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Abstract In this paper, we introduce a time-continuous production model that
enables random machine failures, where the failure probability depends historically
on the production itself. This bidirectional relationship between historical failure
probabilities and production is mathematically modeled by the theory of piecewise
deterministic Markov processes (PDMPs). On this way, the system is rewritten into a
Markovian system such that classical results can be applied. In addition, we present
a suitable solution, taken from machine reliability theory, to connect past production
and the failure rate. Finally, we investigate the behavior of the presented model
numerically in examples by considering sample means of relevant quantities and
relative frequencies of number of repairs.

1 Modeling Equations

We briefly recall the production network model from [1, 6] first, and according
to [4], we present the stochastic extension to a load-dependent production model
with machine failures. To keep the notation well-arranged, we consider a production
network consisting of a single queue processor unit. We assume a processor, which
is represented by an interval (a, b) ⊂ R, i.e., with length L = b − a, where
ρ(x, t) describes the density of production goods at x ∈ (a, b) and time t ≥ 0.
The dynamics of the density, and consequently of the production, is given by the
following nonlinear hyperbolic partial differential equation

∂tρ(x, t) + ∂x min{vρ(x, t), c} = 0, (1)

where c ≥ 0 is the production capacity and v > 0 the constant production
velocity. In front of the processor a storage, also called queue, is assumed and for an
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externally given time-dependent inflow Gin(t) into the production, the queue length
q follows the ordinary differential equation

∂tq(t) = Gin(t) − gout(t), (2)

with

gout(t) =
{

min{Gin(t), c}, if q(t) = 0,

c, if q(t) > 0.

The processor is coupled to the queue by a boundary condition in the form of
ρ(a, t) = gout(t)

v
and initial conditions ρ(x, 0) = ρ0(x) ∈ L1((a, b)), q(0) =

q0 ∈ R≥0 are prescribed. This deterministic model is well-defined, see, e.g. [1].
The theory of piecewise deterministic Markov processes; see, e.g. [2, 7], has been
used to define an appropriate production model with stochastic machine failures in
[4], where the probabilities of machine failures depend on the actual workload of
the processor. Since this construction only allows for a dependence on the current
workload, we can not use the amount of goods produced since the last machine
failure as a measure for the next failure. Our new idea lies in adding a variable w

governing the workload since the last repair. To do so, we use the time-dependent
variable r(t) ∈ {0, 1}, and set the capacity as μ(t) = r(t)c for a maximal capacity
c > 0. This means that r(t) = 0 ⇒ μ(t) = 0 is a down and r(t) = 1 ⇒ μ(t) = c a
working processor at time t and we define

WIP(t0, t1) =
∫ t1

t0

∫ b

a

ρ(x, t)dxdt

as the cumulative work-in-progress of the processor between time t0 and t1. The
variable w should therefore satisfy

∂tw(t) = r(t)

∫ b

a

ρ(x, t)dx, w(t0) = w0 =
∫ b

a

ρ(x, t0)dx. (3)

Altogether, we define the state space

E = R≥0 × {0, 1} × R≥0 × L1((a, b)),

which is a measurable space together with the σ -algebra E generated by the open
sets induced by the metric

d((w, r, q, ρ), (w̃, r̃, q̃, ρ̃)) = |w − w̃| + |r − r̃| + |q − q̃| + ‖ρ − ρ̃‖L1((a,b)).
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Since we construct a piecewise deterministic Markov process, we define the
deterministic dynamics between jump times as

Φst : E → E, (w0, r0, q0, ρ0) �→ (w(t), r(t), q(t), ρ(t)),

i.e., Φst is the solution to Eqs. (1), (2), (3), and r(t) = r0 with initial conditions
(w0, r0, q0, ρ0) ∈ E. In between the jump-times, where the capacity changes, we
have a capacity, which is given by cr0 and independent of time. This allows us to
apply the theory of the deterministic model (1)–(2) to obtain continuity properties
of Φ. To characterize the stochastic part, we introduce

ψ(t, y) = λr,r (t, w), η(t, y, B) = λr,(1−r)(t, w)

ψ(t, y)
ε(rw,(1−r),q,ρ)(B)

for every y = (w, r, q, ρ) ∈ E and B ∈ E , where λi,j (t, w) describes the
transition rate from capacity i to j at time t and actual workload w, i, j ∈ {0, 1}
and εx is the Dirac measure with unit mass in x. The function ψ is the total
intensity determining whether a jump occurs, or not, and the function η describes the
probability distribution of the systems jump given the system changes at time t . For
example, given the state y = (w, 1, q, ρ) at the time of a jump, the system jumps
to (w, 0, q, ρ) and, vice versa, given the state y = (w, 0, q, ρ) the system jumps to
(0, 1, q, ρ), i.e., the workload has been “reset”. The open question is whether this
model can be represented by a piecewise deterministic Markov process. Following
[4], it is straightforward to show

Theorem 1 Let λi,j : [0, T ] ×R≥0 → R≥0 be uniformly bounded, continuous and
satisfy λi,i = λi,i−1 for i ∈ {0, 1}. Then for all initial data x0 ∈ E there exists a
Markov process

X = ((w(t), r(t), q(t), ρ(r)), t ∈ [0, T ]) ⊂ E

on some probability space (Ω,A , P ), satisfying

1. X(0) = x0 P -almost surely,
2. for every t ∈ (0, T ), (w, r, q, ρ) ∈ E and j ∈ {0, 1}, it holds that

P(r(t + Δt) = j |X(t) = (w, r, q, ρ)) = (
1 − Δtλr,r (t, w)

)
1r (j)

+ Δtλr,(1−r)(t, w)11−r (j) + o(Δt),

3. there exists a P -null set N ∈ A such that for every ω ∈ Ω \ N , there exist
times T0 = 0 ≤ T1 ≤ · · · ≤ TM = T such that for every k = 0, . . . , M −
1, X(t) = ΦTk,t (X(Tk)) for t ∈ [Tk, Tk+1) with capacity μ(r(Tk, ω)), i.e., X

behaves deterministic between jump times.

The main and new ingredient is the mapping t �→ w(t), which is a continuous
mapping since t �→ ρ(t) is continuous.
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2 Computational Results

Due to the fact that solutions to (1) move with non-negative velocities only, we can
use the first order left-sided upwind scheme for a numerical approximation of the
density ρ. Furthermore, we use the explicit Euler scheme to approximate the queue
length q given by (2) and w given by (3), where we use a rectangular rule for the
integration. This yields an approximation of the deterministic dynamics between the
jump times. The simulation of the jump times is done with the thinning algorithm
presented in [4]. Its basic idea is to use the uniform bound on the rate functions and
generate exponentially distributed times with high intensity, representing the times
between jumps, and thin these times during the numerical simulation of the whole
system with an appropriate acceptance rejection procedure.

The choice of the rate functions λi,j (t, w) is a crucial point in numerical
examples. Here, we make use of the choice in [9] and set for θ1, θ2 > 0 the rate
function as

λ1,0(t, w) = λmin
1,0 + (λmax

1,0 − λmin
1,0 )(1 − e−(θ1w)θ2

),

which is a scaled version of the cumulative distribution function of a Weibull
distribution, i.e., F(t) = 1 − e−(θ1t)

θ2 . The classical interpretation of t in the
latter expression is the lifetime of a machine and F(t) is the probability that a
failure happens after time t , see, e.g. [8]. In our case we use the variable w, which
measures the amount of goods produced since the last repair happened. Therefore,
if w = 0, then λ1,0(t, 0) = λmin

1,0 , which corresponds to the minimal failure rate and
limw→∞ λ1,0(t, w) = λmax

1,0 . The function λ1,0(t, w) is monotonically increasing
in w and incorporates the idea of an increasing failure rate depending on past
workloads. On the other hand, we assume λ0,1(t, w) = λ0,1 because repair times do
not dependent on the amount of goods produced.

In the following, we examine the presented model using numerical examples.
Here, we assume a production velocity of v = 1, the interval a = 0, b = 1, and
the capacity is given as μ(t) = 2r(t). We use a spatial discretization with step-
size Δx = 10−1 and a temporal step-size that satisfies the Courant-Friedrichs-Lewy
condition, which reads as Δt ≤ Δx for the chosen parameters. The simulation
results are based on samples of the stochastic process X and we use the classical
Monte-Carlo estimator to evaluate moments or probabilities of the samples. We used
a sample size of 105 for all following results.

We analyze the expected queue length, capacity and the distribution of the
number of repairs within a time horizon [0, 50] for two different constant inflow
profiles. We denote by G1

in(t) ≡ 0.5 and by G2
in(t) ≡ 1.5 as inflow profiles and use

the parameters

λ0,1(t, w) = 1

0.5
, λmin

1,0 = 1

10
, λmax

1,0 = 1

0.5
, θ1 = 1

10
, θ2 = 5.
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(a) (b)

(c) (d)

Fig. 1 First order moments of w, the capacity, queue-length and density. (a) Expected w. (b)
Expected capacity μ(t). (c) Expected queue-length q(t). (d) Expected density at x = 1

In Fig. 1, first order moment estimations are shown. In detail, Fig. 1a shows the
expected value of the variable w, Fig. 1b the expected capacity, Fig. 1c the expected
queue length and Fig. 1d the expected density at the end of the processor. The
dynamics is quite interesting: the expected capacity decreases approximately until
time t = 6 for the second inflow, then increases and decreases again. Indeed, the
mean time to failure is given by Γ (1 + 1

θ2
)θ−1

1 , see e.g. [8]. If w corresponds to the
lifetime in our model, we see that an intact system with constant inflow Gin is more
likely to fail around time Γ (1 + 1

θ2
)(θ1Gin)

−1. In our case, this leads to time 18.4
for the first and time 6.1 for the second inflow profile, which is close to the times at
which the shape of the expected capacity changes. We observe these characteristic
times also in the other graphs in Fig. 1. In contrast to the models presented in [3–
5], where quantities monotonically converge, we obtain an oscillatory behavior of
the quantities for constant inputs. The oscillatory effects are natural and caused by
the history we incorporate in w. This means, the first machine failures are likely
around time 18.4(6.1), the second around 36.8(12.2) and so on. At the same time
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Fig. 2 Distribution of the number of repairs within [0, 50]. (a) Inflow G1
in. (b) Inflow G2

in

the failures, which occur between these likely times, smooth this effect out as time
evolves and the quantities converge.

Figure 2 shows the distribution of the number of repairs within the time horizon
[0, 50] and emphasizes the impact of the chosen inflow on the reliability of the
processor. In Fig. 2a the case of G1

in is shown, where mostly 5–9 repairs have been
done. The situation for inflow profile G2

in is different, where 9–14 repairs during the
time horizon are more likely.

To conclude, we deduced a production model with random machine failures
including failure probabilities depending on the workload of the machine since the
last repair occurred. The extension of the model to complex production networks is
straightforward, see, e.g. [4]. Simulation results showed a big impact of the history
on expected workload, capacity, queue length and density. These effects are not
negligible for production planning and control and must be taken into account.
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