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Abstract The aim of this paper is to further investigate the properties of octonion
Fourier transform (OFT) of real-valued functions of three variables and its potential
applications in signal and system processing. This is a continuation of the work
started by Hahn and Snopek, in which they studied the octonion Fourier transform
definition and its applications in the analysis of the hypercomplex analytic signals.
First, the octonion algebra and the new quadruple-complex numbers algebra
are introduced. Then, the OFT definition is recalled, together with some basic
properties, proved in some earlier work. The main part of the article is devoted
to new properties of the OFT, that allow us to use the OFT in the analysis of
multidimensional signals and LTI systems, i.e. derivation and convolution of real-
valued signals.

1 Introduction

The classical signal theory deals with R- or C-valued functions and their C-valued
spectra. However, in some practical applications, signals tend to be represented
by hypercomplex algebras [4]. Hypercomplex Fourier transforms deserve special
attention in this considerations. Quaternion Fourier transform (QFT) allows us to
analyze two dimensions of the sampling grid independently, while the complex
transform mixes those two dimensions. It enables us to use the Fourier transform
in the analysis of some 2-D linear time-invariant (LTI) systems described by some
linear partial differential equations (PDEs) [3].

In [2] we presented some preliminary results concerning the octonion Fourier
transform (OFT). We showed that the OFT is well defined for R-valued functions
and proved some basic properties of the OFT, analogous to the properties of the
classical FT and QFT. Our research follows previous results of Hahn and Snopek [6].
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It should be noted that octonion signal processing have already found practical
applications [5, 7], including image splicing detection [9] and neural networks [8].

In this paper, we introduce the most recent results, associating OFT (introduced
in Sect. 3) with 3-D LTI systems of linear PDEs with constant coefficients.
Properties of the OFT in context of signal-domain operations such as derivation and
convolution of R-valued functions are stated in Sect. 4. There are known results for
QFT (see [3]), but they use the notion of other hypercomplex algebra, i.e. double-
complex numbers. Results presented here require defining other higher-order
hypercomplex structure, i.e. quadruple-complex numbers defined in Sect. 2. This
hypercomplex generalization of the Fourier transformation provides an excellent
tool for the analysis of 3-D LTI systems which is presented in Sect. 5. The paper is
concluded in Sect. 6 with short discussion of those results.

2 Algebras of Octonions and Quadruple-Complex Numbers

Octonions (O) are an example of Cayley-Dickson hypercomplex algebra [2, 6]. Its
elements are of the form

o = x0 +x1 e1 +x2 e2 +x3 e3 +x4 e4 +x5 e5 +x6 e6 +x7 e7, x0, x1, . . . , x7 ∈ R,

where e1, e2, . . . , e7 are seven imaginary units satisfying appropriate multi-
plication rules (presented in Table 1). Octonions form a non-associative, non-
commutative (but alternative) composition and division algebra O of order 8 over
the field of real numbers R. Octonion algebra is endowed with the standard norm

|o| = √
o · o∗ =

√
x2

0 + x2
1 + . . . + x2

7 ,

where o∗ = x0 − x1e1 − . . . − x7e7 is the octonion conjugate of o.
We define the octonion exponential function in a classical way—as the infinite

sum eo := ∑∞
k=0

ok

k! . Due to the fact, that octonion multiplication is non-

Table 1 Multiplication rules
in octonion algebra

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1
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commutative, for any o1, o2 ∈ O we have eo1+o2 = eo1 · eo2 if and only if
o1 · o2 = o2 · o1.

Due to non-associativity and non-commutativity of octonion multiplication,
many formulas concerning the Fourier transforms are quite complicated (see
Sect. 4). To improve that, inspired by Ell [3], we introduce the algebra of quadruple-
complex numbers F, which elements can be written as

p = (p0 + p1e1)︸ ︷︷ ︸
=s0∈C

+ (p2 + p3e1)︸ ︷︷ ︸
=s1∈C

e2 + (p4 + p5e1)︸ ︷︷ ︸
=s2∈C

e4 + (p6 + p7e1)︸ ︷︷ ︸
=s3∈C

e2e4.

Therefore, the algebra F consists of quadruples (s0, s1, s2, s3) ∈ C
4 of complex

numbers. Multiplication � in F is given by the formula

(s0, s1, s2, s3) � (t0, t1, t2, t3) = (s0t0 − s1t1 − s2t2 + s3t3, s0t1 + s1t0 − s2t3 − s3t2,

s0t2 + s2t0 − s1t3 − s3t1, s0t3 + s3t0 + s1t2 + s2t1),

where (s0, s1, s2, s3), (t0, t1, t2, t3) ∈ F. It is easy to check that multiplication � is
associative and commutative, but not all nonzero elements of F are invertible with
respect to �, e.g. (1, 0, 0, 1) = 1 + e6 ∈ F doesn’t have an �-inverse.

3 Octonion Fourier Transform

Let u : R3 → R. The octonion Fourier transform (OFT) of u is defined by

U(f) =
∫

R3
u(x) · e−2πe1f1x1 · e−2πe2f2x2 · e−2πe4f3x3 dx,

where x = (x1, x2, x3), f = (f1, f2, f3) and multiplication is done from left to right.
Choice and order of imaginary units in the exponents is not accidental (see [2, 6]).
Conditions of existence (and invertibility) are the same as for the classical (complex)
Fourier transform. Let us recall the result from [2], where the inverse OFT formula
was proved.

Theorem 1 Let u : R3 → R be a continuous and square-integrable. Then

u(x) =
∫

R3
U(f) · e2πe4f3x3 · e2πe2f2x2 · e2πe1f1x1 df,

where multiplication is done from left to right.

In fact, the abovementioned theorem holds for the general case of O-valued
functions (see [1]), but in this paper we will consider only the R-valued functions.
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In [2] we derived basic properties of the OFT, analogous to the properties of the
classical Fourier transform. Let us recall some of those results.

Let U be the OFT of the R-valued function u and let αi(o) = −ei · (o ·ei ), where
◦ is standard function composition. We have the following octonion analogue of
Hermitian symmetry:

U(−f1, f2, f3) = (α6 ◦ α4 ◦ α2)(U(f1, f2, f3)),

U( f1,−f2, f3) = (α5 ◦ α4 ◦ α1)(U(f1, f2, f3)),

U( f1, f2,−f3) = (α3 ◦ α2 ◦ α1)(U(f1, f2, f3)).

Moreover, if Uα, Uβ and Uγ denote the OFTs of functions u(x1 − α, x2, x3),
u(x1, x2 − β, x3) and u(x1, x2, x3 − γ ), respectively, then

Uα(f1, f2, f3) = cos(2πf1α) U(f1, f2, f3) − sin(2πf1α) U(f1,−f2,−f3) · e1,

Uβ(f1, f2, f3) = cos(2πf2β) U(f1, f2, f3) − sin(2πf2β) U(f1, f2,−f3) · e2,

Uγ (f1, f2, f3) = cos(2πf3γ ) U(f1, f2, f3) − sin(2πf3γ ) U(f1, f2, f3) · e4,

which is the octonion version of shift theorem. We also have the Plancherel and
Rayleigh theorems:

∫

R3
u(x) · v∗(x) dx =

∫

R3
U(f) · V ∗(f) df, ⇒

∫

R3
|u(x)|2 dx =

∫

R3
|U(f)|2 df,

where V is the OFT of the R-valued function v. The above-presented theorems form
the basis of the octonion signal theory and are the starting point for further research.

4 Recent Results

We will now present properties that are a key element in the analysis of multidimen-
sional LTI systems described by a system of PDEs. In theorems stated below, we
will denote the OFTs of the R-valued functions u and v by U and V , respectively.

Theorem 2 (OFTs of Partial Derivatives) Let Ux1 , Ux2 and Ux3 denote the OFTs
of ∂u

∂x1
, ∂u

∂x2
and ∂u

∂x3
, respectively. Then

Ux1(f1, f2, f3) = U(f1,−f2,−f3) · (2πf1e1) = U(f1, f2, f3) � (2πf1e1),

Ux2(f1, f2, f3) = U(f1, f2,−f3) · (2πf2e2) = U(f1, f2, f3) � (2πf2e2),

Ux3(f1, f2, f3) = U(f1, f2, f3) · (2πf3e4) = U(f1, f2, f3) � (2πf3e4).
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Proof of this result follows from straightforward calculations and we leave details
to the reader. It is worth noting, however, that the idea of this proof is to express the
OFT of the derivative of u as a sum of components of different parity, i.e.

Ux� = Ux�
eee − Ux�

oeee1 − Ux�
eoee2 + Ux�

ooee3 − Ux�
eeoe4 + Ux�

oeoe5 + Ux�
eooe6 − Ux�

oooe7,

(1)

where

U
x�

ijk(f) =
∫

R3

∂u

∂x�

· Fi(2πf1x1) · Fj (2πf2x2) · Fk(2πf3x3) dx (2)

and Fi(y) = cos(y) if i = e, and Fi(y) = sin(y) if i = o [2, 6]. The claim of
the theorem follows from the integration by parts. Notice that treating octonions
as elements of F and using the multiplication �, we get the same formulas as in
classical theory.

The next result concerns function convolution. The convolution-multiplication
duality is one of the key properties used in the frequency analysis of LTI systems [3].
Recall that the convolution of u, v : R3 → R is given by the formula

(u ∗ v)(x) =
∫

R3
u(y) · v(x − y) dy.

Convolution of functions is commutative and associative while the multiplication of
octonions is not, hence the octonion version of duality theorem will have to differ
significantly from its classical equivalent.

Theorem 3 (Convolution-Multiplication Duality) Let FOFT{u ∗ v} denote the
OFT of the convolution of u and v, i.e. u ∗ v. Then

FOFT{u ∗ v}(f) = V ( f1, f2, f3) · ( Ueee(f) − Ueeo(f) e4)

+ V ( f1,−f2,−f3) · (−Uoee(f) e1 + Uooe(f) e3)

+ V ( f1, f2,−f3) · (−Ueoe(f) e2 + Uoeo(f) e5)

+ V (−f1, f2,−f3) · ( Ueoo(f) e6 − Uooo(f) e7), (3)

where

U = Ueee − Uoeee1 − Ueoee2 + Uooee3 − Ueeoe4 + Uoeoe5 + Ueooe6 − Uoooe7

is a sum of eight terms with different parity w.r.t. x1, x2, and x3, similar to (1)–(2).

As in the previous theorem, this result follow from expressing the OFT as a sum
of components of different parity. For details of such formulation see [2, 6]. Similar
formulas concerning quaternion Fourier transform can be found in literature [3].
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Notice that, as in the OFT of derivatives theorem, using the notion of quadruple-
complex numbers we can improve the abovementioned formulas.

Corollary 1 Using the F-multiplication we can rewrite formula (3) in simple form:

FOFT{u ∗ v}(f) = U(f) � V (f).

Theorem 3 and Corollary 1 enable us to define the octonion frequency response
of a system as the OFT of impulse response. It is worth mentioning that the notion of
multiplication in F can be used to reduce parallel, cascade and feedback connections
of linear systems into simple algebraic equations, as in classical system theory.

5 Multidimensional Linear Time-Invariant Systems

It is a well-known fact that the Fourier transform converts differential equations
into algebraic equations. While the advantages of this approach in the 1-D case are
obvious, in the case of partial derivatives the classic approach has some limitations.

Consider a function u : R3 → R that is even w.r.t. all variables (making both
classical FT and OFT R-valued functions). The classical Fourier transform of ux1x2

is −U(f) · (2πf1)(2πf2), which is a R-valued function. Therefore, we loose the
information that the function u was differentiated at all. On the other hand, the
OFT of ux1x2 is U(f1,−f2,−f3) · (2πf1)(2πf2)e3, which is O-valued (purely
imaginary). This information indicates that the function has been differentiated by
x1 and x2.

As a direct consequence of Theorem 2, every linear PDE with constant coeffi-
cients (i.e. every 3-D LTI system of PDEs) can be reduced to algebraic equation
(with respect to multiplication in F). Consider the heat equation in 2-D, i.e.

ut (t, x1, x2) = ux1x1(t, x1, x2) + ux2x2(t, x1, x2) + f (t, x1, x2),

where we get

(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

) � U(τ, f1, f2) = F(τ, f1, f2).

It is easy to show that
(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

)−1 exists if and only if
(τ, f1, f2) 
= (0, 0, 0) and is equal to

(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

)−1 = (2πf1)
2 + (2πf2)

2 − (2πτ)e1(
(2πf1)2 + (2πf2)2

)2 + (2πτ)2
.
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Hence

U(τ, f1, f2) = (2πf1)
2 + (2πf2)

2 − (2πτ)e1(
(2πf1)2 + (2πf2)2

)2 + (2πτ)2
� F(τ, f1, f2).

We have thus obtained a simple formula for the system’s response to the given
stimulation. What’s more, it wouldn’t be possible using multiplication in O.

6 Final Remarks

Presented results further develop the foundation of octonion-based signal and
system theory. At the moment we are left to find real-life applications of the
discussed theory. The results published in recent articles suggest that this is feasible,
e.g. in the field of multispectral image processing [5, 7, 9]. However, it would be
necessary to focus on the implementation of numerical algorithms for this purpose.
It seems that extending octonion-based signal theory to discrete-variable signals
may also be achieved by methods used so far.
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