operators in the context of
an MA-based algorithm for DWSC. A set of experiments is carried out using
WSC-2008 [3] and WSC-2009 [12] benchmark datasets. WSC-2008 contains eight
service repositories of varying sizes, while WSC-2009 has five repositories with
the number of services in a repository up to 15211. The total number of services
for each dataset is presented in Table 1. One associated composition task per
repository of services are also given in advance [3,12]. These datasets were cho-
sen because they are the largest benchmarks that have been broadly exploited
in the WSC literature; however, the original WSC datasets did not include all
required information. Therefore, we further obtain QoS settings from the QWS
dataset [1], and the location information of the servers hosting Web services from
WS-Dream open dataset [21].

The data-intensive information such as Tsal and Ccd are obtained using
the distance between two Web services which is estimated by the same method
as proposed in [15] based on the location information in the WS-Dream open
dataset [21]. Specifically, the network bandwidth used in our experiments is ran-
domly sampled from a normal distribution. Network bandwidth and data size
are utilised to calculate Tt, for each connection link in the interval (0,1]. Addi-
tionally, each data item has its own Tsal and Cprov, which are both generated
randomly in the interval (0,1]. Since the data size has been considered the same
(i.e. 3) for all methods, the values of Cc, including Ccs and Ccd, and Tp only
depend on the distance between relevant services which is calculated from the
WS-Dream dataset. Values of Tproc and Cs are obtained from datasets WSC-
2008 and WSC-2009, and then normalised within the range 0 and 1. Two recent
approaches, i.e. B-MA [7] and Cluster-guided MA [15], will be evaluated as
baselines. Each method will be run 30 independent times. For the algorithm,
number of generations and population size are 100 and 30, respectively. Local
search, crossover and mutation operators probability are 0.05, 0.95 and 0.05,
respectively. Tournament selection with size 2 is used to select individuals for
the operators. Therefore, all methods share the same parameter set which fol-
low the common practice in the literature [13]. The user can set the weight

Composing Distributed Data-Intensive Web Services 419

(w in Eq. (5)) to specify the relative importance of total time and cost according
to their preference. Since we do not have access to the real preferences from
any users in our experiments, following other WSC research works [6,7], we set
w = 0.5, which means that the time and cost have same importance to the fit-
ness (Note that since the value of w = 0.5 is normally provided by service users,
it will not affect the generality of the algorithm.).

Fig. 5. Distance-guided two-point
crossover

Fig. 6. Distance-guided LCS crossover
(the longest common sub-sequence is
identified with grey).

7 Results and Discussions

Table 1 shows the average solution fitness and standard deviation for 30 inde-
pendent runs of each approach. Distance-MA-I and distance-MA-II represent
the MA algorithms that use respectively the distance-guided single-point and
distance-guided two-point crossover operators. We performed ANOVA statisti-
cal analysis on the average of these values at 0.05 significance level. For dataset
08-2 the fitness achieved by distance-MA-II was significantly better in all com-
parisons against other approaches. On the other hand, for dataset 08-1 there was
no significant difference between distance-MA-LCS and distance-MA-II. Results
show that utilising distance-guided crossover operators in general performed bet-
ter than B-MA and Cluster-MA. Table 1, therefore, clearly demonstrates the
importance of using domain knowledge and preserving good sub-solutions in
crossover operators. Distance-MA-LCS method has performed the best out of
the five methods, thanks to its capability of maintaining valuable sub-solutions
embedded in the LCS. Additionally, distance-MA-II performed mostly better
than distance-MA-I. This implies that increasing the diversity between offspring
chromosomes and their parents can improve the effectiveness of MAs.

Figure 7 illustrates the mean fitness values over 30 runs for the tasks 09-4
and 08-5, where, for both tasks, Cluster-MA outperformed B-MA even in the
early stages of the evolutionary process. Additionally, Cluster-MA marginally
outperformed distance-MA-I on task 09-4, which might be due to the substan-
tial number of local search evaluations in it. Task 09-4 includes more services
resulting in longer service sequences to be evaluated by GAs which need more
evaluations during the local search process. According to Table 1, the fitness can
be improved much faster by using our algorithms with newly designed crossover

420 S. Sadeghiram et al.

Table 1. Mean fitness values and standard deviations per 30 runs. Significantly better
values in all four comparisons are highlighted. (Note: the lower the fitness the better)

Task (size) B-MA [7] Cluster-MA [15] Distance-MA-I Distance-MA-II Distance-MA-LCS

WSC08-1 (158) 0.54 ± 0.04 0.46 ± 0.04 0.45 ± 0.01 0.42 ± 0.04 0.41 ± 0.12

WSC08-2 (558) 0.51 ± 0.09 0.44 ± 0.14 0.46 ± 0.03 0.42 ± 0.05 0.42 ± 0.02

WSC08-3 (604) 0.55 ± 0.18 0.53 ± 0.03 0.52 ± 0.04 0.48 ± 0.01 0.44 ± 0.02

WSC08-4 (1041) 0.52 ± 0.03 0.5 ± 0.09 0.49 ± 0.02 0.45 ± 0.06 0.4 ± 0.01

WSC08-5 (1090) 0.55 ± 0.09 0.53 ± 0.041 0.51 ± 0.01 0.5 ± 0.17 0.47 ± 0.09

WSC08-6 (2198) 0.58 ± 0.13 0.56 ± 0.08 0.57 ± 0.01 0.55 ± 0.02 0.46 ± 0.2

WSC08-7 (4113) 0.57 ± 0.01 0.55 ± 0.236 0.59 ± 0.01 0.58 ± 0.04 0.53 ± 0.02

WSC08-8 (8119) 0.54 ± 0.08 0.49 ± 0.04 0.53 ± 0.02 0.44 ± 0.09 0.45 ± 0.05

WSC09-1 (572) 0.59 ± 0.03 0.54 ± 0.23 0.55 ± 0.03 0.57 ± 0.07 0.53 ± 0.02

WSC09-2 (4129) 0.56 ± 0.01 0.51 ± 0.04 0.5 ± 0.002 0.46 ± 0.1 0.47 ± 0.02

WSC09-3 (8138) 0.55 ± 0.09 0.54 ± 0.04 0.52 ± 0.06 0.52 ± 0.09 0.49 ± 0.06

WSC09-4 (8301) 0.539 ± 0.08 0.515 ± 0.04 0.525 ± 0.01 0.48 ± 0.01 0.47 ± 0.16

WSC09-5 (15211) 0.58 ± 0.09 0.46 ± 0.04 0.49 ± 0.02 0.51 ± 0.02 0.42 ± 0.03

Fig. 7. Mean fitness values over 30 runs. (Cluster-MA evaluation is truncated at 5000
instead of displaying up to 10,000 as the variation in values is minimal after this point.)

operators. Particularly, distance-MA-LCS finds high-quality composite services
much faster than all other algorithms. Based on the results of the experiments we
can finally conclude that our new crossover operators open a promising avenue
of research with the potential to generalise to similar problems in other domains.

8 Conclusions

In this paper, we proposed an MA-based approach with novel crossover operators
designed to utilise information from the problem and preserve good sub-solutions
from the parents. We applied an appropriate fitness function to the distributed
DWSC to include quality of services, properties of data items and communica-
tion attributes between services. We consequently implemented our method on
DWSC and made comparisons with other existing works. Our experimental eval-
uations using various benchmark datasets confirmed that our proposed method
were able to effectively produce better quality results. In the future, our pro-
posed method should be applied to other problems in this domain. Appropriate
attention should be given to user preferences to specify the value of parameters.

Composing Distributed Data-Intensive Web Services 421

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating Web services on the world wide web.
In: Proceedings of the 17th International Conference on World Wide Web, pp.
795–804. ACM (2008)

2. Aversano, L., Di Penta, M., Taneja, K.: A genetic programming approach to sup-
port the design of service compositions. Int. J. Comput. Syst. Sci. Eng. 21(4),
247–254 (2006)

3. Bansal, A., Blake, M.B., Kona, S., Bleul, S., Weise, T., Jaeger, M.C.: WSC-08: con-
tinuing the Web services challenge. In: 2008 10th IEEE Conference on E-Commerce
Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce
and E-Services, pp. 351–354. IEEE (2008)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, pp. 1069–1075.
ACM (2005)

5. Channabasavaiah, K., Holley, K., Tuggle, E.: Migrating to a service-oriented archi-
tecture. IBM DeveloperWorks 16, 727–728 (2003)

6. da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: A memetic algorithm-based indirect
approach to web service composition. In: IEEE Congress on Evolutionary Compu-
tation (CEC) (2016)

7. da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: Evolutionary computation for automatic
Web service composition: an indirect representation approach. J. Heuristics 24(3),
425–456 (2018)

8. Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26–32 (2000)
9. Gabrel, V., Manouvrier, M., Murat, C.: Web services composition: complexity and

models. Discrete Appl. Math. 196, 100–114 (2015)
10. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
11. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Ency-

clopedia of Machine Learning, pp. 760–766. Springer, Boston (2011). https://doi.
org/10.1007/978-0-387-30164-8

12. Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: a quality of
service-oriented Web services challenge. In: 2009 IEEE Conference on Commerce
and Enterprise Computing, CEC 2009, pp. 487–490. IEEE (2009)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

14. Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and mar-
tial arts: towards memetic algorithms. Caltech concurrent computation program,
C3P Report, 826 (1989)

15. Sadeghiram, S., Ma, H., Chen, G.: Cluster-guided genetic algorithm for distributed
data-intensive Web service composition. In: 2018 IEEE Congress on Evolutionary
Computation (CEC) (2018)

16. Sadeghiram, S., Ma, H., Chen, G.: Distance-guided GA-based approach to dis-
tributed data-intensive Web service composition. arXiv preprint. arXiv:1901.05564
(2019)

17. Sadeghiram, S., Ma, H., Chen, G.: Composing distributed data-intensive Web ser-
vices using a flexible memetic algorithm. In: IEEE Congress on Evolutionary Com-
putation (CEC) (2019, in press)

18. Strunk, A.: QoS-aware service composition: a survey. In: 2010 Eighth IEEE Euro-
pean Conference on Web Services, pp. 67–74. IEEE (2010)

https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/978-0-387-30164-8
http://arxiv.org/abs/1901.05564

422 S. Sadeghiram et al.

19. Yan, L., Mei, Y., Ma, H., Zhang, M.: Evolutionary Web service composition: a
graph-based memetic algorithm. In CEC, pp. 201–208 (2016)

20. Yu, Y., Ma, H., Zhang, M.: A hybrid GP-Tabu approach to QoS-aware data inten-
sive Web service composition. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol.
8886, pp. 106–118. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13563-2 10

21. Zheng, Z., Lyu, M.R.: WS-dream: a distributed reliability assessment mechanism
for Web services. In: 2008 IEEE International Conference on Dependable Systems
and Networks with FTCS and DCC, DSN 2008, pp. 392–397. IEEE (2008)

https://doi.org/10.1007/978-3-319-13563-2_10
https://doi.org/10.1007/978-3-319-13563-2_10

Keyword Search Based Mashup
Construction with Guaranteed Diversity

Huanyu Cheng, Ming Zhong(B), Jian Wang, and Tieyun Qian

School of Computer Science, Wuhan University, Wuhan 430072, China
{chy,clock,jianwang,qty}@whu.edu.cn

Abstract. To assist system engineers in efficiently constructing
mashups, the keyword search based approach is proposed recently, which
finds the optimal mashup of services with respect to QoS. However, we
claim that the diversity of mashups should be taken into account due
to the ambiguity of input keywords, so that the returned diverse set of
mashups can improve user satisfaction by covering various possible user
demands behind the keywords. For that, we present a novel keyword
search based service composition approach that finds the top-k mashups
dissimilar to each other. Specifically, our approach firstly searches for
specific subtrees that contain all given keywords in a service connection
graph as candidate mashups, and then uses an efficient graph-based algo-
rithm to select the final diverse top-k set without evaluating the similarity
between each pair of mashups. We conduct the evaluations of our app-
roach on a real world data set crawled from the ProgramableWeb.com.
The experimental results demonstrate that our approach outperforms
the previous work on two selected metrics.

Keywords: Diversification · Service composition · Keyword search ·
Web service · Quality of service

1 Introduction

Web services are stand-alone, modular applications described by standardized
web protocols and provide publishing and discovery in a standardized way. They
can be composed loosely for building complex distributed software systems under
a framework called Service Oriented Architecture (SOA). Due to the advantage
of SOA, there has been a rapid growth of demands of constructing mashups by
composing web services. A web mashup is a programming environment which
allows end-users to integrate information and web services. In mashups, a ser-
vice is regarded as a black-box component. The traditional service composition
approaches consist of three key tasks, namely, system planning, service discovery
and service selection. These traditional approaches (e.g. [2,6,8]) are too compli-
cated and thereby not efficient enough for ordinary system engineers without
comprehensive and in-depth knowledge of the three tasks.

The original version of this chapter was revised: the acknowledgement section was
updated. The correction to this chapter is available at https://doi.org/10.1007/978-3-
030-27618-8 34

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 423–433, 2019.
https://doi.org/10.1007/978-3-030-27618-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_34
https://doi.org/10.1007/978-3-030-27618-8_34
https://doi.org/10.1007/978-3-030-27618-8_31

424 H. Cheng et al.

Fig. 1. An example from ProgrammableWeb.com.

To help system engineers construct mashups efficiently, He et al. [5] propose
KS3, a keyword search based service composition approach, which integrates and
automates the procedures of system planning, service discovery and service selec-
tion. By leveraging the studies of keyword search over graphs (e.g. [4]), the keyword
search based service composition approach can automatically produce prototype-
like solution with respect to a given set of keywords describing the mashup.

However, only the optimal solution may not satisfy the real user requirements
underlying the given keywords, because a same set of keywords may represent
different user requirements due to the inherent ambiguity of keywords. For exam-
ple, a user inputs two keywords “book” and “map” into ProgrammableWeb.com
(abbr. PW)1 for a system that interacts with a map to find books in nearby
public libraries as shown in Fig. 1. However, most of the search results offer the
functionality of booking something like hotels. In contrast, only several search
results in the category “Book” are really used for deriving the information of
books. As a result, we only get a few of compositions that help travelers plan
and book personalized holiday experiences, but not the mashup “CodexMap”
that lets the user find books graphically on a map.

Therefore, the diversity should be taken into account in keyword search based
service composition. In contrast, the existing service diversification works just
exploit the users’ query history for disambiguation of keywords and are not
devised to find a set of diverse service compositions. Mei et al. [9] proposed
DivRank based on a reinforced random walk, which automatically balanced the

1 http://www.programmableweb.com/.

http://www.programmableweb.com/

Keyword Search Based Mashup Construction with Guaranteed Diversity 425

Fig. 2. An overview of our proposed system

prestige and the diversity. Kang et al. [7] used expansion ratio to evaluate the
diversity of web services. However, they can only diversify individual services but
not compositions of services. Naim et al. [10] first achieved the diverse functional
web services and then leveraged web service dependency network to diversify the
compositions. Although they try to diversify service compositions, they actually
have a totally different definition of “diversity”. Their diversity is the scalability
of compositions, which means measuring how many dependent services of its
services exist for each single composition. In contrast, we focus on find a set of
service compositions that are dissimilar enough to each other.

In this paper, we propose a novel keyword search based approach that finds
the diversified top-k mashups with different optimization goals of QoS, such
as reliability, throughput and cost. As shown in Fig. 2, our approach has two
phases, namely, offline and online. In the offline phase, we build a service con-
nection graph from a library of web services crawled from a given web service
portal. Moreover, we build an inverted index from keywords to the nodes on
the graph by parsing the service descriptions. In the online phase, the system
engineers can input a few keywords describing their demands or the main func-
tionality of expected mashups. The nodes/services matched by the keywords will
be retrieved from the index and be passed to the search algorithm. The search
algorithm will return the results of composition on the service connection with
QoS better than a given threshold. The diversification algorithm will gradually
build a similarity graph by adding the results as nodes in the descending order
of QoS, and meanwhile, incrementally compute the maximal independent sets
of the similarity graph until convergence, namely, a maximal independent set
of k results have been found. Lastly, the diversified top-k results will be post-
processed as in [5] to generate the final prototype-like service compositions.

The main contributions of this paper are as follows.

– We formalize a diversified keyword search based service composition problem,
which is to find the top-k mashups that are dissimilar to each other with
respect to QoS.

426 H. Cheng et al.

– We present the search and diversification algorithms to address the problem.
– We perform experiments on a real world data set. The experimental results

show that our approach can reveal more diverse mashups compared with the
previous method.

The rest of this paper is organized as follows. Section 2 describes our graph
data model and formalizes the research problem. Section 3 presents our algo-
rithms in detail. Section 4 evaluates our approach with experimental results.
Lastly, Sect. 5 concludes the paper.

2 Problem Statement

2.1 Preliminaries

In the scenario of service composition, we can generally model a library of web
services as a service connection graph (scgraph). A scgraph is a node-labeled
directed simple graph, where the nodes represent the web services and the edges
between them represent the service connection, namely, whether the two corre-
sponding web services can be composed in the order specified by the direction
of the edge. Due to limited space, it is not specifically introduced here. More
details can be found in e.g., [3].

2.2 Problems

Following the definition of [5], we define a mashup as a result tree generated
by keyword search on a scgraph. Given a scgraph G and a keyword query Q =
{t1, ..., tl} containing l (l ≥ 2) keywords, we denote the set of result trees of Q on
G as Q(G), which are subtrees of G and contain all keywords in Q. To formalize
this concept, let us consider the following definitions.

Definition 1 (Search Path). Given a graph G = (V,E) and a keyword t, a
search path P in G is a sequence of nodes v1/v2/ · · · , where (1) v1 contains t,
(2) vi ∈ V , (3) e(vi, vi+1) ∈ E, with i ≥ 1.

Definition 2 (Result Tree). Given a graph G = (V,E) and a query Q, a
result tree T is comprised of a set of search paths from each keyword in Q on G,
whose last nodes are a same node, namely, the root of T .

In order to rank the result trees, we need to measure the goodness of mashups
represented by them. There could be various measurements like QoS, relevance
to queries, etc. In this paper, we consider reliability, throughput and cost as the
metrics of result trees respectively. These structure-independent system qualities
[5] are calculated independently of the structure and dynamics of mashups, and
only based on the quality of their component services. Since the topology of the
result trees will change in the postprocessing [5], it is difficult to consider the
structure-dependent system qualities.

Keyword Search Based Mashup Construction with Guaranteed Diversity 427

Let qrb(T), qtp(T), qc(T) be the reliability, throughput and cost of the
result tree T . They can be calculated by the following equations: qrb(T) =∏

v∈V T qrb(v), qtp(T) = minv∈V T qtp(v), qc(T) =
∑

v∈V T qc(v). For conciseness,
we assume the cost of all services is equal to 1.

In order to identify the diverse sets of the result trees, we need to be able to
compute the similarity between each pair of result trees. For that, let the services
be categorized. We assume the more common service categories two result trees
have, the more similar they are. Formally, given two result trees T and T ′, we
compute their Jaccard similarity as

simjsc(T, T ′) =
|C(T)

⋂
C(T ′)|

|C(T)
⋃

C(T ′)| (1)

where C(T) is the set of all distinct categories of services contained by T .
Different from the previous work [5] that finds only the optimal (i.e., top-1)

connected tree in scgraphs, we aim to find the top-k diverse result trees, so that
the result set could satisfy different user demands. Formally, the problem to be
addressed in this paper is as follows.

Definition 3 (Diversified Top-k Mashups). Given a scgraph G, a keyword
query Q, an objective function F (e.g., qc, qrb or qtp), a diversity function D
(e.g. similarity), a positive real number α ∈ [0, 1] as diversity threshold and a
positive real number β as quality constraint, find a set of result trees R ⊆ Q(G)
such that |R| = k, minT,T ′∈R D(T, T ′) � α and minT∈R F (T) � β is maximized.

Note that α is a parameter for adjusting the diversity of results, and β is a
threshold for excluding the results with poor QoS.

3 Diversified Search

In this section, we address the problem of finding the diversified top-k result
trees on a scgraph. Our diversified search approach is divided into two phases.
The first phase is to search the results with objective values greater than β, and
the second phase is to derive the diversified top-k result set.

3.1 Result Generation

Following the line of backward search [1], our result generation algorithm decom-
poses the problem of finding result trees of a keyword query Q into |Q| indepen-
dent subproblems, each of which is to iteratively enumerate search paths from
one of the query keywords by heuristics. Once a set of search paths from all
keywords meet at a same root node, a result tree is generated by joining the
paths.

Algorithm 1 presents the pseudo-code of the function result generation algo-
rithm. Let R be a priority queue of intermediate result trees in descending order
of their objective values, PQt be a priority queue of search paths from t ∈ Q that

428 H. Cheng et al.

have not been traversed yet, and Ht,v be a container that records the traversed
search paths from t to a specific node v ∈ V . Firstly, all PQt for each keyword
in query will be initialized (line 1–3). This algorithm traverses the scgraph G
iteratively, until the upper bounds are lower than β or all search path queues
are empty (line 4–20). At each iteration, a nonempty queue PQt is chosen in a
round-robin way (for avoiding search stagnation), and a search path Pt whose
end node is v is dequeued from PQt and is added into Ht,v (line 5–8). Then,
the newly found search paths from t through appending a neighbor edge of v
at the end of Pt will be generated and enqueued into PQt (line 9–12). Each
combination of traversed search paths from other keywords t′ ∈ Q in Ht′,v will
be joined with Pt to generate a new result tree, and all new result trees will be
enqueued into R if their objective values are higher than β (line 13–18). At the
end of iteration, the upper bounds of objective values of results that have not
been generated yet are estimated (line 19). Lastly, the result trees in R will be
returned (line 21).

In addition, we explain the sorting of search paths in PQt and the estimation
of upper bounds η(v) as follows.

A search path can be considered as a special result tree with only one branch.
Thus, we can use the equations in Sect. 2 to calculate the objective value F (Pt)
of a search path Pt respectively. Heuristically, a search path Pt takes precedence
over another search path P ′

t in PQt if and only if F (Pt) is better than F (P ′
t).

For each node v ∈ V , we denote by η(v) the upper bound of objective values of
result trees rooted at v (including unknown results). Let η(v)c, η(v)rb and η(v)tp
be the upper bound of correlation, reliability and throughput respectively. They
can be estimated by using the following equations.

η(v)c = min
t∈Q

(
∑

t′∈Q,t′ �=t

min
Pt′∈Ht′,v

qc(Pt′) + PQt.peek) (2)

η(v)rb = max
t∈Q

(
∏

t′∈Q,t′ �=t

max
Pt′∈Ht′,v

qrb(Pt′) · PQt.peek) (3)

η(v)tp = max
t∈Q

min
t′∈Q,t′ �=t

{ max
Pt′ ∈Ht′,v

qtp(Pt′), PQt.peek} (4)

where PQt.peek is the peek value of qc(Pt), qrb(Pt) or qtp(Pt) for Pt ∈ PQt.

3.2 Result Diversification

In order to find the sets of diverse top results, we find maximal independent sets
(MISs) in a specific similarity graph like [11].

Algorithm 2 presents the pseudo-code of the result diversification algorithm,
which can incrementally find the new MISs on a similarity graph that is updated
constantly by adding a new node representing the next top result into it. As a
result, our algorithm can eliminate the redundant computation that occurs while
finding the MISs on a constantly evolving graph, thereby reducing the overall
overheads.

Keyword Search Based Mashup Construction with Guaranteed Diversity 429

Algorithm 1: Result Generation
Input: G, Q, β;
Output: the result trees with objective values higher than β;

1 foreach keyword t ∈ Q do
2 put the neighbor edges of each node containing t into PQt;

3 end
4 while ∃v ∈ V , η(v) � β and ∃t ∈ Q, PQt is not empty do
5 choose a nonempty PQt in a round-robin way;
6 Pt ← PQt.dequeue();
7 v ← the last node on Pt;
8 Ht,v.add(Pt);
9 foreach neighbor edge e ∈ E of v do

10 generate a new search path P ′
t by appending e at the end of Pt;

11 PQt.enqueue(P ′
t);

12 end
13 foreach combination of paths in Ht′,v with t′ �= t ∈ Q do
14 generate a result tree T comprised of the combination and Pt;
15 if F (T) � β then
16 R.insert(T);
17 end

18 end
19 update η(v) for each v ∈ V ;

20 end
21 return R;

Our algorithm is to call function findMIS() iteratively. The details of function
findMIS() is as follows. Let MISs be the set of MISs on the previous similarity
graph Gs

n, and MISs′ be the set of new MISs on the new similarity graph Gs
n+1.

There are two steps to find MISs′. Firstly, for each MIS MIS ∈ MISs, create
a new set MIS′ = MIS ∪ {v} (line 15). If there are nodes in MIS′ adjacent
to v, remove them from MIS′ so that MIS′ is an independent set (line 17).
Then, put MIS′ into MISs′ (line 19). Secondly, remove the independent sets
in the MISs′ that are non-maximal, namely, are the subsets of some other sets
(line 21), and merge the previous set of MISs (with non-maximal sets removed)
MISs and the new set of MISs MISs′ (line 22). Lastly, we can find all MISs
on the new similarity graph. The proof of correctness of our algorithm can be
found in [12].

4 Experimental Evaluation

4.1 Experiment Setup

The experiments are performed on a Windows 7 PC with 3.20 GHz CPU and
16 GB memory. We have conducted a series experiments on the Programmable
Web (PW) dataset, which contains 1104 web services and 2429 mashups. We

430 H. Cheng et al.

manually generate 20 queries which contain keywords obtained from the descrip-
tion of services used by the corresponding mashup.

Compared Algorithm. We compare our diversification method (MIS) with
the method (EXP) that uses expansion ratio to diversify the compositions in [7].
The default value of β, k and α is 4, 3 and 0.3 respectively.

4.2 Evaluation

We employ the metric proposed in [9] to measure diversity. The metric makes
use of density of the induced sub-graph. The density of a graph is defined as
the number of edges presenting in the graph divided by the maximal possible
number of edges in the graph. Given a sub-graph S, the density is as followed:

Density(S) =
|{(u, v)|u ∈ S, v ∈ S, (u, v) ∈ E}|

|S| · (|S| − 1)
(5)

Algorithm 2: Result Diversification
Input: k, a set of results R and a similarity threshold α;
Output: the diversified top-k results;

1 while ∀MIS ∈ MISs, |MIS|< k do
2 T ← R.pop();
3 MISs ←findMIS(MISs,T ,α);

4 end
5 return MIS ∈ MISs with |MIS| = k;
6 Function findMIS(MISs,T ,α)
7 Gs

n+1 ← Gs
n ∪ v;

8 foreach v′ ∈ V s
n do

9 if sim(v, v′) � 1 − α then
10 add an edge e(v, v′);
11 end

12 end
13 MISs′ ← ∅;
14 foreach MIS ∈ MISs do
15 MIS′ = MIS ∪ {v};
16 while ∃u ∈ MIS, u is adjacent to v do
17 remove u from MIS′;
18 end
19 add MIS′ to MISs′;
20 end
21 remove the non-maximal independent sets in MISs′;
22 MISs ← MISs ∪ MISs′;
23 return MISs;

24 end

Keyword Search Based Mashup Construction with Guaranteed Diversity 431

In addition, to evaluate the redundancy of returned results, we use the fol-
lowing equation:

Redundancy(R) =
∑

T∈R |C(T)| − |⋃T∈R C(T)|
∑

T∈R |C(T)| (6)

where R is the set of returned results and C(T) is the set of categories of services
in T .

We conduct experiments to study the performance of our approach with the
diversity metric and make comparison with its competitors.

As shown in Fig. 3(a), our approach always achieves zero density since our
approach is to find the maximal independent set which contains no edges between
results. In contrast, the density of results generated by EXP is always more than
zero, even though it decreases with the increase of k. Thus, we can conclude that
our approach must outperform EXP in terms of density.

(a) Density. (b) Redundancy.

Fig. 3. The effectiveness comparision

(a) Impact of α on redundancy. (b) Impact of α on efficiency.

Fig. 4. Impact of α.

As shown in Fig. 3(b), the redundancy of MIS is always lower than EXP
no matter the vary of k. Different from the approach using expansion ratio,

432 H. Cheng et al.

our approach ensures that the minimum dissimilarity between mashups is more
than a threshold. In this way, our method can apparently reduce the redundancy.
Therefore, we can conclude that our approach also outperforms EXP in terms
of redundancy.

Next, we study the impacts of α for MIS while keeping other parameters
unchanged. From Fig. 4(a), we can see that the redundancy decreases with the
increase of α. Obviously, the higher the dissimilarity between the results, the
fewer the overlapped categories, and the lesser the redundancy. From the obser-
vation, we can conclude that larger α offers lower redundancy, namely, better
diversity. From Fig. 4(b), we can see that the time cost of our approach increases
with the increase of α. In particular, the time cost starts to increase dramatically
when α > 0.5. Therefore, the evaluation of α should achieve a balance between
diversity and efficiency.

Overall, our approach outperforms the EXP approach in spite of redundancy
and density comparison.

5 Conclusion

In this paper, we study how to extend the emerging keyword search based service
composition approach to satisfy different user demands behind the inherently
ambiguous input keywords. To address the problem, we propose a keyword search
algorithm over service connection graphs to get the good enough composition
candidates, and a very efficient diversification algorithm based on incremental
maximal independent set enumeration on a similarity graph to identify the final
diversified top-k results. From the experimental results, we observe that our
approach is effective.

Acknowledgement. This paper was supported by National Natural Science Founda-
tion of China under Grant No. 61202036, 61502349 and 61572376 and Natural Science
Foundation of Hubei Province under Grant No. 2018CFB616.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: Proceedings 18th Interna-
tional Conference on Data Engineering, pp. 431–440 (2002)

2. Calinescu, R.C., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Software Eng. 37(3), 387–409 (2011)

3. Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network.
Comput. J. 58(6), 1293–1305 (2015)

4. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data
graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 927–940 (2008)

5. He, Q., et al.: Keyword search for building service-based systems. IEEE Trans.
Software Eng. 43(7), 658–674 (2017)

Keyword Search Based Mashup Construction with Guaranteed Diversity 433

6. He, Q., Yan, J., Jin, H., Yang, Y.: Quality-aware service selection for service-based
systems based on iterative multi-attribute combinatorial auction. IEEE Trans.
Software Eng. 40(2), 192–215 (2014)

7. Kang, G., Tang, M., Liu, J., Liu, X.F., Cao, B.: Diversifying web service recom-
mendation results via exploring service usage history. IEEE Trans. Serv. Comput.
9(4), 566–579 (2016)

8. Klusch, M., Fries, B., Sycara, K.P.: OWLS-MX: a hybrid semantic web service
matchmaker for OWL-S services. J. Web Semant. 7(2), 121–133 (2009)

9. Mei, Q., Guo, J., Radev, D.R.: DivRank: the interplay of prestige and diversity
in information networks. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
25–28 July 2010, pp. 1009–1018 (2010)

10. Naim, H., Aznag, M., Quafafou, M., Durand, N.: Probabilistic approach for diver-
sifying web services discovery and composition. In: 2016 IEEE International Con-
ference on Web Services (ICWS), pp. 73–80, June 2016

11. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. Proc. VLDB Endow. 5(11),
1124–1135 (2012)

12. Zhong, M., Wang, Y., Zhu, Y.: Coverage-oriented diversification of keyword search
results on graphs. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA
2018. LNCS, vol. 10828, pp. 166–183. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91458-9 10

https://doi.org/10.1007/978-3-319-91458-9_10
https://doi.org/10.1007/978-3-319-91458-9_10

Using EDA-Based Local Search
to Improve the Performance of NSGA-II

for Multiobjective Semantic Web
Service Composition

Chen Wang(B), Hui Ma, and Gang Chen

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{chen.wang,hui.ma,aaron.chen}@ecs.vuw.ac.nz

Abstract. Service-oriented computing is a computing paradigm that
creates reusable modules over the Internet, often known as Web services.
Web service composition aims to accomplish more complex functions by
loosely coupling web services. Researchers have been proposing evolu-
tionary computation (EC) techniques for efficiently building up compos-
ite services with optimized non-functional quality (i.e., QoS). Some of
these techniques employ multi-objective EC algorithms to handle con-
flict qualities in QoS for fully automated service composition. One recent
state-of-art work hybridizes NSGA-II and MOEA/D, which allows the
multi-objective service composition problem to be decomposed into many
scalar optimization subproblems, where a simple form of local search
can be easily applied. However, their local search is considered to be
less effective and efficient because it is randomly applied to a predefined
large number of subproblems without focusing on the most suitable can-
didate solutions. In this paper, we propose a memetic NSGA-II with
probabilistic model-based local search based on Estimation of Distribu-
tion Algorithm (EDA). In particular, a clustering technique is employed
to select suitable Pareto solutions for local search. Each selected solution
and its belonged cluster members are used to learn a distribution model
that samples new solutions for local improvements. Besides that, a more
challenging service composition problem that optimizes both functional
and non-functional quality is considered. Experiments have shown that
our method can effectively and efficiently produce better Pareto optimal
solutions compared to other state-of-art methods in the literature.

Keywords: Web service composition · QoS optimisation · EDA

1 Introduction

Service-oriented computing (SOC) is a computing paradigm that creates reusable
modules to achieve cost-efficient and integrable enterprise applications [5]. These
modules are known as Web services, which are self-describing and self-containing
c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 434–451, 2019.
https://doi.org/10.1007/978-3-030-27618-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_32

Using EDA-Based Local Search to Improve the Performance of NSGA-II 435

applications that can be deployed, discovered and invoked over the Internet.
Often, web services are loosely coupled into an execution workflow to build up
an entirely new service. This idea is known as Web service composition [15].
Many researchers have been working on fully automated service composition
to automatically create execution workflows with required functionalities while
optimizing the overall non-functional quality of composite services (i.e., Quality
of Service (QoS)) [15]. Due to the complexity of the fully automated service
composition problem, finding optimal solutions in polynomial time is impos-
sible [11]. Evolutionary computation (EC) approaches [8,16] are proposed to
efficiently find “good enough” composite services that meet users’ QoS require-
ments reasonably well [10]. Recently, comprehensive quality-aware semantic web
service composition has gained increasing interests, where both functional and
non-functional quality criteria, i.e., quality of semantic matchmaking (QoSM)
and QoS are simultaneously optimized as a single objective [18–20,22,23].

EC-based fully automated service composition approaches are mainly clas-
sified into two groups based on the number of objectives to be optimized:
single-objective or multi-objective approaches. Many single-objective EC algo-
rithms, such as Genetic Algorithm (GA), Genetic Programming (GP), Particle
Swarm Optimization (PSO), Estimation of Distribution Algorithm (EDA), have
been used for fully automated service composition, achieving promising results
[8,16,18–20,23]. On the other hand, users often do not have clear preferences
on trade-off solutions before they see the trade-offs of the solutions. For exam-
ple, some users are willing to trade QoS for QoSM. Multi-objective algorithms
can address these issues, and provide a set of trade-off solutions. Some recent
works [6,7] investigated multi-objective optimization techniques, such as NSGA-
II [9], for QoS-aware fully automated service composition, tackling conflicting
QoS attributes (i.e., one objective combines time and cost, another objective
combines availability and reliability).

To further enhance the effectiveness of NSGA-II, memetic algorithms have
been successfully utilized in many applications for finding higher quality solu-
tions using local search [25]. A recently published memetic approach to multi-
objective fully automated service composition problem (henceforth referred to
as Hybrid [6]) effectively combines the use of two optimization algorithms, i.e.,
NSGA-II and MOEA/D. This approach takes advantage of the “divide and con-
quer” strategy supported by MOEA/D, allowing the local search to be performed
on numerous decomposed single-objective scalar optimization subproblems.

Despite this recent success, the number of decomposed subproblems is prede-
fined (e.g., 500 subproblems in Hybrid [6]), and a simple form local search (i.e.,
so-called one-point “swap”) is less effective and efficient to make local improve-
ments because it is randomly applied to every subproblem without focusing
on the best candidate solutions in each generation. Meanwhile, each one-point
“swap” local search searches solutions in the space of candidate solutions based
on only one solution (i.e., subproblem representative), ignoring any informa-
tion of other promising candidate solutions that could be jointly used for guid-
ing the local search. Therefore, new memetic approaches must be developed to

436 C. Wang et al.

address these two limitations. Besides that, to the best of our knowledge, exist-
ing EC-based multi-objective fully automated approaches only focus on QoS
and overlook QoSM of composition solutions. In practice, some customers often
demand highly accurate and reliable outputs of composite services (i.e., high
QoSM), therefore, are willing to trade QoS for QoSM. However, a portion of
customers may prefer (demand) a more highly responsible composite service at
an affordable cost (i.e., high QoS). In this paper, we propose a memetic NSGA-
II with EDA-based local search (henceforth referred to as MNSGA2-EDA) for
multi-objective fully automated semantic service composition, where EDA can
effectively handle the two limitations of the local search in Hybrid [6]. Besides
that, MNSGA2-EDA tackles two practical objectives, i.e., two objective func-
tions in Eqs. (2) and (3), with respect to the functional and non-functional
quality criteria, achieving substantially high performances in effectiveness and
efficiency. The contributions of this paper are listed below, and some initial ideas
have been recently accepted in a poster [21].

1. To avoid pre-determining a large number of single-objective subproblems in
advance, we propose a new clustering technique to select candidate Pareto-
optimal solutions for local search, which is performed separately and con-
currently in different regions of the Pareto front that contributes to wide
and uniformly distributed near-optimal Pareto solutions produced by our
MNSGA2-EDA.

2. To perform effective local search using the useful information of good candi-
date solutions in each generation. We propose a model-guided local search,
which first constructs distribution models from suitable Pareto front solu-
tions and other good candidate solutions selected by our proposed clustering
technique, and then samples effective solutions from the distribution models.

3. To generate a set of trade-off solutions regarding both QoSM and QoS,
NHSGA2-EDA is effectively utilized in this paper to solve challenging multi-
objective service composition problems with requirements for both QoSM
and QoS. Empirical comparison with NSGA-II and Hybrid [6] shows that
NHSGA2-EDA is much more effective and efficient. To explore the scalability
of multi-objective approaches we propose a new benchmark dataset. Experi-
ments conducted with this dataset show that NSGA2-EDA can maintain high
performance on problems with significantly larger sizes.

2 Related Work

EC techniques have been widely used to automatically find optimal or near-
optimal composite service solutions efficiently, and the optimization target can
be either or both of QoSM and QoS. [4,6–8,16,18–20,22–24]. These works can be
mainly divided into two groups: single-objective or multi-objectives web service
composition.

EC-based single-objective fully automated service composition approaches
are well studied, resulting in many new designs of effective solution represen-
tations and problem-specific genetic operators [8]. Specifically, there are two

Using EDA-Based Local Search to Improve the Performance of NSGA-II 437

categories of solution representations—direct representations and indirect repre-
sentations. The direct single-objective approaches employ GP variants to evolve
tree and graph-based composite solutions [16,19]. For example, [19] proposes a
tree-like representation to eliminate the replicas of subtrees and specific genetic
operators to generate offsprings. [20] uses EDA to learn one Edge Histogram
Matrix (EHM) of service dependencies in every generation, and samples valid
promising DAG-based solutions from the EHM. However, this approach suffers
from a scalability issue when size of service repository is double of the reported
size in [20].

The indirect single-objective approaches often employ vector-based represen-
tations to find an optimized queue of services, which will be decoded into an
interpretable solution in the form of a direct representation with the help of a
decoding method. As suggested in [8], utilizing the indirect representation often
contributes to more effective performance, compared to direct representation,
because the search space is not unwittingly restricted by unconstrained random
initialization of solutions and operators. PSO, GA, and EDA have been employed
for this purpose [8,18,20,22,23]. For example, [22] learns one Node Histogram
Matrix (NHM) for the current population. This learned NHM will be used to
sample new candidate solutions for the next population through the use of EDA.
Empirical experiment are later conducted in [23]. In this paper, we also employ
an indirect representation, which also simplifies the use of EDA for local search.

Very limited works have ever proposed EC-based multi-objective fully auto-
mated service composition approaches, although many works on multi-objective
semi-automated service composition have been reported [4,24]. To the best of
our knowledge, [6,7] are the two recent attempts on fully automated service
composition with the aim of handling trade-offs in QoS alone. [7] develop a
multi-objective method using NSGA-II and a fragmented tree-based represen-
tation. However, this fragmented tree-based representation does not show its
effectiveness for finding better Pareto solutions in their experiment, compar-
ing to an indirect representation. The same authors later proposed Hybrid [6]
with the indirect representation. Hybrid [6] decomposes the multi-objective prob-
lem into single-objective subproblems, where local search can be applied based
on Tchebycheff scores on each subproblem. The limitations of this work have
already addressed in Sect. 1, e.g., a large number of decomposed subproblems is
pre-defined. Despite some promising results have been achieved, opportunities
still exist to address these limitations.

3 The Multiobjective Semantic Web Service Composition
Problem

In this paper, we study comprehensive quality-aware semantic web service com-
position problem that concerns the quality of composite solutions in both func-
tional (i.e., QoSM) and non-functional (i.e., QoS) aspects. This problem has been
well approached in the literature using EC-based single-objective techniques,
where QoSM and QoS are combined to be one globally optimized objective

438 C. Wang et al.

[18–20,22,23]. Some concepts related to this web service composition problem,
such as semantic web service, service repository (SR), service request (T), com-
posite service are not demonstrated in this paper due the page limit, please
refer to [18–20,23]. However, according to our knowledge, no attempts have ever
been reported in literature to address this problem in a multi-objective setting
where QoSM and QoS must be optimized separately. Such a new problem will
be referred to as Multi-objective Comprehensive Quality-aware semantic web
service composition Problem (MOCQP, for short) in this paper.

Here we formulate MOCQP based on two objectives that reflect the func-
tional (i.e., QoSM) and non-functional quality criteria (i.e., QoS) as follows:

Minimize f(C) = (f1(C), f2(C))
subject to C ∈ Z

(1)

f1(C) = w1(1 − M̂T) + w2(1 − ˆSIM) (2)

f2(C) = w3(1 − Â) + w4(1 − R̂) + w5T̂ + w6ĈT (3)

where Z denotes the set of all composite services over a given repository of atomic
services, and f1, f2 are two objective functions that capture the QoSM and QoS,
respectively, for every service C in Z. In particular, QoSM is calculated based on
the normalized semantic matching type M̂T and the semantic similarity ˆSIM
while QoS is calculated based on the normalized availability Â, reliability R̂,
response time T̂ , and execution cost ĈT , see calculations in [18–20,23]. M̂T ,

ˆSIM , Â and R̂ are offset by 1, so that lower scores correspond to better quality.
The goal of MOCQP is to find the set of Pareto optimal composite services

PF � = {C� ∈ Z}, where C� is Pareto optimal if �C ′ ∈ C, such that C� ≺ C ′.
Note that C� ≺ C ′ means C ′ dominates C� if f1(C�) ≥ f1(C ′) and f2(C�) >
f2(C ′) or if f1(C�) > f1(C ′) and f2(C�) ≥ f2(C ′).

4 Our New Method MNSGA2-EDA

In this section, we present our new method for solving MOCQP, starting with
an overview of MNSGA2-EDA, which enables EDA to be employed in NSGA-II
as an effective local search component. Subsequently, we discuss MNSGA2-EDA
in detail.

4.1 An Overview of MNSGA2-EDA

MNSGA2-EDA enhances NSGA-II by EDA-based local search, where EDA is
exploited to discover better solutions based on some non-dominated solutions
in each generation generated by NSGA-II. These solutions are determined sep-
arately and concurrently in different regions of the Pareto front for each gen-
eration. These regions are created by grouping the current Pareto front into
multiple clusters, see details in Sect. 4.4.

Using EDA-Based Local Search to Improve the Performance of NSGA-II 439

Fig. 1. Generation updates in MNSGA2-EDA

The generation updates in MNSGA2-EDA is illustrated in Fig. 1. From the
current population in Fig. 1, two offspring populations are produced: genetic off-
spring population is produced by genetic operators, including both crossover and
mutation (see details in Sect. 4.3); local search offspring population is produced
by sampling from the distribution models constructed from the most suitable
cluster representatives of the Pareto front (see details in Sect. 4.5).

4.2 Outline of MNSGA2-EDA

MNSGA2-EDA is outlined in Algorithm 1. Initially, we generate m permuta-
tions Πg

k as composition solutions for population Pg of generation g, where
0 ≤ k < m and g = 0. Each permutation is a randomly ordered sequence of
task-related service indexes. For example, Let Π = (π0, . . . , πt, . . . , πn−1) be
a permutation-based composite solution of service indexes {0, . . . , t, . . . , n − 1}
such that πi �= πj for all i �= j. f1, f2 in Eqs. (2) and (3) of any newly produced
permutations will be evaluated by decoding each permutation into a DAG-based
solution, Gg

k . Subsequently, the following steps (Step 3 to 15) are repeated until
a maximum number of generation gmax is reached. Particularly, the produc-
tion of the first offspring population starts with tournament selection in favor
of winners with higher dominance regarding ranks and sparsity suggested in
NSGA-II. The tournament winners will be processed by genetic operators (see
details in Sect. 4.3) to produce genetic offspring population Pg

a based on a pre-
defined probability. Afterwards, offspring Pg will be clustered into d clusters
based on the values of f1, f2. For each cluster, we start by identifying its cluster
representative Repg

cl, and then transform each cluster member Gg
k into a differ-

ent permutation Π ′g
k, element of which are ordered based on Gg

k , see details in
Sect. 4.5. As suggested in [23], this transformation process allows more reliable
and accurate learning of the distribution models in the form of Node Histogram
Matrix NHMg

cl (NHM). The contribution of each cluster member to NHM is
adjusted decreasingly according to the Euclidean distance in the objective space
between the cluster member and Repg

cl. Subsequently NHM is used to sample

440 C. Wang et al.

Algorithm 1. MNSGA2-EDA for Web Service Composition.
Input : T , SR, d and gmax

Output: A set of solutions
1: Randomly initialize population Pg of m permutations Πg

k as solutions (where
g = 0 and k = 1, . . . , m);

2: Evaluate f1, f2 of the permutations by decoding them into DAGs Gg
k ;

3: while g < gmax do
4: Use tournament selection based on the dominance;
5: Apply genetic operators to the tournament winners to form genetic

offspring population Pg
a ;

6: Divide the whole population Pg into d clusters;
7: Set cluster counter cl ← 0;
8: while cl < d do

9: Identify the clth cluster representative Repg
cl;

10: Update each Gg
k in the clth cluster into a different permutation Π ′g

k;

11: Learn NHMg
cl over the clth cluster based on the representative Repg

cl to
form sampling local search offspring population Pg

b ;

12: Pg+1 = Pg ∪ Pg
a ∪ Pg

b ;
13: Evaluate f1, f2 of each permutation in Pg+1 by decoding it into Gg

k ;
14: Perform a fast non-dominated sorting on Pg+1;
15: Keep top m solutions in Pg+1;

16: Return non-dominated solutions in Pgmax ;

new local search offspring population Pg
b , see details in Sect. 4.5. Consequently,

we produce the next population Pg+1 by combining the current population Pg,
genetic offspring population Pg

a and local search offspring population Pg
b . After

evaluating newly generated solutions and performing the fast non-dominated
sorting in NSGA-II, the top m individuals are chosen to form the next gen-
eration Pg+1. When the stopping criterion is finally met, the non-dominated
solutions in Pgmax are returned as the output of NSGA2-EDA.

4.3 Genetic Operators

One two-point crossover and one one-point swap mutation [6,14] are employed
to produce the genetic offspring population. An example of this crossover and
mutation operator is illustrated in Fig. 2. The crossover operator produces two
children. Each child preserves part of the elements of one parent, while ele-
ments of another parent (excluding those preserved elements by the child) fill
the remaining parts of this child from left to right. The mutation randomly swaps
two elements of one parent to produce a new permutation.

We produce genetic offspring population Pg
a more efficiently than that in

Hybrid [6]. Although two children are produced by one crossover in Hybrid [6],
only one child associated with a higher Tchebycheff score will be added to the
offspring population Pg

a . Compared to [6], we put both children in population

Using EDA-Based Local Search to Improve the Performance of NSGA-II 441

Fig. 2. Examples of crossover and mutation for parents

Pg
a . Therefore, to produce an offspring population with equal sizes, we only need

to evaluate half the number of offspring solutions as required by Hybrid [6].

4.4 Identify a Cluster Representative of Each Cluster

Unlike single-objective optimization problems in [22,23], it is not straightforward
to determine promising solutions for learning NHM in EDA under the multi-
objective optimization setting since they often have two objectives. To address
this issue, we propose to define one cluster representative as a promising solution
based on the dominance relationships among all solutions in the cluster it belongs
to. In particular, we cluster d groups of close individuals in one generation using
some existing clustering techniques, such as K-means++ [2]. The sensitivity of
parameter d is studied in Sect. 5.1 for the effectiveness of our NSGA2-EDA.
We infer a group of individuals that represents close similarities measured by
fitness values, f1 and f2 in Eqs. (2) and (3). We choose with equal probability
one solution that is not dominated by any other solutions of the same cluster as
the representative of the cluster. Consequently, we can learn an NHM based on
the cluster representatives, see details in Sect. 4.5.

An example of identifying promising solutions of clusters is illustrated in
Fig. 3. In Fig. 3, we consider one population of 8 individuals, which are clustered
into two groups of individuals based on their fitness values using K-mean++.
Subsequently, we can randomly pick up one non-dominant solution of its related
cluster as the cluster representatives, see the labels in Fig. 3.

Fig. 3. Examples of identifying two cluster representatives

442 C. Wang et al.

4.5 Learn a NHM Based on Cluster Representatives

In this paper, we propose an effective method to learn a suitable distribution
model (i.e. NHM) based on the cluster representative with respect to each cluster.
This method consists of two main steps: permutation transformation and NHM
learning.

We transfer every cluster member Πg
k into a new permutation Π ′g

k based on
its decoded DAG form Gg

k . The elements of new permutation are sorted based
on the longest distance calculated from every element in Gg

k to the Start node,
see details in [23]. We can now learn a NHM based on the cluster representa-
tive formed in this permutation. Based on [23], we propose a different way of
learning NMH, which is more likely to make local improvements on the cluster
representatives through sampling. In particular, we use the Euclidean distances
between the cluster representative and other members of this cluster to weight
the influences of every cluster members on NHM because cluster members far
from cluster representative contribute less to the distribution model that we aim
to learn.

The node histogram matrix (NHM) for the clth cluster with the cluster repre-
sentative Repcl in generation g is denoted as NHMg

cl, which is an n × n-matrix
with entries ei,j as follows:

ei,j =
m−1∑

k=0

δi,j(Π ′g
k) + ε (4)

δi,j(Π ′g
k) =

{
w(Π ′g

k) if πi = j
0 otherwise

(5)

w(Π ′g
k) = 1 − ||f(Π ′g

k) − f(Repg
cl)||2 (6)

where i, j = 0, 1, . . . , n−1, ε = m
n−1bratio is a predetermined bias, and ||f(Π ′g

k)−
f(Repg

cl)||2 measures a Euclidean distance between one cluster member and the
cluster representative. This distance value is offset by 1, so the higher values
correspond to less weights in learning an NHM. Roughly speaking, entry ei,j

counts how often service πi appears in position j of all the permutations in the
clth cluster, and the weight of the frequency is penalized by Eq. (6). Afterwards,
we can use node histogram-based sampling [17] to sample local search offspring
population Pg

b for generation g + 1.

5 Experimental Evaluation

We conduct two experiments for studying the performance of our MNSGA2-
EDA approach using two augmented benchmarks in [6] that originally comes
from WSC-08 [3] and WSC-09 [13] extended with real QoS attributes in [1]. Both
WSC-08 and WSC-09, define a set of composition tasks. However, the number of
web services in augmented benchmarks [6] is doubled as a new benchmark (with

Using EDA-Based Local Search to Improve the Performance of NSGA-II 443

much bigger searching space) to demonstrate that NSGA2-EDA can maintain
high performance on our problem with significantly larger sizes. In particular,
each service in WSC-08 and WSC-09 is duplicated with the same functionality
(i.e., inputs and outputs) but different QoS attributes extended from QWS [1].
The first experiment investigates the sensitivity of parameters on EDA based on
task WSC08-03. In particular, we investigate three groups of EDA settings with
increasing size of Pg

b (see details in Sect. 5.1). The following experiment further
investigates the effectiveness and efficiency of MNSGA2-EDA in comparison to
the baseline method NSGA-II and to Hybrid [6]. These two approaches have
recently been proposed to solve a similar service composition problem for the
fully automated and multi-objective purpose. Note that in [6] a further method
(called Hybrid-L) has been proposed, that uses a so-called swap operator as
a local search to Hybrid. However, Hybrid-L observes very bad convergence
rates. We use two tasks WSC09-3 and WSC09-5 to exemplify the very bad
performance of Hybrid-L in Figs. 4 and 5. Therefore, we do not further report
on the performance of Hybrid-L for the remaining tasks, when compared to our
MNSGA2-EDA method.

We follow the settings in [6] for all approaches, where the size of both Pg and
Pg

a are set to 500. The maximum generation g is 51, and the probability rates
of crossover, mutation, and reproduction are 0.8, 0.1 and 0.1. For EDA settings
in MNSGA2-EDA, bratio of ε is set to 0.0002 according to [23]. The weights in
the fitness function Eqs. (2) and (3) are set to balance quality criteria in both
QoSM and QoS, i.e., w1 and w2 are set to 0.5, and w3, w4, w5 and w6 to 0.25.
We have also conducted tests with other weights and parameters and generally
observed the same behavior.

5.1 Parameters Sensitivity

To determine suitable parameters of EDA-based local search in MNSGA2-EDA,
we use task WSC08-3 to perform parameters sensitivity tests over a set of param-
eters with an increasing size of Pg

b in MNSGA2-EDA.
We use Wilcoxon rank-sum testing with a significance level of 5% to verify

the observed differences in IGD and hypervolume over 30 runs. This test method
is used consistently to detect any noticeable differences in the experiment results
in Sects. 5.2 and 5.3.

IGD and hypervolume are commonly used performance evaluation metrics for
multi-objective optimization [12]. IGD measures the distance from the nearest
point of the non-dominated set produced by an approach to an approximated
true Pareto front obtained by using all approaches. Hypervolume measures the
dominated volume covered by a reference point (e.g., a point (1,1) is chosen in
our case) and the front evolved by each algorithm. In particular, we highlight
IGD and hypervolume values of all the top performances for all approaches.

The first column of Tables 1 and 2 show the size of Pg
b . The second and third

column of Tables 1 and 2 show a pair of parameters used in EDA, which are
the number of clusters d and their sampling size. The fourth column of Tables 1
and 2 show the mean values of IGD and hypervolume and the standard deviation
over 30 repetitions.

444 C. Wang et al.

Table 1. Mean IGD of MNSGA2-EDA with three groups of parameter settings over
WSC08-3 (Note: the lower the IGD the better)

Size of Pg
b d Sampling size MNSGA2-EDA

160 2 80 6e − 04 ± 3e − 04

4 40 2e − 04 ± 0

6 27 2e − 04 ± 1e − 04

200 2 100 4e − 04 ± 2e − 04

4 50 1e − 04 ± 0

6 34 2e − 04 ± 1e − 04

240 2 120 4e − 04 ± 3e − 04

4 60 1e − 04 ± 1e − 04

6 40 1e − 04 ± 0

Table 2. Mean hypervolume of MNSGA2-EDA with three groups of parameter settings
over WSC08-03 (Note: the higher the hypervolume the better)

Size of Pg
b d Sampling size MNSGA2-EDA

160 2 80 0.2302 ± 1e − 04

4 40 0.2304 ± 1e − 04

6 27 0.2304 ± 1e − 04

200 2 100 0.2303 ± 1e − 04

4 50 0.2305 ± 0

6 34 0.2305 ± 1e − 04

240 2 120 0.2303 ± 1e − 04

4 60 0.2305 ± 1e − 04

6 40 0.2305 ± 0

Tables 1 and 2 show that 200 local search offspring population size based
on 4 clusters with 50 sampling size is the best-found parameter setting over
all designed parameter settings for task WSC08-3. As shown in Tables 1 and 2,
MNSGA2-EDA with this setting is highlighted as one top performance regarding
mean IGD and hypervolume, but with the smallest size of Pg

b . We will use this
setting in our second experiment.

5.2 Comparison of the Execution Time

Table 3 shows the mean execution times (in seconds) and the standard deviation
observed for the three methods MNSGA2-EDA, NSGA-II and Hybrid over 30
repetitions. More specifically, Table 4 summarizes the results of pairwise com-
parisons of the three methods without Bonferroni correction. The table displays

Using EDA-Based Local Search to Improve the Performance of NSGA-II 445

win/draw/loss of one method compared to all other methods. That is, it is
reported how often one method outperforms, equals or is outperformed by the
competing method.

Table 3. Mean execution time (in s) for our method in comparison to the baseline
NSGA-II, and to Hybrid (Note: the shorter the time the better)

Task MNSGA2-EDA NSGA-II Hybrid [6]

WSC08-1 224 ± 12 190 ± 48 418 ± 65

WSC08-2 81 ± 17 58 ± 14 139 ± 32

WSC08-3 5539 ± 464 8095 ± 1437 20793 ± 4149

WSC08-4 210 ± 17 317 ± 58 805 ± 147

WSC08-5 4242 ± 562 6090 ± 1704 14735 ± 5166

WSC08-6 62966 ± 10943 65051 ± 8592 158737 ± 27171

WSC08-7 5489 ± 814 9132 ± 2578 23074 ± 6030

WSC08-8 9917 ± 3788 12443 ± 1818 33077 ± 6164

WSC09-1 198 ± 67 155 ± 76 327 ± 90

WSC09-2 5634 ± 679 6139 ± 1678 14634 ± 2816

WSC09-3 2968 ± 301 2820 ± 714 6527 ± 2403

WSC09-4 269207 ± 23542 255195 ± 28813 646897 ± 117538

WSC09-5 39370 ± 5125 35338 ± 8350 86281 ± 19944

Table 4. Summary of statistical significance tests for the execution time, where each
column shows the win/draw/loss score of one method against a competing one for all
tasks of WSC08 and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [6]

WSC08 (8 tasks) MNSGA2-EDA - 2/1/5 0/0/8

NSGA-II 5/1/2 - 0/0/8

Hybrid [6] 8/0/0 8/0/0 -

WSC09 (5 tasks) MNSGA2-EDA - 3/2/0 0/0/5

NSGA-II 0/2/3 - 0/0/5

Hybrid [6] 5/0/0 5/0/0 -

The mean execution time for MNSGA2-EDA and NSGA-II are very compara-
ble (but not equal) to each other for tasks in WSC08 and WSC09. In comparison,
Hybrid consistently takes twice the execution time for each task. This observa-
tion does not agree with the findings in [6] that Hybrid and NSGA-II achieve
competitive execution time. This is because they do not point out one assump-
tion that evaluation time of every candidate solution is indistinct. Here in this

446 C. Wang et al.

paper, a more challenging benchmark is utilized for testing, and a larger number
of evaluations is required for computing QoSM of each solution. In Hybrid, every
crossover operator requires two evaluations of two produced children in order to
keep a child with a higher Tchebycheff score, while MNSGA2-EDA and NSGA-II
both keep two children. For example, let us say that 500 children are kept for the
next generation from the crossover, then Hybrid requires 1000 evaluations while
MNSGA2-EDA and NSGA-II only require 500 evaluations. Therefore, Hybrid
consumes much more execution time than both MNSGA2-EDA and NSGA-II.

5.3 Comparison of the IGD and Hypervolume

Tables 5, 6, 7 and 8 show the mean IGD and the mean hypervolume, respectively,
observed for MNSGA2-EDA, NSGA-II, and Hybrid with the standard deviation
over 30 repetitions. We note that MNSGA2-EDA achieves significantly better
values of IGD for all tasks except for one task (i.e., WSC09-1) and significantly
better values of hypervolume for all tasks. On the other hand, NSGA-II only
achieves significantly better values of both IGD and hypervolume for 2 of the 13
tasks, and Hybrid only obtained significantly better values of IGD and hyper-
volume for 4 out of the 13 tasks and 3 out of the 13 tasks respectively.

Table 5. Mean IGD for our method in comparison to the baseline NSGA-II, and to
Hybrid (Note: the lower the IGD the better)

Task MNSGA2-EDA NSGA-II Hybrid [6]

WSC08-1 0 ± 0 1e − 04 ± 7e − 04 1e − 04 ± 5e − 04

WSC08-2 0 ± 0 0 ± 0 0 ± 0

WSC08-3 1e − 04 ± 0 0.001 ± 4e − 04 0.001 ± 3e − 04

WSC08-4 0 ± 0 3e − 04 ± 3e − 04 1e − 04 ± 1e − 04

WSC08-5 0.0029 ± 0.0014 0.0043 ± 0.0015 0.0027 ± 0.0011

WSC08-6 7e − 04 ± 3e − 04 0.0014 ± 3e − 04 0.0012 ± 3e − 04

WSC08-7 1e − 04 ± 2e − 04 0.002 ± 9e − 04 0.0015 ± 0.001

WSC08-8 0 ± 1e − 04 9e − 04 ± 5e − 04 6e − 04 ± 3e − 04

WSC09-1 0.0701 ± 0.0132 0.0731 ± 6e − 04 0.0654 ± 0.0199

WSC09-2 0.0055 ± 0.001 0.0065 ± 0.0011 0.0061 ± 9e − 04

WSC09-3 0.002 ± 9e − 04 0.0126 ± 0.0085 0.0107 ± 0.0076

WSC09-4 0.0025 ± 0.001 0.0061 ± 7e − 04 0.0056 ± 0.0012

WSC09-5 0.0025 ± 0.0014 0.0052 ± 0.0011 0.0045 ± 7e − 04

Using EDA-Based Local Search to Improve the Performance of NSGA-II 447

Table 6. Summary of statistical significance tests for IGD, where each column shows
win/draw/loss scores of one method against a competing one for all tasks of WSC08
and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [6]

WSC08 (8 tasks) MNSGA2-EDA - 0/2/6 0/3/5

NSGA-II 6/2/0 - 4/4/0

Hybrid [6] 5/3/0 0/4/4 -

WSC09 (5 tasks) MNSGA2-EDA - 0/0/5 1/0/4

NSGA-II 5/0/0 - 2/3/0

Hybrid [6] 4/0/1 0/3/2 -

Table 7. Mean Hypervolume for our method in comparison to the baseline NSGA-II,
and to Hybrid (Note: the higher the hypervolume the better)

Task MNSGA2-EDA NSGA-II Hybrid [6]

WSC08-1 0.3825 ± 0 0.3824 ± 4e − 04 0.3825 ± 1e − 04

WSC08-2 0.5798 ± 0 0.5798 ± 0 0.5798 ± 0

WSC08-3 0.2305 ± 0 0.2298 ± 2e − 04 0.23 ± 1e − 04

WSC08-4 0.3217 ± 0 0.3213 ± 7e − 04 0.3215 ± 5e − 04

WSC08-5 0.278 ± 7e − 04 0.2752 ± 0.0022 0.2767 ± 0.0014

WSC08-6 0.2341 ± 1e − 04 0.2338 ± 2e − 04 0.2341 ± 2e − 04

WSC08-7 0.2808 ± 2e − 04 0.278 ± 0.0014 0.2788 ± 0.0014

WSC08-8 0.2475 ± 1e − 04 0.2465 ± 7e − 04 0.2471 ± 4e − 04

WSC09-1 0.4435 ± 0.0028 0.4424 ± 9e − 04 0.4434 ± 0.0031

WSC09-2 0.2751 ± 1e − 04 0.2742 ± 0.0016 0.2747 ± 7e − 04

WSC09-3 0.3693 ± 1e − 04 0.361 ± 0.0064 0.3618 ± 0.0054

WSC09-4 0.239 ± 0.0014 0.2346 ± 9e − 04 0.2355 ± 0.0017

WSC09-5 0.2376 ± 0.001 0.235 ± 5e − 04 0.2353 ± 5e − 04

5.4 Comparison of the Convergence Rate

To investigate the effectiveness and scalability of the three methods, we further
investigate the convergence rates for IDG and hypervolume over 30 repetitions
using WSC09-3 and WSC09-5 as two examples.

Figures 5 and 4 depict the evolution of the mean values of the IGD and
hypervolume over mean execution time for MNSGA2-EDA, NSGA-II, Hybrid,
and Hybrid-L. We cut mean execution time to fit the maximal required time
of Hybrid because Hybrid-L results in a much higher order of magnitude in
execution time, and it also never gets a chance to catch up with MNSGA2-
EDA. For Hybrid, it converges much better than Hybrid-L, but the scalability
of Hybrid still suffers when competing with the baseline NSGA-II. In contrast,

448 C. Wang et al.

Table 8. Summary of the statistical significance tests for hypervolume, where each
column shows win/draw/loss scores of one method against a competing one for all
tasks of WSC08 and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [6]

WSC08 (8 tasks) MNSGA2-EDA - 0/2/6 0/3/5

NSGA-II 6/2/0 - 5/3/0

Hybrid [6] 5/3/0 0/3/5 -

WSC09 (5 tasks) MNSGA2-EDA - 0/0/5 0/0/5

NSGA-II 5/0/0 - 2/3/0

Hybrid [6] 5/0/0 0/3/2 -

Fig. 4. Mean hypervolume over time for non-dominated solutions, for WSC09-3 (left)
and WSC09-5 (right) (Note: the larger the hypervolume the better)

Fig. 5. Mean IGD over time for non-dominated solutions, for WSC09-3 (left) and
WSC09-5 (right) (Note: the smaller the IGD the better)

our MNSGA2-EDA approach achieves significantly better IGD and hypervolume
values with the fastest convergence rate.

5.5 Comparison of the Pareto Optimal Solutions

We present a plot of the Pareto optimal solutions of WSC09-3 and WSC09-5
obtained by the three methods over 30 independent runs in Fig. 6. The best
Pareto optimal solutions are identified based on the combined results of all 30
runs of each method. It is easy to observe that the Pareto front generated by

Using EDA-Based Local Search to Improve the Performance of NSGA-II 449

MNSGA2-EDA is much more widely distributed. In other words, extreme solu-
tions are more likely to be found by MNSGA2-EDA. For task WSC09-3, a trade-
off solution at the knee point of the Pareto front is found by MNSGA2-EDA.
We hasten to point out that it is highly important and desirable to discover
a solution like this. The other two methods (NSGA-II and Hybrid) fail to dis-
cover this solution, which may be regarded as a weakness. For task WSC09-05,
much better Pareto optimal solutions are obtained by MNSGA2-EDA, and these
solutions consistently dominate all solutions obtained by other methods.

Fig. 6. Pareto optimal solutions obtained for tasks WSC09-3 (left) and WSC09-5
(right)

6 Conclusion

In this paper, we proposed a novel memetic NSGA-II with an EDA-based local
search for fully automated multi-objective web service composition, where two
objectives related to the functional and non-functional quality of composite ser-
vices are optimized, i.e., QoSM and QoS. Our experimental evaluation demon-
strates that our proposed approach can effectively and efficiently produce better
Pareto optimal solutions, thus, outperforming two recently proposed approaches
in the literature. Future work in this field demands more research in EC tech-
niques that can be applied to service composition, achieving better results that
benefit the application side. For example, we can investigate sampling techniques
to design problem-specific templates that can be used to sample solutions with
good quality effectively.

References

1. Al-Masri, E., Mahmoud, Q.H.: Qos-based discovery and ranking of web services.
In: Proceedings of 16th International Conference on Computer Communications
and Networks, ICCCN 2007, pp. 529–534. IEEE (2007)

2. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

450 C. Wang et al.

3. Bansal, A., Blake, M.B., Kona, S., Bleul, S., Weise, T., Jaeger, M.C.: WSC-08: con-
tinuing the web services challenge. In: 2008 10th IEEE Conference on E-Commerce
Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce
and E-Services, pp. 351–354. IEEE (2008)

4. Chen, Y., Huang, J., Lin, C.: Partial selection: an efficient approach for QoS-aware
web service composition. In: IEEE ICWS, pp. 1–8. IEEE (2014)

5. Curbera, F., Nagy, W., Weerawarana, S.: Web services: why and how. In: Workshop
on Object-Oriented Web Services-OOPSLA (2001)

6. Da Silva, A.S., Ma, H., Mei, Y., Zhang, M.: A hybrid memetic approach for fully
automated multi-objective web service composition. In: 2018 IEEE International
Conference on Web Services, pp. 26–33. IEEE (2018)

7. Da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: Fragment-based genetic programming
for fully automated multi-objective web service composition. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 353–360. ACM (2017)

8. Da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: Evolutionary computation for auto-
matic web service composition: an indirect representation approach. J. Heuristics
24(3), 425–456 (2018)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

10. Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26–32 (2000)
11. Gabrel, V., Manouvrier, M., Murat, C.: Web services composition: complexity and

models. Discrete Appl. Math. 196, 100–114 (2015)
12. Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of per-

formance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12),
2391–2404 (2014)

13. Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: a quality of
service-oriented web services challenge. In: 2009 IEEE Conference on Commerce
and Enterprise Computing, pp. 487–490. IEEE (2009)

14. Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms for
arc routing problems. Ann. Oper. Res. 131(1–4), 159–185 (2004)

15. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 5

16. Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.I.: Composition of web
services through genetic programming. Evol. Intel. 3(3–4), 171–186 (2010)

17. Tsutsui, S.: A comparative study of sampling methods in node histogram models
with probabilistic model-building genetic algorithms. In: IEEE International Con-
ference on Systems, Man and Cybernetics, SMC 2006, vol. 4, pp. 3132–3137. IEEE
(2006)

18. Wang, C., Ma, H., Chen, A., Hartmann, S.: Comprehensive quality-aware auto-
mated semantic web service composition. In: Peng, W., Alahakoon, D., Li, X. (eds.)
AI 2017. LNCS (LNAI), vol. 10400, pp. 195–207. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63004-5 16

19. Wang, C., Ma, H., Chen, A., Hartmann, S.: GP-based approach to comprehensive
quality-aware automated semantic web service composition. In: Shi, Y., et al. (eds.)
SEAL 2017. LNCS, vol. 10593, pp. 170–183. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68759-9 15

20. Wang, C., Ma, H., Chen, G., Hartmann, S.: Towards fully automated semantic web
service composition based on estimation of distribution algorithm. In: Mitrovic, T.,
Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 458–471. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03991-2 42

https://doi.org/10.1007/978-3-540-30581-1_5
https://doi.org/10.1007/978-3-319-63004-5_16
https://doi.org/10.1007/978-3-319-63004-5_16
https://doi.org/10.1007/978-3-319-68759-9_15
https://doi.org/10.1007/978-3-319-68759-9_15
https://doi.org/10.1007/978-3-030-03991-2_42

Using EDA-Based Local Search to Improve the Performance of NSGA-II 451

21. Wang, C., Ma, H., Chen, A., Hartmann, S.: A memetic NSGA-II with EDA-based
local search for fully automated multiobjective web service composition. In: Genetic
and Evolutionary Computation Conference Companion. ACM (2019), (To appear)

22. Wang, C., Ma, H., Chen, G.: EDA-based approach to comprehensive quality-aware
automated semantic web service composition. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 147–148. ACM (2018)

23. Wang, C., Ma, H., Chen, A., Hartmann, S.: Knowledge-driven automated web ser-
vice composition—an EDA-based approach. In: Hacid, H., Cellary, W., Wang, H.,
Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol. 11234, pp. 135–150. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02925-8 10

24. Yin, H., Zhang, C., Zhang, B., Guo, Y., Liu, T.: A hybrid multiobjective discrete
particle swarm optimization algorithm for a SLA-aware service composition prob-
lem. Math. Probl. Eng. 2014, 14 (2014)

25. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1,
32–49 (2011)

https://doi.org/10.1007/978-3-030-02925-8_10

Adaptive Caching for Data-Intensive
Scientific Workflows in the Cloud

Gaëtan Heidsieck1(B) , Daniel de Oliveira4 , Esther Pacitti1 ,
Christophe Pradal1,2 , François Tardieu3 , and Patrick Valduriez1

1 Inria & LIRMM, Univ. Montpellier, Montpellier, France
gaetan.heidsieck@inria.fr

2 CIRAD & AGAP, Montpellier SupAgro, Montpellier, France
3 INRA & LEPSE, Montpellier SupAgro, Montpellier, France

4 Institute of Computing, UFF, Niterói, Brazil

Abstract. Many scientific experiments are now carried on using scien-
tific workflows, which are becoming more and more data-intensive and
complex. We consider the efficient execution of such workflows in the
cloud. Since it is common for workflow users to reuse other workflows
or data generated by other workflows, a promising approach for efficient
workflow execution is to cache intermediate data and exploit it to avoid
task re-execution. In this paper, we propose an adaptive caching solution
for data-intensive workflows in the cloud. Our solution is based on a new
scientific workflow management architecture that automatically manages
the storage and reuse of intermediate data and adapts to the variations
in task execution times and output data size. We evaluated our solu-
tion by implementing it in the OpenAlea system and performing exten-
sive experiments on real data with a data-intensive application in plant
phenotyping. The results show that adaptive caching can yield major
performance gains, e.g., up to 120.16% with 6 workflow re-executions.

Keywords: Adaptive caching · Scientific workflow · Cloud ·
Workflow execution

1 Introduction

In many scientific domains, e.g., bio-science [8], complex experiments typically
require many processing or analysis steps over huge quantities of data. They
can be represented as scientific workflows (SWfs), which facilitate the modeling,
management and execution of computational activities linked by data dependen-
cies. As the size of the data processed and the complexity of the computation
keep increasing, these SWfs become data-intensive [8], thus requiring execution
in a high-performance distributed and parallel environment, e.g. a large-scale
virtual cluster in the cloud.

Most Scientific Workflow Management Systems (SWfMSs) can now execute
SWfs in the cloud [12]. Some examples of such SWfMS are Swift/T, Pegasus,

c© Springer Nature Switzerland AG 2019
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, pp. 452–466, 2019.
https://doi.org/10.1007/978-3-030-27618-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_33&domain=pdf
http://orcid.org/0000-0003-2577-4275
http://orcid.org/0000-0001-9346-7651
http://orcid.org/0000-0003-1370-9943
http://orcid.org/0000-0002-2555-761X
http://orcid.org/0000-0002-7287-0094
http://orcid.org/0000-0001-6506-7538
https://doi.org/10.1007/978-3-030-27618-8_33

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 453

SciCumulus, Kepler and OpenAlea, the latter being widely used in plant science
for simulation and analysis.

It is common for workflow users to reuse other workflows or data generated
by other workflows. Reusing and re-purposing workflows allow for the user to
develop new analyses faster [7]. Furthermore, a user may need to execute a work-
flow many times with different sets of parameters and input data to analyze the
impact of some experimental step, represented as a workflow fragment, i.e. a sub-
set of the workflow activities and dependencies. In both cases, some fragments
of the workflow will be executed many times, which can be highly resource con-
suming and unnecessary long. Workflow re-execution can be avoided by storing
the intermediate results of these workflow fragments and reuse them in later
executions.

In OpenAlea, this is provided by a lazy evaluation technique, i.e. the inter-
mediate data is simply kept in memory after the execution of a workflow. This
allows for a user to visualize and analyze all the activities of a workflow without
any re-computation, even with some parameter changes. Although lazy evalu-
ation represents a step forward, it has some limitations, e.g. it does not scale
in distributed environments and requires much memory if the workflow is data-
intensive.

In a single user perspective, the reuse of the previous results can be done
by storing the relevant outputs of intermediate activities (intermediate data)
within the workflow. This requires the user to manually manage the caching of
the results that she wants to reuse, which can be difficult as she needs to be
aware of the data size, execution time of each task, i.e. the instantiation of an
activity during the execution of a workflow, or other factors that could allow
deciding which data is the best to store.

A complementary, promising approach is to reuse intermediate data pro-
duced by multiple executions of the same or different workflows. Some SWfMSs
support the reuse of intermediate data, yet with some limitations. VisTrails [4]
automatically makes the intermediate data persistent with the workflow defini-
tion. With a plugin [20], VisTrails allows SWf execution in HPC environments,
but does not benefit from reusing intermediate data. Kepler [2] manages a per-
sistent cache of intermediate data in the cloud, but does not take data transfers
from remote servers into account. There is also a trade-off between the cost of
re-executing tasks versus storing intermediate data that is not trivial [1,6]. Yuan
et al. [18] propose an algorithm based on the ratio between re-computation cost
and storage cost at the task level. The algorithm is improved in [19] to take into
account workflow fragments. Both algorithms are used before the execution of
the workflow, using the provenance data of the intermediate datasets. However,
this approach is static and cannot deal with variations in tasks’ execution times.
In data intensive SWf, such variations can be very important depending on the
input data, e.g., data compression tasks can be short or long depending on the
data itself, regardless of size.

In this paper, we propose an adaptive caching solution for efficient execution
of data-intensive workflows in the cloud. By adapting to the variations in tasks’

454 G. Heidsieck et al.

execution times, our solution can maximize the reuse of intermediate data pro-
duced by workflows from multiple users. Our solution is based on a new SWfMS
architecture that automatically manages the storage and reuse of intermediate
data. Cache management is involved during two main steps: SWf preprocess-
ing, to remove all fragments of the workflow that do not need to be executed;
and cache provisioning, to decide at runtime which intermediate data should be
cached. We propose an adaptive cache provisioning algorithm that deals with the
variations in task execution times and output data. We evaluated our solution
by implementing it in OpenAlea and performing extensive experiments on real
data with a complex data-intensive application in plant phenotyping.

This paper is organized as follows. Section 2 presents our real use case in
plant phenotyping. Section 3 introduces our SWfMS architecture in the cloud.
Section 4 describes our cache algorithm. Section 5 gives our experimental evalu-
ation. Finally, Sect. 6 concludes.

2 Use Case in Plant Phenotyping

In this section, we introduce in more details a real SWf use case in plant pheno-
typing that will serve as motivation for the work and basis for the experimental
evaluation.

In the last decade, high-throughput phenotyping platforms have emerged to
allow for the acquisition of quantitative data on thousands of plants in well-
controlled environmental conditions. These platforms produce huge quantities
of heterogeneous data (images, environmental conditions and sensor outputs)
and generate complex variables with in-silico data analyses. For instance, the
seven facilities of the French Phenome project (https://www.phenome-emphasis.
fr/phenome eng/) produce each year 200 Terabytes of data, which are heteroge-
neous, multiscale and originate from different sites. Analyzing automatically and
efficiently such massive datasets is an open, yet important, problem for biologists
[17].

Computational infrastructures have been developed for processing plant phe-
notyping datasets in distributed environments [14], where complex phenotyping
analyses are expressed as SWfs. Such analyses can be represented, managed and
shared in an efficient way, where compute- and data-based activities are linked
by dependencies [5].

One scientific challenge in phenomics, i.e., the systematic study of pheno-
types, is to analyze and reconstruct automatically the geometry and topology
of thousands of plants in various conditions observed from various sensors [16].
For this purpose, we developed the OpenAlea Phenomenal software package [3].
Phenomenal provides fully automatic workflows dedicated to 3D reconstruction,
segmentation and tracking of plant organs, and light interception to estimate
plant biomass in various scenarios of climatic change [15].

Phenomenal is continuously evolving with new state-of-the-art methods that
are added, thus yielding new biological insights (see Fig. 1). A typical workflow

https://www.phenome-emphasis.fr/phenome_eng/
https://www.phenome-emphasis.fr/phenome_eng/

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 455

Skeletonize

Mesh

3D
reconstruction

Binarize

Stem
detection

Organ
segmentation

1. Phenomenal workflow in OpenAlea 3. Heterogeneous dataflow 2. Workflow fragment representation

4. Maize ear detection

Ear detection

Binarize

Raw data

5. Light interception and reflection in
greenhouse

3D
reconstruction

Binarize

Raw data

Light
interception

6. Light competition

3D
reconstruction

Binarize

Raw data

Light
competition

Fig. 1. Use Cases in Plant Phenotyping. (1) The Phenomenal workflow in OpenAlea’s
visual programming environment. The different colors represent different workflow frag-
ments. (2) A conceptual view of the same workflow. (3) Raw and intermediate data
such as RGB images, 3D plant volumes, skeleton, and mesh. (4–6) Three different SWfs
that reuse the same workflow fragments to address different scientific questions.

is shown in Fig. 1(1). It is composed of different fragments, i.e., reusable sub-
workflows. In Fig. 1(2), the different fragments are for binarization, 3D recon-
struction, skeletonization, stem detection, organ segmentation and mesh gener-
ation. Other fragments such as greenhouse or field reconstruction, or simulation
of light interception, can be reused.

Based on these different workflow fragments, different users can conduct dif-
ferent biological analyses using the same datasets. The SWf shown in Fig. 1(4)
reuses the Binarize fragment to predict the flowering time in maize. In Fig. 1(5),
the same Binarize fragment is reused and the 3D reconstruction fragment is
added to reconstruct the volume of the 1,680 plants in 3D. Finally, in the SWf
shown in Fig. 1(6), the previous SWf is reused, but with different parameters to
study the environmental versus genetic influence of biomass accumulation.

456 G. Heidsieck et al.

These three studies have in common both the plant species (in our case maize
plants) and share some workflow fragments. At least, scientists want to compare
their results on previous datasets and extend the existing workflow with their
own developed actors or fragments. To save both time and resources, they want
to reuse the intermediate results that have already been computed rather than
recompute them from scratch.

The Phenoarch platform is one of the Phenome nodes in Montpellier. It has
a capacity of 1,680 plants with a controlled environment (e.g., temperature,
humidity, irrigation) and automatic imaging through time. The total size of the
raw image dataset for one experiment is 11 Terabytes.

Currently, processing a full experiment with the phenomenal workflow on
local computational resources would take more than one month, while scientists
require this to be done over the night (12 h). Furthermore, they need to restart
an analysis by modifying parameters, fix errors in the analysis or extend it
by adding new processing activities. Thus, we need to use more computational
resources in the cloud including both large data storage that can be shared by
multiple users.

3 Cloud SWfMS Architecture

In this section, we present our SWfMS architecture that integrates caching and
reuse of intermediate data in the cloud. We motivate our design decisions and
describe our architecture in two ways: first, in terms of functional layers (see
Fig. 2), which shows the different functions and components; then, in terms of
nodes and components (see Fig. 3), which are involved in the processing of SWfs.

Our architecture capitalizes on the latest advances in distributed and parallel
computing to offer performance and scalability [13]. We consider a distributed
architecture with on premise servers, where raw data is produced (e.g., by a
phenotyping experimental platform in our use case), and a cloud site, where the
SWf is executed. The cloud site (data center) is a shared-nothing cluster, i.e.
a cluster of server machines, each with processor, memory and disk. We choose
shared-nothing as it is the most scalable architecture for big data analysis.

In the cloud, metadata management has a critical impact on the efficiency
of SWf scheduling as it provides a global view of data location, e.g. at which
nodes some raw data is stored, and enables task tracking during execution [9].
We organize the metadata in three repositories: catalog, provenance database
and cache index. The catalog contains all information about users (access rights,
etc.), raw data location and SWfs (code libraries, application code). The prove-
nance database captures all information about SWf execution. The cache index
contains information about tasks and intermediate data produced, as well as the
location of files that store the intermediate data. Thus, the cache index itself is
small (only file references) and the cached data can be managed using the under-
lying file system. A good solution for implementing these metadata repositories
is a modern key-value store, such as Cassandra (https://cassandra.apache.org),
which provides efficient key-based access, scalability and fault-tolerance through
replication in a shared-nothing cluster.

https://cassandra.apache.org

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 457

The raw data (files) are initially produced at some servers, e.g. in our use
case, at the phenotyping platform and get transferred to the cloud site. The
cache data (files) are produced at the cloud site after SWf execution. A good
solution to store these files in a cluster is a distributed file system like Lustre
(http://lustre.org) which is used a lot in HPC as it scales to high numbers of
files.

Fig. 2. SWfMS functional architecture

Figure 2 extends the SWfMS architecture proposed in [10], which distin-
guishes various layers, to support intermediate data caching. The SWf manager
is the component that the user clients interact with to develop, share and execute
workflows, using the metadata (catalog, provenance database and cache index).
It determines the workflow activities that need to be executed, and generates
the associated tasks for the scheduler. It also uses the cache index for SWf pre-
processing to identify the intermediate data to reuse and the tasks that need not
be re-executed.

The scheduler exploits the catalog and provenance database to decide which
tasks should be scheduled to cloud sites. The task manager controls task execu-
tion and uses the cache manager to decide whether the task’s output data should
be placed in the cache. The cache manager implements the adaptive cache pro-
visioning algorithm described in Sect. 4. The SWf data manager deals with data
storage, using a distributed file system.

Fig. 3. SWfMS technical architecture

http://lustre.org

458 G. Heidsieck et al.

Figure 3 shows how these components are involved in SWf processing, using
the traditional master-worker model. There are three kinds of nodes, master,
compute and data nodes, which are all mapped to cluster nodes at configuration
time, e.g. using a cluster manager like Yarn (http://hadoop.apache.org). The
master node includes the SWf manager, scheduler and cache manager, and deals
with the metadata. The master node is lightly loaded as most of the work of
serving clients is done by the compute and data nodes (or worker nodes), which
perform task management and execution, and data management, respectively.
So, it is not a bottleneck. However, to avoid any single point of failure, there is a
standby master node that can perform failover upon the master node’s failure.

Let us now illustrate briefly how SWf processing works. User clients con-
nect to the cloud site’s master node. SWf execution is controlled by the master
node, which identifies, using the SWf manager, which activities in the fragment
can take advantage of cached data, thus avoiding task execution. The scheduler
schedules the corresponding tasks that need to be processed on compute nodes
which in turn will rely on data nodes for data access. It also adds the transfers
of raw data from remote servers that are needed for executing the SWf. For each
task, the task manager decides whether the task’s output data should be placed
in the cache taking into account storage costs, data size, network costs. When
a task terminates, the compute node sends to its master the task’s execution
information to be added in the provenance database. Then, the master node
updates the provenance database and may trigger subsequent tasks.

4 Cache Management

This section presents in details our techniques for cache management.
We start by introducing some terms and concepts. A SWf W (A,D) is the

abstract representation of a directed acyclic graph (DAG) of computational
activities A and their data dependencies D. There is a dependency between
two activities if one consumes the data produced by the other. An activity is a
description of a piece of work and can be a computational script (computational
activity), some data (data activity) or some set-oriented algebraic operator like
map or filter [11]. The parents of an activity are all activities directly connected
to its inputs. A task t is the instantiation of an activity during execution with
specific associated input data. The input Input(t) of t is the data needed for
the task to be computed, and the output Output(t) is the data produced by the
execution of t. Whenever necessary, for clarity, we alternatively use the term
intermediate data instead of output data. Execution data corresponds to the
input and output data related to a task t. For the same activity, if two tasks
ti and tj have the equal inputs then they produce the same output data, i.e.,
Input(ti) = Input(tj) ⇒ Output(ti) = Output(tj). A SWf’s input data is the
raw data generated by the experimental platforms, e.g., a phenotyping platform.
An executable workflow for workflow W (A,D) is Wex(A,D, T, Input), where T
is a DAG of tasks corresponding to activities in A and Input is the input data.

http://hadoop.apache.org

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 459

In our solution, cache management is involved during two main steps: SWf
preprocessing and cache provisioning. SWf preprocessing occurs just before exe-
cution and is done by the SWf manager using the cache index. The goal is
to transform an executable workflow Wex(A,D, T, Input) into an equivalent,
simpler subworkflow W ′

ex(A′,D′, T ′, Input′), where A′ is a subgraph of A with
dependencies D′, T ′ is a subgraph of T corresponding to A′ and Input′ ∈ Input.
This is done by removing from the executable workflow all tasks and correspond-
ing input data for which the output data is in the cache. The preprocessing step
uses a recursive algorithm that traverses the DAG starting from the leaf nodes
(corresponding to tasks). For each task t, if Output(t) is already in the cache,
this means that the entire subgraph of T whose leaf is t can be removed.

Figure 4 illustrates the preprocessing step on the Phenomenal SWf. The yel-
low tasks have their output data stored in the cache. They are replaced by the
corresponding data as input for the subgraphs of tasks that need to be executed.

Fig. 4. DAG of tasks before pre-processing (left) and the selected fragments that need
to be executed (right). (Color figure online)

The second step, cache provisioning, is performed during workflow execution.
Traditional (in memory) caching involves deciding, as data is read from disk
into memory, which data to replace to make room, using a cache replacement
algorithm, e.g. LRU. In our context, using a disk-based cache, the question is
different, i.e. to decide which task output data to place in the cache using a cache
provisioning algorithm. This algorithm is implemented by the cache manager and
used by the task manager when executing a task.

A simple cache provisioning algorithm, which we will use as baseline, is to
use a greedy method that simply stores all tasks’ output data in the cache.
However, since SWf executions produce huge quantities of output data, this
approach would incur high storage costs. Worse, for some short duration tasks,
accessing cache data from disk may take much more time than re-executing the
corresponding task subgraph from the input data in memory.

Thus, we propose a cache provisioning algorithm with an adaptive method
that deals with the variations in task execution times and output data. The
principle is to compute, for each task t, a score based on the sizes of the input
and output data it consumes and produces, and the execution time of t. During
workflow execution, the execution time of each task t, denoted by ExTime(t),
is stored in the provenance database. If t has already been executed, ExTime(t)
already exists in the provenance database. When t is re-executed, its execution

460 G. Heidsieck et al.

time is recomputed and ExTime(t) is updated as the average between the new
and old execution times.

The adaptive aspect of our solution is to take into account task compression
behavior. With a high compression ratio, it may be efficient to store the output
data rather than the input data and recomputing it. In contrary, with a high
expansion ratio, storing the input data rather than the output may save disk
space.

Let size(Input(t)) and size(Output(t)) denote the input and output data
size of a task t, respectively. The data compression ratio of a task quantifies the
reduction of the input data processed by the task, i.e.,

CompressRatio(t) =
size(Input(t))
size(Output(t))

(1)

Based on this data compression ratio, a cache provisioning score, denoted by
CacheScore, is defined. For a task t, let F be a constant to normalize the time
factor, ωs and ωt represent the weight for the storage cost and execution time,
they are determined by the user and ωs + ωt = 1, the cache provisioning score
is obtained by:

CacheScore(t) = ωs ∗ CompressRatio(t) + ωt ∗ Texec(t)
F

(2)

The cache score reveals the relevancy of caching the output data of t and
takes into account the compression metric and execution time. According to the
weights provided by the user, she may prefer to give more importance to the
compression ratio or executions time, depending on the storage capacity and
available computational resources.

Then, during each task t execution, the task manager calls the cache manager
to compute CacheScore(t). If the computed value is bigger than the threshold
provided by the user, then t’s output data will be cached. This threshold is
chosen based on the overhead of cache provisioning (i.e., the time spent to store
t’s output data) and the cache size.

5 Experimental Evaluation

In this section, we first present our experimental setup. Then, we present our
experiments and comparisons of different caching methods in terms of speedup
and monetary cost in single user and multiuser modes. Finally, we give conclud-
ing remarks.

5.1 Experimental Setup

Our experimental setup includes the cloud infrastructure, SWf implementation
and experimental dataset.

The cloud infrastructure is composed of one site with one data node (N1)
and two identical compute nodes (N2, N3). The raw data is originally stored in

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 461

an external server. During computation, raw data is transferred to N1, which
contains Terabytes of persistent storage capacities. Each compute node has much
computing power, with 80 vCPUs (virtual CPUs, equivalent to one core each of
a 2.2 GHz Intel Xeon E7-8860v3) and 3 Terabytes of RAM, but less persistent
storage (20 Gigabytes).

We implemented the Phenomenal workflow (see Sect. 2) using OpenAlea and
deployed it on the different nodes using the Conda multi-OS package manager.
The master node is hosted on one of the compute node (N2). The metadata
repositories are stored on the same node (N2) using the Cassandra key-value
store. Files for raw and cached data are shared between the different nodes
using the Lustre file system. File transfer between nodes is implemented with
ssh.

The Phenoarch platform has a capacity of 1,680 plants with 13 images per
plant per day. The size of an image is 10 Megabytes and the duration of an
experiment is around 50 days. The total size of the raw image dataset represents
11 Terabytes for one experiment. The dataset is structured as 1,680 time series,
composed of 50 time points (one per plant and per day).

We use a version of the Phenomenal workflow composed of 9 main activities.
We execute it on a subset of the use case dataset, that is 1

25 of the size of the full
dataset, or 440 Gigabytes of raw data, which represents the execution of 30,240
tasks.

5.2 Experiments

We execute the workflow on the subset dataset with different number of vCPUs
and different caching methods. We consider workflow executions from a single
user or multiple users to test the re-execution of the same workflow several times.

We compare three different caching methods: (1) no cache, (2) greedy, and
(3) adaptive. Greedy and adaptive are described in Sect. 4.

In the single user scenario, the execution time corresponds to the transfer
time of the raw data from the remote servers, the time to run the workflow
and the time for cache provisioning, if any. In the multiuser scenario, the same
workflow is executed on the same data several times (up to 6 times).

The raw data is fetched on the data node as follows: a first chunk is fetched
from the remote data servers, then the remaining chunks are fetched while the
execution starts on the first chunk. As the execution takes longer than transfer-
ring the raw data, we only count the time of transferring the first chunk in the
execution time.

For the adaptive method, the coefficients ωd and ωt defined by the user are
set to 0.5 each. The threshold is set to 0.4.

In the rest of this section, we compare the three methods in terms of speedup
and monetary cost.

Speedup. We compare the speedup of the three caching methods. We define
speedup as speedup(n) = Tn

T10
where Tn is the execution time on n vCPUs and

T10 is the execution time of the no cache method on 10 vCPUs.

462 G. Heidsieck et al.

(a) Speedup for one execution (b) Speedup for three executions

Fig. 5. Speedup versus number of vCPUs: without cache (red), greedy caching (blue),
and adaptive caching (green). (Color figure online)

The workflow execution is distributed on nodes N2 and N3, for different
numbers of vCPUs. For one execution, Fig. 5(a) shows that the fastest method
is no cache (red curve). This is normal because there is no additional time to
make data persistent and provision the cache. However, the overhead of cache
provisioning with the adaptive method is very small (green curve in Fig. 5(a)
compared with the greedy method (blue curve in Fig. 5(a) where all the output
data are saved in the cache.

The speedup with adaptive goes up to 94.4% of that with no cache, while
the speedup with greedy goes up to 59.9%. For instance, with 80 vCPUs, the
execution time of the adaptive method (i.e., 3,714 s) is only 5.8% higher than
that of the no cache method (i.e. 3,510 s). This is much faster than the greedy
method, which adds 68.2% of computation time in comparison with the no cache
method. Re-execution with the greedy and adaptive methods have much smaller
execution time than the first execution. The greedy method re-execution time
is the fastest, with only 2.3% (i.e., 129 s) of the no cache method execution
time, because all the output data is already cached. Furthermore, as only the
master node is working although no computation is done, the re-execution time
is independent of the number of vCPUs and can be computed from a personal
computer with limited vCPUs. The adaptive method re-execution time is a bit
higher as 16.3% (i.e., 572 s) of the no cache method execution time for a gain of
513%. With the adaptive method, some computation still needs to be done when
the workflow is re-executed, but such re-execution on the whole dataset can be
done in less than a day (i.e., 19.4 h) on a 10 vCPUs machine, compared with 6.9
days with the no cache method. For three executions, starting without cache,
Fig. 5(b) shows that the adaptive method is much faster than the other methods.
The greedy method is faster than the no cache method in this case, because the
additional time for the cache provisioning is compensated by the very short
re-execution times of the greedy method. With 80 vCPUs, the speedup of the
adaptive method (i.e., 18.1) is 54.70% better than that of the greedy method
(i.e., 11.7) and 162.31% better than that of the no cache method (i.e., 6.9). The
adaptive method is faster on three executions than the other methods, despite

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 463

having re-execution time higher than the greedy method, because the overhead
of the cache provisioning is 57% smaller.

Fig. 6. Monetary cost depending on the number of workflow executions.

Monetary Cost. To compare the monetary of the three caching methods, we
first define execution cost in US$ as follows:

Cost = Costcpu ∗ ExTime + Costdisk ∗ TotalCache

where ExTime is the total time of one or multiple executions in seconds,
TotalCache represents the size of the data in the cache in Gigabytes. Costcpu
and Costdisk are the pricing coefficients determined in $ per cpu per hour and
$ per Gigabyte per month, respectively.

To set the price parameters, we use Amazon’s cost model, i.e., Costdisk is
$0.1 per Gigabyte per month for storage and two instances at $5.424 per hour
for computation, i.e., Costcpu is $10.848 per hour. As we can see from Fig. 6,
the monetary cost of the adaptive method is much smaller than the greedy
method due to the amount of cached data produced by the adaptive method
(i.e., 390 Gigabytes for the whole experimentation), which is much smaller than
for the greedy method (i.e., 3.9% of the total output data). In terms of monetary
cost, the greedy method becomes more efficient than the no cache method at
the sixth user in the month. The adaptive method is 28.40% less costly than
the no cache method and 254.44% less costly than the greedy method for two
executions. For six executions, the adaptive method is still 120.16% less costly
than no cache method and 114.38% less costly than the greedy method.

5.3 Discussion

The adaptive method has better speedup compared to the no cache and greedy
methods, with performance gains up to 162.31% and 54.70% respectively for

464 G. Heidsieck et al.

three executions. The direct execution time gain for each re-execution is 344.9%
for the adaptive method in comparison with the no cache method (i.e., 3.9 h
instead of 17.7). One requirement from the use case was to make workflow exe-
cution time shorter than half a day (12 h). The adaptive method allows for the
user to re-execute the workflow on the total dataset (i.e., 11 Terabytes) in less
than 4 h. In terms of monetary costs, the adaptive method yields very good
gains, up to 120.16% with 6 workflow re-executions in comparison to the no
cache method and up to 254.44% for two workflow re-executions in comparison
to the greedy method.

We also conducted other experiments based on the Phenomenal use case,
typical of practical situations. However, because of space limitations, we can
only summarize the results for two experiments: (1) execute a SWf that has
already been executed with different parameters, and (2) extend an existing
SWf by adding new activities. The first experiment corresponds to the situation
where the user tests other possibilities with different parameters. When some
parameters are changed, all the tasks depending on them and the one below need
to be re-executed. For the greedy method, the overhead in cache provisioning
and the storage cost increase rapidly as the number of parameters changes goes
up. But the adaptive method has small overhead due to less data storage, and
thus the increase of the storage cost is an order of magnitude smaller than that
with greedy.

In the second experiment, the structure of the workflow is modified by adding
new activities as discussed in Sect. 2. Similar to what happens with re-execution
of a single SWf, the monetary cost of the greedy method is higher than the
no cache method for up to 6 executions with different fragments or different
parameters. And the execution time of greedy is always better than no cache.
The adaptive method is both faster and cheaper than both no cache and greedy.

6 Conclusion

In this paper, we proposed an adaptive caching solution for efficient execution
of data-intensive workflows in the cloud. Our solution automatically manages
the storage and reuse of intermediate data and adapts to the variations in task
execution times and output data size. The adaptive aspect our solution is to
take into account task compression behavior.

We implemented our solution in the OpenAlea system and performed exten-
sive experiments on real data with the Phenomenal workflow, with 11 Terabytes
of raw data. We compared three methods: no cache, greedy, and adaptive. Our
experimental validation shows that the adaptive method allows caching only the
relevant output data for subsequent re-executions by other users, without incur-
ring a high storage cost for the cache. The results show that adaptive caching can
yield major performance gains, e.g., up to 120.16% with 6 workflow re-executions.

This work solves an important issue in experimental science like biology,
where scientists extend existing workflows with new methods or new parameters
to test their hypotheses on datasets that have been previously analyzed.

Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud 465

Acknowledgments. This work was supported by the #DigitAg French Convergence
Lab. on Digital Agriculture (http://www.hdigitag.fr/com), the SciDISC Inria associ-
ated team with Brazil, the Phenome-Emphasis project (ANR-11-INBS-0012) and IFB
(ANR-11-INBS-0013) from the Agence Nationale de la Recherche and the France Grille
Scientific Interest Group.

References

1. Adams, I.F., Long, D.D., Miller, E.L., Pasupathy, S., Storer, M.W.: Maximizing
efficiency by trading storage for computation. In: HotCloud (2009)

2. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
Kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890850 14

3. Artzet, S., Brichet, N., Chopard, J., Mielewczik, M., Fournier, C., Pradal, C.: Ope-
nAlea.Phenomenal: a workflow for plant phenotyping, September 2018. https://
doi.org/10.5281/zenodo.1436634

4. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
VisTrails: visualization meets data management. In: ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 745–747 (2006)

5. Cohen-Boulakia, S., et al.: Scientific workflows for computational reproducibility
in the life sciences: status, challenges and opportunities. Future Gener. Comput.
Syst. (FGCS) 75, 284–298 (2017)

6. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the montage example. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2008)

7. Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Common
motifs in scientific workflows: an empirical analysis. Future Gener. Comput. Syst.
(FGCS) 36, 338–351 (2014)

8. Kelling, S., et al.: Data-intensive science: a new paradigm for biodiversity studies.
BioScience 59(7), 613–620 (2009)

9. Liu, J., et al.: Efficient scheduling of scientific workflows using hot metadata in a
multisite cloud. IEEE Trans. Knowl. Data Eng. 1–20 (2018)

10. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. J. Grid Comput. 13(4), 457–493 (2015)

11. Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: An alge-
braic approach for data-centric scientific workflows. Proc. VLDB Endow. (PVLDB)
4(12), 1328–1339 (2011)

12. de Oliveira, D., Baião, F.A., Mattoso, M.: Towards a taxonomy for cloud comput-
ing from an e-Science perspective. In: Antonopoulos, N., Gillam, L. (eds.) Cloud
Computing. Computer Communications and Networks, pp. 47–62. Springer, Lon-
don (2010). https://doi.org/10.1007/978-1-84996-241-4 3

13. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8

14. Pradal, C., et al.: InfraPhenoGrid: a scientific workflow infrastructure for plant
phenomics on the grid. Future Gener. Comput. Syst. (FGCS) 67, 341–353 (2017)

15. Pradal, C., Cohen-Boulakia, S., Heidsieck, G., Pacitti, E., Tardieu, F., Valduriez,
P.: Distributed management of scientific workflows for high-throughput plant phe-
notyping. ERCIM News 113, 36–37 (2018)

http://www.hdigitag.fr/com
https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/11890850_14
https://doi.org/10.5281/zenodo.1436634
https://doi.org/10.5281/zenodo.1436634
https://doi.org/10.1007/978-1-84996-241-4_3
https://doi.org/10.1007/978-1-4419-8834-8

466 G. Heidsieck et al.

16. Roitsch, T., et al.: Review: new sensors and data-driven approaches–a path to next
generation phenomics. Plant Sci. 282, 2–10 (2019)

17. Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., Bennett, M.: Plant phenomics,
from sensors to knowledge. Curr. Biol. 27(15), R770–R783 (2017)

18. Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate
data storage in scientific cloud workflow systems. In: IEEE International Sympo-
sium on Parallel and Distributed Processing (IPDPS), pp. 1–12 (2010)

19. Yuan, D., et al.: A highly practical approach toward achieving minimum data sets
storage cost in the cloud. IEEE Trans. Parallel Distrib. Syst. 24(6), 1234–1244
(2013)

20. Zhang, J., et al.: Bridging VisTrails scientific workflow management system to
high performance computing. In: 2013 IEEE Ninth World Congress on Services,
pp. 29–36. IEEE (2013)

Correction to: Keyword Search Based Mashup
Construction with Guaranteed Diversity

Huanyu Cheng, Ming Zhong, Jian Wang, and Tieyun Qian

Correction to:
Chapter “Keyword Search Based Mashup Construction
with Guaranteed Diversity” in: S. Hartmann et al. (Eds.):
Database and Expert Systems Applications, LNCS 11707,
https://doi.org/10.1007/978-3-030-27618-8_31

In the originally published version of chapter 31 the funding information in the
acknowledgement section was incomplete. This has now been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-27618-8_31

© Springer Nature Switzerland AG 2020
S. Hartmann et al. (Eds.): DEXA 2019, LNCS 11707, p. C1, 2020.
https://doi.org/10.1007/978-3-030-27618-8_34

https://doi.org/10.1007/978-3-030-27618-8_31
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27618-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-27618-8_31
https://doi.org/10.1007/978-3-030-27618-8_34

Author Index

Achich, Nassira II-198
Agarwal, Manoj K. I-407
Al Ja’am, Jihad II-362
Al-Amin, Sikder Tahsin II-247
Alili, Hiba I-396
Almeida, Eduardo C. I-418
Alves, Marco A. Z. I-418
Alvim, Mário S. I-149
Amagasa, Toshiyuki II-237
Amagata, Daichi I-79, II-275
Amann, Bernd II-47
Amer-Yahia, Sihem I-314
Arafat, Naheed Anjum II-376
Araki, Kenji II-393
Arsa, Dewa Made Sri I-18
Auer, Sören I-379
Avila, Diego Torales II-129

Baazizi, Mohamed-Amine II-47
Basu, Debabrota I-189, II-376
Belhajjame, Khalid I-396
Bellatreche, Ladjel I-352, II-174
ben Othmane, Zied I-248
Ben Yahia, Sadok II-362
Benouaret, Idir I-314
Bhatnagar, Vasudha II-76
Biazus, Miller II-118
Boudoukha, Kamila I-352
Boughanem, Mohand II-143
Bressan, Stéphane I-18, I-189, II-376
Buzaaba, Happy II-237

Casanova, Marco A. II-143
Chaudhary, Parul I-287
Chebolu, Siva Uday Sampreeth II-247
Chen, Gang II-411, II-434
Chen, Yingyang II-291
Cheng, Huanyu II-423
Cheng, Xueqi II-222
Cigana, Raphael Piegas II-129
Collarana, Diego I-175

Dan, Tangpeng II-306
Dandekar, Ashish I-189
de Oliveira, Daniel II-452
de Oliveira, José Palazzo Moreira II-118
de Runz, Cyril I-248
de Silva, Nisansa I-159
de Souza, Matheus Maia I-215
dos Santos Mello, Ronaldo II-159
dos Santos, Carlos Habekost II-118
Dou, Dejing I-159
Dridi, Rim II-211
Drira, Rim I-396
Du, Qiang II-341

Ehrlinger, Lisa I-227
Elloumi, Samir II-362
El-Sharkawi, Mohamed E. II-102
Endris, Kemele M. I-205, I-379
ER, Ngurah Agus Sanjaya I-18

Fantinato, Marcelo II-118, II-129
Fournier-Viger, Philippe II-91
Freudenthaler, Bernhard I-138
Fujiwara, Yuji II-325
Fukuda, Satoshi II-65

Galal, Sh. II-102
Galante, Renata I-215
Galicia, Jorge II-174
Galkin, Mikhail I-175
Gargouri, Faiez II-198
Ghorbel, Fatma II-198
Goncalves, Marlene I-205
Gonzaga, André I-149
Graux, Damien I-175
Grigori, Daniela I-396

Hacques, Florian II-184
Hajjami Ben Ghezala, Henda I-396
Hamdi, Fayçal II-198
Hannou, Fatma-Zohra II-47

Hara, Takahiro I-79, II-275
Hassad, Sara E. L. II-184
Haunschmid, Verena I-227
Heidsieck, Gaëtan II-452
Heine, Felix I-238
Hikida, Satoshi II-19
Honda, Yuichi II-393
Hou, Zhirong I-63
Huang, Liangqiang I-44

Iosifidis, Vasileios I-261
Ishita, Emi II-65

Jin, Yuan II-30

Kaster, Daniel S. I-106
Kato, Kazuhiko I-277
Kato, Shinya I-79
Kayahara, Masaaki II-393
Kayem, Anne V. D. M. I-33
Kepe, Tiago R. I-418
Khouri, Selma I-352
Khurana, Alka II-76
Khurshid, Faisal I-44
Kiran, R. Uday II-351
Kitagawa, Hiroyuki I-3
Kitsuregawa, Masaru II-351
Kleiner, Carsten I-238
Koga, Hisashi II-325
Kossak, Felix II-263
Krishna Reddy, P. I-327, II-351
Ktistakis, Rafael II-91
Kukowski, Michal I-95
Kushima, Muneo II-393

Lanasri, Dihia I-352
Le, Hieu Hanh II-19, II-393
Lettner, Christian I-227
Li, Yanhong II-306
Li, Ying I-63
Liu, Jiawei I-63
Luo, Changyin II-306

Ma, Hui II-411, II-434
Ma, Qiang I-429
Macyna, Wojciech I-95
Martinez-Gil, Jorge I-138

McCarren, Andrew I-341
Meinel, Christoph I-33
Meira, Jorge A. I-418
Mendling, Jan II-118, II-129
Menendez, Elisa S. II-143
Mercelot, Vincent I-248
Mesmoudi, Amin II-174
Metais, Elisabeth II-198
Mitake, Hitoshi II-3
Mittal, Saloni I-407
Miura, Takao I-125
Molli, Pascal II-184
Mondal, Anirban I-287, I-327
Moro, Mirella I-149

Nakabasami, Kosuke I-3
Nakajima, Tatsuo II-3
Nakamura, Kenki I-429
Nasu, Yuya I-3
Netto, João Cesar I-215
Nezu, Yuta I-125
Nishio, Shunya I-79
Ntoutsi, Eirini I-261

Oelsner, Thomas I-238
Oka, Mizuki I-277
Ordonez, Carlos II-174, II-247

Pacitti, Esther II-452
Paes Leme, Luiz A. P. II-143
Palazzini, Davide I-227
Podlesny, Nikolai J. I-33
Pradal, Christophe II-452
Prakash, Deepika I-368
Prakash, Naveen I-368
Puglisi, Simon J. II-91

Qian, Tieyun II-423

Raman, Rajeev II-91
Ravat, Franck I-304
Reddy, Polepalli Krishna I-287
Reijers, Hajo A. II-129
Revanth Rathan, P. I-327
Roantree, Mark I-341
Rohde, Philipp D. I-379
Roy, Senjuti Basu I-314

468 Author Index

Sadeghiram, Soheila II-411
Saidoune, Roaya I-352
Santana, Luiz Henrique Zambom II-159
Sato, Koya I-277
Scriney, Michael I-341
Shimomura, Larissa Capobianco I-106
Skaf-Molli, Hala II-184
Slimani, Yahya II-211

Takeda, Larissa Narumi II-118
Tamine, Lynda II-211
Tan, Jiefan II-341
Tardieu, François II-452
Tasnim, Mayesha I-175
Thom, Lucinéia Heloisa II-118, II-129
Tjoa, A Min I-138
Tomiura, Yoichi II-65
Toyoda, Masashi II-351
Tran, Thi Ngoc Han I-261

Valduriez, Patrick II-452
Vidal, Maria-Esther I-175, I-205, I-379

Wang, Chen II-434
Wang, Jian II-423
Wang, Xin I-44, II-30

Xing, Congcong I-341

Yamada, Hiroshi II-3
Yamada, Tatsuhiro II-393
Yang, Lan II-30
Yashwanth Reddy, T. II-351
Yin, Ao II-291
Yokota, Haruo II-19, II-393
Younes, Amine Ait I-248

Zen, Remmy I-18
Zhan, Huayi II-30
Zhang, Chenyuan II-306
Zhang, Chunkai II-291
Zhang, Ruixi I-18
Zhang, Zhibin II-222
Zhao, Yan I-304
Zheng, Tianqi II-222
Zhong, Ming II-423
Zhu, Yan I-44, II-30, II-341
Zwick, Michael II-263

Author Index 469

	Preface
	Organization
	Contents -- Part II
	Contents – Part I
	Distributed, Parallel, P2P, Grid and Cloud Databases
	Looking into the Peak Memory Consumption of Epoch-Based Reclamation in Scalable in-Memory Database Systems
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Memory Reclamation Mechanism for Achieving Scalability
	2.2 Using EBR in Multicore Scalable in-Memory DBMSs
	2.3 Drawbacks to Using EBR and Its Alternatives

	3 Potential Sources of the Drawbacks Caused by EBR and Possible Solutions
	3.1 Impact of Memory Reclamation
	3.2 Reducing High Peak Memory Usage Caused by EBR

	4 Evaluation and Analysis
	4.1 Workload with Creation and Deletion Operations
	4.2 Read-Only and Scan-Only Workload
	4.3 Design for Minimizing Peak Memory Usage

	5 Conclusion and Future Direction
	5.1 Optimization for Performance and Energy Consumption
	5.2 Optimization for Read Performance

	References

	Energy Efficient Data Placement and Buffer Management for Multiple Replication
	1 Introduction
	2 A Power-Saving Approach for Two-Way Replicated Storage Systems
	3 Energy-Efficient Data Placement
	3.1 Data Placement Policy on Data Disks
	3.2 Data Placement Policy on Buffers

	4 Energy-Efficient Buffer Flush Algorithm
	4.1 WithAllSpins
	4.2 SpinupEE

	5 Evaluation
	5.1 Comparison of Cache Striping and Disk Group Aggregation
	5.2 Comparison of Each Buffer Flush Algorithms
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Querying Knowledge Graphs with Natural Languages
	1 Introduction
	2 Preliminary
	2.1 Knowledge Graphs and Pattern Queries
	2.2 Graph Pattern Matching Revised
	2.3 Query Understanding
	2.4 Approach Overview

	3 Structuring Natural Language Queries
	3.1 Query Annotation
	3.2 Pattern Query Generation

	4 Querying Knowledge Graphs
	5 Experimental Study
	5.1 Experiments for Query Structuring
	5.2 Experiments for Diversified Top-k Graph Pattern Matching

	6 Conclusion
	References

	Explaining Query Answer Completeness and Correctness with Partition Patterns
	1 Introduction
	2 Related Work
	3 Pattern Model: Definitions
	4 Pattern Algebra: Folding and Unfolding
	5 Pattern Query Processing and Folding Algorithms
	5.1 Pattern Query Rewriting and Optimization
	5.2 Folding Algorithms

	6 Experimentation
	7 Conclusion
	References

	Information Retrieval
	Research Paper Search Using a Topic-Based Boolean Query Search and a General Query-Based Ranking Model
	Abstract
	1 Introduction
	2 Related Work
	2.1 Query-Based Academic Search
	2.2 Query-Based Ranking Model

	3 Search Method Based on a Topic-Based Boolean Query Using Multiple Topic Analysis Results
	4 Hybrid Search
	5 Experiment
	5.1 Experimental Settings
	5.2 Experimental Results and Discussion

	6 Conclusion
	Acknowledgements
	References

	Extractive Document Summarization using Non-negative Matrix Factorization
	1 Introduction
	2 Background and Motivation
	2.1 Non-negative Matrix Factorization
	2.2 Non-negative Matrix Factorization for Document Summarization

	3 NNDSVD Initialization
	4 Proposed Summarization Method
	4.1 Term-oriented Sentence Scoring
	4.2 Topic-oriented Sentence Scoring

	5 Experimental Setup
	6 Experimental Results
	6.1 DUC2002 Corpus
	6.2 DUC2001 Corpus
	6.3 CNN/DailyMail Corpora

	7 Discussion
	8 Conclusion
	References

	Succinct BWT-Based Sequence Prediction
	1 Introduction
	2 Preliminaries
	3 Succinct BWT-Based Sequence Prediction Model
	3.1 Algorithm Description
	3.2 Implementation Using FM-Index

	4 Evaluation
	4.1 Experimental Setup
	4.2 Accuracy of Prediction
	4.3 Performance
	4.4 Optimisation Discussion

	5 Conclusion
	References

	TRR: Reducing Crowdsourcing Task Redundancy
	Abstract
	1 Introduction
	2 Related Work
	3 An Overview of Task Redundancy Reducer (TRR)
	4 Handling Boolean and Classification Tasks
	4.1 Observed Probabilities Distribution in Anonymous Workers Model
	4.2 Observed Probabilities Distribution in Non-anonymous Workers Model
	4.3 Measuring Diversity for Boolean and Classification Tasks
	4.4 TRR Redundancy Estimation Algorithm for Boolean and Classification Tasks

	5 Handling Rating Tasks
	5.1 Measuring Diversity for Anonymous Workers Model
	5.2 Measuring Diversity for Non-anonymous Workers Model

	6 Experiments
	6.1 Datasets
	6.2 Estimating Priors
	6.3 Boolean and Classification Tasks Analysis
	6.4 Rating Tasks Analysis

	7 Conclusion and Future Directions
	References

	Software Resource Recommendation for Process Execution Based on the Organization's Profile
	1 Introduction
	2 Related Work
	2.1 Search Protocol and Found Studies
	2.2 Requirements for Supporting Redesign

	3 The Resource Recommendation Approach
	3.1 Resource Type Classification
	3.2 Resource Recommendation

	4 Evaluation of the Recommendation Approach
	5 Conclusion
	References

	An Experiment to Analyze the Use of Process Modeling Guidelines to Create High-Quality Process Models
	1 Introduction
	2 Background
	2.1 Process Modeling Guidelines
	2.2 Related Work

	3 Experiment Protocol
	3.1 Problem Definition and Hypotheses
	3.2 Experiment Variables
	3.3 Experiment Design and Subjects
	3.4 Experiment Instrumentation
	3.5 Data Validation

	4 Data Analysis and Interpretation
	4.1 Descriptive Statistics
	4.2 Hypothesis Testing
	4.3 Discussion

	5 Conclusion
	References

	Semantic Web and Ontologies
	Novel Node Importance Measures to Improve Keyword Search over RDF Graphs
	Abstract
	1 Introduction
	2 Related Work
	3 The InfoRank Importance Measures
	3.1 Background on Importance Measures
	3.2 The Intuitions Behind InfoRank
	3.3 Ranking Resources with InfoRank

	4 The QUIRA Keyword Search System
	4.1 Overview
	4.2 Finding Pieces of Information in an RDF Graph
	4.3 Connecting and Ranking

	5 Evaluation
	5.1 Setup
	5.2 Ranking Experiments
	5.3 Keyword Search Experiments

	6 Conclusions and Future Work
	Acknowledgments
	References

	Querying in a Workload-Aware Triplestore Based on NoSQL Databases
	1 Introduction
	2 Background and Related Work
	3 WA-RDF
	4 The Workload-Aware Approach
	4.1 Storage: Fragmentation and Partitioning
	4.2 Query Processing

	5 Experimental Evaluation
	6 Conclusion
	A Fragments and Queries
	References

	Reverse Partitioning for SPARQL Queries: Principles and Performance Analysis
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Preliminaries
	3.2 Partition Algorithm

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experiments in a Single-Node Relational Database System
	4.3 Experiments in a Distributed Graph-Based Triple Store

	5 Related Work
	6 Conclusions
	References

	PFed: Recommending Plausible Federated SPARQL Queries
	1 Introduction
	2 Related Work
	3 Generation of Plausible Federated Queries
	3.1 Datasets Capabilities
	3.2 Pruning Query Logs
	3.3 Building Plausible Federated Queries

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

	Representing and Reasoning About Precise and Imprecise Time Points and Intervals in Semantic Web: Dealing with Dates and Time Clocks
	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Representing Temporal Data in the Semantic Web Field
	2.2 Allen’s Interval Algebra: Definition and Extensions

	3 Our Crisp-Based Approach to Representing Precise and Imprecise Temporal Data in Ontology
	3.1 Quantitative Temporal Data Representation
	3.2 Qualitative Temporal Data Representation

	4 Our Approach to Reasoning About Precise and Imprecise Temporal Data
	4.1 Qualitative Temporal Relations
	4.2 Transitivity

	5 Our Ontology for Representing and Reasoning About Precise and Imprecise Temporal Data in OWL2
	6 Experimentations
	6.1 Our Ontology-Based Prototype
	6.2 Application to the Travel Ontology

	7 Conclusion and Future Directions
	References

	Information Processing
	Context-Aware Multi-criteria Recommendation Based on Spectral Graph Partitioning
	1 Introduction
	2 Related Work
	2.1 Multi-criteria Recommender Systems
	2.2 Context-Aware Recommender Systems

	3 Context-Aware Multi-criteria Recommendation Framework
	3.1 Basic Notation
	3.2 Situational Bipartite Graph Co-clustering
	3.3 Rating Prediction Algorithm

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Research Hypothesis Validation
	4.3 Evaluation of the Prioritized Aggregation Operators
	4.4 Comparison Effectiveness Evaluation with Baselines

	5 Conclusion
	References

	SilverChunk: An Efficient In-Memory Parallel Graph Processing System
	1 Introduction
	1.1 Background
	1.2 Problems
	1.3 Our Solutions and Contributions

	2 Constructs
	2.1 VR-Chunk
	2.2 D-Chunk

	3 Implementations and Optimizations
	3.1 Programming Interface
	3.2 Optimizations

	4 Experiments
	4.1 Graph Algorithm Test
	4.2 VR-Chunk Test
	4.3 AllPull Test
	4.4 NUMA and Cache Optimization Test

	5 Related Works
	6 Conclusion
	References

	A Modular Approach for Efficient Simple Question Answering Over Knowledge Base
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Entity Detection
	3.2 Entity Linking
	3.3 Relation Classification
	3.4 End to End Question Answering

	4 Experiment and Results
	4.1 Experimental Setup
	4.2 Results
	4.3 Training Time

	5 Conclusion and Future Work
	References

	Scalable Machine Learning in the R Language Using a Summarization Matrix
	1 Introduction
	2 Definitions
	2.1 Mathematical Definitions
	2.2 R Runtime and RCpp Package

	3 Theory and Algorithm
	3.1 Algorithm
	3.2 Phase 1: Computing Summarization Matrices
	3.3 Phase 2: Computing Models
	3.4 Computing Gamma Matrix and Machine Learning Models in R
	3.5 Time and Space Complexity Analysis

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Accuracy Evaluation
	4.3 Time Performance Evaluation and Benchmarking
	4.4 Strengths and Weaknesses

	5 Related Work
	6 Conclusions
	References

	ML-PipeDebugger: A Debugging Tool for Data Processing Pipelines
	1 Introduction
	1.1 Related Work

	2 Requirements
	2.1 Glossary
	2.2 Requirements

	3 Challenges and Solutions
	3.1 Compare Data Attributes of Different Types and Distributions
	3.2 Difference Measures for Different Data Types
	3.3 Normalisation
	3.4 Additional Pre-processing of Time Series
	3.5 Compute and Normalise Differences
	3.6 Implementation and User Interface

	4 Practical Results
	4.1 Limitations

	5 Conclusion and Outlook
	5.1 Ongoing and Future Work

	References

	Temporal, Spatial, and High Dimensional Databases
	Correlation Set Discovery on Time-Series Data
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Related Work

	3 Proposed Algorithm
	3.1 Greedy Heuristic Framework
	3.2 Locality Sensitive Hashing
	3.3 Main Techniques
	3.4 Algorithm Description

	4 Experiments
	4.1 Setting
	4.2 Result

	5 Conclusion
	References

	Anomaly Subsequence Detection with Dynamic Local Density for Time Series
	1 Introduction
	2 Problem Statement
	3 The Proposed Algorithm
	3.1 Basic Concept and Definitions
	3.2 Anomaly Detection Algorithm in Time Series
	3.3 Analysis

	4 Experimental Evaluation
	4.1 Evaluation Metrics and Experimental Setup
	4.2 Accuracy
	4.3 Parameter Analysis
	4.4 Performance on ECG Data

	5 Conclusion
	References

	Trajectory Similarity Join for Spatial Temporal Database
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Our Solution
	4.1 Two-Level Grid Index
	4.2 Time First Searching Framework
	4.3 Signature Dynamic Grid Warping
	4.4 Trajectory Similarity Search Algorithm

	5 Experiments
	5.1 Experimental Settings
	5.2 Various Testing

	6 Conclusion
	References

	Knowledge Discovery
	Multiviewpoint-Based Agglomerative Hierarchical Clustering
	1 Introduction
	2 Preliminaries
	2.1 MVS (MultiViewpoint-Based Similarity Measure)
	2.2 Average-Link Method

	3 Multiviewpoint-Based Hierarchical Clustering
	3.1 Similarity Measure Between Clusters
	3.2 Operations to Be Modified in Average-Link Method
	3.3 How to Shrink the Running Time
	3.4 Time Complexity of MVS-AVE
	3.5 Balancing the Cluster Size

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Comparison with CS-AVE
	4.3 Effect of Precalculating di TD and dj TD
	4.4 Evaluation of Function to Balance Cluster Size

	5 Related Works
	6 Conclusion
	References

	Triplet-CSSVM: Integrating Triplet-Sampling CNN and Cost-Sensitive Classification for Imbalanced Image Detection
	Abstract
	1 Introduction
	2 Discussion on Relevant Techniques
	2.1 Triplet Loss CNN
	2.2 Quintuplet Loss CNN
	2.3 Cost-Sensitive SVM

	3 Our Method Triplet-CSSVM
	3.1 Feature Extraction Based on Triplet-Sampling CNN
	3.2 Image Classification in Terms of CSSVM

	4 Experimental Results and Discussion
	4.1 Comparison with the Different Combinations of CNN and SVM
	4.2 Comparison with Quintuplet

	5 Conclusion
	Acknowledgement
	References

	Discovering Partial Periodic High Utility Itemsets in Temporal Databases
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Proposed Approach
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Using Mandatory Concepts for Knowledge Discovery and Data Structuring
	1 Introduction
	2 Mathematical Background
	2.1 FCA Background
	2.2 Difunctionality

	3 Related Work
	4 Conceptual Coverage Based on N-Composites Isolated Points
	4.1 Main Algorithm
	4.2 Illustrative Example

	5 Experimental Results
	6 Conclusion and Perspectives
	References

	Topological Data Analysis with -net Induced Lazy Witness Complex
	1 Introduction
	2 Related Works
	3 Topological Data Analysis
	4 -net
	4.1 -net of a Point Cloud
	4.2 Properties of -nets

	5 Construction of an -net
	5.1 Three Algorithms: -net-rand, -net-maxmin, and (,2)-net
	5.2 Connecting -net to Random and Maxmin Algorithms

	6 Empirical Performance Evaluation
	6.1 Datasets and Experimental Setup
	6.2 Validation of Theoretical Claims
	6.3 Effectiveness and Efficiency of Algorithms Constructing -nets
	6.4 Stability of the -net Landmarks

	7 Conclusion
	References

	Analyzing Sequence Pattern Variants in Sequential Pattern Mining and Its Application to Electronic Medical Record Systems
	1 Introduction
	2 Background Knowledge and Related Works
	2.1 Sequential Pattern Mining (SPM)
	2.2 Time Interval Sequential Pattern Mining
	2.3 Sequential Variant Extraction Visualization

	3 Proposal
	3.1 SPM Retaining SID Information
	3.2 Sequence Pattern Variant Indicator Calculation
	3.3 Sequential Pattern Variant Evaluation
	3.4 Variant Factor Inference
	3.5 Visualization
	3.6 Handling of Medical Treatment Data

	4 Experimental Evaluation
	4.1 Experimental Method and Environment
	4.2 Dataset
	4.3 Experimental Results

	5 Conclusion and Future Work
	References

	Web Services
	Composing Distributed Data-Intensive Web Services Using Distance-Guided Memetic Algorithm
	1 Introduction
	2 Related Work
	3 Problem Definition and Objective Function
	4 Representation of Solutions and the Decoding
	5 Distance-Guided Memetic Algorithm for DWSC
	6 Evaluation and Experiment Design
	7 Results and Discussions
	8 Conclusions
	References

	Keyword Search Based Mashup Construction with Guaranteed Diversity
	1 Introduction
	2 Problem Statement
	2.1 Preliminaries
	2.2 Problems

	3 Diversified Search
	3.1 Result Generation
	3.2 Result Diversification

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Evaluation

	5 Conclusion
	References

	Using EDA-Based Local Search to Improve the Performance of NSGA-II for Multiobjective Semantic Web Service Composition
	1 Introduction
	2 Related Work
	3 The Multiobjective Semantic Web Service Composition Problem
	4 Our New Method MNSGA2-EDA
	4.1 An Overview of MNSGA2-EDA
	4.2 Outline of MNSGA2-EDA
	4.3 Genetic Operators
	4.4 Identify a Cluster Representative of Each Cluster
	4.5 Learn a NHM Based on Cluster Representatives

	5 Experimental Evaluation
	5.1 Parameters Sensitivity
	5.2 Comparison of the Execution Time
	5.3 Comparison of the IGD and Hypervolume
	5.4 Comparison of the Convergence Rate
	5.5 Comparison of the Pareto Optimal Solutions

	6 Conclusion
	References

	Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud
	1 Introduction
	2 Use Case in Plant Phenotyping
	3 Cloud SWfMS Architecture
	4 Cache Management
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experiments
	5.3 Discussion

	6 Conclusion
	References

	Correction to: Keyword Search Based Mashup Construction with Guaranteed Diversity
	Correction to: Chapter “Keyword Search Based Mashup Construction with Guaranteed Diversity” in: S. Hartmann et al. (Eds.): Database and Expert Systems Applications, LNCS 11707, https://doi.org/10.1007/978-3-030-27618-8_31

	Author Index

