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Eötvös Loránd University
Budapest, Hungary

Department of Differential Equations
Mathematical Institute
Budapest University of Technology
and Economics
Budapest, Hungary

Ferenc Izsák
Department of Applied Analysis and
Computational Mathematics &
ELTE-MTA Numnet Research Group
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Preface

The 20th European Conference on Mathematics for Industry, ECMI 2018, was
held in Budapest from 18th to 22nd June 2018. Hungary is well-known for
its outstanding achievements in pure mathematics, but much less known for its
contributions to applied mathematics, in spite of the works of outstanding scientists
like Gyula Farkas, Theodore von Kármán, John von Neumann, or Rudolf E.
Kalman. Therefore, it was the privilege of the Hungarian mathematics community
to have the opportunity to reinforce the contacts with the major European network
promoting industrial mathematics, by bringing together more than 350 researchers
for intellectual interaction for 5 days.

The European Consortium for Mathematics in Industry (ECMI) organized its
first international conference in Oberwolfach, in 1983, followed by a series of
conferences, a persistent objective of which has been to galvanize interaction
between academy and industry, leading to innovations in both fields. The 20th
Conference, ECMI 2018, inspired multidisciplinary research along these lines
further leading to the formulation of real-life challenges, where mathematical
technologies provided significant new insights. Following the traditions of ECMI,
the conference focused on various fields of industrial and applied mathematics,
such as Applied Physics, Biology and Medicine, Cybersecurity, Data Science,
Economy, Finance and Insurance, Energy, Production Systems, Social Challenges,
Vehicles and Transportation. These themes nicely fit to current distinguished
national research programs in Hungary, in particular programs on Autonomous
Vehicles, Digital Factories, Brain Research, or Precision Agriculture supported
by the EU and the National Research, Development and Innovation Office. The
conference was jointly organized by the János Bolyai Mathematical Society, the
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vi Preface

Institute of Mathematics at Eötvös Loránd University, and the Institute for Computer
Science and Control of the Hungarian Academy of Sciences (MTA SZTAKI). The
newly appointed Minister of Innovation and Technology, László Palkovics, was kind
enough to patronize our conference. The statistics of the conference were more than
satisfactory. In addition to the nine plenary talks, given by world class researchers,
we had 50 minisymposia, and 45 contributed talks and poster presentations, running
in 7 parallel sessions. Altogether there were more than 350 participants, from around
40 countries. More than 50 participants were students.

The Scientific Committee was set up as follows:

• László Monostori, MTA SZTAKI, Budapest and Fraunhofer Project Center at
SZTAKI, Chair

• Dietmar Hömberg, Weierstrass Institute and Technische Universität, Berlin, co-
chair

• Adérito Araújo, President of ECMI, University of Coimbra
• Helen Byrne, University of Oxford
• Raimondas Čiegis, Vilnius Gediminas Technical University

Group photo of the participants of the 20th ECMI Conference, Budapest

• István Faragó, Eötvös Loránd University, Budapest
• Zoltán Horváth, Széchenyi István University, Győr
• Sergey Lupuleac, Saint Petersburg State Polytechnic University
• Alessandra Micheletti, Universitá di Milano
• Claudia Nunes, University of Lisbon
• Ronny Ramlau, Johannes Kepler University, Linz
• Angela Stevens, University of Münster
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The plenary talks covered several major areas of applied and industrial mathematics,
such as network theory, numerical methods of PDEs, mathematics of tomography,
mechanical models, traffic management, control theory, cancer research, and envi-
ronmental modelling. The plenary speakers were:

• Paola Goatin, INRIA Sophia Antipolis – Team ACUMES, France
• Stefan Kurz, TU Darmstadt and Robert Bosch GmbH, Germany
• Knut-Andreas Lie, SINTEF Digital, Mathematics and Cybernetics, Oslo, Nor-

way
• László Lovász, Hungarian Academy of Sciences, Hungary
• Christophe Prud’homme, University of Strasbourg and Cemosis, France
• Samuli Siltanen, University of Helsinki, Finland
• Gábor Stépán, Budapest University of Technology and Economics, Hungary
• Andrew Stuart, CalTech, USA
• Anna Marciniak-Czochra, University of Heidelberg, Germany, delivering the

Alan Tayler Memorial Lecture

The plenary talk given by László Lovász, President of the Hungarian Academy
of Sciences, has been recorded, processed, and made available by the eLearning
Department of MTA SZTAKI at the address: http://www.bolyai.hu/ECMI2018_
video.html.

According to the tradition of ECMI conferences, the winner of the Anile prize,
honoring Professor Angelo Marcello Anile (1948–2007) of the University of Catania,
was announced at the opening ceremony of the conference. The prize is given to a
young researcher for an excellent PhD thesis in industrial mathematics. The Anile
prize, in 2018, was awarded to Peter Gangl, Johannes Kepler Universität Linz.

Anile prize is awarded to Peter Gangl

http://www.bolyai.hu/ECMI2018_video.html
http://www.bolyai.hu/ECMI2018_video.html
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The Hansjörg Wacker Memorial Prize established in memory of ECMI founding
member Hansjörg Wacker (1939–1991), who was Professor at the Johannes Kepler
University, Linz, is awarded for the best mathematical dissertation at the Masters
level on an industrial project. The Hansjörg Wacker Memorial Prize, in 2018, was
awarded to Edvin Åblad, Chalmers University.

The conference venue was the Danubius Hotel Hélia. As part of the social
program, an ECMI reception was held on Tuesday evening to create an opportunity
for ECMI members to meet each other. The conference gala dinner was held in
a Danube river cruise on Europa boat. During this event, Hilary Ockendon and
István Faragó, who initiated the ECMI membership of Hungary, were elected to
be Honorary Members of ECMI.

Hansjörg Wacker Memorial Prize is awarded to Edvin Åblad

The organizers express their deepest gratitude to everybody involved in the
success of this meeting, the plenary speakers, the members of the Scientific
Committee, the organizers of the minisymposia, the contributing authors, and all
the participants of the conference.

It is our pleasure to acknowledge the financial support of Graphisoft, Secudit,
Morgan Stanley, the Hungarian Academy of Sciences, and the EPIC Center of
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MTA SZTAKI, providing the financial basis for the participation of many young
researchers.

On behalf of the organizers

Péter L. Simon, István Faragó, László Gerencsér and Ferenc Izsák

Budapest, Hungary István Faragó
Budapest, Hungary Ferenc Izsák
Budapest, Hungary Péter L. Simon
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Modeling of Industrial Processes



Imbalance Determination for Wind
Turbines

Jenny Niebsch and Ronny Ramlau

Abstract In the growing field of clean energy extraction from wind the topic of
rotor imbalances of wind turbines is of vital importance for the operation, safety and
lifetime consumption of the turbines. The vibrations induced by imbalances lead
to damages of important components, high repair expenses, and reduced output.
The state of the art procedure to identify rotor imbalance is an expensive on-site
procedure. We replace that procedure by a method that only uses the vibrations
of the turbine during operation for the imbalance determination. To this end, a
mathematical model of the turbine in the shape of an operator or matrix A was
constructed that maps the imbalance p to the resulting vibrations u. Thus the
problem of reconstructing an unknown imbalance from measured vibration data
forms an inverse ill-posed problem that requires regularization techniques for its
stable solution. We developed such a method, first for the case that the vibration data
are collected during an operation with constant rotational speed. Later the situation
of operation with variable speed was investigated and more sophisticated algorithms
were developed for that case.

1 Introduction

The rotor of a wind turbine consists of a hub and usually three rather large blades
that are supposed to have the same mass distribution. Due to tolerances in the
production process the mass distribution can vary and the rotor is imbalanced. Mass
imbalances can also occur when water penetrates the blades or ice is accumulated. A
mass imbalance acts like an eccentric additional mass. During the rotation this mass
induces centrifugal forces that lead to the vibration of the turbine in radial direction
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4 J. Niebsch and R. Ramlau

with the same frequency as the rotational frequency. Those unwanted vibrations put
a load onto the tower and the drive train that increases the abrasion and decreases the
lifespan of the turbine. By determining the imbalance, i.e., the additional mass and
its position, a counterweight of the same mass can be placed opposite this position.
The rotor is balanced or at least the vibrations can be reduced to a tolerable level. A
second possible cause of vibrations are aerodynamic imbalances. They arise mainly
from deviations in the pitch angles of the three blades or because of changes in the
blades profile due to abrasion. The vibrations induced by aerodynamic imbalances
have radial, axial (direction of the drive train) and torsion components. They are
detected by a visual examination of the blades, and optical methods are employed
to find pitch angle deviations [1, 4, 5].

The determination of both kinds of imbalances requires a team on-site. First
aerodynamic imbalances are removed. Afterwards a data based model is used to
determine the mass imbalance. To generate that model vibration data have to be
collected during two runs of the turbine with a fixed frequency, with and without a
test weight. This procedure is very time consuming and expensive.

The goal of several projects of the authors was to replace the expensive
existing methods by a methods based on a mathematical model that allows for the
computation of the imbalance(s) off-line using only vibration data collected by a
Condition Monitoring System (CMS).

The problem was solved in a first step for mass imbalances only with vibra-
tional data collected during the operation with a fixed frequency. In a second
project, aerodynamic imbalances from pitch angle deviation were included and
reconstructed simultaneously with the mass imbalances. A third project investigated
the reconstruction of mass imbalances in case the vibration data were collected
during operation with variable rotational speed.

After stating the mathematical model for this problem we will present the three
approaches followed by the description of the results we achieved.

2 Mathematical Model

The relation of a dynamical load p(x, t) induced by an imbalance (mass and/or
aerodynamic) and the displacement u(x, t) that is the consequence of that load
can be described by a partial differential equation (PDE) that is derived by the
physical laws and based on some simplifying assumptions. We have followed [3]
to approximate the PDE or rather an equivalent energy formulation by a system of
ordinary differential equations (ODE) using a Finite-Element approach, see Fig. 1.
The resulting ODE system described by the operator L is given as

(Lu)(t) = Mu′′(t)+ Su(t) = p(t), (1)

where M and S denote the mass and stiffness matrix of the turbine, u and p are
the vectors of displacement and load, resp., at each degree of freedom (dof) of the
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Fig. 1 Model of a wind turbine: the tower is divided into 4 element with 5 nodes, the nacelle
including the rotor is treated as a point mass at node 5

model. Unfortunately, Eq. (1) can not be used directly to compute p from measured
displacement data u. Since the data are usually corrupted by noise and the operator
L as a differential operator can not be stably evaluated, other methods to find p and
with it the imbalance have to be employed.

In our approaches we transform Eq. (1) into an operator equation of the form

Ap(t) = u(t) or Ax = u, (2)

where x represents the imbalance we want do reconstruct. The presentation of the
operator A depends on the load we consider. It is a matrix for a load from a mass
imbalance and constant rotational frequency, see Sect. 3. For a load from mass and
aerodynamic imbalances, A becomes a nonlinear operator, see in Sect. 4. In case of
a mass imbalance and variable rotational speed, A is described by tensor products
of matrices and an integral operator, see in Sect. 5.

For given vibrational displacement data u we have to find the load p and the
imbalance within. This is an inverse and usually ill-posed problem which can
be stably solved using regularization techniques, e.g., Tikhonov regularization,
truncated singular value decomposition (TSVD), or iterative methods, [2].
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3 Mass Imbalances with Constant Frequency Data

A mass imbalance is an additional massΔm that is eccentric from the rotor center by
a radius r and angular position ϕ to a zero mark, usually one blade. The imbalance
(Δm · r, ϕ) is given in the units kg and degree. It can be described in complex terms
as

f = Δmreiϕ. (3)

The load that is induced when f rotates with a constant angular velocity ω0 is given
by

p(t) = f eiω0t (4)

for each dof of our model. Thus f and p are the vectors collecting imbalances, or
loads, resp., at all dof. Since we have only one rotor that can be imbalanced, the
vector p(t) has only one nonzero entry.

The resulting vibration is of the same frequency as the load, thus the ansatz
u(t) = u0e

iω0t is inserted into Eq. (1). That leads to the algebraic system

(
M + ω−2

0 S
)−1

f = u0. (5)

The dimension can be reduced by restricting the vectors f and u0 to its nonzero
entries. The solution of the inverse problem in this case is easily computed, c.f. [9].

4 Mass and Aerodynamic Imbalances

Aerodynamic imbalances also induce displacements in radial direction z (see Fig. 1)
but also in axial direction y and torsions around the x-axis. The forces F and
momentsM from pitch angle deviations are derived via a nonlinear blade element
momentum method, [6], and added to the forces induced by mass imbalance. In the
combined case the load vector is split into a sine and cosine part with the forces and
moments from both imbalances as coefficients:

p(t) = pc cos(ω0t)+ ps sin(ω0t) with

pc := (
0, · · · , 0, F cz ,Mc

x, 0,M
c
z

)T
(6)

ps := (
0, · · · , 0, F sz ,Ms

x, 0,M
s
z

)T
.

We can measure the amplitude c and phase shift γ of the vibration with frequency
ω at each sensor position. We have three sensors for the measurement of the
displacement in y-direction, the displacement in z-direction and torsion βx around
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the x-axis. The data vector y arranged in sine and cosine parts has the form
y = (

cy cos(γy), cz cos(γz), cβx cos(γβx ), cy sin(γy), cz sin(γz), cβx sin(γβx )
)T for

all three sensors. The operator A from Eq. (2) can be written as

y = A(x) =
(

Brpc,r (x)
Brpc,s (x)

)
(7)

where

pc,r (x) :=
⎛
⎝
Fcz
Mc
x,

Mc
z

⎞
⎠ , ps,r (x) :=

⎛
⎝
Fsz
Ms
x,

Ms
z

⎞
⎠ ,

and Br is the matrix (−ω2
0M+S)−1 restricted to the positions of the nonzero entries

of the load and the measurements. x = (θ1, θ2, θ3,�(f ),�(f )) is the vector that
contains the 3 pitch angles and real and imaginary part of the mass imbalance. For
the solution of the nonlinear inverse problem the Tikhonov functional is minimized
by a steepest decent algorithm using the Frechet derivative of A. For the details we
refer to [7].

5 Mass Imbalances with Variable Frequency Data

In case the vibration data are measured during operation with variable rotational
speed, i.e., ω(t), the load at the ith dof from a mass imbalance fi , c.f. (3), has the
form

pi(t) = fi [ω2(t)− iω′(t)]eiφ(t) (8)

with φ′(t) = ω(t). Hence the approach from Sect. 3 is not applicable. In [8]
the representation of A in (2) in terms of tensor products was derived. With the
definition of the Volterra integral operator

(Kpi)(t) =
t∫

0

(t − θ)pi(θ)dθ (9)

and the tensor products

K = M−1 ⊗K A = (M−1S)⊗ (−K) (10)

we have

((I − A )−1K p)(t) = u(t). (11)
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After adapting this operator further to the special situation of wind turbines a direct
connection between the searched for imbalance f and the data measured at the sensor
positions us can be made assuming that ω(t), which is known only from discrete
measurements, can be approximated by a C1-function.

The regularization is done using a TSVD of the operator, c.f. [8].

6 Results

The algorithm reconstructing mass imbalances from fixed frequency data was tested
successfully in various applications and with data from real wind turbines, cf. Fig. 2.
Here, a 350 kg imbalance at blade B (ϕ = 330◦) was reconstructed from noisy
vibration data. The reconstructed imbalance (red) has an absolute value of 331 kg,
the angle is about 332◦. The reconstruction error is in the range of the data noise
level of about 5%. The yellow arrows indicate the balancing weights that need to be
placed at blade A an C in order to compensate the imbalance of B. The algorithm
was recently included in the CMS software from our project partner Bachmann
Monitoring GmbH, Germany.
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Fig. 2 Reconstruction of a 350 kg imbalance at blade B (ϕ = 330◦), with 5% data error (red) and
computed balancing weights at the other two blades (yellow)
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The simultaneous reconstruction of mass imbalances and pitch angle deviation
was successfully applied to artificial data. The test for real turbine data and therefore
the practical application was prevented by the fact that the computation of the
forces and moments from pitch angle deviation requires profile and airfoil data from
the turbine under consideration. Those data turned out to be considered as highly
confidential and were not made available for us.

The most recent algorithm for reconstructing imbalances from variable frequency
data worked well for test cases with artificial data. Here, tests with real data and
different measurement conditions are the task of future work.

Acknowledgement The presented work was funded by FFG 818098, FFG 841288.
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Sparse Representations for Uncertainty
Quantification of a Coupled Field-Circuit
Problem

Roland Pulch and Sebastian Schöps

Abstract We consider a model of an electric circuit, where differential algebraic
equations for a circuit part are coupled to partial differential equations for an electro-
magnetic field part. An uncertainty quantification is performed by changing physical
parameters into random variables. A random quantity of interest is expanded into the
(generalised) polynomial chaos using orthogonal basis polynomials. We investigate
the determination of sparse representations, where just a few basis polynomials are
required for a sufficiently accurate approximation. Furthermore, we apply model
order reduction with proper orthogonal decomposition to obtain a low-dimensional
representation in an alternative basis.

1 Introduction

In science and engineering, complex applications require an advanced modelling
by multiphysics systems or coupled systems. We examine a coupled field-circuit
problem of an electric circuit, where differential algebraic equations (DAEs) for
circuit components are combined with partial differential equations (PDEs) for
electromagnetic components, see [8].

Uncertainty quantification (UQ) investigates the impact of variations in input
parameters on a quantity of interest (QoI). Often parameters are remodelled
into random variables. The random QoI can be expanded in the (generalised)
polynomial chaos, where orthogonal basis polynomials are involved, see [12].
Sparse representations aim for a reduced set of basis functions with a given accuracy
of approximation. Many methods for sparse representations have been derived
and studied, see [2, 3, 5] and the references therein. Alternatively, methods of
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model order reduction (MOR) yield low-dimensional (dense) approximations of the
random QoI, see [6, 7].

We apply this UQ concept to the coupled field-circuit problem [11]. On the
one hand, sparse representations are determined by neglecting basis functions with
small coefficients. On the other hand, MOR using proper orthogonal decomposition
(POD) identifies a low-dimensional approximation in an alternative basis. Our aim
is to obtain approximations with as few basis functions as possible, while still
maintaining some accuracy. Computational effort during the offline phase, i.e.,
evaluations of the multiphysics systems, is not saved by the proposed methods.
However, the online evaluation cost of the polynomials can be reduced in the first
approach.

2 Coupled Field-Circuit Problem

We investigate the rectifier circuit depicted in Fig. 1. The model consists of a circuit
part and a field part. Modified nodal analysis (MNA) [4] produces a system of DAEs

AC d
dt qC(u, t)+ ARr(u, t) + ALjL + AV jV + AM jM + ADjD + AI i(t) = 0,

d
dtφL(jL, t)− A�

Lu = 0,
A�
V u − v(t) = 0,

(1)

with incidence matrices A	, node voltages u(t), branch currents jL(t), jV (t), sources
i(t), v(t) and constitutive relations qC(·, t), rC(·, t), φL(·, t). Initial values are
considered in the time interval t ∈ [t0, tend]. We apply Shockley’s model

jD,k = IS,k
(

exp
(

A�
D,ku/UTH,k

)
− 1

)
, k = 1, 2, 3, 4 (2)

for the four diodes with parameters IS,k, UTH,k, where AD,k denotes the kth column
of AD . We involve a refined model for the transformer (dashed box in Fig. 1) given

uinu out 

Fig. 1 Diagram of rectifier circuit. A PDE model is used for the components in dashed box
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by the two-dimensional (2D) magnetostatic approximation of Maxwell’s equations

∇ · (ν(‖∇A(t, x)‖, x) ∇A(t, x)) = χ(x)�jM(t) for x ∈ Λ
d

dt

∫

Λ

χ(x) A(t, x) dx = A�
Mu(t)

(3)

on the spatial domain Λ ⊂ R2. The magnetic vector potential A : [t0, tend] ×Λ→
R is unknown. The lumped currents and voltages are distributed and integrated by
the winding function χ : Λ→ R2, see [9]. The reluctivity is ν : R×Λ→ R2×2. In
the iron core region, it reads as ν(B, x) = ν(B)I2 (identity matrix I2) using Brauer’s
model

ν(B) = κ1 exp
(
κ2B

2
)

+ κ3 (4)

with the magnetic field B = ‖∇A‖ and the parameters κ1, κ2, κ3. A finite element
method yields a nonlinear system of algebraic equations. More details on this
coupled problem can be found in [8]. Now we define the output voltage as QoI.

3 Stochastic Model

We consider uncertainties in q = 11 parameters: the parameters of Shockley’s
model (2) for each diode separately (8 parameters) and the three parameters of
Brauer’s model (4). We describe the uncertainties by independent uniform probabil-
ity distributions with 20% variation around each mean value. The random variables
are p : Ω → Π with event space Ω and parameter domain Π ⊂ Rq . The joint
probability density function is constant on the cuboidΠ . Let y : [t0, tend]×Π → R
be the random output voltage (QoI) of the coupled problem.

The expected value of a function f : Π → R reads as

E[f ] = 1

volume(Π)

∫

Π

f (p) dp. (5)

The expected value (5) implies an inner product < f, g >= E[fg] for two
square-integrable functions. The accompanying norm is ‖f ‖L2 = √

< f, f >.
We define the basis polynomials (Φi)i∈N with Φi : Π → R by Φi(p) =
φi1(p1)φi2(p2) · · ·φiq (pq), where φ� denotes the (normalised) Legendre polyno-
mial of degree �. There is a one-to-one mapping between the indices i and the
multi-indices i1, . . . , iq . It follows that (Φi)i∈N represents a complete orthonormal
system satisfying < Φi,Φj >= δij .
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We assume that the random process y(t, ·) is square-integrable for each t .
Consequently, the (generalised) polynomial chaos expansion

y(t,p) =
∞∑
i=1

wi(t)Φi(p) (6)

exists pointwise for each t . The coefficient functions are given by the inner products
wi(t) =< y(t, ·),Φi(·) >. The infinite series (6) is truncated to a finite sum

ỹ(I )(t,p) =
∑
i∈I
w̃i (t)Φi(p) (7)

with a finite index set I ⊂ N and approximations w̃i of the coefficients. Typically,
all polynomials up to a total degree d are included in an index set Id . The number
of basis polynomials becomes

∣∣Id ∣∣ = (d+q)!
d !q! .

Stochastic collocation techniques yield approximations of the unknown
coefficient functions, see [12]. A quadrature rule is determined by nodes
{p(1), . . . ,p(s)} ⊂ Π and weights {γ1, . . . , γs} ⊂ R. The approximations become

w̃i(t) =
s∑
j=1

γj y(t,p(j)) Φi(p(j)) (8)

for i = 1, . . . ,m and w.l.o.g. Id = {1, . . . ,m}. Thus the coupled problem (1),(3)
has to be solved s-times for different realisations of the parameters.

4 Sparse Approximation

The aim is to find an index set J ⊂ Id with |J | � |Id | for fixed total degree d ,
while the error is still below some threshold. The total error y − ỹ(J ) consists of
three parts: (1) the truncation error (N → Id ), (2) the error of the numerical method
(wi → w̃i), and (3) the additional sparsification error (Id → J ). We assume that
the errors (1) and (2) are sufficiently small and focus on the error (3).

The relative L2-error of the sparsification reads as

E(t; J ) =
∥∥∥ỹ(I d)(t, ·)− ỹ(J )(t, ·)

∥∥∥
L2∥∥ỹ(I d)(t, ·)∥∥

L2

=

⎛
⎜⎜⎜⎝

∑

i∈I d\J
w̃i(t)

2

∑

i∈I d
w̃i (t)

2

⎞
⎟⎟⎟⎠

1
2

(9)
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for each t including the coefficients (8). Given an error tolerance ε > 0, we obtain
an optimal index set

Jt = argmin
{∣∣J ′∣∣ : J ′ ⊆ Id and E(t, J ′) < ε

}
(10)

with respect to the error (9) for each time point. A global index set is given by

Ĵ =
⋃

t∈[t0,tend]
Jt , (11)

which is sufficiently accurate with respect to the tolerance ε for all times. More
details can be found in [6].

5 Model Order Reduction

Alternatively, we use an MOR with proper orthogonal decomposition (POD),
see [1], to determine a low-dimensional approximation of the polynomial surrogate.
Let Id = {1, . . . ,m} and w̃ = (w̃1, . . . , w̃m)

�. A transient simulation of the
coupled problem yields the coefficients (8) by the stochastic collocation technique.
We collect snapshots w̃(t0), w̃(t1), . . . , w̃(tk−1) for discrete time points in a matrix
W ∈ Rm×k . A singular value decomposition yields

W = USV� with S = diag(σ1, σ2, . . . , σmin{m,k})

including the singular values σ1 ≥ σ2 ≥ · · · and orthogonal matrices U ∈ Rm×m,
V ∈ Rk×k . Let u1, . . . ,um be the columns of the matrix U. We arrange the
orthogonal projection matrix Pr = (u1 · · · ur ) ∈ Rm×r (P�

r Pr = Ir ) for each
dimension r ≤ min{m, k}. Given w̃(t) ∈ Rm, the best approximation with respect
to the reduced basis reads as w̄r (t) = P�

r w̃(t) for any t . Vice versa, we obtain the
approximation w̃(t) ≈ Pr w̄r (t) for given w̄r (t) and any t . We define the (dense)
low-dimensional approximation, cf. (7),

ỹ(I
d)(t,p) ≈

m∑
i=1

⎡
⎣

r∑
j=1

uij w̄j (t)

⎤
⎦Φi(p) =

r∑
j=1

w̄j (t)

[
m∑
i=1

uijΦi(p)

]

︸ ︷︷ ︸
=:Ψj (p)

(12)

with the new orthonormal basis polynomials {Ψ1, . . . , Ψr } and associated coeffi-
cients w̄1, . . . , w̄r . An error estimate for an approximation of this kind is given
in [7].
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6 Numerical Results

In the coupled problem (1), (3), we supply a harmonic oscillation with period T =
0.02 as input voltage. We use the Stroud-5 quadrature rule with s = 243 nodes,
which is exact for all polynomials up to total degree 5, see [10]. In each node, we
perform a monolithic time integration in [0, 2T ] by the implicit Euler method. The
step sizeΔt = 10−4 is used in time, whereas a smaller step size does hardly change
the numerical results. This time integration yields k = 401 snapshots in equidistant
time points. We choose the polynomial degree d = 3, i.e.,

∣∣I 3
∣∣ = m = 364 due to

q = 11 random parameters.
Figure 2 (left) shows the maximum of the coefficients (8) in time. All coefficients

of degree three are (at least) three orders of magnitudes smaller than the coefficient
of degree zero. This property suggests that the relative truncation error is below
0.1%. Furthermore, Fig. 2 (right) demonstrates a fast decay, which indicates some
potential for a sparse approximation as described in Sect. 4. For given error toler-
ances ε ∈ [10−4, 10−1], we determine the cardinalities maxt∈[0,2T ] |Jt | (pointwise)
and |Ĵ | (union) with the index sets (10) and (11), respectively. Figure 3 (left)
illustrates the cardinalities in dependence on the error tolerances. The potential
for a global sparse approximation using (11) is bad, because more than 80 basis
polynomials are required.

Alternatively, we apply the POD technique from Sect. 5. We choose the reduced
dimensions r = 1, . . . , 20 and obtain the approximations (12). Figure 3 (right)
depicts the maximum in time of the relative L2-errors for these approximations.
Now we achieve an efficient low-dimensional representation, where less than
20 basis polynomials (r � m) yield a small error.
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Fig. 2 Maximum of {w̃i (t) : t ∈ [0, 2T ]} for i = 1, . . . , 364 with coefficients (8), left: dashed
lines separate the coefficients of degree zero/one, two and three, right: coefficients in descending
order
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Fig. 3 Relation between number of basis polynomials and error tolerance or maximum relative
L2-errors, left: sparsification by neglecting basis polynomials, right: basis selection using POD

7 Conclusions

We performed an UQ of a coupled DAE-PDE system modelling a field-circuit prob-
lem. Sparse approximations of the random QoI were identified using its orthogonal
polynomial expansion. In this test example, an appropriate sparse representation
could not be achieved on the global time interval by simply neglecting basis
polynomials. Alternatively, we obtained an efficient low-dimensional approximation
by changing to another orthogonal polynomial basis, which was identified via an
MOR.
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On a Dry Spinning Model Using
Two-Phase Flow

Manuel Wieland, Walter Arne, Robert Feßler, Nicole Marheineke,
and Raimund Wegener

Abstract On the basis of a mixture model ansatz we propose a three-dimensional
two-phase flow fiber model for dry spinning processes, which are characterized by
solvent evaporation and fiber-air interaction. Employing dimensional reduction this
model is embedded into an efficient numerical framework, such that simulations of
industrial spinning setups become feasible.

1 Introduction

In dry spinning processes multiple hot jets consisting of polymer and solvent are
extruded from nozzles into a spinning chamber, where they form out and are drawn
down by a take up roller. In the spinning chamber solvent evaporates out of the jets
due to a hot airstream, which leads to solidification of the spun fibers. The presence
of fiber-air interactions in industrial spinning setups creates the need of a fully
two-way coupled simulation of the dry spun fibers with the surrounding airflow.
Since the three-dimensional multiphase/-scale problem is in general not computable
by direct numerical simulations due to its complexity we derived a dimensionally
reduced fiber model in [7] using assumptions on slenderness, radial symmetry and
linearization which allowed the embedding into an efficient numerical solution
framework. In this paper we focus on a detailed deduction of the underlying three-
dimensional fiber model that is based on a mixture model ansatz [2] and we highlight
the performance of the numerical framework for an industry-related spinning setup.
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2 Three-Dimensional Dry Spinning Model

We develop a stationary three-dimensional dry spinning model for a viscous uni-
axial fiber. Let Ω ⊂ R

3 be the a priori unknown fiber domain whose boundary
∂Ω = Γin∪Γfr∪Γout consists of the fixed inlet at the nozzle Γin, the free lateral fiber
surface Γfr and the outlet Γout. InΩ we consider balance laws for mass, momentum
and energy for the two phases i, i ∈ {p, d}—polymer and diluent. Thereafter we
employ the mixture model ansatz [2] to reduce the balance laws for momentum and
energy for the single phases to balance laws for the mixture. The quantities for the
single phases are indicated by the respective index i, i ∈ {p, d}.
Phase Balances Let ρi and vi, i ∈ {p, d}, be the partial densities and velocities for
polymer and diluent phases in the mixture. The stationary mass balances for the two
phases read

∇ · (ρivi) = 0, i ∈ {p, d}. (1a)

The stationary momentum balances for the polymer and diluent phases are

∇ · (ρivi ⊗ vi) = ∇ · Σi
T + fi, i ∈ {p, d}, (1b)

with the respective stress tensors Σi . The fields fi denote the body force densities
acting on phase i. Neglecting effects of inner friction and convective terms due to
pressure fluctuations as well as energy transfer caused by body forces, the stationary
energy balances for the polymer and diluent phases are modeled as

∇ · (ρhivi) = ∇ · (Ci∇T ) , i ∈ {p, d}, (1c)

where hi are the partial enthalpies of polymer and diluent in the mixture, ρ denotes
the mixture density and the right hand sides represent the energy transport by heat
conduction at mixture temperature T und thermal conductivities Ci .

Mixture Model Ansatz The idea of the mixture model is to consider only one
linear momentum equation as sum of the phase balances (1b) and only one energy
balance equation as sum of (1c). The mixture density ρ is given by ρ = ρp + ρd .
Similarly, also the mixture stress tensor Σ , total body force f, mixture enthalpy h
as well as the mixture thermal conductivity C are the sums of the quantities of the
single phases. For the mixture we assume ideality, i.e., the enthalpy of mixing is
zero and the volume does not change under mixing. This leads to the relations

h = ρp

ρ
h0
p + ρd

ρ
h0
d, 1 = ρp

ρ0
p

+ ρd

ρ0
d

,
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where h0
i , ρ

0
i denote the enthalpies and material densities of pure polymer and

solvent. For the stress tensor Σ we assume incompressibility and a Newtonian
fluid with dynamic mixture viscosity μ, i.e., Σ = −pI + μ(∇v + (∇v)T) with
mixture pressure p, mixture velocity v and I ∈ R

3,3 denoting the unit matrix.
The definition of the mixture velocity v requires a different treatment: Since the
consideration of only one linear momentum balance does not close our model, we
have to employ constitutive relations for the differences between the phase velocities
and the mixture velocity. In our dry spinning scenario we consider the polymer
phase as dominating phase and the diluent phase as secondary phase. Therefore, we
fix the polymer velocity as mixture velocity, i.e., v = vp. Then, only one constitutive
relation for the difference between the mixture velocity and the diluent velocity
vpd = v − vd is needed. We use Fick’s law in a version, which is linear with respect
to the diluent mass fraction ρd/ρ, namely ρdvpd = ρD∇ (ρd/ρ), with D denoting
the diffusion coefficient of the diluent in the polymer. This formulation of Fick’s law
is appropriate to obtain an efficiently evaluable linear advection-diffusion equation
for the polymer mass fraction in the dimensionally reduced fiber model (cf. Sect. 3).
Employing Fick’s law the mass balances for polymer and diluent (1a) become

∇ · (ρpv) = 0, ∇ · (ρdv)− ∇ ·
(
ρD∇

(
ρd

ρ

))
= 0. (2a)

Moreover, summing up the momentum phase balances (1b) and neglecting diffusive
parts in the stresses yields the mixture momentum balance

∇ · (ρv ⊗ v)− ∇ ·
(
ρD

(
v ⊗ ∇

(
ρd

ρ

)
+ ∇

(
ρd

ρ

)
⊗ v

))
= ∇ · ΣT + f. (2b)

Analogously using Fick’s law and the phase balances (1c) we obtain the total energy
balance for the mixture

∇ · (ρhv)− ∇ ·
(
h0
dρD∇

(
ρd

ρ

))
= ∇ · (C∇T ). (2c)

Model Closing The free boundary value problem (BVP) formed by (2a), (2b), (2c)
is closed by appropriate boundary conditions (bc):

Kinematic/dynamic bc, Γfr: v · ν = 0, Σ · ν = f	,

Mass/heat flux bc, Γfr: − ρD∇ (ρd/ρ) · ν = j,
− C∇T · ν = α(T − T	)+ j (δ − h0

d ),

Inlet bc, Γin: v = v0, ρd = ρd,0, T = T0,

Outlet bc, Γout: v = v1.



22 M. Wieland et al.

Apart from body forces f due to gravity, surface forces f	 due to the surrounding
airflow are considered. The geometry is specified via the kinematic boundary
condition on Γfr with unit outer normal vector ν. At the free fiber surface Γfr the
diluent density jumps due to the solvent evaporation. We model the diluent mass flux
j by the difference of the diluent density in the air at the fiber surface ς and away
from the fiber ρd,	 with convective mass transfer coefficient β, i.e., j = β(ς−ρd,	).
For the numerical treatment we introduce the transfer coefficient γ = � β with
� = ςρ/ρd , i.e., j = γ

(
ρd/ρ − ρd,	/�

)
. The temperature is continuous at the

fiber surface, whereas the heat flux also has a jump due to solvent evaporation with
evaporation enthalpy δ of the diluent. The heat flux is described—analogously to
the mass flux—by the difference of the temperature at the fiber surface and away
from the fiber T	 with heat transfer coefficient α.

3 Dimensionally Reduced Model Equations

The direct numerical simulation of the three-dimensional fiber model from Sect. 2—
especially considering a two-way coupling with airflow computations—is com-
putationally extremely demanding and thus in general not possible. Hence we
propose a dimensionally reduced, efficiently evaluable fiber model, under the
assumptions of slenderness and radial symmetry [7]: We employ one-dimensional
equations for fiber velocity u and stress σ resulting from averaging the Newtonian
stress tensor Σ and the momentum balance (2b) over circular fiber cross-sections.
We combine these one-dimensional equations with two-dimensional advection-
diffusion equations for the polymer mass fraction c = ρp/ρ = 1 − ρd/ρ and
temperature T revealing the radial effects that are essential due to evaporation
[1, 4, 5]. These two-dimensional equations are obtained from (2a), (2c) by radial
symmetry and linearization around the cross-sectional averaged polymer mass
fraction c̄ and temperature T̄ , see [7] for details. We make the system dimensionless
using the initial fiber radiusR0, the initial fiber speed u0, the initial fiber temperature
T0, the fiber length L as well as initial mixture density ρ0 and initial specific heat
capacity q0:

System 1 (One-Two-Dimensional BVP) One-dimensional equations, z ∈ (0, 1):

∂zu = 1

3R2 σ, ∂zσ = Re

3

c0

c̄

1

R2 σ − Re

Fr2

c0

c̄

1

u
− ReM

1

R
fair , (3a)

with boundary conditions at inlet z = 0 and outlet z = 1: u(0) = 1, u(1) = Dr,
Two-dimensional equations, (r, z) ∈ (0, 1)2:

u∂zc − 1

εPeD

c̄

R2r
∂r (r∂rc) = 0, ρqu∂zT − 1

εPeC

1

R2r
∂r (r∂rT ) = 0,

(3b)
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with boundary conditions at inlet z = 0, fiber surface r = 1 and symmetry boundary
r = 0:

c
∣∣
z=0 = c0, ∂rc

∣∣
r=0 = 0,

1

PeD

ρ

R
∂rc
∣∣
r=1 = j ∣∣

r=1,

T
∣∣
z=0 = 1, ∂rT

∣∣
r=0 = 0, − 1

PeC

1

R
∂rT

∣∣
r=1 = (

α(T − T	)+ j (δ − h0
d )
)∣∣
r=1,

Constitutive laws and geometric relation:

ρ−1 = c (ρ0
p)

−1 + (1 − c) (ρ0
d)

−1, q = cq0
p + (1 − c)q0

d,

R =
√
c0

c̄ρu
, q0

d = ∂T h0
d .

The averaging of the polymer mass balance (2a) results in an explicit expression for
the unknown fiber radius R, i.e., we face no free BVP anymore. The temperature
derivatives of h0

p, h0
d and h are in particular the specific heat capacities q0

p, q0
d and

q for constant pressure. The characteristic dimensionless parameters are Reynolds
number Re = ρ0u0L/μ, Froude number Fr = u0/

√
gL, length ratio ε = R0/L

and draw ratio Dr = u1/u0 with take up speed u1 as well as Peclet numbers
PeD = u0R0/D, PeC = ρ0q0u0R0/C, respectively. The further dimensionless
air-drag associated parameter M is a scalar field due to its dependence on airflow
quantities, see [3]—also for an appropriate air-drag model.

4 Numerical Framework, Simulation Results and Discussion

The numerical computation of the fiber solution of System 1 is performed in
MATLAB. For the ordinary differential equation (3a) we use the routine bvp4c.m
providing a collocation method with a Runge–Kutta scheme of fourth order. On top
we build a suitable continuation strategy (homotopy method) as presented in [7].
The solution of the advection-diffusion equation (3b) is implicitly given in terms of
Green’s functions and leads for the surface values to Volterra integral equations of
second kind with singular kernel, which we can solve very efficiently by the product
integration method, see [6, 7]. The coupling of the one- and two-dimensional fiber
equations is then done iteratively.

To demonstrate the performance of our proposed fiber model we consider a
spinning setup due to gravity. In Fig. 1 the numerical solution for a typical setup
is shown: the polymer mass fraction grows from the nozzle to the fiber end due to
solvent evaporation. The polymer mass fraction at the fiber boundary (r = 1) rises
faster than the averaged mass fraction indicating an inhomogeneous polymer distri-
bution over the fiber cross-sections. The fiber temperature behavior is dominated by
evaporation effects: the averaged as well as the surface fiber temperature drop down
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Fig. 1 Fiber solution for the process parameters: L = 4 m, R0 = 7.5 · 10−5 m, u0 = 4 m/s,
u1 = 8 m/s, T0 = 373.15 K, c0 = 0.4, T	 = 343.15 K, ρd,	 = 0 kg/m3 and fair = 0 N/m.
The remaining parameters are chosen constant in the region of a typical industrial spinning setup
yielding (Re,Fr, ε,PeD,PeC,Dr) = (3.03, 6.39 · 10−1, 1.88 · 10−5, 3 · 105, 3.38 · 103, 2)

directly at the nozzle and approach the surrounding temperature T	 further down in
the spinning chamber.

The numerical simulation is performed on an Intel Core i7-6700 CPU (4 cores,
8 threads) with 16 GBytes of RAM and takes only around 61 s. In contrast a
simulation of the respective three-dimensional problem (cf. Sect. 2) takes several
hours. This computational speed makes simulations of multiple fibers in a two-way
coupling with airflow simulations under the use of complex rheological models for
transition coefficients, dynamic viscosity and other physical parameters feasible.
For industrially relevant simulation results we refer to [7].
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Modeling Bimaterial 3D Printing Using
Galvanometer Mirror Scanners

Daniel Bandeira and Marta Pascoal

Abstract Three-dimensional printing is a process for building new parts with a
specified shape. Despite its increasing popularity, printers capable of working with
more than one material are yet unavailable. In this work we model the design and
the operation of an apparatus for printing with two materials, namely printing a
component which includes a previously constructed inner structure. The structure
that supports the second material brings difficulties, resulting from the possible
“shaded” areas on the printing surface. The problem is addressed assuming the
installation of galvanometer mirror scanners as additional light sources on the walls
of the printer, and it is modeled in two steps: finding the least number of emitters
to use, so that the whole part can be constructed, as well as their position; and
assigning them with each cell of the part to be reached. The first step is formulated
as a set covering problem. The second is formulated as a linear integer problem and
aiming at optimizing two objectives: the number of emitters activated per layer and
the quality of the printed part. Methods for solving the problems are described and
tested.

1 Introduction

Three-dimensional printing, or 3D printing, is an additive process for rapid free form
manufacturing, where the final object (known as part) is created by the addition
of successive thin layers of material. Each layer corresponds to a cross-section
of the part to be constructed, and the printer draws each layer as if it was a 2D
printing [3, 7]. Printings are made of a single material, which can vary from resin to
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ceramics or metal (among others). One of the technologies used for 3D printing is
stereolithography (SL). In this case, each layer is added using liquid resin exposed
to a laser light, usually fixed at the top of the printer and able to reach the printing
platform. Only the zone of the resin that is reached by the laser beam is cured. Then
the platform that supports the model moves to get ready for printing the next layer.
This type of 3D printing is fairly standard nowadays, and has become quite popular
due to its ability to produce new parts quickly and at a low cost.

The present work focuses on a process analogous to SL, but with the goal
of printing an object in which the resin covers a previously constructed 3D grid
structure of a different material, like metal. This type of components has application
to custom orthotics, intelligent components, complex or fragile parts where over-
injection or other options are not feasible or not economically sustainable. In this
case the metal structure may block the laser light, thus preventing the cure of shaded
areas. This work addresses the question of placing additional galvanometer mirror
scanners on the walls of the printer to overcome this issue. Their positions depend on
the part to print and are fixed from the beginning of the printing process. However,
the laser beam reflected by each galvanometer scanner can be oriented with the
goal of reaching the shaded areas. Hereafter galvanometer scanners and laser are
sometimes simply referred to as emitters.

As explained before, the part is divided into layers, each one evenly partitioned
in squares, called voxels. Assuming that both the voxels to cure and the possible
locations for the emitters are known, the problem is modeled in two parts:

• Emitters location problem (ELP): The goal of which is to find the emitters’
position that minimizes the number of emitters required to complete the printing.

• Emitters assignment problem (EAP): Using the solution of the ELP, it is then
necessary to determine the voxels of each layer that each emitter should reach.

The rest of the text is organized as follows. In Sects. 2 and 3 integer linear
optimization models are presented for these two problems. The formulations are
empirically tested for a case study in Sect. 4. Finally, concluding remarks are
discussed.

2 Emitters Location Problem

The goal of the ELP is to find the minimum number of emitters that allows to print a
given part, as well as their location. To do this, let us consider that there arem voxels
that the laser light needs to cure and n possible positions for the laser emitters. The
emitters coverage matrix is defined as A = [aij ]i=1,...,m;j=1,...,n, such that

aij =
{

1 if the emitter at position j can reach the voxel i
0 otherwise

, i = 1, . . . , m, j = 1, . . . , n.
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The matrix A can be calculated by geometric arguments, as shown in [1]. Let also
xj be binary decision variables, such that

xj =
{

1 if the emitter at position j is installed
0 otherwise

, j = 1, . . . , n.

The objective function of the ELP is the total number of emitters to use, which is
to be minimized. This is given by

n∑
j=1

xj .

We say that the emitter j covers the voxel i, or that i is covered by j , if it is able
to reach it by means of a laser beam, for any j = 1, . . . , n, i = 1, . . . ,m. At least
one emitter needs to cover each voxel, in order to cure the material. Therefore, a
solution for the ELP is feasible if any voxel i, can be reached by at least one emitter,
that is, if

n∑
j=1

aij xj ≥ 1, i = 1, . . . ,m.

Thus, the ELP can be formulated as the set covering problem below,

minimize
n∑
j=1
xj

subject to Ax ≥ 1
x ∈ {0, 1}n

(1)

The optimal value of problem (1) is the number of emitters required to ensure the
complete printing of the part. Its optimal solution provides the positions where the
emitters should be installed, which corresponds to the indices j such that xj = 1,
j = 1, . . . , n. The set covering problem is a classical combinatorial optimization
problem which has been shown to be NP-complete [4, 8], therefore, exact methods
may be limited to solve it as the size of the problem grows.

3 Emitters Assignment Problem

Assume now that n2 emitters have been installed in the positions determined by the
ELP. The goal of the EAP is then to select the emitter to assign to each voxel. Also
consider that p layers of the part need to be printed, each one with mk voxels to
cure, k = 1, . . . , p.
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Let k be a layer to print, k = 1, . . . , p, xj be variables similar to those used in
the ELP, and yij be binary variables defined by

yij =
{

1 if the emitter j is activated to cure voxel i
0 otherwise

, i = 1, . . . , mk, j = 1, . . . , n2.

Two aspects are taken into account for defining the objective functions, the
operability of the system and the quality of the printing. The first is expressed by the
number of emitters used on each layer of the part, and the second as the distortion
of the laser light when it reaches the layer, denoted by z1 and z2, respectively. With
this respect it should be noted that the light beam has the shape of a circle at its
origin, but the circle is distorted as an ellipse when reaching the layer, every time its
incidence angle is not exactly 90◦. Therefore, similarly to the ELP, the first criteria,
to minimize, can be expressed by

z1(x, y) =
n2∑
j=1

xj .

The second depends on the emitter that reaches each voxel, yij , and the beam’s
angle of incidence, θij ∈ [0, π2 ], i = 1, . . . ,mk , j = 1, . . . , n2, which can be
calculated by a procedure similar to the emitters coverage matrix [1]—see Fig. 3a.
Thus, minimizing the distortion of the laser light corresponds to maximizing the
function

z2(x, y) =
mk∑
i=1

n2∑
j=1

θij yij .

The choice of the emitter used to reach a particular voxel must take two aspects
into account: the uniqueness of this solution and its viability. Assignment constraints
can be used to ensure the first one

n2∑
j=1

yij = 1, i = 1, . . . ,mk, (2)

whereas the second depends on the constraints

n2∑
j=1

aij yij = 1, i = 1, . . . ,mk, (3)

where A = [aij ]i=1,...,mk;j=1,...,n2 is the submatrix of the emitters coverage matrix,
restricted to the set of voxels to cure at layer k and the emitters installed in the
printer. The other aspect to consider is the emitters that are activated to print the
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k-th layer. For the emitters used in each layer, the covering conditions introduced in
Sect. 2 can be used,

n2∑
j=1

aij xj ≥ 1, i = 1, . . . ,mk. (4)

The variables yij and xj are related, because when the emitter j is activated to
reach a voxel i, it is activated for the entire layer. This corresponds to imposing the
constraints

yij ≤ xj , i = 1, . . . ,mk, j = 1, . . . , n2,

and, by aggregating these conditions, we can derive the equivalent constraints

mk∑
i=1

yij ≤ mkxj , j = 1, . . . , n2. (5)

Finally, it should be noted that when (3) and (5) hold, the constraints (4) are satisfied
as well. Combining all the information, we obtain the following biobjective linear
integer problem,

minimize z1(x, y)

maximize z2(x, y)

subject to (2), (3), (5)

yij ∈ {0, 1}, i = 1, . . . ,mk, j = 1, . . . , n2 (6a)

xj ∈ {0, 1}, j = 1, . . . , n2. (6b)

In general, the objective functions z1 and z2 are conflicting, which means that
there is no feasible solution that optimizes both simultaneously. Solving the problem
considering only z1 or z2 provides an idea of how much the two objective functions
may range, but as an alternative to the usual concept of optimality in single-objective
problems, in these cases we usually seek for efficient solutions. A solution is said to
be efficient if there is no other which is strictly better than the first with respect to
the two objective functions simultaneously. The approaches for finding the efficient
solutions of biobjective integer problems can be classified into a priori, interactive or
a posteriori, depending on whether how one efficient solution is chosen among the
all set. In the first case the decision maker (DM) knows how the relative importance
of the two objective functions, which can be aggregated accordingly before one
solution is found. In the second case, partial efficient solutions are shown to the
DM, who then guides the search for an acceptable solution. The last case consists
of computing all the efficient solutions and then let the DM express the preferences
with respect to that whole set. A single solution must be chosen before printing a
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given part, however it is not clear in advance how the two objective functions are
related, thus an a posteriori approach is more indicated for the EAP. Several methods
have been proposed to find the efficient solutions of biobjective integer problems
like the EAP. For instance, two-phase methods or the ε-constrained method, among
others [5, 6]. This topic is studied in [2].

4 Computational Experiments

The formulations presented above were tested for a case study consisting of
constructing the cube with 5 faces shown in Fig. 1a. The thickness of the metal grid
is considered equal to the thickness of the resin layers, that is, 1. This is also the
value used as the width of the voxels. The parameters for printing the cube are:

• The length of each segment of the metal grid, lM .
• The thickness of the resin added on each side of the metal grid, lP = 1.
• The number of divisions of the metal grid, which is assumed to be uniform, nM .
• The distance between the cube to print and the side walls of the printer, where

emitters can be installed, h, which depends on the size of the part, but ensuring
that the printing platform is of size 1250 × 1250 units.

• The height of the printing area, fixed to hV = 1250 units.

The used length unit corresponds to 0.2 mm, the length of the side of the voxels.
Each layer contains nV × nV voxels. The remaining characteristics of the prob-
lems solved are summarized in Fig. 1b. The linear problems were solved using
CPLEX 12.7, whereas MATLAB R2016b was used for the remaining calculations.
The presented run times are mean values obtained for 30 repetitions on an Intel R©
i7-6700 Quadcore of 3.4 GHz, with 8 Mb of cache and 16 Gb of RAM.

For the ELP it was assumed that a laser is already fixed at the center of the top
of the printer. Additionally, 80 possible locations are considered for other emitters
on the side walls. The solutions of problem (1) given by CPLEX are presented in
Table 1. According to the results, between 2 and 4 emitters besides the top one are

Fig. 1 Case study. (a)
Printing area and object to
print. (b) Test parameters

h

hV

lM

(a)

Test nV nM h

T1 200 5 525
T2 200 10 525
T3 200 20 525

T4 300 5 475
T5 300 10 475
T6 300 20 475

T7 500 5 375
T8 500 10 375
T9 500 20 375

(b)
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Table 1 ELP solutions and run times

Test Emitters’ positions Time (s)

T1 (1, 1000, 250) and (1250, 1, 250) 5.03

T2 (1, 1000, 1000), (1, 251, 250) and (1250, 1250, 250) 19.13

T3 (1250, 1, 1000), (1, 1, 250), (1, 1250, 250) and (1250, 1250, 250) 140.03

T4 (1, 1, 750) and (1250, 1250, 250) 9.89

T5 (1, 750, 1000), (1, 251, 500) and (1250, 1000, 500) 34.98

T6 (1, 1, 500), (1250, 1250, 500), (1, 750, 250) and (1250, 501, 250) 1323.36

T7 (1, 1, 750) and (1250, 1250, 500) 27.52

T8 (1, 1, 500), (1250, 1250, 500) and (1250, 1, 250) 40.70

T9 (1, 1, 500), (1250, 1250, 500) and (1250, 1, 250) 144.05
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Fig. 2 EAP solutions and run times

required for completing the printing. Although most problems were solved in less
than 3 min, one of them required almost half an hour, which reflects the hardness of
the problem.

Using the solutions in Table 1, the EAP was considered when optimizing one
objective function at a time. The approach that optimizes zi is represented below
by Ci , i = 1, 2. Figure 2 shows the mean results for the number of fixed
emitters required for printing each layer, μ1, the mean value of θ , μ2, and the
run times regarding printing the whole part for each method. In terms of solutions
the approach C1 always finds a way to print the part using 2 or 3 emitters per
layer besides the top one, while this only happens with C2 when a broader grid is
considered. For the remaining cases applying C2 implies using 3 or 4 emitters. The
average angles of incidence of the beam over the voxels are between 60◦ and 80◦
when using approach C2 and between 45◦ and 80◦ when using C1. The results are
worse, i.e., the angle of incidence is smaller, when the grid is denser. The approach
C1 is more sensitive to this change than C2. As explained next, small angles of
incidence may lead to a distorted final part. In general in average the two approaches
run fast, a few seconds, and in approximately the same CPU time. However, the tests
T3 and T8 were harder to solve using the approachC1 than using C2, around 30 and
5 min, respectively.
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Fig. 3 Quality of the printed part. (a) Laser distortion on a voxel. (b) Distortion areas

A measure of the quality of the produced part should also be taken into account.
As mentioned earlier, in general, the laser beam reaches the printing surface as an
ellipse because of angle θ . We have considered that the centers of the laser and of
the voxel are aligned, thus, two situations may affect the quality of the part: a region
beyond the target voxel may be cured, leading to an outer area Aout , and part of the
target voxel may lack the cure, leading to an inner area Ain. Both are illustrated in
Fig. 3a.

The mean values of Ain and Aout were calculated for the same case study.
Standard lasers for stereolithography have a radius of 0.05 mm, so, taking into
account the considered unit of measurement, the laser has radius 0.25 units.
Figure 3b shows the mean value of the percentage relative to the voxel area of Ain
and Aout , respectively μin and μout . In all cases an area of voxels is left to cure and
for some of them there is also an area reached outside the voxels. The mean value of
Ain was above 60% for all tests. The main reasons are the assumption that the laser
reaches only the center of voxels and considering voxels whose sides are twice the
diameter of the laser beam. Working with smaller voxels would result in a reduction
of this area, but would increase the values of Aout . The area Aout is almost null
for most of the cases. The instance with the highest values of Aout corresponds to
approach C1 when applied to test T3.

The polymer at a given voxel may be affected by a beam pointing at neighbor
voxels. Likewise, only the outer area of voxels in the border is relevant for the
quality of the part. Therefore, the expressions of Ain and Aout are only estimate
measures for the printing quality. Additionally, current 3D printing processes
include a post-printing finishing phase where all part is exposed to UV light to
cure any liquid resin left. This can reduce the theoretical values of Ain and allows
to improve the produced part.

5 Conclusions

This work addressed the bimaterial 3D printing problem based on the installation
of galvanometer scanners on the walls of a printer. The problem is treated as
locating the emitters and assigning them with the voxels of a given part, which were
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formulated and tested for a case study. The software CPLEX was able to find exact
solutions for the considered instances. Nevertheless, these are computationally hard
problems, thus heuristics should be designed to prevent cases for which this does
not happen or when no commercial specialized software is available. Moreover, the
unexpectedly cured area of the extreme solutions of the EAP was relatively small,
while the uncured area of the part seems fairly high. In practice this latter issue can
be addressed with a post-printing finishing phase, a standard 3D printing procedure.
Our model can also restrict the emitter positions having in mind to reduce the laser
distortion, although that may compromise the full printing of the part. Finally, the
presented approach can still be used to print parts with more than two materials, by
handling the product of the first print as the inner structure of the next one.
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Thermal Transport Equations
and Boundary Conditions
at the Nanoscale

Marc Calvo-Schwarzwälder, Matthew G. Hennessy, Pol Torres,
Timothy G. Myers, and F. Xavier Alvarez

Abstract The Guyer–Krumhansl equation is an extension to the classical Fourier
law that is particularly appealing from a theoretical point of view because it
provides a link between kinetic and continuum models and is based on well-defined
physical parameters. Here we show how, subjected to a specific boundary condition
analogous to the slip conditions for fluids, the Guyer–Krumhansl equation yields
promising results in predicting the effective thermal conductivity of nanowires with
circular and rectangular cross-sections.

1 Introduction

The classical equations fail to describe heat transfer at small length scales [2]
and, given the increasing number of miniaturised electrical components, it is
therefore crucial to find a valid description of heat flow for these situations. In
particular, for applications involving heat removal, there is a general concern about
predicting correctly the thermal conductivity. For instance, it has been observed
that the thermal conductivity of Si nanowires with a diameter of 37 nm decreases
by approximately 87% with respect to the bulk value [8]. This decrease can be
related to the emergence of new thermal transport regimes which are not captured
by Fourier’s law.
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The Guyer–Krumhansl (G-K) equation [5, 6] is a popular extension to Fourier’s
law which includes memory and non-local effects in a simple way. In this paper
we attempt to capture the size dependence of the thermal conductivity by the
hydrodynamic model, based on the G-K equation, combined with suitable boundary
conditions suggested by the similarities of the governing equations with those used
in fluid dynamics.

2 Mathematical Formulation

We consider a nanowire (NW) of length L∗, suspended in vacuum, subject to a heat
flux Q∗ by fixing the temperature at the left and right end at different temperatures
T ∗

0 > T
∗

1 , where the ∗ notation refers to dimensional quantities. Under steady state
assumption and neglecting radiation at the surface of the NW, heat flow is governed
by

Q∗ − �∗2∇2Q∗ = −k∗∇T ∗, ∇ · Q∗ = 0, (1)

which represent the hydrodynamic equation (which is a vectorial equation) and
conservation of energy. The quantities k∗(T ∗) and �∗(T ∗) are the bulk thermal
conductivity and a non-local length related to the phonon mean free path. In the
original equations derived by Guyer and Krumhansl, �∗ is exactly the mean free
path, but other definitions of this parameter can be found in the literature. Here we
use a non-local length and a thermal conductivity computed via the kinetic collective
model (KCM), which has shown excellent results in predicting the (bulk) thermal
conductivity in different media [11].

The boundary conditions for (1) will be specified for each of the considered
cross-sections. In general, the components of the heat flux normal to the surface
of the NW will be assumed to be zero, whereas we will impose slip conditions with
a slip length �∗s for the components which are parallel to the surface. Following other
authors [1, 9, 10, 13], the slip length will be assumed to be proportional to the non-
local length �∗, i.e., we assume �∗s = C�∗. In previous studies, this parameter was
allowed to depend on the temperature. Here we introduce a novelty by assuming
that it might also depend on the Knudsen number, which is related to �∗. Finally,
the left and right ends of the NW will be assumed to be at constant temperatures T ∗

0
and T ∗

1 respectively.
Assuming that the longitudinal axis is described by the variable z∗, the effective

thermal conductivity (ETC) will be computed via

k∗eff = Q∗

−∂T ∗/∂z∗ (2)
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Fig. 1 Heat flux through a
circular nanowire of length
L∗ and radius R∗ induced by
a temperature difference
ΔT = T ∗

0 − T ∗
1

R∗

L∗

z∗

r∗Q∗

T ∗ = T ∗
0 T ∗ = T ∗

1

whereQ∗ is the total heat flux per unit area across a cross-section S∗,

Q∗ = |S∗|−1
∫

S∗
Q∗ · dS∗. (3)

2.1 Circular Nanowires

We consider a NW with a circular cross-section of radius R∗; see Fig. 1. In addition,
we assume R∗ � L∗ or, alternatively, R∗/L∗ = ε � 1. Since the NW exhibits
rotational symmetry, we neglect angular dependencies and thus we express the heat
flux in terms of its axial and radial components, Q∗ = v∗r + w∗z. The boundary
conditions for v∗ and w∗ are

v∗|r∗=0 = ∂w∗

∂r∗

∣∣∣∣
r∗=0

= v∗|r∗=R∗ =
[
w∗ + C�∗ ∂w

∗

∂r∗

]

r∗=R∗
= 0. (4)

The boundary conditions at r∗ = 0 follow from the axial symmetry of the NW,
whereas on the surface of the NW we have imposed zero flux and slip conditions for
v∗ and w∗ respectively. The parameter C encodes the information about phonon-
boundary scattering and roughness. In the literature it is essentially treated as a
fitting parameter [9, 13]. Here we take C = exp(−R∗/�∗) to model the transition
from diffusive (R∗ � �∗, C → 0) to ballistic (R∗ � �∗, C → 1) transport. Further
discussion on this parameter can be found in Refs. [3, 4, 9, 10, 13].

The problem is non-dimensionalised via the new variables z = z∗/L∗, r =
r∗/R∗, v = v∗/(v∗0 ), w = w∗/w∗

0, T = (T ∗ − T ∗
1 )/ΔT and k = k∗/k∗0 , where

ΔT = T ∗
0 − T ∗

1 , k∗0 is a reference value for the bulk thermal conductivity and
w∗

0, v
∗
0 are (unknown) typical values of the flux components. Balancing terms in the

energy equation in (1) requires v∗0 = εw∗
0 , i.e. that heat is mainly transported in

the axial direction. For w∗
0 we choose the typical scale w∗

0 = k∗0ΔT/L∗. In the new

variables the total heat flux per unit area becomesQ = 2
∫ 1

0 wrdr and the governing
equations take the form

1

r

∂

∂r
(rv)+ ∂w

∂z
= 0, w − Kn2

r

∂

∂r

(
r
∂w

∂r

)
= −k ∂T

∂z
,

∂T

∂r
= 0, (5)
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where we have neglected terms of order ε and Kn= �∗/R∗ is called the Knudsen
number. Note, calculating Q requires only knowledge about w, which can be
obtained by integrating the second equation in (5). Furthermore, the term on the
right hand side can be treated as constant in the variable r due to the third equation.
The boundary conditions for w are

∂w

∂r

∣∣∣∣
r=0

=
[
w + KnC

∂w

∂r

]

r=1
= 0. (6)

The problem can be solved analytically in terms of Bessel functions of the first kind,
giving [3]

w = −k
(

1 − I0(r/Kn)

I0(1/Kn)+ CI1(1/Kn)

)
∂T

∂z
, (7)

Q = −k
(

1 − 2KnI1(1/Kn)

I0(1/Kn)+ CI1(1/Kn)

)
∂T

∂z
, (8)

and hence we find

keff/k = 1 − 2KnI1(1/Kn)

I0(1/Kn)+ CI1(1/Kn)
. (9)

Using Taylor expansions we can obtain simple expressions in the limits of large and
small Knudsen numbers,

keff/k ≈ 1 − 2Kn, for Kn � 1, (10a)

keff/k ≈ 1

2Kn
, for Kn � 1, (10b)

In particular, in the limit R∗ � �∗ we find that k∗ ∝ 1/R∗, which agrees with
experimental results [8].

2.2 Rectangular Nanowires

We now assume that the NW has a rectangular cross-section of height 2H ∗ and
width 2W∗, as depicted in Fig. 2. Without loss of generality, we can assume H ∗ ≤
W∗ � L∗ or, introducing the aspect ratios φ = H ∗/W∗ and ε = H ∗/L∗, ε �
φ ≤ 1. Upon splitting the flux in its Cartesian components, Q∗ = u∗x + v∗y +w∗z,
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Fig. 2 A slab of length L∗
and with a rectangular
cross-section of dimensions
2W ∗ × 2H ∗ is held at
different temperatures
T ∗

0 > T
∗
1 at the left and right

ends respectively, which
induces a heat flux Q∗ L∗

W ∗

H∗

x∗
y∗ z∗

T ∗
0

T ∗
1

we can write the boundary conditions as

u∗|x∗=0 = ∂v∗

∂x∗

∣∣∣∣
x∗=0

= ∂w∗

∂x∗

∣∣∣∣
x∗=0

= ∂u∗

∂y∗

∣∣∣∣
y∗=0

= v∗|y∗=0 = ∂w∗

∂y∗

∣∣∣∣
y∗=0

= 0,

(11a)

u∗|x∗=W∗ =
[
v∗ + C�∗ ∂v

∗

∂x∗

]

x∗=W∗
=
[
w∗ + C�∗ ∂w

∗

∂x∗

]

x∗=W∗
= 0, (11b)

[
u∗ + C�∗ ∂u

∗

∂y∗

]

y∗=H ∗
= v∗|y∗=H ∗ =

[
w∗ + C�∗ ∂w

∗

∂y∗

]

y∗=H ∗
= 0, (11c)

where C may now vary along the surface of the NW to account for the behaviour of
phonons near corners [14]. By construction, the total heat flux per unit area is

Q∗ = 1

4H ∗W∗

∫ H ∗

−H ∗

∫ W∗

−W∗
w∗dx∗dy∗, (12)

hence calculatingQ∗ requires only knowledge about w∗.
Using a similar strategy as in the circular case, defining the dimensionless

quantities x = x∗/W∗, y = y∗/H ∗, z = z∗/L∗, T = (T ∗ − T ∗
0 )/ΔT , k = k∗/k∗0 ,

u = u∗/(φ−1εw∗
0), v = v∗/(εw∗

0), and w = w∗/w∗
0 , we find ∂T /∂x = ∂T /∂y = 0

at leading order and hence the problem of computing the ETC can be reduced to
solving

w − Kn2
(
φ2 ∂

2w

∂x2 + ∂2w

∂y2

)
= −k ∂T

∂z
, (13)

subject to

∂w

∂x

∣∣∣∣
x=0

= ∂w

∂y

∣∣∣∣
y=0

=
[
w + φKnC

∂w

∂x

]

x=1
=
[
w + KnC

∂w

∂y

]

y=1
= 0, (14)
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where the Knudsen number is now defined as Kn = �∗/H ∗. Upon writing w =
wF · ŵ, where wF = −k∂w/∂z, the ETC is then computed via

keff/k =
∫ 1

0

∫ 1

0
ŵdxdy. (15)

Due to the dependence of the coefficient C on the variables x and y, the problem
defined by (13) and (14) cannot be solved analytically in general. However, under
the assumption that C is uniform on the boundary, a separable solution for (13) can
be constructed, giving

keff/k =
∑
n,m≥0

c(ηn)c(μm)

1 + Kn2 (φ2η2
n + μ2

m

) , c(t) = 2 sin2(t)

t (t + cos(t) sin(t))
, (16)

where ηn and μm satisfy

cot(ηn) = φCKnηn, cot(μm) = CKnμm. (17)

In the case of a non-uniform slip coefficient C(x, y), we can give analytical
expressions for the ETC in the limits of small and large Knudsen numbers [4],

keff/k ≈ 1 − Kn

[∫ 1

0

dx

1 + C(x, 1) + φ
∫ 1

0

dy

1 + C(1, y)
]
, for Kn � 1,

(18a)

keff/k ≈ 1

Kn

[∫ 1

0
C−1(x, 1)dx + φ

∫ 1

0
C−1(1, y)dy

]
, for Kn � 1.

(18b)

3 Results

In Fig. 3 we compare our analytical expressions against experimental data provided
by Refs. [7, 8]. The data for �∗(T ∗) and k∗(T ∗) is obtained from an open based on
the kinetic collective model [11].

In the circular case, our choice of C leads to excellent results except for
temperatures below ∼150 K for the case of R∗ = 28 nm. In the rectangular case,
taking a constant slip coefficient C = 4, which agrees with previous works [11, 12],
gives excellent results in the low and high temperature limits. The intermediate
regime is well captured by a exponential expression C(T ∗) = 4 exp(−T ∗/T ∗

c ) with
a fitting parameter T ∗

c . In the case of silicon, the fitting parameter was found to be
T ∗
c ≈ 9 K.
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Fig. 3 Left: Validation of the analytical expression (9) with C(T ∗) = exp(−R∗/�∗(T ∗)),
represented by solid lines, against experimental data for Si [8], represented by squares. Different
colors represent nanowires with different radii. Right: Validation of the analytical expression (16)
for different forms of the slip coefficient, against experimental data for Si [7], represented by
squares. For the temperature-dependent coefficient we have used C = 4 exp(−T ∗/T ∗

c ) with
T ∗
c = 9 K. The dimensions of the slab correspond to φ ≈ 0.641

Fig. 4 Comparison of the predicted ETC for different cross-sections in terms of the effective
Knudsen number K = �∗/

√
A∗, where A∗ is the area of a cross-section, independently of the

shape considered

Being able to predict the thermal conductivity for a NW with either a circular
or rectangular cross-section enables us to decide which geometry is the most
efficient heat transporter. For this we introduce, for a fixed cross-sectional area
A∗, the effective Knudsen number K = �∗/

√
A∗. In the circular case we have

Kn= √
πK , whereas in the rectangular case Kn= 2φ−1/2K . In Fig. 4 we can see

that the optimal case corresponds to the circular and square (φ = 1) cross-sections,
whilst in the thin film limit (φ → 0) we obtain a less efficient conductor.
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4 Conclusions

By choosing a specific form of the slip-length, the hydrodynamic model is able to
predict the ETC in nanowires with a reduced number of free parameters, providing
excellent results. Furthermore, in the ballistic (Kn � 1) and diffusive (Kn � 1)
regimes the ETC is obtained without fitting parameters. In addition, among the
different cross-sections, the circular nanowire is the most efficient transporter of
thermal energy, with the thin film being the worst.
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On the Lifespan of Lithium-Ion Batteries
for Second-Life Applications

Daniel Müller and Kai Peter Birke

Abstract The second-life concept adds monetary value to disused automotive
batteries. In turn, this could lead to a higher market share of electric transportation
by reducing the total costs for the consumer. However, the ageing of batteries limits
their total lifetime and the non-linear ageing behaviour at later stages can diminish
the benefit of second-life application. With a model-based ageing study, we show
that the lifetime can be doubled by introducing a two-stage anode porosity.

1 Introduction

Like many other electrochemical cells, lithium-ion batteries exhibit a reduction
in performance during usage and storage. This degradation over the batteries’
lifetime is commonly called ageing and is the result of unwanted side-reactions
or mechanical and structural changes in different parts of the cell. For some appli-
cations, especially when high energy- or power-density is required, this degradation
necessitates the replacement of the battery pack. Recycling consequently terminates
the conventional life-cycle of a battery. Yet, under certain conditions, reapplication
of those batteries can still provide economic and ecological benefit.

1.1 Second-Life

The approach of reusing batteries in a secondary application is called second-
life. With increasing electrification in the transport sector, the amount of replaced
batteries from electric vehicles is going to rise significantly. Therefore, a growing
economic and ecological benefit is ascribed to the second-life concept. Traction
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Fig. 1 Schematic capacity retention curve for idealised linear ageing (dashed black line) and non-
linear ageing (solid black line). The red markers show the assumed transition between primary and
secondary application with a criterion based on the remaining capacity. For non-linear ageing, the
sudden-death effect reduces the second-life (A to B) significantly, while for idealised linear ageing
the usable time (A to C) is much higher

batteries are an excellent candidate for second-life application. High requirements
from the automotive sector lead to an early replacement and therefore the possibility
for less demanding second-life application with favorable operating conditions, for
example as stationary storage systems.

The point in time of transition between primary and second-life application
is defined by an End-of-Life (EoL) criterion for the intended usage. For mobile
applications, it is often assumed to be 80% of the battery’s initial capacity. This
transition criterion is crucial for second-life applications since at around the same
value for residual capacity or State-of-Health (SoH) a change in ageing behaviour
has been observed. Figure 1 shows two ageing curves, a solid black line for non-
linear and a dashed black line for idealised linear ageing. The solid red line depicts
the transition criterion based on the remaining capacity, while the dashed red line
shows the resulting cycle number at the time of transition. For both ageing curves,
the Beginning-of-Life (BoL) state, the transition criterion between applications and
the terminal EoL criterion are the same. With those assumptions, the idealised linear
ageing offers a decent period for second-life application (A to C) while for the actual
non-linear ageing this period is significantly reduced (A to B).

1.2 Sudden-Death

While ignoring the initial cycles for formation, the ageing behaviour of lithium-ion
batteries can in a simplified way be separated into two phases. A phase of linear
ageing behaviour from the start until an inflexion point in the capacity retention,
where the ageing becomes non-linear. This change in degradation per cycle is called
sudden-death and has been documented at a 1.5-fold increase of inner resistance and
around 80% of residual capacity [1]. The solid line in Fig. 1 shows a sudden-death
(around point A). A cause for the sudden-death is a change in the predominant
ageing mechanism. During the linear stage, this is the formation of solid electrolyte
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interface (SEI), but ageing-induced lithium plating is responsible for the non-
linearity. Commonly, plating of metallic lithium is related to charging at low
temperatures or with high C-rates, but this heterogeneous ageing-induced plating
also occurs at mild operating conditions. Additionally, once started it amplifies
itself. Literature sources specify pore clogging due to SEI growth in the anode,
causing a kinetic hindrance for the ion transport in the electrode, as the main reason
for this failure mode [2–4]. Besides the layer growth, sudden-death can be induced
mechanically by local compression [5] or caused by loss of active material [6].

In this model-based analysis, we investigate the effect of graded porosity in
graphite anodes with regard to second-life application and the sudden-death ageing
effect. Traditionally, batteries have a constant porosity across the thickness of each
electrode and the separator. To compensate for the increased layer growth at the
separator side of the anode, we introduce a two-stage porosity for the anode or in
other words an anode consisting out of two layers with different porosities.

2 Model Description

The employed model is based on the electrochemical pseudo 2 dimensional (P2D)
approach from Doyle et al. A detailed description and deduction of these underlying
equations can be found in the corresponding literature [7–11]. Those governing
equations are based on charge and species conservation in the solid and electrolyte
phase, respectively. These partial differential equations were solved in a commercial
implementation of the finite element method (FEM). The Butler-Volmer kinetics
expression as well as appropriate boundary conditions provide the relation between
the liquid electrolyte phase and the solid phase of the electrode particles.

Modelling of the ageing mechanism is realised similar to the model presented by
Yang et al. [12]. We only consider lithium plating and SEI formation, both assumed
to be irreversible, at the anode and both are implemented as competing side-
reactions with the intercalation. This results in the local current density being the
sum of the current densities of intercalation, lithium plating and SEI formation. For
the lithium intercalation, the Butler-Volmer equation, with cathodic and anodic part,
and an exchange current density depending on rate constants, transfer coefficients as
well as liquid and solid lithium concentrations are used for calculation. Following
the work of Safari et al. [13] and Darling et al. [14] about SEI formation, we use
cathodic Tafel equations for the SEI formation as well as for the lithium plating.
Exchange current densities for the side reactions are calculated in a simplified
manner and used for adjusting the ageing progress.

Both side reactions consume lithium ions and deposit their products on the anode
particles. The deposition leads to a growing layer, which increases the resistance,
influencing the surface overpotential and the potential drop across the layer. At the
same time, it reduces the porosity of the anode, which directly relates to a hindrance
of ion transport in the electrolyte.
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Cell parameters belong to an experimental high-energy cell with thick electrodes
and are provided by a German automotive supplier. The simulation uses a constant
current/constant voltage (CC/CV) strategy for charging. Discharge is CC only. C/2
current rates are applied for the whole simulation. Between the single phases, 10-
min relaxation periods are included.

3 Graded Porosity in Graphite Anodes

In this section, we compare simulated cycling results of two cell designs, a
conventional design and a two-stage anode porosity design. Apart from the anode
porosity, the cell parameters are identical. As an explanation, the expressions
porosity and electrolyte volume fraction are interchangeable in this model approach.
In the conventional design, the electrolyte volume fraction εl of the anode amounts
to εl = 0.26, with an anode thickness of dA. The graded anode basically consists
of two layers, a layer with lower electrolyte volume fraction of εl = 0.23 facing
the current collector and a second layer with higher electrolyte volume fraction of
εl = 0.29 at the separator side. Both layers are equally thick with dL = dA/2, this
results in the same averaged starting porosity as the conventional cell and therefore
the same nominal capacity of both designs. Even though further optimisation is
possible, we chose a two-stage porosity over a more sophisticated porosity profile
having an acceptable additional effort during electrode production in mind.

Figure 2 shows the normalised discharge capacityQDC over cycle number n for
both mentioned cell designs. The reference design, blue line, exhibits the expected
ageing behaviour. A decreasing ageing rate, a reduction of capacity loss per cycle,
until around 260 cycles. At a remaining capacity of approximately QDC = 0.75
the rate increases, there is an inflexion point in the capacity retention curve, and the
battery experiences a sudden-death. After 250 cycles, the electrolyte volume fraction
in the anode at the anode/separator boundary has decreased below εl = 0.04, this
can be assumed to equal congested pores. During a couple of additional cycles, the
remaining capacity of this cell fades quickly.

For the first 150–200 cycles, the behaviour of the cell with two-stage porosity
is basically identical. The orange curve also shows a kink after around 240 cycles,
but it is considerably less severe than for the traditional design. This first visible
change in ageing rate happens when the electrolyte volume fraction also falls below
εl = 0.04 at the border of the low porosity layer in the middle of the electrode. This
means, ion transport into the rear part of the electrode is severely limited. Here,
the sudden-death event occurs after more than 500 cycles, compared to 260 for the
conventional cell. At this point, the remaining capacity falls below QDC = 0.5 and
the electrolyte volume fraction reaches an even lower value of εl = 0.02 at the
anode/separator boundary.
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Fig. 2 Normalised discharge capacity over the number of cycles. The blue line shows the ageing
rate of a conventional anode with constant initial porosity. A two-stage porosity with a lower
porosity layer at the current collector and a higher porosity layer at the separator is simulated
for the orange line

4 Conclusion

With this ageing simulation, we show the potentially disastrous influence of the
non-linear ageing behaviour, the sudden-death effect, on the second-life concept. By
utilising the two-stage porosity in the negative electrode, we can increase the cycle
count until the sudden-death twofold. Applying the before mentioned transition
criterion from primary application to second-life of QDC = 0.8 and an EoL at
QDC = 0.6, the number of second-life cycles increases almost by a factor of 2 when
the two-stage anode porosity is used. Shifting the transition or EoL criterion to lower
capacities will increase the two-stage porosity designs advantage even further.
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Modeling and Simulation Approaches
for the Production of Functional Parts
in Micro Scale

Andreas Luttmann, Mischa Jahn, and Alfred Schmidt

Abstract In this paper, simulation approaches for the partial melting of metallic
workpieces in micro scale are presented. The underlying model considers heat
transport in the whole workpiece, the solid-liquid phase transition assuming a sharp
interface and the fluid flow in the liquid part including surface tension effects.
Depending on whether the solid-liquid interface is handled either by an interface-
tracking or an interface-capturing approach, two different numerical schemes based
on an ALE finite element method are presented. A crucial aspect for both methods
is the geometrical evolution of the solid-liquid-gas triple junction due to the non-
material movement of the solid-liquid interface. Yielding mutual advantages and
disadvantages, both methods can be used in alternation in a combined approach.
Numerical results are shown for melting the tip of a thin steel wire by a laser beam.

1 Introduction

In modern production engineering processes, miniaturization is of growing interest.
Due to the challenges arising when transferring cold forming processes from macro
to micro range, such as size effects [6], the Collaborative Research Center micro
cold forming was founded in 2007. Its central concern is the supply of methods and
processes for a systematic design of reliable micro cold forming processes. For this
purpose, numerical simulations are a powerful tool to support process development,
since they can offer additional insight and make experiments partially obsolete. In
the case of complex process chains, it is convenient to simulate only one or several
process steps and to formulate a model for the interaction between all steps. For
the process chain and simulation approach described in the following, this has been
done in [5] using cause-effect networks.
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laser beam
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tool

Fig. 1 Two-level cold forming process: In the master forming step, a preform is generated by
melting the end of the wire by a coaxial laser beam. In the following cold forming step, a closed
die is used to calibrate the preform

As an example, we consider a thermal upsetting process for a thin steel wire
with diameter d0 < 1 mm as sketched in Fig. 1. In the master forming step, the
metallic wire is partially molten by a coaxial laser beam within a shielding gas
atmosphere. Due to the fact that surface tension exceeds gravitational force (shape-
balance effect) in micro range [6], the melt forms a nearly perfect sphere which
solidifies after the laser is switched off. The generated preform is then calibrated
in a subsequent forming step in a closed die. By using the two-level cold forming
process upset ratios s := l0

d0
� 200 can be achieved while a conventional multi-

level cold forming process is limited by the value s = 2.1 and decreases if d0
does.

In the following, modeling and simulation of mass and heat transport for the
master forming step are considered. Two different approaches are presented using
either an interface-tracking or interface-capturing approach for the solid-liquid
interface. After comparing both the advantages and disadvantages with special
attention to the solid-liquid-gas triple junction, a combined approach is proposed
and numerical results for the master forming step are shown.

2 Model

Mass and heat transport are modeled within continuum mechanics by coupling
conservation equations for mass, momentum and energy. Assuming a sharp solid-
liquid interface Γls(t) let Ω(t) := Ωl(t) ∪ Ωs(t) ∪ Γls(t) ⊂ R

3, t ∈ [t0, tN ],
denote the time dependent physical domain as sketched in Fig. 2. On Γ{s,l}(t) the
outer normal to Ω{s,l}(t) is given by n{s,l}(t) and nls(t) is the outer normal to
Ωl(t) on Γls(t). The geometrical evolution in time can be fully described by the
normal velocities of Γs(t), Γl(t) and Γls(t) which we denote by vn,s , vn,l and
vn,ls .

The material movement of particles is characterized by the material velocity u(t).
In the liquid part, fluid dynamics are modeled by the incompressible Navier–Stokes
equations including surface tension effects and a kinematic boundary condition for
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Fig. 2 2d geometrical setting for different topology of Γls(t): initial state (left), melting (middle)
and solidification (right). At the outer boundary, Γ{s,l}(t) := ∂Ω{s,l}(t) ∩ ∂Ω(t) denotes the solid
resp. free capillary boundary and γ (t) := Γ̄s(t)∩ Γ̄l (t)∩ Γ̄ls (t) the solid-liquid-gas triple junction

the free capillary boundary. In the solid part, we assume no material movement and
a no-slip condition at the solid-liquid interface:

∂tu + u · ∇u − 1

Re
Δu + ∇p = fu(T ), ∇ · u = 0 in Ωl(t), (1)

σ · nl = − 1

We
K nl, u · nl = vn,l on Γl(t), (2)

u = 0 onΩs(t) ∪ Γs(t) ∪ Γls(t), vn,s = 0 on Γs(t). (3)

Here, p is the pressure, T is the temperature, fu(T ) accounts for buoyancy in
Boussinesq-Approximation, σ is the stress tensor, K is the sum of principal
curvatures and Re andWe are the Reynolds and Weber number.

In the interface-tracking approach, energy conservation is modeled by the heat
equation in each subdomain, a Stefan condition at the solid-liquid interface, which
accounts for latent heat and its non-material geometrical evolution, and boundary
fluxes:

∂tT + u · ∇T − q{s,l}
RePr

ΔT = 0 inΩ{s,l}(t), (4)

−Ste
[ q{s,l}
RePr

∇T · nls
]

= vn,ls on Γls(t), (5)

q{s,l}
RePr

∇T · n{s,l} = g(T ) on Γ{s,l}(t). (6)

Here, q{s,l} are subdomain dependent constants with respect to material param-
eters, Pr and Ste are the Prandtl and Stefan number, and g(T ) accounts for
boundary fluxes due to the laser beam, cooling by shielding gas and thermal
radiation.
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In the interface-capturing approach, an enthalpy formulation for the two-phase
Stefan problem in the whole domain Ω(t) is used, in which the non-linear relation
between enthalpy e and temperature T by a function β accounts for the solid-liquid
phase transition. In general, this yields a mushy region of material that is neither
entirely solid nor liquid. To ensure a sharp solid-liquid interface and the definition
of a liquid subdomain for the flow problem, we assign this region to the solid
subdomain:

∂t e+ u · ∇e − q

RePr
ΔT = 0, T = β(e) inΩ(t), (7)

Ωl(t) = {x ∈ Ω(t) : T (x, t) > Tm}, Γls(t) = ∂Ωl(t) ∩Ω(t). (8)

Here, q reflects spatial differences in material parameters, Tm is the melting
temperature and boundary heat fluxes are the same as in Eq. (6).

A problem in both modeling approaches is the geometrical evolution of the solid-
liquid-gas triple junction γ (t). This can be directly seen for the interface-tracking
approach, because due to the non-material evolution of the solid-liquid interface, the
normal velocities vn,s , vn,l and vn,ls of the adjacent boundaries cannot be fulfilled
at once. This incompatibility will be left open for the model and we will address it
in the numerical method in the next section.

3 Numerical Method

The numerical solution is based on an ALE finite element method for the
Navier–Stokes equations with a free capillary surface using the FORTRAN-Code
“NAVIER” [1] in a 2d rotational symmetric version. Coupling the flow problem
with energy conservation using the interface-tracking approach is substantially
based on [2]. For the interface-capturing approach, the finite element method [3]
has been adapted to solve Eq. (7). In either case, the subproblems for fluid flow,
energy and geometrical evolution are decoupled from each other. For a detailed
description of all methods and results see [4].

We now address the discrete evolution of the triple junction γ (t) as sketched
in Fig. 3 and how the overdetermination due to vn,s , vn,l and vn,ls is resolved. For
convenience, we will not add additional indices to indicate discrete quantities and
use the same notation as before. In the interface-tracking approach, we simply omit
one condition and set the velocity v of γ (t) according to

v · nls = vn,ls and

{
v · ns = vn,s

v · nl = vn,l
for
vn,ls ≥ 0 (melting)
vn,ls < 0 (solidification)

, (9)

such that the evolution of γ (t) is always tangential to ∂Ω . The violation of the third
condition can thereby be interpreted as an additional approximation error.
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Fig. 3 Discrete boundary evolution around triple junction: The evolution is determined by the
velocities in each vertex and edge midpoint. For the interface-tracking (left) as well as the interface-
capturing (right) approach, the normal velocities vn,{s,l,ls} are indicated in each point. Additionally,
the resulting velocity v of γ (t) is shown (thick)

In the interface-capturing approach, the evolution of the solid-liquid phase
boundary is not linked to the edges. Instead, Eq. (8) is adapted to the triangulation
S (t) by

Ωl(t) = ∪{S ∈ S (t) : T |S > Tm}, Γls(t) = ∂Ωl(t) ∩ Ω̊(t), (10)

such that a triangle S can change its phase state within one time step. Due to the
singular evolution, we have either no overdetermination at γ (t) due to vn,s = vn,l =
vn,ls = 0, or a singular jump of γ (t) if a neighboring triangle at the boundary
changes its phase. If this jump introduces a kink to Γl(t), which typically occurs
during melting, an artificial capillary wave due to an imbalance between surface
tension and inner forces originates at the kink.

Comparing both approaches, these capillary waves only occur in the interface-
capturing approach. On the other hand, the interface-tracking approach is not able to
handle topology changes ofΓls(t) (see Fig. 2). The remedy is to switch between both
approaches during runtime and use the best approach for each situation. Switching
between both approaches is straightforward as it requires either calculating e from
T by approximating β−1 when switching to the interface-capturing approach or
a remeshing procedure that integrates Γ̃ls(t) := ∂{x ∈ Ω(t) : T (x, t) > Tm} ∩
Ω̊(t) as Γls(t) onto edges of the new mesh when switching to the interface-tracking
approach.

4 Numerical Results

Numerical results are shown for a steel wire with diameter d0 = 0.4 mm that is
heated for 100 ms with a laser power of P = 130 W. Dimensionless quantities in
this case are Re ≈ 0.57, Pr ≈ 0.13,We ≈ 3.38 · 10−6 and Ste ≈ 4.21. Due to the
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2d rotational symmetric approach, rotational symmetry is not only assumed for the
geometrical configuration but also for the fluid flow. For the following visualization,
the 2d geometry of the wire’s bottom end is shown mirrored at the symmetry axis
to show the mesh and subdomains in different shades on the left side and the fluid
flow as well as temperature isolines on the right side.

Since topology changes during nucleation of an initial melt, the simulation is
started using the interface-capturing approach. As can be seen in Fig. 4, the melt
starts growing spherically with respect to the laser spot and thermal circulation
determines the fluid flow. Capillary waves do not occur in this phase, since the lower
boundary is straight. After the melt reaches a sufficiently large volume, remeshing
is performed to switch to the interface-tracking approach for the melting phase.

Shape changes due to surface tension occur as soon as the triple junction γ (t)
reaches the radial boundary. As shown in Fig. 5, the melt starts forming a semi-
sphere before growing further into an upwards moving full sphere. In this phase the
fluid flow gets about 100 times larger compared to thermal circulation seen before.
Due to overheating, melting continues for another 107 ms after laser switch-off.

Switching back to the interface-capturing approach, solidification starts begin-
ning from the solid material and thermal circulation becomes predominant again.
Since a nearly perfect sphere has already been formed at the wire’s bottom end,
the geometry barely changes and artificial capillary waves do not occur. Later on,

Fig. 4 End of nucleation phase: Switch from interface-capturing (zoomed out left, middle) to
interface-tracking approach (right) at t = 0.32 ms

Fig. 5 Melting and solidification: Formation of a semi-sphere at t = 6.5 ms (left), upwards
moving full sphere at t = 100 ms (middle) and solidification from all sides at t = 400 ms (right)
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topology is changing due to simultaneous solidification originating from the free
capillary boundary. Finally, solidification ends at t = 605 ms and a preform with an
upset ratio of s ≈ 7.3 and a nearly perfect spherical shape has been achieved.

5 Conclusion

Neither the interface-tracking nor the interface-capturing approach is capable of
simulating the whole master forming step in a satisfying manner. Since drawbacks
of both approaches occur in different time periods, a combined approach based
on alternation between both methods has been proposed. By doing so, the whole
process can be simulated in a satisfying manner without suffering from any
drawback of either method.
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Polynomial Chaos Approach to Describe
the Propagation of Uncertainties
Through Gas Networks

Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray,
and Anatoly Zlotnik

Abstract The ability of gas-fired power plants to ramp quickly is used to balance
fluctuations in the power grid caused by renewable energy sources, which in turn
leads to time-varying gas consumption and fluctuations in the gas network. Since gas
system operators assume nearly constant gas consumption, there is a need to assess
the risk of these stochastic fluctuations, which occur on shorter time scales than
the planning horizon. We present a mathematical formulation for these stochastic
fluctuations as a generalization of isothermal Euler equations. Furthermore, we
discuss control policies to damp fluctuations in the network.

1 Introduction

The low cost of natural gas has driven an expansion of gas-fired power plants. In
parallel, there has been an expansion of renewable power generation such as wind
or solar power. Due to their limited controllability, other grid resources must respond
to counteract fluctuations. Different types of controlling the intermittent resources
are under consideration. But the use of fast-responding traditional generation, like
gas-fired power stations, is the current state-of-practice [14]. Whereas gas systems
operators have traditionally met demands that evolve slowly in a well-known
pattern, the control of intermittent generation causes unknown fluctuations on a
shorter time scale [6, 7].

The meaningfulness of mathematical models depends on the scale of phenomena
of interest. Algebraic models may be sufficient to describe average states in a gas
network [3, 15]. If there is interest in dynamics on shorter time scales, isothermal
Euler equations, which form a 2 × 2 system of hyperbolic balance laws, provide a
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suitable model [2, 19]. A mathematical theory for hyperbolic systems on networks
has been developed for the Euler equations [9] and for the p-system [8].

Extensions to stochastic influences are only partial. Sampling-based methods
use numerical quadrature to compute the statistics of interest, which leads to high
computational cost [1]. Therefore, a splitting into a stationary and a fluctuating
component is proposed in [5–7].

At the expense of higher computational cost, we describe uncertainties in nonlin-
ear systems, where the gas dynamics may deviate significantly from steady states.
We borrow the idea to represent stochastic processes by orthogonal polynomials
from [4, 10, 12, 16–18]. This approach is known as stochastic Galerkin formulation
with a generalized polynomial chaos (gPC) expansion. The stochastic input is
represented as a truncated gPC series expansion. It is substituted into the governing
equations and projected by a stochastic Galerkin method to obtain deterministic
evolution equations for the gPC modes. To the best of our knowledge, there is
currently no hyperbolic stochastic Galerkin formulation for fluid dynamic equations
on networks. We propose to handle boundary conditions in a sample-based way,
while the stochastic Galerkin formulation is used within the pipe. This flexible
ansatz allows to consider various coupling conditions.

2 Stochastic Gas Flow on Networks

For simplicity, we study a single node, whereL ingoing and R outgoing pipes meet.
The stochastic density of the gas ρ(t, x; ξ) and the mass flux q(t, x; ξ), defined
on (t, x) ∈ [0, T ] × [0, xend], are parameterized by a possibly multidimensional
random variable ξ and are described by the isothermal Euler equations

∂

∂t

(
ρ(j)(t, x; ξ)
q(j)(t, x; ξ)

)
+ ∂

∂x

(
q(j)(t, x; ξ)

q(j)(t,x;ξ)2
ρ(j)(t,x;ξ) + a2ρ(j)(t, x; ξ)

)
= − f

2D

(
0

q(j)(t,x;ξ)|q(j)(t,x;ξ)|
ρ(j)(t,x;ξ)

)
.

(1)

The parameters are the speed of sound a > 0, the friction factor f > 0 and the
diameter D > 0. We write y := (ρ, q)T as abbreviation and consider determinis-
tic initial values y(j)(0, x; ξ) = y(j)0 (x) only. Stochastic coupling conditions for

ingoing pipes y(j)� (t; ξ) := y(j)(t, xend; ξ) with j = 1, . . . , L and outgoing pipes

y
(j)
r (t; ξ) := y(j)(t, 0; ξ) with j = L+ 1, . . . , L+ R, which have the same spatial

and material properties, are implicitly given by L+ R algebraic equations

C : R
2(L+R) → R

L+R, C
[
y
(1)
� , . . . , y

(L)
� , y(L+1)

r , . . . , y(L+R)
r

]
(t; ξ) = 0.

(2)
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To set remaining degrees of freedom, we assume the source term being neg-
ligibly small near and inside pipe intersections. For subsonic flows there is
one negative and one positive characteristic velocity. Lax curves, which are
tangent to the eigenvectors of the Jacobian of the flux function, are denoted as
L�,r (·; y) : R

+ → R
2, θ �→ L�,r (θ; y) and connect the old traces within the pipe

with the new traces at the edge. These curves are found e.g. in [8]. The new traces
are determined by

C
[
L�
(
θ(1); y(1)�

)
, . . . ,L�

(
θ(L); y(L)�

)
, Lr

(
θ(L+1); y(L+1)

r

)
, . . . ,Lr

(
θ(L+R); y(L+R)

r

)]
(t; ξ) = 0.

We summarize coupling conditions for two pipes, namely one ingoing (in) and
one outgoing (out).

1. Compressors: There is conservation of mass, i.e. q(out)(t, 0; ξ) = q(in)(t, xend; ξ),
and the pressure law can be described by fixing the following:

Boost Ratio ρ(out)(t, 0; ξ) = BR(t)ρ(in)(t, xend; ξ) (BR)

Output Pressure a2ρ(out)(t, 0; ξ) = OP(t) (OP)

2. Gas-fired power plant: The pressure is preserved, i.e. ρ(out)(t, 0; ξ) = ρ(in)

(t, xend; ξ). A prescribed withdrawal w(t) determines the remaining boundary
conditions by

q(out)(t, 0; ξ) = q(in)(t, xend; ξ)−w(t). (GP)

A junction with one ingoing (j = 1) and two outgoing pipes (j = 2, 3) is
modelled by postulating equality of pressure and conservation of mass, i.e.

ρ(1)(t, xend; ξ) = ρ(2)(t, 0; ξ) = ρ(3)(t, 0; ξ) and q(1)(t, xend; ξ) = q(2)(t, 0; ξ)+ q(3)(t, 0; ξ).
(JU)

These conditions form the boundary control that regulates in-, outflows and
compressor power.

3 Stochastic Galerkin Formulation

The functional dependence on the stochastic input is described a priori as a series
expansion

GK [y](t, x; ξ) :=
K∑
k=0

ŷk(t, x)φk(ξ), ŷk(t, x) := E
[
y(t, x; ξ)φk(ξ)

]

E
[
φ2
k (ξ)

] . (PC)
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An orthogonal gPC basis is chosen such that E
[
φi(ξ)φj (ξ)

] = 0 for all i �= j .
Using a multiindex notation k := (k1, . . . , kN ) we may extend definition (PC) to
the multidimensional case as

GK [y](t, x; ξ) :=
∑

‖k‖1≤KPC

ŷk(t, x)φk(ξ) with φk(ξ) := φk1(ξ1) · . . . · φkN (ξN).

(mPC)

Expansion (mPC) is of the form (PC) with K = (N +KPC)!(N !KPC!)−1 − 1.
Hence, the computational complexity grows fast, although it is a sparse basis [12].
A stochastic Galerkin formulation of the balance law (1) is deduced in [11]
by inserting expansion (PC) into Eq. (1). The formulations of the nonlinear
terms have no explicit expression. We mention here only that the gPC modes
ρ̂ := (ρ̂0, . . . , ρ̂K )

T and q̂ := (q̂0, . . . , q̂K)
T are described by a hyperbolic balance

law of the form

∂

∂t

(
ρ̂

q̂

)
+ ∂

∂x

(
q̂

q̂2

ρ
(ρ̂, q̂)+ a2ρ̂

)
= − f

2D

(
O

q̂|q|
ρ
(ρ̂, q̂)

)
(3)

with O := (0, . . . , 0)T and we refer the interested reader to [11]. For a fixed real-
isation ξ the old traces at the edges are GK

[
y(j)

]
(t, 0; ξ) and GK

[
y(j)

]
(t, xend; ξ).

The new traces are determined by the coupling conditions (2). Their gPC modes
are

ŷ
(j)

k (t, xend) =
E

[
y
(j)
� (t; ξ)φk(ξ)

]

E
[
φ2
k (ξ)

] and ŷ
(j)

k (t, 0) =
E

[
y
(j)
r (t; ξ)φk(ξ)

]

E
[
φ2
k (ξ)

] for k = 0, . . . , K.

(4)

4 Numerical Results

All pipes have equal length xend = 100 km. The parameters are a = 376 m/s,
f = 0.01 and D = 1 m. At the beginning of each simulation the network is
in a deterministic steady state [13]. Therefore, we can apply the dimensional
transformations

t̄ := at

xend
, x̄ := x

xend
, ρ̄(j)(t̄, x̄; ξ) := ρ(j)(t, x; ξ)

ρ
(j)
0 (0)

, q̄(j)(t̄, x̄; ξ) := q(j)(t, x; ξ)
aρ
(j)
0 (0)

.
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We denote as C̄ the scaled boundary conditions and solve the scaled system

∂

∂t̄

(
ρ̄(j)(t̄ , x̄; ξ)
q̄(j)(t̄ , x̄; ξ)

)
+ ∂

∂x̄

(
q̄(j)(t̄ , x̄; ξ)

q̄(j)(t̄ ,x̄;ξ)2
ρ̄(j)(t̄,x̄;ξ) + ρ̄(j)(t̄ , x̄; ξ)

)
= −xendf

2D

(
0

q̄(j)(t̄ ,x̄;ξ)|q̄(j)(t̄ ,x̄;ξ)|
ρ̄(j)(t̄ ,x̄;ξ)

)
,

C̄
[
ȳ
(1)
� , . . . , ȳ

(L)
� , ȳ(L+1)

r , . . . , ȳ(L+R)
r

]
(t̄; ξ) = 0.

The hyperbolic system (3) is solved numerically with the local Lax–Friedrichs flux
in space and Heun’s method in time. The integrals in Eq. (4) are determined by
Gaussian quadrature.

First, we consider one ingoing (left) and one outgoing pipe (right). The mass
flux at the right edge is uniformly between 30 and 50 kg/s perturbed. We sim-
ulate a gas-fired power plant with a fixed withdrawal w(t) = 10 kg/s such that
q(1)(0, x) = 50 kg/s and q(2)(0, x) = 40 kg/s. The steady state is determined for
the pressure a2ρ

(1)
0 (0) = 10 bar. Figure 1 shows the means (green) and the 1.0-

confidence regions (grey) for the pressures and mass fluxes. We observe a propa-
gation of uncertainties, which arise from the right boundary, into the domain. The
withdrawal does not cause additional fluctuations.

For a compressor, the steady state and boost ratio are chosen such that the
input pressures at the left edges of each pipe are a2ρ

(1)
0 (0) = a2ρ

(2)
0 (0) = 10 bar.

The mass flux q(1)(0, x) = q(2)(0, x) = 40 kg/s is constant. Figure 2 compares the
compressor policy (BR), using a fixed boost ratio, with the policy (OP), where the
output pressure is fixed. A deterministic output pressure makes uncertainties in the
pressure in the outgoing pipe decrease. However, perturbations of the pressure in
the ingoing pipe increase. Furthermore, fluctuations in the mass fluxes are higher.

Next, we consider a network with one ingoing (pipe 1) and two outgoing pipes
(pipe 2 and pipe 3). Initially, the network is in a steady state with a2ρ

(1)
0 (0) = 10 bar

and q(1)(0, x) = 50 kg/s, q(2)(0, x) = q(3)(0, x) = 25 kg/s. The first source of
uncertainty is the right edge of pipe 2. There, the mass flux q(2)(t, xend; ξ) is
uniformly between 15 and 35 kg/s perturbed. Independently, the right edge of pipe 3
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Fig. 1 Fixed withdrawal of gas; units for pressure in bar, mass flux in kg/s
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Fig. 2 Two pipes coupled by a compressor; units for pressure in bar, mass flux in kg/s; t = 60 min
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Fig. 3 Junction with one ingoing and two outgoing pipes satisfying the coupling conditions (JU);
units for pressure in bar, mass flux in kg/s

is uniformly between 20 and 30 kg/s smaller perturbed. Figure 3 shows how larger
perturbations from pipe 2 propagate into pipes 1 and 3. Note the non-monotonic
increase in the standard deviation in pipe 3 after 60 min, although the width of the
confidence region is monotone decreasing. This is because the perturbations at the
left side are peak-shaped, whereas those at the right side are uniformly distributed.

5 Summary and Outlook

We have analyzed the propagation of uncertainties, which arise from unknown
gas consumption, through systems of gas pipes. Uncertainties are represented as
polynomial chaos expansions and their propagation is described by isothermal Euler
equations. Control policies to damp fluctuations have been compared numerically.
A combined simulation of gas-grid systems, as well as regulation policies that
guarantee pressure and mass fluxes in a prescribed confidence region are a matter
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of further research. The influence of nonlinear terms compared to linearized models
should be studied.
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Mathematical Modelling of Nanocrystal
Growth

Claudia Fanelli, Timothy G. Myers, and Vincent Cregan

Abstract We will describe a model for the process of synthesizing nanoparticles of
a specific size from a liquid solution. Initially, we will consider a single particle
model that accounts for monomer diffusion in solution around the particle and
kinetic reactions at the particle surface. For the far-field bulk concentration, a
mass conservation expression is used. Based on a small dimensionless parameter,
we propose a pseudo-steady state approximation to the model. The model is then
extended to a system of N particles. Numerical solutions for the time-dependent
average particle radius compared against experimental data are shown to have
excellent agreement.

1 Introduction

Nanoparticles are units of matter with dimensions between 1 and 100 nanometers
(nm) that have gained a lot of interest during recent decades, due to their wide
variety of applications in biomedicine, environmental-related problems, electronics
and catalysis [5]. They have unique chemical, physical, mechanical, and optical
properties. Gold nanoparticles provide an excellent example: at the nanoscale, the
motion of the gold’s electrons is confined and, because of that, they react differently
with light compared at a larger scale. The result is that gold nanoparticles are not
yellow as we expect, but can appear purple or red. Moreover, adjusting their size,
gold nanoparticles can be tuned according to the purpose: for example, they can
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selectively accumulate in tumors in order to identify diseased cells and to target
laser destruction of the tumor avoiding healthy cells.

It is clear that many properties of nanoparticles are size dependent. Hence, the
ability to create nanoparticles of a specific size is crucial. In order to do this, we
need a clear understanding of the growth process.

Using the precipitation method (i.e. the creation of a solid from a solution)
monodisperse spherical nanoparticles can be generated. The standard approach is
to apply the classical La Mer and Dinegar synthesis strategy where nucleation and
growth are separated [4]. Moreover, the growth involves two different stages: the
focusing period, where the mean radius of the particles increases rapidly, and the
defocusing period, where the growth gets slower and the size distribution broadens.
The first phase leads to the desired result of monodisperse nanoparticles. In the
second phase we can observe a phenomenon called Ostwald ripening, a process by
which larger particles grow at the expense of the smaller ones, which dissolve due to
their much higher solubility. This process produces monomer, which is subsequently
used to support growth of the larger particles. However, this simultaneous growth
and dissolution leads to the unwanted defocusing of the particle size distribution
(PSD). Recently, it has been shown that the PSD can be refocused by changing
the reaction kinetics [1]. The mathematical challenge is to model the process of
synthesizing nanoparticles of the required size from a liquid solution.

2 Mathematical Model

Growth occurs due to the diffusion of monomer molecules from the bulk to the
surface of the nanoparticles of radius r . The monomer concentrationC(r, t) follows
the diffusion equation described by

∂C

∂t
= D

r2

∂

∂r

(
r2 ∂C

∂r

)
, rp < r < rp + δ (1)

where D is the diffusion coefficient and r is the distance from the center of the
particle with radius rp. We consider a diffusion layer of width δ around the particle,
where the concentration adjusts from Ci , which is the monomer concentration
adjacent to the surface, to Cb, the far–field concentration. Growth requires Cb > Ci
and it is assumed δ � rp. The concentration C is subject to

C(rp, t) = Ci, C(rp + δ, t) = Cb(t), C(r, 0) = C0, (2)

where the value C0 represents the initial well-mixed and uniform concentration of
the monomer solution. Note that in practice Ci is difficult to measure, hence it is
a standard to work in terms of the particle solubility Cs , which is defined by the
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Ostwald–Freundlich equation. In this case the boundary condition may be written,

C(rp, t) = Cs + D

k

∂C

∂r

∣∣∣
r=rp

= C∞ exp

(
α

rp

)
+ D

k

∂C

∂r

∣∣∣
r=rp

(3)

where C∞ is the solubility of the bulk material. The parameter α is the capillary
length and it is usually of the order of 1–6 nm. In the LSW theory it is assumed that
α � r in order to omit higher terms of the exponential expansion. However, when
α ≈ r , at the start of the growth process, it can play a dominant role. The expression
for the time-dependent bulk concentration Cb is obtained via mass conservation of
the monomer atoms in the particle and surrounding solution. The volume of solute
per particle is 1/N0, where N0 is the population density and noting that the molar
volume VM = Mp/ρp, we obtain

Cb(t) ≈ C0 − 4π

3

ρp

Mp
N0r

3
p = C0 − 4πN0

3VM
r3
p. (4)

The particle radius rp is also an unknown function of time that can be determined
by balancing mass added to the crystal with the incoming monomer flux, hence

drp
dt

= VMD∂C
∂r

∣∣∣
r=rp

, rp(0) = rp,0, (5)

where rp,0 the initial particle radius.

3 Pseudo-Steady State

The time scales suggest that diffusion is a much faster process than growth, hence
the concentration has sufficient time to equilibrate to its steady-state value as the
growth slowly proceeds. As the ‘constants’ of integration may be time-dependent
and come from applying the boundary conditions where the radius depends on
time, the evolution is better described as a pseudo–steady state. Neglecting the time
derivative in (1) and defining Cs = Ceq to be constant, we obtain

C = Cb + kr2
p

D(rp + δ)+ kδrp
[
Cb − Ceq

] (
1 − δ + rp

r

)
. (6)

The assumption δ � rp will reduce (6) to

C = Cb + kr2
p

(D + krp)δ
[
Cb − Ceq

] (
1 − δ

r

)
, (7)
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hence

drp
dt

= Dk

D + krp
[
a3 − b3r3

p

]
(8)

where a3 = VM(C0 − Ceq) and b3 = 4πN0/3. The model is invalid for small
times because, provided the fluid is initially well-mixed, the width of the adjustment
zone where the concentration increases from the particle edge to the bulk value
δ is such that δ(0) = 0 < rp. Moreover, various authors have assumed that the
process is driven solely by diffusion or surface kinetics, which leads to a slightly
simpler solution form. However, we can note that for purely diffusion driven growth
the value of the concentration in the solute adjacent to the particle must be exactly
equal to the equilibrium concentration of the particle throughout the process, and the
surface kinetics limit requires that the concentration is constant in space throughout
the process. From this point of view it seems clear that the reductions are physically
unrealistic.

When the pseudo-steady assumptions hold, setting δ � rp and taking Ceq =
C∞eα/rp to be constant leads to an implicit solution for t (r) of the form

t − t0 = 1

6a2bk

[{
ln
a2 + abrp + b2r2

p

(a − brp)2 − ln
a2 + abrp0 + b2r2

p0

(a − brp0)2

}

+ 2
√

3

{
arctan

(
a + 2brp√

3a

)
− arctan

(
a + 2brp0√

3a

)}]
.

The arctan term is always negligible compared to the log term and if it is dropped
from the model the errors will be of the order 0.1%. Removing this term we find
that both diffusion and kinetic driven processes are accurately approximated by a
solution of the form

rp = rm

2

[
1 + 2 f (rp0) exp

(
t−t0
G

)−
√

−3 + 12 f (rp0) exp
(
t−t0
G

)]
[−1 + f (rp0) exp

(
t−t0
G

)] . (9)

A feature made clear from the parameter G = (ak + bD)/(6a2b2kD) is that ak
and bD are interchangeable: it does not matter if we define them the opposite
way round, the result is the same. Physically this means that the model cannot
distinguish between diffusion or reaction driven growth. An important consequence
of this analysis is the observation that there are at most two independent controlling
parameters for the growth model, namely G, rm. If the maximum radius, rm, is
measured then there is only a single controlling parameter, whereas previous authors
have used up to eight. With just the single fitting parameter, we may obtain more
accurate results, as shown in Fig. 1. We compare the results from Eq. (9) with the
models analysed in four different papers. In all cases, Eq. (9) provides a better
approximation. For further details see Myers and Fanelli [6].
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Fig. 1 Comparison of the model (blue solid lines) with four different models (red dashed lines)
and their experimental values (black dots): Chuang et al. [3] (top left), Bullen et al. [2] (top right),
Pan et al. [7] (bottom left) and Su et al. [9] (bottom right)

4 The N Particles System

We now consider a system of N particles that follow a normal standard distribution.
The bulk material is assumed well-mixed and the particles are separated at large
distances compared to their radii such that there are no interparticle diffusional
interactions, therefore we may consider the same equations obtained before for each
particle in the system. Note that now the mass balance has to take into account that
we have the contribution of N particles. Thus, we call ri the ith particle radius,
ri,0 its initial value and Cs,i its solubility, and we write the ordinary differential
equation (8) for each particle. Finally, the equation for the mass conservation
becomes

Np

N0
MpC0 = MpCb(t)

⎡
⎣Np
N0

− 4π

3

Np∑
i=1

ri
3

⎤
⎦+ 4πρp

3

Np∑
i=1

ri
3. (10)

In Fig. 2 the model is compared with the experimental study of Peng et al. [8] for the
growth kinetics of cadmium selenide (CdSe) nanoparticles in a nonaqueous solution.
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Fig. 2 Standard deviation and mean radius evolution of a system of 1000 CdSe nanoparticles
(solid line) compared to experimental values of Peng et al. [8] (dots)

5 Conclusions

We presented a model for the growth of a single nanoparticle, which was extended
to a system of N particles. The analysis of the model leads to several important
conclusions. First of all, it was shown that the standard pseudo-steady state model
is invalid for early times, leading to incorrect values for the diffusion and surface
kinetic coefficient when the fitting analysis includes all the experimental data. It is
also shown that the model cannot distinguish between diffusion or surface reaction
driven growth and the simplifications made following this criteria are physically
unrealistic. Moreover, an explicit formula for the variation of the radius as a
function of time, depending on just two unknown non-dimensional parameters was
presented. This makes data fitting a much simpler process.
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A Mean-Field Evacuation Simulation

Claudia Totzeck

Abstract We discuss a mean-field simulation of an evacuation scenario. We model
the crowd which needs to be evacuated using a probability measure μ. The
controls are represented by external assistants formulated by ordinary differential
equations. The task of evacuation is written as optimal control problem. Under
the assumption that μ has an L2-density, we state the corresponding first order
optimality condition using a Lagrangian approach in the L2-topology. Based on this
we solve the problem with an instantaneous control algorithm. Simulation results
of an evacuation scenario underline the feasibility of the approach and show the
behaviour that is expected to fit the requirements posed by the cost functional.

1 Introduction

The modelling and simulation of large particle systems were investigated by many
research groups in the last decades. Applications range from school of fish to flocks
of birds, herd of sheep and crowds of pedestrians [2, 3, 7]. One frequent modelling
assumption is the three-phase model of interaction. It postulates that individuals
have repulsive influence on each other, if their distance is very small. On the other
hand, if the individual is alone and finds others far away, he or she tends to move
towards the crowd. And in case the individuals are surrounded by others with
distance in the range of their comfort zone, there is neither repulsive nor attractive
interaction [6]. This kind of interactions can be modelled with the help of potentials
proposed by Cucker and Smale [8] or D’Orsogna et al [9]. Due to the curse of
dimensions it is common practise to approximate the large particle system using a
mean-field approximation. A first numerical comparison of the particle model and
the mean-field model can be found in [1], which shows that the behaviour of the
kinetic and the particle model agrees for a large number of individuals.
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A natural extension of the models is the optimisation of the crowd behaviour
using external agents as controllers. Due to the high dimensions of the state models,
we need tailored optimisation techniques for the simulation. In the following we
use an instantaneous control approach which updates the controllers based on the
current states. Compared to an optimal control approach, this has the advantage
that we do not need to store the full information of the forward solve to update
the controllers. The instantaneous control approach was successfully applied to
control traffic flow [10] and the Navier–Stokes equations [11]. In the following we
model an evacuation scenario using a probability measure μ to model the crowd
and assistants described by a ODE system. The velocities of the assistants are the
controls. We formulate the task as optimal control problem and derive its first order
optimality system under the assumption that μ has a L2-density. This allows us to
use a standard Lagrangian approach in the L2-framework which has the advantage
that the adjoint equations can be implemented similarly to the state equation. We
acknowledge that the natural topology corresponding to μ would be the Wasserstein
metric, but then the adjoint would be vector-valued and thus inappropriate for
numerical investigations. The relations of first order optimality systems in L2 and
Wasserstein sense mentioned here will be discussed in all details in [5].

The article is organized as follows: in Sect. 2 we describe the state model. Then
we discuss the objective functional that models the task of leading the crowd to an
assembly point Edes and state the optimal control problem. In Sect. 3 we state the
first order optimality conditions for the control problem using theL2-topology. This
serves as basis for the instantaneous control algorithm which we employ for the
numerical results shown in Sect. 4.

2 State Model and Control Problem

The state model is given by a partial differential equation coupled to ordinary
differential equations (ODE) system for the assistants. Let d denote the dimension of
the state and velocity space and [0, T ] the time interval of interest. The probability
measure modelling the crowd is denoted by μ ∈ C ([0, T ],P2(R

d ×R
d )), μ : t �→

μ(t, x, v), the positions of the M assistants are collected in the vector g :=
(gi)i=1,...,M ∈ C ([0, T ],RdM).We propose the dynamic

∂tμ+ ∇x · (v μ) = ∇v · ((K1 ∗ μ+K2 − αv)μ), μ(0, x, v) = μ0(x, v),

(1a)

d

dt
g = u, g(0) = g0. (1b)
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The interactions are defined throughK1 andK2 which we assume to be gradients of
potentials P1 and P2. Indeed, for the numerics we choose the Morse potentials [9]

Pi(x, y) = Ri exp(−|x − y|/ri)+ Ai exp(−|x − y|/ai), i ∈ {1, 2} (2)

K1(x, y) = ∇xP1(x, y), K2(x) =
M∑
k=1

∇xP2(x, gk(t)). (3)

The repulsion and attraction forces are adjustable via the strength variables Ri,Ai
and the distance variables ri, ai for i = 1, 2, where the index 1 corresponds to
the interaction of the crowd and the index 2 to the interaction of the crowd and
assistants. The velocities of the assistants collected in u are the controls of the
problem. We propose the following cost functional to model the evacuation

J (μ, u) =
∫ T

0

σ1

4T
|V(μ(t))|2 + σ2

2T
|E(μ(t))− Edes|2 + σ3

2MT
‖u(t)‖2dt, (4)

with variance and center of mass given by

V(μ(t)) :=
∫

Rd×Rd

|x|2 dμ(t, x, v), E(μ(t)) :=
∫

Rd×Rd

x dμ(t, x, v),

respectively. Hence, the first term forces the controls to keep the crowd close
together and the second term intends to lead the crowd to the predefined assembly
point Edes. The third term is the usual penalty term. On the one hand it minimizes
the energy used by the controllers, on the other hand it regularizes the cost functional
and helps in the proof of the existence of the minimizer.

We assume to have a maximal velocity umax for the assistants, which is
represented by the admissible set

Uad = {u ∈ L2 : ‖u‖ ≤ umax}.

The control problem is summarized as

Problem 1 Find (μ, u) ∈ C ([0, T ],P2(R
d × R

d))× Uad such that

min
(μ,u)

J (μ, u) subject to (1). (CP)

3 First Order Optimality Conditions

In the following we briefly summarize the derivation of the optimization algorithm.
Details can be found in [13], where the strategy is applied to a different application.
In the following we assume to have enough regularity for all formal computations. In
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particular, we assume that μ has a L2-density which allows to use the L2-topology
for the Lagrangian approach to compute the optimality system. Indeed, using the
standard Lagrangian approach, we formally derive the first order optimality system.
We denote the state y = (μ, g, y0) with y0 = (μ0, g0) and corresponding the state
space by Y . The adjoint states p = (ϕ, ξ, η) are assumed to belong to the space Z
with dual Z ∗. Then the Lagrangian corresponding to (CP) is given by

L (y, p, u) = J (μ, u)+ 〈e(y, u), p〉Z ∗,Z ,

where e : Y × U → Z ∗ is the state mapping given by

〈e(y, u), (ϕ, ξ)〉Z ∗,Z = −
∫ T

0

∫

Rd×Rd

(∂tϕ + v · ∇xϕ + S(μ) · ∇vϕ)μd(x, v)dt

+
∫ T

0
(
d

dt
g − u) · ξdt +

∫

Rd×Rd

ϕ(T , x, v)μ(T , x, v)− ϕ(0, x, v)μ(0, x, v)d(x, v)

−
∫

Rd×Rd

(μ(0, x, v)− μ0)ημd(x, v) + (g(0)− g0) · ηg

with η = (ημ, ηg) being the multipliers for the initial conditions. Here and in the
following we use the abbreviation

S(μ(t, x, v)) := K1 ∗ μ+K2 − αv.

Formally, solving dL
!= 0 leads to the following first order optimality condition

Proposition 1 The optimality condition for (CP) reads

∫ T

0
(
σ3

TM
u∗ − ξ) · (u− u∗)dt ≥ 0 for all u ∈ Uad, (5a)

where the adjoint p = (ϕ, ξ, η) ∈ Z satisfies

∂tϕ + v · ∇xϕ = −S(μ) · ∇vϕ + dμS(μ)[ϕ] − dμJ, d

dt
ξ = −dgS(μ)[ϕ],

(5b)

dμJ (t, x, v) = σ1

T
V(μ(t, x, v))|x − E(μ(t, x, v))|2 + σ2

T
(E(μ(t, x, v))− Edes) · x

supplemented with the terminal conditions ϕ(T , x, v) = 0 for all (x, v) and
ξ(T ) = 0.

With the help of system (5) we can derive a projected gradient descent method
to compute numerical results. In order to reduce the memory consumption, we do
not consider the optimal control problem stated above, but rather the corresponding
instantaneous control problem. The latter is obtained when restricting the above
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computations to a shorter time-interval and proceeding iteratively until the final time
T is reached. In fact, we compute the forward solution and its adjoint on one time
step before updating the controls for the next time step. See [4] for more details.

4 Simulation

The following simulation is computed on the time interval [0, 10] with M = 5
assistants. The time step is dt = 0.013. The assistants are assumed to have a
maximal velocity of umax = 0.1. The parameters characterising the interaction of
the crowd areA1 = 0.02, R1 = 0.05, a1 = 1 and r1 = 0.2. The friction parameter is
denoted by α = 0.1. The interaction parameters of the crowd and the assistants are
A2 = 0.02, R2 = 0.01, a2 = 0.5 and r2 = 0.2. The destination or assembly point
is marked in green at the position (−0.2,−0.2). The cost functional parameters are
σ1 = 0.1, σ2 = 100 and σ3 = 1e−6. These values indicate that the position of the
center of mass of the crowd is more important for the evacuation than the variance
of the crowd. The discretization stepsize in the space domain is hx = hy = 0.027
and in the velocity domain it holds hvx = hvy = 0.0014.

The implementations of the forward and adjoint systems are based on a Strang
splitting scheme [12]. We apply a semi-Lagrangian solver in the space domain and
a semi-implicit finite-volume scheme in the velocity domain. All computations are
based on a fixed grid. The semi-Lagrangian solver transports the information along
characteristic curves. To obtain these curves we solve ODEs using a second order
Runge–Kutta scheme. To assure that the terminal point of each transport step is a
grid point, we do a polynomial reconstruction based on cubic Bezier curves. In the
velocity space we employ a second order finite volume scheme where the advection
is approximated with the help of a Lax–Wendroff flux. A van-Leer limiter is used to
intercept oscillations caused by non-smooth solutions.

The optimisation algorithm computes the state solution and the corresponding
adjoint solution on one time step. Based on this information the gradient is computed
and the controls are updated. Due to the maximal velocity constraint of the
assistants, we need to project the controls to the feasible set. For more information
on the implementation and the instantaneous control approximation see [13].

The numerical results are shown in Fig. 1. We see snapshots of the evacuation
simulation at different points in time. The trajectories of the assistants are shown
in red. The current position of each assistant is represented by a red triangle. The
assembly point is highlighted by the green marker. We see that the probability
measure representing the crowd, is following the assistants appropriately. One of
the agents stays behind to attract the upper right part of the crowd. At the final time
T = 10 the crowd is gathered around the assembly point Edes as desired. These
results show that the proposed algorithm is appropriate to model a simple evacuation
scenario using controllable assistants.
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t = 0.7 t = 2.86

t = 5 t = 7.1

t = 8.6 t = 10

Fig. 1 Simulation of the evacuation with 5 assistants
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A Poroelasticity Model Using
a Network-Inspired
Porosity-Permeability Relation

Menel Rahrah, Fred J. Vermolen, Luis A. Lopez-Peña,
and Bernard J. Meulenbroek

Abstract Compressing a porous material or injecting fluid into a porous material
can induce changes in the pore space, leading to a change in porosity and permeabil-
ity. In a continuum scale PDE model, such as Biot’s theory of linear poroelasticity,
the Kozeny–Carman equation is commonly used to determine the permeability of
the porous medium from the porosity. The Kozeny–Carman relation assumes that
there will be flow through the porous medium at a certain location as long as
the porosity is larger than zero at this location. In contrast, from discrete network
models it is known that percolation thresholds larger than zero exist, indicating that
the fluid will stop flowing if the average porosity becomes smaller than a certain
value dictated by these thresholds. In this study, the difference between the Kozeny–
Carman equation and the equation based on the percolation theory, is investigated.

1 Introduction

Having a good estimation of permeability is of a pivotal importance for the
description of different physical processes. However, mainly due to the complexity
of the connected pore space, it has been very difficult to formulate satisfactory
theoretical models for the relation between the porosity and the permeability. One of
the most largely used methods remains the Kozeny–Carman approach. In this study,
we briefly introduce a new approach for the permeability that is derived on a micro-
scale network model. We refer to this approach as the network-inspired relation. The
Kozeny–Carman relation assumes that the pore space is fully connected, therefore,
flow through the porous medium is possible as long as the average porosity is
larger than zero. In contrast, the new network-inspired approach states that the
permeability is positive only if the porosity is larger than a specific percolation
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threshold, that depends on the topology of the network. As application, we consider
the flow of an incompressible fluid through a poroelastic porous medium.

2 Governing Equations

The model provided by Biot’s theory of linear poroelasticity with single-phase
flow [1] is used in this study to determine the local displacement of the grains of a
porous medium and the fluid flow through the pores, assuming that the deformations
are very small. We assume that the fluid-saturated porous medium has a linearly
elastic solid matrix and is saturated by an incompressible Newtonian fluid. Let
Ω ⊂ R

3 denote the computational domain with boundaryΓ , and x = (x, y, z) ∈ Ω .
Furthermore, t denotes time, belonging to a half-open time interval I = (0, T ], with
T > 0. The initial boundary value problem of an incompressible fluid flow in a
deformable porous medium in the two-field (u/p) formulation, where u and p are
the unknown functions, is stated as follows [4]:

equilibrium equations: − ∇ · σ ′ + (∇p + ρgez) = 0 onΩ × I ; (1a)

continuity equation:
∂

∂t
(∇ · u)+ ∇ · v = 0 onΩ × I, (1b)

where σ ′ and v are defined by the following equations

Biot’s constitutive equations: σ ′ = λ(∇ · u)I + μ(∇u + ∇uT ); (2)

Darcy’s law: v = −κ
η
(∇p + ρgez). (3)

Here, σ ′ denotes the effective stress tensor, p the pore pressure, ρ the fluid density,
g the gravitational acceleration, u the displacement vector, v Darcy’s velocity, λ and
μ the Lamé coefficients; κ the permeability of the porous medium and η the fluid
viscosity. In addition, appropriate boundary and initial conditions are specified in
Sect. 3.

2.1 The Porosity-Permeability Relations

In this study, we consider the spatial dependency of the porosity and the permeabil-
ity of the porous medium. The porosity θ is computed from the displacement vector
using the porosity-dilatation relation (see [2, 3])

θ(x, t) = 1 − 1 − θ0

exp(∇ · u)
, (4)
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Fig. 1 The normalised
permeability κ/κ0 as a
function of the normalised
porosity θ/θ0
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with θ0 the initial porosity. Subsequently, the permeability can be determined using
the Kozeny–Carman equation [5]

κ(x, t) = d2
s

180

θ(x, t)3

(1 − θ(x, t))2 , (5)

where ds is the mean grain size of the soil. The Kozeny–Carman relation assumes
that the permeability becomes zero if and only if the porosity also becomes zero. A
new approach for the relation between the porosity and the permeability is inspired
by the fluid flow through the edges (channels) of a network. In a network with a
random topology, the network-inspired porosity-permeability relation states:

κ(x, t) =
⎧
⎨
⎩

0 θ ≤ θ̂
θ−θ̂
θ0−θ̂ κ0 θ > θ̂

, (6)

where κ0 is the initial permeability computed using the Kozeny–Carman relation
and θ̂ the percolation threshold, which represents the minimal porosity needed to
have connection via voids or channels from one end to the other. This percolation
threshold depends on the topology of the network. The permeability obtained using
both relations is depicted in Fig. 1, as function of the porosity.

3 Problem Formulation

The following numerical experiment is designed to study the different relations for
the porosity and the permeability. As shown in Fig. 2, the infiltration of a fluid
into a porous medium is studied. In addition, a vertical load is applied on a part
of the top edge of the domain, in order to create a region with a high density of
the grains which will emphasise the difference between the porosity-permeability
relations. We assume that the flow pattern is axisymmetric. Therefore, we determine
the solution for a fixed azimuth. Hence, the computational domainΩ is an L-shaped
two-dimensional surface with cylindrical coordinates r = (r, z) and boundary Γ .
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Fig. 2 Sketch of the setup for the aquifer problem: (left) physical problem and (right) numerical
discretisation. Taking advantage of the symmetry of geometry and boundary conditions, only the
grey region is discretised

The fluid is injected into the soil through a filter placed on boundary segment Γ3,
using a pump pressure. The vertical load is applied on boundary segment Γ8.
Furthermore, the injection tube is fitted with a casing (boundary segments Γ2 and
Γ4) and a perforated section (boundary segment Γ3) to prevent loose material from
entering and potentially clogging the injection tube. More precisely, the boundary
conditions for this problem are given as follows:

κ

η
(∇p + ρgez) · n = 0 on r ∈ Γ \ Γ3 ∪ Γ7; (7a)

p = ρg(H − z)+ ppump on r ∈ Γ3; (7b)

p = ρg(H − z) on r ∈ Γ7; (7c)

σ ′n = 0 on r ∈ Γ1 ∪ Γ7; (7d)

u · n ≤ 0 on r ∈ Γ2 ∪ Γ3 ∪ Γ4; (7e)

(σ ′n) · t = 0 on r ∈ Γ \ Γ1 ∪ Γ7 ∪ Γ8; (7f)

u · n = 0 on r ∈ Γ5 ∪ Γ6; (7g)

σ ′n = (0,−σ ′
0)
T on r ∈ Γ8, (7h)

where t and n are the unit tangent and the outward normal vectors. Further, ppump
is a prescribed pump pressure and σ ′

0 is the intensity of a uniform vertical load.
Note that the boundary conditions on boundary segment Γ5 appear as a result of
symmetry. The initial condition is u(r, 0) = 0 for r ∈ Ω .

4 Numerical Results

To solve the discretised problem of (1), the Galerkin finite element method with
triangular Taylor-Hood elements [2], is adopted. Quadratic basis functions are used
for the approximation of the displacements, while the pressure field is approximated
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Table 1 An overview of the
values of the model
parameters

Property Symbol Value Unit

Young’s modulus E 35 · 106 Pa

Poisson’s ratio ν 0.3 –

Fluid viscosity η 1.307 · 10−3 Pa · s

Fluid density ρ 1000 kg/m3

Gravitational acceleration g 9.81 m/s2

Initial porosity θ0 0.4 –

Mean grain size ds 314 · 10−6 m

Pump pressure ppump 105 Pa

Uniform load σ ′
0 107 N/m2

by continuous piecewise linear functions. In addition, the backward Euler method is
applied for the time integration. The computational domain is an L-shaped surface
with radius R = 1.0 m, height H = 2.0 m, filter radius Rf = 10.0 cm and filter
length Lf = 1.0 m. The filter is placed between z = 0.5 and z = 1.5, while the
vertical load is applied between r = 0.5 and r = 1.0. The domain is discretised
using a regular triangular grid, with Δr = Δz = 0.05. The time step size is chosen
to be τ = 0.5. Furthermore, values for some model parameters have been chosen
(see Table 1).

The Lamé coefficients λ and μ are related to Young’s modulus E and Poisson’s
ratio ν by: λ = νE

(1+ν)(1−2ν) andμ = E
2(1+ν) . The impact of the porosity-permeability

relations on the fluid flow is defined in this study as the impact on the time average of
the volumetric flow rateQ at a distanceR−Rf from the injection filter. We compute
the volume flow rate using the velocity field as described by Darcy’s law (3).
The velocity field is obtained from the gradient of the pressure ∇p by applying
the finite element method with piecewise linear approximation. For the Kozeny–
Carman relation as well as for the network-inspired relation,Q is depicted in Fig. 3
as a function of the percolation threshold. In this figure,Q is normalised by dividing
on the time average of the volumetric flow rate obtained by the Kozeny–Carman
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Fig. 3 The time average of the volumetric flow rateQ as a function of the percolation threshold θ̂
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relationQKC . As expected from Fig. 1, for low percolation thresholds the network-
inspired relation results in higher flow rates than the Kozeny–Carman relation.
In addition, the flow rate changes significantly as a function of the percolation
threshold. Hence, the fluid flow depends on the topology of the connected pore
space.

5 Conclusions

In this study, a three-dimensional poroelasticity problem is designed in order to
analyse the applicability of the microscopic network-inspired porosity-permeability
relation on the macro-scale. Furthermore, the results obtained with this relation are
compared with the Kozeny–Carman relation, which is often used for this type of
physical problems. To determine the displacements of the grains that are needed to
compute the porosity, Biot’s model for poroelasticity is used. Since the topology of
macro-scale porous media is not known, computations are performed with different
values of the percolation threshold. The numerical results indicate that for low
percolation thresholds the network-inspired relation results in higher flow rates than
the Kozeny–Carman relation, as expected from Fig. 1. In addition, it is shown that
the flow rate changes significantly as a function of the percolation threshold which
means that the water flow depends on the topology of the connected pore space.
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Motion of a Spherical Particle Attached
to the Interface Between Two Viscous
Fluids

Galina Lyutskanova-Zhekova and Krassimir Danov

Abstract The motion of small particles, attached to fluid interfaces, is important
for the production of 2D-ordered micro- and nano-layers, which are applied for the
production of solar panels, CCDs, and bio-memory chips. The problem was solved
semi-analytically for water/air interface and three-phase contact angles α ≤ 90◦,
using the Mehler–Fox transformation (Zabarankin, Proc R Soc A 463:2329–2349,
2007). We propose a numerical method, based on the gauge formulation of the
Stokes equations for two viscous fluids, for calculating the velocity field, pressure,
and drag force coefficient. The method is applicable for all values of α and fluid
viscosities. The weak singularity of the solutions at the three-phase contact line is
studied and the respective phase diagram is calculated. The isolation of the type
of singularity helps us to construct an efficient second-order numerical scheme,
based on the ADI approach. The problem is solved numerically for different particle
positions at the interface and ratios of the fluid viscosities.

1 Introduction

The 2D layers of micro- and nano-particles, attached to interfaces, are related to
the production of antireflective surface coverages in solar panels, CCD, and bio-
memory chips. The quality of these layers depend on the values of the contact angle,
α, and the mobility of particles at interfaces. For small particles, α is measured from
the translational motion of individual particles, attached to fluid–fluid interfaces [1].
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The principles of the numerical solution of the respective Stokes problem and
the drag force coefficient are studied in [2]. If one of the fluid phases is air, then
the problem has a semi-analytical solution in terms of the Mehler–Fox integral
transformation [6], which is valid only for particles more immersed in the fluid
phase (α ≤ 90◦). Analytical approximations for the drag and diffusion coefficient
of a spherical particle, attached to flat interface between two immiscible fluids, are
constructed for the case of a vanishing viscosity ratio between the fluid phases [3].

The aim of the present study is to develop an effective numerical method for
calculating the velocity field, pressure, and drag coefficient in the case of two fluid
phases with arbitrary viscosities and three-phase contact angles 0 < α < 180◦.

2 Formulation of the Problem

A small spherical particle of radius R is attached to the interface between two infi-
nite incompressible viscous Newtonian fluids (Fig. 1). For small capillary numbers,
the perturbations of the dividing surface due to the particle motion are so small that
the surface is flat. Thus, the three-phase contact line is a circumference of radius
rc = R sin α, where α is the central angle (Fig. 1). Its center is chosen to be the
origin of Cartesian coordinate system with axis of revolution Oz and unit basis
vectors ex , ey , and ez.

The particle translates parallel to the interface along the y-axis with known
constant velocity V . The fluid motion is so slow that the inertia terms in the Navier–
Stokes equations can be neglected. Thus, we can describe the sought-out local
velocities vk for both phases as solutions of the dimensionless Stokes equations,
∇ · vk = 0 and ∇pk = ∇2vk (k = 1, 2), where pk is the pressure on the both
sides of the interface, ∇ is the spatial gradient and subscripts “1” and “2” denote the

Fig. 1 (a) Sketch of a spherical particle attached to the plane interface between two fluids. (b)
Toroidal coordinate system of revolution with coordinates τ and σ
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upper and lower phases, respectively. For simplicity of notations, all dimensionless
geometrical parameters are scaled with rc, the velocity vectors—with V , and the
pressures—with ηkV/rc, where ηk is the dynamic viscosity. In order to close the
system, we apply the following boundary conditions (BCs) for the Stokes problem:
the no-slip BCs at the particle surface Sp for both fluid phases vk = ey (k = 1, 2);
the kinematic BCs at the interface v1 = v2 and v1 · ez = v2 · ez = 0; the dynamic
BC at the interface μ1(∂v1/∂z)× ez = μ2(∂v2/∂z)× ez, where the dimensionless
viscous coefficients are given byμk := ηk/(η1+η2) (k = 1, 2). Finally, the physical
values of vk and pk vanish at large distances from the particle.

The original form of the Stokes equations is not convenient for a computer
modeling because it consists of a system of elliptic differential equations for vk
and unknown functions pk . In fact pk are calculated, using the continuity equation
∇ · vk = 0. Thus, we use the gauge formulation [5], which introduces vector,
wk , and scalar, ξk , potentials by using the following definitions: ∇2wk = 0 and
∇ξk = wk − vk (k = 1, 2). The scalar potentials are defined with respect to a
constant, so that we define ξk → 0 at infinity. The substitution of wk and ξk into
the continuity equation leads to the Possion equation, ∇2ξk = ∇ · wk, and that into
the momentum balance equation—to the formula pk = −∇2ξk . Thus, the Stokes
problem is reduced to a well-defined system of elliptic partial differential equations
(PDEs). In such a way, the number of degrees of freedom increases and, thus, we
specify the following additional boundary condition μ1(∂ξ1/∂z) = μ2(∂ξ2/∂z) at
z = 0.

The BCs for the vector potentials in cylindrical coordinates (r, ϕ, z) follow
directly from the BCs for the velocities and in particular: the no-slip BCs have the
form wk − ∇ξk = ey at Sp; the kinematic BCs are w1r = w2r , w1ϕ = w2ϕ,

w1z − (∂ξ1/∂z) = w2z − (∂ξ2/∂z) = 0 at z = 0; the dynamic BCs have the form
μ1(∂w1r/∂z) = μ2(∂w2r/∂z), μ1(∂w1ϕ/∂z) = μ2(∂w2ϕ/∂z).

In cylindrical coordinates (r , ϕ, z) (Fig. 1), the Fourier expansion of the solution
with respect to the polar angle, ϕ, contains only the first Fourier mode [2, 6]. The
components of the vector and scalar potentials can be presented as wkr = akr sin ϕ,
wkϕ = akϕ cosϕ, wkz = akz sin ϕ, ξk = bk sinϕ. The amplitudes (akr , akϕ , akz,
bk) depend on the radial, r , and vertical, z, coordinates and the 3D problem is
reduced to 2D system of eight PDEs in cylindrical coordinates. The system is
closed with respective BCs for the amplitudes of the first Fourier mode. From
numerical viewpoint, it is convenient to uncouple the considered PDE system,
using new functions: akr = 2(uk0 + uk2), akϕ = 2(uk0 − uk2), akz = 2uk1,
bk = bk1 + uk0r + uk2r + uk1z (k = 1, 2). Thus, we considerably simplify the
problem to the following homogeneous system of PDEs (k = 1, 2): L0[uk0] =
0, L1[uk1] = 0, L2[uk2] = 0, L1[bk1] = 0, where the dimensionless Laplace
operators Lj have the following form:

Lj [u] = 1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2 − j2u

r2 (j = 0, 1, 2). (1)
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To construct an efficient numerical scheme, the complex domains are trans-
formed into rectangles, introducing modified toroidal coordinates τ and σ (Fig. 1):
rh = 1 − τ 2 and zh = 2τ sin σ , where h = 1 + τ 2 − 2τ cos σ is the normalized
metric coefficient. The position of the fluid–fluid interface and those of the upper
and lower particle surfaces are σ = 0, σ = σ1 = α and σ = σ2 = α − π ,
respectively (Fig. 1). At the axis of revolution one has τ = 1 and the three-phase
contact line corresponds to the pole, A+, where τ = 0. The expressions for the
Laplace operators, Lj (j = 0, 1, 2), in toroidal coordinates are

Lj [u] = h3

4τ (1 − τ 2)

∂

∂τ

[
τ (1 − τ 2)

h

∂u

∂τ

]
+ h3

4τ 2

∂

∂σ

(
1

h

∂u

∂σ

)
− j2h2

(1 − τ 2)2
u. (2)

The functions in the system of PDEs are dependent on each other because of the
BCs. For the first Fourier mode in terms of the new functions, ukj and bk1 (k =
1, 2 and j = 0, 1, 2), we derive as follows: (1) for the no-slip BCs at the upper and
lower particle surfaces (k = 1, 2 and σ = σk) :

2
[
(1 + τ 2) cos σ − 2τ

]
uk2 +

[
(1 − τ 2) sin σ

]
uk1 = 0, (3)

uk2 + (1 − τ 2) sin σ

8τ

∂

∂σ

[
bk1 + 1 − τ 2

h
(uk0 + uk2)+ 2τ sin σ

h
uk1

]
= 0, (4)

uk0 − uk2 = 1

2
, bk1 + 1 − τ 2

h
(uk0 + uk2)+ 2τ sin σ

h
uk1 = 0; (5)

(2) for the scalar potential and the kinematic BCs at the fluid–fluid interface (σ = 0):

u10 = u20, u12 = u22, b11 = b21, (6)

uk1 − (1 − τ )2
2τ

∂bk1

∂σ
− 1 − τ 2

2τ

∂

∂σ
(uk0 + uk2) = 0 (k = 1, 2); (7)

(3) for the scalar potential and the dynamic BCs at the fluid–fluid interface (σ = 0):

μ1
∂b11

∂σ
= μ2

∂b21

∂σ
, μ1

∂u10

∂σ
= μ2

∂u20

∂σ
, μ1

∂u12

∂σ
= μ2

∂u22

∂σ
. (8)

At the axis of revolution (τ = 1), the natural BCs for symmetry of the solutions are
used. The values of all functions vanish at infinity. At the three-phase contact line
(τ = 0), all functions are constants, which do not depend on σ .
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3 Singularity Diagrams

The semi-analytical results for water–air interface and α ≤ 90◦ [6] show that the
pressure solutions are regular at the three-phase contact line. In the general case,
functions pk can have a weak singularity at τ = 0, while vk are regular functions
at τ = 0. The boundary between singular and regular solutions for the pressure
at τ = 0 corresponds to the weaker possible logarithmic singularity, pk = (Ak +
Bkσ) ln τ sin ϕ + · · · , where Ak and Bk are unknown constants. We substitute this
asymptotic expansion with respect to τ (τ → 0) into the Stokes equations and solve
the obtained leading order problem for the velocity functions. Subsequently, the
general representations are substituted into the BCs. This leads to a homogeneous
linear system for Ak and Bk , which has a nontrivial solution when its determinant is
equal to zero, i.e.

μ1
sin(2α)− 2α cos(2α)

sinα − α cosα
= μ2

sin(2α)− 2(α − π) cos(2α)

sin α − (α − π) cosα
. (9)

The solutions of (9) are shown in Fig. 2 (note that by definition μ2 = 1 − μ1). For
0.2 < μ1 < 0.8, the values of pressure at the contact line are constants for all angles
α. The pressure has no singularity for all values of the viscosities when the contact
angle obeys the inequality αb < α < π − αb, where αb = 51.2733◦ is the smallest
positive root of the equation sin(2αb) = 2 (αb − π) cos(2αb).

The pressure function has a stronger than logarithmic singularity, i.e. pk =
[Ak cos(λσ)+ Bk sin(λσ)] τλ sin ϕ + · · · , inside the regions, shown in Fig. 2b,
where from a physical viewpoint −0.5 < λ < 0. Following an analogous procedure
for the solution of the leading order problem, we arrive to the respective transcen-
dental equation for the singularity parameter, λ. Figure 2 shows the dependence of λ
on the central angle, α, and viscosity ratio,μ1, for α ≤ αb. Because of the symmetry,
the picture is analogous replacing μ1 with μ2 and α with π − α. One sees that with

Fig. 2 (a) Diagram of the weak singularity of functions pk . (b) Lines with fixed values of the
singularity parameter, λ, in the region α < αb
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the decrease of viscosity ratio μ1 the pressure has stronger singularity. For example,
the dashed line in Fig. 2 shows that if μ1 = 0.1075, then the strongest singularity
of λ = −0.1 takes place at central angle equal to 16.8◦. In all cases λ > −0.5, so
the singularity is weak and the integral from the pressure over the particle surface
converges (the drag force is finite).

4 Numerical Method and Numerical Results

In order to solve the problem, we introduce numerical time t and seek the stationary
solution of the parabolic problem:

∂fk
∂t

= T [fk] + S[fk] (k = 1, 2), (10)

with appropriate BCs imposed, where fk = (uk0, uk1, uk2, bk1) is the vector of the
solutions at phase k and S[·] and T [·] are operators that act at σ - and τ -direction,
respectively:

S[fk] = h ∂
∂σ

(
1

h

∂fk
∂σ

)
, T [fk] = (T0[uk0], T1[uk1], T2[uk2], T1[bk1]), (11)

Tj [u] = hτ

1 − τ 2

∂

∂τ

[
τ (1 − τ 2)

h

∂u

∂τ

]
− 4τ 2j2

(1 − τ 2)2
u. (12)

Let us introduce a rectangular mesh with time step size δt and space step sizes δτ
and δσ in τ and σ -direction, respectively. On this grid, the solution at the moment t
is denoted by f(0)k and this at the moment t+2δt—by f(2)k .Using the Crank–Nicolson
method, we reduce the problem to the following algebraic system:

(U − δtT)(U − δtS)[f(2)k − f(0)k ] = 2δtT[f(0)k ] + 2δtS[f(0)k ], (13)

where U is the unit operator and the BCs are approximated, using second-order
finite differences [4]. In order to solve the latter, we use the alternative direction
implicit method—at first, we solve the problem in the τ -direction (U − δtT)[f∗k] =
2δtT[f(0)k ]+2δtS[f(0)k ] and then in the σ -direction (U−δtS)[f(2)k − f(0)k ] = f∗k . In such
a way, we reduce the problem to two linear algebraic systems, which can be solved
using the direct elimination numerical method.

In order to validate the results, we compare the values of the drag coefficient, f,
computed using our method to the semi-analytic results [6] for α ≤ 90◦ and fluid–air
interface (see Table 1). The computations are performed for δσ = 0.017, δτ = 0.05
and different time steps δt . The relative error is less than 1% and the CPU time is
less than 10 s in all studied cases. As it can be expected, the decrease of the grid
size decreases the relative error of f . For example, if α = 15◦ and the rectangular



Motion of a Spherical Particle Attached to the Interface Between Two Viscous Fluids 95

Table 1 Comparison between the calculated and exact values of the drag force coefficient, f

α (deg) δt CPU time (s) f (calculated) f (exact) Rel. error (%)

15 0.10 2.534 1.4306 1.4374 0.473

30 0.15 7.332 1.4013 1.3392 0.612

60 0.45 7.504 1.2522 1.2509 0.104

75 0.60 5.242 1.1473 1.1370 0.906

90 0.60 8.798 0.9916 1.0000 0.840

Fig. 3 Pressure distribution for air/fluid interfaces: (a) α = 90◦. (b) α = 60◦

domain is divided by 20 × 20 then the relative error is 0.16%,while for 30 × 30—it
decreases to 0.017%. The respective CPU time for calculations increases from 4.3
to 11 s—it triples by increasing the number of space-discretisation steps by factor
of 2.25. Analogous trends hold true for all values of the contact angle.

Figure 3 shows the pressure distribution for air/water interface and two values of
the three-phase contact angle. It is well illustrated that the pressure maximum for
α = 90◦ is at the contact line, while that for α = 60◦—it is shifted along the particle
surface inside the fluid phase. Using the proposed numerical method, it is possible
to perform a systematic study for wide ranges of physical parameters.

5 Conclusion

The hydrodynamic problem for the translation of a spherical particle, attached to a
fluid/fluid interface, is simplified using the gauge formulation. The introduction of
appropriate functions and toroidal coordinates reduces the 3D Stokes equations to
a 2D system of eight homogeneous PDEs. The system is coupled because of the
complex BCs. The developed efficient ADI type second-order numerical scheme
gives possibility for fast and precise calculations of all physical parameters (velocity
vector and pressure fields, and drag force coefficient).
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Refinement of Surfaces of Industrial
Objects

Gábor Renner and György Gyurecz

Abstract Refinement of industrial (e.g. car-body) surfaces is performed by evalu-
ation of the shape and distribution of reflection lines or highlight lines. In the paper,
we propose a method to semi-automatically evaluate and improve the quality of
the highlight line structures. The correspondence between the shape of the highlight
lines and the surface parameters is highly complicated and strongly nonlinear. In the
paper, a genetic process is proposed for the computation of the parameters (control
points) of the surfaces, that corresponds to the corrected highlight line structure.

1 Introduction

Car-body surfaces are high quality (Class A) surfaces. For the evaluation of their
quality, sensitive methods were developed; these are mainly the evaluation of
the shape and distribution of reflection lines or highlight lines. A highlight line
structure is a series of highlight lines, they represent visually the reflection and shape
error characteristics of the surface. Highlight lines are calculated as the surface
imprint of a linear light source array, placed above the surface. The structure of the
highlight lines is evaluated by their pattern and the individual shape of the highlight
lines. High-quality surfaces can be characterized by uniform or smoothly changing
highlight line patterns and smooth highlight lines.

A method for displaying highlight lines was developed by Beier and Chen [1].
Methods for designing and correcting surfaces using highlight lines were first
published by Klass [2] and later Kaufmann and Klass [3]. The relation between
highlight lines and the defining parameters of the surfaces can be expressed by a
highly non-linear equation system, which is too time consuming to solve, and the
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result is not always satisfactory. The method developed by Zhang and Cheng [4]
introduces a great number of simplifications to obtain a linear system of equation to
modify surface parameters through highlight lines.

In the paper, we propose a method to evaluate and improve the quality of the
highlight line structures. The evaluation is carried out in two steps. First, distance
and angle functions are computed to quantify the error in the highlight line structure.
Then the highlight points are corrected, and based on these points the corrected
highlight line segments are constructed. For the computation of the parameters of the
surfaces that correspond to the corrected highlight line structure a genetic process
was developed. The genetic operators and parameters of the genetic process are
adjusted to the specific technical problem of surface refinement by highlight lines.
We discuss the genetic representation and the fitness function of the genetic process.

2 Highlight Lines

Highlight lines are calculated as a set of discrete highlight points. These are points
on the surface where the corresponding surface normal and the light source line
intersect each other. Let L(λ) = A+Bλ a line representing a light source, where A is
a point on L(λ), and B is a vector defining the direction of the line (Fig. 1).

The shape of a surface S(u,v) is defined by an array of control points Pi,j
in Bézier, B-spline or NURBS representations. The signed perpendicular distance
d(u,v) between the normal N(u,v) at a surface point S(u,v) and the linear light source
is:

d(u, v) = |[B × N(u, v)] · [A− S(u, v)]|
‖B × N(u, v)‖ (1)

For a surface point on the highlight line, d(u,v) = 0 holds, which must be solved
for the (u,v) parameter of the surface.

A

N(u,v)
S(u,v)

B
L(  )

A-S(u,v)

d(u,v)

Fig. 1 Distance interpreted between surface normal and the light source
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The identification of the defected highlight curve segments Ci , i = 0. . . N, is
performed interactively, and their endpoints Ai and Bi and tangents Ti 1 and Ti 2 at
the endpoints are searched.

3 Refinement of the Highlight Line Pattern

The pattern of the defected highlight curve segments is evaluated on sequences sj ,
j = 0. . . M of highlight points E0,0,. . . Ei,j . . . EN,M spanning over the defective
segment in crosswise direction. The sequences include correct highlight curve
points E0,j , E1,j and EN−1,j , EN,j at the ends; they ensure continuity of corrected
highlight segments with the adjoining unaffected region. We evaluate the error in
the structure of the highlight pattern by dj distance and ∝ j angle functions defined
on sj , sequences. The distance function represents the inequalities of the structure
in crosswise direction; the angle function characterizes the structural error along the
highlight curves.

Point sequences start with points E0,0. . . E0,M parametrically equally spaced on
highlight curve C0. They are determined by the location of the furthest endpoints Ai
and Bi and the M number of sequences. The subsequent points are calculated based
on the shortest perpendicular distance between subsequent highlight curves.

Let E′
i,j = Ci(t) a point on the current, and E′

i−1,j = Ci−1(t) a point on the
previous highlight curve (Fig. 2). Point E′

i,j is in the perpendicular direction if

H′
i,j = E′

i,j − E′
i−1,j

H ′
i,j · T ′

i,j = 0

Fig. 2 Calculation of the evaluation points
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where

T′
i,j = C′

i (t) at H′
i,j

The location of evaluation point Ei,j is in the surrounding of E′
i,j

where:

Ti,j ·Ti−1,j = 1

Ti−1,j = C′
i (t) at Hi−1,j

The distance error function is defined by the distances di,j between the consecu-
tive sequence elements:

di,j = ∥∥Ei+1,j
∥∥− ∥∥Ei,j

∥∥ (2)

The angle error function is defined by angles αi,j between the consecutive
vectors Hi :

αi,j = arccos
(

Hi+1 · Hi∥∥Hi+1
∥∥ · ‖Hi‖

)
(3)

In Fig. 3, an example of distance function is presented. For the angle function a
similar figure can be obtained. The sequence i = 0..N of the functions correspond
to the defective highlight curves. The rapid and irregular changes represent the
defects in the highlight line structure. The function values at i = −2,−1, N+1,
N+2 correspond to the adjoining correct highlight curves.

Fig. 3 The distance evaluation function before and after correction
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4 Calculation of Corrected Highlight Curves

A correct highlight line pattern can be characterized by smooth evaluation functions,
without oscillations shown in Fig. 3, and maintains continuity with the adjoining
correct pattern. For the correction of highlight curves, smooth evaluation functions
are calculated by least square approximation method. Continuity with the correct
highlight line structure of the adjoining region is ensured by constraints on endpoints
and end tangents Ti 1 and Ti 2. The tangents are calculated as: Tj 1= E0,j − E1,j
and Tj 2= EN−1,j − EN,j .

Based on the new evaluation functions, points of the new highlight curves are
obtained. The points Ri,j of the new highlight curves are calculated starting from
point Ei,j |i=1 and moving in the direction αi,j with the distance di,j defined by the
angle and distance functions. The new Ci highlight curves are computed as cubic
B-Splines, constructed from the new R( i,j) points by constrained least squares curve
fitting.

5 Surface Correction by Genetic Algorithm

Genetic algorithms apply the mechanism of evolution in finding optimal solution
to complex non-linear problems (Goldberg [5]). The components of a GA process,
including the coding (chromosomes) genetic operators (crossover, mutation), fitness
function depend on the specific technical problem to be solved. Their selection must
be analyzed and tested carefully. Our goal is to adjust the parameters of surfaces that
produces the desired highlight lines by using a GA. Although GA does not provide
unique mathematical solution to the problem, it is able to arrive at a nearly optimal
solution. In the paper, we discuss two basic items of the genetic process; genetic
representation and fitness function. More details on the genetic process can be found
in [6], where the setting of other genetic parameters and also their influence on the
genetic process is discussed.

Surface modifications are performed by modifying the control points Pi,j .
Control points, that have influence on the surface region to be corrected are included
in the genetic representation. A gene gγ consist of control point modification

gγ =  Pi,j (x, y, z,) (4)

where x, y and z are Cartesian co-ordinates of  Pi,j , while γ is the identifier of
genes within a chromosome of the surface.

Fitness function consists of two components: accuracy and shape similarity.
Accuracy is based on distance, while shape similarity on angle difference of tangent
vectors between corresponding points of actual and desired highlight curves.
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Denote hdesi the desired, and hcrei the highlight line, created during the genetic
search and di (tk) the deviation between corresponding highlight points at different
parameters t of highlight lines. Then, the distance error is

fdist =
l∑
i=1

⎛
⎝
ni∑
k=1

(
di (tk)− 1

ni
·
ni∑
k=1

di (tk)

)2

· 1

ni

⎞
⎠ , (5)

where di (tk) = ∣∣hcrei (tk)− hdesi (tk)
∣∣ while ni denotes the number of examined

highlight points. Variable l indicates the number of highlight lines. Angle difference
fang is calculated in the same manner, except the deviation is composed as follows:

di (tk) = arccos

(
hdesi (tk) · hcrei (tk)∣∣hdesi (tk)

∣∣ ∣∣hcrei (tk)
∣∣

)
(6)

Distance error component promotes the creation of accurate highlight lines, but their
shape is often poor. The angle error component behaves in the opposite way: it
promotes producing highlight lines with good shape similarity, but on the expenses
of their accuracy. We eliminated the disadvantages of fitness components by letting
the distance dominate in the beginning of the search and make the angle dominate
at the end.

6 Results

The proposed surface refinement method was tested on several industrial surfaces of
different complexity, size and error domains. The application of our method starts
with the evaluation and correction of the highlight line structure of the surface as
discussed above. The surface correction is performed by a genetic search with a
fitness function reflecting accuracy and shape similarity. Thus, fitness provides a
combined measure of the deviation between erroneous and corrected highlight line
structures. The change of fitness through generations is shown in Fig. 4 in case of
the test example. GA runs until the user defined stop criteria (e.g., the residual error)
is fulfilled.

Figure 5 demonstrates results visually by the example of a car-body panel. Left
picture shows the surface with the original erroneous highlight lines, the right
picture shows the surface with the corrected highlight lines. The defected region
is indicated by white circle. The quality of the surface compared to the original
one can be evaluated by the reduction of the fitness to 6% of its starting value, and
visually by comparing the highlight line patterns.
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Fig. 4 The change of fitness through generations

Fig. 5 Car-body surfaces; defective and corrected surfaces

7 Conclusion

Evaluation of the quality and refinement of industrial surfaces based on their high-
light line structure is presented. The defective surface area is selected interactively,
the evaluation and correction of highlight lines is automated. Defining parameters
(control points) of the surfaces, that corresponds to the corrected highlight line
structure are computed through a genetic algorithm, without computing highly
nonlinear correlation between control points and highlight lines. Best performing
genetic operators, fitness function, strategies and parameters of the genetic process
were determined. Although genetic algorithms are not able to find a unique optimal
solution, they are suitable to search for a nearly optimal solution in a very complex
nonlinear search space, and thus, to solve very complex technical problems.

The method is applicable to surfaces of any kind of CAD representations, and
wide range of errors in the highlight line structure and consequently in the surface.
The applicability of the method was proved on several car-body and other industrial
surfaces.
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Extended Gaussian Approximation
for Modeling the Quantum Dynamics
of Localized Particles

Omar Morandi

Abstract We derive a quantum model that provides some corrections to the clas-
sical motion of nearly localized particles. Our method is based on the assumption
that the particle wave function is strongly localized and represented by a Gaussian
shape. As an application of our method, we describe the motion of a particle in a 2D
non harmonic potential.

1 Introduction

During the last decade, various approaches have been proposed in order to describe
the quantum dynamics of nearly localized particles. New models that extend
the concept of classical trajectory to the quantum mechanical context have been
proposed [1–11]. One of the major advantages of developing methods in which the
particle dynamics shows analogies with the classical Newtonian dynamics, is the
possibility to interpret the quantum motion in term of a classical corrected transport.

In this paper, we derive the evolution equation for a localized quantum particle.
We develop a model that preserves the classical description of particle motion in
terms of trajectories. We assume that the wave function is described by a Gaussian-
like wave packet. In order to apply our method to a general situation, in our
ansatz we insert a set of time dependent parameters that modulate the Gaussian
shape. Finally, the particle motion is expressed by a system of nonlinear differential
equations.

The Gaussian beam approximation is a popular method used to describe nearly
localized particles [12]. Similarly to the Gaussian beam approximation, our expan-
sion procedure is based on the projection of the solution over a set of functions
which are modulated by a Gaussian whose width changes in time according to the
quantum evolution equation.
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Our approach is designed to describe the motion of heavy particles which are
typically well localized. We will discuss the application of our method to the 2D
motion of a particle in the presence of a confining non harmonic potential.

In this paper we extend the results obtained in Ref. [13], where the 1D case with
some extension to the 2D problem, was considered.

2 Description of the Model: Extended Gaussian Ansatz

We consider a particle defined by the wave function ψ(r) ∈ L2(Rd), where d is
the dimension of the space. The particle evolution is given by the time dependent
Schrödinger equation

i
∂ψ

∂t
=
(
−1

2
Δr + U(r)

)
ψ . (1)

In order to simplify the notation, we set the Planck constant and the particle mass to
one. U is the external potential that is assumed to be known. Our model consists on
the following ansatz. We represent the particle wave function in polar coordinates
and we shift the spatial coordinate by a time dependent vector s ∈ R

d . We expand
both the phase and the modulus of the wave function on the basis set of the harmonic
oscillator centred in s. We obtain

ψ(r) =
√√√√

∞∑
{n}=0

a{n}(t)hσ{n}(r − s)e−
1
2

∑d
n=1 r

2
i σi+i

∑∞
{n}=0 χ{n}(t)hσ{n}(r−s) (2)

We have introduced the compact notation {n} to indicate the sequence of d integers
{n} .= (n1, n2, . . . , nd) and

hσ{n}(r)
.=
d∏
i=1

hσini (ri ) . (3)

The functions hσini (ri) are the normalized Hermite functions. For the details con-
cerning the definition of hσini (ri ) we refer to [13, Eq. (19)]. In the previous equation,
χ{n} and a{n} together with s ∈ R

d and σi with i = 1, . . . , d represent the new
unknowns of the problem. In particular, the parameter s ∈ R

d represents the mean
of the particle position and σi provides the width of the Gaussian packed.

The main interest of our approach is to derive the evolution equation of the
parameters. By using the ansatz of Eq. (2) in Eq. (1) after some algebra it is possible
to derive the set of evolution equations for all the parameters in a closed form. We
give here the final form of the evolution equations for the phase χ{n}, the modulus
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a{n}, the Gaussian width σ and the centre of the expansion s of the particle wave
function:

dχ{n}
dt

=
⎛
⎝
d∏
j

σ
1/4
j

⎞
⎠ ∑

{r},{s}

(
R{r}R{s}

4
− χ{r}χ{s}

) d∑
i=1

σi
√
ri siA

1
ni ,ri−1,si−1

∏
j �=i

A
1
nj ,rj ,sj

−
d∑
i=1

σiniR{n}
2

+ πd/4

4

d∑
i=1

σ
3/4
i

(√
2δni ,2 − δni ,0

)⎛⎝
d∏
j �=i
σ

−1/4
j δnj ,0

⎞
⎠

+ 2
d∑
i=1

χ{n;ni→ni+1}Siσi
√

2(ni + 1)+
∑
i

Mi

(
2ni + 1

2
χ{n} +√

(ni + 2)(ni + 1)χ{n;ni→ni+2}
)

+
∫

Rd

U(s − r)hσ
{n}e

−∑d
n=1 r

2
i
σi dr (4)

da{n}
dt

= −
d∑
i=1

Mi√
2σi

[
a{n}

2ni + 1

2
+ a{n;ni→ni−2}

√
ni (ni − 1)

]
− 2

d∑
i=1

a{n;ni→ni−1}σiSi
√
ni

+ 2

⎛
⎝
d∏
j

σ
1/4
j

⎞
⎠ ∑

{r},{s}
a{r}χ{s}

d∑
i=1

σi
√
ni siA

1
ni−1,ri ,si−1

∏
j �=i

A
1
nj ,rj ,sj

(5)

dσi
dt

= − 2Miσi (6)

dsi
dt

=√2σiSi , (7)

where Mi = 2σi
∑

{m} a{m}
(
χ{m}mi + χ{m;mi→mi+2}

√
(mi + 1)(mi + 2)

)
and

Si = ∑
{m} a{m}χ{m;mi→mi+1}

√
mi + 1. In particular, our set of equations contains

the additional parameters Rn which can be expressed in terms of the variables a{n}.
The details concerning this point are given in Ref. [13]. Moreover, δ denotes the
Kronecker’s delta and the matrix A is defined as

A
σ
n,r,s =π1/4

∫

R

hσn (x)h
σ
r (x)h

σ
s (x)e

−x2σ dx .

Explicit form of A can be found in Ref. [13]. Finally, for the indexes we have
introduced the following notation: {r; ri → a} .= (r1, . . . , ri−1, a, ri+1, . . . , rd )

represents the set of indexes in which the i-th term is substituted by a.

3 Numerical Simulations: 2D Case

In order to illustrate our method we perform a numerical test case. We solve the
evolution equations in the case of a two-dimensional system. We consider the
following double well potential

U(x, y) = − ωx

2
x2 + V3x

3 + V4x
4 + V5xy + V6x

2y + ωy

2
y2 . (8)
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Fig. 1 Evolution of a initially localized Gaussian pulse inside the potential profile (8) (Coloured
lines represent the contour plot of U ). The panel refers to the time t = 3. The contour plot of the
solution is depicted by blue lines, the trajectory of the centre of the wave function and the trajectory
of the classical motion are depicted by, respectively, a light blue and a red line

We take the following values of the parameters ωx = 1, ωy = 1, V3 = 0.1,
V4 = −0.05, V5 = 0.2, V6 = 0.1. As initial condition, we have considered a
Gaussian beam localized around the left minima of the potential profile. The initial
momentum p = (1, 1). The result of the simulation for the time t = 3 is depicted
in Fig. 1. In our simulation, we have solved the system of Eqs. (4)–(7) by fixing
a cut off on the indexes {n}. We evaluate the following parameters: an1,n2 , χn1,n2

with 0 ≤ n1 ≤ 3, 0 ≤ n2 ≤ 3. We plot by continuous blue curves the contour of
the solution. In order to follow the evolution of the particle, we have depicted the
trajectory of the mean particle position by a light blue continuous line. In order to
appreciate the difference between the classical and the quantum corrected dynamics,
we have depicted by red continuous curves the classical trajectories obtained by
solving the Newton equation. Our simulation shows that the quantum solution
differs significantly from the classical one. Taking into account the spreading of
the wave function around the mean particle position becomes crucial in order to
capture the correct behaviour of the particle motion.
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4 Conclusions

We have derived a quantum model for particles characterized by wave functions
with Gaussian shape. The oscillations of the particle wave function around the mean
particle position are reproduced by Hermite polynomials. The particle motion is
described by a set of time dependent parameters. We have applied our method to
investigate the motion of a nearly localized particle in a 2D structure.
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Reduced 3D Model of a Passive
Admixture Transport in Shallow,
Elongated and Weakly Curved Natural
Water-Stream

Konstantin Nadolin and Igor Zhilyaev

Abstract The main goal of the study is a validation of a simplified 3D mathematical
model for passive admixture spreading in shallow flows. The tested model is
oriented to the hydrological and ecological problems, and it can be applied to natural
streams like rivers and channels. The earlier proposed model of the ‘elongated,
shallow and weakly curved stream’ (Nadolin, Mat Model 21(2):4–28, 2009) takes
into account the structure of a stream-bed for evaluation of flow velocity in every
point of domain. This is a model advantage, which allows calculation of the
admixture spreading in a channel with varying width and depth more accurately
than by using in-depth averaged models. For example, we can observe the opposite
flow in a near-surface zone, which may be caused e.g. by the wind. The results of
numerical experiments show that this reduced 3D model adequately describes the
admixture spreading processes in natural streams with acceptable accuracy.

1 Introduction

Mathematical models of various types are used for evaluation of the hydrological
characteristics of streams and for simulation of the admixture spreading [3, 4, 9].
The most accurate are three-dimensional models, which are based on full equations
of turbulent motion. However, the high accuracy of these simulations cannot be
obtained in practice because the data of the real hydrological measurements are not
precise enough and no initial and boundary conditions for 3D partial differential
equations are available. In addition, the complexity and computational costs of
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numerical experiments with 3D mathematical models are increased due to the
geometry of the model domain, which is extremely elongated along the flow
direction. Natural water flows have significant difference in size of they length,
width, and depth. The ratio between the average depth and width for the typical
lowland river varies from 1:10 to 1:200.

Note, that systematical analysis of the admixture spreading in the long stream of viscous
fluid was initiated by G.I.Taylor [10, 11] and R.Aris [1]. The term “Taylor dispersion” is
now widely used in literature as the name for this problem [5].

The main aim of this work is to validate the simplified mathematical model for
spreading process in natural streams.

In [6], the equations with reduced dimensions for channel flow hydrodynamics
and mass transfer is proposed. The hydrodynamical system of the reduced 3D
mathematical model was studied in [7].

This article focuses on testing of a reduced mathematical model of a shallow and
elongated stream first proposed in [6]. The model is verified by comparing the data
of hydrological experiment, published in [2] and the results obtained on the base of
the reduced model. The numerical experiments were performed by finite-element
software COMSOL©[8].

2 Problem Statement

Let us consider a relatively slow stream in a non-deformable rigid bed z = h(x, y).
The channel flow is shallow, elongated, and weakly curved. In a mathematical sense,
the ’shallow and elongated’ assumption means that the stream bed geometry has the
ratio D : W : L ≈ ε � 1. Here D is the average depth,W is the average width and
L is the length of the section of the stream under consideration; ε � 1—a value that
is used as a small parameter. ‘Weakly curved’ means that ∂h∂y ∼ ε and ∂h∂x ∼ ε2.

Let us introduce Cartesian coordinates such that the plane (xy) is located on the
flow surface and z-axis is directed toward the bottom. We assume that the x-axis is
directed along the flow, and the y-axis is perpendicular to x and directed from the
left to the right bank. The origin lies in the inlet section at equal distances from the
banks. According to [6] the equations of the 3D reduced mathematical model for
the passive admixture transport in shallow, elongated and weakly curved stream in
dimensionless variables can be written as:

∂c
∂t

+ u ∂c
∂x

+ v ∂c
∂y

+w∂c
∂z

= ∂
∂z

(
d ∂c
∂z

)
− λc (1)

c
∣∣
t=0= c0, ∂c

∂x

∣∣∣∣
x=0

= π0,
∂c
∂z

∣∣∣∣
z=h

= ∂c
∂z

∣∣∣∣
z=ξ

= 0 (2)

∂
∂z

(
ν ∂u
∂z

)
= −ReGI, u

∣∣
z=h= 0, ∂u

∂z

∣∣∣∣
z=ξ

= 0 (3)
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∂p
∂z

= G, p
∣∣
z=ξ= 0 (4)

∂
∂z

(
ν ∂v
∂z

)
= Re ∂p

∂y
, v

∣∣
z=h= 0, ∂v

∂z

∣∣∣∣
z=ξ

= 0 (5)

∂w
∂z

= −
(
∂u
∂x

+ ∂v
∂y

)
, w

∣∣
z=h= 0 (6)

∂ξ
∂t

+ u∣∣
z=ξ

∂ξ
∂x

+ v∣∣
z=ξ

∂ξ
∂y

−w∣∣
z=ξ= 0 (7)

Here c is the concentration of admixture; u, v and w are the components of a
velocity vector along the longitudinal (x), transversal (y) and vertical (z) directions,
respectively. The known function h(x, y) describes the shape of the stream-bed and
the unknown function ξ(t, x, y) describes a slightly deformable free surface of the
flow. The known functions c0(x, y, z) and π0(t, y, z) set the initial distribution of
concentration and its inflow through the inlet, respectively.

Equations (1)–(7) contain a set of parameters: d—the dimensionless coefficient
of the turbulent diffusion in z- direction; λ—the decay factor for the admixture; ν—
the normalized viscosity, which allows taking into account changes in the viscosity
of the turbulent flow in accordance with the Boussinesq turbulence hypothesis; Re
is the Reynolds number;G is the gravity parameter and I is the slope of the flow.

For more details about derivation of Eqs. (1)–(6) see [6].

3 Solution of the Hydrodynamics System

Equations (1) and (2) form the concentration system, and Eqs. (3)–(7) form the
hydrodynamics system of the model for the shallow and elongated stream. These
subsystems are consistent according to the precision of the approximation [6].

The hydrodynamic subsystem does not depend on the concentration subsystem
and its solution can be explicitly written in the form of integrals

p = G(z− ξ), u = ReGI (J2 − ξJ1) (8)

v = ReG∂ξ
∂y
(J2 − ξJ1) (9)

w = ReG
(
I ∂
∂x
(J4 − ξJ3)+ ∂

∂y

(
(J4 − ξJ3)

∂ξ
∂y

))
(10)

Here we introduced the notations

J1 =
h(x,y)∫

z

dτ

ν
, J2 =

h(x,y)∫

z

τdτ

ν
, J3 =

h(x,y)∫

z

J1dτ, J4 =
h(x,y)∫

z

J2dτ

(11)
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The pressure and velocity components in (8) are expressed in terms of the free
surface function ξ , which is determined from the kinematic boundary condition (7).

Combination of (8) and (7) allows performing the kinematic boundary condi-
tion (7) in the following form

∂ξ
∂t

= ReG
[
I
(
∂
∂x
(J4 − ξJ3)− (J2 − ξJ1)

∂ξ
∂x

)

+ (J4 − ξJ3)
∂2ξ

∂y2 + ∂ξ
∂y

(
∂
∂y (J4 − ξJ3)− (J2 − ξJ1)

∂ξ
∂y

)]
(12)

where functions (11) and their derivatives are calculated within z = ξ (i.e. on the
free surface).

Equation (12) was solved with the finite-element software COMSOL© [8]. For
detailed description of these numerical experiments, see [7].

4 Testing the Model

To verify the proposed model, we used the data which was published in [2],
where the transfer of an admixture in the Severn River was studied. The section
of river under study flows through the territory of Wales (Great Britain) between
the settlements of Llanidloes and Caersws. In article [2], the observations of
British hydrologists, who studied the distribution of tracer—coloring matter, were
published. The diffusion coefficient of this substance is 10−6 cm/s.

The goal of that experiment was to collect and publish data of diffusive transfer
of admixture for testing mathematical models proposed by various authors. The
concentration of admixture was monitored in a section of a river about 14 km long
by 6 observation stations located downstream. British authors describe in detail the
geometry of the river-bed and the flow velocity in the considered section of the river,
as well as other hydrological characteristics of the water stream obtained as a result
of measurements that lasted more than 10 h.

The width of the channel on the considered area was measured at 86 points and
varies from 13 to 48 m with an average value of 20 m. The depth of the flow was
measured in each of the 86 sections with an interval of 1 m. (The average depth was
0.6 m.)

Considering that the average distance between measuring stations is 2 km, the
approximate value of the parameter ε is 0.01, which satisfies the requirements of
the mathematical model (1)–(7).

Thus, the British authors provided data required for the mathematical modeling
and performing computational experiments to calculate the mass transfer of passive
admixture in a natural water flow using proposed reduced 3D mathematical
model (1)–(7).

Figure 1 shows the reconstructed flow region. The reconstruction of the river-bed
geometry was made on the base of data presented in [2] for the section of the river
Severn between stations A and F.
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Fig. 1 Reconstructed stream-bed function h(x, y) and the velocity field: (a)—the horizontal plane
view (depth difference is colored according to presented scale); (b)—a set of segments with cross-
sections and colored velocity field
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Fig. 2 The concentration at times when admixture passes each of the six measurement stations
(A–F)

Figure 2 shows the values of concentration at different times. The solid line
corresponds to the concentration of a substance calculated using a reduced 3D
model of a long, shallow and slightly curved flow (1)–(7). Circles on the graph
depict the results of measurements of the concentration of a substance at times when
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the admixture flows through the cross-sections of the stream near the observational
stations.

5 Conclusions

The simulation of the passive admixture spreading in channel flows based on com-
plete 3D hydrodynamic and mass transfer equations system is very computationally
expensive. Therefore, mathematical models, which give a simplified but adequate
description of the process, could be implemented. Such models should consider the
key features of natural streams. The equations of a shallow, elongated and weakly
curved stream (1)–(7) describe the flow dynamics as a three-dimensional, however,
they are much simpler than the full 3D equations.

The proposed mathematical model of a long shallow and weakly curved flow can
be applied only for simulation of slow flows, which can be described by steady-state
model equations.

The results of the numerical simulation that are given in this article show that
the proposed reduced 3D model of a long shallow flow adequately describes its
hydrodynamics and mass transfer of the passive admixture. It can be used to
simulate the spreading of pollutants in such streams.

Acknowledgements The research is partly supported by a grant from the Vladimir Potanin
Charity Fund (project GPK-96/17). The results of the study will be used in the Master Program
“Computational Mechanics and Information Technologies”.
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European Gas Prices Dynamics: EEX
Ad-Hoc Study

Yaroslava Khrushch, Susann Rudolf, Aleksandra Detkova, and Ivan
P. Yamshchikov

Abstract This paper regards the dynamics of gas spot prices on one of European
energy exchanges—EEX. A detailed description of the price dynamics is provided
alongside with several multi-factor models for daily gas prices. An original approach
to the development of such multi-factor daily price models is proposed. Specifically,
daily price models taking into account non-integer power of time variable tend per-
form relatively well on the horizon of several weeks despite the heteroskedasticity
of the daily prices.

1 Introduction

One of the most important determinant for gas prices is crude oil price [1, 13].
There are several approaches to oil price forecasting that use regressive analysis [4,
5, 10], generalized autoregressive conditional heteroskedasticity (GARCH)-based
methods [8, 9, 11], applying support vector machines [14] or artificial neural
networks [15]. However, there is no consensus on the best approach to such problem.
Meanwhile market participants and policy makers constantly need to make price
forecasts. This paper tries to look at gas prices as is, without pinning them to the
prices of oil, and see what information can be extracted from the data per se. In
this paper we focus on the gas prices data from the EEX exchange (European
Energy Exchange AG). We describe the dataset that we have obtained from EEX
and compare different models that could be used to forecast these prices.
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2 Data Description

There are three main types of gas products that can be traded at the EEX gas spot
market: contracts with constant base volume to be delivered within 24 h on the
following day (GND or Gas-Next-Day); contracts with constant base volume to
be delivered within 48 h on the following weekend (GWE); contracts with variable
volume to be delivered within a flexible amount of delivery hours on the current
trading day (GWID).

The following data fields are available in the EEX files: Commodity ID, Daily
Reference Price per Market Area, Trading Date, Delivery Date, Market Area (which
is the place of delivery), Delivery Hours, Open Price (which is the first bid/ask
price on a Trading Date), Max Price and Min Price, referring to the maximum and
minimum price of a contract, Last Price (which is the last bid/ask price on a Trading
Date), Daily Volume and Number of Trades. The dataset is split according to the
commodity IDs (GND, GWE and GWID) and the place of delivery that corresponds
to one of the virtual trading hubs or market areas: NCG stands for NetConnect
Germany GmbH & Co. KG and GPL for GASPOOL Balancing Services GmbH
mainly refer to the gas transport facilities within Germany, whereas the TTF stands
for Gastransport Services B.V. to Dutch Title Transfer Facility and is situated in the
Netherlands.

3 Regression Model

Gas price behaviour is rather specific. It has periods of rapid growth and fast
declines. These jumps and falls could be associated with a number of reasons
starting from geopolitical events and finishing with technological break-throughs as
well as purely supply and demand market factors. Technological factors’ influence
results in long lasting trends that might be incorporated into the model on a time
horizon of several months that is also a typical time-frame for an industrial forecast.
At the same time news about scientific, technological or political shocks can affect
the markets sporadically but only for a short period of time. Can one predict gas
prices assuming that the influence of non-market factors would be sporadic and
non-lasting? How precise can one be in the forecasts that would use historical gas
data exclusively? This paper addresses these questions.

The time-series of daily gas-prices provided by EEX is stationary under aug-
mented Dickey-Fuller test for unit roots. This means that we can apply regression
analysis in order to see, which factors might influence the dynamics of gas
prices. These would naturally be weather (that could be paralleled with monthly
seasonality), day of the week, price on the day before (or a longer time-lag of the
price) etc. One would like to know which of these factors is more significant when
we talk about price dynamics. We assume that the values of the studied time-series
yt exist for all observation time points treating the series as a repetitive pattern of
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Fig. 1 Dynamics of prices for different regions with marked outliers according to Irvin criterium,
NetConnect Germany GmbH & Co. KG (left), GASPOOL Balancing Services GmbH (right)

length 5 corresponding to 5 days trading days of the week. We hope that this bias is
eventually incorporated within the seasonal component. We also introduce a more
intricate dependence on time that we further discuss in detail. Following standard
technique to the commodity pricing [2] outliers should be excluded from the time
series according to the Irvin criterion [6]. In Fig. 1 time series with highlighted
outliers are presented.

A regressand of the model is a spot price Prt , where the spot price is understood
as a Daily-Average price, however all further reasoning could be applied to a
different type of the price that one would like to forecast. Naturally, price time series
depends on several factors that can be classified into three groups: trend factors Tt ,
cyclic factors Ct and random factors Lt and At .

Trend Modelling, Tt
In [12] the trend of the electricity prices is approximated with a linear function,
however as we can see in Fig. 1 linear approximation is not a good fit for the
case. The change in the price does not have a strong dependence on time, but
is highly seasonal and has a number of visually random drops and jumps. This
makes it reasonable to use a polynomial trend for modelling such data. On the
interval t ∈ [1, 1291] growth of a polynomial Pn(t), n ∈ N is relatively high
(y ′′ = n(n− 1)Pn−2(t), n ∈ N, n > 2). If we want to model the dynamics of the
gas prices with the help of the polynomialsPn(t), the appropriate coefficients should
be of the order a · 10−6. At the same time we can look on a nonlinear regression
using the terms like t1/p, p ∈ N , see in [7]. This allows to build the following
model

Tp =
p∑
i=1

αi t
1/i + α0, T ′′

p =
p∑
i=1

αi
(i − 1)

i2
· 1

t2−1/i .

Iterating through different types of polynomials we have found the case with
p = 5 to be the most suitable with this particular task.
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Cyclic Component, Ct
Cyclic component that describe seasonality is Ct = ∑11

j=1 bj tj+
∑6
k=1 akdk+a7w,

where tj is a dummy variable for month defined as

t1 =
{

1, for June;
0, for other,

t2 =
{

1, for July;
0, for other,

· · · t11 =
{

1, for April
0, for other months.

Analogously dk is a weekly dummy variable.

Random Factors, Lt and At

The random component is standardly described as Lt = 1
σ
√

2πt
e
(t−μ)2

2σ2 t . Here we

also need to pay a separate attention to the outliers that we have mentioned above.
One can model anomaly jumps and drops seen in Fig. 1 with two variables S1
and S2. Since we can see a clear change of trend we need to introduce the third
variable S3 using the method introduced in [3]. The abnormal behaviour therefore
is described as

At =
3∑
j=1

cjSj + S3

⎛
⎝

5∑
p=1

dp+1t
1/p

⎞
⎠+ Lt ((f1 + υf4)S1 + (f2 + υf5)S2 + υf3) ,

(1)

where, υ = sin( 2πt
365.25) and S1, S2 and S3 are defined as

S1 =
{

1, if Prt > 30;
0, other,

S2 =
{

1, if Prt < 20;
0, other,

S3 =
{

1, if t < t∗ ;
0, other,

where t∗ is a moment of a trend-change, see [7].

The spot price Prt is described as Prt = Tt + Ct + Lt + At . Excluding the
outliers and determining the model coefficients with the method of least squares
one can build a forecast. Table 1 shows the estimated quality for the basic models
for all time periods as well as estimated coefficients used in these models.

Models NCG (yb), GPL (yd), TTF (yf ) take into account the prices on the
previous day (yt−1) and on the day before yesterday (yt−2). Models NCG (ya),
NCG (yc), GPL (ye) have negative coefficient associated with variable w, meaning
that the 1st day of the week tends to have a higher price than the coming days of the
week. According to TTF (ye) Monday, Tuesday and Wednesday have higher prices
than Thursday and Friday. Whereas in TTF (yf ), that takes into account the price
yesterday (yt−1) and the day before yesterday (yt−2), only Monday and Wednesday
have significant coefficients, naturally. All the models perform well enough in terms
of R2 and root-mean-square error (RMSE). Let us now compare two different time-
periods. Period II would correspond to a short-time price forecast and Period III to
the long-time one. The results are demonstrated in Table 1. Comparison of these
models for different time-intervals that presented in Table 2 shows that they all
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perform comparatively well. Variables s1 and s2 were introduced in Eq. (1) in order
to describe unexpected jumps or drops of the prices. If one wants to take further
factors into consideration (e.g. daily temperatures or some political context that
might influence the prices of gas) it is the significance of these variables that is to
change. Table 2 compares the forecasts with actual prices on different test periods.

4 Conclusion

This paper provides a simple yet flexible approach for forecasting gas prices on
EEX market exchange. Gas prices have sophisticated time dynamics and are hard
to forecast without additional data analysis (i.e. media publications, affecting the
industry, political decision and historic context). However, using several basic
techniques such as regression analysis one can estimate the price dynamics to some
extent. First of all, for a regressive model focused on gas prices one rarely needs
to include prices with time lag of more than 2–3 days. Second, despite intuitive
notions substitution of time variable with a power of it (in this particular case tr

where 1/5 � r � 1) could give better results for the forecast in terms of the RMSE
on the test period. There is a number of rules of thumb that produce comparable
forecasts, yet a more rigorous investigation of the connection between different time
scales on energy market are out of the scope of this particular work that mostly deals
with the empiric results. Third, one should apply some sort of filtering of outliers
to build a comprehensive mid-term model not even mentioning a long-term one. In
this particular paper Irwin criterion is shown to be effective.
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Modelling Time-of-Flight Transient
Currents with Time-Fractional Diffusion
Equations

M. Luísa Morgado and Luís F. Morgado

Abstract In this work we explore the use of tempered fractional derivatives in the
modelling of transient currents in disordered materials. We particularly focus on the
numerical approximation of the involved problems. As it is known, the solutions
of fractional differential equations usually exhibit singularities in the origin in
time, and therefore, a decreasing of the convergence order of standard numerical
schemes may be expected. In order to overcome this, we propose a finite difference
scheme on a time graded mesh, in which the grading exponent can be properly
chosen, taking into account the singularity type. Numerical results are presented
and discussed.

1 Introduction

Since the 1960s there is an increasing interest and research on organic semi-
conductors, due to their particular characteristics (transparency, flexibility, low
cost), as a material for the fabrication of optoelectronic devices, such as organic
solar cells, light emitting diodes and light emitting transistors. The charge carrier
mobility μ of these materials is one of the main properties of interest and the
Time-of-Flight (TOF) technique is one of the preferred methods to estimate it.
In the TOF experiment, a transient current I (t) through a thin layer of material
sandwiched between two parallel electrodes is obtained, as a result of the motion
of excess charge carriers generated by a laser or voltage pulse, under the influence
of an externally applied electric field E directed normally to the electrodes. These
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transient currents usually exhibit an anomalous dispersive character [5] with two
regions with power-law behavior, separated by the transit time ttr : ∼ t−1+α , if
t < ttr and ∼ t−1−α , if t > ttr with 0 < α < 1. An estimate for μ is calculated
from ttr , the instant when the two power-law curves intersect. Such behavior is
attributed to the trapping of carriers, in localized states distributed in the mobility
gap, for times τ , or waiting times, determined by a relaxation function Ψ (τ) with
an asymptotic time dependence of the form Ψ (τ) ∼ τ−α .

Diffusion-advection equations have been widely used to describe the evolution
of carrier density in the materials, but it is known that in the case of disordered
materials, integer order models do not describe accurately the process [8] and that
is the reason why in the latest decades the use of fractional time derivatives have
been proposed to improve those models. For example, in [3] the following model
was considered:

Dαt y(x, t) = −v ∂y(x, t)
∂x

+D∂
2y(x, t)

∂x2 + f (x, t), t ∈ (0, T ], x ∈ (0, L), (1)

with initial condition

y(x, 0) = g(x), x ∈ (0, L), (2)

and boundary conditions

y(0, t) = φ0(t), y(L, t) = φL(t), t ∈ (0, T ], (3)

where 0 < α < 1 and the fractional derivative is of the Caputo type which, for the
considered values of α, is given by [2]:

Dαt y(t) =
1

Γ (1 − α)
∫ t

0
(t − s)−αy ′(s) ds. (4)

It was assumed that v > 0 is the average fluid velocity, D > 0 is the diffusion
coefficient and g, f , φ0 and φL are continuous functions in their respective domains.

Here we consider the general model (which obviously reduces to (1)–(3) in the
case where λ = 0 with v(x) ≡ v > 0 and D(x) ≡ D > 0):

D
α,λ
t u(x, t) =

∂

∂x

(
−v(x)u(x, t) +D(x)∂u(x, t)

∂x

)
+ f (x, t), in(0, T ] × (0, L),

(5)

u(x, 0) = g(x), x ∈ (0, L), (6)

u(0, t) = φ0(t), u(L, t) = φL(t), t ∈ (0, T ], (7)
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where D
α,λ
t u(x, t) is the tempered Caputo derivative with respect to the variable t

of the function u(x, t) [1]:

D
α,λ
t (u(t)) = e−λtDαt

(
eλtu(t)

)
(8)

= e−λt

Γ (1 − α)
∫ t

0

1

(t − s)α
d
(
eλsu(s)

)

ds
ds, 0 < α < 1, λ ≥ 0.

Note that if in the equation above, we consider λ = 0, the definition of the usual
Caputo derivative (4) is recovered.

The total measured current I (t), produced by the extraction of carriers from the
space between the electrodes, placed at x = 0 and x = L, is given [4] by the space
average of the current density j (x, t), and since

j (x ′, t) = − d
dt

∫ x ′

0
qu(x, t)dx, (9)

where q is the carrier electrical charge, we obtain

I (t)

q
= − d

dt

∫ L

0
(L− x)u(x, t)dx. (10)

2 Numerical Method and Results

In order to approximate the solution of (5)–(7), we first take (8) into account, and
note that (5) can be written as

Dαt
(
eλtu(x, t)

) = −∂
(
eλtv(x)u(x, t)

)

∂x
+ ∂

∂x

(
D(x)

∂
(
eλtu(x, t)

)

∂x

)
+ eλtf (x, t).

Therefore, if we consider the function y(x, t) = eλtu(x, t), and we determine the
solution y(x, t) of problem:

Dαt y(x, t) = −∂ (v(x)y(x, t))
∂x

+ ∂

∂x

(
D(x)

∂y(x, t)

∂x

)
+ eλtf (x, t), (11)

y(x, 0) = g(x), x ∈ (0, L), (12)

y(0, t) = eλtφ0(t), y(L, t) = eλtφL(t), t ∈ (0, T ], (13)

then the solution of (5)–(7) is obtained through u(x, t) = e−λty(x, t). Therefore,
we first approximate the solution of problem (11)–(13), by adapting the numerical
scheme proposed in [3]. We now briefly describe the numerical approach.
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We consider a uniform mesh in the interval [0, L], defined by the grid-points xi =
ih, i = 0, 1, . . . ,K , where h = L

K
, and we use the following second order finite

difference approximations:

∂ (v(x)y(x, t))

∂x
|x=xi ≈ v(xi+1)y(xi+1, t) − v(xi−1)y(xi−1, t)

2h
, (14)

∂

∂x

(
D(x)

∂y(x, t)

∂x

)
|x=xi ≈ 1

h2

(
D

(
xi + h

2

)
y(xi+1, t)− (15)

−
(
D

(
xi + h

2

)
+D

(
xi − h

2

))
y(xi, t)+

+ D

(
xi − h

2

)
y(xi−1, t)

)
, i = 1, . . . ,K − 1.

For the numerical approximation of the Caputo derivative of order α on the interval
[0, T ], we will use the non-uniform mesh

ti =
(
i

n

)r
T , (16)

where r ≥ 1 is the so-called grading exponent. The length of each one of the
intervals defined with this partition is:

τi = ti+1 − ti = (i + 1)r − ir
nr

T , i = 0, 1, . . . , n− 1.

Note that if r = 1 we obtain a uniform mesh. We then use the following
approximation for the Caputo derivative (see [3]):

Dαy(tk) ≈ 1

Γ (2 − α)
k−1∑
j=0

τ−α
j aj,k

(
y(tj+1)− y(tj )

) = D̃αyk, (17)

where

aj,k =
(

kr − jr
(j + 1)r − jr

)1−α
−
(
kr − (j + 1)r

(j + 1)r − jr
)1−α

, j = 0, 1, . . . , k − 1, k = 1, . . . , n.

(18)

Concerning the order of the approximation we have (see [7]):

∣∣∣Dαt y(tk)− D̃αyk
∣∣∣ ≤ Ck− min{2−α,rα},

which gives us an information about the proper choice of the grading exponent (see
[7]).
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Using (17), we obtain:

Dαt y(xi, tl ) ≈
1

Γ (2 − α)
l−1∑
j=0

τ−α
j aj,l

(
y(xi, tj+1)− y(xi, tj )

)
, (19)

i = 1, . . . ,K − 1, l = 1, . . . , n, where the coefficients aj,l are defined
in (18). Denoting by Y li ≈ y(xi, tl), f li = f (xi, tl), D

(
xi ± h

2

) = Di± 1
2
, and

substituting (14), (15) and (19) in (11), we obtain the following implicit numerical
scheme:

1

Γ (2 − α)
l−1∑
j=0

τ−α
j aj,l

(
Y
j+1
i − Y ji

)
=
Di+ 1

2
Y li+1 −

(
Di+ 1

2
+Di− 1

2

)
Y li +Di− 1

2
Y li−1

h2

−vi+1Y
l
i+1 − vi−1Y

l
i−1

2h
+ eλtl f li , i = 1, . . . ,K − 1, l = 1, . . . , n, (20)

where, according to the initial and boundary conditions (12) and (13), we have

Y 0
i = g(xi), i = 1, . . . ,K − 1,

Y l0 = eλtlφ0(tl), Y
l
K = eλtlφL(tl), l = 1, . . . , n.

After having determined the unknowns Y li , i = 1, . . . ,K − 1, l = 1, . . . , n, the
solution of (5)–(7) at the mesh-points will be given by u(xi, tl) ≈ Uli = e−λtlY li .

Figures 1, 2, and 3 present some numerical simulations for transient currents,
considering a narrow (gaussian profile) of photogenerated carriers, at the position
x = 0.2 of a layer of thickness L = 1. Both advection and diffusion coefficients are
constants: v = 0.01 and D = 0, for Fig. 1 and v = 0.01 and D = 0.01, for Fig. 2.

In Fig. 3 we show the current behavior when the carrier velocity has two different
values along the the material layer, v = 0.001 in the first half and v = 0.05

Fig. 1 Transient current for α = 0.5 (left) and α = 0.75 (right), with λ = 0 (tiny dash), λ = 0.001
(small dash), λ = 0.01 (medium dash), λ = 0.1 (large dash) and λ = 1 (solid); v = 0.01 and
D = 0
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Fig. 2 As in Fig. 1, with λ = 0 (tiny dash), λ = 0.001 (small dash), λ = 0.01 (medium dash) and
λ = 0.1 (large dash); v = 0.01 and D = 0.01

Fig. 3 As in Fig. 1, for two layers material with λ = 0 (tiny dash), λ = 0.001 (small dash) and
λ = 0.01 (medium dash); v = 0.001 in the first layer and v = 0.05 in the second; D = 0 in both
layers

in the second half, in a diffusion-less situation, D = 0. These numerical results
are in agreement with the analytical results related to the TOF experiments in
[6]. Since in most of the cases, the analytical solution is not known, numerical
methods are necessary and the one presented here is able to model many situations.
In a forthcoming paper, we will prove that this numerical scheme is stable and
convergent, namely with convergence orders of (2 − α) and 2, time and space,
respectively, with a proper choice of the grading exponent which takes into account
some regularity assumptions on the solution of such problems.
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Reverse Logistics Modelling of Assets
Acquisition in a Liquefied Petroleum Gas
Company

Cristina Lopes, Aldina Correia, Eliana Costa e Silva, Magda Monteiro,
and Rui Borges Lopes

Abstract In the business of liquefied petroleum gas (LPG), the LPG cylinder is
the main asset and a correct planning of its needs is critical. This work addresses
a challenge, proposed at an European Study Group with Industry by a Portuguese
energy sector company, where the objective was to define an assets acquisition plan,
i.e., to determine the amount of LPG cylinders to acquire, and when to acquire them,
in order to optimize the investment. The used approach to find the solution of this
problem can be divided in three phases. First, it is necessary to forecast demand,
sales and the return of LPG bottles. Subsequently, this data can be used in a model
for inventory management. Classical inventory models, such as the Wilson model,
determine the Economic Order Quantity (EOQ) as the batch size that minimizes the
total cost of stock management. A drawback of this approach is that it does not take
into account reverse logistics, which in this challenge (i.e. the return of cylinders)
plays a crucial role. At last, because it is necessary to consider the return rate of LPG
bottles, reverse logistic models and closed loop supply chain models are explored.

1 Problem Description

This work addresses an industrial challenge that consisted in planning the acqui-
sition of liquefied petroleum gas (LPG) cylinders. The challenge was proposed at
an European Study Group with Industry, by a Portuguese company of the energy
sector (named ALPHA for confidentiality reasons) that started its activity in 2006
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focusing in the production and distribution of biofuel and, since then, has extended
its business areas to other fuels and energy. In this company, the LPG cylinder
business started in 2012, and since then it has experienced a continuous growth.
ALPHA currently commercializes propane gas in two types of cylinders: type A
with capacity 9 kg, and type B with capacity 45 kg.

In Portugal, companies selling LPG cylinders are also responsible for collecting
the empty cylinders, regardless of the company from which the previous cylinders
were bought (direct replacement policy) [7]. The empty bottles returned to the
company can be reinserted in the system, filled again and sold to the clients.
As the acquisition of new bottles is expensive, reusing is the key. Cylinders are
assets owned by the companies: each competitor can only refill its own cylinders.
Companies experiencing growth have to purchase additional cylinders to meet
demand. The cylinder is the main asset and a correct planning of its needs is critical.

The industrial challenge was to find a model to forecast the demand and return
rate of each type of cylinder, and to define an assets acquisition plan, i.e., to
determine when to order to the external supplier new LPG bottles (Order Point)
and how many should be bought (batch size), in order to optimize the investment.

2 Literature Review

Classical inventory models, such as Wilson’s deterministic model [4, 9], determine
the Economic Order Quantity (EOQ) as the batch size that minimizes the total cost
of stock management. The total cost is the sum of three components:

• CA Acquisition Costs (price of acquiring the assets)
• CS Setup costs (fixed cost for every order, transportation, collect)
• CH Holding costs (insurances, taxes, rent, electricity, salary, opportunity costs)

Once the forecast of demand, sales and return of LPG cylinders is determined,
an EOQ model can be used for inventory management [2].

The EOQ model is an attempt to estimate the best order quantity by balancing the
conflicting costs of holding stock and of placing replenishment orders. The effect
of order quantity on stock-holding costs is that, the larger the order quantity for a
given item, the longer will be the average time in stock and the greater will be the
storage costs. On the other hand, the placing of a large number of small-quantity
orders produces a low average stock, but a much higher cost in terms of the number
of orders that need to be placed and the associated administrative and delivery costs.

Another classical approach is the Continuous Review Policy (s,Q), which
considers probabilistic demand.

A drawback of these approaches is that they do not take into account reverse
logistics, which in this challenge (i.e. the return of cylinders) plays a crucial role.
The plan should take in account the empty bottles that are returned to the company,
which can be either reused or disposed of. Therefore we started by applying to the
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data two inventory models with reverse flows found in literature, and then developed
a deterministic model and stochastic model tailored for this case study.

2.1 Inventory Models in Literature with Reverse Flows

Richter [6] extended the EOQ model to allow the incorporation of used products,
which were repaired and incorporated in production. It assumes a stationary demand
in a model with two shops, where the first shop is producing new products and
repairing products used by the second shop.

Also considering deterministic demand and reverse logistics is the model
proposed by Teunter [8], differing in allowing to consider varying disposal rates
and disaggregating holding costs. In this model (Fig. 1, M manufacturing batches
and R recovery batches succeed each other.

We implemented in an Excel file, for the company to use, all the formulas from
Teunter model for computing the total cost per unit of time (case M = 1), the optimal
batch size for manufacturingQm and for recovery Qr and the number of recovery
batches.

Fig. 1 Inventory stock model according to Teunter model [8] for case M = 1, R = 5
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Other developments on the EOQ model are by Alivoni et al. [1]. They propose
a stochastic model where production or purchase of new items integrates product
reuse, in order to identify the need of placing a production/purchasing order to avoid
stock-out situations.

3 Inventory Models Developed for the Company Based
on Continuous Replenishment

The models presented before do not contemplate all the specifications required in
this case study. In our case, the returned items arrive continuously, not in discrete
moments, and can have three different destinations, as depicted in Fig. 2. Most of
the returned LPG bottles (98%) only need cleaning, and some of them (about 2%)
need requalification. At the moment, because this business is relatively new for the
company, there is no LPG bottles that need to be disposed of, but in the future this
situation can also occur. The costs and time for each of these processes are different.

The previous model considered that both the acquired and returned bottles arrive
at discrete moments periodically in time, but actually that only happens with the
acquired bottles. The returned bottles arrive continuously to the warehouse, and are
continuously cleaned and requalified and filled (with rate u + d), as depicted in
Fig. 3. Therefore, a continuous replenishment model could be adapted to this case
study. In this setting, two cases can happen:

Fig. 2 Reverse flows and Inventory stock costs in our case study
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Fig. 3 Deterministic Inventory stock model D developed for our case study

Case λ > u+d : If demand exceeds the incoming flow, sometimes we have to buy
new cylinders from supplier. We derived a Deterministic Model D with continuous
returns for this case.

Case λ ≤ u + d : If the returned bottles are enough to respond to the demand,
buying new bottles from the supplier is unnecessary. To address this case we present
the Deterministic Model R without purchases.

3.1 Model D: Deterministic Continuous Returns

We developed a deterministic model D, based on EOQ [9], which considers
deterministic continuous constant demand, deterministic discrete replenishment
from supplier, and deterministic continuous constant replenishment from returned
bottles, for the case when returns are not enough to respond to the demand and hence
the company has to buy new bottles from the supplier (Fig. 3).

As in the classical EOQ formula, in this model the total costs considered are
the sum of the acquisition costs CA, setup costs CS and holding Costs CH . The
acquisition costs in Eq. (1) consider the cases where new bottles are acquired from
the supplier with a cost Cm, the bottles are reused with just a cleaning cost Cu, or
the case where the returned bottles have to be requalified with a cost Cd . In this
three cases, a constant filling cost is also included. In the future, a disposal cost Cl
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could also be considered. At the moment, because this business is relatively new for
the company, there is no LPG bottles that need to be disposed of. Hence, the rate of
bottles returned and disposed of (l) is zero. The acquisition costs are:

CA = Cm(1 − r)(λ− I)+ Cuu(λ− I)+ Cd(r − u)(λ− I) (1)

where λ is the constant demand rate (units/units of time), I is the initial stock r is
the return rate, u is the rate of bottles returned and cleaned and d = r − u is the rate
of bottles returned and requalified. The setup costs are:

CS = Km(λ− I)(1 − r)
Qm

+ Ku(λ− I)u
Qu

+ Kd(λ− I)(r − u)
Qd

(2)

where Km is the production fixed setup costs, Ku is the reuse fixed setup costs, Kd
is the requalification fixed setup costs, Qm is the batch size for buying new bottles,
Qu is the batch size for reusing bottles, and Qd is the batch size for requalifying
bottles. The holding costs are:

CH = hm
(1 − r)Qm

2
+ hu uQu

2
+ hd (r − u)Qd

2
+ hi I

2
(3)

where hm is the holding cost per new item bought per year, hu is the holding cost
per reused item per year, hd is the holding cost per requalified item per year, and hi
is the holding cost per existent item in stock per year.

By deriving the total costs, it is possible to obtain the expression for the optimal
quantitiesQ∗

m (batch size for buying new bottles),Q∗
u (batch size for reuse) andQ∗

d

(batch size for requalification) that minimize the total costs.

Q∗
m =

√
2Km(λ− I)

hm
Q∗
u =

√
2Ku(λ− I)

hu
Q∗
d =

√
2Kd(λ− I)

hd

(4)

From the triangle in Fig. 4 we can find the Order Point: OP
l

= λ − (u + d) ⇔
OP = (λ− (u+ d)) l

This model was also implemented in an Excel file for the company to use.

Fig. 4 Stock quantity across time, lead time, and order point in model D
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3.2 Model R: Deterministic Without Purchases

Our Deterministic Model R without purchases considers deterministic continuous
constant demand, unnecessary replenishment from supplier, and deterministic
continuous constant replenishment from returned bottles. In this setting, there is
a period T1 where there is simultaneously continuous replenishment of bottles
(with rate u + d) and demand being satisfied (with rate λ), and a period T2 where
replenishment is interrupted and there is only demand being satisfied.

Therefore, from the slopes of the main triangles in Fig. 5, we have:

T1 = M

u+ d − λ T2 = M

λ
M = Q− λ · T1 = Q

(
1 − λ

u+ d
)

(5)

where M is the maximum stock level, and the batch size corresponds to the total
production during period T1, i.e.,Q = (u+ d)T1. The total costs are given by:

TC(Q) = Cuu(D − I)+ Cdd(D − I)+ +(Ku +Kd)D
Q

+ +ChQ
2

(
1 − λ

u+ d
)

(6)

Fig. 5 Deterministic inventory stock model R for continuous returns without purchases
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Fig. 6 Stock quantity across time, lead time, and order point in model R

being D the demand for the planning horizon (year) and λ the daily demand.
Deriving the total costs, the optimal quantityQ∗ that minimizes the total cost is:

Q∗ =
√

2(Ku +Kd)D
Ch

√
u+ d

u+ d − λ (7)

If the lead time l is longer than the period of demand (l > T2) then from the slope
in the blue triangle in Fig. 6 we can derive the Order Point (formula (8)).

M −OP
l − T2

= u+ d − λ⇔ OP = M − (u+ d − λ)(l − T2) (8)

Replacing M and T2 using Eq. (5), we can obtain the order point OP as a
function that depends only on the quantity of bottles Q, the demand rate and
reutilization rate, and lead times:

OP = Q
(

1 + u+ d
λ

)
+ l (λ− (u+ d)) (9)

3.3 Model S: Stochastic Inventory Model

At first we assumed a deterministic constant demand and return rate, but in fact it is
not constant nor deterministic. It shows seasonality and trend. To correctly plan the
acquisition of new cylinders from the supplier, we proceeded to forecast not only
the demand, but also the reverse logistic flows.

Forecasting of demand and returns was made using exponential smoothing
and moving averages to compute seasonal coefficients and forecast demand and
returns. Multiple regression models and Artificial neural networks were also used to
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Fig. 7 Stochastic inventory stock model S

forecast [5]. Afterwords, we used a weighted linear combination of the probability
density functions as in [3] for the final forecast. The forecasted mean and RMSE
was used as input values for the stochastic inventory models developed for the case
study.

For this, we present a stochastic inventory model S, based on the continuous
review policy (s,Q), which considers continuous stochastic demand, discrete replen-
ishment from supplier, continuous stochastic replenishment from returned bottles,
and constant lead times, as depicted in Fig. 7.

Assuming demand during lead time is dl ∼ N(μdl, σdl), then the Order Point is:

OP = μdl + zασdl (10)

where zα = Φ−1(1 − α) is the safety factor for a given Level of Service 1 − α. The
demand is replaced by a difference of normal random variables λ − (u + d) where
λ ∼ N(μλ, σλ), u ∼ N(μu, σu) and d ∼ N(μd, σd). Assuming independence, we
have:

μλ−(u+d) = μλ − μu − μd σλ−(u+d) =
√
σ 2
λ + σ 2

u + σ 2
d (11)
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Finally, the order point is given by

OP = (μλ − μu − μd)l + Zα
√
l(σ 2

λ + σ 2
u + σ 2

d ) (12)

4 Conclusions

A Portuguese company in the energy sector posed a challenge to define the
acquisition plan of LPG bottles. To answer this industrial challenge, three inventory
models with reverse flows were developed for the company. The model D considers
deterministic continuous constant replenishment from returned LPG bottles and also
discrete batches of new bottles that are bought from the supplier. The model R
considers the future case of the company when the returned bottles cover for the
demand, and replenishment from the supplier will be unnecessary. Finally, model S
was developed to approach the angle that demand and returns are not constant but
continuous and stochastic, with discrete replenishment from the supplier.
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Cyclic Structure Induced by Load
Fluctuations in Adaptive Transportation
Networks

Erik Andreas Martens and Konstantin Klemm

Abstract Transport networks are crucial to the functioning of natural systems and
technological infrastructures. For flow networks in many scenarios, such as rivers
or blood vessels, acyclic networks (i.e., trees) are optimal structures when assuming
time-independent in- and outflow. Dropping this assumption, fluctuations of net flow
at source and/or sink nodes may render the pure tree solutions unstable even under a
simple local adaptation rule for conductances. Here, we consider tree-like networks
under the influence of spatially heterogeneous distribution of fluctuations, where
the root of the tree is supplied by a constant source and the leaves at the bottom are
equipped with sinks with fluctuating loads. We find that the network divides into
two regions characterized by tree-like motifs and stable cycles. The cycles emerge
through transcritical bifurcations at a critical amplitude of fluctuation. For a simple
network structure, depending on parameters defining the local adaptation, cycles
first appear close to the leaves (or root) and then appear closer towards the root (or
the leaves). The interaction between topology and dynamics gives rise to complex
feedback mechanisms with many open questions in the theory of network dynamics.
A general understanding of the dynamics in adaptive transport networks is essential
in the study of mammalian vasculature, and adaptive transport networks may find
technological applications in self-organizing piping systems.

1 Introduction

Network modeling deals with the rules for establishing and removing connections
between the entities that make up a system. For instance, social networks display
a much larger amount of triangles than expected under entirely random wiring.
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A possible explanation is that nodes (i.e., persons) are more likely to introduce
their already existing friends to each other [1]. Similarly, for biological networks,
a simple network growth rule of node copying and random perturbation of edges
mimics genome duplication and thereby reproduces statistical features of protein
interaction networks [2, 3].

More recent models of adaptive networks involve bidirectional dependence
between a dynamics in the networked system and the dynamic modification of its
link structure [4–6]. Here we study this dependence specifically for the case of a
network for transport and distribution, motivated by the vascular (blood circulatory)
system in higher animals. This system fulfills the task of transport from one central
source (heart/lung) to spatially distributed sinks. Assuming a constant in-flow from
the source and a constant outflow into sinks, the optimal distribution system in terms
of energy consumption is a tree [7, 8], i.e., a cycle-free connected network. When
load at the sinks fluctuates, however, networks involving cycles become optimal as
shown by Corson [9] and Katifori with colleagues [10].

Here we combine this insight with local adaptation [11, 12] rather than global
optimization. Indeed, such models are relevant in vascular physiology, where
arterioles adapt their diameter and wall thickness on time scales from seconds over
days to months in dependence on local flow variables including pressure and flow
shear [13, 14]. The conductances of the flow network self-organize towards balanced
pressure fluctuations. We observe that cycles form only when the amplitude of load
fluctuations exceeds a threshold. With the source placed at the top and all sinks in
the bottom layer of a hierarchical network, as illustrated in Fig. 1, we show that
cycle formation is localized: depending on a parameter of the adaptation rule, there
is a transition between cycle formation close to the source or cycle formation close
to the sinks.

2 Model

V denotes the set of nodes of the network with N = |V | <∞ and A ⊆ N × N the
set of edges. The edges are bidirectional, so (i, j) ∈ A implies (j, i) ∈ A. Each node
is assigned a pressure pi . The edge flow is fij > 0 from node i to j . Furthermore
we assume that the network is resistive and linear, i.e., it is Ohmian with fij =
Cij (pi −pj ), where an edge carries the property of a conductance between nodes i
and j with Cij = Cji > 0 only if (i, j) ∈ A; otherwise Cij = Cji = 0.

Here, we study tree-like networks of heightH as illustrated in Fig. 1, with cross-
edges on every branching level, l = 0, . . . , H . Cross-edges lead to cyclic structure.
A cycle (red triangle) is a connected subnetwork ofm nodes such that each node has
exactly two neighbours. We focus on two types of networks: the simply augmented
tree (SAT), where cross-edges only form triangular submotifs (i.e., excluding dotted
cross-edges) and fully augmented tree (FAT) where all displayed cross-edges are
allowed.
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Fig. 1 ‘Simple Augmented Trees’ (SAT) are tree-like structures with cross-edges (full horizontal
edges) that connect only nodes in each minimal subtree (e.g., edges highlighted in red), thus
forming a ’tree of triangles’; the ‘Fully Augmented Tree’ (FAT) connects all nodes within one
tree level l by a path. The branching level in the cut tree is denoted by l. Cross-edges introduce
cycles to the network. The root of the tree (top) and the fluctuating sinks in the leaves of the tree
(bottom) drive the flow. Cross-edges emerge depending on the strength of the fluctuation in the
leaves. For SATs, the dynamics in a triangular submotif at level l (red edges) will only depend on
downstream fluctuations (red nodes)

To model sources and sinks in the network, we include non-zero nodal flows
hi . A proper subset S of the node set V is chosen as the set of sink nodes.
The set S is time-independent and typically comprises the most peripheral nodes,
where capillaries connect to the vein network. With a tree structure underlying the
network, S is chosen as the set of leaves of the tree. Focusing on the networks
based on symmetric trees of height H (cf. Fig. 1), we have the |S| = n = 2H

leaves as sink nodes. For each sink node i ∈ S, the nodal flow hi(t) is non-
positive at all times t ∈ R. A single node in V \ S is chosen as the source
node and indexed as node 1 for simplicity. For the networks based on symmetric
trees, the source node is the root of the tree. The source node has a positive nodal
flow h1(t) = 1 for all t ∈ R. For all other nodes j ∈ V \ (S ∪ {1}), we set
hj (t) = 0 for all t ∈ R. Mass balance requires that

∑
k∈V hk(t) = 0 for all

t ∈ R.
Assuming that the accumulation rate of fluid at any node is nearly instantaneous,

or that vessels are inelastic, the nodal accumulation rate becomes negligible [12, 15],
and we may express mass balance by invoking Kirchhoff’s first law,

∑
j

Cij (pi − pj ) = hi, (1)
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which is re-written in vector/matrix notation by defining the nodal flow h := (hi)i∈V
and the Kirchhoff matrix K = (Kij )i,j∈V with Kij := (δij∑j ′ Cij ′)− Cij ,

K · p = h (2)

f which is solved for p := (pi)i∈V .
To impose adaptive dynamics to the network, we postulate the generic ad-hoc

law for the conductances [12]:

d

dt
Cij = α1Cij |pj − pi |γ − α2Cij . (3)

Thus, the first term on the right hand side induces growth proportional to the power
dissipated along the edge, thus mitigating rising pressure differences by increasing
the conductance along the edge. The network adapts towards minimizing power
consumption. The last term prevents unlimited growth of the conductances.

Rescaling variables with C′
ij := h−1

1 (α2/α1)
1/γ Cij and p′

i := (α1/α2)
1/γ pi ,

h′ := h/h1 (so that h′
1 = 1), t ′ := α2t , the resulting dimensionless model reads

d

dt ′
C′
ij (t) = C′

ij (t)[|p′
j (t)− p′

i (t)|γ − 1], (4)

K′(t) · p′(t) = h′(t). (5)

where we drop the primes and omit the argument t from now on. Note that the
solvability condition of the Kirchhoff equation [12],

∑
j h

′
j (t) = 0, follows from

Fredholm’s alternative and has the physical interpretation of mass conservation.
We consider sinks with varying load, compliant with

∑
k∈V hk(t) = 0. For each

time t , there is a sink node s ∈ S so that the nodal flow h(t) is the vector g(s) with
components

g
(s)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+1 if i is the source (root) node.

−1

n
− a√

2
=: h− if i = s

−1

n
+ 1

n− 1

a√
2

=: h+ if i ∈ S \ {s}
0 otherwise.

(6)

This reflects the situation where at each point t in time, one of the sinks has
higher load (h−) than the others (having load h+). Independent of time, the source
(root node) has an inflow of +1. All other nodes have neither in- nor outflow.
The driving amplitude a is a parameter of the model, obeying a ∈ [0, amax] with
amax = √

2(|S| − 1)/|S|. This ensures h− ≤ h+ ≤ 0 meaning sink nodes actually
behave as sinks at all times. In the extreme case a = amax, only the sink with the
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higher load is on (h− = −1) while all others are off (h+ = 0). This case reproduces
the single moving sink as employed by Katifori et al. [10].

Following [12], we assume that (1) all sinks are in the high load state for the
same fraction of time and (2) the variation of sink load occurs on a time scale faster
than the adaptation of the conductances. Thus, Eq. (4) are effectively equivalent to
an averaged form as follows,

d

dt
Cij (t) = Cij (t)[

〈|pj (t)− pi(t)|γ
〉− 1], (7)

where time t corresponds to the slow time and the average 〈.〉 is taken uniformly
over the n = |S| assignments of high load sinks,

〈|pj (t)− pi(t)|γ
〉 := n−1

∑
s∈S

|p(s)j (t)− p(s)i (t)|γ (8)

and

K(t) · p(s)(t) = g(s) . (9)

For simplicity, we drop the averaging brackets 〈·〉 from now on.

3 Analysis

3.1 The Case of Exponent γ = 2

Our previous analysis [12] of the model concentrated on the case γ = 2. With this
choice, the growth of an edge with conductance Cij in (3) is proportional to the
power (dissipated energy per time) over this same edge. For the height H = 1, the
simply/fully augmented tree becomes a triangle of nodes V = {1, 2, 3} as shown
in Fig. 2. The two sink nodes, indexed 2 and 3 are connected to each other with a
conductance C− := C23, and each of them also to the source node, indexed 1, with
the symmetric conductanceC∧ := C12 = C13 = of the cut-edges. We are interested
in (slow time) stationary solutions of the model driven with load fluctuations of
amplitude a as a single parameter. The stationary conductance C− of the cross-
edge connecting the two sinks is of particular interest. The solutions undergo a
transcritical bifurcation at parameter value ac = 1/

√
6 ≈ 0.408. For sub-critical

fluctuation amplitude, a < ac, the uniquely stable solution branch has C− = 0 for
the cross edge and C∧ > 0 for the cut edge which grows monotonically with a. For
super-critical amplitude, a > ac, the stable branch has a positive conductance for
the cross-edge, C− > 0, which grows almost linearly with increasing amplitude
a, while the cut-edge stays exactly constant. Thus, the cross-edge short circuits
fluctuations so that the two cut-edges may stay constant.
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Fig. 2 Solution branches for the triangular graph with H = 1 undergo a sub-critical bifurcation
where the conductance of the cross-edge, C−, becomes non-zero
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Fig. 3 Conductances of cross-edges in simply augmented trees of height H = 3 as a function of
sink fluctuation parameter. The three panels distinguish exponent values (a) γ = 0.5, (b) γ = 1.0
and (c) γ = 1.5 which affects the transition order for different levels l

In simply augmented trees with more layers (H > 1, see Fig. 1), all
cross-edge conductances undergo transcritical bifurcations from zero to non-
zero as well [12, 16]. The parameter value a(l,H)c at the transition depends
both on the level l of the cross-edge and the system height H . In a given
system with height H , as the fluctuation amplitude a increases, cross-edges
at the sink nodes first undergo a transcritical transition from zero to positive
conductance. As the amplitude a is increased further, cross-edges at the next
level become non-zero, thus following a strict ordering a(l+1,H)

c < a
(l,H)
c for

all l ∈ {1, . . . , H − 1}. The resulting ordering for γ = 2 is qualitatively
similar to the case illustrated in Fig. 3(c) where gamma = 1.5. The
strict ordering in terms of level l may be directly linked to the topology
of the SAT, which (including its cross edges) forms a tree of triangular
submotifs [16].
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Fig. 4 Critical fluctuation amplitude values a(l,H)c for cross-edges in simply augmented trees of
height H = 3 (dashed lines) and H = 4 (solid lines), as a function of exponent γ

3.2 Effect of Varying Exponent γ

Figure 3 shows the influence of γ on the transcritical bifurcations in the simply
augmented tree of height H = 3. For γ = 1.5, the transitions occur in the same
ordering as known for γ = 2, i.e. from sink node level (here l = 3) towards source
node level. For γ = 0.5, the order of transitions is reversed, while γ = 1 has all
transitions at the same parameter value.

Figure 4 shows the γ -dependence of critical values of parameter a for cross-
edges at different levels l in systems of heights H = 3 and H = 4. This confirms,
here numerically for the provided cases, the change of behaviour at γ = 1. For
γ < 1, the onset of cross-edge conductances happens first close to the source and
moves downward in the system. For γ > 1 this order is reversed.

In fully augmented trees, the ordering of the critical amplitudes, a(l,H)c , follow a
more complex pattern and is subject to further study [16].

4 Conclusion and Discussion

We have studied conditions for the presence or absence of cycle forming edges in
a model of vascular networks under load fluctuations. Variation of the exponent
γ in the local pressure dependence of conductance adaptation changes the order by
which cycles arise in the simply augmented trees (Fig. 1), either first close to the sink
or close to the root. For network structures with less symmetry, preliminary analysis
finds a more complex ordering sequence. This reflects that, generally, the interaction
between topology and dynamics gives rise to complex feedback mechanisms posing
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open questions in the theory of network dynamics. Future work on this model ought
to include a comparison to empirical vascular networks. Both the network structures
themselves and measurements on the flow through branches of the network are
becoming available [17–19].

In view of data and for better alignment with real structures, the tree-like
networks of this model may be augmented further. In a first step, one may include
further edges inside a level as indicated by the dashed lines in Fig. 1. For this
fully augmented tree, preliminary analysis [12] has shown that cross-edges become
conductive in a pattern similar to that of the simply augmented tree at exponent
γ = 2. Further results will be reported elsewhere [16]. A complete quantitative
understanding of the transitions in this system would bring us closer to a general
theory for the emergence of cycles in transport networks in the presence of
fluctuations.

A further interesting step would be to abandon imposed network structures
altogether and cast the adaptation dynamics into real two- or three-dimensional
space. Having both conductance c and pressure p as scalar fields, adaptation of
conductances can be described [16] by an equation as

∂t c(x, t) = c(x, t)[(∇p(x, t))2 − 1] (10)

as a proposal for the real-space analog of the adaptation rule in Eq. (4).
Beyond modeling the self-organization of transport networks in nature, this

branch of research has bearings also in technical applications. Programmable
materials is a branch of technology to generate complex objects by self-assembly
of their suitably programmed constituents [20]. Recent ideas and advances point in
the direction of evolutionary materials that are capable of self-repair and adaptation
to changing environmental conditions [21]. A pertinent example are urban water-
supply systems where pipes self-adapt the flow capacity in response to local demand
fluctuations in a city with evolving population density [20].
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Time-Reversal Methods
in Acousto-Elastodynamics

Franck Assous and Moshe Lin

Abstract The aim of the article is to solve an inverse problem in order to determine
the presence and some properties of an elastic “inclusion” (an unknown object,
characterized by elastic properties discriminant from the surrounding medium) from
partial observations of acoustic waves, scattered by the inclusion. The method will
require developing techniques based on Time Reversal methods. A finite element
method based on acousto-elastodynamics equations will be derived and used to
solve the inverse problem. Our approach will be applied to configurations modeling
breast cancer detection, using simulated ultrasound waves.

1 Introduction

Time reversal (TR) is a subject of very active research for over two decades. Many
international teams are currently working on the subject from theoretical, physical
and numerical points of view. It was originally experimentally developed by Fink
in 1992 in acoustics and showed very interesting features [8]. The principle is to
take advantage of the reversibility of wave propagation phenomena, for example in
acoustics, elastic or electromagnetism in an unknown medium, to back-propagate
signals to the sources that emitted them. The initial experiment, was to refocus,
very precisely, a recorded signal after passing through a barrier consisting of
randomly distributed metal rods. Since then, numerous applications of this physical
principle have been designed, for instance [13] and references therein. The first
mathematical analysis can be found in [3] for a homogeneous medium and in [4, 7]
for a random medium. In this article, we are basically concerned with equations of
acousto-elastodynamics. As the application we have in mind are concerned with
ultrasound-based elasticity imaging methods, we consider a coupled fluid/solid
model. For the sake of simplicity, we consider a “layered” medium and we want to

F. Assous · M. Lin (�)
Ariel University, Ariel, Israel
e-mail: moshelin1@walla.co.il

© Springer Nature Switzerland AG 2019
I. Faragó et al. (eds.), Progress in Industrial Mathematics at ECMI 2018,
Mathematics in Industry 30, https://doi.org/10.1007/978-3-030-27550-1_20

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27550-1_20&domain=pdf
mailto:moshelin1@walla.co.il
https://doi.org/10.1007/978-3-030-27550-1_20


158 F. Assous and M. Lin

determine the presence of an “inclusion” in the elastic part, from recorded acoustic
waves scattered by this inclusion. However, the method does not require a priori
knowledge of the physical properties of the inclusion.

2 Forward Problem

We first formulate the mathematical forward problem. We consider a two-
dimensional fluid-solid domain Ω made of two parts, an acoustic one Ωf and
an elastic oneΩs . For simplicity, we will assume thatΩ is a rectangle. The acoustic
part of the domain Ωf corresponds to a homogeneous fluid, characterized by its
density ρf and its Lamé parameter λf . We denote by ∂Ωf the boundary of Ωf
and n is the outward unit normal to the boundary. Introduce the pressure p(x, t) on
a time t , x = (x1, x2) ∈ Ωf , and f (x, t) is a given source, for instance a Ricker
function, the acoustic wave equation inΩf is written

1

λf

∂2p

∂t2
− div (

1

ρf
∇p) = f , (1)

together with initial homogeneous conditions. We assume that the boundary ∂Ωf
can be split into ∂Ωf = Γf ∪ ΓI , where ΓI denotes the interface between the fluid
and solid part, assumed, for simplicity, to be horizontal. We supplement the system

with absorbing boundary conditions [6] on ∂Ωf . Denoting by Vp =
√
λ
ρ

the wave

velocity in the fluid, the absorbing boundary conditions on Γf are written

∂p

∂t
= −Vp ∇p · n on Γf . (2)

On the part ΓI , we add an interface condition for the pressure p(x, t), that will
be presented below, see (5). We then introduce the governing equations of linear
elastodynamics for Ωs , the solid part of the domain, characterized by the density
ρs , and the Lamé parameters λs and μs . We assume that the boundary ∂Ωs can be
split into ∂Ωs = Γs ∪ ΓI . Denoting by u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) the
velocity1 on a time t , at a point x = (x1, x2) ∈ Ωs , we have

ρs
∂2u
∂t2

− ∇ · (μs∇u)− ∇((λs + μs)∇ · u) = 0 , (3)

This equation is supplemented with homogeneous initial conditions and absorbing
boundary conditions on Γs , as proposed in [10]. For this purpose, we introduce the

1u(x, t) is the velocity, that is the time derivative of the displacement. This formulation allows us
to derive a pressure-velocity fluid-solid formulation, which will make easier the derivation of the
variational formulation, see below.
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matrix A

• A =
(−√

ρs(λs + 2μs) 0
0 −√

ρsμs

)
for horizontal boundary edges,

• A =
(−√

ρsμs 0
0 −√

ρs(λs + 2μs)

)
for vertical boundary edges,

and (τij (u))1≤i,j≤2 the classical stress tensor τij (u) = λsdiv u δij+μs( ∂ui
∂xj

+ ∂uj
∂xi
).

The conditions are written, using the Einstein summation convention,

Aij
∂uj

∂t
= τij nj , i = 1, 2 . (4)

Finally, we introduce the transmission conditions at the fluid-solid interface ΓI :

1

ρf

∂p

∂x2
= −∂u2

∂t
(5)

∂u1

∂x2
+ ∂u2

∂x1
= 0,

∂p

∂t
= λs ∂u1

∂x1
+ (λs + 2μs)

∂u2

∂x2
(6)

These conditions express the continuity of the normal component (5) and of the
stress tensor (10). They will appear naturally in the pressure-velocity variational
formulation, that will be basis of the finite element method.

3 Time Reversed Problem

In a second step, we formulate the time reversed acousto-elastic problem. Examples
of time reversal techniques (numerical or experimental) can be found (among
others!) in [1, 2, 8, 9, 12]. We first introduce the time-reversed wave equation for
the acoustic part of the domain Ωf . We denoted by pR(x, t ′) the time-reversed
pressure, defined by pR(x, t ′) = p(x, Tf − t), x ∈ Ωf , where Tf denotes the
final time. Since the wave equation involves only second order time derivatives,
this definition ensures that the reverse field pR(x, t ′) is a solution to the wave
equation

1

λf

∂2pR

∂t
′2 − div (

1

ρf
∇pR) = 0 , (7)

together with (TR) initial conditions and (TR) absorbing boundary conditions on
Γf , analogous to (2). In addition, on the boundary ΓSRA, modeling a source-
receivers array (SRA) where the forward signal is recorded (see Fig. 1), we set
pR(t ′) = p(Tf − t) which is the (recorded) source of the TR.
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Fig. 1 Example
of fluid-solid medium

Similarly, we also introduce the elastic time-reversed problem associated to Eq. (4).
We denote by uR(x, t ′) = (uR1 (x1, x2, t

′), uR2 (x1, x2, t
′)) the time-reversed velocity

solution to linear elastodynamics, that solves

ρs
∂2uR

∂t
′2 − ∇ · (μs∇uR)− ∇((λs + μs)∇ · uR) = 0 , (8)

together with (TR) initial conditions and (TR) absorbing boundary conditions on
Γs , that have analogous expressions as in (4). Finally, we derive the time-reversed
continuity transmission conditions at the interface ΓI

1

ρf

∂pR

∂x2
= −∂u

R
2

∂t ′
(9)

∂uR1

∂x2
+ ∂uR2

∂x1
= 0,

∂pR

∂t ′
= λs ∂u

R
1

∂x1
+ (λs + 2μs)

∂uR2

∂x2
(10)

In order to create synthetic data, the forward and reverse formulations are approxi-
mated by the FreeFem++ package [11] which implements a finite element method
in space. In this study we use a P2 finite element method. The advancement in time
is performed by using a second order in time central finite difference scheme, so
that it is time reversible also on the numerical level.

4 Numerical Results

In this section, we describe numerical results obtained for a scatter identification
problem, in the case of two scatters located in the elastic part. The principle of the
numerical process is as follows: an incident wave is generated by a point source
such that after a time Tf the total field is negligible. On the boundary ΓSRA located
in the fluid part, the forward signal is recorded. Then, we perform numerically a
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time-reversed computation, by back propagating the recorded scattered data from
the SRA. However, we do not assume we know the physical properties or the
number of the inclusions, nor their locations. Hence, the recorded data are back
propagated in the medium without the inclusions. Finally, we intend to image the
unknown scatterers in the medium—responsible of the diffraction of the incident
wave—by using correlation method between the forward uI and the reversed wave
usR in the same spirit as those involved for instance in time reverse migration [5]. As
a first attempt, we have considered the following RTM (Reverse Time Migration)
criterion:

RTM(x) =
∫ Tf

0
usR(Tf − t, x)× uI (t, x)dt , (11)

To illustrate our purpose, we consider a two layered medium, made of fluid part (top)
and of a elastic one (bottom), the elastic part sketching a breast tissue geometry and
is a heterogeneous medium, as it contains a skin layer (see Fig. 2). The SRA is an
horizontal line as sketched on Fig. 2. For the fluid part, we choose ρ = 1000 kg/m3

and λ = 2.25 GPa, for the solid part, the same value of ρ with λ = 1.83 GPa
and μ = 18.33 kPa, and for the skin (inside the solid part), ρ = 1150 kg/m3,
λ = 6.66 GPa and μ = 66.66 kPa. There are two elliptical inclusions with different
size, shape, and elastic properties. The first one represents a benign tumor with
ρ = 1000 kg/m3, λ = 2.16 GPa and μ = 21.66 kPa, and the second one a malignant
tumor, with the same ρ, λ = 2.99 GPa and μ = 30 kPa. Note that both inclusions
are penetrable, which means that the reflection of the incident wave highlighting the
inclusion is quite weak. Finally, the source used to generate the acoustic wave in the
fluid part is a Ricker function of the form f (x, t) = (1−2π2(ν0t−1)2)e−π2(ν0t−1)2 ,
with a central frequency ν0 = 100 kHz and a corresponding wavelength equal to
λW = 12 mm.

Fig. 2 Example of breast
tissue with skin medium
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Fig. 3 RTM of Y component in case of a medium that mimics breast tissue with a skin part

Hence, the scatterers are illuminated by an incident acoustic field, that is first
transmitted to the elastic medium through the interface ΓI , and then scattered by the
inclusions, before to be recorded by the SRA. The SRA being located in the fluid
part, they are able to record only a scalar quantity (the pressure p(x, t)), and not a
vector velocity u(x, t). However, as shown on images below, where the correlation
image between the forward and the reversed wave is depicted (only in the elastic
layer), one is able to determine the existence and location of the malignant tumor
and the result is consistent also when we switch between the tumors elastic values
(Fig. 3).

5 Conclusion

We proposed a time-reversal approach for acousto-elastic equations. Numerical
results have been presented to illustrate the feasibility of the algorithm in a
heterogeneous fluid-solid medium (breast tissue with skin), using only partial
information, that is pressure recorded data in the fluid part. In a future work, more
general configurations will be investigated. The quality of the obtained elasticity
parameters will be also evaluated by introducing different cost functions, in the same
spirit as what is derived for inverse problems. As usual in this context, optimization
based algorithm can be necessary to achieve this part.
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An Agent Based Modeling of Spatially
Inhomogeneous Host-Vector Disease
Transmission

Isti Rodiah, Wolfgang Bock, and Torben Fattler

Abstract In this article, we consider a microscopic model for host-vector disease
transmission based on configuration space analysis. Using Vlasov scaling we
obtain the corresponding mesoscopic (kinetic) equations, describing the density of
susceptible and infected compartments in space. The resulting system of equations
can be seen as a generalization to a spatial host-vector disease model.

1 Introduction

Kinetic models in disease spread are often a starting point of theoretical studies
in epidemiology. In disease spread dynamics, it is in many cases known how
the infection dynamics evolve on the level of particle interaction. The modeling
of spatial disease spread from a microscopic agent-to-agent model has already
been done e.g. in a cancer model in [5] and in [1, 2] for a direct contact
disease transmission. PDE models for a spatial host-vector disease dynamics have
been proposed see e.g. [7, 9], however, to the authors’ knowledge, there has not
been shown yet, that these PDE models are well-defined Vlasov scaling limits
arising from a particle system model on the agent-to-agent-interaction, hence the
microscopic level.

Disease transmission represents the contact between host and vector in host-
vector diseases. A series of different models for vector-borne diseases such as
Dengue fever including stochastic and deterministic models have been proposed,
see e.g. [10] and references therein. The models described above do not provide any
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information about the spatial spread of a disease. In the SIR (Susceptible-Infected-
Recovered) model case, an advection-diffusion equation has been identified as
the limiting equation in a long term scaling limit, see [4]. Another approach
in incorporating spatial information for the SIR model may also be found in
[11] and recently [3]. On the macroscopic level, the models are very flexible for
describing the different aspects of disease dynamics. To consider both microscopical
modeling and spatial resolution, we describe the disease dynamics by means of
an interacting particle system with suitable interaction potentials. Fundamental
in this area is dynamics of the so-called marked configuration spaces [6]. These
techniques together with a proper scaling of the microscopic system, the so-called
Vlasov scaling, have recently been used to model the dynamics of cancer cells
[5].

2 Microscopic Model

In [8], the host-vector disease transmission is modeled via marked configuration
spaces. The configuration space Γ over R2 is defined by

Γ := ΓR2 := {
γ ⊂ R

2
∣∣ #(γ ∩K) <∞ for all K ⊂ R

2 compact
}
,

where #A denotes the cardinality of a set A. Given four copies of the space Γ ,
denoted by Γ S , Γ I , Γ U , and Γ V , let

Γ 4 := { %γ := (γ S, γ I , γ U , γ V ) ∈ Γ S × Γ I × Γ U × Γ V ∣∣ γ i ∩ γ j = ∅, i �= j}.
The model hence consists of four compartments gives as susceptible hosts (S),
infected hosts (I), susceptible vectors (U), and infected vectors (V). We set up
the model in the evolution of the aforementioned four-component system in the
state space Γ 4. The dynamics of host and vector are described by SIS and UV
model.

For a specification of the infection rates, we use a potential depending on
individual to individual distance

[0,∞) & r �→ φR(r) := φ(r) ∈ [0,∞),

withR ∈ (0,∞). One example of the potential is shown in Fig. 1. We set βh ∈ [0, 1]
to be the risk of infection for a susceptible host to be in direct contact with an
infected vector and βv ∈ [0, 1] to be the risk of infection for a susceptible vector
to be in direct contact with an infected host. For fixed x ∈ γ S , the infection rate
for a single susceptible host located at x in the surrounding γ V ∈ Γ V is given
by ch(x, γ V ). For fixed x̃ ∈ γ U , the infection rate for a single susceptible vector
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Fig. 1 The potential with R = 0.05

located at x̃ in the surrounding γ I ∈ Γ I is given by cv(x̃, γ I ). The infection rates
are the following formula:

ch(x, γ
V ) = βh

∑

ỹ∈γ V
φ(|x − ỹ|) and cv(x̃, γ

I ) = βv
∑

y∈γ I
φ(|x̃ − y|) .

In host-vector disease transmission, we define a couple of generators Lh and Lv ,
that are the generators for host and vector, respectively. The disease dynamics are
given by

(LhF)( %γ ) :=
∑

x∈γ S
ch

(
x, γ V

) (
F
(
γ S \ {x}, γ I ∪ {x}, γ U , γ V

)
− F( %γ )

)

+
∑

y∈γ I
αh

(
F
(
γ S ∪ {y}, γ I \ {y}, γ U , γ V

)
− F( %γ )

)
(1)

and

(LvF )( %γ ) :=
∑

x̃∈γ U
cv

(
x̃, γ I

) (
F
(
γ S, γ I , γ U \ {x̃}, γ V ∪ {x̃}

)
− F( %γ )

)
, (2)

where the function ch(x, γ V ) is the infection rate of host, αh ∈ [0, 1] is the constant
recovery rate of host, and the function cv(x̃, γ I ) is the infection rate of vector.
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3 Numerical Simulation

In this section, we give a brief introduction into the numerical method which is
used for simulation. The spread of the disease is modeled via a flip according to
an infection rate, given via the Markov generator in Sect. 2. Since the infected
individuals influence the infection rate at a certain point in the area, the computation
of these rates is the main task. Briefly, the procedure of numerical implementation
is as follows:

(1) Generate the state of individuals and distribute the individuals uniformly in
space.

(2) Calculate the transition rate or probability for each individual.
(3) Generate random variable, then compare it with the transition rate. If the

random variable is smaller than the transition rate, the state of the individual
is changed.

We consider the area [0, 1] × [0, 1] ⊂ R
2 with βh = 0.1, βv = 0.2, and

αh = 0.14. Figure 2 shows a spatial distribution of hosts and vectors evolving
in time. In this particular case, we have the initial number of infectious hosts
I (0) = 20, susceptible hosts S(0) = 2480, infectious vectors V (0) = 0, and
susceptible vectors U(0) = 400. Susceptible hosts are depicted as black spots,
infected host as red spots, susceptible vectors as blue spots and infected vectors as
green spots.

3.1 Infection and Recovery

3.1.1 Comparison of Particle and Deterministic SISUV Model

In the particle model, we consider specific infection rates depending on the
surrounding. However just considering the number of incidents should lead to
an ODE system for a high number of particles. On the other hand, the standard
ODE model assumes a uniform distribution of all particles from the beginning
and neglects all behavior coming from spatial effects. Here, we compare the
SISUV ODE system with the particle system for spatial uniformly distributed

(a) (b) (c) (d)

Fig. 2 SISUV model of 2,500 host and 400 vectors included infection and recovery. (a) t = 0. (b)
t = 2. (c) t = 5. (d) t = 10
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Fig. 3 The deterministic model and the particle model of 2500 host and 400 vectors with φ = 1.
(a) Host. (b) Vector

particles for φ = 1 and φ = φR from the previous section (the infection is
localized).

We choose βh = 0.001, βv = 0.002, and αh = 0.1. First, we consider a
constant potential of infection φ = 1, i.e. a susceptible host (vector) interacts with
all infected vectors (hosts) via the same rate of infection. Figure 3 shows that the
particle model is in good agreement to the classical SISUV model given by the
ODE system

d

dt
S(t) = −βh S(t) V (t)+ αh I (t), d

dt
I (t) = βh S(t) V (t)− αh I (t),

d

dt
U(t) = −βv U(t) I (t), d

dt
V (t) = βv U(t) I (t),

where in this case βh = 0.001, βv = 0.002, and αh = 0.1.
Then, we consider the particle model with a potential of infection φR i.e.,

infections are possible just if susceptible host (vector) and infectious vectors (hosts)
are sufficiently close to each other. Figure 4 shows that the dynamics of the particle
model is “slower” than the classical SISUV model. This is due to the fact that
individuals just interact locally in the particle model, while they are assumed
to interact globally in the classical SISUV model. In both cases, the different
simulations in Figs. 3 and 4 show the same qualitative behavior, although having
different infection radius leads to different infection rates.

3.1.2 Comparison of Particle Model and Kinetic Equation

We compare the kinetic equation with averaged runs of the particle simulation.
For this purpose, we choose βh = 0.1, βv = 0.2, αh = 0.14, N = 10,000, and
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Fig. 4 The deterministic model and the particle model of 2500 host and 400 vectors with φR . (a)
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Fig. 5 Average of a hundred runs of the particle model of 10,000 hosts and 900 vectors for the
infected state of host. (a) t = 0. (b) t = 0.5. (c) t = 1. (d) t = 2

M = 900. For the kinetic system, we consider an equidistant spatial distribution of
particles. For the simulation, we use an initially random uniform spatial distribution
of particles. Figure 5 shows the spatial distribution of averaged runs of the particle
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Fig. 6 Numerical solution of the kinetic equation for the infected state of host. (a) t = 0. (b)
t = 0.5. (c) t = 1. (d) t = 2

model. We partition the domain [0, 1] × [0, 1] in 10,000 sub-domains. The kinetic
equation is solved via a standard finite differences method with Δx = 1

100 and
Δt = 0.01. Figure 6 shows the spatial solution of the kinetic equations. Figure 7
shows the difference between the average of the particle model and the kinetic
equation in each sub-domains. The comparison between the dynamics in the kinetic
and the particle approximation is shown in Fig. 8.
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Fig. 7 Difference between the average of the particle model and the kinetic system for the infected
state of host in each sub-domians. (a) t = 0. (b) t = 0.5 (c) t = 1. (d) t = 2
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Modelling Dengue with the SIR Model

Peter Heidrich and Thomas Götz

Abstract Severe dengue outbreaks and their consequences point out the need
for prognosis and control methods which can be derived by epidemiological
mathematical models. In this article we develop a model to describe observed
data on hospitalized dengue cases in Colombo (Sri Lanka) and Jakarta (Indonesia).
Usually, the disease is epidemiologically modelled with the SIRUV model consisting
of the susceptible (S), infected (I) and recovered humans (R) and the uninfected
(U) and infected (V ) female mosquitos. Because we do not have any information
about the mosquito population we reduce the model to a SIR model which depends
on a time-dependent transmission rate β(t) and fit it to the received data sets. To
solve this, optimal control theory constructed on Pontryagin’s maximum (minimum)
principle is applied in order to reach the solution with numerical optimization
methods. The results serve as a basis for different simulations.

1 Introduction

Severe dengue outbreaks and their consequences point out the need for prognosis
and control methods which can be derived by epidemiological mathematical models.
Dengue is classified as a fast emerging viral disease which occurs in over 100
tropical and subtropical endemic countries every year—especially in South East
Asia, Latin America and the Western Pacific. The dengue virus is categorized in four
distinct serotypes (DEN 1–4). Once infected with the virus a severe flu-like infection
or in some cases a severe dengue (dengue haemorrhagic fever) may occur. In severe
course of the disease dengue fever can lead to death. The disease is a mosquito-
borne viral infection which is transmitted by vectors like the Aedes aegypti. The
female mosquito absorbs the virus while feeding on the blood of an infected human.
When the infected mosquito bites an uninfected human the virus can be transmitted.
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Thus, the human functions as a carrier and multiplier of the virus. A transmission
is followed by an incubation time of 4–10 days. Once infected, the virus is
located 2–7 days in the blood. Meanwhile the patient shows the symptoms and
can transmit the virus in a period of maximum 12 days to an uninfected mosquito.
The recovery from the infection caused by one serotype of the virus provides
lifelong immunity against this specific serotype. However, a subsequent infection
with another serotype increases the risk of a severe dengue. The transmission of
the disease depends on the living conditions for the vectors which are influenced
by regional rainfall, temperature, humidity and the degree of urbanization. The
World Health Organisation (WHO) hypothesizes that approximately 50–100 million
infections occur every year whereby latest estimates are at 390 million infected
humans of which only approximately one fourth is hospitalized or registered [6].
By private communication we received data sets of dengue cases in Colombo (Sri
Lanka) and Jakarta (Indonesia) from the local Departments of Mathematics [1, 4].
Usually, the disease is modelled with the SIRUV model consisting of the susceptible
(S), infected (I) and recovered (R) humans and the uninfected (U) and infected (V)
female mosquitos. Because we do not have any information about the mosquito
population we reduce the model to a SIR model applying the findings of Rocha et
al. [2]

dS

dt
= μ (N − S)− β(t)

N
SI

dI

dt
= β(t)

N
SI − (α + μ) I

dR

dt
= αI − μR.

The system is reduced from five to three ordinary differential equations (ODEs)
and depends on a time dependent transmission rate β(t). In order to fit the
parameters of the model to the received data sets we implement an objective function

J (u) =
∫ T

0

(
I (t) − Id(t))2dt + ‖u‖2

N2

which shall be minimized with respect to u. The results serve as a basis for two
numerical simulations concerning the behaviour of the dengue outbreaks.

2 Data Analysis

The available data consists of the weekly hospitalized dengue cases in the Colombo
City District and the Special Capital Region of Jakarta. To reduce the noise in
the data we smoothen it with a moving average. Each data point di is replaced by
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d̄i = 1
4

∑3
k=0 di−k for all i ≥ 3. In both cases a periodical behaviour with varying

intensities concerning the peaks can be recognized. In Colombo we observe half-
yearly repeating outbreaks in the midyear and at the turn of the year, the dengue
outbreaks in Jakarta appear yearly in the first quarter. The results of the fast Fourier
transform (FFT) underpin these observations since significant high values at two
frequencies per year in Colombo and one frequency per year in Jakarta can be
noticed.
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It is assumed that this behaviour relates to the weather conditions especially the
precipitation, because the vectors of the disease need small amounts of standing
water to lay their eggs in. We apply the FFT on the appropriate rainfall data sets and
recognize that their periodical behaviour fit to the dengue data.
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To substantiate the relation between rainfall and dengue data we use a cross-
correlation and finally receive significant high values at time lags between 6 to
10 weeks. Consequently, this means that after an intensive rain period it takes
approximately 2 months until the dengue cases significantly rise in the cases
of Colombo and Jakarta. The clusters between precipiation and dengue data
additionally show that if the average daily rainfall is stronger than approximately
15 to 20 mm a day, less dengue data points appear. Thus, we assume that in periods
of very strong rainfall the eggs of the mosquitos are destroyed or washed away so
that the reproduction of the vectors is restricted. In the following this border will be
called cut-off.
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3 The SIR Model

The present SIR Model includes the three usual groups of susceptible (S), infected
(I) and recovered (R) individuals:

dS

dt
= μ (N − S)− β(t)

N
SI (1)

dI

dt
= β(t)

N
SI − (α + μ) I

dR

dt
= αI − μR

N = S0 + I0 + R0

0 ≤ S0, I0, R0.
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The total population N is assumed to be constant because of the short time
period. Consequently, the birth and death rate are equal and named with μ. The
transition from infected to recoverd individuals depends on the recovery rate α. We
omit the explicit mosquito dynamics of uninfected (U) and infected (V) vectors and
use a time-dependent transmission rate β(t) instead.

Simulation 1 Simulation 2

β(t) = β0 + β1 cos(ωt) β(t) = β0 + β1
∫ t− τ1

52

t− τ2
52
pc(ξ)dξ · sin

(
ω
(
t + φ

52

))

Here β0 stands for the average transmission rate and β1 for the degree of
periodical variation. In simulation 2 a phase-shift φ is additionally included and
β1 is multiplicated with an integral of the precipitation function pc. It is defined by

pc(ξ) =
{
p(ξ), p(ξ) < c

0, p(ξ) ≥ c. (2)

The continuously differentiable function p(ξ) includes the rainfall data points pi
and c represents the cut-off. The interval [t − τ2

52 , t − τ1
52 ] is set around the time lag

between precipitation and dengue data. In the case of Colombo the time lag is 10
weeks, therefore [t − 12

52 , t − 8
52 ] is a possible choice. To fit the model to the dengue

data we solve the optimization problem

min
u
J (u) = min

u

∫ T

0

(
γ I (t) − Id(t))2dt + ‖u‖2

N2 (3)

subject to (1). Because it is assumed that only a fraction of infected individuals are
hospitalized we establish γ as hospitalization rate. The continuous function Id(t)
includes the dengue data points d̄i and u consists of the parameters that shall be
fitted.

Fitted parameters Fixed parameters

Simulation 1 u = (β0, β1, S0, I0, R0)
′ N,μ, α, ω, γ

Simulation 2 u = (β0, β1, c, τ2, φ, γ, S0, I0, R0)
′ N,μ, α, ω, τ1

The integral in J (u) is based on a L2 norm so that its minimization corresponds

to a least squares method. Additionally we add a regularization term ‖u‖2

N2 . Its

size is much smaller than the size of the integral therefore
∫ T

0

(
γ I (t) − Id(t))2 dt

dominates the minimization algorithm which is decisive for the biological context.
The addition with this convex and radially unbounded regularization term has an
analytical background because otherwise some parameters would disappear in the
gradient and consequently the corresponding columns and rows in the Hessian
matrix would be equal to zero. Thus, it would be difficult to calculate and categorize
critical points. In a way this corresponds to a Tikhonov regularization [5]. The
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division by the size of the total population N is caused by the fact that the
transmission rate β(t) is divided byN in the SIR model and the investigation of the
initial conditions S0, I0 and R0 in relation to N is useful. In order to optimize (3)
with Pontryagin’s maximum (minimum) principle we introduce a Lagrange function

L (u, x, λ) =
∫ T

0

(
γ I (t)− Id(t))2dt + ‖u‖2

N2
+
∫ T

0

〈
λ(t), g(u, x(t), t) − dx(t)

dt

〉
dt

where λ = (λS, λI , λR)
′ includes the adjoint functions, x = (S, I, R)′ consists

of the state variables, g = (gS, gI , gR)
′ symbolizes the right terms of the ODEs

in (1) and 〈·, ·〉 stands for the scalar product. The necessary optimality condition for
a minimum (u∗, x∗, λ∗) is fullfilled if ∇L (u∗, x∗, λ∗) = 0 holds. Solving ∂L

∂xi
= 0

via Gâteaux derivative delivers the adjoint ODEs

dλS

dt
=
(
μ+ β(t)

N
I

)
λS − β(t)

N
IλI

dλI

dt
= β(t)

N
SλS +

(
(α + μ)− β(t)

N
S

)
λI − αλR − 2γ

(
γ I − Id

)

dλR

dt
= μλR

0 = λS(T ), λI (T ), λR(T )

and ∂L
∂λi

= 0 leads to the ODEs in (1). In simulation 2 the gradient of L respect to
u is given by

∂L

∂ui
= ui 2

N2 + 1

N

∫ T

0

∂β(t)

∂ui
(λI (t)− λS(t)) S(t)I (t)dt i ∈ {1, . . . , 5}

∂L

∂u6
= γ 2

N2 + 2
∫ T

0
I (t)

(
γ I (t) − Id(t)

)
dt

∂L

∂u7
= S0

4

N2 + R0
2

N2 − 2

N
+ λS(0)− λI (0)

∂L

∂u9
= R0

4

N2 + S0
2

N2 − 2

N
+ λR(0)− λI (0).

u8 is calculated by the substitution I0 = N − S0 − R0. The conjugate gradient
method combined with the forward-backward sweep method is applied to solve the
optimization problem numerically until ‖J (ui+1)− J (ui)‖ < 10−9 holds. [3]



Modelling Dengue with the SIR Model 181

4 Results

In both simulations a time-scale t in years is applied. The values of the fixed
parameters N,μ and α are extracted from statistics of the WHO [6]. The timing
of the peaks fits to the behaviour in the data sets especially in simulation 2 because
of the phase shift φ. In Jakarta the model maps the relation between the yearly
peaks whereby the inclusion of the rain data allows a more accurate dynamical
behaviour. In Colombo the half-yearly varying oscillation proves more difficult to be
reproduced though, the adding of the precipitation again improves the dynamics of
the model. Comparing the absolute values of the fitted parameters in both locations
we determine that similar results are achieved.

Jakarta b0 b1 c t2 g f S0 I0 R0 N m a t1 w

Sim. 1 38,6 6,0 / / 1 / 6,6 ·106 6,0 ·102 3,4 ·106 107 1/69 26 / 2p
Sim. 2 51,6 14,7 17,0 9,0 0,45 9,2 4,8 ·106 1,2 ·103 5,2 ·106 107 1/69 26 4 2p

Colombo b0 b1 c t2 t f S0 I0 R0 N m a t1 w

Sim. 1 26,7 4,6 / / 1 / 1,3 ·106 5,0 ·101 1,5 ·104 1,3 ·106 1/75 26 / 4p
Sim. 2 37,2 −10,0 15,0 14,00 0,44 −4,0 9,1 ·105 2,1 ·102 3,9 ·105 1,3 ·106 1/75 26 8 4p
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Mathematical Modeling
for Laser-Induced Thermotherapy
in Liver Tissue

Norbert Siedow and Christian Leithäuser

Abstract Laser-induced thermotherapy (LITT) plays an important role in oncology
to treat human liver tumors. LITT is a minimally invasive method causing tumor
destruction due to heat ablation and coagulative effects of the tissue. Tumor tissue
is much more sensitive to heat than normal healthy tissue. The big advantage of the
LITT compared to other minimally invasive procedures, such as microwave ablation
or radiofrequency therapy, is that the treatment primarily takes place under MRI
control, such that patients are exposed to a small radiation dose. The present paper
describes the mathematical modeling of laser-induced thermotherapy and shows
simulation results for porcine liver.

1 Introduction

The aim of thermal ablation methods is to destroy cancer tissue by generating
cytotoxic temperature for a short time without damaging vital tissue. These methods
are minimally invasive and used for treating for example lunge, liver, and prostate
cancer, when surgical resection is not possible or too dangerous for the patient.
Tumor tissue is much more sensitive to heat than normal healthy tissue. Most
proteins denature at 40–42 ◦C. Irreversible coagulation necrosis occurs in the
temperature range of 60–100 ◦C. Temperatures above 150 ◦C result in vaporization
and carbonation. This leads to an undesirable reduced thermal conductivity, and heat
can not penetrate further into the tissue.

The most popular thermal ablation methods are the radiofrequency ablation
technique, the LITT, and the microwave ablation.

The principle of LITT is based on the local introduction of energy via an optical
fiber directly into the cancerous tissue. The laser fiber is located in a water-cooled,
MR-compatible applicator. The introduction of the applicator into the tumor is done
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under the CT, while the actual treatment takes place under MRI control. Thus, the
patient is exposed to only a small dose of radiation during LITT. An additional
advantage is the possibility to use MR-Thermometry for active image control.
MR-Thermometry methods are based on MR measured parameters depending on
temperature like the longitudinal relaxation time (T1), the diffusion coefficient (D),
or the proton resonance frequency (PRF ) of tissue water. The linear temperature
dependence of the proton resonance frequency and its near-independence with
respect to tissue type make the PRF-based methods the preferred choice for many
application. For a more deeper understanding to MR-Thermometry we refer to the
review paper [1].

In the following we discuss the mathematical modeling of the LITT, and compare
simulation results with temperature maps from MR-Thermometry.

2 Mathematical Modeling

Let Ω ⊂ R
3 denote the geometry of the liver, which is obtained from MRI through

segmentation. The boundary Γ of Ω consists of the radiating part of the adjacent
applicator Γrad , which is not part of the liver, the cooled part of the applicator Γcool,
and the surface of the liver Γamb (see Fig. 1). The mathematical model is described
by a system of partial differential equation for the heat transfer inside the liver, the
radiative transfer from the applicator into the liver tissue, and a damage function.
[2–4]

Γamb

Γcool Γrad

Fig. 1 Water cooled applicator with radiating laser fiber
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2.1 The Temperature

The heat transfer in the liver is modeled by the well-known bio-heat equation

cpρ
∂T
∂t
(x, t) = ∇ · (kh∇T (x, t))+ ξb(Tb − T (x, t))+Qrad,

T (x, 0) = Tinit (x), (1)

where T (x, t) denotes the temperature depending on the three-dimensional position
x and the time t . cp is the thermal conductivity, ρ the density, kh the thermal
conductivity, and ξb the perfusion rate due to the blood flux. Tb denote the blood
temperature and Qrad the energy source term due to the irradiation of the laser
fiber. The initial temperature is assumed to be known T0(x).

For the heat transfer between liver and applicator and with the surroundings
Robin type boundary conditions are used.

kh
∂T
∂n

= αcool(Tcool − T ), x ∈ Γrad ∪ Γcool,
kh
∂T
∂n

= αamb(Tamb − T ), x ∈ Γamb. (2)

Here n is the outer normal vector, αcool and αamb the heat transfer coefficients with
the cooling part of the applicator and the surroundings of the liver, respectively.
Tcool denotes the cooling temperature and Tamb the ambient temperature.

The source term in (1) is given by

Qrad = μa

4π

∫

S2

I (s, x)ds = μaφ(x), (3)

where μa is the absorption coefficient and φ(x) the radiative energy defined as the
integral of the radiative intensity I (s, x) over all directions s of the whole sphere S2.

2.2 The Radiative Transfer

The irradiation of laser light is described by the radiative transfer equation

s · ∇I (s, x)+ (μa + μs) I (s, x) = μs

4π

∫

S2

P(s · s′)I (s′, x)ds′, (4)

with the absorption and scattering coefficients, μa and μs , the scattering phase
function P(s · s′) given by the Henyey-Greenstein term

P(s · s′) = 1 − g2

(1 + g2 − 2g(s · s′))3/2 . (5)
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g is the so-called anisotropy factor. g = 0 describes the isotropic and g = 1 the
anisotropic scattering. The boundary condition is given by

I (s, x) = F, x ∈ Γrad, I (s, x) = 0, x /∈ Γrad, (6)

where F is an energy density defined later.
Because of the high dimension of the radiative transfer equation (4) we use the

so-called P1-approximation to approximate (4). Introducing the ansatz

I (s, x) = φ(x)+ 3s · q(x),

where q(x) = 1
4π

∫
S2

I (s, x)sds is radiative flux vector, one obtains the much simpler

three-dimensional diffusion equation

− ∇ · (D∇φ(x))+ μaφ(x) = 0, D = 1

3(μa + (1 − g)μs) . (7)

To approximate the boundary condition (6) we use the Marshak’s procedure
described for instance in [5]. We obtain Robin type boundary conditions

D
∂φ

∂n
(x) = qapp

AΓrad
, x ∈ Γrad, D

∂φ

∂n
(x)+ bφ(x) = 0, x /∈ Γrad, (8)

where qapp is the energy delivered by the laser and AΓrad the surface area of the
radiating part of the fiber. The parameter b = 0.5 for x ∈ Γamb and b = 0 for
x ∈ Γcool . From the numerical point of view (7) and (8) is much easier to compute
than the original system (4) and (6).

2.3 The Damage Function

The damage of the liver/cancer tissue will be described by the so-called damage
function. It is common (see [2, 3]) to use the Arrhenius law

w(x, t) =
t∫

0

Ae−Ea/RT (x,τ )dτ, (9)

with so-call frequency factor A, activating energy Ea , and ideal gas constant R
to describe the change of material properties due to coagulation. The subscript n
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stands for native tissue and c for the properties of the coagulated tissue. For the
optical parameters we obtain

μa = μan + (1 − e−w)(μac − μan),
μs = μsn + (1 − e−w)(μsc − μsn), (10)

g = gn + (1 − e−w)(gc − gn).

3 Results

The mathematical model described above was used to simulate the heating of pig
porcine. The liver geometry and applicator position were obtained from segmented
MR-images. The computational geometry was generated using Open Cascade
(Open Cascade SAS, Guyancourt, France) and the mesh using the software code
Gmesh. The differential equations, including boundary conditions, were discretised
and solved using GetDP (P. Dular and C. Geuzian, University of Liege). More
details can be found in the co-work [6]. The used heat and optical parameters
are listed in [4]. The time-depending simulation results were compared with data
from MR-Thermometry (see Fig. 2) and thermocouples placed at different positions
around the laser-applicator. The simulation as well as the MR-Thermometry are
in good agreement with measured data. Looking at Fig. 2 one can see the typical
shape of the temperature distribution around the radiating part of the applica-
tor.

Fig. 2 Temperature simulated (left) and taken from MR-Thermometry (right)
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4 Conclusions

LITT is a minimal-invasive method in the field of interventional oncology used
for treating liver cancer. Mathematical modeling and computer simulation are
important features for treatment planning and imaging the necrosis of the tissue.
The numerical simulation is in good agreement with the MR-Thermometry and
temperature measurements for porcine liver. For future work blood perfusion has
to be taken into account. The blood flux of vessels and tissue has a cooling effect,
which is very important for treating humans and depending on the physiology of the
patient. To model these effects more research is needed.
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Fiber-Based Modeling of Muscles
in the Musculoskeletal System

Michael H. Gfrerer and Bernd Simeon

Abstract The aim of this contribution is to present a fiber-based modeling approach
for the dynamic behavior of muscles within the musculoskeletal system. We
represent the skeletal system as a rigid multi-body system which is actuated by
muscles. We model each muscle as an one-dimensional cable with variable cross
section undergoing large deformation and strains. In order to avoid penetration of the
muscles and the skeleton, contact is considered. We use our framework to conduct
a dynamic forward simulation of a simple upper limb model.

1 Introduction

The simulation of the musculoskeletal system is a common field of interest. In
such simulations, the skeletal system is typically represented by a rigid multi-body
system. Concerning the modeling of the muscles, in the simplest case, the muscle
paths are assumed to be the straight line between the insertion points. In order to
account for the physiology, the muscle paths can be enhanced by so-called ‘via’ or
wrapping’ points [1, 3, 5, 9]. Another possibility is to solve the shortest distance
problem taking the constrains by the bones and other structures into account [6, 10].
In such line of action models, the muscular forces are often calculated by Hill-type
muscle models [13]. Those lumped parameter models are computationally cheap
but may lack realism.

More detailed models are based on nonlinear continuum mechanics. How-
ever, they have the drawback of an increased computational cost. Nevertheless,
they are able to represent three-dimensional geometry and multi-scale architec-
tures [2, 8], Furthermore, they allow for the inclusion of multi-physic effects
[4, 11].
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In the present paper, we model a muscle as a three-dimensional continuum
located around an one-dimensional curve in space. Due to this geometry setting
we derive an one-dimensional cable model incorporating large deformations and
thickness change. The total stress tensor is additively decomposed into a passive,
an active and a prestress contribution. For the passive response an incompressible
Kelvin-Voigt material law for finite strains is used. The active stress contribution is
modeled by the relations given in [8]. We consider the coupling of the rigid-body
system and the muscles at the insertion points. Furthermore, contact on the lateral
surface of the muscles and the rigid bodies is incorporated.

2 Fiber-Based Model of the Muscle-Tendon Complex

We model the homogenized muscle-tendon complex by means of continuum
mechanics. Thus, the motion is governed by the balance of momentum

Div(FS)+ b0 = ρ0ü, (1)

where F is the deformation gradient, S the second Piola-Kirchhoff stress tensor, b0
the volume force, ρ0 the mass density, and u is the displacement. In the following,
C = F�F denotes the right Cauchy-Green deformation tensor. We assume that the
second Piola-Kirchhoff stress tensor can be additively decomposed into a passive,
an active, and a prestress part, S = Sp + Sa + Spre. The passive contribution is
determined by an incompressible hyper-elastic material response

Sp = 2γM
∂WM

∂C
+ 2(1 − γM)∂W

T

∂C
+ pC−1, (2)

where we have introduced the function γM in order to distinguish between muscle
(M) and tendon (T) material. Furthermore, p is the undetermined volumetric
response. In the present contribution, we use a Kelvin-Voigt material

∂Wi

∂C
= 2μi

(
I − 1

3
C−1trC

)
+ ηi

2
C−1 Ċ C−1, (3)

where μi and ηi with i = M,T are the respective shear modulus and viscosities.
In order to derive a cable model, we follow the kinematic assumptions in [7]. The
initial configuration is parametrized as

X3D(θ1, θ2, θ3) = X(θ1)+ φ1(θ
2, θ3)B(θ1)+ φ2(θ

2, θ3)N(θ1) (4)
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where X(θ1) is the centerline curve. The circular cross section is described by
φ1(θ

2, θ3) = θ2 cos(θ3), φ2(θ
2, θ3) = θ2 sin(θ3) and

B(θ1) = X,θ1 × X,θ1θ1

||X,θ1 × X,θ1θ1 || , N(θ1) = X,θ1 × B

||X,θ1 × B|| . (5)

The current configuration is parametrized by

x3D(θ1, θ2, θ3) = x(θ1)+
(
φ1(θ

2, θ3) b(θ1)+ φ2(θ
2, θ3) n(θ1)

)
Λ(θ1). (6)

The vectors n and b are defined analogously to (5). The function Λ accounts
for thickness changes of the cross section during the deformation. Enforcing the
incompressibility constraint on the cross section level allows us to compute the
thickness change

Λ =
√

||A1||
||a1|| ,

(7)

where A1 = X,θ1 and a1 = x,θ1 are the tangent vectors to the initial and the current
centerline, respectively. We assume that the active stress is generated such that it
acts only along the direction of the centerline

Sa = γMSaA1 ⊗ A1 with Sa = α(t) Smax
λ2

⎧
⎪⎪⎨
⎪⎪⎩

exp
−
∣∣∣∣
λ/λopt−1
ΔWasc

∣∣∣∣
νasc

, λ < λopt

exp
−
∣∣∣∣
λ/λopt−1
ΔWdesc

∣∣∣∣
νdesc

, λ > λopt

.

(8)

For the prestress contribution we have Spre = σ0
||a1||2 A1 ⊗ A1, where σ0 is an

input parameter. By neglecting bending and shear stresses we have for the passive
contribution

Sp ≈ Sp,11A1 ⊗ A1+
⎡
⎣ ∑
i=M,T

(
2μi − 2μi trC

3Λ2
+ ηi a1 · ȧ1

Λ2

)
+ p

Λ2

⎤
⎦A2 ⊗ A2 + Sp,33A3 ⊗ A3.

(9)

The enforcement of vanishing stress in the thickness direction allows us to statically
condensate the volumetric response

p = −2μi
(
Λ2 − trC

3

)
+ ηi a1 · ȧ1. (10)
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Thus, the passive stress contribution is given by

Sp ≈
(

2μ

(
1

||A1||2 − ||A1||
||a1||3

)
+ 2η

a1 · ȧ1

||a1||2
)

A1 ⊗ A1. (11)

In total, the second Piola-Kirchhoff stress tensor is given by

S=
⎡
⎣ σ0

||a1||2 +γMSa+
∑
i=M, T

(
2μi

(
1

||A1||2 − ||A1||
||a1||3

)
+ 2ηi

a1 · ȧ1

||a1||2
)⎤
⎦A1 ⊗ A1.

(12)

The cable model has been coupled to a rigid body system consisting of cylinders.
The coupling conditions at an end point xc of one cable are

uRB(xc) = uF (xc), FRB(xc)+ FF (xc) = 0. (13)

The first equation in (13) ensures the compatibility of the deformation. In the
numerical model it is treated as a constraint on the end positions of the cables.
Therefore, they are incorporated like inhomogeneous Dirichlet boundary conditions.
The second equation in (13) is the second Newton law. Since the force acting at the
insertion point of the cable model is given by

FF = A0S
11g1 ||G1||. (14)

we can treat the force as an external load on the rigid body system. Furthermore, we
consider frictionless contact on the lateral surfaces of the cables and the rigid bodies.
Here, we consider the thickness-change (which is given byΛ) of the muscles during
deformation.

3 Numerical Results

We have implemented a finite element method based on the weak form of (1) in
Matlab. The unknown displacement field u is discretized with respect to space by
cubic Hermite splines. The well known equations of motion for a rigid body system
can be found for example in [12]. For the time integration we have used a backward
Euler schema with one Newton step per time step (linear-implicit Euler). Contact
has been realized by the penalty method.



Fiber-Based Modeling of Muscles in the Musculoskeletal System 193

Fig. 1 Initial configuration

Table 1 Model parameters

ρ0 900 kg/m3 Smax 3 × 105 N/m2 Length upper arm 0.351 m

μM 105 N/m2 λopt 1.3 [−] Length forearm 0.287 m

μT 106 N/m2 ΔWasc 0.3 [−] Radius upper arm 0.035 m

ηM 104 N/m2 νasc 4 [−] Radius forearm 0.045 m

ηT 104 Ns/m2 ΔWdesc 0.1 [−] Mass upper arm 1.9241 kg

σ0 30 N/m2 νdesc 4 [−] Mass upper arm 1.502 kg

We consider a strongly simplified model of the upper limb, consisting of two
rigid bodies and two muscles (see Fig. 1). The upper arm is fixed and the elbow joint
is assumed to have only one rotational degree of freedom. An additional wrapping
surface forces the triceps to bend around the elbow. The radius of both muscles is
assumed to be the same and is given by the muscle ratio are

r0 = 5 × 10−3(1 + 2 f (ξ))m, (15)

where f (ξ) = 16(ξ2 − 2ξ3 + ξ4) and ξ is the dimensionless position in the muscle.
The muscle ratio follows the spatial distribution γM = f (ξ). The remaining model
parameters are given in Table 1.
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Fig. 2 State at t = 1

Within the dynamic forward simulation the activation level of the biceps is
increased until the simulation time t = 1 and hold constant at α = 0.13 onwards.
The triceps reacts only passively. The state of the system is depicted at t = 1 and
t = 12 in Figs. 2 and 3. Due to the activation the forearm is lifted up and the biceps
develops a belly due to contraction. The rotation of the forearm is plotted over time
in Fig. 4. The force between triceps and the upper arm over time is depicted in
Fig. 5.
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Fig. 3 State at t = 12 (simulation end)
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Fig. 5 Force of triceps at the upper arm

4 Conclusion

A new forward-dynamic musculoskeletal system simulation framework has been
presented. All components are represented by three-dimensional bodies. Due to
the stiffness of the bones they are modeled as rigid bodies, whereas muscles
are modeled by one-dimensional cables derived from continuum mechanics. The
advantage of this approach is the relatively low computational cost compared to
models accounting for full three-dimensional kinematics, without introducing too
much assumptions like in lumped parameter models.

In the present model the rigid bodies are restricted to be cylinders. In future
work we plan to incorporate triangulated bone surfaces into our model. Furthermore,
we would like to couple the present model with an electrochemical model on the
microscopic level.
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Improving Thermal Ablation of Liver
Tumors

Matthias Andres and René Pinnau

Abstract Laser-induced interstitial thermotherapy (LITT) is a medical treatment
which attempts to destroy liver tumors by thermal ablation. A realistic real-time
simulation shall support the practitioner online in planning the therapy. The heat
transfer inside the liver can be described by a PDE system consisting of the so-called
bio-heat equation and a radiative transfer model. We model the heat loss due to
blood perfusion by a simple sink term with spatially varying coefficient accounting
for the presence of vessels. Using PDE-constrained optimization we demonstrate
how to fit this parameter in order to minimize the deviation between the predicted
and measured temperature.

1 Overview

In this work we consider a mathematical model for the laser-induced interstitial
thermotherapy (LITT), which is a medical treatment to destroy liver tumors. To
this a specific applicator is inserted into the liver. It has a laser emitting part at
its tip and is cooled by a water flow (see Fig. 1). The mathematical description is
based on the so-called bio-heat equation, which is well-studied in literature and
appears to be a valid model: In [5] the mathematical simulation for an ex vivo
setup was validated by a real experiment with a porcine-liver and showed promising
results.

Nevertheless, the model depends on various parameters, which are only partly
known from literature and often ambiguous. In this work, we solve this problem
by formulating the identification of unknown parameters as an inverse problem.
The medical treatment is monitored by magnetic resonance imaging which provides
ground-truth data for the temperature later in the real application. This information
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Fig. 1 Illustration of the
laser applicator and the scaled
computational domain with
4709 nodes
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will enter the inverse problem through a cost functional and is the basis for the
parameter fitting.

An inverse problem in the context of LITT has already been studied in [9]. The
authors developed an optimization strategy for identifying certain parameters of the
Arrhenius law, which models the coagulation of tissue due to protein denaturation
caused by the increased temperature.

Here, we focus on the effect of blood perfusion. In [8] the authors modeled the
temperature decrease due to blood flow in a homogenized way as a linear sink term
in the bio-heat equation with a constant coefficient. The effect of a single thick vessel
was studied in [6], including the knowledge of the vessel location and modeling the
blood flow in terms of the Navier Stokes equation.

Our attempt is between the simple homogenized and the very complex blood
flow model. We add a sink term to the bio-heat equation similar to [8], but we allow
the prefactor to vary in space and time, depending on the vessel structure and the
coagulation of the tissue. This allows to model local effects due to single blood
vessels as well as the influence of capillary vessels. Furthermore it does not add too
much complexity to the model such that this problem would become unrealistic to
handle in a parameter identification context.

Having a more precise model for the blood perfusion would add great value to the
simulation of LITT, especially to make a step from ex vivo to in vivo simulations.
Furthermore, the position of thick vessels relative to the tumor region varies for
each treatment and needs to be identified beforehand. This kind of parameter cannot
be given by literature but needs to be identified for each treatment and patient
individually in an automatized way.

In Sect. 2 we review the mathematical model, which was validated in [5]
by experimental data for slightly different boundary conditions. In Sect. 3 we
introduce a cost functional modeling the deviation of the predicted temperature
data from the measured data depending on the location of vessels and compute the
corresponding gradient. In Sect. 4 we demonstrate a gradient-descent method for
solving the inverse problem. The last section shows possible directions for future
work.
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2 Mathematical Model

The process of radiative heat transfer inside the liver is described by a coupling of
the so-called bio-heat equation,

α∂tT − ∇ · (κ∇T ) = μ̂μaφ + ξ (Tb − T ) on (0, 1)×Ω,
κ∇T · n = αamb/cool (Tamb/cool − T ) on (0, 1)× Γambient/cooling,

T (0, ·) = T0 onΩ,
(1)

with the SP1 approximation (e.g., [7]) of the radiative transfer equation,

−∇ · (D∇φ)+ μaφ = 0 on (0, 1)×Ω,
ε

2
φ +D∇φ · n = εδ qlaser

x2
ref|Γrad|

· χΓrad on (0, 1)× Γ, (2)

where T describes the temperature (scaled by 1 K), φ describes the irradiance
(scaled by 1 W/m2) and Γrad ⊂ R

3 is the part of the applicator that emits laser
light. This model is taken from [5] with slightly modified boundary conditions.
A nonlinear coupling is introduced by the process of coagulation due to the
increased temperature of the tissue, which enters the system through the function
γ as

γ (t, x) = exp

(
−tref

∫ t

0
A exp

(
− Ea

RTrefT (s, x)

)
ds

)
,

D = ε2

3 (μa + (1 − g) μs)
,

p = pn + (1 − γ ) · (pc − pn) ,

for p ∈ {μa, μs, g, ξin, ξout}, where the subindices n and c stand for the respective
values for native and coagulated tissue. In this work, other than, e.g., [5, 8], we
consider a scaled heterogeneous blood perfusion rate ξ in the bio-heat equation,
which affects the modeled heat loss due to blood flow. We model ξ as

ξ = ξout + u · (ξin − ξout) , (3)

where u : Ω → [0, 1] can be seen as an indicator function for blood vessels. Having
this interpretation in mind the values ξin and ξout model the heat loss due to blood
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Table 1 Overview on occurring variables

xref = 0.05 m tref = t∗end = 60 s Tref =1 K φref = 1 W/m2

μref = 1560 1/m ε = 1/xrefμref κ = 1 α = 345.94

μa,n = 0.03205 μa,c = 0.03846 μs,n = 5.128 μs,c = 19.23

gn = 0.97 gc = 0.95 Ea = 6.3 e5 J/mol A = exp (226.7847) 1/s

R = 8.31 J/molK αcool = 26.04 αamb = 0 μ̂ = 8.125

δ = 1.72 m2/W qlaser = 28.9 W ξin,n = 312.3 ξin,c = 312.3

ξout,n = 0 ξout,c = 0 T0 = 310.15 Tb = 310.15

Tamb = 310.15 Tcool = 293.15

The values are based on the parameters in [5], whereas the blood perfusion rates are taken from [3]

perfusion inside and outside of thick blood vessels, respectively. An overview of
the occurring variables is given in Table 1.

3 Gradient-Based Optimization

We formulate the task of identifying the location of blood vessels as an inverse
problem, where we consider the function u : Ω → [0, 1] in Eq. (3) as control input
for the following optimization problem:

uopt = argmin
u:Ω→[0,1]

J (T , φ, u)

s.t. (T , φ) fulfill Eqs. (1), (2) for corresponding u,

with cost functional

J (T , φ, u) = λ1

2J0

∫

Ω

(T (1, x)− Td (x))
2 dx + λ2

J0

∫

Ω

u dx.

TheL1 penalty for the control term is motivated, e.g., by Casas et al. [2]. The desired
temperature Td corresponds to the measured temperature at the final physical time
t∗end, and the value J0 normalizes the cost functional to one for the initial value of
u in the optimization algorithm in Sect. 4. Following [4], we derive for the reduced
cost functional f (u) = J (T (u) , φ (u) , u), based on a formal Lagrange principle,
the Riesz representation of the derivative w.r.t. u:

f ′(u) = λ2

J0
+
∫ 1

0
(ξin − ξout) (Tb − T ) ϕ dt,
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where ϕ is part of the adjoint state of the PDE constraint and results from solving
the adjoint equation

−α∂tϕ − ∇ · (κ∇ϕ)+ ξϕ + fμa − fξ + fD = 0 on (0, 1)×Ω,
−∇ · (D∇ψ) + μa

(
ψ − μ̂ϕ) = 0 on (0, 1)×Ω,

αamb/coolϕ + κ∇ϕ · n = 0 on (0, 1)× Γamb/cool,

ε

2
ψ +D∇ψ · n = 0 on (0, 1)× Γ,

ϕ (1, ·)− λ1

αJ0
(T (1, ·)− Td) = 0 onΩ,

(4)

with the auxiliary functions

fμa =
∫ 1

t

(
μa,c − μa,n

)
φ
(
ψ − μ̂ϕ) γ ds · F(t),

fξ =
∫ 1

t

(ξc − ξn) · (Tb − T ) ϕγ ds · F(t),

fD =
∫ 1

t

[
∂D
∂μa

∂D
∂μs

∂D
∂g

]
·
⎡
⎣
μa,c − μa,n

μs,c − μs,n

gc − gn

⎤
⎦(∇ψT · ∇φ

)
γ ds · F(t),

F (t) = trefA exp

(
− Ea

RTrefT (t)

)
· Ea

RTrefT (t)
2
.

(5)

4 Numerical Experiment

In this section we consider a model problem demonstrating the identification of
blood vessels. First we consider the true location of the vessels utrue (see Fig. 2)
and compute the true temperature distribution for a physical simulation time of
t∗end = 60 s, where the temperature at the last timestep is taken as Td. Based on
the gradient information of the cost functional from Sect. 3 with λ1 = 1, we apply a
projected gradient-descent algorithm with Armijo linesearch rule (e.g., [4]), which
we initialize with u = 0. In order to solve the occurring PDEs we first discretize
in time with a physical timestep of 5 s, and solve the resulting stationary PDEs
using the finite element method with the help of FEniCS (see [1]). We assumed
rotational invariance and thus considered the corresponding problem in two space
dimensions.
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Fig. 2 Result of the gradient-descent algorithm after 19 iterations for λ2 = 0 and λ2 = 1/2,
respectively. The contour lines indicate the function utrue used to compute the desired temperature
Td. We see that vessels close to the applicator can be identified. The temperature differences in
the region more distant to the applicator seem to be too small for estimating the underlying vessel
structure for t∗end = 60 s

5 Future Work

We discussed how the simple model of blood perfusion in the bio-heat equation
can be improved by using heterogeneous coefficients which model the different
influence of capillary and thick vessels to the temperature distribution. Based on
a model problem we demonstrated how the identification of the unknown perfusion
coefficient can be attempted via PDE-constrained optimization.

In order to make this approach applicable to the real medical treatment, there are
several issues which need to be investigated. As the scaled blood perfusion rate ξ
has to be identified during the therapy, this requires a fast solution of the inverse
problem in real time. Furthermore the numerical treatment of the term F in Eq. (5)
becomes challenging for larger simulation times.

As the data to be fitted is given in the real application by MR temperature values,
it is necessary to study the effect of noisy data in the cost functional on the parameter
identification, where especially a proper choice of the L1 penalty term in the cost
functional needs to be discussed further.
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Efficient Therapy-Planning via Model
Reduction for Laser-Induced
Thermotherapy

Kevin Tolle and Nicole Marheineke

Abstract Laser-induced thermotherapy is a local, minimally invasive treatment for
liver tumors, which uses laser radiation to destroy targeted tissue. Many factors,
such as the placement of the applicator(s), the length of the treatment and the
amount of radiation introduced, affect the success of the treatment. In this work,
we focus on controlling the amount of laser power applied during the treatment.
This results in a PDE-constrained optimal control problem. Because such problems
are computationally expensive to solve directly, a space-mapping approach is
used. The coarse model used in the space-mapping method is derived through a
novel linearization of the constraining equations and subsequently reduced using
proper orthogonal decomposition. An example problem shows the viability of this
approach.

1 Introduction

An important aspect in laser-induced thermotherapy (LITT) is ensuring the com-
plete ablation of the tumor, while preserving as much of the surrounding healthy
tissue as possible. Although many different aspects of the treatment process are
relevant to this goal, this work focuses solely on a novel approach for finding the
ideal amount of laser power during the treatment via an optimal control problem.

The space-mapping approach, which uses a hierarchy of models in order to solve
optimization problems, builds the core of this work. The nonlinear mathematical
model validated in [7] serves as an accurate but expensive fine model. By applying a
unique linearization and a standard model order reduction technique, a coarse model
is derived. These models together build the hierarchy used by the space-mapping
approach, whose performance is demonstrated in an academic example.
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2 Hierarchical Modeling and Optimization

The space-mapping (SM) approach seeks to align the optimization over a fine model
to a coarse model, where the coarse model shares the same physics as its fine
counterpart, while remaining computationally cheaper to evaluate [2, 3]. Although
most often found in engineering design, the viability of the approach for transport
problems was investigated in [8].

Given a desired response yd and a fine response f (uf ) for uf ∈ Uf , the fine
control

u∗
f = arg min

uf

1

2
‖f (uf )− yd‖2

is assumed to be too expensive to compute. On the other hand, the coarse response
c(uc) for uc ∈ Uc delivers

u∗
c = arg min

uc

1

2
‖c(uc)− yd‖2,

which can be easily computed but may lie outside the desired accuracy. The key
element in the space-mapping approach is the mapping function p : Uf → Uc,
which is defined through

p(uf ) = arg min
uc

1

2
‖c(uc)− f (uf )‖2.

Assuming that f (u∗
f ) ≈ yd and/or f (u∗

f ) ≈ c(u∗
c ), the following relationship

p(u∗
f ) = arg min

uc

1

2
‖c(uc)− f (u∗

f )‖2 ≈ arg min
uc

1

2
‖c(uc)− yd‖2 = u∗

c (1)

holds. The aggressive space-mapping (ASM) method approximates (1) by solving
F(u

p

f )
def= p(upf )− u∗

c = 0 iteratively via a quasi-Newton iteration with a Broyden-

type approximation of the Jacobian for upf , which in turn approximates the fine
control.

Fine Model Let Ω ⊂ R
3 be the domain of interest. The boundary Γ of Ω

consists of the portion along the applicator Γappl and the ambient portion Γamb. The
applicator, which is actively cooled, has a portion Γrad ⊂ Γappl, which radiates laser
light into the surrounding tissue. The nonlinear system describing the temperature
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T , radiation ϕ and tissue damage ζ is given for x ∈ Ω and t ∈ [0, tf ] by

ρ cp ∂tT − ∇ · (k ∇T ) = ξb (Tb − T )+ μa(ζ ) ϕ, T (x, 0) = T0(x),

−∇ · (D(ζ )∇ϕ) = −μa(ζ ) ϕ, (2a)

∂t ζ = −Ae− Ea
R T ζ, ζ(x, 0) = ζ0(x)

with the following boundary conditions:

k ∇T · n =
{
αcool (Tcool − T ) on Γappl,

αamb (Tamb − T ) on Γamb
(2b)

and

D(ζ )∇ϕ · n =

⎧
⎪⎪⎨
⎪⎪⎩

|Γrad|−1 qeff on Γrad,

0 on Γappl\Γrad,

− 1
2 ϕ on Γamb,

(2c)

where the effective laser power qeff is assumed to be proportional to the actual laser
power qappl according to the relationship qeff(t) = (1−βq) qappl(t) for all t ∈ [0, tf ].
The absorption coefficient βq describes the amount of power directly absorbed by
the coolant. The temperature-dependent tissue parameters μa , μs and g, which are
defined through z(ζ ) = zn+ (1 − ζ ) (zc− zn) for z ∈ {μa, μs, g}, characterize the
diffusion coefficientD viaD(ζ ) = (3 (μa(ζ )+ (1 − g(ζ )) μs(ζ )))−1. More details
about this mathematical model can be found in [6, 7].

Coarse Model The coarse model is derived from the fine model by using a
combination of two different approximations chained together. The nonlinear model
is first linearized, and the resulting linear model is further reduced using standard
reduction techniques in order to attain a much smaller reduced order model.

Linearization In light of the nonlinear, temperature-dependent tissue parameters
in (2), we simplify the model by effectively “freezing” the tissue’s state by fixing
a characteristic coagulation state ζ̄ ∈ R and computing the associated coefficients
μ̄a = μa(ζ̄ ) and D̄ = D(ζ̄ ). This local approximation leads to the linear parabolic-
elliptic system

ρ cp ∂tT − ∇ · (k ∇T ) = ξb (Tb − T )+ μ̄a ϕ, T (x, 0) = T0(x),

−∇ · (D̄∇ϕ) = −μ̄a ϕ
(3)

with appropriate boundary conditions. This simplified model behaves differently as
coagulation affects the dynamics of the nonlinear model, see Fig. 1a. For example,
the linear model (for ζ̄ = 1) initially coincides with the nonlinear model for a short



210 K. Tolle and N. Marheineke

0 50 100 150 200 250 300
10-8

10-6

10-4

10-2

100

20 40 60 80 100

10-15

10-10

10-5

a b

Fig. 1 (a) Relative error between the nonlinear and linearized models using different linearization
parameters ζ̄ . (b) Relative reduction error for three different model order reduction techniques.
The dots coincide with entries in Table 1

time period before the coagulation effects cause the behavior to diverge. Different
choices for ζ̄ result in models that are initially worse but improve slightly with time
as the coagulation state in the nonlinear model nears the fixed value throughout the
domain.

Model Order Reduction After introducing semi-discrete linear finite elements, (3)
can be reformulated as a linear, time-invariant system (LTIS) of the form

E ẋ(t) = A x(t)+ B u(t), x(0) = 0,

y(t) = C x(t)+ D u(t)
(4)

with input u = (1, qappl)
T, state x = (T,ϕ)T ∈ R

N and output y = T. An advantage
of (4) is the direct access to standard (one-sided) projection-based model reduction
techniques. The projection V ∈ R

N×n transforms (4) into the reduced order LTIS

Er ẋr (t) = Ar xr (t)+ Br u(t), xr (0) = 0,

y(t) = Cr xr (t)+ D u(t),
(5)

where Er = VT E V, Ar = VT A V, Br = VT B and Cr = C V with x ≈ V xr
and n � N . The projection matrix V can be attained using standard methods such
as moment-matching, balanced truncation and proper orthogonal decomposition.
For more information on model order reduction techniques see, e.g., [1, 5, 9] and
references therein.

The relative reduction error with respect to the reduced model size is shown
in Fig. 1b for various reduction methods with a comparison of computation times
for reduced models with similar error in Table 1. A one-sided Arnoldi algorithm
is used for the moment-matching method, while the MORLAB toolbox is used for
the balanced truncation method [4]. Finally, the proper orthogonal decomposition is
performed using the method of snapshots.
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Table 1 Comparison of the full-order model (FOM) with reduced models using moment match-
ing (MM), balanced truncation (BT) and proper orthogonal decomposition (POD)

Computational timea

Size Offline [s] Online [s] Speedup

FOM 2596 – 7.1998e–02 –

MM 44 4.6210e–01 4.0987e–03 17.5662

BT 38 5.9567e+01 1.7777e–03 40.5014

POD 36 2.9973e–01 1.9297e–03 37.3111

For the reduced order models, the computational time is split into an offline and online phase,
where the offline phase is used to precompute the projection matrix V and the resulting reduced
order system, while the online phase only consists of the forward simulation of the reduced order
model for a given input u
a Simulations were performed in MATLAB on an i7-6700 with 32 GB of RAM

3 Numerical Results and Discussion

The proposed space-mapping approach is used to reconstruct a given laser input. A
target control qdappl is used to generate the target temperature profile T d , which is
then used in order to define the following optimal control problem

min J (T , qappl) = 1

2

∫ tf

0

∫

Ω

(T (x, t)− T d(x, t))2 dx dt + λ

2

∫ tf

0
|qappl(t)|2 dt

subject to (2), where the second term regularizes the optimization problem. In other
words, the goal is to reconstruct the laser input qdappl from the given temperature
data by solving an optimal control problem. Figure 2 shows the two-dimensional
(rotationally symmetric) mesh and an exemplary temperature profile. Linear finite
elements were used for the spatial discretization, while an implicit Euler method
is used for the temporal discretization. Unless stated otherwise, the physical
parameters from [7] are used in the simulations. The optimal controls resulting
from directly optimizing the fine and coarse models, respectively, and using the
space-mapping approach are shown in Fig. 3a. The coarse optimization is performed
using a steepest descent method with an Armijo-type line search. The gradients
are calculated with the help of adjoints. MATLAB’s fminunc function, using
finite differences to approximate the gradient, is used to solve the fine optimization
problem as a reference. It can be seen that the space-mapping approach is able
to account for the “lost” nonlinear effects in the coarse model. This allows for a
more accurate solution of the optimal control problem. Figure 3b clearly shows
the improvement achieved using the space-mapping approach in comparison to
the coarse optimization, where the error in the space-mapped solution is in the
same order as the fine optimal. The fine control is not expected to coincide with
the targeted laser input because of the regularization term. The initial numerical
results are promising. The space-mapping approach displays a great improvement
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Fig. 2 Depiction of the axis-symmetrical mesh used in the computations with a temperature
profile resulting from the nonlinear model. The bottom axis marks the axis of rotation, where the
artificial boundary directly along the axis fulfills a symmetry boundary condition. The “pocket”
along the bottom represents the cooled applicator, where the portion along which the temperature
is concentrated highlights the radiating segment of the applicator
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Fig. 3 (a) Numerical solutions of the respective optimization problems with λ = 10−7. (b)
Relative error in the optimal control with respect to the target control qdappl

in accuracy by using forward simulations of the fine model to correct the coarse
optimization. After successfully demonstrating the viability of this approach for
LITT problems, recent work deals with a broad performance study considering
relevant parameter settings. Additionally, constraints on the control are being
investigated to reflect the actual capabilities of the instruments used in the treatment.
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Rational Zernike Functions Capture
the Rotations of the Eye-Ball

Zoltán Fazekas, Levente Lócsi, Alexandros Soumelidis, Ferenc Schipp,
and Zsolt Németh

Abstract Measurement and mathematical description of the corneal surface and of
the optical properties of the human eye are actively researched topics. To enhance
the mathematical tools used in the field, a novel set of orthogonal functions—called
rational Zernike functions—are presented in the paper; these functions are of great
promise for correcting certain types of measurement errors that adversely affect the
quality of corneal maps. Such errors arise e.g., due to unintended eye-movements, or
spontaneous rotations of the eye-ball. The rational Zernike functions can be derived
from the well-known Zernike polynomials—the latter polynomials are used widely
in eye-related measurements and ophthalmology—via an argument transformation
with a Blaschke function. This transformation is a congruent transformation in the
Poincaré disk model of the Bolyai-Lobachevsky hyperbolic geometry.

1 Introduction

The cornea is the primary optical structure of the human eye, contributing the great-
est part to the eye’s total refractive power. Since the 1980s, plenty of measurement
devices for corneal topography have been developed to aid the understanding of
the general and the individual optical characteristics associated with the corneal
surfaces, as well as to precisely describe these surfaces: firstly only the anterior
surfaces, and more recently, also the posterior surfaces. The anterior surface of the
cornea is normally close to spherical, but its shape aberrations, and as a consequence
its optical aberrations, may result in decrease in the visual quality. For review of
devices, methods and models, see [3]. In the frame of projects, several experiments
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and mathematical simulations were carried out by us in collaboration with other
colleagues that were related to corneal measurement and shape description. These
include development of an experimental multi-camera reflective cornea topographer
[10], the shape description of spherical calotte-like surfaces using radial Chebyshev
polynomials [9], the utilization of Zernike functions, and their discretization on the
unit circle [4, 7, 8].

In Sect. 2, firstly, motivations for the presented research is given, then three shape
description methods are outlined that served as precursors to the method proposed in
Sect. 3. Though the new mathematical model has yet to be meticulously tested and
verified, it has the potential to correct and fit the corneal images and maps that were
taken in a slightly rotated position. In Sect. 4, conclusions are drawn and further
work is outlined.

2 Motivations for and Precursors to the Presented Research

2.1 Motivations

In a recent study [15], the repeatability of corneal measurements was evaluated
for successive topography measurements taken in follow-up of LASIK refractive
surgeries. Elevation maps taken with Scheimpflug topography were included in
the study. These were fitted to each other and were evaluated for repeatability
within and amongst the operative stages (i.e., preoperative, 1 month and 3 months
postoperative). Also, the errors due particularly to rotational and translational mis-
alignments were calculated. The challenges posed by such longitudinal evaluations
provide motivation for the development of new shape description, corneal map
alignment and correction methods. The need for a simplified management and
correction of misalignments is pointed out in [2]. Therein, the authors draw attention
to the inconsistencies of ocular reference axes. These inconsistencies become an
issue when different corneal measurement systems are used for patients, and their
maps need to be compared, aligned and aggregated. A pragmatic way to unify,
standardize and align these measurements would be extremely helpful. The article
[1] serves as an excellent guide to ophthalmologists and biomedical engineers on the
topics of elevation-based topography. It discusses and illustrates among other issues
the importance of choosing the appropriate reference axis for the axial curvature
calculations. The authors underline the need for corneal map corrections, if for some
reason or another the choice of the reference axis were not perfect. It also discusses
the role of reference surfaces, such as spherical calotte, toric ellipsoid, in locating
shape aberrations, such as keratoconi, on the corneal surfaces. The latter issue is
particularly relevant to the modified radial Chebyshev polynomials-based corneal
shape description method outlined in next subsection.
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2.2 Precursors

Zernike functions were introduced in 1934 in [14] to facilitate the mathematical
description of optical systems. Zernike functions form a complete orthogonal
system on the unit disk D := {z ∈ C : |z| < 1}. Since then the Zernike-based
surface representation has become universally accepted in the corneal topography.
One way to define the Zernike functions is via the separation of the azimuthal and
radial factors as follows:

Z�n(%e
iϕ) = ei�ϕ · R|�|

n (%) (% ∈ [0, 1), ϕ ∈ [0, 2π), � ∈ Z, n = |�| + 2s, s ∈ N),

(1)

with

R��+2s = %�P (0,�)s (2ρ2 − 1), (2)

where P (0,�)s denote the Jacobi polynomials. The orthogonality relation of the
Zernike functions can be written as

∫ 1

0

∫ 2π

0
Z�n(ρe

iϕ) · Zkm(%eiϕ) · %dϕd% = π

n+ 1
· δn,m δ�,k (3)

with the double integral serving as scalar product. In the above equation, δi,j is
the Kronecker-delta symbol. From the orthogonality, it follows that a function f ∈
L2(D) can be written as the infinite sum

f (z) =
∞∑
n=0

∑
|�|≤n

cn,� · Z�n(z) (z ∈ D), (4)

where the coefficients cn,� are defined by the scalar product of f and Z�n.
A discretization of D was introduced in [7, 8]. It allows the aforementioned

scalar product to be computed over the proposed set of discrete points with
the interpolation being guaranteed between these points. It was shown in these
papers that the roots of the Legendre polynomials serve as a good discretiza-
tion radially, while a uniform division—linearly dependent on n—may be used
azimuthally. Several experiments and tests were carried out in conjunction with
the discrete Zernike functions on corneal surface data with encouraging results
[4, 11, 12].

Although the Zernike polynomials provide the most widely used and adopted
way to describe functions on the unit circle, the fact that describing a simple hemi-
sphere requires several components motivated the development of other orthogonal
systems [9, 13]. It turns out that considering the even Chebyshev polynomials
Vn of the second kind as radial factors allows the hemisphere to described by a



218 Z. Fazekas et al.

single element of the approximating series (due to the weight function appearing in
Eq. (5)). The orthogonality of these function can be written as

∫ 1

0
Vn(r)Vm(r)

√
1 − r2 dr = π

4
δmn . (5)

Some useful weight function %—required for a particular application—can replace
the weight function in Eq. (5) via solving the following nonlinear differential
equation:

R′(t)
√

1 − R2(t) = c · %(t) (0 ≤ t ≤ 1). (6)

This way the radial Chebyshev polynomials after the argument transformation R
exhibit the following orthogonality property:

∫ 1

0
Vn(R(t))Vm(R(t))R

′(t)
√

1 − R(t)2 dt = π

4
δmn. (7)

3 The Rational Zernike Functions

An argument transformation—similar to that in Eq. (7)—was presented in [5]. Using
this transformation, the authors defined a modified version of Zernike functions. In
this case, however, the transformation is carried out over the entire unit disk, not just
in the radial direction. To define this transform, the Blaschke functions

Ba,ε(z) := ε · z− a
1 − az (a ∈ D, ε ∈ T, z ∈ D ∪ T) (8)

are used, with T := {z ∈ C : |z| = 1}. These functions are bijections both on D

and on T, and are analytic an D ∪ T, furthermore, they form a group with respect
to the composition of functions. It is the so-called Blaschke group. These functions
can be considered as the analogue of the congruent transformations on the Poincaré
disk model of the Bolyai–Lobachevsky hyperbolic geometry. We just note here that
also the Cayley-Klein model could be used for the purpose. In practical cases, it is
enough to consider a subgroup of these functions, e.g., when z = 1 is a fixed point.

The operatorsLa,ε (a ∈ D, ε ∈ T) define a translation of functions on D (and T):

(La,εf )(z) = f (B−1
a,ε(z)) (z ∈ D ∪ T) (9)

and also form a representation—actually, the regular representation—of
the Blaschke group. However, this representation is not unitary. A unitary
representation—i.e., when the L2(D) norms of the functions remain intact—can be
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reached as follows.

Ta,εf = B ′
a,ε · f ◦ B−1

a,ε (10)

With the above defined translation, the translated Zernike functions—referred to in
the title as rational Zernike functions, and hereafter referred to as Zernike-Blaschke
functions—Ta,εZ�n, according to Eqs. (10) and (1), form a complete orthogonal
system in L2(D) for all a ∈ D and ε ∈ T. The effect of such translations on a
particular Zernike polynomial is shown in Fig. 1.

Now, equipped with this mathematical tool, let us consider an image of an eye
looking straight into the camera, the visual effect of a Blaschke-translation applied
to it would result in an image that looks similar to an image of the eye viewing
into some another direction (i.e., not straight into the camera). Now, for an image
of an eye looking elsewhere, the application of the proper Blaschke-translation
would result in an image with the eye looking straight into the camera. Such
transformations are expected to correct corneal measurements and maps subject to
the aforementioned defects.

Let us here draw attention to an important relation between Zernike and Blaschke
functions based on [8]. A generating function of Zernike functions can be expressed
via Blaschke functions as follows.

(−1)m

1 − azB
m
a,1(z) =

∞∑
n=0

Zn−mn+m(a) · zn (a = %eiϕ ∈ D) (11)

This formula is closely related to unitary representations, and creates a bridge
between the Zernike functions and the hyperbolic wavelet transformations. These
relations pave the way to handle and answer questions concerning Zernike series
via harmonic analysis. Furthermore, an addition formula for Zernike functions can
be easily deduced.

Fig. 1 A certain Zernike function (left) and two of its translated—in hyperbolic sense—Blaschke
variants over the unit disk. Shades of gray represent the magnitude of the real part of the complex
function-values
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4 Conclusions and Further Research

The paper considers using Zernike-Blaschke functions to correct corneal maps
where the patient’s eye was in a slightly rotated position. The discretization of
Zernike functions—discussed briefly in Sect. 2—may be adapted to the Zernike-
Blaschke functions [6]. Interpolation and approximation properties of truncated
series are presently being investigated. Clearly, numerical simulation, as well as
measurements on real corneal surfaces must be carried out to verify the appli-
cability of the proposed model. It is our intention to explore the potentials of
the proposed transformation, and to give more precise error bounds. Based on
these expected results, we intend to formulate recommendations on its practical
application.
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16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies. The Project
is supported by the Hungarian Government and co-financed by the European Social Fund. This
research was also supported by Research Funds (OTKA) in the frame of the research contract No.
K115804.

References

1. Belin, M.W., Khachikian, S.S.: An introduction to understanding elevation-based topography:
how elevation data are displayed – a review. Clin. Exp. Ophthalmol. 37, 14–29 (2009)

2. Chang, D.H., Waring, G.O.: The subject-fixated coaxially sighted corneal light reflex: a clinical
marker for centration of refractive treatments and devices. Am. J. Ophthalmol. 158, 863–874
(2014)

3. Corbett, M., Rosen E.S., O’Brart, D.P.S.: Corneal Topography: Principles and Practice. BMJ,
London (1999)

4. Fazekas, Z., Soumelidis, A., Schipp, F.: Utilizing the discrete orthogonality of Zernike
functions in corneal measurements. In: Proceedings of the World Congress on Engineering,
IAENG, Hong Kong (2009)

5. Lócsi, L., Schipp, F.: Rational Zernike functions. Annales Univ. Sci. Budapest Sec. Comp. 46,
177–190 (2017)

6. Németh, Zs., Schipp, F.: Discrete orthogonality of Zernike–Blaschke functions. SIAM J.
Numer. Anal. (to appear)

7. Pap, M., Schipp, F.: Discrete orthogonality of Zernike functions. Math. Pann. 16, 137–144
(2005)

8. Pap, M., Schipp, F.: The voice transform on the Blaschke group II. Annales Univ. Sci.
Budapest. Sec. Comp. 29, 157–173 (2008)

9. Soumelidis, A., Fazekas, Z., Schipp, F., Csákány, B.: Description of corneal surfaces using
discretised argument-transformed Chebyshev-polynomials. In: Proceedings of 18th Biennial
International EURASIP Conference on Analysis of Biomedical Signals and Images, EURASIP,
Darmstadt, pp. 269–274 (2006)

10. Soumelidis, A., Fazekas, Z., Bódis-Szomorú, A., Schipp, F., Németh, J.: Specular sur-
face reconstruction method for multi-camera corneal topographer arrangements. In: Recent
Advances in Biomedical Engineering, pp. 639–660. IntechOpen, London (2009)



Rational Zernike Functions Capture the Rotations of the Eye-Ball 221

11. Soumelidis, A., Fazekas, Z., Pap, M., Schipp, F.: Discrete orthogonality of Zernike functions
and its application to corneal measurements. In: Selected Papers of the International Confer-
ence in Electronic Engineering and Computing Technology, pp. 455–469. Springer, Heidelberg
(2010)

12. Soumelidis, A., Fazekas, Z., Pap, M., Schipp, F.: Generic Zernike-based surface representation
of measured corneal surface data. In: Proceedings of the MeMeA, IEEE Symposium on
Medical Measurements and Applications, pp. 148–153. IEEE, Piscataway (2011)

13. Soumelidis, A., Fazekas, Z., Schipp, F.: Comparison of the corneal surface representations
based on Chebyshev polynomials. In: Proceedings of the MeMeA, IEEE Symposium on
Medical Measurements and Applications, pp. 1–6. IEEE, Piscataway (2012)

14. Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der
Phasenkontrastmethode. Physica 7, 689–704 (1934)

15. Zheng, X., Yang, W., Huang, L., Wang, J., Cao, S., Geraghty, B., Zhao, Y.P., Wang, Q.,
Bao, F., Elsheikh, A.: Evaluating the repeatability of corneal elevation through calculating the
misalignment between successive topography measurements during the follow up of LASIK.
Sci. Rep. 7(1), 3122 (2017)



Multi-Obstacle Muscle Wrapping Based
on a Discrete Variational Principle

Johann Penner and Sigrid Leyendecker

Abstract This work presents the integration of a discrete muscle wrapping for-
mulation into an optimal control framework based on the direct transcription
method DMOCC (discrete mechanics and optimal control for constrained systems
(Leyendecker et al., Optim. Control Appl. Meth. 31(6), 505–528, 2010)). The major
contribution lies in the use of discrete variational calculus to describe the entire
musculoskeletal system, including the muscle path in a holistic way. The resulting
coupled discrete Euler-Lagrange equations serve as equality constraints for the
nonlinear programming problem, resulting from the discretisation of an optimal
control problem. A key advantage of this formulation is that the structure preserving
properties of the integrator enable the simulation to account for large, rapid changes
in muscle paths at relativity moderate computation coasts. In particular, the derived
muscle wrapping formulation does not rely on special case solutions, has no nested
loops, a modular structure, and works for an arbitrary number of obstacles. A
biomechanical example shows the application of the given method to an optimal
control problem with smooth surfaces.

1 Introduction

One aspect of biomechanical simulations is the control of human movement, where
a dynamical system must be steered from a given initial state to a predefined final
state. However, there exists an infinite number of control trajectories to perform this
motion. To constrain this boundary value problem, nonlinear optimal control prob-
lems are formulated, that minimise a certain objective function to find optimal con-
trol trajectories. When simulating musculoskeletal motion with multibody systems
representing bones and joints and muscles acting around them, the muscle’s action
(three-dimensional force) is characterised by the scalar muscle force value and the
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muscles path’s (tangent) direction at the muscle origin and insertion point. Typically,
most muscle paths cannot be adequately represented as straight lines because the
anatomical structure of the human body forces the muscles to wrap around bones
and adjacent tissue. To represent this behaviour, biomechanical simulations require
methods to compute muscle paths, their lengths, and their rates of length change to
determine the muscle forces. Assuming that the muscles and tendons are always
under tension, they follow the path of minimum distance between origin and
insertion point. In this work, we use a discrete variational principle to compute
the shortest connection between two points on general smooth surfaces. The
muscle path is then a G1-continuous combination of geodesics on adjacent obstacle
surfaces [1, 4, 6, 7].

To simplify matters and to keep this publication short, we focus on the integration
of the muscle wrapping formulation into a torque actuated multibody optimal
control problem and postpone the consideration of Hill-type muscle actuation to
the next (longer) publication.

2 Discrete Mechanics and Optimal with Shortest Paths

This section aims to define and solve an optimal control problem, based on the direct
transcription method DMOCC [3], which consists of minimising a given discrete
objective function subject to constraints that define the dynamics of the system. We
therefore formulate the discrete Euler-Lagrange (DEL) equations for the multibody
system and the shortest path problem.

2.1 Discrete Euler-Lagrange Equations of the Multibody
System

In general, the DEL equations are time stepping equations derived directly from
the Lagrangian. Their solution approximates the solution of the continuous Euler-
Lagrange equations and inherits certain characteristic properties of there solution.
Within this discrete formulation, all continuous quantities have to be approximated
with discrete counterparts [2–5].

In the following, the discrete path qd = {
qn
}N
n=0 is an approximation of

the continuous path on a discrete time grid with constant time step Δt ∈ R

and N ∈ N time nodes. We further choose the midpoint quadrature and finite
differences to specify the discrete Lagrangian Ld . In addition, we use the discrete
nullspace matrix P (qn) to project the DEL equations of the multibody system into
the tangent space of the manifold defined by the interconnecting joint constraints
in the multibody system. There only constraint fulfilling motion happens and
Lagrange multipliers do not need to be determined. With these approximations, the
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mechanical DEL are given by

P (qn)
T · [D2Ld(qn−1, qn)+D1Ld(qn,F d (un+1, qn))+ f +

n−1 + f −
n

] = 0

(1)

for n = 1, . . . , N − 1. In this equation, D•Ld denotes the slot derivative with
respect to the •-th argument. Furthermore, the nodal reparametrisation qn+1 =
F d(un+1, qn) in term of discrete local coordinate un is used to reduce the system
to minimum possible size. The discrete force f +

n−1 denotes the effect of the
generalised joint torque τJn−1 acting on qn, while f −

n is coming from the effect
of τ Jn acting on qn. In the discrete setting, the dimension of the joint torque

vector τ d = {
τJn
}N−1
n=0 corresponds to the degrees of freedom of the joint and the

number of time steps.

2.2 Discrete Euler-Lagrange Equations of the Shortest Path
Problem on Multiple Surfaces

To define the discrete shortest path problem over a given set of I ∈ N obstacles,
we first assume that the muscle completely touches the surfaces, thus the solution
is constrained by a scalar valued function of holonomic constraints φ i(γ i

k ) = 0
(i = 1, . . . , I ) that define the i-th obstacle surface. Furthermore, we define the
discrete geodesic curve γ i

d = {
γ i
k

}K
k=0 on a discrete arc length grid with fixed

arc length fraction Δs ∈ R and K ∈ N nodes. Depending on the start and
end point on the i-th surface, a geodesic curve has to satisfy the geodesic DEL
equations

D2Td(γ
i
k−1, γ

i
k )+D1Td(γ

i
k , γ

i
k+1)− Φ i

d (γ
i
k )
T · λ ik = 0

φ i(γ i
k ) = 0

(2)

for k = 1, . . . ,K − 1. The term Φ i
d (γ

i
k ) = Δs δφ i (γ k)/δγ i

k is the discrete surface
Jacobian. In comparison with the mechanical DEL, the discrete Lagrangian is
replaced by the discrete energy of the curve Td .

Now, let the muscle origin point ρO and insertion point ρI be given outside the
surfaces (see Fig. 1), such that the muscle path is then a G1-continuous combination
of geodesics on the surface γ d and adjacent straight line segments r i and r i+1.
G1 (geometrical) continuously joined curves share tangential direction, while the
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Fig. 1 Example of a discrete geodesic path (on red background) with G1-continuous transition to
the straight-line segments (on green background) over I = 2 surfaces

length of the tangent vectors might differ. To achieve this G1-continuity, we
require collinearity of the tangent and line segment by the following transition
constraints

h i0 =
⎡
⎣

φ i(γ i
0 )

r i · Φ i (γ i
0 )

r i · b−
k (γ

i
0 , γ

i
1 )

⎤
⎦ = 0 and h iK =

⎡
⎣

φ i(γ i
K)

r i+1 · Φ i (γ i
K)

r i+1 · b+
k (γ

i
K−1, γ

i
K)

⎤
⎦ = 0

(3)

at the start and end point of the i-th geodesic. In the discrete setting, the tangential
direction is given by the discrete momenta π−

k (γ
i
k , γ

i
k+1) = −D1Td(γ

i
k , γ

i
k+1)

and π+
k (γ

i
k−1, γ

i
k ) = D2Td(γ

i
k−1, γ

i
k ) at the boundary points. The surface

normal is given by the discrete constraint Jacobian Φ i (γ i
k ). The binormals at

the boundaries are defined as b−
k (γ

i
k , γ

i
k+1) = π−

k (γ
i
k , γ

i
k+1) × Φ(γ i

k ) and
b+
k (γ

i
k−1, γ

i
k ) = π+

k (γ
i
k−1, γ

i
k )× Φ i (γ i

k ).

2.3 Resulting Constrained Nonlinear Optimisation Problem

Finally, the DMOCC (with shortest paths) method deals with the problem of finding
the optimisation variables subject to the DEL equations given in Sect. 2, such that
a certain discrete objective function Jd , or respectively the sum of a discrete cost
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function Cd , is minimised, i.e.

min
qd ,γ d ,τd ,Δt

Jd(qd , γ d, τ d,Δt) = min
qd ,γ d ,τd ,Δt

N−1∑
n=0

Cd(qn, qn+1, γ n, τ
J
n ,Δt)

(4a)

subject to

· mechanical DEL (1)
· geodesic DEL (2)
· transition constraints (3)
· boundary conditions

(4b)

Herein, the infinite dimensional optimal control problem is transcribed into a finite
dimensional nonlinear programming problem that can be solved by any standard
algorithm, e.g. Sequential Quadratic Programming (SQP) or the Interior-Point
method (IP).

3 Biomechanical Example

As illustrative test scenario, the lifting of the human arm with outstretched initial
configuration to a flexed elbow is examined. The simple multibody system in
Fig. 21 consist of two rigid bodies, which represent the upper and lower arm. For
simplification, a revolute joint actuated by the torque τR ∈ R is used to model the
elbow and the upper arm is fixed in space (no degree of freedom). Muscle origin and
insertion points according to [4] are used for the musculus triceps (T RI) and biceps
(BIC). Moreover, the muscle path of the triceps is modeled around an ellipsoid
which represents the elbow, and the biceps wraps over two cylinders representing
the upper and lower arm. In Fig. 2, resulting muscle paths for the biceps and triceps
around the elbow are shown, which are G1-continuous combinations of straight
lines and geodesics on the wrapping surfaces. In this example, we use the objective
function Jd = ∑N−2

n=0 (τ
R
n+1 − τRn )

2, which results in a smooth torque evolution. In
total, the system is discretized with I · K = 3 · 10 arc length nodes and N = 20
time nodes, which leads to 2435 optimisation variables. For large systems such as
this, it is very challenging to obtain a feasible solution at all, i.e. a sequence of
configurations and joint torques satisfying the DEL equations.

1For the 3d bone model see https://www.thingiverse.com/thing:1543880.

https://www.thingiverse.com/thing:1543880
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Fig. 2 Muscle paths around the elbow, with straight line segments in green and adjacent geodesics
in red. The force directions acting on the lower arm are shown in blue
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Fig. 3 Comparison of muscle length and force direction (on a unit sphere) during flexion of the
elbow with a direct line connection and the geodesic muscle path formulation

3.1 Results

The simulation performs a rest-to-rest manoeuvre from an outstretched configura-
tion to a flexed configuration. Figure 3 shows the evolution of the muscle lengths
and force directions with different approaches to represent the muscle path. A
direct line connection between the muscle origin and insertion points is compared
to the geodesic muscle path formulation. In this comparison, the muscle path of
the straight line formulation can intersect bodies, resulting in different results for
the two formulations. In particular, this leads to differences in the muscle length,
where the geodesic approach takes the stretching of the muscles while wrapping
around obstacles into account. Consequently, when comparing the muscle length
of the triceps, one sees larger values for the wrapping formulation. The reverse
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holds for the biceps, which is closer to the surface, resulting in smaller muscle
length. Another major difference between both formulations becomes clear when
investigating muscle force directions. Again, we see the sliding of the muscles
around obstacles that results in a large and rapid change in force directions. While
the straight line approach leads to nearly constant force direction, the force direction
of the wrapping approach rotates by over 100◦.

Acknowledgements The work of this paper is funded by the Federal Ministry of Education and
Research (BMBF) as part of the project 05M16WEB—DYMARA.
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Experimental Validation
of a Mathematical Model
for Laser-Induced Thermotherapy

Christian Leithäuser, Frank Hübner, Babak Bazrafshan, Norbert Siedow,
and Thomas J. Vogl

Abstract Laser-induced thermotherapy (LITT) is used to treat liver cancer by
inserting a laser applicator into the tumor and applying radiation to heat and destroy
it. A mathematical model for the simulation of LITT is compared to experimental
results with ex-vivo pig livers.

1 Introduction

Laser-induced thermotherapy (LITT) is used to treat liver cancer by inserting a laser
applicator into the tumor and applying radiation to heat and destroy it. The co-talk
[10] has introduced a mathematical model to simulate LITT which is based on [3].
In the following experimental results with ex-vivo pig livers are presented to validate
the model. For further details on the experimental setup we refer to [6].

2 Mathematical Model

We shortly recapitulate the essential parts of the model from [10]. A water cooled
laser applicator is entered into the liver. Let Ω be the computational domain (liver)
without the applicator. The applicator is considered through boundary conditions.
Let the boundaryΓ decompose intoΓrad (radiating part of applicator),Γcool (cooled
part of applicator) and Γamb (ambient boundary of liver). Heat transfer is modeled
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using the bio-heat equation

cpρ
∂T

∂t
= ∇ · (kh∇T )+ ξb(Tb − T )+ μaφ, T (x, 0) = Tinit ,

kh
∂T

∂n
= αcool(Tcool − T ), on Γrad ∪ Γcool, kh ∂T

∂n
= αamb(Tamb − T ), on Γamb

(1)

with temperature T (x, t), specific heat cp, thermal conductivity kh, density ρ and
blood perfusion coefficient ξb. The temperatures Tinit (initial), Tcool (coolant), Tamb
(ambient) and Tb (blood) are given as well as the heat exchange coefficients αcool
and αamb.

Radiative heat transfer is modeled using the P1-approximation

− ∇ · (D∇φ(x))+ μaφ(x) = 0, D = 1

3(μa + (1 − g)μs) ,

D
∂φ

∂n
= qapp

AΓrad
on Γrad, D

∂φ

∂n
= 0 on Γcool, D

∂φ

∂n
+ 1

2
φ = 0 on Γamb

(2)

with radiative energy φ(x, t), absorption coefficient μa , scattering coefficient μs ,
anisotropy factor g, reduced laser power qapp and the area AΓrad of Γrad . The
reduced laser power is derived from the actual laser power (see Table 1) by qapp =
(1 − βq)q̂app where βq is the fraction of power which is directly absorbed by the
coolant without entering the liver.

Table 1 Experimental setup for nine test cases

Case label P22F47 P22F70 P22F92 P28F47 P28F70 P28F92 P34F47 P34F70 P34F92

Laser power [W]

Measured q̂app 22.1 22.1 22.1 28.0 28.0 28.0 33.8 33.8 33.8

Coolant V̇
[ml/min]

47.2 69.9 91.7 47.5 70.3 91.8 47.2 70.4 92.2

Time [s]

Laser on ton 24 30 36 18 30 60 18 24 48

Laser off toff 1266 1236 684 942 1722 1098 1206 948 1182

End tend 1284 1248 702 954 1734 1116 1218 972 1206

Probe position [mm]

Radial dr 10.1 11.4 9.2 13.5 13.7 11.1 11.2 9.9 9.6

Axis-direction
dz

12.6 25.7 20.9 21.0 7.5 10.1 23.8 26.3 35.3



Experimental Validation of a Mathematical Model for Laser-Induced Thermotherapy 233

Table 2 Tissue dependent parameters for pig liver (cf. [7])

Parameter Value Source

Optical (native)

Absorption coefficient μan [m−1] 50 [8]

Scattering coefficient μsn [m−1] 8000

Anisotropy factor gn 0.97

Optical (coagulated)

Absorption coefficient μac [m−1] 60 [8]

Scattering coefficient μsc [m−1] 30,000

Anisotropy factor gc 0.95

Heat conductivity kh [W m−1 K−1] 0.48 [5]

Heat capacity cp [J kg−1 K−1] 3690

Tissue density % [kg m−3] 1080

Damage rate constant A [s−1] 3.1 × 1098 [9]

Damage activation energy Ea [J mol−1 K−1] 6.3 × 105

Gas constant R [J mol−1 K−1] 8.31

Tissue damage w(x, t) is modeled using the Arrhenius law

w(x, t) =
t∫

0

Ae−Ea/(RT (x,τ ))dτ, (3)

with frequency factor A, activating energyEa and ideal gas constant R. It is needed
to model the damage dependence of the optical parameters

μa = μan + (1 − e−w)(μac − μan),
μs = μsn + (1 − e−w)(μsc − μsn),
g = gn + (1 − e−w)(gc − gn)

(4)

from the respective values of native and coagulated tissue (see Table 2).

2.1 Numerical Scheme

The system of partial differential equations (PDE) was solved using the finite
elements method (FEM). For the heat equation (1) and the P1-approximation (2)
a weak form was derived and first order Lagrangian elements were used for the
discretization [2]. The Dirichlet type boundary conditions were treated as essential
conditions while the Neumann and Robin boundary conditions were treated as
natural conditions. The damage function (3) was also solved within the FEM scheme
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using a weak form of

∂w

∂t
= Ae−Ea/(RT ) (5)

and zero order elements (constant per cell). The finite elements solver GetDP [4]
was used for the implementation.

3 Ex-Vivo Tests

The model was tested experimentally with ex-vivo pig livers for different laser
powers and coolant flow rates (see Table 1). An applicator and a temperature probe
were inserted into the liver. The relative position (dr, dz) of the probe with respect
to the applicator tip is given in Table 1. The laser generator was switched on at time
ton with laser power q̂app and it was switched off at time toff . Different coolant flow
rates V̇ were used. Ambient and initial temperatures of Tinit = Tamb = 21.8 ◦C
were measured as well as a coolant inflow temperature of Tcool = 20 ◦C. The blood
perfusion rate ξb was set to zero (ex-vivo). The ambient heat exchange coefficient
αamb was also set to zero. The tissue parameters used for the model can be found in
Table 2.

3.1 Coolant Temperature

The laser applicator is equipped with a water cooling system. The increase in coolant
temperature was measured over time for all nine test cases (see Fig. 1). This data was
used to derive the missing parameters βq and αcool . A coolant absorption factor of
βq = 0.14 was identified from the instant jump in coolant temperature which occurs
when the laser is switched on. It was assumed that this jump originates purely from
direct absorption of radiation in the coolant. A temperature exchange coefficient
of αcool = 250 W K−1 m−2 was identified such that the measured and simulated
increase in coolant temperature are in good agreement. Therefore, the comparison of
measured and simulated coolant temperature in Fig. 1 should be seen as a calibration
of the model and not as a validation.

3.2 Probe Temperature

In order to validate the model a temperature probe was entered into the liver.
Figure 2 shows a comparison between measured and simulated probe temperature.
The curves are generally in good agreement. However, for higher temperatures (see



Experimental Validation of a Mathematical Model for Laser-Induced Thermotherapy 235

Fig. 1 Comparison of the measured and simulated increase of the coolant temperature

cases P34F47 and P34F70) there is a notable deviation. Most likely this is because
the model does not yet account for the energy consumed by the phase transition
of water from liquid state to vapor. The model is currently being extended in this
direction.

4 Outlook

The ultimate goal is to use simulations to assist surgeons during treatment (cf. [1]).
First tests on analyzing patient treatment data have shown that it is important to
consider the blood perfusion. However, due to the presence of larger blood vessels
it is not enough to use an averaged blood perfusion rate, because the rate is highly
dependent on the position of the vessels. We are currently trying to use CT- or
MRI-based thermometry to identify the heat sink induced by the blood vessels at
the beginning of the treatment. The simulation model can then be used to make
predictions for the rest of the ongoing treatment.
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Fig. 2 Comparison of the measured and simulated probe temperature
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Adaptive Rational Transformations
in Biomedical Signal Processing

Gergő Bognár, Sándor Fridli, Péter Kovács, and Ferenc Schipp

Abstract In this paper we provide a summary on our recent research activity in the
field of biomedical signal processing by means of adaptive transformation methods
using rational systems. We have dealt with several questions that can be efficiently
treated by using such mathematical modeling techniques. In our constructions the
emphasis is on the adaptivity. We have found that a transformation method that is
adapted to the specific problem and the signals themselves can perform better than
a transformation of general nature. This approach generates several mathematical
challenges and questions. These are approximation, representation, optimization,
and parameter extraction problems among others. In this paper we give an overview
about how these challenges can be properly addressed. We take ECG processing
problems as a model to demonstrate them.

1 Introduction

Mathematical transformation methods have a long history in signal processing,
here we mention only the trigonometric Fourier-system, the wavelets, and other
orthogonal systems, like the Hermite or Walsh-system. Although these methods
perform generally well, their flexibility and adaptivity is usually limited. Our focus
is on the adaptive transformations, where the underlying function systems have
free parameters that can be adapted to the specific problem and to the signals
themselves. We expect such an adapted method to provide a simpler and more
concise representation for the signals that still captures the relevant behavior of
them.

Our approach is to perform an adaptive transformation by means of rational
functions [8]. The rational systems are especially flexible and adaptive, we have
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arbitrary number of free parameters that determine their behavior. We note that they
have found several areas of applications so far. Control and system theories are such
important fields. In this paper we are interested in biomedical signals, in particular
in ECG signals. The special motivation behind that is the observable similarity
between the shapes of the basic rational functions and the natural medical segments
(P, QRS, and T waves) of the ECG heartbeats. Thus, the system can be specified
according to the shape of the heartbeats, and the parameters carry direct medical
information about them. Easy time-domain reconstruction and time-localization
of basic rational functions are just additional desirable properties. The rational
transform has been successfully applied to several biomedical signal processing
problems, including heartbeat modeling [4, 7], ECG compression [14, 18], heartbeat
detection [9], arrhythmia classification [2, 3], geometric interpretation of heartbeats
[4], EEG epileptic seizure detection [25, 26], and related parameter optimization
problems [15, 17, 20]. Furthermore, a rational MATLAB toolbox have been
developed [16].

2 Rational Systems

In our models we consider rational functions that are analytic on the unit disc D =
{z ∈ C : |z| < 1}. In the applications in signal processing we will be interested in
the real part of their restriction on the torus T = {z ∈ C : |z| = 1}. Then for any
such rational function ϕ we obtain a real-real function by [−π, π) & t → eit →
Re ϕ(eit ). According to the partial fraction decomposition, the building blocks of
the rational functions are the basic rational functions of the form

ra,n(z) = 1

(1 − az)n (z ∈ C, a ∈ D, n ∈ N),

where the parameter a is the so-called inverse pole. Linear combinations of basic
functions having the same pole will be called elementary functions or waves:

Ea(z) =
n∑
k=1

ckra,k(z) =
n∑
k=1

ck

(1 − az)k (a ∈ D, n ∈ N, ck ∈ C, z ∈ C) .

The terminology is justified by the fact that such functions are well localized in the
neighborhood of the pole.
Suppose that we have a sequence of, not necessarily distinct, inverse poles

a0, a1, . . . , an , . . . (an ∈ D)
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with multiplicities defined as

mn = card {j : aj = an, j ≤ n} .

They generate the sequence of basic functions {ran,mn : n ∈ N}. Using the
Gram–Schmidt orthogonalization process for this sequence with the usual scalar
product in L2(T), we receive an orthonormal system, called Malmquist–Takenaka
(MT) system Φn (n ∈ N). Several known classical orthogonal systems like the
trigonometric or the discrete Laguerre systems can be generated this way. Generally,
the orthogonalization process is computationally demanding. Fortunately, in this
case there is an explicit form given by the Blaschke functions, defined as

Ba(z) = z − a
1 − az (a ∈ D, z ∈ D) .

Then

Φn(z) =
√

1 − |an|2
1 − anz

n−1∏
j=0

Baj (z) .

We note that the Blaschke functions on the torus can be related to the trigonometric
functions. Namely, Ba(eit ) = ei(α+γs(t−α)) , where a = reiα, s = (1 + r)/(1 − r),
and γs(t) = 2 arctan(s tan(t/2)) . Moreover γs ′(t) = 1 − r2

1 − 2r cos t + r2 is the well

known Poisson kernel. This relation was utilized, for instance, in the construction
of discrete rational biorthogonal systems [6].

Both the orthogonal MT and the biorthogonal systems can be expressed in an
explicit form, and the projection can be performed efficiently for both representa-
tions. Moreover, the numerical approximation error is easy to calculate. In case of
MT systems, the results are expressed in terms of MT functions rather than in terms
of elementary waves or basic functions. The MT functions do not have the time-
localization property of the elementary rational functions. The MT system derived
from a given pole sequence depends on the order of the poles in this sequence while
our problems are usually not sensitive to that. We can overcome these shortages
by taking the biorthogonal expansions [6], which can be more useful in several
applications. This is the case when the geometric properties of the ECG signal are
to be extracted [4]. We note that in other cases, like features extraction for ECG
arrhythmia classification [2, 3] the MT projection perform significantly better.

In practice, the proper discretization of the models is necessary, since the signals
themselves are actually discrete time series, usually uniformly sampled. This leads
to another interesting question, i.e. the discrete orthogonality of the system. Unlike
in case of the trigonometric system, a non-uniform sampling of the torus T was
needed, over which the signal is interpolated, and the coefficients of the projection
can be effectively calculated with the fast Fourier-transform (FFT) algorithm. We
note that the construction of the sample points is based on the relation between
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Blaschke products and complex trigonometric functions. Namely, those products on
the unit circle can be expressed by means of an argument transformation on complex
trigonometric functions. Then the orthogonal and biorthogonal properties hold for a
discrete scalar product including a proper weight function over the sampling points
[6]. There the sampling points are defined adaptively to the poles. The drawback of
this concept is that resampling of the original signal is necessary. If we have only a
few poles or their multiplicities are small, then it can be more effective to use the
integral approximation concept instead, like we did in case of ECG classification.
For further reading about the rational systems we refer to [12].

3 Mathematical Challenges of the Application of Rational
Transformation

Taking ECG processing as a model, we will show how the rational transforms can be
used in biomedical applications. Here we only focus on the mathematical problems
raised by them.

We emphasize that one of the greatest strength of the rational transform is the
arbitrary number of free system parameters. Suppose we have a square-integrable
time signal defined on [−π, π). This in our case corresponds to a single heartbeat in
an ECG signal. Before we apply the projection operator, a system identification step
is necessary. It is a parameter optimization problem discussed later. Namely, poles
and multiplicities should be specified so that the corresponding rational projection
provides a good approximation of the signal. For ECG signals, good approximation
means that the rational function representing the signal contains the same medical
information as the original measurement. There is no purely mathematical metric
that would measure the quality of approximation in medical sense. However, most
of the times the classical least square approximation is used to find a representation
of the signal with respect to the corresponding function system. Then the problem
reduces to a well-known mathematical problem. We will however show that the
problems in real applications are more complex than that described above.

3.1 Heartbeat Classification

Cardiac arrhythmia is a group of conditions where the heart shows abnormal
activity or behavior. One usual way is the classification of heartbeats into predefined
classes. PhysioNet [10] provides 16 classes. In this case we use rational systems
for representing the ECG signal and to extract features for the classification
algorithm. One possible strategy for the system optimization is when the number
and multiplicities of the poles are fixed, and the optimization should be performed
for the locations only. Then the problem is actually a special case of the variable
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projection concept [11]. This is the case in classification problems [2, 3]. Namely,
we want the coefficients of the projection and the poles themselves carry direct
medical information, i.e. we want them to be related to the morphology of the P,
QRS, T peaks.
The problem is not about best approximation. It is good approximation and
representation at the same time.
It turned out that taking three inverse poles, corresponding to the three main
waveforms of the ECG heartbeats, with fixed multiplicities 2,4,2 is reasonable. The
goal is not necessarily the best approximation. Good representation of the samples
that captures the relevant behavior are of equal importance. To this order, in [2] we
restricted the exit conditions of the optimization algorithm, making it to rely more
on its initialization. In [3] we introduced modifications on the objective function,
we restricted the complex argument of the inverse poles (and thus the time locations
of the rational functions) to intervals corresponding to the main ECG waveforms.
Furthermore, in order to reduce intensity differences between the ECG waveforms,
in [3] we performed the optimization for the three poles subsequently. We note that
a good initial guess can significantly improve the efficiency of the algorithms. In
ECG classification, the main peak locations are roughly estimated to this order.

The problem then reduces to constrained optimization. We not only need to
keep the poles within the unit circle but within the vicinity of the corresponding
peaks. Several optimization algorithms, deterministic and probabilistic are at hand.
The Nelder–Mead and the particle swarm optimization (PSO) turned to be very
effective. In order to satisfy the constraints in a natural way, we have developed
hyperbolic versions of these algorithms [7, 17, 20]. These hyperbolic methods are
the modifications of the original algorithms affecting on the unit disk following the
Poincaré disk model. Based on medical properties of the ECG, we also derived
constraints for the inverse poles of the P, T waves and the QRS complex in [15].

The optimization can be applied to the heartbeats individually, or to a set of
heartbeats. It means a per-heartbeat, or a per-patient optimization. The per-heartbeat
concept can be efficiently utilized for ECG compression, since the goal is to
effectively compress each heartbeats, independently. On the other hand, the per-
patient concept was proved to be more effective for ECG classification, since in
this case the pole combinations are assigned to the patients instead of the individual
heartbeats, and it leads to a more stable heartbeat representation. Furthermore, based
on the connection between the rational systems and the shapes of the ECG signals,
the poles themselves can be considered as patient descriptors [3].

We utilized the adaptive rational transform for ‘class-oriented’ arrhythmia classi-
fication in [2, 3]. In these studies the ECG signals were preprocessed and segmented
into heartbeats, then a per-patient optimization was performed in order to find the
best fitting pole combination for each patients. Morphological descriptors were
extracted from the rational projections and poles, which was extended with the com-
mon RR interval features as dynamic descriptors. Finally, we used support vector
machine (SVM) classifier on the feature vectors, and fusions. The evaluation on the
MIT-BIH Arrhythmia Database proves that our algorithms outperform the previous
ones of this kind [13, 19, 22–24, 28]. These works utilize a variety of feature
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Table 1 Comparison of the proposed methods and the reference works

Method Feature vector Classifier Accuracy

Work of [19] Hermite SOM 98.49%

Work of [23] Wavelet + RR ANN 96.77%

Work of [22] Hermite + HOS SVM 98.18%

Work of [24] Waveform DT 96.13%

Work of [13] Wavelet + ICA SVM 98.86%

Work of [28] Wavelet + ICA + RR SVM 99.32%

Proposed method [2] Rational + RR SVM 99.38%

Proposed method [3] Rat. + Poles + RR + Fusion SVM 99.51%

The best classification accuracy is shown in bold face

extraction and classification methods, like Hermite and wavelet decompositions,
high-order statistics, independent and principal component analysis, combined with
artificial neural network (ANN), decision tree (DT), self organizing map (SOM),
and support vector machine (SVM) classifiers. The advantage of our concept is
that rational variable projection is an efficient dimension reduction technique that
gives good representation of ECG heartbeats using only a few coefficients. In
the meantime, this representation is directly correlated to the morphology of the
ECG wave components. The accuracy comparison of the reference works and the
proposed method is given in Table 1.

3.2 ECG Compression

In case of ECG compression, we construct rational functions that approximate the
signal in the sense described in the beginning of this section. The parameters of the
rational function, i.e. the poles along with their multiplicities, and the coefficients
together form the compressed data. This means that we are interested in reducing
the number of parameters.

The problem is good approximation with keeping the dimension, the system
complexity as low as possible.
To address this problem we developed [14, 18] an optimization method which can
be considered as the generalization of the variable projection method. We note that
in the variable projection method the dimension of the subspace of the projection
is a priori fixed. That was the case for ECG classification above. For compressing
purposes this constraint is not appropriate, therefore we added a new free parameter
related to the dimension of the subspace. In the situation when increasing dimension
results in nested subspaces, the optimization would terminate at the highest possible
value of the dimension. On the other hand, high dimensions are not desired in real
applications because it increases the complexity of the model. For controlling the
dimension we introduced a penalty functionΛ(N) that is monotonically increasing
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with N. Then the generalized variable projection functional is of the form

ρ : Γ ×N, ρ(a, d) = ‖f − PNa f ‖ +Λ(d), (1)

where f is the given signal, Γ is the parameter set of the collection of systems used,
d is the dimension, andΛ(d)measures the complexity of the system with dimension
d in a proper sense. We note that this setting makes sense only if all of the following
conditions hold for the system: (a) it is flexible enough but easy to parametrize;
(b) the complexity function Λ is properly designed; (c) an efficient optimization
algorithm can be constructed. We showed that these condition hold for the rational
systems. The efficient optimization algorithm that we developed for this case is the
so-called multi-dimensional hyperbolic PSO (MDHPSO) algorithm [14, 18].

In a study case we demonstrated the efficiency of the generalized variable
projection method for ECG compression in [18]. By performing comparison tests
on 24 records of the MIT-BIH Arrhythmia Database [10] we obtained that our
algorithm outperforms the previous ones [1, 21, 27]. Table 2 illustrates the results
on selected records: 117 and 119. The latter contains extremely varying periods [5],
which makes it ideal for compression tests. In the experiment, we segmented the first
channel of the whole records into more than 3500 heartbeats. Then, we applied the
proposed algorithm to solve the optimization problem in Eq. (1) for each beat. The
performance is evaluated in terms of percent root-mean-square difference (PRD),
compression ratio (CR), and quality score (QS):

PRD = ‖f − PNa f ‖2

‖f ‖2
× 100 , CR = Size of the uncompressed data

Size of the compressed data
, QS = CR

PRD
,

where the approximation PNa f is given by the orthogonal projection of the signal
f to the subspace spanned by the corresponding rational functions. Although other
approaches [21, 27] also utilize rational functions, the number of different inverse
poles, and their multiplicities were fixed a priori in those works. In our algorithm,
these parameters are found automatically due our optimization process. Therefore,
we can dynamically change the complexity of the nonlinear signal model from beat
to beat.

Table 2 Experimental results of selected recordings

Work of [21] Work of [27] Work of [1] Proposed work [18]

Rec. PRD CR QS PRD CR QS PRD CR QS PRD CR QS

117 0.62 25.64 41.36 1.57 34.78 22.15 1.60 23.00 14.38 0.39 18.15 46.70
119 1.17 25.64 21.91 2.37 34.78 14.68 2.20 25.00 11.36 0.54 14.14 26.24

The best QS of each row is shown in bold face
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3.3 QRS Modeling

Another concept for system identification is the reconstruction of the poles from
geometric properties of the signals. In [4] we proposed methods that provide the
identification of rational models for the QRS complexes in ECG heartbeats based
on medical descriptors of the signals. These can be the so-called fiducial points, or
other common descriptors, like QRS duration or ventricular activation time (VAT).
The idea is that if we represent the ECG wave components with rational functions,
we have analytic way to find the peaks and zero crossings of the model curve,
thus to derive medical descriptors. To this order, we exploited the properties of
the basic rational and the Blaschke functions. The system identification is actually
an inverse problem based on the analytic model. We construct synthetic model
curves that complies the given descriptors, and at the same time the numerical
approximation error is acceptable for the whole heartbeat. This leads to a different
system identification approach compared to the previously discussed methods.
No optimization, but a reliable geometric parameter extraction method is needed.
This, however, may be even more problematic than the numerical optimization,
because of the ECG noises and artifacts. Namely, the peak locations may be shifted,
and the zero crossing points may become uncertain, even if filtering is applied.
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Challenges in the Modelling and Control
of Varicella in Hungary

Rita Csuma-Kovács, János Dudás, János Karsai, Ágnes Dánielisz,
Zsuzsanna Molnár, and Gergely Röst

Abstract The introduction of varicella-zoster virus (VZV) vaccines into the routine
vaccination schedule is being under consideration in Hungary. Mathematical models
can be greatly useful in advising public health policy decision making by comparing
predictions for different scenarios, and by quantifying the costs and benefits of
immunization strategies. Here we summarize the major challenges, most of them
specific to Hungary, in devising and parametrizing dynamical models of varicella
transmission dynamics with vaccination policy. We gain some important insights
from a simple compartmental model regarding the seasonality and intrinsic oscil-
lation frequency of the disease dynamics, and the sensitivity to the underreporting
ratio. Finally, we discuss the ideas for a more complete, realistic model.

1 Introduction

The varicella-zoster virus is a highly contagious disease that affects a huge
proportion of the population, consequently the varicella incidence is of a similar
magnitude to the number of births. Although most people contract the disease in
their childhood, when the symptoms are generally mild, complications may occur
during the infection. Furthermore, at an older age the risk of serious complications
is significantly higher.
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In many developed countries, varicella vaccination programs are already imple-
mented. Originally one-dose programs were introduced, which have been replaced
by multiple-dose vaccinations in some countries by now. In Hungary, vaccination
is marketed for non-routine use, and it has been made available free of charge
in a few cities in recent years. There are many country-specific studies regarding
the effects and cost-effectiveness of the introduction of varicella vaccination, e.g.
[1, 2, 6]. However, there are hardly any studies about Hungary ([5] is a retrospective,
descriptive study), where the introduction of varicella vaccination into the routine
childhood vaccination program is being considered. Given the actuality and the
importance of this issue, here we summarize the challenges of such a modelling
work, draw some conclusions from a simple compartmental model and devise a
plan for comprehensive future work.

2 Challenges in Modeling

Latency of the Virus and Reactivation as Zoster Upon recovery from the
varicella infection, VZV remains in the body in latent form. In general, the
individual develops lifelong immunity to VZV. This immunity usually prevents the
reappearance of varicella, however the immunity can wane over time, hence the
virus may reactivate causing zoster. Zoster infected people are also infectious, but
at a lower rate than varicella infected persons. The length and the efficacy of VZV
immunity can show a wide interindividual variability.

The Hypothesis of Exogenous Boosting The waning immunity against VZV can
be boosted if the individual has a contact with a VZV infected person. Assuming
exogenous boosting, it is reasonable that after introducing vaccination, the number
of varicella cases decreases and consequently the zoster incidence temporarily
increases [1, 6].

Age Structure Since the virus is highly contagious and appears mainly among
young children, the transmission dynamics of the virus is largely age specific.
Furthermore, varicella has more severe symptoms and higher risk of complications
at an older age, and reactivation in the form of zoster also occurs at older age. Hence,
age-structured models are necessary to capture these phenomena.

Underreporting In Hungary, monthly reporting of varicella cases to the public
health authorities is obligatory. Unfortunately, the varicella incidence appears to be
much higher than reported, since the annual birth number is about 2.5-times higher
than the reported varicella cases; and according to most studies, these two values
should be nearly equal [6]. Among others, the main reason is that not every child is
taken to the pediatrician, as there is no effective medical treatment.

Seasonality Available data also reflects a seasonal behaviour in varicella incidence.
It can be traced back to the high number of infected children; consequently the
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school term and vacation play an important role in the spread of VZV. To describe
this phenomenon, time-dependent contact rates are needed in the model.

Lack of Zoster Data Contrary to varicella cases, it is not compulsory in Hungary
to report the zoster cases. Therefore, there is no available data related to zoster. We
need to make assumptions, based on studies from other countries.

Vaccines are Already Present Parents have the opportunity to buy the vaccine on
the market in Hungary. Some cities have made the vaccine available for free for
local children. Thus, a fraction of children have already been immunized.

Vaccination Efficacy and Waning Since varicella vaccination was licensed in the
mid-80s in some European countries, the vaccine parameters are fairly reliable. In
case of MMRV vaccine, 65% of the vaccinated population acquires full protection
after one dose and 95% after the second dose. The vaccine-induced protection wanes
in 15–20 years after one dose; while the two-dose vaccination provides lifelong
immunity [6].

Long Term Dynamics Since we need predictions for many years ahead, an age-
structured model should handle the transitions between age cohorts, which makes it
more difficult than in models for single outbreaks, such as influenza with short-term
behaviour [3]. Demographic changes also need to be taken into consideration.

Cost-Benefit Calculations In 2017, [5] gave a comprehensive study on the eco-
nomic burden of varicella in Hungary using descriptive statistical methods. There
are many uncertainties related to the introduction of VZV-vaccination, for instance,
the specific program, the type of the vaccination etc. are still unknown. Hence,
detailed dynamic model-based studies of the economic effects can be extremely
useful.

3 Insights from a Simple Compartmental Model

Based on the known models in the literature [1, 6], we use a simple compartmental
system in our studies with the compartments representing the varicella disease
states: Susceptible, Exposed, Infectious, Recovered, Susceptible to Zoster, Zoster,
Zoster Immune. Maternal immunity is not taken into account in our model. Although
the real situation is different, for the sake of simplicity we assume that the birth and
death rates are equal (d). Then the total population is constant and a proportional
model can be used where 1 = s + e+ i + r + sz + z+ rz. The model is as follows:

s′ = d − λs − ds,
e′ = λs − εe − de,
i ′ = εe − γ i − di,
r ′ = γ i + σλsz − ζ r − dr,

s′z = −σλsz + ζ r − ηsz − dsz,
i ′z = ηsz − κiz − diz,
r ′z = κiz − drz,

(1)
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where the force of infection is λ = β (i + νiz) and (.)′ represents time derivative.
Newborns directly become susceptible, then, one can become infected by being
in contact with a varicella or zoster infectious person. Having been infected, indi-
viduals go through a non-infectious latent period, and then they will be infectious.
Following the recovery, individuals acquire immunity to VZV. Immunity may wane,
and then individuals become susceptible to zoster. One can either be boosted through
exposure to VZV and regain immunity with efficiency σ or become zoster infectious
through reactivation of VZV with the rate η. Zoster recovered individuals have
lifelong immunity to VZV. The average length of the exposed, infectious, temporary
immunity, and zoster states are ε−1, γ−1, ζ−1 and κ−1, respectively.

The basic reproduction number R0 is a key parameter regarding the level of
virulence of the disease. In [7] the basic reproduction number was determined for a
slightly different model, and the usual result holds, namely that if R0 < 1 then the
disease-free equilibrium is asymptotically stable, but if R0 > 1 then the disease will
persist. With straightforward calculations, using the same method, we obtain

R0 = βε

(γ + d)(ε + d) + νβ

(κ + d) · εγ ζη

(ε + d)(γ + d)(ζ + d)(η + d), (2)

where the terms correspond to the expected number of cases generated by a typical
individual during primary varicella infection or acute herpes-zoster, respectively.

3.1 Data Analysis and Model Fitting

Annual Varicella incidence data for 20 years and monthly data since 2010 in
Hungary were available to us (red curves in Fig. 1 show the incidence corrected by
the fitted underreporting ratio q = 0.4). Since zoster incidence data is not available,
the related parameters were taken from the literature. Values of (s, e, i, r, sz, z, rz)
at any time are not known, hence initial values of the solutions were taken close to
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Fig. 1 Varicella incidences: data (red) and fitted model (blue)
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the endemic equilibrium according to the values of parameters. Based on our former
arguments, the underreporting ratio (q) is included into the fitting process.

Due to the strong seasonality of varicella, we replaced the constant β in the
system by a periodic function β̂(t) = β(1 + b cos(2πt − c)) with b = 0.25 and
c = 0.5 chosen by a separate fitting process. The seasonal system with parameters
β (transmission rate) and q (underreporting ratio) was fitted to the monthly data.
The fitting model is simple: the cumulative growth of i(t) is measured by î(t)
with î ′(t) = εe(t), and hence the monthly and annual incidences are modeled by
MM(t) = q(î(t + 1/12)− î(t)) and AM(t) = q(î(t + 1)− î(t)), respectively.

Fitting was performed by the sophisticated and well-tested command Nonlinear-
ModelFit in Wolfram Mathematica 11.3, which can be applied to implicitly defined
models such as numerical solutions of differential equations, and it can measure the
goodness of the fit. Default options and Conf idenceLevel → 0.95 were used.

After iteratively applied fitting and some fine-tuning, the final rounded values
of fixed parameters are d = 0.01, ε = 26, γ = 52, ν = 0.07, ζ =
0.05, η = 0.003, σ = 0.7, κ = 40. The goodness of the fit was measured
by the adjusted R2 = 0.933. The fitted values are q = 0.398 (standard error:
0.012, 95%, confidence interval: [0.374, 0.422]);β = 768.94 (standard error: 54.27,
95%, confidence interval: [660.88, 877]). The result can be seen on Fig. 1. The
monthly incidence data and fitted model MM(t) can be found on the left side,
while the right one contains the annual data and the fitted model AM(t) as well
as the corresponding autonomous model with the same parameters. Finally, we
emphasize that although the seasonality is very strong, both the monthly and annual
incidence models show a multi-annual periodicity. The yearly peaks have maxima
approximately at every 4 years. This phenomenon is known in the epidemiology of
varicella and the value agrees the practice. The same period can be obtained by the
autonomous model.

3.2 Sensitivity to Underreporting Ratio

According to the previous section, varicella cases are likely to be seriously
underreported in Hungary (q ≈ 0.4). The model fitting is coherent with what the
serological studies suggest. In this section we investigate, how sensitive our model
is to the ratio of the reported and total cases, i.e., we examine dependence of the
basic reproduction number R0 (see Eq. (2)) on this ratio q at the parameters fitted
above.

Assuming that in Hungary the population is at the endemic equilibrium and
using the equality nV /q = γ i∗ (where nV is the average annual reported varicella
incidence since 2010 and i∗ is the endemic equilibrium of i), we obtain the relation
between q and R0 depicted in Fig. 2. Note that in the literature a wide variety
of different R0 values can be found for the VZV. In [4], the highest value is
16.91 (Netherlands) and the lowest is 3.31 (Italy). According to these values, the
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Fig. 2 Relation between the
underreporting ratio q and the
basic reproduction number
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underreporting ratio in Hungary would change between 0.39 and 0.53. As we found
above, the fitted value of q is about 0.4 and the correspondingR0 is 11.87.

4 Conclusion

We gave an overview of the main challenges in the modelling of varicella in
Hungary. We fitted a very simple model to the available data, and found that the
strong seasonality of varicella infections and the underreporting are essential. The
main aim of our research is to forecast the impact of vaccination in Hungary. Based
on our simple model the global effects and strategic goals can be already visible. To
build a realistic model which can be used to evaluate the impact of vaccination
policies, the simple compartmental system should be significantly extended by
vaccination, seasonal effects and age structure with age specific parameters and
contact patterns.
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Modeling Neuronal Firing in Epilepsy:
Fitting Hawkes Processes to Single-Unit
Activity

György Perczel, Loránd Erőss, Dániel Fabó, László Gerencsér,
and Zsuzsanna Vágó

Abstract Forecasting seizures based on information extracted from neuronal firing
has a great potential in controlling closed-loop neurostimulators. For the description
of neuronal firing patterns we use self-exiting point processes or Hawkes processes.
In fitting them to simulated data, using a large variety of models, we consider both
computability and reliability issues related to the maximum likelihood estimation
(MLE) method. The models are classified via a single parameter related to stability
regimes. The dependence of the accuracy of the individual parameter estimates on
different regimes will be explored. We demonstrate the applicability of the MLE
method to discriminate between different models with high confidence.

1 Introduction

1.1 A Brief Introduction to Epilepsy

With a prevalence of 0.5–1% epilepsy is one of the most common neurological
disorders. Its most characteristic features are recurrent seizures. Despite that a
number of causes have already been identified, including genetic or cerebrovascular
disorders, brain injury and infections, 6 out of 10 cases are categorized as idiopathic,
i.e. the main cause is unknown. Numerous anti-epileptic drugs are available and in
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some cases even surgical options exist, such as excision of the epileptogenic focus
or the implantation of a neurostimulator. However, for approximately 30% of the
patients sufficient seizure control cannot be achieved, see [14].

The unexpectedness of the seizures has such an influence on the patients’ well-
being that reducing the frequency of seizures only moderately improves their quality
of life. Even in the case of rare seizures, the patient’s life is determined by the fear
of a forthcoming one [14]. Thus, it is generally accepted, that a system capable of
forecasting seizures would ameliorate the quality of life of patients. Furthermore,
it is hypothesized that combining such a system with a neurostimulator or a drug-
delivery pump the development of seizures could be avoided [4].

1.2 Seizure Prediction and Closed-Loop Neurostimulators
in Epilepsy

In order to forecast forthcoming seizures numerous methods have been proposed,
see [4]. Most often these are based on the analysis of the electrical signals of the
brain, such as the ones recorded on the scalp (electroencephalogram, EEG) or on
the surface of the brain (electrocorticogram, ECoG). It is assumed that focal seizures
starting from a distinct cortical area evolves as a cascade of events and thus can be
theoretically predicted, though we are not aware of a specific biomarker preceding
them [9]. Although some methods satisfy current statistical criteria (above chance),
applicability in a clinical setting requires more rigorous standards [4].

We note that experimental and modeling studies carried out hitherto suggest that
some seizures are inherently unpredictable. This is the case for primary generalized
absence seizures that involve both cortical hemispheres from the very beginning of
the onset of the seizure. A brain with this type of seizures is regarded as a bistable
system that switches between its states stochastically [9].

To date, there is only one implantable closed-loop system available on the
market, the Responsive Neurostimulation or RNS (NeuroPace, CA, USA). However,
this device detects seizures, instead of predicting them, and delivers electrical
stimulation to the area thought to be responsible for the seizure initiation. In
contrast, the Seizure Advisory System (NeuroVista, WA, USA) aimed to achieve
real seizure forecasting, but is not yet available on the market, [4].

The tools for seizure prediction mentioned above utilize the low-frequency
components of brain electrical signals called local field potentials (LFP) ranging
from approximately 0.1 Hz to 200–300 Hz. As an alternative the appropriate signals
can be filtered using a high pass filter with a cutoff frequency around 200–500 Hz.
The resulting time-series (multi-unit activity, MUA) will contain primarily the
action potentials of neurons from the vicinity of the recording electrodes. With
further processing, called spike-sorting, these APs can be assigned to individual
units (neurons) based on their morphology. This provides us sequences of time-
points indicating the APs of distinct units termed single-unit activities (SUAs) [13].
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As there is evidence that epileptic activity is a result of the underlying pathological
neuronal firing [10] the question arises if seizure prediction can be achieved based
on the investigation of SUAs [15]. In this paper we provide a framework for the
statistical analysis of SUAs using the theory of point processes, and give a summary
of our extensive simulation-based investigations.

2 Modeling Single-Unit Activity via Hawkes Processes

The series of time points of the APs is modeled with a so called point process,
[2]. Mathematically this is a strictly increasing sequence of random time points
0 = T0 < T1 < T2 . . . with no accumulation point. For the sake of mathematical
convenience we will also consider two-sided point processes (Tn),−∞ < n <∞,
for which the range of Tn-s is (−∞,+∞). For an excellent introduction see [1].

An alternative description of a point process is given by its counting process
defined for the one-sided point process as Nt = #{n : 0 < Tn ≤ t}.More generally,
we may define a counting measure for any interval (a, b] by the equationN(a, b] =
#{n : a < Tn ≤ b}. The internal history or the past of a point process is defined as
the σ -algebra

Ft = σ {N(a, b] : a < b ≤ t}.

The definition of counting measure and internal history works equally for one-
sided and two-sided point processes. We define the integral of a random so-called
predictable function ft ≥ 0, t ≥ 0 with respect to dNt . The heuristic meaning of
predictability is that ft is the limit of left-continuous Ft -adapted processes. Then
set

∫ ∞

0
ftdNt =

∑
n≥0

f (Tn).

It can be shown that associated with dNt is a so-called (predictable) intensity
process with the property that

E

(∫ ∞

0
ftdNt

)
= E

(∫ ∞

0
ftλt dt

)
.

A prominent class of point processes in the field of neuroscience, emulating the
firing pattern of a network of neurons interacting via APs in the brain, is the class of
(multi-variate) mutually exiting point processes, or Hawkes processes, introduced
in [8], see also [1, 2, 7] and [6].
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A two-sided multivariate point process, (Ti,n), i = 1, . . . , k, is a Hawkes
process, if its counting measures Ni(.) are shift invariant in time, with intensity
functions

λi,t = μi +
k∑
j=1

t∫

−∞
gij (t − s)dNj,s , μi > 0, gij (u) ≥ 0. (1)

Here μi are the background intensities, and gij (u) are non-negative impulse
response functions (IRF). For the analysis of the firing pattern of a single unit we
use a univariate (self-exciting) Hawkes process, implicitly defined by the feedback
loop

λt = μ+
t∫

−∞
g(t − s)dNs, μ > 0, g(u) ≥ 0. (2)

Taking expectation on both side, and setting λ = Eλt , we get the equation λ =
μ+ cλ, and the necessary (and sufficient, see [11]) condition for the existence of a
Hawkes process satisfying (2):

c =
∫ ∞

0
g(t)dt < 1. (3)

The rational behind the application of Hawkes processes in the analysis of
SUA is that the burst-mode of neurons indicates a feedback-effect. The objective
of the present study is to model individual neurons’ firing pattern by fitting a
univariate Hawkes process via the maximum-likelihood method, see [12], and to
provide a summary of extensive experimental findings based on simulated data. In
particular, we explore the typical configurations in the parameter space and establish
confidence limits for discerning different regimes.

3 Statistical Fitting of Hawkes Processes

In order to fit Hawkes processes to real SUA data we consider a parametric class of
Hawkes processes with

g(u) = σ · eau, u ≥ 0, with σ > 0, a < 0,

see [12]. In this case the stability criteria (3) becomes −σ/a < 1, or equivalently,
α := a+σ < 0.Here α is called the stability margin. Let η = (μ, a, σ ), and assume
that our data are in fact generated by a Hawkes process defined above with true
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parameter η∗. To estimate this we take an arbitrary feasible parameter η, satisfying
the conditions a + σ < 0 < μ, and define an intensity function λt (η):

λt (η) = μ+
t∫

0

g(t − s, η) dNs = μ+
t∫

0

σ · ea(t−s) dNs. (4)

The computation of the (conditional) log-likelihood function, under the condition
that dNt = 0 for t ≤ 0, is the mathematically substantiated heuristics that under
minimal conditions a point process is locally a Poisson process, see [3, 12]. Thus,
the negative log-likelihood function on the interval [0, T ] is, modulo constants,

LT (η) =
T∫

0

λt (η)dt −
T∫

0

logλt (η)dNt . (5)

For a rigorous foundation we refer to [12], and [3] for a more up to date reference.
The apparently cumbersome computation of the (predictable) intensity λt (η) is

actually quite simple for an exponential IRF. Namely, it follows directly from (4),
by movingμ to the l.h.s. and then differentiating w.r.t. t, that on the interval Tn−1 <

t ≤ Tn, where no event occurs, we have

λTn−1+ = λTn−1 + σ, λt (η)− μ = ea(t−Tn−1)(λTn−1+(η)− μ). (6)

To bring the model closer to physiological reality we introduce an alternative
parameterization using the stability margin and the average intensity as parameters,
thus obtaining θ = (α, σ, λ). As a measure of the precision of our estimators we use
95% confidence-ellipsoids. We note that the Fisher information matrix, for a general
parameteric class of Hawkes processes, is obtained from (5) as follows:

I (θ∗) = lim
T→∞

1

T

∑
0<Tn≤T

λθTn(θ
∗) · λTθTn(θ∗)
λ2
Tn
(θ∗)

, (7)

where the subscript θ denotes differentiation w.r.t. θ, assuming the validity of an
appropriate strong law of large numbers.

4 Experimental Results

We implemented the above method in MATLAB and tested its performance. The
accuracy of the MLE method was tested using simulated data generated by an
improved version of the procedure presented in [12]. The length of an experiment
is defined via the number of simulated events, which is in the range of 10,000 in
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Fig. 1 95% confidence ellipsoids of the two reference examples

our case. The accuracy of the estimators are characterized by confidence ellipsoids
defined for level 95%. The scope of experimental studies was focused on the
sensitivity of the method w.r.t. changes in model dynamics, including changes in
the orientation of the respective confidence ellipsoids.

On Fig. 1 we present the confidence ellipsoids of two simulated SUAs, taken
as benchmark examples. The processes were simulated with N = 10,000 events
with θ = (−2.1; 0.9; 1.0) and θ = (−0.6; 2.4; 1.0), denoted with green and red,
respectively. In order to enhance our potential to discriminate between two models
we can increase the number of observed events. We note that the volume of a
confidence ellipsoid, denoted by VCE, corresponding to a fixed model, based on
N events is proportional toN−3/2. However, in a real-life situation when estimating
the dynamics during the preictal period, the number of events associated with a
stationary regime is limited due to changes in the dynamics close to the onset of a
seizure.

We studied the influence of different parameter setting on the accuracy of
the estimation. First we note that we may chose λ = 1 for simplicity, since
the estimation of this parameter is independent from that of the others. A major
characteristic of a Hawkes process is its the integral of the IRF, denoted by c, see (3),
defining different regimes w.r.t. stability. A second feature that we considered is
simply the attenuation determined by the parameter a.
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Fig. 3 Normalized asymptotic standard deviation (NASD) of α and λ , respectively

We simulated numerous Hawkes processes (9 regimes at 10 different a-s,
N = 10,000), and computed the volume of the confidence ellipsoids (VCE). The
dependence of VCE on the particular regime c and the attenuation a is demonstrated
on Fig. 2. On the left hand side it is seen that VCE is a monotone decreasing function
of a for each regime. On the right hand side VCE is depicted as a function of c for
various choices of a. It is interesting to observe that estimation problem becomes
more difficult for values of c close to 1 or 0.

In order to understand the details about the increased uncertainty of the estima-
tors when c is close to 1 or 0, we compute the asymptotic standard deviation (ASD)
of individual parameters, which are simply the diagonal elements of I−1(θ∗). To
make different parameter-settings comparable we normalized these values by V 1/3

CE ,
see Fig. 3. These results show that the overall uncertainty, when c is close to 1 or 0,
is due to the uncertainty in the estimation of α for c close 0, and that of λ for c close
1. The accuracy of the estimation of σ is quite satisfactory for all values of c.
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The shift in the degree of uncertainty between α and λ indicates a change in the
orientation of the confidence ellipsoid. This finding may be used to detect regime-
changes more efficiently, and ultimately to detect changes in the brain-state.

5 Discussion

Forecasting seizures with application in closed-loop neurostimulators is of great
need for patients with therapy-resistant epilepsy. With the expanding arsenal of
clinical neurophysiology it is becoming possible to monitor patients’ brain-activity
at a cellular level [16]. Therefore seizure prediction based on information extracted
from neuronal firing is a promising research topic.

A convenient framework to describe neuronal firing patterns in a compressed
manner are self-exiting point processes or Hawkes processes. When fitting Hawkes
processes to simulated or real-world data critical factors are both the computability
and the statistical reliability of the MLE. In the present experimental mathematical
research we explored the sensitivity of the MLE method for the class Hawkes
processes with exponential IRF for a large variety of models. The models were
classified via a single parameter related to stability, defining different regimes. We
found that the estimation accuracy of parameters (pattern of uncertainty) highly
depends on the actual regime.

The ultimate measure of accuracy is the applicability of the methods to dis-
criminate between different brain-states based on experimental data. A further step
towards real life applications is the integration of our experimental findings for the
off-line MLE method into the development of a reliable on-line MLE method along
the lines proposed back in [5], to be discussed in a forthcoming paper.
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Solution of MHD Flow with BEM Using
Direct Radial Basis Function
Interpolation

Merve Gürbüz and Munevver Tezer-Sezgin

Abstract In this study, the two-dimensional steady MHD Stokes and MHD
incompressible flows of a viscous and electrically conducting fluid are considered
in a lid-driven cavity under the impact of a uniform horizontal magnetic field. The
MHD flow equations are solved iteratively in terms of velocity components, stream
function, vorticity and pressure by using direct interpolation boundary element
method (DIBEM) in which the inhomogeneity in the domain integral is interpolated
by using radial basis functions. The boundary is discretized by constant elements
and the sufficient number of the interior points are taken. The interpolation points
are different from the source points due to the singularities of the fundamental
solution. It is found that as Hartmann number increases, the main vortex of the
flow shifts through the moving top lid with a decreasing magnitude and secondary
flow below it is squeezed through the main flow leaving the rest of the cavity almost
stagnant. The increase in M develops side layer near the moving lid, but weakens
the effect of Re in the MHD incompressible flow.

1 Introduction

The study of incompressible flow under the effect of magnetic field has many
industrial and medical applications such as MHD generators, pumps, nuclear
reactors and blood flow measurements. Magnetohydrodynamic (MHD) flow is
governed by the hydrodynamics (Navier-Stokes equations) and electromagnetics
(Maxwell’s equations) through Ohm’s law. Many numerical methods are developed
to solve MHD equations, since the analytical solutions are restricted to simple
geometry and boundary conditions due to the nonlinearities and Lorentz force
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terms in the equations. A finite element method (FEM) is implemented to solve
three-dimensional incompressible MHD flow by Salah et al. [9]. Nath et al. [7]
considered the MHD flow in a lid-driven cavity using a meshless method based on
fundamental and particular solution (MFS-MPS). In [3] radial basis function (RBF)
approximation is employed to the two-dimensional MHD equations by using Stokes
approximation (Re << 1).

In this study, we apply the direct interpolation boundary element method
(DIBEM) to solve the MHD flow equations with or without Stokes approximation.
DIBEM is a new technique to transform the domain integral due to the inhomo-
geneity of differential equation into the boundary integral. The only difference from
DRBEM is that the complete kernel of the domain integral is interpolated directly
by using the radial basis functions (RBF). The DIBEM has been implemented to
solve Poisson’s equations [4] and Helmholtz equation [5] using classical RBF. In
[4], the analysis of better accuracy of DIBEM is carried and the numerical results
are compared with the DRBEM results. In this study, the MHD flow equations
are treated as Poisson’s equations and solved by using DIBEM. Numerical results
obtained from DIBEM are simulated in terms of streamlines, equivorticity lines and
pressure contours in the lid-driven cavity for several values of Reynolds number and
Hartmann number.

2 Governing Equations

The steady, two-dimensional, laminar flow of a viscous, incompressible and elec-
trically conducting fluid is considered in the lid-driven cavity under the effect of
uniform horizontal magnetic field. This problem is modelled by the dimensionless
MHD equations [2, 6] in terms of stream functionψ , vorticity ω first, and then going
back to the velocity components (u, v) and pressure p as

∇2u = −∂ω
∂y
, ∇2v = ∂ω

∂x
, ∇2ψ = −ω (1)

∇2ω = Re(u∂ω
∂x

+ v ∂ω
∂y
)+M2 ∂v

∂x
(2)

∇2p = −2Re(
∂v

∂x

∂u

∂y
− ∂u

∂x

∂v

∂y
)−M2 ∂v

∂y
(3)

where Reynolds number Re = LU0/ν and Hartmann numberM = LμH0
√
σ/ρν

are non-dimensional parameters. Here, L,U0, ν, μ,H0, σ and ρ are characteristic
length, characteristic velocity, kinematic viscosity, magnetic permeability, magnetic
field intensity, electric conductivity and density of the fluid. The last terms in
Eqs. (2) and (3) are due to Lorentz force. Equations (1)–(3) are supplied with the
no-slip boundary condition u = v = ψ = 0 on x = 0, 1 and y = 0 wall, but
u = 1, v = ψ = 0 on the moving lid y = 1. In case of highly viscous fluid,
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called MHD Stokes flow, the convective terms in Eqs. (2)–(3) are neglected due to
the small values of Reynolds number (Re << 1). The unknown vorticity boundary
conditions are obtained from the stream function equation (1) by using FD scheme.
The unknown pressure boundary values are computed by a FD scheme for pressure
derivatives and the coordinate matrix F for the space derivatives of the velocity in
the momentum equations, [2]. F = (fij ) = 1 + rij , rij being the distance.

3 DIBEM Application

The direct interpolation boundary element method transforms Poisson’s type equa-
tions (1)–(3) into boundary integral equations using the fundamental solution of
Laplace equation, u∗ = 1

2π ln(1/r). Weighting the equations by u∗ and applying
Green’s identity, we get the BEM formulation [1]

c(ξ)K(ξ)+
∫

Γ
K(X)

∂u∗(ξ ;X)
∂n

dΓ−
∫

Γ

∂K(X)

∂n
u∗(ξ ;X) dΓ = −

∫

Ω
zK(X)u

∗(ξ ;X) dΩ
(4)

where K denotes u, v,ψ,ω or p and zK is the right-hand side function of each
corresponding Poisson equation forK . The coefficient c(ξ) depends on the position
of the source point ξ and given as in [1].

In the DIBEM procedure [5], the complete kernel of the domain integral is
directly interpolated by using radial basis function F i which is related to primitive
interpolation function Ψ i as ∇2Ψ i = F i

zK(X)u
∗(ξ;X) =

n∑
i=1

αi(ξ)F
i(Xi;X) =

n∑
i=1

αi(ξ)∇2Ψ i(Xi;X) (5)

where Xi is the interpolation point and n is the number of points used in the
interpolation. The undetermined coefficients αi(ξ)’s change for each source point
ξ , ξ = 1, . . . , ñ. Here, ñ is the total number of Nb boundary and Ni interior nodes.

Substituting the relation (5) into the domain integral of the source term in Eq. (4)
and applying Green’s identity, we obtain the boundary integral equation

c(ξ)K(ξ)+
∫
Γ

K(X)
∂u∗(ξ ;X)
∂n

dΓ −
∫
Γ

∂K(X)

∂n
u∗(ξ ;X) dΓ = −

n∑
i=1

αi(ξ)

∫
Γ

∂Ψ i

∂n
(Xi ;X) dΓ .

(6)

Discretization of the boundary by using constant elementsΓj gives matrix-vector
form of Eq. (6) as

HK − G
∂K

∂n
= ĀN (7)



272 M. Gürbüz and M. Tezer-Sezgin

where H ij = c(ξ)δij +
∫

Γj

∂u∗

∂n
dΓj , Gij =

∫

Γj

u∗ dΓj and Gii = 1

2π
(ln(2/l)+

1), and N i = −
Nb∑
j=1

∫

Γj

∂Ψ i

∂n
(Xi;Xj) dΓj . Here, l is the length of the element Γj .

Thus, the DIBEM discretized system of the equations for (1)–(3) is

Hu − Gqu = ĀuN , Hv − Gqv = ĀvN , Hψ − Gqψ = Āψ N

(8)

Hω − Gqω = Āω N , Hp − Gqp = ĀpN . (9)

The matrices Āu, Āv, Āψ , Āω and Āp are constructed row-wise with the unknown
vectors

αu(ξ) = F−1Λ(ξ)
∂F

∂y
F−1(−ω), αv(ξ) = F−1Λ(ξ)

∂F

∂x
F−1ω, αψ (ξ) = F−1Λ(ξ)(−ω)

(10)

αω(ξ) = F−1Λ(ξ)(
∂F

∂x
F−1(M2v) + Re(u∂F

∂x
F−1ω + v

∂F

∂y
F−1ω)) (11)

αp(ξ) = F−1Λ(ξ)(
∂F

∂y
F−1( −M2v) − 2Re(

∂F

∂x
F−1v

∂F

∂y
F−1u − ∂F

∂x
F−1u

∂F

∂y
F−1v))

(12)

where the diagonal matrix Λ(ξ) is constructed by the fundamental solution of
Laplace equation u∗ for each ξ .

4 Numerical Result

The DIBEM system of MHD flow equations (8)–(9) are solved iteratively with the
preassigned tolerance ε = 10−3. We take Nb = 60 boundary nodes and Ni = 225
interior nodes for Reynolds numberRe = 0, 50, 100, 140 and the Hartmann number
valuesM = 0, 30. The numerical results are shown in terms of streamlines, vorticity
and pressure contours in Figs. 1, 2, and 3.Re = 0 corresponds to MHD Stokes flow.

Figure 1 depicts the effect of the increases in Re and M on the streamlines. In
the absence of the magnetic field (M = 0), it is observed that as Reynolds number
increases, the primary vortex of the flow pushes through the center of the cavity
and fluid flows in almost all parts of the cavity [8]. Secondary vortex occurs at the
right lower corner of the cavity when Re = 140. Existence of the magnetic field
(M = 30) destroys this behavior of the flow. Main flow is concentrated through the
top lid forming boundary layer and secondary vortex appears below the main vortex
with a small magnitude. The increase in Re does not change the behavior of the flow
under the impact of magnetic field.
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Fig. 1 Streamlines

Fig. 2 Equivorticity lines

In Fig. 2, when the magnetic field is neglected, equivorticity lines are symmetric
with respect to x = 0.5. As Re increases, they start to circulate through the right top
corner. However, The increase in the intensity of the magnetic field alters the well-
known behavior due to the dominance of the term containingM in the momentum
equations.

When M = 0 and Re = 0, two anti-symmetric pressure profiles are observed at
the upper corners in Fig. 3. As Re increases, pressure contours are enlarged through
the upper right corner. A further increase in Re increases the intensity of pressure
of the fluid all over the cavity reducing to zero at the right corner. Existence of
the magnetic field generates secondary pressure vortices below the main vortices in
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Fig. 3 Pressure contours

front of the moving lid.The increase in Re weakens the effect of the magnetic field
on the pressure of the fluid.

5 Conclusion

The DIBEM numerical results for MHD lid-driven cavity flow are obtained for the
parameter values in 0 ≤ Re ≤ 140 and 0 ≤ M ≤ 30 to analyze the effect of
horizontal magnetic field on the flow and pressure of the fluid. It is found that the
increase in Reynolds number shifts the primary vortex of the flow through the center
of the cavity. However, the flow is squeezed through the moving top lid forming a
boundary layer due to the direction of the magnetic field as the Hartmann number
increases. The increase in Reynolds number diminishes the impact of magnetic field
intensity on the pressure profiles.
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DRBEM Solution of MHD Flow
in an Array of Electromagnetically
Coupled Rectangular Ducts

Munevver Tezer-Sezgin and Pelin Senel

Abstract We present the dual reciprocity boundary element method (DRBEM)
solution to magnetohydrodynamic (MHD) flow in a single and two parallel ducts
which are separated by conducting walls of arbitrary thickness in the direction
of external magnetic field. The DRBEM discretized coupled MHD convection-
diffusion equations in the ducts and the Laplace equations on the shared walls are
solved as a whole by using constant boundary elements with the coupled induced
current wall conditions. It is shown that, the conducting walls in the double ducts
have a strong influence on the currents near the walls, and the core flow increases on
the co-flow case but there is a strong reduction in the core flow in the counter-flow
case. The coupling between the ducts with conducting thick walls induces reversed
flow and counter current flows which may be used for the heat and mass transfer
in fusion applications. The proposed numerical scheme using DRBEM captures the
well-known MHD flow characteristics when Hartmann number increases.

1 Introduction

The flow of electrically conducting fluids in ducts under the influence of external
magnetic field is of interest in many industrial and medical applications. Examples
range from MHD generators, pumps, microfluidics to the flow of liquid metals in
casting and nuclear fusion blankets. There are many numerical studies for the MHD
flow in a single duct of rectangular or circular geometry if the outside medium,
and the duct thin walls are insulating and/or conducting for which the analytical
solutions are available [3]. Among these, solutions by using finite difference method
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(FDM) [8], by using finite element method (FEM) [4, 5], and by using boundary
element method (BEM) [2, 9, 10] can be counted.

This paper considers the DRBEM solution of the MHD flow in a single and
double ducts stacked in the direction of applied magnetic field and separated with
arbitrarily conducting thick vertical walls. The upper and lower walls of the ducts are
assumed to be thin and insulated. The flow and the induced magnetic field are greatly
affected by the conductivities, magnetic permeabilities of the fluid and the walls,
wall thickness and the increase in the Hartmann number. The analytical solution
given by Bluck and Wolfendale [1] which is valid for thick walls and based on
homogeneous solution and the FEM solution in [11] provide validation data for
computational MHD flow in an array of ducts. The DRBEM has the advantage
of discretizing only the boundary of the ducts, which results in small sized linear
system of equations and thus, the solution is obtained at a small expense.

2 Physical Problem and Governing Equations

The non-dimensional MHD equations for an incompressible, viscous, electrically
conducting fluid in an array of two square ducts Ωi separated by conducting walls
with thickness δ are given with boundary conditions shown on Fig. 1 as, [1]

∇2Vi +Ha ∂Bi
∂x

= ΔPi, ∇2Bi +Ha ∂Vi
∂x

= 0 in Ωi, i = 1, 2 (1)

∇2Bwi = 0 in Ωwi , i = 1, 2, 3 (2)

where V (x, y) is the velocity of the fluid and B(x, y) and Bw(x, y) are induced
magnetic fields of the fluid and the thick walls, respectively. Subscript i denotes
the corresponding ducts (Ω1, Ω2) and the thick walls (Ωw1 , Ωw2 , Ωw3 ). ΔPi =

Fig. 1 Double ducts separated by conducting vertical thick walls
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∂Pi
∂z
/ ∂P1
∂z

is the pressure gradient in Ωi ; μf , σf and μw, σw are the magnetic
permeability and electrical conductivity of the fluid and the walls, respectively.
Ha is the Hartmann number given as Ha = B0L

√
σf /

√
ρf νf with characteristic

length L, density and kinematic viscosity ρf , νf of the fluid, and applied magnetic
field intensity B0. The same direction pressure gradients ΔP1 = ΔP2 = 1 is the
case of co-flow in the double ducts whereasΔP1 = 1,ΔP2 = −1 represents counter
flow in the ducts separated by a conducting thick wall.

3 The DRBEM Formulation

The coupled MHD equations (1) and Laplace equation (2) on the vertical thick walls
are converted to boundary integral equations by using the fundamental solution
of Laplace equation u∗ = (1/2π) ln(1/r). Corresponding integral equations are
obtained by weighting differential equations (1), (2) with u∗ and using the Green’s
first identity two times [7]. All the terms except the Laplacian are treated as
inhomogeneity b(x, y) (b = bVi or b = bBi in (1)) and it is approximated by
radial basis functions fj (r) = 1 + rj which are connected to particular solutions
with ∇2ûj = fj , rj being the distance between the source and the field points.
Then, b(x, y) = ∑N+L

j=1 αjfj = ∑N+L
j=1 αj∇2ûj where αj ’s are the undetermined

coefficients.
Now, applying the Green’s first identity two times also to the domain integrals

due to the inhomogeneities and discretizing the boundary with constant elements
we obtain (with ∂Ω = Γ notation)

ck(Vi)k +
N∑
m=1

∫

Γm

Viq
∗dΓ −

N∑
m=1

∫

Γm

∂Vi

∂n
u∗dΓ =

N+L∑
j=1

αj (ckûkj +
N∑
m=1

∫

Γm

ûj q
∗dΓ

−
N∑
m=1

∫

Γm

∂ûj

∂n
u∗dΓ )

(3)

ck(Bi)k +
N∑
m=1

∫

Γm

Biq
∗dΓ −

N∑
m=1

∫

Γm

∂Bi

∂n
u∗dΓ =

N+L∑
j=1

βj (ckûkj +
N∑
m=1

∫

Γm

ûj q
∗dΓ

−
N∑
m=1

∫

Γm

∂ûj

∂n
u∗dΓ )

(4)

ck(Bwi )k +
N∑
m=1

∫

Γm

Bwi q
∗dΓ −

N∑
m=1

∫

Γm

∂Bwi

∂n
u∗dΓ = 0 (5)

where q∗ = ∂u∗/∂n, Vi , Bi and Bwi are nodal values of velocity, induced magnetic
field of the fluid and the thick walls at the discretization points, respectively. The
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constant ck is 1/2 for boundary source point k (k = 1, . . . , N), and 1 for interior
nodes (k = N + 1, . . . , N + L). In the integrals on the left-hand side, Vi , Bi and
Bwi are the values at the boundary nodes.

Collocating bVi and bBi using the radial basis functions gives bVi = Fα,
bBi = Fβ where the matrix F is constructed by taking fj ’s as columns and
α = F−1bVi , β = F−1bBi . In order to depict the flow and induced magnetic
field behaviors inside the cavity and the thick walls, the DRBEM discretized matrix-
vector equations are obtained by writing Eqs. (3)–(5) for all boundary and interior
nodes

HVi − G
∂Vi

∂n
= (HÛ − GQ̂)F−1{ΔPi −Ha ∂Bi

∂x
} (6)

HBi − G
∂Bi

∂n
= (HÛ − GQ̂)F−1{−Ha ∂Vi

∂x
} (7)

HBwi − G
∂Bwi

∂n
= 0 (8)

where

Hkj =
∫

Γj

q∗dΓj , Hkk = ck, Gkj =
∫

Γj

u∗dΓj , Gkk = l

2π
(ln(

2

l
)+ 1) (9)

and l is the length of the boundary element. The matrices Û, Q̂ are constructed
by taking each vector ûj and q̂j as columns, respectively. Both j, k = 1, 2, .., N .
The space derivatives are also approximated by using coordinate matrix F as
∂Vi/∂x = (∂F/∂x)(F−1Vi), ∂Bi/∂x = (∂F/∂x)(F−1Bi).

The DRBEM discretized matrix-vector equations (6)–(8) are solved as a whole
for the velocities of the fluid and the induced magnetic fields in the ducts and the
walls, and their normal derivatives after inserting the coupled boundary conditions
shown on Fig. 1.

4 Numerical Results

MHD flow equations are solved numerically by using the DRBEM in a single and
double (co-flow or counter-flow) ducts for several values of Ha, cw = σw/σf
and δ by taking μw = μf = 1. The effects of these parameters on the flow and
induced magnetic current are discussed. Figure 2 shows the effect of thickness δ of
conducting walls in a single duct for Ha = 5 and σf = σw = 1.

When δ = 0.01, the MHD flow represents almost the insulated thin wall case and
it is in well agreement with the MHD flow in a duct with insulated walls [3, 6]. As
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Fig. 2 Velocity and induced magnetic field profiles, Ha = 5, σw = σf = 1, N = 140. (a)
δ = 0.01. (b) δ = 0.2
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Fig. 3 Velocity and induced magnetic field, δ = 0.1. (a) N = 170, cw = 1. (b) N = 170, cw =
0.1. (c) N = 340, cw = 1. (d) N = 560, cw = 1

δ increases the passage from the induced current in the fluid to the induced current
of the thick walls is well observed according to the coupling of wall conditions.

Figure 3 shows the influence of an increase in Hartmann number (a), (c), (d) and
the change in the wall conductance ratio cw for Ha = 10 (a), (b). It is observed
that as Ha increases boundary layers are developed, the velocity magnitude drops
(flow is flattened). Flow is separated and concentrated in front of the side walls, the
rest of the duct is stagnant. Two opposing induced current loops are formed each
of which parallel to thick Hartmann walls and return through the central core. The
continuation of induced currents from the duct to the thick walls is well observed. A
decrease in the wall conductance ratio forces the flow and induced magnetic current
to become as if the vertical walls are also insulated, since the electrical conductivity
of the fluid is very large compared to the conductivity of the walls. Induced current
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Fig. 4 Velocity and induced magnetic field in double ducts, δ = 0.1, σw = σf = 1 co-flow

in the fluid can not connect to the currents in the walls anymore when cw = 1/10.
These results are in agreement with the ones given in [1].

In the double ducts, we consider MHD flow for both the co-flow and counter
flow cases. In Fig. 4, Ha increase is studied for co-flow (ΔP1 = ΔP2 = 1) in the
two ducts when δ = 0.1, σw = σf = 1. In the co-flow case both the flow and
the induced magnetic field repeat themselves in the neighboring duct with the same
magnitudes. Magnetic fields of the fluid and the walls again continue on the joint
walls obeying the coupling conducting wall conditions.

In the counter-flow case (Fig. 5), induced currents at the outer Hartmann layers
are reduced relative to the co-flow case. At the inner conducting joint walls the
current flows directly through the connecting wall into the neighboring duct. Away
from the walls the flow is flattened at the cores as Ha increases.

For the counter-flow, boundary layer at the exterior conducting Hartmann walls
are pronounced as Ha increases but at the center connecting walls boundary layers
are diminished. Further increase in Ha pushes the flow near the side walls and
results in one large current loop connected at the interface of the ducts.

5 Conclusion

The impact of electromagnetic coupling of MHD flows between the conducting
walls and the fluid is demonstrated by increasing values of Hartmann number, wall
thickness, conductance ratio in the co-flow and counter-flow cases. It is shown that,
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Fig. 5 Velocity and induced magnetic field in double ducts, δ = 0.1, σw = σf = 1 counter-flow

the conducting walls in the double ducts have a strong influence on the core flow
which increases in the co-flow case but there is a strong reduction in the counter-
flow case. The reversal flow and counter current loops are induced which may be
used for the heat and mass transfer in fusion applications.
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Application of Splitting Algorithm
for Solving Advection-Diffusion Equation
on a Sphere

Yuri N. Skiba and Roberto Carlos Cruz-Rodríguez

Abstract The new algorithm proposed in Skiba (Int. J. Numer. Methods Fluids
(2015), https://doi.org/10.1002/fld.4016) is applied for solving linear and nonlinear
advection-diffusion problems on the surface of a sphere. The discretization of
advection-diffusion equation is based on the use of a spherical grid, finite volume
method and the splitting of the operator in coordinate directions. The numerical
algorithm is of second order approximation in space and time. It is implicit,
unconditionally stable, direct (without iterations) and rapid in realization. The
theoretical results obtained in Skiba (Int. J. Numer. Methods Fluids (2015), https://
doi.org/10.1002/fld.4016) are confirmed numerically by simulating various linear
and nonlinear advection-diffusion processes. The results show high accuracy and
efficiency of the method that correctly describes the advection-diffusion processes
and balance of mass of substance in the forced and dissipative discrete system, and
conserves the total mass and L2-norm of the solution in the absence of external
forcing and dissipation.

1 Advection-Diffusion Problem on the Surface of a Sphere

In the present work, the implicit unconditionally stable method developed and
described in detail in [5] is applied for solving linear and nonlinear advection-
diffusion problems on a sphere. The numerical algorithm differs from the finite-
difference method proposed in [6] and is based on the use of disjoint cells com-
pletely covering the sphere, finite volume method and the symmetrized Marchuk-
Strang splitting in coordinate directions [2]. The 1D problems with periodic bound-
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ary conditions, obtained at splitting in the longitudinal direction, are solved using the
Sherman-Morrison formula [4] and the Thomas algorithm [7]. The solution of the
1D Dirichlet problems arising during the splitting in the latitudinal direction requires
the application of the bordering method to the matrix of the discrete problem, and as
a consequence, a preliminary determination of the values of the solution at the poles
[5]. The resulting linear systems have tridiagonal matrices and are solved by the
Thomas algorithm. The new numerical algorithm is implicit, unconditionally stable,
of the second-order approximation in space and time and fast in implementation.
One of its main advantages is that it is a direct method, the implementation of which
does not require iterations. Parallel processes can be used for solving the split 1D
problems in both directions. The method correctly describes the advection-diffusion
processes and the balance of mass of a substance in the forced and dissipative
system, and conserves the total mass and L2-norm of the solution in the absence
of external forcing and dissipation. It can be used for simulating the dispersion of
a pollutant, predicting temperature and water vapor in the Earth’s atmosphere, and
solving various problems of linear and nonlinear diffusion, certain elliptic problems,
and conjugate problems of advection-diffusion on a sphere [5].

The advection-diffusion problem is written as

∂φ

∂t
+ div (Uφ)− div (μ∇φ)+ σφ = f, φ(x, 0) = φ0(x) (1)

where U = {u(x, t), v(x, t)} is the known and non-divergent velocity field on a
sphere:

divU = 1

a sinϑ
[uλ + (v sinϑ)ϑ ] = 0 (2)

Problem (1) describes the evolution of concentration φ(x, t) of a physical
substance on the sphere S of radius a, where x = (λ, ϑ) is a point on S, λ is the
longitude and ϑ is the colatitude, μ(x, t) > 0 is the diffusion coefficient, ∇ is the
gradient in spherical coordinates, σ(x, t) > 0 characterizes the rate of exponential
decay of φ(x, t) due to physical and chemical processes, and f (x, t) is a known
forcing (for example, the intensity of pollution sources).

The total mass
∫

S

φdS of substance satisfies the balance equation

∂

∂t

∫

S

φdS =
∫

S

f dS −
∫

S

σφdS (3)

while the evolution of L2-norm ||φ|| =
(∫

S

φ2dS

) 1
2

of φ is governed by the

integral equation

1

2

∂

∂t

∫

S

φ2dS =
∫

S

f φdS −
∫

S

(
σφ2 + μ|∇φ|2

)
dS (4)
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where dS = a2 sinϑdλdϑ . In particular, if f = μ = σ = 0, then the total mass
and norm of solution are conserved in time.

2 Numerical Experiments

The ability of the new numerical method is tested by simulating various diffusion
processes.

1. Linear diffusion in a spherical sector. Let U(x, t) ≡ 0, f (x, t) ≡ 0 and
σ(x, t) ≡ 0. The diffusion coefficient μ = Const and is nonzero only in a
spherical sector, besides, Δλ = Δϑ = 0.5◦. Figure 1 confirms that the diffusion
of an initial concentration φ0(x) (red spot) occurs only in the spherical sector,
where μ is nonzero.

Since the poles are singular points in spherical coordinates, the purpose of the
following two experiments is to demonstrate that both diffusion and advection
through the pole cells are performed correctly.

2. Linear diffusion of a spot from the pole. Let U(x, t) ≡ 0, σ(x, t) ≡ 0, f (x, t) ≡
0 and μ = Const. Figure 2 shows that the diffusion of the initial form of the
solution (the red spot centered at the pole) occurs from the pole uniformly in all
directions.

3. Advection flux through the pole. Let f (x, t) ≡ 0, μ(x, t) ≡ 0, σ(x, t) ≡ 0, and
let the velocity field U(x, t) on the sphere be directed through the pole (Fig. 3a).
Figure 3b shows that the initial form of the solution (the yellow-red round spot)
is not distorted after passing through the North Pole.

Fig. 1 Diffusion process in the spherical sector
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Fig. 2 Diffusion of an initial spot from the pole

Fig. 3 Flow through the poles (a). Advection of initial circular spot through the North Pole (b)

Fig. 4 Nonlinear temperature wave of combustion (top). Cross section of temperature profile in
λ-direction (bottom)

4. Nonlinear temperature wave of combustion. Various nonlinear processes of
combustion can be described if we set U(x, t) ≡ 0, σ(x, t) ≡ 0, and μ = Const
and f = αφ − βφ3 [3]. In the particular case when α = β, Fig. 4 (top) shows
a homogeneous (in all directions) propagation of a temperature wave of constant
amplitude (see Fig. 4 (bottom)), leading to an increase in the initial burning area
(red spot).
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5. Nonlinear diffusion. Blow-up combustion regimes. Let U(x, t) ≡ 0, σ(x, t) ≡
0, and let both the diffusion coefficient and the forcing of the diffusion equation
be nonlinear: μ = μ(φ) and f = f (φ). Then Eq. (1) describes a nonlinear
diffusion process

φt = div(μ(φ)∇φ)+ f (φ), φ(x, 0) = φ0(x), (5)

and the only change that needs to be done in the new method is the linearization
of discrete system in each double time interval (tn−1, tn+1), namely, μ =
μ(φ(tn−1)) and f = f (φ(tn−1)).

Let μ = kφα , f = qφβ and k, q > 0. Then the regimes with unboundedly
growing solutions in finite time (the so-called blow-up regimes) can appear due
to a strong positive nonlinear feedback [1]. Such extremely growing solutions can
describe rapid compression and accumulation of matter (laser fusion), as well as
some important processes in chemical kinetics, magnetohydrodynamics, mete-
orology (tornadoes and lightning), ecology (growth of biological populations),
neurophysiology, epidemiology (infectious disease outbreaks), economics (rapid
economic growth), demography (world population growth), etc.

In this work, we successfully modeled three blow-up modes of combustion:
the HS mode when the temperature rises rapidly in the expanding region
(β < α + 1, Fig. 5), the LS mode when the temperature rapidly increases in
the contracting region (β > α + 1, Fig. 6), and S mode when the temperature
rises rapidly in a region of fixed size (β = α + 1, Fig. 7).

Fig. 5 The HS mode of combustion (α = 1;β = 1)

Fig. 6 The LS mode of combustion (α = 1;β = 3)
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Fig. 7 The S mode of combustion (α = 1;β = 2)
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Index-Preserving Model Order
Reduction for Differential-Algebraic
Systems Arising in Gas Transport
Networks

Nicodemus Banagaaya, Peter Benner, and Sara Grundel

Abstract Gas transportation networks can be modeled by the isothermal Euler
equations. Spatial discretization of these equations leads to large-scale systems of
nonlinear differential-algebraic equations. Often, model order reduction is necessary
for simulation of the discretized network equations under time constraints during
operation. Direct reduction of such systems leads to ordinary differential equations
which are very difficult to simulate especially if the index of the differential-
algebraic equation is greater than one. We consider gas flow through a gas
transportation network with more than one supply node which leads to differential-
algebraic equations of index 2. We propose an index-aware approach which first
automatically decouples the index 2 gas network into differential and algebraic parts
leading to reduced-order models which are also differential-algebraic equations of
the same index. This approach gives very accurate reduced order models which
can be simulated using any standard ordinary differential equation numerical solver
leading to accurate solutions.

1 Introduction

Modeling of gas transportation networks can be done using the isothermal Euler
equations [3]. Spatial discretization of these equations leads to a nonlinear system
of differential-algebraic equations (DAEs) of the form

Ex′ = Hx + f(x)+ Bu, Ex(0) = Ex0, y = Cx + h(x), (1)

where E ∈ R
n×n is singular. H ∈ R

n×n, B ∈ R
n×m, C,h(x) ∈ R

�×n, f(x) ∈ R
n,

is nonlinear and the state vector x ∈ R
n includes the mass flux xq ∈ R

n1 and the gas
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density xρ ∈ R
n2 within the pipe network. The input function u = (

uTp ,u
T
q

)T ∈ R
m

includes up ∈ R
ms , the supply pressure, and demand mass flow uq ∈ R

md ,

respectively. Here, we consider gas flow through a gas transportation network
with more than one supply input, i.e., ms > 1. The desired output vector y =(
yTp , y

T
q

)T ∈ R
� includes the supply mass flow yp and the demand pressure yq . We

are interested in a fast and stable prediction of the dynamics of natural gas transport
in the pipe network. Despite the ever increasing computational power, dynamic
pipeline network simulation using the system (1) is computationally expensive.
Model order reduction (MOR) techniques aim to reduce the computational burden
by generating reduced-order models (ROMs) that are faster and cheaper to simulate,
yet accurately represent the original large-scale system behavior. MOR replaces (1)
by a ROM

Erx′
r = Hrxr + fr (xr )+ Bru, Erxr (0) = Erxr0, yr = Crxr + hr (xr ), (2)

where Er ,Hr ∈ R
r×r , fr ∈ R

r ,Br ∈ R
r×m and yr ∈ R

�×r ,Cr ∈ R
�×r , hr ∈ R

�×r
such that the reduced order of the state vector xr ∈ R

r is r � n. A good ROM
should have small approximation error ‖y − yr‖ in a suitable norm ‖.‖ for a desired
range of inputs u. The index of the DAE is a natural number that indicates the level
of difficulty of solving DAEs. There exist index concepts such as tractability index,
differentiation index, etc. However, direct reduction of (1) often leads to ordinary
differential equations (ODEs) which affects the choice of numerical integration
schemes, especially if the index of the original DAE is greater than 1, as the reduced-
order ODE is then highly stiff.

In [3], it was proved that DAEs arising from gas transportation networks are of
index 1 if the gas network has only one supply node, otherwise they are of index 2.
Thus, system (1) is of index 2. In [3], an index reduction approach for DAEs arising
from gas transport networks was proposed leading to ODEs which can further be
reduced using standard techniques such as proper orthogonal decomposition (POD).
However, this approach is restricted to gas networks with special structure and
can lead to very stiff ROMs. We propose an approach which first automatically
decouples the index-2 gas networks into differential and algebraic parts, leading to
ROMs which are also DAEs and their inherited ODE part can be simulated using
any standard ODE numerical solver.

The paper is organized as follows. In Sect. 2, we present the discretized dynamic
DAE model arising from gas transport networks and its linearized DAE form. In
Sect. 3, we discuss the numerical difficulty of linearized DAEs arising from gas
transport networks. In the final section, we discuss the proposed MOR method for
gas transport networks with many supply inputs. We present also some simulations
illustrating the performance of the proposed approach.



Index-Preserving Model Order Reduction for Differential-Algebraic Systems. . . 293

2 Discretized Model Arising from Gas Transport Networks

Here, we consider the spatial discretization approach of the isothermal Euler
equations discussed in [3] which leads to a nonlinear DAE system of the form (1)
with

E =

⎛
⎜⎜⎜⎝

0 0 |AT0 | |ATS |
0 I 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , H =

⎛
⎜⎜⎜⎝

−M−1
L 0 0 0

0 0 MAA
T
0 MAA

T
S

|A0| A0 0 0
0 0 0 I

⎞
⎟⎟⎟⎠ , f(x) =

⎛
⎜⎜⎜⎝

0
g(x)

0
0

⎞
⎟⎟⎟⎠ ,

x =

⎛
⎜⎜⎜⎝

q−
q+
ρd

ρs

⎞
⎟⎟⎟⎠ , B = −

⎛
⎜⎜⎜⎝

0 0
0 0
0 I
I 0

⎞
⎟⎟⎟⎠ , C =

(
0 |AS | 0 0
0 0 −I 0

)
, u =

(
s(t)
d(t)

)
,

where ML ∈ R
nE×nE and MA ∈ R

nE×nE are material dependent diagonal matrices.
ρs ∈ R

ns is the unknown density at the supply nodes and ρd ∈ R
nd the unknown

density at the demand nodes and junctions. The other unknown vectors are q− =
qR − qL ∈ R

nE and q+ = qR + qL ∈ R
nE , where the vectors qR and qL are the

vectors of fluxes at the end and beginning of the pipes, respectively. The dimension
of the system is given by n = 2nE + nd + ns. d(t) = (. . . , di(t), . . .)

T ∈ R
md

and s(t) = (. . . , si (t), . . .)
T ∈ R

ms are vectors for demand and supply which are
considered as input functions. A0 ∈ R

nd×nE is an incidence matrix corresponding
to the demand nodes and junctions while AS ∈ R

ns×nE is the incidence matrix
corresponding to the supply nodes. The nonlinearity is defined via the state-
dependent vector

g(x) = g(q−,q+,ρd,ρs) = (. . . , gk(q−,q+,ρd ,ρs ), . . .)T ∈ R
nE , with

gk(q−,q+,ρd,ρs) = −gAk
2γ0

ψk(ρd ,ρs )
hkR − hkL
Lk

− λkγ0

4DkAk

qk+|qk+|
ψk(ρd,ρs)

,

where ψk(ρd,ρs) is the k-th entry of the vector-valued linear function:

ψ(ρd,ρs) = |ATS |ρs + |AT0 |ρd ∈ R
nE .

The scalar parameters in the system are λk, ak, Lk,Ak, hkR, h
k
L and Dk which are

known at least within some range of uncertainty. γ0 = RT0 is a constant, where R
is the universal gas constant and T0 is a constant temperature in time and space.
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The linearization of the above nonlinear DAE model around a static point (xs ,us )
was discussed in [2] which leads to a linear DAE system given by

Ex̄′ = Ax̄ + Bū, Ex̄(0) = Ex̄0, (3a)

ȳ = C̄x̄, (3b)

where A = H + ∂f
∂x

∣∣∣∣
xs

∈ R
n×n, B = B ∈ R

n×m, C̄ = C ∈ R
�×n, x̄ =

x − xs ∈ R
n and ū = u − us ∈ R

m. The linearized DAE system (3a) is valid
in a neighborhood of the stationary point (xs,us ) for the nonlinear DAE system.
In the next section, we discuss the tractability index analysis of system (3) which
measures the numerical difficulty of simulating and reducing linear DAEs.

3 Index Analysis of DAEs Arising from Gas Transport
Networks

In this section, we use the tractability index concept [1] to perform an index
analysis of DAEs arising from gas transport networks. This can be done as follows.
Assume (3) is solvable, i.e., det(λE − Ā) �= 0, then we set

E0 = E =
⎛
⎝

0 0 E13

0 I 0
0 0 0

⎞
⎠ and A0 = Ā =

⎛
⎝

A11 0 0
0 A22 A23

A31 A32 A33

⎞
⎠ ,

where E13 = (|AT0 | |ATS |
) ∈ R

nE×(nd+ns ), A11 = −M−1
L ∈ R

nE×nE ,

A22 = ∂g
∂q+

∣∣∣∣
xs

∈ R
nE×nE , A23 =

(
MAA

T
0 + ∂g

∂pq

∣∣∣∣
xs

MAA
T
S + ∂g

∂ps

∣∣∣∣
xs

)
∈

R
nE×(nd+ns ), A31 =

(|A0|
0

)
∈ R

(nd+ns )×nE , A32 =
(
A0

0

)
∈ R

(nd+ns )×nE ,

A33 =
(

0 0
0 I

)
∈ R

ns×ns .We choose the projectors

Q0 =
⎛
⎝

I 0 0
0 0 0
0 0 Q

⎞
⎠ ∈ R

n×n and P0 = I − Q0 =
⎛
⎝

0 0 0
0 I 0
0 0 P

⎞
⎠ ∈ R

n×n, (4)

such that Im Q0 = Ker E0, i.e., E0Q0 = 0, meaning E13Q = 0, where Q ∈
R
(nd+ns )×(nd+ns ) is the projector onto the nullspace of E13 and P ∈ R

(nd+ns )×(nd+ns )
is its complementary projector. Then, using the definition of the tractability index,
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we define the matrices

E1 = E0 − A0Q0 =
⎛
⎝

−A11 0 E13

0 I −A23Q
−A31 0 −A33Q

⎞
⎠ , A1 = A0P0 =

⎛
⎝

0 0 0
0 A22 A23P

A31 A32 A33P

⎞
⎠ .

According to [2], it can be proved that the matrix E1 is invertible if and only if

S0 = − A33Q − A31A−1
11 E13 =

(|A0|ML|AT0 | |A0|ML|ATS |
−Q21 −Q22

)
(5)

is invertible, where Q21 ∈ R
ns×nd and Q22 ∈ R

ns×ns are the entries of projector
Q. If E1 is nonsingular, then we say that the DAE arising from the gas transport
network is of tractability index 1, otherwise it is of higher index.

Assume E1 is singular, then we need to construct another projector Q1 such that
Im Q1 = Ker E1 with additional condition Q1Q0 = 0. Choose the projectors

Q1 =
⎛
⎝

0 0 A−1
11 E13QS

0 0 A23QQS
0 0 QS

⎞
⎠ and P1 = I − Q1 =

⎛
⎝

I 0 −A−1
11 E13QS

0 I −A23QQS
0 0 PS

⎞
⎠ ,

where QS is a projector onto the nullspace of S0 and PS is its complementary
projector. Then we can compute

E2 = E1 − A1Q1 =
⎛
⎝

−A11 0 E13

0 I E2,23

−A31 0 E2,33

⎞
⎠ , A2 = A1P1 =

⎛
⎝

0 0 0
0 A22 A23 + E2,23

0 A32 A33 + E2,33

⎞
⎠ ,

with E2,23 = −A22A23QQS − A23(I − PPS), E2,33 = −A32A23QQS − A33(I −
PPS). If the matrix E2 is invertible, we say that the system has tractability index 2.
Similarly to the index-1 case, this condition is equivalent to the invertibility of the
matrix

S1 = −A31A−1
11 E13 − A32A23QQS − A33(Q + PQS).

In [3], it was shown that gas transport networks are at most of tractability index
2 and they are of tractability index 2 if and only if they have more than one
supply input. According to [1], the index 2 condition implies that the solutions of (3)
contain the derivatives of input data u which restricts the choice of the input data.
Since numerical differentiations may cause considerable trouble numerically, it is
very important to know the index of the DAE before applying MOR.
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4 Index-Aware MOR for Gas Transport Networks

According to [1], system (3) can be re-written into an equivalent decoupled system
given by

Epξ ′p = Apξp + Bpu, ξp(0) = ξp0, (6a)

−Lξ ′q = Aqξp − Lqξq + Bqu, (6b)

y = Cpξp + Cqξq , (6c)

where L ∈ R
na×na is of nilpotency index 2 and Lq ∈ R

na×na , Ep ∈ R
no×no are

non-singular matrices. The subsystems (6a) and (6b) correspond to the differential
and algebraic subsystems, respectively. ξp ∈ R

no and ξq ∈ R
na are the differential

and algebraic variables, and n = no + na . Ap ∈ R
no×no , Bp ∈ R

no×m, Aq ∈
R
no×na , Bq ∈ R

na×m, Cp ∈ R
�×no and Cq ∈ R

�×na . Index-aware model order
reduction (IMOR) replaces (6) by an IROM [1]

Epr ξ
′
pr

= Apr ξpr + Bpru, ξpr (0) = ξpr0 , (7a)

−Lrξ
′
qr

= Aqr ξpr − Lqr ξqr + Bqru, (7b)

yr = Cpr ξpr + Cqr ξqr , (7c)

where Epr = VTpEpVp,Apr = VTpApVp ∈ R
ro×ro , Bpr = VTpBp ∈ R

ro×m,
ξpr0 = VTp ξp0 ∈ R

ro×no , Lr = −VTq LVq , Lqr = VTq LqVq ∈ R
ra×ra ,

Aqr = VTq AqVp ∈ R
ra×ro , Bqr = VTq Bq ∈ R

ra×m, Cpr = CpVp ∈ R
�×no ,

and Cqr = CqVq ∈ R
�×na . The projection matrix Vp ∈ R

no×ro is constructed using
any standard MOR method such as POD, etc applied to the ODE subsystem and Vq
is computed using POD taking the algebraic solutions as snapshots. As a result,
both the differential and algebraic subsystems are reduced. In order to illustrate the
performance of this proposed approach, we used a DAE in the form (3) of dimension
n = 2023 arising from a gas transport network with ms = 5 supply inputs and
md = 226 demand inputs. This system is decoupled into the form (6) with no =
1341 differential and na = 682 algebraic equations. We simulated both, the coupled
and the decoupled system, using the implicit Euler scheme leading to a runtime of
29.3 s and 14.12 s, respectively. We can observe that decoupling reduces the runtime
of the full order model. We obtained an IROM (7) by constructing Vp using POD
leading to an IROM of dimension r = ro + ra = 46 � 2023 with ro = 14 � 1341
and ra = 32 � 682 at an offline cost of 10.9 s. For comparison, we applied POD
directly to the DAE in the form (3) leading to an ODE ROM of dimension r = 15
at an offline cost 29.2 s. Hence, decoupling also reduces the offline costs of POD.
Simulating the IROM leads to an output error of 3.4 × 10−5 at a speedup of 398.9,
while the ODE ROM leads to an output error of 8.2 × 10−5 at a speedup of 477.6.
The size of both ROMs is determined by making sure the output error is below 10−4.
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5 Conclusions

We have proposed an index-aware MOR method for gas transport networks with
many supply inputs which leads to cheaper-to-construct ROMs than previous MOR
approaches due to a lower offline cost. Moreover, numerical differentiations of
the input data are no longer a problem due to the automatic decoupling which
allows symbolic or explicit differentiations. This gives very good results for small
to medium-size gas transport networks with many inputs.
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Double Freeform Lens Design for Laser
Beam Shaping: A Least-Squares
Approach

J. H. M. ten Thije Boonkkamp, Nitin Kumar Yadav, and W. L. IJzerman

Abstract The location of the surfaces of a double freeform lens, required for laser
beam shaping, is governed by a Monge-Ampère type equation. We outline a least-
squares solver and demonstrate the performance of the method for an example.

1 Introduction

Laser beam shaping is the technique to control the phase and irradiance of a laser
beam. Typically, a laser beam is required to have a top-hat irradiance, constant over
some cross section, whereas the exitance is usually Gaussian shaped. The goal of
this paper is to compute a double freeform lens, i.e., a lens having two freeform
surfaces, that converts the Gaussian exitance to a desired top-hat irradiance. We
restrict ourselves to planar wave fronts, hence the phase is constant.

To compute the freeform surfaces, methods from illumination optics can be
employed. The beam shaping problem is governed by the principles of geometrical
optics and conservation of energy. These principles translate into the optical map,
connecting the coordinates on source and target domain, and a relation for the
location of the lens surfaces. Combining these with the energy conservation relation,
we obtain a fully nonlinear elliptic PDE of Monge-Ampère type, defining the
location of one lens surface. We compute the numerical solution in a two-stage
algorithm. In the first stage we compute the optical map, and subsequently we
compute the location of the lens surfaces. Both stages are evaluated in a least-
squares sense.
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The contents of this contribution is the following. In Sect. 2 we present the
mathematical model and next, in Sect. 3, we outline the least-squares algorithm.
A numerical example is presented in Sect. 4 and we end with conclusions in Sect. 5.

2 Mathematical Formulation

In this section we outline the mathematical model for a double freeform lens for
laser beam shaping. A more detailed derivation, albeit in the context of illumination
optics, is presented in [3]. To that purpose we first determine the optical map and
subsequently apply conservation of energy.

Consider the optical system shown in Fig. 1, consisting of a source S (the laser)
in z = 0, emitting a parallel beam of light, a target T in z = �, receiving a
parallel bundle, and a lens in between. The index of refraction is n. The two freeform
surfaces are defined by the relations z = u1(x) for x ∈ S and � − z = u2(y) for
y ∈ T . To determine the optical map y = m(x), we combine the law of refraction
(Snell’s law) and the principle of equal optical path lengths [1], stating that the
optical path length L(x, y) between the planar wave fronts at source and target is
constant, i.e.,

L(x, y) = u1(x)+ nd(x)+ u2(y) = L = Const, (1)

where d(x) is the distance between the lens surfaces, measured along the refracted
ray. This way we find

y = m(x) = x − β∇u1(x)√
n2 + (n2 − 1)|∇u1|2

, (2)

Fig. 1 Double freeform lens
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where β = L − � is the reduced optical path length. Moreover, eliminating d
from (1), we can derive the following relation for the location of the lens surfaces

u1(x)+u2(y) = �− β

n2 − 1
− n

n2 − 1

√
β2 − (

n2 − 1
)|x − y|2 = c(x, y), (3)

where c = c(x, y) is the so-called cost function in optimal transport theory [4].
Conservation of energy can be expressed as

∫

A
E(x)dA(x) =

∫

m(A )
I (y)dA(y), (4)

for an arbitrary set A ⊂ S and image set m(A ) ⊂ T , where E is the exitance of
the laser and I the desired top-hat irradiance. Introducing the variable y = m(x) in
the right hand side of (4), the energy constraint becomes

det
(
Dm(x)

) = E(x)

I (m(x))
, x ∈ S , (5a)

with Dm(x) the Jacobian of the optical map. The accompanying transport boundary
condition reads

m(∂S ) = ∂T , (5b)

implying that all light from the source arrives at the target.
The governing equations to compute u1, u2 and m are (2), (3) and boundary value

problem (5), and allow many possible solutions. To enforce uniqueness we restrict
ourselves to the c-convex solution given by

u1(x) = max
y∈T

(
c(x, y)− u2(y)

)
, u2(y) = max

x∈S
(
c(x, y)− u1(x)

)
, (6)

which necessarily requires that x be a stationary point of c(x, y)− u1(x), i.e.,

∇xc(x, y)− ∇u1(x) = 0. (7)

Straightforward evaluation shows that ∇xc(x, ·) is injective, i.e., if ∇xc(x, y1) =
∇xc(x, y2) then y1 = y2, implying that y = (∇xc(x, ·)

)−1 ◦ ∇u1(x) is uniquely
determined by (7). Indeed, solving equation (7) for y, we recover y = m(x)

from (2). Conversely, for given y, Eq. (2) uniquely determines ∇u1, hence u1 is
determined up to an additive constant. Alternatively, existence of the unique solution
y = m(x) of (7) is also a consequence of the implicit function theorem, since the
Jacobi matrix C = Dxyc = (

cxiyj
)

is regular for all x and y. Then, assuming
y = m(x) and subsequently differentiating equation (7) with respect to x, we obtain

C(x)Dm(x) = D2u1(x)− Dxxc(x,m(x)) = P (x), (8)
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with Dxxc and D2u1 the Hessian matrices of c (w.r.t. x) and u1, respectively. A
sufficient condition for the c-convex solution is that the matrix P (x) defined in (8)
is symmetric positive definite (SPD).

Finally, combining the energy balance (5a) with (8), we obtain the equation

det(P (x)) = E(x)

I (m(x))
det(C(x)) = F(x) > 0, (9)

which is a nonlinear, second order PDE for u1, reminiscent of the Monge-Ampère
equation. Recall that the 2 × 2-matrix P is SPD if det(P ) > 0 and tr(P ) > 0. Only
the latter condition needs to be verified.

3 Solution Strategy

The global solution strategy is as follows: first compute m from the boundary
value problem (9) and (5b), next compute u1 from (7) and finally u2 from (3). We
compute both m and u1 in a least-squares sense. The algorithm in this section is a
modification of the least-squares method detailed in [2].

First, to solve the BVP (9) and (5b) for m, we subsequently compute b, P and m

minimizing the following functionals

JB[m, b] = 1
2

∫

∂S
||m − b||2 ds, (10a)

JI[m,P ] = 1
2

∫

S
||CDm − P ||2 dA, (10b)

J [m,P , b] = αJI(m,P )+ (1 − α)JB(m, b), (0 < α < 1), (10c)

over appropriate function spaces, with b : ∂S → ∂T and where P is SPD
satisfying equation (9). The norms in JB and JI are the �2-norm and the Frobenius
norm, respectively. We repeat this procedure iteratively, starting from an initial guess
m0. Here, we give a brief description of the minimization of JI and J ; for more
details see [2, 5].

Minimization Procedure for P

We assume m fixed and minimize JI[m,P ] over all SPD matrices P that satisfy (9).
Since the integrand of JI[m,P ] does not depend on derivatives of P , the minimiza-
tion procedure can de carried out point-wise. Thus, we minimize 1

2 ||CD − P ||2 for
each grid point xi,j ∈ S , where D is the central difference approximation of Dm.
This give rise to the following constrained minimization problem

Minimize H(p11, p22, p12) = 1
2 ||Q − P ||2, (11a)

subject to det(P ) = p11p22 − p2
12 = F(x), (11b)

tr(P ) = p11 + p22 > 0, (11c)
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where Q = CDS with DS the symmetric part of D. The solution of (11a)–(11b)
is given by the stationary points of the Lagrangian function L(p11, p22, p12;μ) =
H(p11, p22, p12)− μ(det(P )− F). This way we obtain the algebraic system

p11 + λp22 = q11, (12a)

λp11 + p22 = q22, (12b)

(1 − λ)p12 = 1
2 (q12 + q21), (12c)

p11p22 − p2
12 = F, (12d)

with λ = μ/ det(C). In [2, 5] it is shown that (12) has always a solution satisfying
the inequality constraint (11c).

Minimization Procedure for m

We assume b and P are fixed. The minimizer for J [m,P , b] has to satisfy

δJ [m,P , b](η) = 0, (13)

where δJ represents the first variation of J with respect to m in the direction of η.
Applying the fundamental lemma of calculus of variations, we obtain the following
elliptic PDE system with Robin boundary conditions

∇ · (CTCDm
) = ∇ · (CTP

)
, x ∈ S , (14a)

(1 − α)m + α(CTC∇m) · ν = (1 − α)b + αCPν, x ∈ ∂S , (14b)

with ν the outward unit normal on ∂S . For space discretization we employ the
cell-centered finite volume method.

Calculation of the Freeform Surfaces
We compute the location of the first freeform lens surface z = u1(x) from Eq. (7)
in the least-squares sense, i.e., we minimize the functional

I [u1] =
∫

S
||∇u1 − ∇xc||2 dA. (15)

Analogous to the derivation of (14), we find the following Neumann BVP

∇2u1 = ∇ ·∇xc(·,m), x ∈ S , (16a)

∇u1 · ν = ∇xc · ν, x ∈ ∂S . (16b)

We compute u1 using standard central differences. Substituting the converged
mapping y = m(x) and u1(x) in (3), we can compute the location of the second
lens surface �− z = u2(y).
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Fig. 2 Computed double freeform lens (left) and target illuminance (right). Parameter values are:
n = 1.5, � = 20 and β = 2π

4 Numerical Example

As an example we compute the freeform lens that generates a circular top-hat target
irradiance. The source and target domains are given by S = T = [−1, 1] ×
[−1, 1]. The source has emittance E(x) = Ae−10|x|2 , and the target plane receives
the irradiance I (y) given by I (y) = 1/π if |y| ≤ 1, otherwise I (y) = 0. The
constant A is chosen to enforce global energy conservation, i.e., relation (4) should
hold for the entire source domain A = S . The numerically computed lens is shown
in Fig. 2. Clearly, the lens surface z = u1(x) closest to the source is convex. To
validate the result we have traced 107 rays through the lens to compute the target
irradiance; a selected ray set is shown. The resulting irradiance is also shown in
Fig. 2. We conclude that the computed target irradiance is in good approximation a
circular top-hat.

5 Concluding Remarks

We have presented a nonlinear elliptic PDE of Monge-Ampère type describing
a double freeform lens that converts a Gaussian exitance into a circular top-hat
irradiance, relevant for laser beam shaping. Moreover, we outlined a least-squares
algorithm to compute both lens surfaces. We have restricted ourselves to one single
lens with c-convex surfaces, however, our least-squares algorithm can be easily
adapted to compute c-concave surfaces or even freeform surfaces of a two-lens
system; for more details see [5].
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Efficient Numerical Solution
of Space-Fractional Diffusion Problems

Ferenc Izsák and Béla J. Szekeres

Abstract An efficient numerical method is introduced for the solution of space-
fractional diffusion problems. We use the spectral fractional Laplacian operator
with homogeneous Neumann and Dirichlet boundary conditions. The spatial dis-
cretization is based on the matrix transformation method. Using a recent algorithm
for the computation of fractional matrix power-vector products and explicit time
stepping, we develop a simple and efficient full discretization. The performance of
our approach is demonstrated in some numerical experiments.

1 Introduction

Fractional diffusion has been detected in a wide range of real-life observations [3].
This dynamics is sometimes hard to distinguish from the conventional diffusion:
a number of individuals should be tracked. At the discrete level, the fractional
diffusion can be given as a Lévy process [2]. The corresponding continuous model
is the space-fractional diffusion equation, which seems to be the only true model
[5]. A few attempts [1] were also made to take inhomogeneous boundary data into
account, but these were not related to the real-life observations. The numerical
analysis of space-fractional diffusion equations was worked out in the last 15
years proposing a number of methods. Whenever a solid theoretic framework was
developed for these approaches, in practice, many of them need huge computational
efforts. An important observation was reported in [4], where the idea of the matrix
transformation method was proposed. A fast algorithm for the approximation of
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the corresponding matrix powers was proposed in [9]. An alternative attempt to
accelerate the computation of the conventional (large and full) finite difference
matrices was given in [7].

The aim of this contribution is to propose an alternative of these approaches:
we develop a simple and highly efficient algorithm for the numerical solution of
space-fractional diffusion problems, which is based on existing theoretical results.

2 Mathematical Preliminaries

We investigate the efficient numerical solution of the space fractional diffusion
problem

{
∂tu(t, x) = −(−ΔD )

αu(t, x)+ f (t, x) t ∈ (0, T ), x ∈ Ω ⊂ R
d

u(0, x) = u0(x) x ∈ Ω, (1)

for the unknown function u : (0, T ) × Ω → R, where Ω is a Lipschitz domain,
α is a positive exponent, u0 ∈ L2(Ω) is a given initial function and f : (0, T ) ×
Ω → R is a given function corresponding to a source term. −ΔD denotes the
negative Laplacian operator with homogeneous Dirichlet boundary condition, which
is positive and self-adjoint, so that its power makes sense. Accordingly, we will use
the subscript N in case of homogeneous Neumann boundary conditions.

To introduce the matrix transformation method (MTM) for the numerical solu-
tion of (1), we use the notation uh(t) ∈ R

N and fh(t) ∈ R
N for the approximation

of the function u(t, ·) : Ω → R and f (t, ·) : Ω → R, respectively, using either a
finite difference or a finite element discretization. The matrix Ah ∈ R

N×N is for the
corresponding discretization of −ΔD .

According to the MTM, for the full discretization of (1), we have only to solve
numerically the following system of ordinary differential equations:

{
∂tuh(t) = −Aαhuh(t)+ fh(t) t ∈ (0, T )
uh(0) = u0,h,

(2)

where u0,h is given. Note that Ah is positive definite and therefore, the power Aαh
makes sense. For the convergence analysis of this approach, we refer to [8].

3 Results

Whenever the semidiscretization in (2) delivers a formally simple approach, the
computation of the matrix power is very expensive. To avoid this step, we note that
in an explicit time stepping for solving (2), we need to compute only terms Aαhw,
where w ∈ R

N is a given vector.
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In the proposed procedure, we use the notation λ1 ≤ λ2 ≤ · · · ≤ λN for the
eigenvalues of Ah in increasing order and v1, v2, . . . , vN for the corresponding
eigenvectors.

3.1 The Algorithm

3.1.1 Initialization of the Algorithm

One should first compute the smallest eigenvalues λ1, λ2, . . . , λk1 and the
largest ones λN, λN−1, . . . , λN−k2 along with the corresponding eigenvectors
v1, v2, . . . , vk1 and vN, vN−1, . . . , vN−k2 .

Using this, we can compute the projection matrix Pmin,max ∈ R
N×N to the

subspace

span{v1, v2, . . . , vk1, vN−k2 , . . . , vN−1, vN },
so that for any w ∈ R

N , we have

Pmin,maxw = w1v1 + · · · +wk1 vk1 + wN−k2 vN−k2 + · · · +wNvN.

3.1.2 The Subroutine for Computing Aαw

Based on [6], we approximateAαw as follows.

Aαw ≈ λα1w1v1 + · · · + λαk1
wk1 vk1 + λαN−k2

wN−k2 vN−k2 + · · · + λαNwNvN

+
(

2A

σ(A)

)α K∑
j=0

(
α

j

)(
2A

σ(A)
− I

)j
(w − Pmin,maxw), (3)

where σ(A) denotes the spectral radius of A, I denotes the identity matrix and the
parameter K gives the length of the Taylor approximation. After the initialization,
the first component in (3) can be computed quickly. Also, the sum in the second
component is composed of sparse matrix-vector products.

3.1.3 Second Order Time Discretizations

Two procedures will be discussed to solve (2) numerically, where the time step is
denoted with δ. In each case, we define uh(δ) with a modified Euler method as

uh(δ) = uh(0)+ δ

2

[
f (0)− Aαhuh(0)

]

+f (δ)− Aαh(uh(0)+ δ(−Aαhuh(0)+ f (uh(0)))
)
.
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This can be continued to obtain the modified Euler method

uh((k + 1)δ) =uh(kδ)+ δ

2

[
f (kδ)− Aαhuh(kδ)

+f ((k + 1)δ)− Aαh(uh(kδ)+ δ(−Aαhuh(kδ)+ f (kδ)))
]
.

In the second series of experiments, the two-step Adams–Bashforth method

uh((k + 1)δ) = uh(kδ)+ 3δ

2

(
f (kδ)− Aαhuh(kδ)

)

− δ

2

(
f ((k − 1)δ)− Aαhuh((k − 1)δ)

)
.

is applied. The corresponding results are shown in Table 1.

3.2 Implementation Issues, Numerical Results and Discussion

The performance of the algorithms in Sect. 3.1 is demonstrated in case of the model
problem

⎧
⎪⎪⎨
⎪⎪⎩

∂tu(t, x, y) = −(−ΔD )
αu(t, x, y)+ sin x sin y (x, y) ∈ Ω, t ∈ (0, T )

u(t, x, y) = 0 (x, y) ∈ ∂Ω, t ∈ (0, T )
u(0, x, y) = sin x sin 2y − sin 2x sin y + 2−α sin x sin y (x, y) ∈ Ω,

(4)

whereΩ = (0, π)× (0, π) is the domain, T = 1 and α ∈ R
+ is a given parameter.

Note that the analytic solution of (4) is given with

u(t, x, y) = exp(−5αt)(sin x sin 2y − sin 2x sin y)+ 2−α sin x sin y.

For homogeneous Neumann boundary conditions, the model problem was given so
that its solution is

u(t, x, y) = exp(−5αt)(cos x cos 2y − cos 2x cos y)+ 2−α cos x cos y.

In each case, spatially, the standard five-point second order finite difference
discretization is applied on a uniform grid with n× n internal grid points.

Since the approximation Aαh ≈ (−ΔD )
α is second order (see [8]), we have only

tested the performance of the method using uniform bisection: taking δ/2 as a time
step and (2n+ 1)× (2n+ 1) internal grid points.
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Table 1 Numerical results for the model problem (4) using the algorithm in Sect. 3.1

α BC Method K k1 n Nt Error Time Order

0.8 D AB 200 8 40 400 4.1 × 10−4 2.8 2.0

0.8 D ME 200 8 80 800 1.1 × 10−4 22.9 2.0

0.8 D ME 100 8 40 400 4.2 × 10−4 2.7 2.1

0.8 D ME 100 12 80 800 4.2 × 10−4 14.2 2.1

0.8 N AB 200 8 40 400 4.1 × 10−4 2.8 2.0

0.8 N ME 200 8 80 800 1.1 × 10−4 20.5 2.0

0.8 N ME 100 8 80 800 4.1 × 10−4 11.7 2.1

0.8 N ME 100 12 80 800 4.1 × 10−4 13.1 2.0

1.2 D ME 200 8 40 20,000 3.6 × 10−4 126.3 2.0

1.2 D ME 100 8 40 20,000 3.6 × 10−4 66.4 2.0

1.2 D ME 100 8 40 20,000 3.6 × 10−4 67.2 2.0

The main ingredient of the proposed algorithm is an efficient and accurate
eigensolver. The built-in Matlab subroutine eigs.m is a good choice if the optional
parameters are set to increase the accuracy. In case of multiple eigenvalues, one can
make use of the algorithm bchdav.m, see [10].

For each row in Table 1, we have performed a series of numerical experiments.
We give only the result with the largest grid where the stability could be maintained.
The convergence order is computed using the final bisection. To summarize, the
parameters in the corresponding code are the following:

• k1 = k2—number of the largest and smallest eigenvalues in the algorithm,
• K—number of the terms in the second term in (3),
• n—number of internal grid points in one direction,
• Nt—number of time steps in the final experiment,
• error—discrete L2 norm of the error,
• time—computational time in seconds,
• D and N —homogeneous Dirichlet and Neumann boundary condition,
• ME and AB—modified Euler and second order Adams–Bashforth time stepping.

Incorporating many eigenvector-eigenvalue pairs improves the efficiency of the
algorithm: in this case, we have to use a moderate number of terms in the second
component in (3). At the same time, small errors in the computation of eigenvectors
lead to an inaccurate projection matrix and then again an overly long summation is
necessary in the second component in (3). Therefore, based on our experience, as a
good balance, the parameters k1 and k2 should be set at about 10.

In case of accurate eigenvalues, the number of terms in the summation can be
set to a few hundreds, which ensures already an acceptable convergence order. By
using only sparse matrix-vector products, the total computational time remains then
at a moderate level.

Increasing parametersK and k1 further does not significantly enhance accuracy.
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Since the modified Euler time stepping proved to be slightly more stable, only
this was applied for α = 1.2. Even in this case, we needed a large number of time
steps to ensure the stability of the method. This motivates us to develop similar
algorithms for implicit time stepping as a next project.
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Black-Scholes Equation with Distributed
Order in Time

Luísa Morgado and Magda Rebelo

Abstract In this work we consider a Black-Scholes model which consists of a
generalization of a fractional Black-Scholes equation model proposed previously.
A numerical scheme is presented to solve such type of models and some numerical
results are presented for European double-knock out barrier options. In this way, we
are able to conclude that this generalized model is able to describe other scenarios
than the ones described with the classical (integer-order) and the fractional Black-
Scholes models.

1 Introduction

In this work we investigate the pricing of double barrier options when the change in
the option price with time is a fractal transmission system. In order to describe the
option price we propose the modified Black-Sholes (BS) equation with distributed
derivative in time which is a generalization of the modified Black-Sholes equation
with a time-fractional derivative. A double barrier option is an option category with
both upper (B�) and lower (B�) trigger prices, called the barriers, placed on the
underlying asset. A knock-in barrier options becomes valid when the underlying
exceeds either barrier. A knock-out barrier option becomes invalid, or ceases to
exist, when the underlying exceeds either barrier. Barrier options can be puts or
calls. Here we consider European double-knock out barrier option.

Let C(S, t) be the European option fair price at the stock price S and at
time t . Following a generalization of the fractional Black-Scholes equation model
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introduced in [1] and [5], we propose the following model to describe the fair price
of an option:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

tD
R,φ
T C(S, t)+ 1

2
σ 2S2 ∂

2C (S, t)

∂S2
+ (r −D)S ∂C (S, t)

∂S
−rC(S, t) = 0, (S, t) ∈ (B�, Bu)×(0, T ),

C(B�, t) = p(t), C(Bu, t) = q(t), t ∈ [0, T ],
C(S, T ) = g(S), S ∈ [B�,Bu]

(1)

where T is the expiry rate time, r is the risk-free rate,D = 1

2
σ 2 is the yield dividend,

σ ≥ 0 is the volatility of the returns from the stock price S and Bu > B� > 0 are
the two barriers.

tD
R,φ
T C(S, t) =

∫ 1

0
φ (α)

∂α∗C (S, t)
∂tα

dα is the modified Riemann-Liouville

derivative with distributed-order, being:

∂α∗C (S, t)
∂tα

= 1

Γ (1 − α)
d

d t

∫ T

t

C(S, η) − C(S, T )
(η − t)α dη, 0 < α < 1,

and φ is a positive function acting as a distribution of the orders of the derivative in

the range [0, 1], satisfying
∫ 1

0
φ(α) dα = C > 0. Note that if φ is the Dirac delta

function δ(α), then you recover the model introduced in [5], and if you take α = 1,
then you obtain a classical (integer-order) model. The way that the payoff function
g is defined depends on the cases where C is a call or a put option. Namelly,

• if C is a call option then g(S) = C(S, T ) = max{S − E, 0},
• if C is a put option then g(S) = C(S, T ) = max{E − S, 0},
whereE is the strike price. The strike price is the price at which a derivative contract
can be exercised. For call options, the strike price is where the security can be
bought by the option buyer up till the expiration date. For put options, the strike
price is the price at which shares can be sold by the option buyer. Proceeding
as in [5], we consider the variable transformations t = T − τ , x = ln S and
u(x, τ ) = C(S, T − τ ) and rewrite (1) as an advection-diffusion initial-boundary
value problem, with distributed order in time

0D
φ
τ u(x, τ) = a ∂

2u (x, τ)

∂x2
+ b ∂u (x, τ)

∂x
− cu(x, τ)+ f (x, τ), (x, τ) ∈ (L0, L1)×(0, T ), (2)

u(a, τ) = p(τ), u(b, τ) = q(τ), τ ∈ [0, T ], (3)

u(x, 0) = g(x), x ∈ [L0, L1], (4)
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where L0 = ln(B�), L1 = ln(Bu), a = 1

2
σ 2, b = r − a, c = r and

0D
φ
τ u(x, τ ) =

∫ 1

0
φ(α)

∂αu(x, τ )

∂tα
dα, (5)

where
∂αu(x, τ )

∂τα
is the Caputo derivative of order α of the function uwith respect to

τ ([2]). The source function is added for the purposes of validation of the numerical
method that will be presented in the next section. In the Black-Sholes model the
source function f (x, τ ) ≡ 0.

2 Numerical Method

In this section we present an implicit numerical method for the approximation to the
solution of (2)–(4). Using a quadrature rule we approximate the integral in (5) by a
finite sum. Let us then consider a partition of the interval [0, 1] into N subintervals,
[βj−1, βj ], j = 1, . . . , N, of equal amplitude h = 1/N . Using the midpoint rule,
with h = 1/N , to approximate the integral in (2) we obtain

∫ 1

0
φ(α)

∂αu(x, τ )

∂τα
dα = h

N∑
j=1

φ(αj )
∂αj u(x, τ )

∂ταj
− h2

24
H ′′(ν), ν ∈ (0, 1), (6)

where αj = βj−1 + βj
2

, j = 1, . . . , N, and H is defined by H(α) =
φ(α)

∂αu(x, τ )

∂τα
.

In order to approximate the space derivatives, we consider a uniform space mesh,
on the interval [L0, L1], defined by the gridpoints xi = L0 + iΔx, i = 0, 1, . . . ,K ,
where Δx = (L1 − L0)/K , and we approximate the space derivatives at x = xi ,
with the second order finite differences:

∂u(x, τ )

∂x

∣∣∣
x=xi

= u(xi+1, τ )− u(xi−1, τ )

2Δx
− (Δx)2

6

∂3u

∂x3
(ηi, τ ), (7)

∂2u(x, τ )

∂x2

∣∣∣
x=xi

= u(xi+1, τ )− 2u(xi, τ )+ u(xi−1, τ )

(Δx)2
− (Δx)2

12

∂4u

∂x4 (ξi, τ ), (8)

with ηi, ξi ∈ (xi−1, xi+1). For a fixed h and Δx, denoting by Ui(τ ) the approxi-
mated value for u(xi, τ ), and substituting (6), (7) and (8) (neglecting theO

(
h2
)

and
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O
(
(Δx)2

)
terms) in (2), we obtain the semi-discretised scheme:

h

N∑
j=1

φ(αj )
∂αj Ui(τ)

∂ταj
= bUi+1(τ)− Ui−1(τ)

2(Δx)
+ a Ui+1(τ)− 2Ui(τ)+ Ui−1(τ)

(Δx)2

−cUi(τ)+ f (xi , τ ), i = 1, . . . , K − 1.

Note that from the boundary conditions (3):

U0(τ ) = p(τ), UK(τ) = q(τ), (9)

and from the initial condition (4), we have

Ui(0) = g(xi), i = 1, . . . ,K − 1. (10)

In order to approximate the fractional derivatives
∂αj u(x, τ )

∂ταj
, we define the time

gridpoints τl = lΔτ , l = 0, 1, . . . , n, whereΔτ = T/n and use the backward finite
difference formula provided by Diethelm (see [3]):

∂αj Ui(τl)

∂ταj
= (Δτ)−αj
Γ (2 − αj )

l∑
m=0

a
(αj )

m,l (Ui (τl−m)− Ui(0))

+cαj (Δτ)2−αj
∂2u

∂τ 2 (xi, ηl), ηl ∈ (0, τl),

where the constants cαj do not depend on Δτ , and the coefficients a
(αj)

m,l are given
by:

a
(αj )

m,l =
⎧⎨
⎩

1, m = 0,
(m+ 1)1−αj − 2m1−αj + (m− 1)1−αj , 0 < m < l,
(1 − αj )l−αj − l1−αj + (l − 1)1−αj , m = l.

Substituting in (9), and denoting by Uli ≈ u(xi, τl), f li = f (xi, τl), we obtain the
finite difference scheme:

h

N∑
j=1

φ(αj )
(Δτ)−αj
Γ (2 − αj )

l∑
m=0

a
(αj )

m,l

(
Ul−mi − U0

i

)
= +aU

l
i+1 − 2Uli + Uli−1

(Δx)2

+ bU
l
i+1 − Uli−1

2(Δx)
− cUli + f li , i = 1, . . . ,K − 1, l = 1, . . . , n. (11)

Hence, in order to obtain an approximation to the solution of (2)–(4) subject to the
initial condition (4) and boundary conditions (3), we need to solve the linear system



Black-Scholes Equation with Distributed Order in Time 317

of Eq. (11), and taking (9) and (10) into account:

Ul0 = p(τl), UlL = q(τl), l = 1, . . . , n, (12)

U0
i = g(xi), i = 1, . . . ,K − 1. (13)

3 Numerical Results

In this section one example with exact solution is presented to illustrate the
efficiency and accuracy of the proposed method. We also use the proposed scheme
to price a double barrier knock-out call European option.

In order to test the robustness of the presented numerical scheme, we first
consider an example of (2)–(4) with a proper choice of the coefficients a, b, c,
and functions p, q and g, so that the analytical solution is known and given by
u(x, τ ) = τ 2x(1 − x).

Example 1: Advection-diffusion problem with distributed order in time

⎧
⎪⎪⎨
⎪⎪⎩

0D
φ
τ u(x, τ ) =

∂2u (x, τ )

∂x2
+ ∂u (x, τ )

∂x
+ u(x, τ )+ f (x, τ ), (x, τ ) ∈ (0, 1) × (0, 1),

u(0, τ ) = 0, u(1, τ ) = 0, τ ∈ [0, 1], u(x, 0) = 0, x ∈ (0, 1),

where φ (α) = Γ (3 − α)
2

and f (x, τ ) is such that the exact solution is u(x, τ ) =
τ 2(x − x2).

In Table 1 we present the maximum of the absolute errors at the meshpoints
EK,n = max

i=0,1,...,K, j=0,1,...,n
|u(xi, τj ) − U

j
i |, where Uji is an approximation of

u(xi, τj ) obtained with the stepsizes Δx = h = 1

K
and Δτ = 1

n
and the

experimental convergence orders, computed as it is usual (see [4]).

Table 1 Maximum of errors
and experimental
convergence orders

Δτ h = Δx EK,n px = ph pτ

0.25 0.5 1.18 · 10−3 – –

0.0625 0.25 2.19 · 10−4 2.43 1.22

0.015625 0.125 4.37 · 10−5 2.33 1.16

0.00390625 0.0625 9.04 · 10−6 2.27 1.14
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The results presented in Table 1 suggest that the experimental order of con-
vergence with respect to the time variable, is approximately 1, and the space and
numerical integration orders of convergence are approximately 2, as expected.

Example 2: Black-Sholes model, with distributed order in time, (BSMDT)
governing a European double barrier knock-out call option:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

RL
t D

φ
T
C(S, t)+ 1

2
σ 2S2 ∂

2C (S, t)

∂S2
+ (r −D)S ∂C (S, t)

∂S
− rC(S, t)=0, (S, t) ∈ (Bl, Bu)×(0, T ),

C(Bl, t) = C(Bu, t) = 0, t ∈ [0, T ], C(S, T ) = max{S − E, 0}, S ∈ (Bl , Bu),

where σ = 0.45, r = 0.03, E = 10,D = 0.01, T = 1(year), Bl = 3 and Bu = 15.
In Figs. 1 and 2 we show the approximate solutions of Example 2, considering

several choices for the weight function φ, obtained with the proposed method with
h = 0.1, K = n = 100 and compare them with the corresponding Black Sholes
solution for double barrier options under the same parameter settings.

We observe that BSMDT delivers lower prices when S is less than a critical value
(close to the strike price E) and higher prices for in-the-money options (S > E).
The distributed order model also delivers higher option prices for S > E, when
compared with the classical Black-Sholes model. Therefore, this generalized model
is able to simulate different scenarios that could not be described with previous
models.

Fig. 1 Double barrier option prices obtained with several choices for the weight function φ(α) =
c(α)
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Fig. 2 Double barrier option prices obtained with several choices for the weight function φ(α) =
c(α)

From Fig. 2 we observe that the results that we obtained are in agreement with
the results presented in [1]. Smaller α is, the larger the price bias becomes.
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Periodic Homogenization
of a Pseudo-Parabolic Equation via
a Spatial-Temporal Decomposition

Arthur J. Vromans, Alphons Adrianus Francisca van de Ven,
and Adrian Muntean

Abstract Pseudo-parabolic equations have been used to model unsaturated fluid
flow in porous media. In this paper it is shown how a pseudo-parabolic equation
can be upscaled when using a spatio-temporal decomposition employed in the
Peszyńska-Showalter-Yi paper (Appl Anal 88(9):1265–1282, 2009). The spatial-
temporal decomposition transforms the pseudo-parabolic equation into a system
containing an elliptic partial differential equation and a temporal ordinary differen-
tial equation. To strengthen our argument, the pseudo-parabolic equation has been
given advection/convection/drift terms. The upscaling is done with the technique
of periodic homogenization via two-scale convergence. The well-posedness of the
extended pseudo-parabolic equation is shown as well. Moreover, we argue that
under certain conditions, a non-local-in-time term arises from the elimination of
an unknown.

1 Introduction

Groundwater recharge and pollution prediction for aquifers need models for describ-
ing unsaturated fluid flow in porous media. Pseudo-parabolic equations were found
to be adequate models, see eqn. 25 in [4]. In [8] a spatial-temporal decomposition
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of a pseudo-parabolic system was introduced. It was shown that this decomposition
made upscaling of this system rather straightforward with the use of a toy pseudo-
parabolic model. In our framework, this toy model is extended with convective
terms, which yield no additional problems. We want to convey the message that this
decomposition can be applied not only to the physical system in [8] but also to other
physical systems with pseudo-parabolic equations, such as the concrete corrosion
reaction model introduced in [9]. Both these pseudo-parabolic systems are physical
systems on a spatial micro scale with an intrinsic microscopic periodicity of size
ε � 1. Similar intrinsic microscopic periodic behaviors are found in highly active
research fields using composite structures or nano-structures.

In this paper, we use this spatial-temporal decomposition to upscale our pseudo-
parabolic equation by using the concept of periodic homogenization via two-scale
convergence. The spatial-temporal decomposition leads to upscaled systems within
the partial differential equation framework, while the upscaled pseudo-parabolic
equation might not live within this framework due to the non-local term. We start
in Sect. 2 with formulating our pseudo-parabolic system (Qε), the decomposition
system (Pε) and stating our assumptions. In Sect. 3, an existence and uniqueness
result for weak solutions to our problem (Pε) is derived. In Sect. 4, we apply the
idea of two-scale convergence to a weak version of problem (Pε), denoted (Pε

w),
that contains the microscopic information at the ε-level. Furthermore in this section,
an upscaled system (P0

w) of the weak system (Pε
w) is derived in the limit ε ↓ 0,

containing a non-local-in-time term.

2 Basic System and Assumptions

Our pseudo-parabolic system (Qε) consists of a family of N partial differential
equations for the variable vector Uε(t, x, x/ε) = (Uε1 , . . . , Uεα, . . . , UεN ) with t > 0
and x = (x1, . . . , xi, . . . , xd) ∈ Ω ⊂ Rd . The vectors Vε and Uε are both functions
of the time coordinate t , the global or macro position coordinate x, and also periodic
functions of the micro (or nano) coordinate y ∈ Y , where y = x/ε, where the size
of the micro domain Y is O(ε) of the size of the macro domain Ω . For ε ∈ (0, ε0)
with ε0 > 0, system (Qε ) is formulated as

(Qε)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MεG−1∂tUε − ∇ ·
(
(Eε · ∇ + Dε)G−1(∂tUε + LUε)

)

= Hε + (Kε − MεG−1L)Uε + Jε · ∇Uε on R+ ×Ω,
Uε = U∗ on {0} ×Ω,
∂tUε + LUε = 0 on R+ × ∂Ω.

Our dimensionless decomposition system (Pε) consists of a family of N partial
differential equations (PDEs) and a family of N ordinary differential equations
(ODEs) for the two variable vectors Vε(t, x, x/ε) = (V ε1 , . . . , V

ε
α , . . . , V

ε
N) and
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Uε(t, x, x/ε). For ε ∈ (0, ε0) with ε0 > 0, it is formulated as

(Pε)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

MεVε − ∇ · (Eε · ∇Vε + DεVε
) = Hε + KεUε + Jε · ∇Uε on R+ ×Ω,

∂tUε + LUε = GVε on R+ ×Ω,
Uε = U∗ on {0} ×Ω,
Vε = 0 on R+ × ∂Ω.

Above, the ε-dependent notation cε(t, x) = c(t, x, x/ε) is used for the ε-
independent 1-, 2- and 3-tensors of assumption (A1).

(A1) For all α, β ∈ {1, . . . , N} and for all i, j ∈ {1, . . . , d}, we have

Mαβ, Eij , Diαβ, Hα, Kαβ, Jiαβ ∈ L∞(R+ ×Ω;C#(Y )),

Lαβ, Gαβ ∈ L∞(R+;W 1,∞(Ω)),
U∗ ∈ C1(Ω)N,

with G invertible.
(A2) Let the tensors Mε and Eε be in diagonal form with elements mεα > 0 and

eεi > 0, respectively, satisfying 1/mεα, 1/e
ε
i ∈ L∞(R+ ×Ω;C#(Y )).

(A3) The inequality

‖Dεiβα‖2
L∞(R+×Ωε ;C#(Y ))

<
4

dN2
∥∥∥ 1
mεα

∥∥∥
L∞(R+×Ωε ;C#(Y ))

∥∥∥ 1
eεi

∥∥∥
L∞(R+×Ωε ;C#(Y ))

holds for all α, β ∈ {1, . . . , N}, for all i ∈ {1, . . . , n}, and for all ε ∈ (0, ε0).
Remark, inequality (2) implies that automatically (2) holds for the Y -

averaged functions Dεiβα , Mεβα , and Eεij in L∞(R+ × Ω), using the notation

f (t, x) = 1

|Y |
∫

Y

f (t, x, y)dy.

3 Existence and Uniqueness of Weak Solutions to (Pε
w)

In this section, we show the existence and uniqueness of a weak solution (U,V) to
(Pε). We define a weak solution to (Pε) for ε ∈ (0, ε0) and T ∈ R+ as a pair of
sequences (Uε,Vε) ∈ H 1((0, T )×Ω)N × L∞((0, T ),H 1

0 (Ω))
N satisfying

(Pε
w)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫

Ω

φ� [MεVε−Hε−KεUε−Jε ·∇Uε
]+(∇φ)�·(Eε·∇Vε+DεVε

)
dx=0,

∫

Ω

ψ� [∂tUε + LεUε − GεVε
]

dx = 0,

Uε(0, x) = U∗(x) for all x ∈ Ω,
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for a.e. t ∈ (0, T ), for all test-functions φ ∈ H 1
0 (Ω)

N and ψ ∈ L2(Ω)N .
The existence and uniqueness can only hold when the first equation of (Pε

w)
satisfies all the conditions of Lax-Milgram. The next lemma provides the coercivity
condition, while the continuity condition is trivially satisfied.

Lemma 1 Assume assumptions (A1)–(A3) hold, then there exist positive constants
m̃α, ẽi , H̃ , K̃α , J̃iα for α ∈ {1, . . . , N} and i ∈ {1, . . . , d} such that the a-priori
estimate

∑N
α=1 m̃α‖Vεα‖2

L2(Ω)
+∑d

i=1
∑N
α=1 ẽi‖∂xiVεα‖2

L2(Ω)

≤ H̃ +∑N
α=1 K̃α‖Uεα‖2

L2(Ω)
+∑d

i=1
∑N
α=1 J̃iα‖∂xiUεα‖2

L2(Ω)

(1)

holds for a.e. t ∈ (0, T ).
Proof See p. 92, 93 in [9] for proof and relation with parameters of (Pε

w). )*
Theorem 1 Assume assumptions (A1)–(A3) hold, then there exists a unique pair
(Uε,Vε) ∈ H 1((0, T )×Ω)N×L∞((0, T ),H 1

0 (Ω))
N such that (Uε ,Vε) is a weak

solution to (Pε
w).

Proof Use φ = Vε and apply Lemma 1. Then use ψ ∈ {Uε , ∂tUε}. Moreover,
apply a gradient to the second equation of (Pε) and test that equation with ∇Uε and
∂t∇Uε . Application of Young’s inequality, use of (1) and application of Gronwall’s
inequality, see [2, Thm. 1], yields the existence for Uε . Then Lax-Milgram yields
the existence for Vε . Uniqueness follows from the bilinearity of (Pε

w). For more
details, see pages 93 and 94 in [9]. )*

4 Upscaling the System (Pε
w) via Two-Scale Convergence

Based on two-scale convergence, see [1, 5, 7] for details, we obtain the following
Lemma ensuring that the weak solution to problem (Pε

w) has two-scale limits in the
limit ε ↓ 0.

Lemma 2 Assume assumptions (A0), (A1), (A2) to hold. For each ε ∈ (0, ε0), let
the pair of sequences (Uε ,Vε) ∈ H 1((0, T ) × Ω) × L∞((0, T );H 1

0 (Ω)) be the
unique weak solution to (P ε

w). Then this sequence of weak solutions satisfies the
estimate ‖Uε‖H 1((0,T )×Ω)N + ‖Vε‖L∞((0,T ),H 1

0 (Ω))
N ≤ C, for all ε ∈ (0, ε0) and

there exist vector functions

u in H 1((0, T )×Ω)N, U in H 1((0, T );L2(Ω;H 1
# (Y )/R))

N,

v in L∞((0, T );H 1
0 (Ω))

N, V in L∞((0, T )×Ω;H 1
# (Y )/R)

N ,
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and a subsequence ε′ ⊂ ε, for which the following two-scale convergences

Uε
′ 2−→ u(t, x), ∇Uε

′ 2−→ ∇u(t, x)+ ∇yU (t, x, y),

∂tUε
′ 2−→ ∂tu(t, x), ∂t∇Uε

′ 2−→ ∂t∇u(t, x)+ ∂t∇yU (t, x, y),

Vε
′ 2−→ v(t, x), ∇Vε

′ 2−→ ∇v(t, x)+ ∇yV (t, x, y)

hold for a.e. t ∈ (0, T ).
Proof See pages 95 and 96 of [9]. )*
Using Lemma 2, we upscale (Pε

w) to (P0
w) via two-scale convergence.

Theorem 2 Assume the conditions of Lemma 2 are met. Then the two-scale
limits u ∈ H 1((0, T ) × Ω)N , U ∈ H 1((0, T );L2(Ω;H 1

# (Y )/R))
N and v ∈

L∞((0, T );H 1
0 (Ω))

N introduced in Lemma 2 form the weak solution triple to

(P0
w)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

φ�
[
Mv − H − Ku − J · ∇u − 1

|Y |
∫

Y

J · ∇yU dy
]

+(∇φ)� · (E∗ · ∇v + D∗v
)

dx = 0,
∫

Ω

ψ� [∂tu + Lu − Gv
]

dx = 0,

∫

Y

ξ� · ∇y

[
∂tU + LU − δ̃v − ω̃ · ∇v

]
dy = 0,

u(0, x) = U∗(x) onΩ,

∇yU (0, x, y) = 0 onΩ × Y,

for a.e. t ∈ (0, T ), for all test-functions φ ∈ H 1
0 (Ω)

N , ψ ∈ L2(Ω)N , and ξ ∈
H 1

# (Y )
d×N , where the effective coefficients E∗ and D∗ are given by

E∗ = 1

|Y |
∫

Y

E · (1 + ∇yW)dy, D∗ = 1

|Y |
∫

Y

D + E · ∇yδdy,

δ̃ = ∇y(Gδ), ω̃ = ∇yW ⊗ G,

and the tensor δαβ ∈ L∞((0, T ) ×Ω;H 1
# (Y )/R)) and vector Wi ∈ L∞((0, T ) ×

Ω;H 1
# (Y )/R)) satisfy the cell problems

0 =
∫

Y

Φ� · (∇y · [E · (1 + ∇yW)
]
)dy, 0 =

∫

Y

Ψ�(∇y · [D + E · ∇yδ
]
)dy

for all Φ ∈ C#(Y )
d , Ψ ∈ C#(Y )

N×N .
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Proof In (Pε
w), we choose φ = φε = Φ (t, x, x

ε

)
for the test-function

Φ ∈ L2((0, T );D(Ω;C∞
# (Y )))

N , and ψ = ψε = Ψ (t, x)+ εϕ (t, x, x
ε

)
for the

test-function Ψ ∈ L2((0, T );C∞
0 (Ω))

N and for ϕ ∈ L2((0, T );D(Ω;C∞
# (Y )))

N .
Two-scale convergence limits in [1, 5, 7] together with standard cell-function
arguments, see [6], give (P0

w). See pages 97 and 98 of [9] for details. )*
We have shown that upscaling system (Pε

w) yields system (P0
w). This system contains

only PDEs with respect to (t, x). However, an extra variable ∇yU was needed.
Removing ∇yU needs the use of continuous semi-group theory, see papers 10 and
14 of [10], for solving the third equation of system (P0

w). This leads to a non-local-
in-time term as a consequence of removing ∇yU .

5 Conclusion

Our main goal of this paper is to show that the spatial-temporal decomposition,
as employed in [8], allows for the straightforward upscaling of pseudo-parabolic
equations, in specific for system (Qε). The upscaling procedure is here performed
using the concept of two-scale convergence as reported in Sect. 4. Moreover, the
decomposition is retained in the upscaled limit. A non-local-in-time term arose
when an extra variable was eliminated. The spatial-temporal decoupling showed
why this non-local term is non-local in time.

In future research we intend to investigate the applicability of the spatial-
temporal decomposition of our pseudo-parabolic system to perforated periodic
domains, corrector estimates (convergence speed estimate), high-contrast situations
and the interplay between homogenization and stochastic effects.

The spatial-temporal decomposition allowed, indeed, for a straightforward
homogenization process of the pseudo-parabolic structure of the system.
Furthermore, the approach has the potential to be used within the framework of a
multiscale discretization scheme such that homogenization limiting procedure and
the convergence of the numerical scheme are done simultaneously, somewhat in a
similar spirit as in [3]. An actual implementation of such numerical homogenization
methodology is subject of further work.
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Approximating a Class of Linear
Third-Order Ordinary Differential
Problems

Emilio Defez, Michael M. Tung, J. Ibáñez, and Jorge Sastre

Abstract In this work, a procedure to approximate the solution of special linear
third-order matrix differential problems of the type Y (3)(x) = A(x)Y (x) + B(x)
with higher-order matrix splines is proposed. An illustrative example is given.

1 Introduction

In this paper a new spline method is developed for computing third-order linear
ordinary differential equations of the form

Y (3) = A(x)Y (x)+ B(x) , A(x) ∈ C
r×r , B(x), Y (x) ∈ C

r×q, x ∈ [a, b] (1)

with initial conditions Y (a) = Ya, Y
′(a) = Y ′

a and Y ′′(a) = Y ′′
a . This type of

problem can be found in various fields of applied science and engineering, see [2, 5,
7] and references therein, specially in fluid dynamic problems [10] and also in the
study of the Einstein-Weyl spaces [9].

Traditionally, the third-order ordinary differential equations can be rewritten as
a first-order system of ordinary differential equations, so that standard numerical
methods can be applied, but this method increases the computational cost and it can
cause in numerical instability. Therefore, direct integration methods have attracted
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significant attention from several authors because these direct methods improve
the accuracy and the speed, see [3, 8, 11]. Throughout this work, we will use the
standard notation for matrix splines, see [1]. In the following section we give a
description of the proposed method and conclude with a numerical example.

2 Description of the Method and Example

Let

Y (3)(x) = A(x)Y (x)+ B(x), a ≤ x ≤ b, (2)

be a third-order linear matrix problem, where Y (x) ∈ C
r×q and Y (a) = Ya , Y ′(a) =

Y ′
a , Y ′′(a) = Y ′′

a ∈ C
r×q are initial conditions. The functions A : [a, b] → C

r×r
and B : [a, b] → C

r×q are of differentiability class A,B ∈ C s (I ) , s ≥ 1, with
I = (a, b). Let the partition of [a, b] be defined by

Δ[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a + kh, k = 0, 1, . . . , n, (3)

where n is a positive integer, and h = (b− a)/n is the step size. In each subinterval
Ik = [a + kh, a + (k + 1)h] we will define a matrix spline S(x) of order m ∈ N

with 4 ≤ m ≤ s, which will be an approximation of the solution of problem (2) so
that S(x) ∈ C3 (I). For the first interval I0, we define the following matrix spline:

S
∣∣
I0
(x) = Y (a)+ Y ′(a)(x − a)+ 1

2!Y
′′(a)(x − a)2 + 1

3!Y
(3)(a)(x − a)3 +

· · · + 1

(m− 1)!Y
(m−1)(a)(x − a)m−1 + 1

m!A0(x − a)m, (4)

where A0 ∈ C
r×q must be determined. It is easy to prove

S
∣∣
I0
(a) = Ya, S′∣∣

I0
(a) = Y ′

a, S
′′∣∣
I0
(a) = Y ′′

a , S
(3)
∣∣
I0
(a)= Y (3)(a)=A(a)Ya + B(a),

and hence the matrix spline (4) satisfies (2) at point x = a. We must compute
the values of Y (4)(a), Y (5)(a), Y (6)(a), . . . , Y (m−1)(a) and A0. Taking derivatives
in the differential equations one gets

Y (4)(x) = A′(x)Y (x)+ A(x)Y ′(x)+ B ′(x)

= g1
(
x, Y (x), Y ′(x)

)
, (5)

where g1 ∈ C s−1 (I). We are now in the position to evaluate Y (4)(a) =
g1
(
a, Ya, Y

′
a

)
using (5). Now, we can assume that A,B ∈ C s (I ) for s ≥ 2. Then,
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the second derivatives of A and B exist and are continuous. This yields the fifth
derivative Y (5)(x):

Y (5)(x) = A′′(x)Y (x)+2A′(x)Y ′(x)+A(x)Y ′′(x)+B ′′(x)

= g2
(
x, Y (x), Y ′(x), Y ′′(x)

) ∈ C s−2 (I) . (6)

Now we can evaluate Y (5)(a) = g2
(
a, Y (a), Y ′(a), Y ′′(a)

) = g2
(
a, Ya, Y

′
a, Y

′′
a

)
using (6). For the rest of derivatives Y (6)(x), . . . , Y (m−1)(x) we proceed in like
manner and calculate

Y (6)(x) = g3
(
x, Y (x), Y ′(x), Y ′′(x), Y ′′′(x)

) ∈ C s−3 (I)
...

Y (m−1)(x) = gm−4
(
x, Y (x), Y ′(x), . . . , Y (m−4)(x)

) ∈ C s−(m−4) (I )

⎫
⎪⎬
⎪⎭
. (7)

A list of all these derivatives can be easily established by employing standard
computer algebra systems as Mathematica or Matlab, for example. Taking x = a

in (7), one gets Y (6)(a), . . . , Y (m−1)(a). To compute A0, we impose that (4) is a
solution of matrix differential equation (2) at x = a + h, i.e.

S(3)
∣∣
I0
(a + h) = A (a + h) S∣∣

I0
(a + h)+ B(a + h). (8)

From (8) we obtain the following implicit matrix equation:

A0 = (m−3)!
hm−3

[
A (a + h)

(
Y (a)+ Y ′(a)h+ · · · + hm−1

(m−1)!Y
(m−1)(a)+ hm

m!A0

)

+B(a + h)− Y (3)(a)− Y (4)(a)h− · · · − 1
(m−4)!Y

(m−1)(a)hm−4
]
. (9)

If matrix equation (9) has only one solution A0, the matrix spline (4) is totally
determined at I0. In the following interval I1 we take the matrices

Y (3)(a + h) = A (a + h) S∣∣
I0
(a + h)+ B (a + h)

Y (4)(a + h) = g1

(
a + h, S∣∣

I0
(a + h), S′∣∣

I0
(a + h)

)

...

Y (m−1)(a + h) = gm−4

(
a + h, S∣∣

I0
(a + h), . . . , S(m−4)

∣∣
I0
(a + h)

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(10)

and we define the spline at I1 as

S
∣∣
I1
(x) =

2∑
i=0

S(i)
∣∣
I0
(a + h)
i! (x − (a + h))i +

m−1∑
j=3

Y (j)(a + h)
j ! (x − (a + h))j

+ A1

m! (x − (a + h))m, (11)
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Note that matrix spline S(x) defined by (4) and (11) is of differentiability class
C 3 (I0 ∪ I1). Thus, spline (11) satisfies the differential equation (2) at point x =
a + h, and all of its coefficients are determined except A1 ∈ C

r×q . Matrix A1 can
be found imposing that the spline (11) is also the solution of (2) at x = a + 2h:

S(3)
∣∣
I1
(a + 2h) = A (a + 2h) S

∣∣
I1
(a + 2h)+ B (a + 2h) .

Developing that expression we obtain

A1 = (m− 3)!
hm−3

⎡
⎣A(a + 2h)

⎛
⎝

2∑
i=0

S(i)
∣∣
I0
(a + h)
i! hi +

m−1∑
j=3

Y (j)(a + h)
j ! hj + A1h

m

m!

⎞
⎠ (12)

+ B (a + 2h)−Y (3)(a+h)−Y (4)(a+h)h−· · ·− hm−4

(m−4)!Y
(m−1)(a+h)

]
.

If matrix equation (12) has only one solution, A1, then the spline is well determined
at I1. Applying the same procedure, we can obtain the matrix spline approximation
from the interval I0 to the interval Ik−1. For the following subinterval Ik , the matrix
spline is defined as

S
∣∣
Ik
(x) =

2∑
i=0

S(i)
∣∣
Ik−1
(a + kh)
i! (x − (a + kh))i

+
m−1∑
j=3

Y (j)(a + kh)
j ! (x − (a + kh))j + Ak

m! (x − (a + kh))m,

where

Y (3)(a + kh) = A (a + kh) S∣∣
Ik−1
(a + kh)+ B (a + kh)

Y (4)(a + kh) = g1

(
a + kh, S∣∣

Ik−1
(a + kh), S′∣∣

Ik−1
(a + kh)

)

...

Y (m−1)(a + kh) = gm−4

(
a+kh, S∣∣

Ik−1
(a+kh),. . . , S(m−4)

∣∣
Ik−1
(a+kh)

)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Thus, the matrix spline S(x) ∈ C 3

⎛
⎝

k⋃
j=0

Ij

⎞
⎠ and fulfills the differential equation (2)

at x = a + kh. As a last requirement, we impose that S
∣∣
Ik
(x) satisfies (2) at x =

a + (k + 1)h, and then one gets

S(3)
∣∣
Ik
(a+(k+1)h) = A (a+(k+1)h)S

∣∣
Ik
(a+(k+1)h)+B (a+(k+1)h) .
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Expanding this expression, we obtain

Ak = (m− 3)!
hm−3

[
A (a + (k + 1)h)

( 2∑
i=0

S(i)
∣∣
Ik−1
(a + kh)
i! hi +

m−1∑
j=3

Y (j)(a + kh)
j ! hj + Ak

m! h
m

)

+B (a + (k + 1)h)− Y (3)(a + kh)− · · · − hm−4

(m− 4)!Y
(m−1)(a + kh)

]
. (13)

Observe that (13) gives us the Eqs. (9) and (12), when k = 0 and k = 1. We will
show that (13) has a unique solution for each k = 0, 1, . . . , n− 1.

Now we can write Eq. (13) as

(
Ir×r − h3A(a+(k+1)h)

m(m− 1)(m− 2)

)
Ak

= (m− 3)!
hm−3

[
A (a + (k + 1)h)

⎛
⎝

2∑
i=0

S(i)
∣∣
Ik−1
(a + kh)
i! hi +

m−1∑
j=3

Y (j)(a + kh)
j ! hj

⎞
⎠

+B(a + (k + 1)h
)− Y (3)(a + kh)− · · · − hm−4

(m− 4)!Y
(m−1)(a + kh)

]
. (14)

Observe that the solvability of Eq. (14) is guaranteed if the matrix coefficients Ck =(
Ir×r − h3A(a+(k+1)h)

m(m− 1)(m− 2)

)
are invertible for k = 0, 1, . . . , n− 1. Let be

M = max{‖A(x)‖ ; x ∈ [a, b]}, (15)

then it easy to prove that ‖Ir×r − Ck‖ ≤ h3M
m(m−1)(m−2) . Thus, if h < 3

√
m(m−1)(m−2)

M
,

according to Lemma 2.3.3 in [4], it follows that Ck is invertible for 0 ≤ k ≤ n − 1.
Hence, Eq. (13) has a unique solution Ak for each k = 0, 1, . . . , n − 1, and the
matrix spline is determined. Summarising, the following theorem is proved:

Theorem 1 For the third-order matrix differential equation (2), let M be the
constant defined by (15). We consider the partition (3) with step size h satisfying
h < 3

√
m(m− 1)(m− 2)/M. Then, the matrix spline S(x) of order m, 4 ≤ m ≤ s

exists on each subinterval Ik , k = 0, 1, . . . , n − 1, as defined in the previous
construction and is of differentiability class C 3(I).
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Table 1 Maximum error for splines of order m = 7 within each interval Ik , k = 0, 1, . . . , 9,
computed with step size h = 0.1 for the test problem (16)

Interval Ik [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]
max. error 7.59 × 10−11 7.25 × 10−11 4.36 × 10−10 1.48 × 10−9 3.77 × 10−9

Interval Ik [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]
max. error 7.99 × 10−9 1.50 × 10−8 2.58 × 10−8 4.16 × 10−8 6.34 × 10−8

Note that the constructed splines have a global error ofO(hm−1), see [6] for details.
As a numerical example, we consider the following system:

Y (3)(x) = AY(x) , Y (0) =
⎛
⎜⎝

2

−2

12

⎞
⎟⎠

Y ′(0) =
⎛
⎜⎝

−12

28

−33

⎞
⎟⎠ , Y ′′(0) =

⎛
⎜⎝

20

−52

5

⎞
⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

817
68

1393
68

448
68

− 1141
68 − 2837

68 − 896
68

3059
136

4319
136

1592
136

⎞
⎟⎟⎟⎟⎟⎟⎠
, 0 ≤ x ≤ 1,

(16)

whose exact solution [11, p.147] is given by Y (x) =
⎛
⎝

ex − 2e2x + 3e−3x

3ex + 2e2x − 7e−3x

−11ex − 5e2x + 4e−3x

⎞
⎠.

From (15) one getsM = 90.1136. For splines of the seventh order (m = 7) we have

h < 3
√

210
90.1136 ≈ 1.32579. We take n = 10 and h = 0.1. Table 1 displays numerical

estimates for the maximum error within each subinterval Ik for k = 0, 1, . . . , 9.
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An Iterative Method Based on Fractional
Derivatives for Solving Nonlinear
Equations

Béla J. Szekeres and Ferenc Izsák

Abstract In this work, we showed a fractional derivative based iterative method for
solving nonlinear time-independent equation, where the operator is affecting on a
Hilbert space. We assumed that it is equally monotone and Lipschitz-continuous. We
proved that the algorithm is convergent. We also have tested our method numerically
previously on a fluid dynamical problem and the results showed that the algorithm
is stable.

1 Introduction

The theory of fractional order derivatives are almost as old as the integer-order
[5]. There are many applications, for example in physics [1, 2, 6], finance [8, 9]
or biology [3]. Our aim is to prove theoretical mathematical statements.

In this work our goal is to find a solution numerically for the equationA(u) = f .
If we assume that u is time-dependent, then one can do this by finding a stationary
solution of the equation ∂tu(t) = −(A(u(t)) − f ). The numerical solution of this
problem can be highly inaccurate. To avoid this we propose to replace the time
derivative with a fractional one. Since the fractional order time derivative is a non-
local operator, we expect that this stabilizes the time integration in the numerical
solutions. Since the fractional order derivative here is defined as a limit of linear
combination of past values, the time discretization will be simple. We also tested
our method numerically in a fluid dynamical problem [10].
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2 Mathematical Preliminaries

The following theorem is well known, see [11].

Theorem 1 Let H real Hilbert-space, A : H → H nonlinear operator, which
satisfies the conditions below with some positive constantsM ≥ m:

1. 〈A(u)− A(v), u− v〉 ≥ m‖u− v‖2,
2. ‖A(u)− A(v)‖ ≤M‖u− v‖.

Then for any f, u0 ∈ H there exist a unique solution u∗ of the equation A(u) = f .
If t ∈ R

+ is small enough the following iteration converges to u∗.

un+1 = un − t[A(un)− f
]
. (1)

There exist many different definitions of the fractional derivative [4, 7] we will
use here the one below which is based on finite differences.

Definition 1 For the exponent β ∈ (0, 1) the fractional order derivative for a given
function f : R+ → R is defined as

∂βf (t)

∂tβ
:= lim

N→∞

{ N∑
k=0

(
β

k

)
(−1)k

f (t − kh)
hβ

}
,

provided that the limit exists.

3 Results

Shortly, our objective is to find a solution for the equation A(u) = f for a given
nonlinear operator A, and for a given function f . The solution u is also time-
dependent, our goal is to find a stationary solution for

− (A(u(t))− f ) = ∂tu(t). (2)

The method in Theorem 1 is one approach to this. Our idea was that to replace the

time derivative in (2) with ∂β

∂tβ
for some β ∈ (0, 1), according to Definition 1, and

discretise the equation in time by a natural way.
We need an additional statement before we prove.

Lemma 1 (Pachpatte) Let (αn)n∈N, (fn)n∈N, (gn)n∈N, (hn)n∈N nonnegative real
sequences with the conditions below:

αn ≤ fn + gn
n−1∑
s=0

hsαs . (3)
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Then the following inequality holds

αn ≤ fn + gn
n−1∑
s=0

hsfs

n−1∏
τ=s+1

(
hτ gτ + 1

)
. (4)

The main result is a generalisation of Theorem 1. For simplicity, we will not
prove the existence of the solution.

Theorem 2 Let H be real Hilbert-space, A : H → H a nonlinear operator, which
satisfies the conditions below with some positive constantsM ≥ m:

1. 〈A(u)− A(v), u− v〉 ≥ m‖u− v‖2,
2. ‖A(u)− A(v)‖ ≤M‖u− v‖.

Let u∗ denote the solution of the equationA(u) = f . For any f, u0 ∈ H α ∈ (0, 1),
and t ∈ R

+ small enough the following iteration converges to u∗.

un+1 =
n+1∑
j=1

(
α

j

)
(−1)j+1un+1−j − t[A(un+1)− f

]
. (5)

Proof We first add t
[
A(un+1) − f

] − u∗ both sides of the Eq. (5) and taking their
norms, we have that

∥∥un+1 − u∗ + t[A(un+1)− A(u∗)
]∥∥ =

∥∥∥∥∥∥
n+1∑
j=1

(
α

j

)
(−1)j+1un+1−j − u∗

∥∥∥∥∥∥
. (6)

Using the first assumption, we get the lower estimation

‖un+1 − u∗ + t[A(un+1)−A(u∗)
]‖2

= ‖un+1 − u∗‖2 + t2‖A(un+1)− A(u∗)‖2 + 2t〈A(un+1)− A(u∗), un+1 − u∗〉 (7)

≥ ‖un+1 − u∗‖2 + 2tm‖un+1 − u∗‖2 ≥ ‖un+1 − u∗‖2.

It is also known that
∑∞
j=1

(
α
j

)
(−1)j+1 = 1 and

(
α
j

)
(−1)j+1 > 0. Using this, the

triangle inequality and (6) for the inequality in (7) we get

‖un+1 − u∗‖ ≤
∥∥∥∥∥∥
n+1∑
j=1

(
α

j

)
(−1)j+1un+1−j − u∗

∥∥∥∥∥∥

=
∥∥∥∥∥∥
n+1∑
j=1

(
α

j

)
(−1)j+1un+1−j −

∞∑
j=1

(
α

j

)
(−1)j+1u∗

∥∥∥∥∥∥
(8)

≤
n+1∑
j=1

(
α

j

)
(−1)j+1‖un+1−j − u∗‖ +

∞∑
j=n+2

(
α

j

)
(−1)j+1‖u∗‖.
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Let αn := ‖un− u∗‖, fn := ∑∞
j=n+1

(
α
j

)
(−1)j+1‖u∗‖ and βn = (

α
n

)
(−1)n+1. With

these, we can rewrite (8) as

αn+1 ≤ fn+1 +
n+1∑
j=1

βjαn+1−j . (9)

Also using the notation hj instead of βn+1−j , (9) can be recognised as

αn+1 ≤ fn+1 +
n∑
j=0

hjαj . (10)

Therefore, with gn := 1 we can apply Lemma 1.

αn+1 ≤ fn+1 +
n∑
s=0

hsfs

n∏
τ=s+1

(hτ + 1). (11)

Estimate
∏n
τ=s+1(hτ + 1) as

n∏
τ=s+1

(hτ + 1) =
n∏

τ=s+1

(βn+1−τ + 1)

≤
n∏
τ=1

(βn+1−τ + 1) ≤
(n+∑n

j=1 βj

n

)n ≤
(

1 + 1

n

)n ≤ e.

Consequently, for (11) the following holds.

αn+1 ≤ fn+1 +
n∑
s=0

hsfs

n∏
τ=s+1

(hτ + 1) ≤ fn+1 + e
n∑
s=0

hsfs .

It is clear that if n→ ∞ then fn+1 → 0. We prove that
∑n
s=0 hsfs → 0.

n∑
s=0

hsfs = ‖u∗‖βn+1 + ‖u∗‖
n∑
s=1

βn+1−s
∞∑

j=s+1

βj

= ‖u∗‖βn+1 + ‖u∗‖
n∑
s=1

βn+1−s
(

1 −
s∑
j=1

βj

)
(12)

= ‖u∗‖βn+1 + ‖u∗‖
n∑
s=1

βn+1−s − ‖u∗‖
n∑
s=1

n∑
j=1

βn+1−sβj .
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Observe first, that the last term in (12) is a Cauchy product.

lim
n→∞

( n∑
s=1

n∑
j=1

βn+1−sβj
)

=
( ∞∑
j=1

βj

)2 = 1.

Therefore, the first term in (12) tends to zero, the second and the third term to ‖u∗‖,
since

∑∞
j=1 βj = 1. This means that αn+1 → 0 if n→ ∞, which has been stated.

)*

4 Discussion

In this work, we solved nonlinear time-independent equations of type A(u) = f ,
where the operator A is on a Hilbert space. We assumed that it is monotone and
Lipschitz-continuous and we proved that the algorithm is convergent.

Our numerical experiences show that if we replace the time-derivative operator
in the equation ∂tu = −[A(u)−f ] with a fractional derivative, then it stabilizes the
time integration in the numerical solutions. We have tested our method numerically
in a fluid dynamical problem previously [10].
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Homogenization of the Heat Equation
with a Vanishing Volumetric Heat
Capacity

T. Danielsson and P. Johnsen

Abstract This paper is a study of the homogenization of the heat conduction
equation, with a homogeneous Dirichlet boundary condition, having a periodically
oscillating thermal conductivity and a vanishing volumetric heat capacity. In partic-
ular, the volumetric heat capacity equals εq and the thermal conductivity oscillates
with period ε in space and εr in time, where 0 < q < r are real numbers. By using
certain evolution settings of multiscale and very weak multiscale convergence we
investigate, as ε tends to zero, how the relation between the volumetric heat capacity
and the microscopic structure affects the homogenized problem and its associated
local problem. It turns out that this relation gives rise to certain special effects in the
homogenization result.

1 Introduction

We study, by means of periodic homogenization, the heat conduction equation with
a homogeneous Dirichlet boundary condition. In particular we study

εq∂tuε (x, t)− ∇ ·
(
a

(
x

ε
,
t

εr

)
∇uε (x, t)

)
= f (x, t) inΩ × (0, T ) ,

uε (x, 0) = u0 (x) inΩ ,

uε (x, t) = 0 on ∂Ω × (0, T ) ,

(1)

where 0 < q < r , f ∈ L2(ΩT ), u0 ∈ L2(Ω) and Ω is an open bounded subset
of RN with smooth boundary ∂Ω . Here, the thermal conductivity is characterized
by the function a which is continuous on R

N × R, periodic in its arguments with
respect to the unit cube Y = (0, 1)N and the unit interval S = (0, 1) respectively,
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and satisfies the coercivity condition

a (y, s) ξ · ξ ≥ C0 |ξ |2

for a.e. (y, s) ∈ Y × S, for every ξ ∈ R
N and for some C0 > 0. The coefficient εq

in front of the time derivative represents the volumetric heat capacity.
As ε tends to zero, we search for a weak limit u to the sequence of solutions

{uε}, where u is the solution to a so-called homogenized problem, which is in turn
characterized by a local problem. The matching between the scales is, up to the
authors’ knowledge, new and extends the study in [4]. We believe that these results
are of interest both for applications regarding heat conduction in heterogeneous
media and for the further development of mathematical tools in homogenization
theory.

Notations Here, ΩT = Ω × (0, T ), Yn,m = Yn × Sm with Yn = Y1 ×
Y2 × · · · × Yn and Sm = S1 × S2 × · · · × Sm, where Y1 = Y2 = . . . =
Yn = Y = (0, 1)N and S1 = S2 = . . . = Sm = S = (0, 1). We let
yn = y1, y2, . . . , yn, dyn = dy1dy2 · · · dyn, sm = s1, s2, . . . , sm and dsm =
ds1ds2 · · · dsm. For any function space F(,), , ⊂ R

M , F(,)/R means the
subspace of functions with integral mean value zero over , and F'(,) denotes
periodicity over ,. Note that C'(,) ⊂ C(RM) and C∞

' (,) ⊂ C∞(RM). We let

W 1,2(0, T ;H 1
0 (Ω),L

2(Ω)) = {
v ∈ L2(0, T ;H 1

0 (Ω)) : ∂t v ∈ L2(0, T ;H−1(Ω)
}

and W =
{
z ∈ L2

'(S;H 1
' (Y )/R) : ∂sz ∈ L2

'(S; (H 1
' (Y )/R)

′)
}

. εk(ε) and ε′j (ε) for

k = 1, . . . , n, j = 1, . . . ,m, are strictly positive and tend to zero as ε does and
we denote lists of spatial and temporal scales by {ε1, . . . , εn} and

{
ε′1, . . . , ε′m

}
,

respectively.

2 Preliminaries

Our main tools in this paper are evolution multiscale and very weak evolution
multiscale convergence, which are generalizations and modifications of the classical
concept of two-scale convergence.

Definition 1 (Evolution Multiscale Convergence) A sequence {uε} in L2(ΩT ) is
said to (n+ 1,m+ 1)-scale converge to u0 ∈ L2(ΩT × Yn,m) if

lim
ε→0

∫

ΩT

uε (x, t) v

(
x, t,

x

ε1
, · · · , x

εn
,
t

ε′1
, · · · , t

ε′m

)
dxdt

=
∫

ΩT

∫

Yn,m
u0
(
x, t, yn, sm

)
v
(
x, t, yn, sm

)
dyndsmdxdt
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for all v ∈ L2(ΩT ;C'(Yn,m)). This is denoted by

uε (x, t)
n+1,m+1
⇀ u0

(
x, t, yn, sm

)
.

A compactness result for evolution multiscale convergence is given in the theorem
below. For a definition of the concept of jointly separatedness, see [5].

Theorem 1 Let {uε} be a bounded sequence in L2(ΩT ) and suppose that the lists
{ε1, . . . , εn} and

{
ε′1, . . . , ε′m

}
are jointly separated. Then, up to a subsequence,

uε (x, t)
n+1,m+1
⇀ u0

(
x, t, yn, sm

)

where u0 ∈ L2(ΩT × Yn,m).

Proof See Theorem A.1 in [2].

The idea behind the following concept originates from [3].

Definition 2 (Very Weak Evolution Multiscale Convergence) A sequence {wε}
in L1(ΩT ) is said to (n+ 1,m+ 1)-scale converge very weakly to w0 ∈ L1(ΩT ×
Yn,m) if

lim
ε→0

∫

ΩT

wε (x, t) v1

(
x,
x

ε1
, . . . ,

x

εn−1

)
v2

(
x

εn

)
c

(
t,
t

ε′1
, . . . ,

t

ε′m

)
dxdt

=
∫

ΩT

∫

Yn,m
w0
(
x, t, yn, sm

)
v1(x, y

n−1)v2 (yn) c(t, s
m)dyndsmdxdt

for any v1 ∈ C∞
0 (Ω;C∞

' (Y
n−1)), v2 ∈ C∞

' (Yn)/R and c ∈ C∞
0 (0, T ;C∞

' (S
m)),

where
∫
Yn
w0 (x, t, y

n, sm) dyn = 0. We write

wε (x, t)
n+1,m+1
⇀
vw

w0
(
x, t, yn, sm

)
.

Remark 1 Since the integral mean value of w0 is zero over Yn, the limit is unique.

We give a gradient characterization and a compactness result for very weak
evolution multiscale convergence, adapted to our problem.

Theorem 2 Assume that {uε} is bounded in L2(0, T ;H 1
0 (Ω)) and, for any v1 ∈

C∞
0 (Ω), c1 ∈ C∞

0 (0, T ), c2 ∈ C∞
' (S) and r > 0,

lim
ε→0

∫

ΩT

uε (x, t) v1 (x) ∂t

(
εrc1 (t) c2

(
t

εr

))
dxdt = 0. (2)
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Then, for n = m = 1 with ε1 = ε and ε′1 = εr , up to a subsequence,

uε (x, t) ⇀ u (x, t) in L2(0, T ;H 1
0 (Ω)),

∇uε (x, t) 2,2
⇀ ∇u (x, t)+ ∇yu1 (x, t, y, s)

and

ε−1uε (x, t)
2,2
⇀
vw
u1 (x, t, y, s) ,

where u ∈ L2(0, T ;H 1
0 (Ω)) and u1 ∈ L2(ΩT × S;H 1

' (Y )/R).

Proof See Theorem 2.7 and Theorem 2.10 in [4].

3 Homogenization

Let us now establish a homogenization result for Eq. (1). First we state the weak
form of (1): for all v ∈ H 1

0 (Ω) and c ∈ C∞
0 (0, T )

∫

ΩT

−εquε (x, t) v (x) ∂t c (t)+ a
(
x

ε
,
t

εr

)
∇uε (x, t) · ∇v (x) c (t) dxdt

=
∫

ΩT

f (x, t) v (x) c (t) dxdt .

(3)

The weak form has a unique solution for every fixed ε > 0, see Section 23.7 in [6].

Theorem 3 Let {uε} be a sequence of solutions to (1) in W 1,2(0, T ;H 1
0 (Ω),

L2(Ω)). Then it holds that

uε (x, t) ⇀ u (x, t) in L2(0, T ;H 1
0 (Ω)) (4)

and

∇uε (x, t) 2,2
⇀ ∇u (x, t)+ ∇yu1 (x, t, y, s) , (5)

where u ∈L2(0, T ;H 1
0 (Ω)) and u1 ∈ L2(ΩT×S;H 1

' (Y )/R). Here, u is the unique
solution to the homogenized problem

−∇ · (b∇u (x, t)) = f (x, t) inΩT ,

u (x, t) = 0 on ∂Ω × (0, T ) (6)
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with, for q < r < q + 2,

b∇u (x, t) =
∫

Y1,1

a (y, s)
(∇u (x, t)+ ∇yu1 (x, t, y, s)

)
dyds (7)

where u1 ∈ L2(ΩT × S;H 1
' (Y )/R) is determined by the elliptic local problem

− ∇y · (a (y, s) (∇u (x, t)+ ∇yu1 (x, t, y, s)
)) = 0, (8)

for r = q + 2, b∇u (x, t) is given by (7) where u1 ∈ L2(ΩT ;W ) is determined by
the parabolic local problem

∂su1 (x, t, y, s)− ∇y · (a (y, s) (∇u (x, t)+ ∇yu1 (x, t, y, s)
)) = 0 (9)

and, for r > q + 2,

b∇u (x, t) =
∫

Y

(∫

S

a (y, s) ds

) (∇u (x, t)+ ∇yu1 (x, t, y)
)
dy

where u1 ∈ L2(ΩT ;H 1
' (Y )/R) is given by the elliptic local problem

− ∇y ·
((∫

S

a (y, s) ds

) (∇u (x, t)+ ∇yu1 (x, t, y)
)) = 0. (10)

Proof The sequence of solutions {uε} is bounded in L2(0, T ;H 1
0 (Ω)) and satis-

fies (2), see Section 3 in [1], hence Theorem 2 gives us (4) and (5). To derive the
homogenized problem we choose, in the weak form (3), the test function

v (x) c (t) = v1 (x) c1 (t) ,

where v1 ∈ H 1
0 (Ω) and c1 ∈ C∞

0 (0, T ). Letting ε tend to zero we have

∫

ΩT

∫

Y1,1

a (y, s)
(∇u (x, t)+ ∇yu1 (x, t, y, s)

) · ∇v1 (x) c1 (t) dydsdxdt

=
∫

ΩT

f (x, t) v1 (x) c1 (t) dxdt ,

and by the Variational Lemma we obtain the weak form of (6).
Now we continue by finding the local problem for each of the three cases.

Case 1 q < r < q + 2. In (3) we choose the test function

v (x) c (t) = εv1 (x) v2

(x
ε

)
c1 (t) c2

(
t

εr

)
,
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where v1 ∈ C∞
0 (Ω), v2 ∈ C∞

' (Y )/R, c1 ∈ C∞
0 (0, T ) and c2 ∈ C∞

' (S). Carrying
out the differentiations and letting ε → 0, omitting terms that equal zero, we obtain

lim
ε→0

(∫

ΩT

−εq+1−ruε (x, t) v1 (x) v2

(x
ε

)
c1 (t) ∂sc2

(
t

εr

)
dxdt

+
∫

ΩT

a

(
x

ε
,
t

εr

)
∇uε (x, t) v1 (x) · ∇yv2

(x
ε

)
c1 (t) c2

(
t

εr

)
dxdt

)
= 0.

(11)

By Theorem 2 we have

∫

ΩT

∫

Y1,1

a (y, s)
(∇u (x, t) + ∇yu1 (x, t, y, s)

)
v1 (x) · ∇yv2 (y) c1 (t) c2 (s) dydsdxdt = 0

and applying the Variational Lemma we arrive at the weak form of (8).

Case 2 r = q + 2. Taking the same test functions as in Case 1, we again arrive
at (11) and, passing to the limit, Theorem 2 gives us

∫

ΩT

∫

Y1,1

−u1(x, t, y, s)v1 (x) v2 (y) c1(t)∂sc2(s)dydsdxdt

+
∫

ΩT

∫

Y1,1

a(y, s)
(∇u (x, t)+ ∇yu1 (x, t, y, s)

)
v1 (x) · ∇yv2(y)c1 (t) c2(s)dyds = 0.

By using the Variational Lemma we get the weak form of (9).

Case 3 r > q + 2. Before we derive the local problem for this case we establish
independence of s in u1. We choose the test function

v (x) c (t) = εr−q−1v1 (x) v2

(x
ε

)
c1 (t) c2

(
t

εr

)
,

where v1 ∈ C∞
0 (Ω), v2 ∈ C∞

' (Y )/R, c1 ∈ C∞
0 (0, T ) and c2 ∈ C∞

' (S), in the weak
form (3). Carrying out the differentiations and letting ε → 0, applying Theorem 2,
we get

∫

ΩT

∫

Y1,1

−u1 (x, t, y, s) v1 (x) v2 (y) c1 (t) ∂sc2 (s) dydsdxdt = 0.

From the Variational Lemma we deduce that u1 is independent of s. Now, to find
the local problem, in (3) we choose the test function

v (x) c (t) = εv1 (x) v2

(x
ε

)
c1 (t) ,
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where v1 ∈ C∞
0 (Ω), v2 ∈ C∞

' (Y )/R and c1 ∈ C∞
0 (0, T ). Carrying out the

differentiations and letting ε → 0, omitting terms that tend to zero we arrive at

lim
ε→0

∫

ΩT

a

(
x

ε
,
t

εr

)
∇uε (x, t) v1 (x) · ∇yv2

(x
ε

)
c1 (t) dxdt = 0.

Theorem 2 and the fact that u1 is independent of s give

∫

ΩT

∫

Y1,1

a (y, s)
(∇u (x, t)+ ∇yu1 (x, t, y)

)
v1 (x)·∇yv2 (y) c1 (t) dydsdxdt = 0

and by applying the Variational Lemma we arrive at the weak form of (10).

Remark 2 We refer the interested reader to an extended version of this paper, [1].
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Mathematical Analysis for a Class
of Partial Differential Equations
with Dynamic Preisach Model

Alfredo Bermúdez, Dolores Gómez, and Pablo Venegas

Abstract This work deals with the mathematical analysis and numerical solution
of a parabolic problem with dynamic hysteresis motivated by electromagnetic field
equations. In this case, the values of the magnetic induction depend not only on
the current values of the magnetic field, but also on the previous ones and on
the velocity at which they have been attained. The hysteresis is modelled by the
dynamic Preisach operator. Based upon the definition of dynamic relay, which is
introduced and formalized as the solution of a multi-valued ordinary differential
equation, the definition of the dynamic Preisach operator is recalled and some of
their main properties established. Under suitable assumptions, the well-posedness
of a weak formulation of the initial problem is shown and a numerical solution
computed.

1 Introduction

The performance of electric machines is mainly influenced by energy losses that
are due to the magnetic field variations in the ferromagnetic materials composing
the core of the engine. These materials usually present hysteretic behaviour that
is reflected in the magnetization curves describing the magnetic response of the
material to an applied magnetic field. Building a mathematical model of this relation
is a very important and difficult task and that is why the mathematical modelling
and numerical simulation of devices involving ferromagnetic materials is still quite
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a challenge. From the electrical engineering point of view, having a good hysteresis
model is essential to correctly estimate the losses, and mainly the so-called
hysteresis and excess losses. In particular, to take into account the excess losses
the classical (rate-independent) hysteresis models are not well-suited and dynamic
models including the effect of the speed of changes of the applied field are needed,
since they can reflect the dependence of the magnetic response with frequency or
field waveform. In this context, this work deals with the mathematical analysis and
numerical solution of a parabolic problem with dynamic hysteresis. Although the
study is motivated by the electromagnetic analysis of electric machines, we will state
the problem in a general abstract framework. So, first we briefly recall the definition
of rate-dependent relay and that of dynamic Preisach operator and introduce some
of its main properties. Next, the abstract parabolic problem with dynamic hysteresis
is posed and an existence result stated. Finally, the numerical solution is computed
and some results are included in order to illustrate the behaviour of the numerical
solution for different configurations of the dynamic Preisach model.

2 The Dynamic Preisach Operator

The Preisach model describes the hysteresis using a superposition of elementary
hysteresis operators called relay operators. The model assumes that the material
consists of an infinite number of (magnetic) particles each one characterized by a
relay, so the whole system can be modelled by a weighted parallel connections of
these relays. The weight function, called Preisach density function, works as a local
influence of each operator in the overall hysteresis model and it is estimated from
measured data.

In the case of the dynamic Preisach model (see [2]) the relay is a dynamic
relay, here denoted by ηρ , that can be formally defined as follows: for a fixed
ρ = (ρ1, ρ2) ∈ R

2, ρ1 < ρ2, ηρ : L1(0, T ) × [−1, 1] → W1,1(0, T ) such that,
for any u ∈ L1(0, T ) and ξ ∈ [−1, 1], ηρ(u, ξ) : [0, T ] → [−1, 1] is the unique
function y ∈ W1,1(0, T ), y(t) ∈ [−1, 1] that solves the nonlinear Cauchy problem
(see [1]):

dy

dt
(t) = F(t, y(t)) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k(u(t)− ρ2)
+ − k(u(t)− ρ1)

− if − 1 < y(t) < 1,
0 if y(t) = −1 and u(t) ≤ ρ2,

k(u(t)− ρ2) if y(t) = −1 and u(t) ≥ ρ2,

k(u(t)− ρ1) if y(t) = 1 and u(t) ≤ ρ1,

0 if y(t) = 1 and u(t) ≥ ρ1,

(1)

y(0) = ξ, (2)

where k is a material-dependent parameter and we have used the standard notations
x+ = max{x, 0} and x− = max{−x, 0}.
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Now, given ρ0 > 0, we consider the Preisach triangle T := {ρ = (ρ1, ρ2) ∈
R

2 : −ρ0 ≤ ρ1 ≤ ρ2 ≤ ρ0} and a Preisach density function p ∈ L1(T )with p > 0.

We introduce Y :=
{
v ∈ L1

p(T ) : |v(ρ)| ≤ 1, a.e. ρ ∈ T
}

where L1
p(T ) := {ξ :

T → R Lebesgue-measurable such that
∫
T |ξ(ρ)|p(ρ) dρ < ∞} endowed with

the norm ‖ξ‖L1
p(T )

:= ∫
T |ξ(ρ)|p(ρ) dρ. Then, the dynamic Preisach operator

F
D

: L1(0, T )× Y → W1,1(0, T ) is given by (see [2])

[FD (u, ξ)](t) =
∫

T
[ηρ(u, ξ(ρ))](t)p(ρ) dρ, (3)

where ξ contains information about the “initial state” of magnetization at each point
and ηρ is the dynamic relay.

Finally, since we are interested in the mathematical analysis and computation
of distributed electromagnetic models, following [4] we introduce a space-time
dependent operator F : L1(0, T ; L2(Ω)) × L2(Ω; Y ) → L∞(0, T ; L2(Ω)) as
follows: given a time dependent input field u(x, ·) ∈ L2(0, T ) and an initial state
field ξ(x) ∈ Y, we set

[F (u, ξ)](x, t) := [F
D
(u(x, ·), ξ(x))](t), a.e. in [0, T ] ×Ω, (4)

where L2(Ω; Y ) ⊂ L2(Ω; L1
p(T )) is the space of all functions v such that

‖v‖2
L2(Ω;L1

p(T ))
:= ∫

Ω ‖v‖2
L1
p(T )

< ∞. The proof of the following lemma can

be seen in [1].

Lemma 1 The dynamic Preisach operator F is Lipschitz-continuous in the fol-
lowing sense: there exists C > 0 such that, for all u, v ∈ L1(0, T ; L2(Ω)) and
ξ ∈ L2(Ω; Y ), ‖F (u, ξ) − F (v, ξ)‖L∞ (0,T ;L2(Ω)) ≤ C

(‖u− v‖L1(0,T ;L2(Ω))

)
.

3 Transient Eddy Current Problem with Dynamic Hysteresis

Let T > 0 and Ω ∈ R
d, d = 2, 3 be a bounded domain with smooth boundary

Γ = ∂Ω . Let V ⊂ H be two Hilbert spaces of scalar functions defined in Ω with
continuous, dense, compact embedding. Then V ⊂ H ≡ H ′ ⊂ V ′. We consider a
mapping a : (0, T ) × V × V → R such that a(t, ·, ·) is bilinear a.e. t ∈ (0, T ).
Let F be the dynamic hysteresis operator defined by (4).We are interested in the
mathematical analysis of the following parabolic problem:

Find u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) with ∂tu ∈ L2(0, T ;V ′) and w ∈
L2(0, T ;H) with ∂tw ∈ L2(0, T ;V ′), such that

〈∂tu+ ∂tw, v〉V,V ′ + a(t, u, v) = 〈f, v〉V,V ′ ∀v ∈ V, a.e. in (0, T ], (5a)

w = F (u, ξ) inΩ × [0, T ], (5b)

(u+w)(0) = u0 + w0 in Ω. (5c)
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The next theorem shows the existence of solution to problem (5). The proof is
carried out through three different steps: time discretization, a priori estimates and
passage to the limit by using compactness (see [1] for the proof).

Theorem 1 Let us assume that H.1, H.2 below hold true. Then, problem (5) has a
solution.

H.1 a(·, u, v) is a continuous form in V × V which is Lipschitz continuous in t
and, for some constants λ, γ ≥ 0, satisfies the Gårding’s inequality

a(t, v, v)+ λ‖G‖2
H ≥ γ ‖G‖2

V ∀v ∈ V, ∀t ∈ [0, T ]. (6)

H.2 f belongs to H1(0, T ;V ′), u0 ∈ V and w0 := F (u0) ∈ H .

The previous result can be applied to the eddy current model

〈∂tu+ ∂tw, v〉V,V ′+
(
σ−1∇u,∇v

)
= 0 ∀v ∈ V, (7a)

w = F (u, ξ) inΩ × (0, T ), (7b)

u = g in ∂Ω, (7c)

where V = H1
0(Ω) and H = L2(Ω). Here u represents the magnetic field, w is

the magnetic induction, g depends on the current intensity and σ is the electrical
conductivity. This problem arises in the computation of 2D electromagnetic fields
in a cross-section of laminated media (see [3]) and it is important for the evaluation
of the electromagnetic losses.

4 Numerical Approximation and Examples

Let Vh be the space of continuous piecewise linear finite elements on triangular
meshes {Th}h>0 of Ω and V 0

h := Vh ∩ H1
0(Ω), where h denotes the mesh size.

We introduce a uniform partition {t i := iΔt, i = 0, . . . ,m} of [0, T ], with time
step t := T/m,m ∈ N. By using Vh for the spatial discretization and the backward
Euler scheme for time discretization, we are led to the following approximation of
problem (7): Given u0

h = w0
h = 0 in Ω , find unh ∈ Vh and wnh ∈ Vh, n = 1, . . . ,m,

satisfying

(
unh +wnh, vh

)+Δt
(
σ−1∇unh,∇vh

)
= (un−1

h + wn−1
h , vh) ∀vh ∈ V 0

h , (8a)

wnh = [F (uhΔtn, ξ)](tn) inΩ, (8b)

unh = gnh on Γ, (8c)
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where the piecewise linear function gnh is a convenient approximation of g(tn), n =
1, . . . ,m and uhΔtn is the piecewise linear in time interpolant of {uih}ni=0.

Remark 1 To solve the previous problem we need to evaluate (8b) at different
quadrature nodes P ∈ Ω . Thus, let P := (x, y) and n ∈ {1, . . . ,m}. At time
step n, the values uih(P ), i = 0, . . . , n − 1 which have been previously computed,
represent the history of the fully discrete problem at point P . Because of the latter,
we may define the nonlinear G : R → R function by

G (x) := [F (ux, ξ)](tn), ux(ti ) = uih(P ), i = 0, . . . , n− 1, ux(tn) = x,

with ux a continuous piecewise linear function. As an example, we compute G (x)
by defining the function p as the Factorized-Lorentzian distribution:

p(ρ1, ρ2) := N
(

1 +
(
ρ2 − ω
γω

)2
)−1 (

1 +
(
ρ1 + ω
γω

)2
)−1

(9)

with N = 1/2000, ω = 5 and γ = 4. By taking H(t) = 200 sin(2πt/tf ), t ∈
[0, tf ], as history function we compute G for different values of tf (1/tf being the
frequency or velocity of H ) and slopes values k. The corresponding G curves for
each of these values are shown in Fig. 1. Notice that the shape of the curve highly
depends on the values of k and the velocity of the history, ranging from a linear
behaviour to a non-differentiable function.

To deal with the non-linear problem which must be solved at each time step of
the above algorithm, a Newton-like method has been considered.

Fig. 1 G and FD(H) for different values of tf ∈ {10−2, 1} (left; k = 50) and slopes values
k ∈ {10, 108} (right; tf = 10−3). The dashed and dotted lines represent the hysteresis cycle of the
history (H -FD(H)). The solid lines corresponds to the curve G (x)
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t = 0.002s t = 0.0055s t = 0.01s

Fig. 2 w-field solution to problem (8) for k = 103 (top) and k = 1 (bottom)

4.1 Numerical Solution for Different k-Values

In this section we illustrate the behaviour of the numerical solution to problem (8)
for different configurations of the dynamic Preisach model characterized by the
Factorized-Lorentzian distribution (9). The dynamic relay and, accordingly, the
dynamic Preisach operator, varies with respect to the velocity of the input and
the relay slope k. Problem (8) has been solved, for different values of k, in the
domain Ω = [0, 0.02]2 along the time interval [0, 0.01], with σ = 100 and
g(x, y, t) = 200 sin(2πt/0.01). Field solutionw is shown in Fig. 2. From this figure
we deduce that changes in w are smaller when k = 1. This behaviour is expected
as the size of the u − w cycle decreases when the slope, k, decreases (see Fig. 1
(right)). This is not the case for the w field when k = 103: it reaches values close to
saturation (see Figs. 2 (top) and 1 (left)).
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Some Embedded Pairs for Optimal
Implicit Strong Stability Preserving
Runge–Kutta Methods

Imre Fekete and Ákos Horváth

Abstract We construct specific embedded pairs for second and third order optimal
strong stability preserving implicit Runge–Kutta methods with large absolute
stability regions. These pairs offer adaptive implementation possibility for strong
stability preserving (SSP) methods and maintain their inherent nonlinear stability
properties, too.

1 Introduction and SSP Runge–Kutta Methods

Let us consider an initial value problem (IVP)

y ′(t) = f (t, y(t)), y(t0) = y0. (1)

The numerical solution of (1) at each time step with an implicit s-stage Runge–
Kutta (RK) method RK(A, bT ) is given by

yn+1 = yn +Δt
s∑
j=1

bjf (tn + cjΔt, Yj ) (2)

and the internal stages are computed as

Yi = yn +Δt
s∑
j=1

aij f (tn + cjΔt, Yj ), i = 1, . . . , s (3)
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where yn is an approximation to the solution of (1) at time tn = t0 + nΔt ,
A = (aij ) and bT = (bj ) are the coefficient of the method. By using the
method-of-line approach, spatial discretization of hyperbolic partial differential
equations (PDEs) lead to a large system of ordinary differential equations (ODEs)

ut = F(u), (4)

where u is a vector of approximations to the exact solution of the PDE. SSP time
discretization methods were designed to ensure nonlinear stability properties in (4).
We assume that the semi-discretization (4) and a convex functional || · || (or norm,
semi-norm) are given, and that there exists a ΔtFE such that the forward Euler
condition

||u+ΔtF(u)|| ≤ ||u|| for 0 ≤ Δt ≤ ΔtFE (5)

holds for all u. An implicit Runge–Kutta (IRK) method is called SSP if the estimate

||un+1|| ≤ ||un||

holds for the numerical solution of (4), whenever (5) holds and Δt ≤ CΔtFE. The
constant C is called the SSP coefficient. For a complete introduction into the SSP
theory we recommend monograph [2]. Below we give the main results which will
be used in this paper.

Theorem 1 ([2, Theorem 3.2]) Let us consider the matrix

K =
(
A 0
bT 0

)

and the SSP conditions

K(I + rK)−1 ≥ 0 (6a)

rK(I + rK)−1e ≤ e. (6b)

Then, the SSP coefficient of the IRK method is

C(A, bT ) = sup
{
r : (I + rK)−1exists and conditions (6a)–(6b) hold

}
.

Theorem 2 ([2, Observation 5.2]) Consider an IRK method. If the method has
positive SSP coefficient C(A, bT ), then A ≥ 0 and bT ≥ 0.

It has been showed that IRK methods with positive C cannot exist for p > 6 [1].
Therefore, we are interested in taking into account order conditions up to order of
six.
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By using embedded pairs we could allow adaptive step-size control based on
local truncation error estimation [3]. The general s-stage IRK pair RK(A, bT , b̃T )
of order p(p − 1) has the following extended Butcher tableau.

c A

bT

b̃T

As usual, c = (c1, c2, . . . , cs)
T is given by c = Ae with e = (1, . . . , 1)T ∈

R
s . The vectors bT , b̃T define the coefficients of the p-th and (p − 1)-th order

approximations, respectively. Motivation for providing embedded pairs for SSP
methods is that several optimal implicit SSP methods have useful stability regions,
small error coefficients, big absolute monotonicity radius and are frequently used
even when SSP theory cannot be applied. In the next section, we give the analytical
framework that enables us to construct the new family of embedded pairs and
construct the embedded pairs analytically and numerically for second and third
order optimal implicit SSP RK methods.

2 Embedded Pairs for Second and Third Order Implicit SSP
RK Methods

We introduce the notation SSPIRK(s, p) for optimal implicit SSP RK methods,
where s and p refer to the number of stages and order, respectively. We give below
the desired properties for embedded pairs.

(i) The embedded method is order of p − 1.
(ii) The embedded method is non-defective, i.e. it violates all of the p-th order

conditions.
(iii) The embedded method has rational coefficients and simple structure.
(iv) The embedded method has maximum SSP coefficient C̃, where C̃ is the SSP

coefficient of the optimal SSPIRK method; if this is not the case, then we are
looking for embedded SSPIRK methods with smaller SSP coefficient or simply
embedded IRK methods.

Taking into account the desired properties (i)–(iv), we seek an embedded pair b̃T ,
with the stage coefficient A from a SSPIRK method such that these satisfy the
following optimization problem

the appropriate order conditions and property (ii) are fulfilled, (7)

(
A 0
b̃T 0

)(
I + C̃

(
A 0
b̃T 0

))−1

≥ 0, (8)

∣∣∣∣∣

∣∣∣∣∣C̃
(
A 0
b̃T 0

)(
I + C̃

(
A 0
b̃T 0

))−1
∣∣∣∣∣

∣∣∣∣∣∞
≤ 1, (9)
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where (8)–(9) are equivalent with (6a)–(6b) and || · ||∞ denotes the induced matrix
norm. Since we fix C̃ therefore we have a simplified optimization problem (7)–(9).
Due to Theorem 2 and the first order condition b̃T e = 1 we have the componentwise
condition 0 ≤ b̃T ≤ e. The newly constructed pairs should satisfy desired properties
(i)–(iv) and should have large absolute stability regions.

2.1 Embedded Pairs for SSPIRK(s,2) Methods

The s-stage second order characterization was given by Gottlieb et al. [4]. The
methods have C = 2s. The Butcher form of SSPIRK(s, 2) methods is given in
Table 1. Taking into account desired properties (i)–(iv) it turns out that for general
s we cannot find embedded pairs with maximal C̃.

Table 1 Butcher form of
SSPIRK(s, 2) methods

1
2s

1
2s

3
s

1
s

1
2s

5
s

1
s

1
s

1
2s

.

.

.
.
.
.

.

.

.
. . .

. . .

2s−1
2s

1
s

1
s

. . . 1
s

1
2s

1
s

1
s

. . . 1
s

1
s

Theorem 3 There is no first order embedded pair for SSPIRK(2, 2)with properties
(i)–(iv).

Based on Theorem 3 and its generalization one can conclude that there isn’t first
order embedded pair with C̃ = 2s for SSPIRK(s, 2). Therefore we are interested
in giving embedd pairs with smaller C̃. Namely we are looking for C̃ = s and our
numerical search suggested the following pairs satisfying the desired properties (i)–
(iv).

b̃T1 =
(

2

s + 1
, . . . ,

2

s + 1
,

3

s + 1

)T
, b̃T2 =

(
1

s
, . . . ,

1

s
,

5

4s
,

3

4s

)T

b̃T3 =
(

1

s
, . . . ,

1

s
,

13

12s
,

10

12s
,

10

12s
,

15

12s

)T

Based on absolute stability region measurements it is obvious that embedded pair
b̃T2 is recommended. Below we present a result for s = 4 on Fig. 1 but as we are
increasing the number of stages we can see similar results
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Fig. 1 The left and right plots correspond to the absolute stability region of SSPIRK(4, 2) and its
b̃T2 embedded pair

2.2 Embedded Pairs for SSPIRK(s, 3) Methods

The s-stage third order characterization was also given by Gottlieb et al. [4]. The
methods have C = s− 1 +√

s2 − 1. The Butcher form of SSPIRK(s, 3) methods is
given in Table 2.

Table 2 Butcher form of
SSPIRK(s, 3) methods

β1 β1

2β1 + β2 β1 + β2 β1

3β1 + 2β2 β1 + β2 β1 + β2 β1

.

.

.
.
.
.

.

.

.
. . .

. . .

sβ1 + (s − 1)β2 β1 + β2 β1 + β2 . . . β1 + β2 β1
1
s

1
s

. . . 1
s

1
s

Where

β1 = 1

2

(
1 −

√
s − 1

s + 1

)
and β2 = 1

2

(√
s + 1

s − 1
− 1

)
.

Similarly to the SSPIRK(s, 2) case after tedious calculations one can see for
lower stages that the desired properties (i)–(iv) cannot be satisfied with the maximal
C̃ coefficient. However, if we consider C̃ = C/2 then we could give general form for
SSPIRK(s, 3) methods with desired properties (i)–(iv). These pairs are

b̃T1 =
(

1√
s2 − 1

, . . . ,
1√
s2 − 1

,
s − 1 − s−2

s−1

√
s2 − 1

2
,

3 − s + s−2
s+1

√
s2 − 1

2

)
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and

b̃T2 =
(

1

s
, . . . ,

1

s
,

21s + 39 − 3
√
s2 − 1

16s2 + 34s
,

3s + 12 + 3
√
s2 − 1

8s2 + 17s
,

21s + 39 − 3
√
s2 − 1

16s2 + 34s

)
.

Based on absolute stability region measurements we recommend embedded pair b̃T2 .
Here we present a result for s = 4 on Fig. 2. As we are increasing the number of
stages we can see similar results.

Absolute Stability Region for Runge-Kutta Method Absolute Stability Region for Runge-Kutta Method
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Fig. 2 The left and right plots correspond to the absolute stability region of SSPIRK(4, 3) and its
b̃T2 embedded pair
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High-Order Compact Finite Difference
Scheme for Option Pricing in Stochastic
Volatility with Contemporaneous Jump
Models

Bertram Düring and Alexander Pitkin

Abstract We extend the scheme developed in B. Düring, A. Pitkin, “High-order
compact finite difference scheme for option pricing in stochastic volatility jump
models”, 2019, to the so-called stochastic volatility with contemporaneous jumps
(SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the
scheme is assessed through a number of numerical experiments, using comparisons
against a standard second-order central difference scheme. We observe that the
new high-order compact scheme achieves fourth order convergence and discuss the
effects on efficiency and computation time.

1 Introduction

The stochastic volatility with contemporaneous jump model (SVCJ) model, [3], can
be seen as an extension of the Bates model [1], which combines the positive features
of stochastic volatility and jump-diffusion models. In both models the option price is
given as the solution of a partial integro-differential equation (PIDE), see e.g. [2]. In
[5] we have presented a new high-order compact finite difference scheme for option
pricing in Bates model. The implicit-explicit scheme is based on the approaches in
Düring and Fournié [4] and Salmi et al. [6]. The scheme is fourth order accurate in
space and second order accurate in time. In the present work we extend the scheme
to the SVCJ model derived by Duffie et al. [3].

This article is organised as follows. In the next section we recall the SVCJ model
for option pricing, we discuss the implementation of the implicit-explicit scheme
and note the adaptations to the previously derived scheme for option pricing under
the Bates model. Section 3 is devoted to the numerical experiments, where we assess
the performance of the new scheme.
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2 The SVCJ Model

The SVCJ model [3] is a stochastic volatility model which allows for jumps in both
volatility and returns. Within this model the behaviour of the asset value, S, and its
variance, σ , is described by the coupled stochastic differential equations,

dS(t) = μSS(t)dt +
√
σ(t)S(t)dW1(t)+ S(t)dJ S,

dσ(t) = κ(θ − σ(t))+ v√σ(t)dW2(t)+ dJ σ ,

for 0 � t � T and with S(0), σ (0) > 0. Here, μS = r − λξS is the drift rate, where
r � 0 is the risk-free interest rate. The two-dimensional jump process (J S, J σ ) is a
compound Poisson process with intensity λ � 0. The distribution of the jump size
in variance is assumed to be exponential with mean υ. In respect to jump size zσ in
the variance process, J + 1 has a log-normal distribution p(zS, zσ ) with the mean
in log zs being γ + ρJ zσ , i.e. the probability density function is given by

p(zS, zσ ) = 1√
2πzSδυ

e
− zσ

υ − (log zS−γ−ρJ zσ )2
2δ2 .

The parameter ξs is defined by ξs = eγ+ δ2
2 (1 − υρJ )−1 − 1, where ρJ defines the

correlation between jumps in returns and variance, γ is the jump size log-mean and
δ2 is the jump size log-variance. The variance has mean level θ , κ is the rate of
reversion back to mean level of σ and v is the volatility of the variance σ . The two
Wiener processesW1 andW2 have constant correlation ρ.

2.1 Partial Integro-Differential Equation

By standard derivative pricing arguments for the SVCJ model, obtain the PIDE

∂V

∂t
+ 1

2
S2σ

∂2V

∂S2 + ρvσS ∂
2V

∂S∂σ
+ 1

2
v2σ

∂2V

∂σ 2 + (r − λξs)S ∂V
∂S

+ κ(θ − σ)∂V
∂σ

−(r + λ)V + λ
∫ +∞

0

∫ +∞

0
V (S.zS, σ + zσ , t)p(zS, zσ ) dzσdzS,

which has to be solved for S, σ > 0, 0 ≤ t < T and subject to a suitable final
condition, e.g. V (S, σ, T ) = max(K − S, 0), in the case of a European put option,
with K denoting the strike price.

Through the following transformation of variables

x = log S, τ = T − t, y = σ/v and u = exp(r + λ)V
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we obtain

uτ = 1

2
vy

(
∂2u

∂x2 + ∂2u

∂y2

)
+ ρvy ∂

2u

∂x∂y
−
(

1

2
vy − r + λξs

)
∂u

∂x

+κ (θ − vy)
v

∂u

∂y
+λ

∫ +∞

−∞

∫ +∞

0
ũ(x+zx, y+zy, τ )p̃(zx, zy) dzydzx = LD+LI ,

(1)

which is now posed on R ×R
+ × (0, T ), with

ũ(x, y, τ ) = u(ex, vy, τ ) and p̃(zx, zy) = vezxp(ezx , zy).
The problem is completed by suitable initial and boundary conditions. In the

case of a European put option we have initial condition u(x, y, 0) = max(1 −
exp(x), 0), x ∈ R, y > 0.

2.2 Implicit-Explicit High-Order Compact Scheme

For the discretisation, we replace R by [−R1, R1] and R
+ by [L2, R2] with

R1, R2 > L2 > 0. We consider a uniform grid Z = {xi ∈ [−R1, R1] : xi =
ih1, i = −N, . . . , N} × {yj ∈ [L2, R2] : yj = L2 + jh2, j = 0, . . . ,M}
consisting of (2N + 1) × (M + 1) grid points with R1 = Nh1 , R2 = L2 +Mh2
and with space step h := h1 = h2 and time step k. Let uni,j denote the approximate
solution of (1) in (xi, yj ) at the time tn = nk and let un = (uni,j ).

For the numerical solution of the PIDE we use the implicit-explicit high-order
compact (HOC) scheme presented in [5]. The implicit-explicit discretisation in time
is accomplished through an adaptation of the Crank-Nicholson method for which
we shall define an explicit treatment for the two-dimensional integral operator,LI .

We refer to [5] for the details of the derivation of the finite difference scheme
for the differential operator LD and the implementation of initial and boundary
conditions. To form the SVCJ model the coefficients are adjusted, with constant
ξs replacing ξB .

2.3 Integral Operator

After the initial transformation of variables we have the integral operator in the
following form,

LI = λ
∫ +∞

−∞

∫ +∞

0
ũ(x + zx, y + zy, τ )p̃(zx, zy) dzydzx,
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We make a final change of variables ζ = x + zx and η = y + zy , with the intention
of studying the value of the integral at the point (xi, yj ),

I =
∫ +∞

−∞

∫ +∞

0
ũ(ζ, η, τ )p̃(ζ − xi, η − yj ) dηdζ (2)

We numerically approximate the value of (2) over the rectangle (−R1, R1) ×
(L2, R2), with these values chosen experimentally.

Ii,j =
∫ +∞

−∞

∫ +∞

0
ũ(ζ, η, τ )p̃(ζ − xi, η − yj ) dηdζ

≈
∫ R1

−R1

∫ R2

L2

ũ(ζ, η, τ )p̃(ζ − xi, η − yj ) dηdζ (3)

To estimate the integral we require a numerical integration method of high order
to match our finite difference scheme. We choose to use the two dimensional
composite Simpson’s rule. With f representing the integral in (3), we have error
bounded by

h4

180
(R2 − L2)(2R1) max

ζ∈[−R1,R1],η∈[L2,R2]
|f (4)(ζ, η)|.

We evaluate the integral in (3) using the two-dimensional Simpsons rule
on a equidistant grid in x, y with spacing Δx = Δy and mx grid-points in
(−R1, R1), (L2, R2), where each interval has length mesh-size h/2. We choose
R1, L2 and R2 such that the value of terms on the boundary can be considered
negligible. Hence,

Ii,j ≈ h2

36

[
16

mx
2∑
l=1

⎛
⎝

mx
2∑
k=1

ũ(x2k−1, y2l−1, τ )p̃(x2k−1 − xi, y2l−1 − yj )
⎞
⎠

+ 4

mx−1
2∑
l=1

⎛
⎜⎝
mx−1

2∑
k=1

ũ(x2k, y2l, τ )p̃(x2k − xi, y2l − yj )
⎞
⎟⎠

+ 8

mx−1
2∑
l=1

⎛
⎝

mx
2∑
k=1

ũ(x2k−1, y2l , τ )p̃(x2k−1 − xi, y2l − yj )
⎞
⎠

+ 8

mx
2∑
l=1

⎛
⎜⎝
mx−1

2∑
k=1

ũ(x2k, y2l−1, τ )p̃(x2k − xi, y2l−1 − yj )
⎞
⎟⎠
]
.
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To avoid the construction of a dense matrix we compute this integral, as a product
of the sums, at each time step.

If not mentioned otherwise, we use the following default parameters in our
numerical experiments: κ = 2, θ = 0.01, v = 0.25, ρ = −0.5, υ = 0.2, r = 0.05,
λ = 0.2, γ = −0.5, ρJ = −0.5, δ2 = 0.16.

3 Numerical Experiments

We perform numerical studies to evaluate the rate of convergence and computational
efficiency of the scheme. For comparison we include the results for a second-order
central finite difference scheme, with the use of an appropriate two-dimensional
trapezoidal rule to complete the numerical integration and the inclusion of a
Rannacher-style start up to combat stability issues.

3.1 Numerical Convergence

For our convergence study we refer to both the l2-error ε2 and the l∞-error ε∞ with
respect to a numerical reference solution on a fine grid with href = 0.025. With
the parabolic mesh ratio k/h2 fixed to a constant value we expect these errors to
converge as ε = Chm for some m and C which represent constants. From this
we generate a double-logarithmic plot ε against h which should be asymptotic to a
straight line with slope m, thereby giving a method for experimentally determining
the order of the scheme.

The numerical convergence results are included in Fig. 1. We observe that the
numerical convergence orders reflect the theoretical order of the schemes, with the
new high-order compact scheme achieving convergence rates near fourth order.

10-1

h

10-4

10-2

100

102

l 2 e
rr

or

4

2

HOC (order 3.7)
2nd order (order 2.1)

10-1

h

10-4

10-2

100

102

l
 e

rr
or

4

2

HOC (order 3.6)
2nd order (order 2)

Fig. 1 l2 and l∞ error in option price taken at mesh-sizes h = 0.4, 0.2, 0.1, 0.05
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Fig. 2 Computational efficiency comparison taken at mesh-sizes h = 0.4, 0.2, 0.1, 0.05

3.2 Computational Efficiency Comparison

We compare the computational time of the two schemes, looking at the time
to obtain a given accuracy, taking into account matrix setups, factorisation and
boundary condition evaluation. The timings depend obviously on technical details
of the computer as well as on specifics of the implementation, for which care was
taken to avoid unnecessary bias in the results. All results were computed on the
same laptop computer (2015 MacBook Air 11′′).

The results are shown below in Fig. 2. The mesh-sizes used for this comparison
are h = 0.4, 0.2, 0.1 and 0.05, with the reference mesh-size used being href =
0.025.

The HOC scheme achieves higher accuracy at all mesh sizes, however, this is at
the expense of computation time. We attribute this increase to the extra computa-
tional cost associated with the Simpson’s rule as compared to the trapezoidal rule.

We include the results previously seen for the Bates model, [5], to indicate
the increase in computation time between the two models. With access to higher
memory allocation it may be possible to reduce this increase, through use of a
circulant matrix and Fourier transforms to complete the numerical integration,
[6]. However, it is not clear how this would be implemented with the different
weightings assigned by Simpson’s rule.
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Exploring Parallel-in-Time Approaches
for Eddy Current Problems

Stephanie Friedhoff, Jens Hahne, Iryna Kulchytska-Ruchka,
and Sebastian Schöps

Abstract We consider the usage of parallel-in-time algorithms of the Parareal
and multigrid-reduction-in-time (MGRIT) methodologies for the parallel-in-time
solution of the eddy current problem. Via application of these methods to a two-
dimensional model problem for a coaxial cable model, we show that a significant
speedup can be achieved in comparison to sequential time stepping.

1 Introduction

Recently, efficient and robust designs of electromechanical energy converters are
gaining again in importance because of the transition towards sustainable energy
in Europe (‘Energiewende’ in German). Electrical machinery is well understood
and developed in industry close to their technical limits, but often without transient
analysis or consideration of uncertainties in the design process. Such studies are
only carried out late in the development process due to their high computational
costs. This may lead to the fact that better or more robust designs are ruled out and
not considered further on. One promising way to speed up transient analysis are
parallel-in-time methods.

In contrast to classical time-integration techniques based on a time-stepping
approach, i. e., solving sequentially for one time step after the other, parallel-in-time
algorithms allow simultaneous solution across multiple time steps. Starting with
the work of Nievergelt [1], various approaches for parallel-in-time integration have
been explored; a recent review of the extensive literature in this area is [2]. The key
practical aspect for choosing one of the many time-parallel methods when aiming at
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adding parallelism to an existing application code is the level of intrusiveness, i. e.,
the required amount of implementation effort. There are only a few time-parallel
methods that are non-intrusive. In this paper, we consider two of these approaches,
the Parareal method [3] and the multigrid-reduction-in-time (MGRIT) algorithm [4]
that, in a specific two-level setting, can be viewed as a Parareal-type algorithm.

2 Eddy Current Model Problem

For an open, bounded domain Ω ⊂ R
3 and t ∈ I = (t0, tend] ⊂ R≥0, the evolution

of electromagnetic fields is governed by Maxwell’s equations onΩ × I [6]

∇ × E = −∂tB, ∇ × H = ∂tD + J, ∇ · B = 0, ∇ · D = ρ (1)

which are completed by the constitutive relations

D = εE, J = σE + Js, B = μH. (2)

In these equations, H is the magnetic field [A/m], B the magnetic flux density [T],
E the electric field [V/m], D the electric flux density [C/m2], J and Js are the total
and source current density [A/m2], ρ is the electric charge density [C/m3]. All fields
are functions of space x ∈ Ω and time t ∈ I. The material properties σ ≥ 0,
ε > 0 and μ > 0 are the electric conductivity, the electric permittivity and the
magnetic permeability, respectively. It is convenient to invert the magnetic material
law, i. e., H = νB, using the reluctivity ν, where ν(B) can be a sufficiently smooth
and bounded function of the magnitude B = ‖B‖, see [7]. In the following, we
consider only devices where the displacement current can be neglected with respect
to the source currents, i. e., ‖∂tD‖ � ‖Js‖. An analysis of this error can be found
in [8]. Assuming ∂tD = 0 yields the so-called magnetoquasistatic approximation or
eddy current problem. Eddy currents lead to the skin effect, i. e., currents through a
conductor are pushed to the surface if frequency increases [6, Chapter 5.18].

One may introduce the (‘modified’ [9]) magnetic vector potential A such that
E = −∂tA. Then, inserting the equations into each other yields

σ∂tA + ∇ × (
ν(‖∇ × A‖)∇ × A

) = Js. (3)

We consider the geometry shown in Fig. 1 and choose homogeneous Dirichlet
conditions, i. e., A × n = 0 with normal vector n on ∂Ω and the initial value
A|t0 ≡ 0. The source is defined as Js|Ω0(t) = ez/(πr2

0 )fn(t) in the inner cable Ω0
and vanishes elsewhere, ez denotes the unit vector in z-direction, and the excitation
is given by

fn(t) =
⎧⎨
⎩

sign

[
sin

(
2π

T
t

)]
, sn(t)−

∣∣∣∣sin

(
2π

T
t

)∣∣∣∣ < 0,

0, otherwise,
(4)
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Fig. 1 Cable model, its cross section, and nonlinear material characteristic ν(B). The dark grey
regionΩ0 models the copper wire, the white region the air insulationΩ1, and the light grey annulus
the conducting shieldΩ2 with nonlinear material characteristic ν(B). More details are given in [5]

where sn(t) = n/T t − .n/T t/ , t ∈ [0, T ] is the common sawtooth pattern, with
n = 1100 teeth and period T = 0.02 s [14]. The reluctivity ν is modeled as vacuum
(1/μ0) in Ω0 and Ω1, and is given in Ω2 by a monotone cubic spline curve, Fig. 1,
the conductivity σ is only non-zero in the tube regionΩ2 (10 MS/m).

When considering a tube of very large length, it is sufficient to solve a planar
2D problem using edge shape functions that only have a z-component. They can be
constructed from the nodal shape functionsNi(x) as

A =
Ndof∑
i=1

uiwi (x) with wi (x) = Ni(x)
lz

ez, (5)

where lz = 1m refers to the length in z-direction and Ndof = 2269 in this example.
The Ritz-Galerkin approach using the first-order ansatz functions (5) yields

Mσu′ + Kν(u)u = js, (6)

with the matrices and the right-hand side

Mσ,i,j =
∫

Ω

σwj ·wi dx, Kν,i,j (·) =
∫

Ω

ν(·)∇×wj ·∇×wi dx, js,i =
∫

Ω

Js ·wi dx,

respectively. The resulting system (6) consists of differential-algebraic equations of
index-1 due the vanishing entriesMσ,i,j of the mass matrix Mσ inΩ0 andΩ1, [10].

3 Multigrid Reduction in Time

The multigrid-reduction-in-time (MGRIT) algorithm [4] is an iterative, parallel
method, based on applying multigrid reduction (MGR) [11, 12] principles in time,
for solving time-stepping problems of the form

u′(t) = f(t,u(t)), u(t0) = g0, t ∈ (t0, tend] ⊂ R≥0, (7)
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with initial condition, g0, at t = t0. Note that form (7) can be a system of ODEs,
arising, for example, after spatial discretization of a space-time PDE, or it can be
a system of DAEs such as given in Eq. (6). Discretizing the time interval on a grid
ti = iΔt , i = 0, 1, . . . , Nt , with, for notational convenience, constant time step
Δt = (tend − t0) /Nt > 0, let ui be an approximation to u(ti) for i = 1, . . . , Nt ,
and let u0 = u(t0). Then, considering a one-step time-independent time integration
method with time-stepping operator,ΦΔt , that takes a solution at time ti−1 to that at
time ti , the solution to (7) is defined via time-stepping, which can be represented as
a (sequential) forward solve of the block-structured linear system

Lu ≡

⎡
⎢⎢⎢⎣

I

−ΦΔt I
. . .

. . .

−ΦΔt I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u0

u1
...

uNt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0

g1
...

gNt

⎤
⎥⎥⎥⎦ ≡ g. (8)

Alternatively, considering the lower block bidiagonal structure, we could apply
cyclic reduction, whereby we first solve the Schur complement system,

LSuΔ ≡

⎡
⎢⎢⎢⎣

I

−ΦmΔt I
. . .

. . .

−ΦmΔt I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u0

um
...

uNt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0

ĝm
...

ĝNt

⎤
⎥⎥⎥⎦ ≡ ĝ, (9)

for the value of the solution at every m-th temporal point, with consistently
restricted forcing terms. Then define the solution at the remaining temporal points
by local (and parallel) time-stepping between those points defined from the Schur
complement. MGRIT is based on interpreting this cyclic reduction approach as
a two-level MGR algorithm, enabling parallelism in the solution process (8).
Therefore, define a coarse temporal mesh, or (using multigrid terminology) the
set of C-points, to be those points included in the Schur complement system (9),
with the remaining temporal points as the set of F-points. Further define “ideal”
interpolation as the map which takes the solution at the C-points and yields a zero
residual at the F-points, with a similar definition for “ideal” restriction. The Schur
complement then arises as the standard Petrov-Galerkin coarse-grid operator with
these definitions of restriction and interpolation. Cyclic reduction can be viewed
as a two-level method with this Petrov-Galerkin coarse-grid operator and a block
smoother (called F-relaxation) that converges in one iteration. As it is typical in
the MGR setting, the MGRIT approach replaces the true Schur complement with
a simpler operator (typically of the same form as the original bidiagonal system,
but with a time propagator using time-step mΔt), replaces ideal restriction with
simple injection, and compensates by adding relaxation. Furthermore, the two-level
method can be extended to multiple levels in a simple recursive manner, and the full
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approximation storage (FAS) approach [13] can be applied in the same manner to
accommodate nonlinear problems.

4 Numerical Results

We apply classical sequential time stepping and two MGRIT variants to the eddy
current model problem (3) with the pulsed excitation (4) on the space-time domain
Ω × (0, 0.2] s, with Ω = Ω0 ∪ Ω1 ∪ Ω2 depicted in Fig. 1. The spatial domain,
Ω , is discretized using 2269 degrees of freedom and the backward Euler method
is used on a uniform grid with 32,768 time steps for the time derivative of the
space-discrete time-stepping problem (6). The time step on the finest grid, l = 0, is
chosen to be Δt = 6.1 · 10−6 s, and the time step on each coarse grid, l, is given
by mlΔt , l ≥ 1. Two MGRIT variants are considered: a two-level Parareal-type
method with a coarsening factor of m = 256, and a five-level method that coarsens
uniformly across all grids with a factor of m = 4. Thus, the coarsest grid consists
of 128 points in time in both cases. On this coarsest temporal grid, time stepping
is used. All spatial problems are solved using Newton’s method with a direct LU
solver.

The MGRIT algorithm was implemented in parallel using Python and Message
Passing Interface (MPI). Numerical results were generated on an Intel Xeon Phi
cluster consisting of 272 1.4 GHz Intel Xeon Phi processors.

Figure 2 shows convergence of the two MGRIT variants applied to the eddy
current model problem. We see linear convergence for both variants. Comparing the
number of spatial time-stepping solves required for the two methods to the optimal
count of Nt for sequential time stepping, we note that one iteration requires about

Fig. 2 Convergence of MGRIT variants applied to the eddy current model problem
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Fig. 3 Strong scaling results for MGRIT applied to the eddy current model problem

Nt or 2.5Nt spatial solves, respectively, when considering the two-level Parareal-
type method or the five-level MGRIT scheme. This large computational overhead is
demonstrated in the strong scaling results in Fig. 3. The dotted and solid lines show
results for the two- and five-level methods, respectively, for increasing the number
of processors in the temporal dimension only. The dashed line shows the runtime of
time stepping on one processor for reference purposes. Results show that the extra
work in the MGRIT variants can be effectively parallelized at high processor counts,
i. e., more than 32, with good strong parallel scaling with a speedup of up to a factor
of about 2.9 over sequential time stepping.

5 Conclusions

MGRIT was applied for the first time to the eddy current problem, which yields
an index-1 DAE after spatial discretization. A speedup of approximately three
times could be obtained. A strong scaling investigation shows that the method
converges linearly with the number of processors, even for non-standard, pulsed
right-hand sides, which has been shown to be problematic for classical Parareal
[14].
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Convergence of Solutions in a Mean-Field
Model of Go-or-Grow Type
with Reservation of Sites for Proliferation
and Cell Cycle Delay

Ruth E. Baker, Péter Boldog, and Gergely Röst

Abstract We consider the mean-field approximation of an individual-based model
describing cell motility and proliferation, which incorporates the volume exclusion
principle, the go-or-grow hypothesis and an explicit cell cycle delay. To utilise the
framework of on-lattice agent-based models, we make the assumption that cells
enter mitosis only if they can secure an additional site for the daughter cell, in which
case they occupy two lattice sites until the completion of mitosis. The mean-field
model is expressed by a system of delay differential equations and includes variables
such as the number of motile cells, proliferating cells, reserved sites and empty sites.
We prove the convergence of biologically feasible solutions: eventually all available
space will be filled by mobile cells, after an initial phase when the proliferating cell
population is increasing then diminishing. By comparing the behaviour of the mean-
field model for different parameter values and initial cell distributions, we illustrate
that the total cell population may follow a logistic-type growth curve, or may grow
in a step-function-like fashion.

1 Introduction

Cell proliferation and motility are key processes that govern cancer invasion or
wound healing. The go-or-grow hypothesis postulates that proliferation and migra-
tion spatiotemporally exclude each other. This has been acknowledged, for example,
for glioblastoma [5]. In general, two phenotypes that can be of particular importance
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to progression of aggressive cancers are ‘high proliferation-low migration’ and
‘low proliferation-high migration’, and the mechanisms governing this switching
are of great interest in current medical research [7]. Here we consider a strong
simplification of this phenomenon by assuming that (differently from [4]) motile
cells stop for a fixed period of time to complete cell division, upon which they
immediately switch back into the migratory phenotype. We study the mathematical
properties of a mean-field approximation of an individual based model describing
this process, and this note complements our other ongoing works [1, 3] where
we investigate in detail a range of biological hypotheses with the corresponding
individual-based as well as mean-field, analytically tractable, models.

2 The Model

Assume that agents (representing biological cells) move and proliferate on an n-
dimensional square lattice with length � (in each direction), so that K = �n is an
integer describing the number of lattice sites. We divide our agent population into
two subpopulations, motile and proliferative, with the condition that a proliferative
agent has to be attached to an adjacent site which is reserved until the end of
proliferation. As a result, sites can either contain a motile agent, a proliferating
agent, be reserved for the daughter agent of an attached proliferative agent, or be
empty. At each time step, each motile agent can attempt to move into an adjacent
lattice site or proliferate at its current site. However, if a motile agent attempts to
move into a site that is already occupied or reserved, the movement event is aborted.
Similarly, if a motile agent attempts to begin proliferation by reserving a site that is
already occupied, then the proliferation event is aborted. Agents attempt to convert
from being motile to proliferative at constant rate r , and the proliferative phase has
length τ , upon which two motile daughter agents appear, one on the proliferating
site, and one on the reserved site.

Based on the above, tracking the rate of change of the number of motile agents,
m(t), proliferative agents, p(t), and reserved sites, q(t), in time, and following the
arguments and derivation in [2], we obtain the following mean-field approximation:

m′(t) = −rm(t)K−m(t)−p(t)−q(t)
K

+ 2rm(t−τ )K−m(t−τ )−p(t− τ )− q(t − τ )
K

,

p′(t) = rm(t)K −m(t)− p(t)− q(t)
K

− rm(t − τ )K −m(t − τ )− p(t − τ )− q(t − τ )
K

,

q ′(t) = rm(t)K −m(t)− p(t)− q(t)
K

− rm(t − τ )K −m(t − τ )− p(t − τ )− q(t − τ )
K

.

Here, the first term in the m equation expresses that m-cells attempt to proliferate
with rate r , but proliferation starts only if the randomly selected target site is empty
at time t , which has probability (K − m(t) − p(t) − q(t))/K , if we assume that
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there is no spatial correlation. The other terms can be interpreted in a similar way.
Using the variable u = K −m− p − q that accounts for empty sites, we can write

m′(t) = −rK−1m(t)u(t)+ 2rK−1m(t − τ )u(t − τ ), (1)

p′(t) = rK−1m(t)u(t) − rK−1m(t − τ )u(t − τ ), (2)

q ′(t) = rK−1m(t)u(t) − rK−1m(t − τ )u(t − τ ), (3)

u′(t) = −rK−1m(t)u(t). (4)

3 Long-Term Behaviour

The usual phase space for Eqs. (1)–(4) is C = C([−τ, 0], R4), the Banach space of
continuous function from the interval [−τ, 0] to R4 equipped with the supremum
norm. With the notation x(t) = (m(t), p(t), q(t), u(t)), our system is of the form
x ′(t) = f (xt ) where xt ∈ C is defined by the relation xt (θ) = x(t + θ) for θ ∈
[−τ, 0] and f : C → R4 is defined by the right-hand side of Eqs. (1)–(4). The
standard results for delay differential equations provide existence and uniqueness of
solutions from initial data x0 = φ ∈ C (see, for example [6]).

Given the biological motivation, we are interested only in non-negative solutions,
for which p(t) = q(t) = rK−1

∫ t
t−τ m(s)u(s)ds holds, meaning that proliferative

cells at a given time t are exactly those who started the proliferation process in
the time interval [t − τ, t], and the reserved sites correspond to them. With this
compatibility condition and the balance law K = m(t) + p(t) + q(t) + u(t), we
define the feasible phase space

Ω :=
⎧⎨
⎩φ ∈ C : φj (θ) ≥ 0 for all θ ∈ [−τ, 0], j = 1, 2, 3, 4;

4∑
j=1

φj (0) = K; φ2(0) = φ3(0) = rK−1
∫ 0

−τ
φ1(s)φ4(s)ds

⎫⎬
⎭ . (5)

Lemma 1 The setΩ is forward invariant, that is for any solution x(t) with x0 ∈ Ω ,
xt ∈ Ω for all t ≥ 0.

Proof Integrate Eq. (2) from 0 to t to obtain (similarly for q(t))

p(t) − p(0) = rK−1
∫ t

t−τ
m(s)u(s)ds − rK−1

∫ 0

−τ
m(s)u(s)ds.



384 R. E. Baker et al.

From x0 ∈ Ω we have p(0) = q(0) = rK−1
∫ 0
−τ m(s)u(s)ds, hence

p(t) = q(t) = rK−1
∫ t

t−τ
m(s)u(s)ds, (6)

thus the third condition in the definition of Ω is preserved. The second trivially
follows from summing up the equations to see (m(t) + p(t) + q(t) + u(t))′ = 0,
so K = m(t) + p(t) + q(t) + u(t) is preserved. To confirm nonnegativity, note
that u(t) = u(0) exp(−rK−1

∫ t
0 m(s)ds) ≥ 0. Assuming that m(t) ≥ 0 for t ≤

t0, we have m(t − τ )u(t − τ ) ≥ 0 for t ≤ t0 + τ , and consequently m(t) ≥
m(t0) exp(−rK−1

∫ t
t0
u(s)ds) holds on [t0, t0 + τ ]. Hence, by the method of steps

we obtain non-negativity of m(t) for all t . Then the non-negativity of p(t) and q(t)
follow from Eq. (6). )*

Note that since solutions starting from Ω stay in this bounded set, they exist
globally. Following [6], we say that a continuous functional V : C → R is a
Lyapunov functional on the set Ω in C for Eqs. (1)–(4), if it is continuous on
the closure of Ω , and V̇ ≤ 0 on Ω . Here, V̇ denotes the derivative of V along
solutions. In our case Ω is itself closed. We also define E := {φ ∈ Ω : V̇ = 0} and
M := the largest set in E which is invariant with respect to Eqs. (1)–(4)).

Theorem 1 If m(0) > 0, then limt→∞(m(t), p(t), q(t), u(t)) = (K, 0, 0, 0).
Proof Consider the functional V (φ) = φ4(0). Then V̇ = −rK−1m(t)u(t) ≤ 0
for solutions inΩ , and by LaSalle’s invariance principle (cf. Thm. 2.5.3 in [6]), the
limit set of any solution is inM , thus on the limit set of any solution,mu ≡ 0 holds.
Since for any solution u is always zero or always positive, we have either m ≡ 0
or u ≡ 0. In both cases, p = q ≡ 0 follows. Hence, the limit set can only be
composed of the two equilibria (K, 0, 0, 0) or (0, 0, 0,K). Finally, we show that if
m(0) > 0, then m(t) can not converge to 0. Since u(t) is monotone decreasing, for
such a solution m(t) + p(t) + q(t) = K − u(t) ≥ K − u(0) > 0 should hold. If
m(t) → 0 as t → ∞, then from Eq. (6), also p(t) = q(t) → 0. This contradicts
m(t) + p(t) + q(t) ≥ K − u(0) > 0 and so we can exclude (0, 0, 0,K) from the
limit set. Therefore limt→∞(m(t), p(t), q(t), u(t)) = (K, 0, 0, 0). )*
Remark If m(0) = 0, then also p(0) = q(0) = 0, so u(0) = K and we are on the
empty lattice having the trivial solution (0, 0, 0,K).

4 Simulations and Conclusion

According to the choice of the initial functions, different in vitro experiments can be
modelled with Eqs. (1)–(4). One approach is to add a number of motile cells all at
once at t = 0 to the empty cell space (e.g. a Petri dish). In this experiment the initial
function φ1 is given by φ1(θ) = aH(θ) for θ ∈ [−τ, 0], where a stands for the
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Fig. 1 Four numerical simulations, where in each realization, the initial function φ1 on [−τ, 0] is
given by aH(θ), where a > 0 is the initial number of cells, φ2 = φ3 = 0 and φ4 = K − aH(θ).
This choice of the initial function models an in vitro experiment where motile cells are added to
the plate at t = 0. The parameters are the following: Top Left—r = 0.5, a = 100, τ = 0.5;
Top Right—r = 3, a = 200, τ = 0.8; Bottom Left—r = 10.5, a = 10, τ = 3; Bottom Right—
r = 2, a = 1000, τ = 4; and K = 5000 in each case. The mean-field equations are compared to
the output of averaged stochastic simulations of a corresponding agent-based model (ABM) on a
50 × 100 square lattice with cell motility rate 2. The legend in the bottom right figure applies to
each

number of introduced cells at t = 0, and H(θ) is the right-continuous Heaviside-
function, i.e. H(θ) = 0 for θ < 0 and H(θ) = 1 for θ ≥ 0. In this setting, we take
φ2(θ) = φ3(θ) = 0 and φ4(θ) = K − aH(θ). While such initial data is not from
C, they satisfy Eq. (5) and generate a continuous solution for t > 0. Some of such
simulations are shown in Fig. 1.

A more elaborate in vitro experiment is the following. Instead of adding motile
cells all at once, we add them in to the assay with a constant rate a for a time
interval of length τ . After this, we leave the cell population intact. The initial
data corresponding to this experiment can be obtained by solving a modification
of Eqs. (1)–(4) with an additive forcing term +a to the m-equation (and −a to the
u-equation), representing the gradual addition ofm-cells, on an interval of length τ ,
starting from the state (0, 0, 0,K). Then we start solutions of Eqs. (1)–(4) with such
initial functions, which satisfy Eq. (5). Four realizations of this experimental setting
are shown in Fig. 2.

The point of considering these two setups is that in the first we have only motile
cells at t = 0, while in the second at t = 0 we have a distribution of cells in different
phases of the cell cycle. This has a profound impact on the behaviour of solutions.
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Fig. 2 Four simulations, where in each realization motile cells are added with rate a in the initial
interval. The parameters are the following: Top Left—r = 0.5, a = 200, τ = 0.5; Top Right—
r = 3, a = 250, τ = 0.8; Bottom Left—r = 10.5, a = 3.3, τ = 3; Bottom Right—r = 2, a =
250, τ = 4 and K = 5000 in each case. The ABM is the same as in Fig. 1, but the initial cell
distribution has also been simulated here. The legend in the bottom right figure applies to each

For the sake of easier comparison, in both experimental settings the number of
cells at t = 0 is exactly the same in the corresponding simulations whenever the
parameter r and τ are the same. For both experimental settings, we can observe
that the smaller the proliferation rate, the better the agreement between the mean-
field model and the output of the agent based model (ABM). This is intuitively
clear, as for smaller proliferation rate the cells in the ABM has more time to move
around between proliferation events, hence the cell population becomes more well-
mixed. While in Sect. 3 we proved that all solutions settle eventually at the state
(K, 0, 0, 0), there are distinctive features of solutions in different scenarios. Figure
1 shows that when the cell cycle delay is small, the solutions resemble logistic
growth. In contrast, when the delay is large relative to the average time between
individual cells attempting enter the proliferative state, the initially motile cells enter
the proliferative state more or less together, and hence complete cell division more
or less together too, resulting in a step-function-style growth curve in the total cell
count. The sudden switching between phenotypes causes non-monotonic behaviours
in m(t) and p(t) also. When we add motile cells continuously rather than adding
them all at once, the solutions are much more similar to the expected logistic growth
curve, and a different characteristic can be observed only for high proliferation rates
or large numbers of initially added cells. In conclusion, an intermittent growth of
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a cell population can be an indication that the cell cycle length is relatively large
(relative to inter-proliferation times), while its variance is small.
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Poroelasticity with Deformation
Dependent Permeability

Sílvia Barbeiro

Abstract The poroelasticity theory that was originally developed in the context
of geophysical applications has been successfully used to model the mechanical
behavior of fluid-saturated living bone tissue. In this paper we focus on the
numerical solution of the coupled fluid flow and mechanics in Biot’s consolidation
model of poroelasticity. The method combines mixed finite elements for Darcy flow
and Galerkin finite elements for elasticity. The permeability tensor in the model
is allowed to be a nonlinear function on the deformation, since this influence has
relevance in the case of biological tissues like bone. We deal with the nonlinear
term by considering a semi-implicit in time scheme. We provide the a priori error
estimates for the numerical solution of the fully discretized model. For efficiency, we
also explore an operator splitting strategy where the flow problem is solved before
the mechanical problem, in an iterative process.

1 Introduction

The concept of mechanically stimulated bone adaptation has been discussed exten-
sively in the literature. In the existing models, different approaches are considered.
While some authors describe this process at a cellular (microscopic) level (e.g.
[17]), others investigate the bone’s (macroscopic) poroelastic structure (e.g. the
survey article [6]), where poroelasticity is established as an effective model for
deformation-driven bone fluid movement in bone tissue.

Poroelasticity refers to fluid flow within a deformable porous medium under
the assumption of relatively small deformations, and models the influence of solid
deformation to fluid flow and vice versa. The general mathematical description of
this interaction is know as Biot theory [3].
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Recent mathematical models account complex fluid/medium interactions which
often lead to coupled systems of time dependent nonlinear partial differential
equations. In our coupled model, the permeability tensor is a nonlinear function
dependent on the deformation (see e.g. [1, 2]). The role of this dependence has
relevance for modeling coupled mechanics and flow in porous media in different
areas. For example, in petroleum industry, the reduction in permeability caused
by the change in the stress state may significantly reduce the expected reservoir
productivity [15]. In the case of the bone, the relation between porosity and
permeability is discussed for instance in [5]. Other examples of deformation
dependent permeability tensors for biological tissues can be found in [11] and [12].

The fully coupled approach consists in solving flow and elasticity equations
simultaneously [1, 14]. Alternatively, operator splitting techniques which decouple
the pressure equation from the equation for the displacement [8, 9, 18] can be used
to solve the discrete system.

2 The Semi-Implicit Fully Discrete Formulation

The domain of interest is a polygonal or polyhedral domain Ω ⊂ Rd , when d = 2
or d = 3, respectively, with boundary ∂Ω .

The physical parameters of the model are: λ, μ, the Lamé constants, co, the
constrained specific storage coefficient, α, the Biot-Willis constant, μf , the fluid
viscosity, ρf , the fluid mass density and g, the body force per unit of mass. The
values of the poroelasticity coefficients for different kinds of bone can be found in
the literature (e.g. [7] for human femoral cortical bone data).

The primary variables are the pressurep and the displacement u. In the context of
linearized strains, the effective stress is given by σ(u) = 2με(u)+λtr(ε(u))I,where

ε(u) = 1
2

(
grad u + (grad u)t

)
, and I is the identity matrix. By σm we denote the

effective mean stress, σm = 1
d

tr(σ (u)). The total stress, σ̃ , that must account for the
usual material stress and for the fluid pressure, is given by σ̃ (u, p) = σ(u)− αpI.
By K we denote the symmetric permeability tensor which is stress dependent. To
introduce the mixed formulation for the Darcy flow, we consider the variable for the
flux z = − 1

μf
K(σm)(∇p − ρf g).

In order to define two sets of boundary conditions, one corresponding to the
pressure and flux and another corresponding to the deformation, the boundary is
decomposed in two unrelated ways, ∂Ω = Γp ∪ Γf and ∂Ω = Γ0 ∪ ΓN , with
meas(Γ0) > 0.

We summarize below the governing equations, together with the boundary and
initial conditions:

−(λ+ μ)∇(∇ · u)− μ∇2u + α∇p = f inΩ × (0, T ],
∂
∂t
(cop + α∇ · u)− 1

μf
∇ ·K(σm)(∇p − ρf g) = sf in Ω × (0, T ],
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p = pD on Γp × [0, T ],
− 1
μf
K(σm)(∇p − ρf g) · η = q on Γf × [0, T ],

u = uD on Γ0 × [0, T ],
σ̃ η = rN on ΓN × (0, T ],
p(0) = p0 inΩ,
u(0) = u0 inΩ.

The symbol η represents the outward normal vector on ∂Ω .
Let us consider the spaces H(div) = {s ∈ (L2(Ω))d : ∇ · s ∈ L2(Ω)}, S0 = {s ∈

H(div) : s · η|Γf = 0} and V0 = {v ∈ H 1((Ω))d : v|Γ0 = 0}.
Since the boundary conditions are allowed to be inhomogeneous, we need to

select, for each t ∈ [0, T ], a function ud (., t) ∈ (H 1(Ω))d such that ud (., t)|Γ0 =
uD(., t) and a function zd (., t) ∈ H(div) such that (zd(., t) · η)|Γf = q(., t).

The variational problem becomes: find u ∈ ud + H 1([0, T ]; V0), p ∈
H 1([0, T ];L2(Ω)) and z ∈ zd + L2([0, T ]; S0) such that

au(u, v)− α(∇ · v, p) = �1(v), (1)
(
co
∂p

∂t
,w
)

+ α
( ∂
∂t

∇ · u, w
)

+ (∇ · z, w) = �2(w), (2)

μf (K
−1(σm)z, s)− (p,∇ · s) = �3(s) (3)

holds for all (v, w, s) ∈ (V0, L
2(Ω),S0), t ∈ (0, T ] and p(0) = p0, u(0) = u0 in

Ω, where

au(u, v) =
∫

Ω

σ (u) : ε(v) dx.

The right hand side of the Eqs. (1), (2) and (3) is defined by the functionals

�1(v) =
∫

Ω

f · v +
∫

ΓN

rN · v, v ∈ V0,

�2(w) =
∫

Ω

sf w, w ∈ L2(Ω),

�3(s) = −
∫

Γp

pDs · η +
∫

Ω

ρf g · s, s ∈ S0.

Let Eh be a nondegenerate partition of the domain Ω into non-overlapping
triangles or tetrahedra with maximal element diameter h. We denote by Vh the space
of continuous piecewise polynomials of degree r ≥ 1 defined on Eh and

Vh,0 = {v ∈ Vh : v|Γ0 = 0}.
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Let (Wh,Sh) ⊂ (L2(Ω) × H(div)) represent the Raviart-Thomas (RT) or Raviart-
Thomas-Nedelec (RTN) spaces ([13, 16]) on Eh, of order κ , which are standard
mixed finite element spaces (see e.g. [4]), and let

Sh,0 = {s ∈ Sh : s · η |Γf = 0}.

Let Δt = T/N , where N denotes the number of time steps and tn = nΔt ,
n = 0, 1, . . . , N . We use the following notation gn = g(., tn).

We define unh,d ∈ Vh such that au(unh,d − ud (., tn), v) = 0, ∀v ∈ Vh, and
znh,d ∈ Sh such that (∇ · (znh,d − zd(., tn)), w) = 0, ∀w ∈ Wh.

The semi-implicit fully discrete formulation becomes: find unh ∈ unh,d + Vh,0,
pnh ∈ Wh, znh ∈ znh,d + Sh,0 such that

au(unh, v)− α(pnh,∇ · v) = �n1(v), (4)

(
co
pnh − pn−1

h

Δt
,w
)

+ α
(
∇ · unh − un−1

h

Δt
,w
)

+ (∇ · znh,w) = �n2(w), (5)

μf ((K(σ
n−1
m,h ))

−1znh, s)− (pnh,∇ · s) = �n3(s), (6)

for all (v, w, s) ∈ (Vh,0,Wh,Sh,0), n = 1, . . . , N . Here

(σm,h)
n−1 = 1

d
tr(σ (un−1

h )).

Additionally, we consider the initial conditions u0
h ∈ Vh, p0

h ∈ Wh, such that
au(u0

h−u0, v) = 0, ∀v ∈ Vh, and (p0
h−p0, w) = 0, ∀w ∈ Wh. The fully coupled

scheme involves calculating unh, pnh and znh simultaneously.
The prove of the next convergence result for the semi-implicit in time

scheme (4)–(6) can be derived in a similar fashion of the corresponding result
for the implicit in time method stated in Theorem 4 of [1].

Theorem 1 Let (u, p, z) be the solution of (1)–(3) and (uh, ph, zh) be the solution
of (4)–(6). Let us consider the same smoothness assumptions for the exact solution
and for the permeability tensor stated in [1]. Then, if Δt small enough, there exists
C > 0 such that

‖u − uh‖2
L∞(H 1)

+ ‖p − ph‖2
L∞(L2)

+ ‖z − zh‖2
L2(L2)

≤ C(h2r + h2κ+2)+ O(Δt2),
(7)

where C depends on the model parameters, but is not dependent on h and Δt .
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3 Iteratively Coupled Scheme

The choice of the coupling scheme affects the stability and accuracy of the
numerical solutions as well as the computational efficiency. In [10], four dif-
ferent operator-split strategies are analyzed. Following those conclusions therein
discussed, we decouple our system using the fixed-stress split method ([10, 18]).

We write the volumetric strain ∇ · u in terms of fluid pressure p and the total
mean stress σ̃m,

α∇ · u = crp + cr

α
σ̃m, (8)

where cr = dα2

dλ+2μ.

Let k be inner loop iteration number and pn,kh , zn,kh and un,kh denote the solutions
of each inner loop iteration. We use equality (8) to obtain the following decoupled
problems:

(
(co + cr)(pn,kh − p∗n−1

h ),w
)

+Δt(∇ · zn,kh ,w) = Δt�n2(w)

−
(cr
α
(σ̃
n,k−1
m,h − σ̃ ∗n−1

m,h ),w
)
, (9)

μf ((K(σ
∗n−1
m,h ))

−1zn,kh , s)− (pn,kh ,∇ · s) = �n3(s), (10)

au(u
n,k
h , v) − α(pn,kh ,∇ · v) = �n1(v), (11)

for all (v, w, s) ∈ (Vh,0,Wh,Sh,0), where we solve first Eqs. (9) and (10) for
flow, and then Eq. (11) for mechanics. Inside the outer loop for time steps, the two
subproblems are solved in a staggered way until the convergence criterion

‖σ̃ n,km,h − σ̃ n,k−1
m,h ‖L∞(Ω) < Tol

is satisfied. We write p∗n
h , z∗n

h and u∗n
h to denote, respectively, the solutions of

pressure, velocity and displacement, at time n, resulting from this iterative coupling
process.

The following lemma gives upper bounds for the difference of two consecutive
solutions of the iterative process.

Lemma 1 Let δkp
n,k
h = p

n,k
h − p

n,k−1
h , δkz

n,k
h = zn,kh − zn,k−1

h and δku
n,k
h =

un,kh − un,k−1
h . Then

‖(cr
2

− α2

2λ
+ co)1/2δkpn,kh ‖2

L2(Ω)
+Δt‖K(σ ∗n−1

m,h ))
−1/2δkz

n,k
h ‖2

L2(Ω)

≤ ‖(cr
2

+ α2

2λ
)1/2δkp

n,k−1
h ‖2

L2(Ω)
(12)
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and

‖∇ · δkun,kh ‖L2(Ω) ≤
α

λ
‖δkpn,kh ‖L2(Ω). (13)

The inequalities (12) and (13) can be obtained from the system (9)–(11), by
setting v = δku

n,k
h , w = δkp

n,k
h and s = δkz

n,k
h . Taking into account the estimates

of Lemma 1, the next result follows straightforward.

Theorem 2 If co(x) >
α2

λ
∀x ∈ Ω̄ holds then the iterative coupling scheme

converges.

Theorem 1 establishes the order of convergence of the semi-implicit in time fully
coupled method. Together with the result of Theorem 2, we may conclude that the
same type of convergence occurs for the numerical solution of the fixed-stress split
iteratively coupled scheme.
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Local Time Stepping Method for District
Heating Networks

Matthias Eimer, Raul Borsche, and Norbert Siedow

Abstract In this article, we present a numerical solver for simulating district
heating networks. The method applies a local time stepping to networks of linear
advection equations. Numerical diffusion as well as the computational effort on
each edge is reduced significantly. The combination with high order coupling and
reconstruction techniques leads to a very efficient scheme.

1 Introduction

District heating is an efficient alternative to conventional heating systems, especially
in urban regions. The transport medium water is heated in a central plant and
distributed to the consumers through a network of pipes. There are systems for any
common energy source e.g. fossil fuel, biomass and solar energy. In combination
with a power generator in so called CHPs (combined heat and power) the systems
have much higher energy efficiency and less pollution than local boilers. In order to
find an optimal control for such systems, fast and accurate simulations are needed. In
the following we present a local time stepping scheme for district heating networks.
In Sect. 2 the full model for the system is presented. After restricting ourselves
to the computation of the energy transport, we present the new scheme in Sect. 3.
Additional insight is given to some special cases such as high order extension and
the incorporation of source terms. In Sect. 4 we discuss the results of the new scheme
compared to a high order ADER scheme [1, 7].
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2 Model

The behavior of density ρ, velocity v and energy density e of the transport medium
water inside a pipe is described by the Euler equations. Since the pressure level
always keeps the water in its liquid phase, we can assume incompressibility. The
remaining system then reads

∂xv = 0

∂t v + 1

ρ
∂xp = − λ

2d
v|v| − g∂xh

∂t e + v∂xe = −4k

d
(T (e)− T∞) .

(1)

Here, p is the pressure inside the pipe, d its diameter and λ the friction factor
according to the Darcy-Weisbach friction law. The term g(∂xh) takes the vertical
elevation h into account with the gravitational acceleration g. The right hand side
of the third equation models the energy loss to the environment, where k is the heat
transmission coefficient of the pipe, T (e) is the fluid temperature depending on its
energy density e and T∞ is the external temperature. In a district heating network,
the water is distributed through a system of pipes. This is modeled by connecting
above equations via suitable coupling conditions. They state the conservation of
mass and energy in every node of the network. Furthermore, we assume a perfect
mixture of incoming flows in a node resulting in all outflows to have the same
temperature. Finally, the pressure level in a node has to coincide for all adjacent
pipes. In order to close the model, as boundary conditions we set inflow temperature
T0(t) and pressure level p0(t) at the CHP. The full system then has the following
form

HYD

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ODE

⎧
⎪⎨
⎪⎩

∂xv
i = 0

∂tv
i + 1

ρ
∂xp

i = − λ

2di
vi |vi | − g(Δbi)

CC

⎧
⎪⎨
⎪⎩

∑
j∈J
Ajvj ρj = 0

pi = pj , for i, j adjacent

BC { p(0) = p0(t)

(2)

CONSUMER
{
Akvk(e(T k)− e(Tout) = Qk(t) (3)
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ENERGY

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PDE

{
∂te

i + vi∂xei = −4k

di

(
T (ei)− T∞

)

CC

⎧
⎪⎨
⎪⎩

∑
j∈J
Ajvj ej = 0

T (ei) = T (ej ), for i, j outgoing flows

BC
{
T (e1(x = 0, t)) = T0(t)

(4)

Equation (2) describes the hydraulics of the system. The first equation states
the incompressibility, the second one is the balance of momentum. The coupling
conditions (CC) state conservation of mass in every node as well as equality of
pressure for all connected edges to a node. The superscript i ∈ I indicates the
specific edge, the quantities belong to, where I is the set of all edges. As boundary
condition (BC) the pressure at the CHP is prescribed. Equation (3) describes
the coupling between the hydraulics and the energy transport at consumer site,
where A is the pipe’s cross section, Tout is a fixed temperature level to which
the water is cooled down and Qk(t) is the power demand of the consumer k.
Equation (4) formulates the energy transport in the network with the advection PDE.
The coupling conditions state conservation of energy inside the nodes and perfect
mixture of energies therein. As boundary condition, the temperature at the inflow is
prescribed.

3 Numerical Method

The full model for district heating networks (2)–(4) is a complex system of algebraic
and partial differential equations. For its numerical solution, we use a splitting
algorithm, i.e. for a given time t we first compute the flow with (2) and (3) for
fixed temperature in time. Afterwards we update the energy using the new velocities.
Such splitting reduces the accuracy of the full system to first order. By exploiting the
special structure of the network, the flow can be solved efficiently. In the following,
we focus on solving the energy Eq. (4). When a flow solver is needed, the method
of [4] is used. The time step of the splitting is chosen according to the fastest waves
in the energy model.

The evolution of energy density in the network is described by a network of
linear scalar balance laws. For solving this kind of problems the Godunov scheme
is commonly used, which in the linear case coincides with the Upwind scheme.
Furthermore, there are some recent extensions to higher order methods for network
of hyperbolic conservation laws [1]. All these classical schemes have in common,
that they use a global time step for the whole system. This time step is determined
by the minimal CFL bound on all edges

Δtnet = min
i
Δti (5)
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where Δti is the maximal time step of edge i. However, since the error of the
schemes scales with the local CFL number, and the relative flow velocities between
different pipes can strongly vary this may lead to large numerical diffusion.

3.1 Local Time Stepping

Motivated by above consideration we construct a Upwind-like scheme that decou-
ples the time steps of every edge, such that the locally optimal time steps can
be chosen [2, 6]. Note that an optimal CFL number can also be achieved with
adaptive spacial discretization, however the remeshing and interpolation would be
very costly, especially in the context of high order methods. Furthermore, we restrict
ourselves to the homogeneous case, the extension to source terms is treated in
Sect. 3.3.

The time step of an edge is chose according to

∫ t+Δt

t

v(τ )dτ = Δx . (6)

Therefore the CFL number is equal to 1 for every local time step. Note that the
velocity is piecewise constant in the considered time interval due to the different
time step of the splitting. As with this definition the solution travels exactly one cell
each time step, no computation for inner cells is needed. However, the update can
only be performed, if the fluxes over the edge’s boundaries are known for this time
interval. In other words, the future time level of the current pipe can not exceed the
future time levels of all adjacent edges, or to be more precise, current edge ei has to
fulfill

t i +Δti ≤ tk +Δtk (7)

for all neighboring edges ek. Whenever a pipe fulfills this condition, the numerical
flux over its boundaries have to be computed. Note that the adjacent edges have
already computed parts of the flux for some subinterval [t i , tk] ⊆ [t i , t i +Δti ]. In
this case we store the flux (or its polynomial coefficients in the high order case, see
Sect. 3.2) in memory variables. The current pipe then just computes the remaining
flux for the interval [tk, t i + Δti] and the cell values are shifted in the direction of
the flow, while the memory variable is emptied into the first cell. This procedure
is continued, until a final time is reached. Since in general, the time steps do not
exactly add up to the final time a classical upwind is performed in the last step. The
procedure is schematically shown in Fig. 1 for a node connecting 3 edges.
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Fig. 1 Illustration of the local time steps at a single node

3.2 High Order Coupling

We can further increase the accuracy by incorporating a high order coupling at
the nodes of the network. Therefore, we use a high order WENO reconstruction
[5] and instead of cell means, we store the polynomial coefficients. The coupling
conditions are formulated such that not only the energy density, but also its moments
are conserved as well as the equality of all moments of the outgoing temperature
up to a given order. In an update step, we then shift the polynomial coefficients
instead of means. When the memory variables are cleared into the first cell of a
pipe, we need to get a single polynomial representation out of several piecewise
polynomials. This is done by solving a least squares problem for the new coefficients
under the condition that the total mass must be contained [3]. In most cases
during the computation only few (1–3) piecewise polynomials have to be combined,
such that the numerical effort is lower than for storing means and using WENO
reconstructions in each step.

3.3 Source Term

When incorporating the source term, we can exploit the fact that its coefficients are
constant in space. When tracing a characteristic of the energy evolution, the change
of the energy follows an ODE of the form eτ = S(e). The evaluation of the source
term does not necessarily be performed in every local update, but only when a given
cell leaves the edge. We therefore keep track of the timespan each cell spends inside
the given pipe (by integrating v) and solve the ODE for this whole interval just once.

4 Results and Conclusion

In several simulations, the local time stepping scheme has been compared to a high
order ADER scheme with global time steps (see Fig. 2). When the velocity is set
constant, the expected convergence rates of the schemes are reached. The overall
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Fig. 2 Convergence plot for different schemes

error of the local time stepping scheme is lower because there is no numerical
diffusion inside a pipe. The error only consists of the part arising from the coupling
of different pipes and the part that depends on the resolution of the input signal.
When comparing computation times, we notice a large difference between the two
schemes. The advantage of the local time stepping is that in one pipe update, only
O(1) operations are needed, while for classical finite volume schemes you need
O(n), for the number of cells n. The overall computation time of the local time
stepping therefore only scales linearly with the number of cells vs. quadratically
for the ADER scheme. For more realistic settings, where a flow solver is involved
only first order convergence can be expected. The errors of the local time stepping
scheme are below those of the ADER scheme, but the gain in terms of computation
time is not as big since the flow solver, which is identical for both schemes takes
significant amount of time. To conclude, we constructed a numerical scheme that
applies local time steps on the edges of the network. The advection inside the pipes
is solved exactly which results in increasing accuracy and computational efficiency.
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Stability Preserving Model Order
Reduction for District Heating Networks

Markus Rein, Jan Mohring, Tobias Damm, and Axel Klar

Abstract Stability is one of the key properties when modeling a physical system
on all model hierarchies. We focus on the case of hyperbolic differential algebraic
equations dominated by advection at the example of district heating networks. For
the transport dynamics, a solution of the corresponding Lyapunov inequality is
presented ensuring stability. At the example of an existing network, we numerically
demonstrate that stability also translates to the reduced order model (ROM).

1 Introduction

District heating denotes the transport of thermal energy from a centralized power
plant to consumers using a network of transport pipelines. For each of the connected
houses, a heat exchanger covers the time dependent power demand of customers by
regulating the volume flow based on the currently available thermal energy. Due
to its high flexibility towards the injection of different forms of energy, district
heating has gained increasing importance for the supply with renewable energies
[7]. Towards an efficient operation, finding an optimal control of such networks
is a demanding mathematical and computational task. The high number of nodes
and edges lead to state space dimensions in the order 106 making them large scale
dynamical systems. Using model predictive control requires the simulation of the
transport dynamics many times explaining the need for an efficient surrogate model.
To this end, the reduced model should maintain desired properties such as stability
from the full order model. Here port-Hamiltonian systems proved to be useful being
formulated close to the underlying physical conservation laws [8]. Such systems
automatically incorporate stability and passivity. Moreover it can be shown that
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these properties are passed to a reduced model obtained by Galerkin projections
if the Hamiltonian energy matrix is included in the reduction process [3].

After presenting the mathematical model in Sect. 1, we sketch the derivation of a
global Lyapunov matrixQ in Sect. 3. Subsequently, a reduced model is derived and
its effectiveness is demonstrated for an existing heating network.

2 Model for District Heating

The transport of the energy density ϕ within a pipeline is modeled by one dimen-
sional Euler equations. Since water in the liquid phase is the transport medium, the
incompressible limit is assumed, simplifying the conservation of mass to vx = 0.
The remaining Euler equations for conservation of momentum and internal energy
density read

0 = px + λρ

2d
|v|v + ρghx (1)

ϕ̇ = −vϕx − 4k

d
(T (ϕ)− Te). (2)

The change of pressure px over a pipeline is modeled by frictional forces
according to the Darcy-Weisbach equation, where λ is a dimensionless friction
factor, d is the pipeline diameter, v the advection velocity, and ρ the density. The
quantities ρ and λ are assumed to be constants within this contribution. Gravitational
forces are captured by the height difference hx , and the gravitational constant g. For
the typical dynamics of heating networks, acceleration is small compared to friction
and gravitation, which is why it is neglected here. This makes (1) an algebraic
equation after integration over the pipeline length. The advection of the energy
density ϕ in (2) incorporates an additional sink term due to conduction of heat with
transfer coefficient k to the environment with temperature Te.

To allow for a numerical treatment of the partial differential equation (PDE), we
perform a spatial discretization of (2) employing the upwind scheme yielding a total
number of n finite volume cells. For the description of the network, we introduce the
set E containing E edges which represent all pipelines. More specifically, pipeline
i ∈ E contains the local set of cells Ni = [1, .., ni] with cardinal number ni . In the
following the resulting system of ordinary differential equations is considered. To
connect incoming and outgoing pipelines within the network, additional algebraic
constraints at the junctions have to be posed. A prominent choice is the conservation
of energy over node N yielding

∑

i∈N−
qiϕi,1 =

∑

j∈N+
qjϕj,nj , (3)
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where qi = Φivi is the volume flow on pipeline i formed by its cross sectionΦi and
velocity vi .N− andN+ denote edges exiting and entering nodeN . By instantaneous
mixing of energy flows within N , the energy density is identical for all outgoing
pipes, ϕi,1 = ϕN,∀i ∈ N−. Here ϕe,c is the finite volume cell c of edge e in flow
direction. Hence, the energy density ϕN adjacent to pipe i is given by

ϕN =
∑
j∈N+ Φjvjϕj,nj∑
i∈N− Φivi

. (4)

Similarly, volume conservation over node N is assumed, yielding

∑
j∈N+

Φjvj =
∑
k∈N−

Φkvk. (5)

This allows to write the network dynamics as

ϕ̇ = A(v)ϕ + BT (v)uT (t), (6)

y = Cϕ, (7)

0 = v −Kq, (8)

0 = G[vi · |vi |]i∈E , (9)

0 = [qi · yi]i∈H − uH (t), (10)

where (6) mirrors the advection of the energy density subject to the injected energy
uT (t), with BT (v) ∈ IRn×1. Both the upwind scheme and the conservation of
energy are encoded in the velocity dependent matrix A(v) ∈ IRn×n. Equation (8)
uses the solution K ∈ IRE×L of (5), to describe the pipeline velocities by L
independent volume flows q . Kirchhoff’s circuit law presented in (9) claims that
the sum of pressure differences over a loop within the network equals 0, where
G ∈ IR(L−H)×E2

. Finally in (10), the demanded power consumption uH is
provided by energy density and volume flow at houses H with cardinal number
H . Consequently the velocity changes dynamically with the energy density at the
houses and their time dependent consumption uH (t).

3 Stability of the Discretized Model

In the following, we solely focus on the adjective transport on the network (6) and
consider the remaining algebraic equations as generators for the velocity field v
acting as a parameter to the transport system. As a consequence, the structure of
the corresponding Jacobian bases on the upwind discretization mentioned in the
previous chapter combined with the energy conservation (3). This results in two
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possible types of cell coupling on a network of pipelines and junctions. Among these
are coupling with neighboring cells in the pipeline or with border cells coupling to
incoming pipelines at junctions,

ϕ̇i,j = − vi
hi
(ϕi,j − ϕi,j−1), j ∈ Ni (11)

ϕ̇i,1 = − vi
hi
(ϕi,1 − ϕN({ϕj,nj |j ∈ N+})). (12)

Here ϕi,j is the finite volume cell j in flow direction of edge i. For a fixed velocity
field v = v̄, A is considered as the Jacobian of the ODE system (6),

Af(i,j),f (k,l)(v̄) ≡ ∂ϕ̇i,j

∂ϕk,l
(v̄). (13)

Rows and columns of the matrix A are mapped to the edge- and cell indices i, j by
the ordering function

f (e, c) ≡ c +
e−1∑
k=1

nk, e ∈ E , c ∈ Ne. (14)

This allows to formulate the following theorem.

Theorem 1 For every fixed velocity field v̄ satisfying volume conservation (5), there
exists a global, diagonal, positive definite energy matrix Q ∈ IRn×n, such that

M = (QA)T + (QA) ≤ 0. (15)

Remark:Q can be constructed with positive diagonal elementsQi ≡ diag(Q) =
Qf(i,j),f (i,j) = Φihi, i ∈ E , j ∈ Ni . The latter carry the volume Φihi of each of
the discretization cells on edge i.

For a detailed proof we refer to [6], Theorem 1. A sketch of the proof starts by
noting that the diagonal elements ofM are negative,

Mf(i,j),f (i,j) = (QA)f (i,j),f (i,j) + (ATQ)f (i,j),f (i,j) = −2Qi
vi

hi
, (16)

for i ∈ E , j ∈ Ni . Subsequently weak diagonal dominance is shown for each
row of a representative edge i ∈ E of the symmetric matrix M . This is done by
decomposing the cells on i into the three classes of incoming, inner, and outgoing
ones. For the row describing the first cell Mf(i,1),k, k ∈ Ni volume conservation
is sufficient for proving diagonal dominance. For the last cell on each pipeline,
the choice Qf(i,j),f (i,j) = Φihi, ∀i ∈ E , j ∈ Ni , is sufficient for diagonal
dominance. In case of inner cells no further assumption is necessary. Finally
Sylvester’s criterion concludes thatM is a negative semi-definite matrix.
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4 Derivation of the Reduced Model and Numerical Results

To numerically demonstrate that stability also translates to the ROM, we simulate
a part of an existing heating network shown in Fig. 1a. To obtain the ROM, we
transform the system to coordinates in which Q equals identity [5]. To account for
the influence of the transport velocity changing in time, the reduction is performed
at representative realizations of v. To this end, a moment-matching technique in
frequency space is used. Realizations of v are picked exploiting a greedy strategy
[2, 4]. Afterwards, the local projection matrices are combined using a singular value
decomposition [1] forming the global Galerkin projection V ∈ IRn×r inducing the
reduced dimension r . After application to the full order model, the ROM reads

ϕ̇r = V T A(v)V ϕr + V T BT (v)uT (t) (17)

yr = CV ϕr (18)

0 = g(uH , v, yr ), (19)

where (19) abbreviates the constraints (8–10). To ensure stability, the algebraic
equations remain unreduced, and act as generators for the volume flows steering the
advection on the network. Retaining the algebraic equations plays a key role, since
it ensures that every currently active reduced model is the reduction of a stable,
full order system. Initializing a constant energy on the network, we simulate the
input signal uT (t) = 0.4 − 0.2 cos(ωt) for constant consumption at the houses. The
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Fig. 1 (a) Visualization of the considered network including pipelines (colored lines), and 32
consumers (circles). Colors on pipelines show the energy density, and colored circles visualize
the current volume flow. The top part in (b) shows the in-sample error of the reduced model ϕr

compared to the PDE solution ϕ at the observable with the largest approximation error. ϕ0 denotes
the energy density of the cooled fluid returning to the power plant. The lower part shows the
normalized volume flow at representative consumers emphasizing the nonlinear character of the
transport
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frequencyω = 4.49×10−4 s is an upper bound for the typical operation frequencies.
To define the fidelity of the ROM, the PDE solution is estimated by extrapolating
the results of full order models with decreasing h. Hereafter an error bound δ is set,
which is defined as the largest relative l2 error of all 32 observables located at the
consumers. An upwind discretization including 2269 cells allows for an acceptable
error δ = 2.5×10−3 and is the basis for the ROM. The given problem is challenging
in terms of reduction due to the nonlinearity introduced by changing volume flows
and the high number of observables. Despite this fact, the ROM suffices to use
r = 53 states to reproduce the full dynamics to δ = 2.5 × 10−3, cf. Fig. 1b.

5 Summary

We presented a global, diagonal solution of the Lyapunov inequality for the advec-
tion problem on a network discretized in space. Local stability is ensured for the
dynamically changing velocity field by claiming volume conservation. Preserving
this algebraic constraint in the reduction translates stability to the reduced model.
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Numerical Simulation of Heterogeneous
Steady States for a Reaction-Diffusion
Degenerate Keller-Segel Model

Georges Chamoun, Moustafa Ibrahim, Mazen Saad, and Raafat Talhouk

Abstract In this paper, a linear instability criterion is carried out to show the
existence of heterogenous spatial patterns for a degenerate Keller-Segel model.
We show that the nonlinear system behaves asymptotically as a linear combination
of eigenvectors associated to highest eigenvalues. Finite volume method is imple-
mented to investigate numerically the appearance of heterogeneous spatial patterns
in a two-dimensional space for the given model. The nonlinear solution is compared
to the predicted nonhomogeneous steady solution obtained by the analysis of the
linear instability.

1 The Degenerate Keller-Segel Model

Let Ω be an open bounded polygonal and connected subset of R
n defined by

Ω = T
n = ∏n

i=1]0, π[ for n = 1, 2 or 3, and let tf > 0 be a fixed finite
time. We are interested in the degenerate Keller-Segel system [10] modeling the
chemotaxis process, in the context of volume-filling phenomenon [13] given by the
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set of parabolic equations:

{
∂tU − ∇ · (a (U)∇U)+ ∇ · (χ (U)∇V ) = 0, in QT = Ω × (0, T ) ,
∂tV − d ΔV = αU − βV, in QT = Ω × (0, T ) , (1)

This system of equations is supplemented with the following homogeneous Neu-
mann boundary conditions on ΣT = ∂Ω × (0, T ),

a (U)∇U · η = 0, ∇V · η = 0, (2)

where η is the exterior unit normal vector to ∂Ω outward toΩ . The initial conditions
onΩ are given by,

U(x, 0) = U0 (x) , V (x, 0) = V0 (x) . (3)

In the above model, the density of the cell-population and the chemoattractant
concentration are represented by U = U(x, t) and V = V (x, t) respectively. Next,
a(U) is a density-dependent diffusion coefficient. Furthermore, the functionχ(U) is
the chemoattractant sensitivity. Finally, d > 0 represents the diffusion coefficient of
V while the positive constants α and β describe, respectively, the rate of production
and degradation of the chemoattractant.

We give the main assumptions made about the system:

(A1) The cell-density diffusion a : [0, 1] −→ R
+ is a continuous function

satisfying: a(0) = a(1) = 0, and a(U) > 0 for 0 < U < 1.
(A2) The chemosensitivity χ : [0, 1] −→ R

+ is a continuous function satisfying:
χ (0) = χ (1) = 0, and χ(U) > 0 for 0 < U < 1.

(A3) The initial function U0 and V0 are two functions in L2 (Ω) such that, 0 ≤
U0 ≤ 1 and V0 ≥ 0.

The degenerate Keller-Segel system has been studied numerically in the past
years to show the isotropic and anisotropic chemotaxis process (see e.g. [1–3, 9]. In
this paper, we show an alternate avenue potentially leading to pattern formation via
chemotaxis, inspired by the methods used by the authors of [7, 8, 12].

2 Growing Modes in the Keller-Segel Model

In this section, we summarize the classical linear instability criterion in order
to show the existence of heterogenous patterns for the degenerate Keller-Segel
model (1)–(3). When the diffusion terms are ignored, a uniform constant solution

U (x, t) ≡ U, V (x, t) ≡ V
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forms a nontrivial homogeneous steady state provided

αU = βV ; U ∈]0, 1[. (4)

In this paper, we study the nonlinear evolution of a perturbation

u (x, t) = U (x, t)− U, v (x, t) = V (x, t)− V

around [U,V ], which satisfies the equivalent system:

{
∂tu− ∇ · (a (u+ U)∇u)+ ∇ · (χ (u+ U )∇v) = 0

∂t v − d Δv = αu− βv (5)

Then, the system can be written into a matrix form:

∂tW = L (W)︸ ︷︷ ︸
linear term

+ N (W)︸ ︷︷ ︸
nonlinear term

(6)

where the corresponding linearized Keller-Segel system then takes the form:

{
∂tu = a (U)Δu− χ (U)Δv,
∂tv = dΔv + αu− βv. (7)

We know that the unique solution of system (7) (see e.g. [12]) is given by

W (x, t) = [u (x, t) , v (x, t)] =
∑
q∈Nn

{
w−
q r

−
q exp

(
λ−q t

)
+w+

q r
+
q exp

(
λ+q t

) }
eq (x)

(8)
≡ eLtW(x, 0)

where q = (q1, . . . , qn) ∈ N
n, eq (x) = Πni=1 cos (qixi), and r+q (resp. r−q ) are the

positive (resp. negative) eigenvectors corresponding to the positive eigenvalues λ+q
(resp. negative eigenvalues λ−q ) of the stability matrix A (i.e. the Jacobian matrix of

system (7) computed at the steady state
(
U,V

)
.

2.1 Main Result

The main result in this paper is given by the upcoming theorem. It interprets the
behavior of the nonlinear solution compared to a heterogeneous stationary solution,
which gives finally a mathematical description of the pattern formation for the
Keller-Segel model.
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Theorem 1 Consider the instability criterion q2{a (U) (dq2 + β)−χ (U)α} < 0,
and let:

W0 (x) =
∑
q∈Nn

{
w−
q r

−
q +w+

q r
+
q

}
eq (x) ∈ L2 (Ω) . (9)

If the initial perturbation of the steady state [U,V ] is W(x, 0) = W0, then its
nonlinear evolutionW(t, x) satisfies

∥∥∥∥∥∥
W (x, t)− eλmax t

∑
q∈Qmax

w+
q r

+
q eq (x)

∥∥∥∥∥∥
L2(Ω)

≤ C ‖W0‖L2(Ω)

{
e−νt + eK1t

}
eλmaxt ,

(10)

where C,K1, ν are positive constants, andQmax = {q ∈ N
n such that λ+q = λmax}.

Proof The proof of Theorem 1 is inspired from [7, 8] and using similar estimates
developed in [4].

3 Pattern Formation for Keller-Segel Model in Two
Dimensions

In this section, we will perform a numerical simulation in order to investigate the
pattern formation of the Keller-Segel model (1)–(3). Our aim is to show that a
solution of the nonlinear degenerate Keller-Segel model behaves asymptotically
as W∞ (x, t) = eλmaxt

∑
q∈Qmax

w+
q r

+
q eq (x). The computation of spatial distribution

of the solution W∞ is given explicitly since the eigenvalues of the matrix A are

known and given by r±q =
[
λ±q +dq2+β

α
, 1

]
and the coefficients w+

q are also known

and given by the initial condition. However, the numerical computation of the
solution of the nonlinear Keller-Segel model, namelyW (x, t), needs a sophisticate
numerical scheme to handle with the asymptotic behavior and to reach the spatially
nonhomogeneous steady solution. To approximate the nonlinear solution W (x, t),
the numerical scheme adopts a method of Finite Volume (see [5]) for the diffusion
terms, and the subsequent system of ODEs is then discretized in time using forward
Euler method [6]. This choice of finite volume scheme is essential to ensure the
discrete maximum principle on the solutions of system (1)–(3) (e.g. see [1]). On
the other hand, it is well known that upwind technique for the chemoattractant
term preserves the local conservativity of the numerical fluxes [1, 11], i.e. the
numerical flux is conserved from one discretization cell to its neighbor. Finally, for
the upwind technique, we use Engquist–Osher’s scheme where the numerical flux
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F is defined by

F (a, b; c) = c+ (χ↑ (a)+ χ↓ (b)
)− c− (χ↑ (b)+ χ↓ (a)

)
,

where s+ = max (s, 0), s− = max (−s, 0), χ↑ (z) :=
∫ z

0

(
χ ′ (s)

)+ ds, and

χ↓ (z) := −
∫ z

0

(
χ ′ (s)

)− ds.

In what follows, we consider a numerical test to investigate the pattern formation
for system (1)–(3). We focus on the pattern formation for the first component
u (x, t) of the functionW (x, t). We perform our test on an unstructured triangular
mesh of the space domain Ω = (0, 1) × (0, 1) (a normalization of the space by
considering the change of variable x := x/π in system (1)–(3)). We verify that the
space domain satisfies the orthogonality condition and finally we assume zero-flux
boundary conditions.

In this numerical test, we fix α = 5, β = 11, d = 0.01, U = 0.5, Δt = 0.01
(time step) a (U) = dU (U (1 − U))2, dU = 0.01, χ (U) = ζ (U (1 − U)), and ζ =
0.01, and for the numerical flux F we set: χ↑ (z) = χ

(
min

{
z, 1

2

})
and χ↓ (z) =

χ
(

max
{
z, 1

2

})
− χ

(
1
2

)
.

Figure 1 shows the plot of the initial condition U0 (x) with a small perturbation
with an order of magnitude equal to 3 × 10−3 around the steady state U for the
function of U (x, t) solution to system (1)–(3).

Figure 2 shows the spatial nonlinear evolution with respect to the time, we remark
at the beginning that the initial condition leads to some diffusions in the space
which gives rise to some aggregations of densities that start the merging process

Fig. 1 Initial condition U0 (x) with a small perturbation around U , U0 (x) = U ± 10−3
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Fig. 2 From left to right: Nonlinear evolution of the nonlinear evolution U (x, t) at t = 2.5,
t = 325, and t = 997.5

Fig. 3 Spatial patterns for t = 997.5 in 3D for the nonlinear approximated evolution U (x, t) (to
the left) and for the asymptotic solutionW∞ (x, t) (to the right)

in such a way to generate spatial patterns which are nothing than a description of
the heterogeneous stationary state.

In Fig. 3, we give the form of the heterogeneous spatial patterns associated to
approximated solution at the moment t = 997.5. As well as, we show for the same
moment of time the form of the heterogeneous spatial patterns associated to the
computation of the asymptotic solution W∞ (x, t). It is shown that the numerical
solutions produces the same patterns as these given by the predicted asymptotic
solution. This numerical test validates the pattern formation and the existence of
heterogeneous spatial patterns for the Keller-Segel model.

Figure 4 shows the evolution of the approximated nonlinear solution of sys-
tem (1)–(3) with respect to the time at point P (0.5, 0.5). The curve shows that we
have reached the steady solution; for instance, we see that the approximated solution
at the point P increased at the beginning and then it stabilized after t = 700 so that
the point P corresponds to one pattern in the heterogeneous steady state.
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Fig. 4 Time evolution of the approximated nonlinear solution U (x, t) at point P (0.5, 0.5)
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Simulation and Multi-Objective
Optimization of Thermal Distortions
for Milling Processes

Alfred Schmidt, Carsten Niebuhr, Jonathan Montalvo-Urquizo,
and Maria G. Villarreal-Marroquin

Abstract During a machining process, the produced heat results in thermomechan-
ical deformation of the workpiece and thus an incorrect material removal by the
cutting tool, which may exceed given tolerances.

We present a numerical model based on an adaptive finite element simulation
for thermomechanics, which takes into account both the approximation of the
temperature field as well as the approximation of the time dependent domain.

Control of the milling parameters and tool path can be used to minimize the
final shape deviation. A multi-objective approach can try to additionally reduce the
tool wear. We present results from a simulation-based optimization approach for a
simplified workpiece.

1 Introduction

During a milling process, heat introduced by the cutting into the workpiece leads
to thermoelastic deformation of the workpiece. As a consequence, the milling tool
removes not the desired amount of material, but more or less. This can lead to a
substantial shape error.

Mathematical modelling, simulation, and optimization can be used in order to
predict and reduce this shape error. The time dependent shape of the workpiece adds
another challenge to models and numerical methods. We present an approach based
on a hybrid dexel/adaptive finite element model (Sect. 2) and a simulation-based
multi-objective optimization method (Sect. 3). Applied to a model problem, we are
able to reduce the shape error while additionally paying attention to the milling tool
wear.
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2 Model and Numerical Method

With stress tensor σ depending on displacements u and temperature θ , σ(u, θ) =
2μ(θ)(ε(u) + (λ(θ)tr(ε(u))− 3α(θ − θ0)) I with strain tensor ε(u) = 1

2 (∇u +
∇uT ) and thermal expansion determined by α, the thermomechanical problem with
quasi-stationary mechanics is given in strong form as: Find temperature θ and
deformation u such that

θ̇ − div(κ∇θ) = 0 inΩ(t), (1)

− div σ(u, θ) = 0 inΩ(t) (2)

for t ∈ (0, tend ) with initial condition θ(0) = θ0 and boundary conditions

κ∇θ · ν = gN on ∂Ω(t), σ (u, θ) · ν = fN on ΓN(t), u = 0 on ΓD. (3)

The heat flux gN over the boundary is given by a cooling condition or by the flux
produced during the milling process, as are the forces fN . The workpiece is clamped
at ΓD and ∂Ω(t) = ΓD ∪ ΓN(t).

The model is based on small deformations on a reference configuration with
Ω(t) ⊂ Ω(0) and uses the linearized elasticity tensor. The time dependent domain
Ω(t) and its moving boundary ΓN(t) are given via the engagement of the milling
tool. A macroscopic model is used here, where a boolean operation cuts in every
time step the rotated tool sweep volume from the current, deformed workpiece
geometry. For an efficient implementation, a dexel model is used here [2]. This
results in a description of the domain Ω(t) which is independent of the numerical
mesh of the finite element method. As microscopic effects like the creation and
removal of single chips are not included in the macroscopic model, a suitable
process model has to be used to compute heat fluxes and forces acting on the
workpiece, resulting in the Neumann data gN and fN in (3).

Approximation of the Time-Dependent Workpiece Geometry A finite element
discretization of the equations is used, based on a tetrahedral mesh and piecewise
linear finite element spaces. Time discretization of the problem is done using
an implicit Euler discretization, use of higher order methods would need further
investigation due to the time dependent domain. As the model equations are given
in the reference configuration, the domain is only getting smaller, Ω(t2) ⊆ Ω(t1)

for t2 ≥ t1. Thus, data from the last time step tn−1 are always available inΩ(tn). We
approximate the time dependent domainΩ(tn) by a discrete domain Ωh(tn) which
is given by the union of all elements of a given triangulation Sh(tn) of Ω(0) which
have a nonzero intersection with Ω(tn),

Ω̄h(tn) :=
⋃

{S ∈ Sh(tn) : S ∩Ω(tn) �= ∅}.
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Fig. 1 Simulation of milling of a thin-walled reference workpiece. Temperature (top) and
deformation (bottom, amplified by factor 100)

In order to get a convergent approximation of the solution, boundary conditions for
flux and forces (3) need to be transferred suitably from ∂Ω(tn) to the possibly rough
discrete boundary ∂Ωh(tn). An adaptive mesh refinement for Sh(tn), based on error
indicators for the solution of (1)–(3), combined with local refinement near ∂Ωh(t),
results in a good approximation of the domain as well as temperature and defor-
mation [4, 5]. The numerical method for thermomechanics on the timedependent
domain was implemented in the finite element toolbox ALBERTA [6].

Simulation of Milling Processes The numerical method was applied successfully
to various milling and drilling scenarios [2, 4]. Figure 1 shows temperature,
deformation and mesh at one timestep during the milling of a thin-walled workpiece
from a rectangular block with holes for fixation. For this workpiece, comparisons
with experiments were conducted by engineers from IFW Hannover, which show
a good agreement of simulated temperatures, deformations and shape errors with
experimental data [1].

3 Optimization

Based on the process simulation for given process parameters, we want to optimize
the share error and tool wear with respect to some of the process’ input parameters.
As the simulation of the whole workpiece is rather computationally expensive, we
restrict our model process further to a small part of the workpiece.
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Fig. 2 Model process for optimization of L-shaped domain. Form and indication of adjustable
process parameters

Reduced Workpiece and Process Model The left part of Fig. 2 depicts the reduced
geometry, with a final L-shaped form, and indicates roughing and finishing steps
of the milling process (middle part). Adjustable process parameters are milling
parameters and the tool path.

Simulation-Based Optimization Traditional mathematical optimization methods
try to use gradients of the cost functionals with respect to the adjustable param-
eters in order to find a descent direction. Computation of gradients can be
done numerically, which results in correspondingly many evaluations of the cost
functional, or by an analytic procedure which typically involves the additional
solution of adjoint problems. Both approaches are very time consuming, when
the control-to-state operator involves time dependent, nonlinear PDEs. Thus, a
cheap approximation of the control-to-cost operator can save a lot of computing
time. The “simulation-based optimization” method is able to derive approximations
of the operator with only very few evaluations of the cost function [7]. It is
used here in the following context for multi-objective optimization of the milling
process.

Minimization of Shape Error and Tool Wear We choose the axial cutting
depth ap,roughing as adjustable parameter, together with cutting velocity vc, and an
additional inclination α and displacement β of the tool axis for the finishing cuts,
see Fig. 2 (middle and right). For all four adjustable parameters, suitable admissible
ranges were selected.

We want to reduce the final shape error while having the tool wear under control.
Thus, our objective functions for multi-objective optimization are given by the shape
error

δx := max
i,j

|L(dij )− Ld(i, j)|,
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computed by comparing the length of dexel dij and the corresponding desired length
Ld for a 2-dimensional dexel field, and the tool wear rate is modeled by

TWR = ncutsLcut

Lf
= vc − B

A

(⌈
H

ap

⌉
·
(⌈
W

ae

⌉
+ 1

)
+
⌈
W

ae

⌉
− 1

)
.

which is the inverse of the number of producible workpieces during tool life Lf ,
where H and W are the height and width of the removed pocket, from which the
number of roughing and finishing steps are computed, and A,B are parameters.

Figure 3 shows control variables and results from the application of the
simulation-based multi-objective optimization procedure. Black dots indicate initial
parameter combinations which are selected in order to explore the set of admissible
control parameters. Red stars indicate additional parameter combinations which
were selected by the method in order to identify the Pareto set of parameters and
Pareto front of objectives with values in the lower left corner of performance
measure values in Fig. 3. These can be used to choose parameter sets for small
shape error with acceptable tool wear, or small tool wear with acceptable shape
error.

Details of the optimization method and the results are given in [3].

Conclusion The results presented above show, that a combination of modern
and efficient approaches to simulation and optimization is able to improve rather
complex production processes and thus is an important aspect of a digital factory
environment.
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Shape Optimization of Liquid Polymer
Distributors

Raphael Hohmann and Christian Leithäuser

Abstract We consider the optimal shape design of a distributor geometry in the
context of industrial fiber spinning. In this process a molten polymer is routed from
a pipe to a spinneret plate with a larger cross section, where thin fibers, which are
then further processed, are spun from the fluid. The residence time or material
age of the polymer in the distributor, which is modeled through an additional
advection-diffusion-reaction equation, has to be controlled such that fluid stagnation
is prevented, since this would cause material degradation and a decrease in the
quality of the fibers. In order to optimize the geometry, we formally derive the
adjoint equations and the volume formulation of the shape derivative and apply them
within a gradient descent method.

1 Introduction

Spin packs as depicted in Fig. 1 are used to distribute liquid polymer from a tube
onto a spinneret plate, where capillary nozzles spin the material to fibers. Since
long residence times and fluid stagnation within the distributor negatively affect the
fiber quality, we improve the initial design of the distributing first cavity through
shape optimization. The previous works [5, 6] optimized the shape of a spin pack
with respect to the wall shear stress, which indirectly controls the time needed until
the fluid reaches the nozzles. By solving an additional advection-diffusion-reaction
equation however, the wall shear stress as an objective can be omitted and the
geometry can be controlled directly with respect to the material age at the outflow.

After giving the mathematical model in Sect. 2 we state the distributed shape
gradient of our problem, which are derived using a formal shape Lagrangian
approach [2], in Sect. 3 and present numerical results in Sect. 4.
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Fig. 1 Schematic diagram of a spin pack

2 Problem Formulation

2.1 Fluid Equations and Material Age

The fluid we are dealing with can be modeled with the stationary incompressible
Stokes equations due to its high viscosity, whose non-dimensionalized form reads

−Re−1Δu + ∇p = 0 in Ω, ∇ · u = 0 inΩ. (1)

Here u ∈ R
n denotes the fluid velocity, p > 0 the pressure and Re � 1 the

Reynolds number. The boundary Γ := ∂Ω is subdivided into inflow boundary Γ in,
wall Γ w and outflow boundary Γ out . On Γ in a velocity profile and on Γ w no-slip
conditions are prescribed. To simplify the computations we summarize the effect of
the spin pack consisting of filter, breaker, second cavity and nozzles in Fig. 1 using
the Darcy boundary condition of a porous medium at Γ out , the bottom of the first
cavity. The boundary conditions read

u · n =uin on Γ in, u · n = 0 on Γ w, η(u · n)−p= 0 on Γ out , u × n = 0 on Γ (2)

with η > 0 being the spin pack’s non-dimensionalized porosity. The inflow profile
uin is that of a laminar pipe flow with a given mass flow rate.

The residence time or material age τ of the fluid can be modeled using
a stationary advection-diffusion-reaction equation together with a homogeneous
Dirichlet condition at the inflow [4], which reads

u · ∇τ − Pe−1Δτ = f (u) in Ω, τ = 0 on Γ in. (3)

Here f (u) is a differentiable approximation of χ{x∈Ω | ||u(x)||2>ε} with χ being the
indicator function. The influence of the regularizing second order term and the
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indicator function constant is kept small by choosing a Péclet number Pe = O(105)

and ε > 0 to be two orders smaller than maxx∈Γ in{uin(x)}. With this definitions it
can on the one hand be shown, that (3) possesses a unique solution and the material
age does not tend to infinity at stagnation zones, and on the other hand, that relatively
high local variations of τ indicate slow material transport.

2.2 Optimization Problem

Given the deformable boundary Γ d ⊂ Γ w we denote by A ⊂ P(R3) the set
of admissible shapes, which is defined as the set of images of sufficiently smooth
transformations of the initial distributor Ω0 keeping Γ \ Γ d fixed. Given Ω ∈ A
we define the spaces

X(Ω) := {v ∈ (H 1(Ω))3 | v|Γ w = 0, v × n|Γ in∪Γ w = 0},
X0(Ω) := {v ∈ X | v · n|Γ in = 0}, M(Ω) := L2(Ω), R(Ω) := H 1(Ω),

R0(Ω) := {σ ∈ R | σ |Γ in = 0}, B(Ω) := H 1/2(Γ in),

equipped with the usual L2-norms as well as

a(Ω,u, v) :=
∫

Ω

(∇ × u) · (∇ × v)dx +
∫

Γ in
η(u · n)(v · n)ds,

b(Ω, v, q) :=
∫

Ω

q∇ · vdx, c(Ω,u, τ, σ ) :=
∫

Ω

(u · ∇τ )σ + Pe−1∇τ · ∇σdx

h(Ω, v, σ ) :=
∫

Ω

f (v)σds.

Using these definitions the weak formulation associated with the strong problem
formulation from Sect. 2.1 reads

GivenΩ ∈ A seek (qu, qp, qτ ) ∈ X(Ω)×M(Ω)× R0(Ω) s.t.

a(Ω,qu,ψu)− b(Ω,ψu, qp) = 0 ∀ψu ∈ X0(Ω),

b(Ω,qu, ψp) = 0 ∀ψp ∈ M(Ω),
qu · n = uin on Γ in,

c(Ω,qu, qτ , ψτ ) = h(Ω,qu, ψτ ) ∀ψτ ∈ R(Ω).

(4)

Problem (4) possesses a unique solution due to the ellipticity of the operators
a(Ω, ·, ·), see [3], and c(Ω,qu, ·, ·) between the given spaces. Therefore we can
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define the reduced cost functional

J (Ω) := J̃ (Ω, qτ (Ω),qu(Ω)) :=
∫

Γ out
g(qτ ) ds+c1||∇qu||2(L2(Ω))3

+c2

∫

Γ d
1ds,

where c1, c2 > 0 are regularization parameters. We choose g(τ) :=γ (max{τ, τ ∗})
with τ ∗ > 0 and γ (·) being the Moreau envelope, see e.g. [1], and consider the
problem

Minimize J (Ω) forΩ ∈ A

subject to (4).
(5)

We note that if the solution of ((1),(2)) fulfills (u, p) ∈ H 2(Ω) × H 1(Ω), we
have

ΔEp := −
∫

Γ in∪Γ out
p(u · n)dx = Re−1||∇u||2

(L2(Ω))3
,

which is the fluid power loss from inflow to outflow. The first regularization term
therefore penalizes the transformation of pressure energy into kinetic energy, which
avoids that the material age at the outflow is minimized by a geometry with a small
volume and thereby causing an excessive acceleration of the fluid.

3 Adjoint Equations and Shape Derivative

In order to obtain the distributed shape derivative of J we use the perturbation of
the identity approach with sufficiently smooth deformation velocities V : R3 → R

3

and apply a shape Lagrangian approach [2]. Given the unique solution of (4) as well
as

d(Ω,qu, λτ , φτ ) := c(Ω,−qu, λτ , φτ )+
∫

Γ out
(qu · n)λτ φτ ds,

k(Ω, qτ , φτ ) :=
∫

Γ out
−∂φτ g(qτ )φτ ds, z(Ω,φu, λin) :=

∫

Γ in
(φu · n)λinds,

l(Ω,qu, qτ , λτ ,φu) :=
∫

Ω

(− ∇qτ λτ + ∂φuf (qu)λτ
) · φudx − 2c1

∫

Ω
∇qu : ∇φudx,
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the adjoint state is the solution of the problem

GivenΩ ∈ A and(qu, qp, qτ ) ∈ X(Ω)×M(Ω)× R0(Ω) seek

(λu, λp, λτ , λin) ∈ X0(Ω)×M(Ω)× R(Ω)× B(Ω) s.t.

d(Ω,qu, λτ , φτ ) = k(Ω, qτ , φτ ) ∀φτ ∈ R0(Ω),

a(Ω,λu,φu)+ b(Ω,φu, λp) = l(Ω,qu, qτ , λτ ,φu) ∀φu ∈ X(Ω),
b(Ω,λu, φp) = 0 ∀φp ∈ M(Ω),
z(Ω,φu, λin) = 0 ∀φu ∈ X(Ω).

(6)

From this weak formulation we see that the adjoint residence time λτ is transported
from the outflow to the inflow boundary along the negative fluid streamlines and
contributes to the adjoint fluid equations through the source term l.

With the solutions of (4) and (6) and the summation convention the shape
derivative of J in direction V is given by

dJ (Ω)[V] =c1

∫

Ω

(Q(V)∇qu) : ∇qudx + c2

∫

Γ d
∇Γ · Vds

− Re−1
∫

Ω

(εijk(Dqu DV)jkei) · (∇ × λu)

+ (∇ × qu) · (εijk(Dλu DV)jkei)dx

−
∫

Ω

λptr(Dqu DV)− qptr(Dλu DV)dx

−
∫

Ω

(qu · (DVT ∇qτ ))λτdx

−
∫

Ω

Pe−1
(
(DVT ∇qτ ) · ∇λτ + (DVT ∇λτ ) · ∇qτ

)
dx

+
∫

Ω

(
Re−1(∇ × u) · (∇ × λu)− qp(∇ · λu)+ λp(∇ · qu)

+ qu · ∇qτ λτ + Pe−1∇qτ · ∇λτ − f (qu)λτ

)
(∇ · V)dx

(7)

using Q(V) := (∇ · V)I − DVT − DV, where I ∈ R
3×3 is the identity and DV the

Jacobian. Here εijk is the Levi-Civita symbol, ei ∈ R
3 are the standard unit vectors

and ∇Γ · V denotes the tangential divergence [7].
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4 Numerical Results

For the numerical investigation of our approach we consider a three dimensional
test case and apply a gradient descent method based on the projection

〈G,V〉(H 1(Ω))3 = dJ (Ω)[V] ∀ V ∈ (H 1(Ω))3, G = 0 on Γ \ Γ d,

of (7) together with the Armijo step size rule. Here we choose the model parameters
Re = 7.1 ×10−2, η = 3.5 ×107, τ̄ = 15, γ = 2, c1 = 1 ×10−3 and c2 = 2 ×10−2

and use a mesh consisting of 9163 tetrahedral elements.
Figure 2 shows the decrease of the cost function and Fig. 3 the relative gradient

norms during the iterations, where we used the norm

||G||Γ d :=
( ∫

Γ d
(G · n)2dx

) 1
2
,

since only the normal component of the gradient leads to changes in the domain.
No further decrease of J could be obtained after 15 iterations, where the relative

5 10 15
10−2

10−1

100

Iterations i

J i
/J

0

Fig. 2 Relative objective function values

5 10
10−3

10−2

10−1

100

Iterations i

r i

Fig. 3 Gradient norms ri := ||Gi||Γ d /||G0||Γ d
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Fig. 4 Height profile of the initial geometry

Fig. 5 Height profile of the final geometry

−1 −0.5 0 0.5 1
0

5

10

15

20 Initial geometry
Optimized geometry

t

Fig. 6 Material ages τ of the initial and optimized geometry along the longitudinal axis of the
outflow Γ out

gradient norm falls below 1%. During the optimization Ω0 is flattened around the
corners and slightly lifted close to the non-deformable inflow tube, which can be
seen from the height profiles in Figs. 4 and 5. Figure 6 shows, that the main objective
of reaching material ages below τ̄ = 15 can be obtained at most of Γ out . The loss
of pressure energy ΔEp for the optimized cavity is 1.6% higher than for the initial
design, which is acceptable for this application.
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Modeling and Simulation of Macroscopic
Pedestrian Flow Models

Naveen Kumar Mahato, Axel Klar, and Sudarshan Tiwari

Abstract Mathematical modeling and numerical simulation of human crowd
motion have become a major subject of research with a wide field of applications. A
variety of models for pedestrian behavior have been proposed on different levels of
description in recent years. Macroscopic pedestrian flow model involving equations
for density and mean velocity of the flow is derived in Bellomo and Dogbe (Math.
Models Methods Appl. Sci. 18:1317-1345, 2008), Burger et al. (Discrete Contin.
Dynam. Systems Ser. B: J. Bridging Math. Sci. 19:1311-1333, 2014), Hughes
(Transp. Res. B Methodol. 36:507-535, 2000) and Mahato et al. (Appl. Math.
Model. 53:447-461, 2018; Int. J. Adv. Eng. Sci. Appl. Math. 10:41-53, 2018).

1 Introduction

Mathematical modeling and numerical simulation of human crowd motion have
become a major subject of research with a wide field of applications. A variety of
models for pedestrian behavior have been proposed on different levels of description
in recent years. Macroscopic pedestrian flow model involving equations for density
and mean velocity of the flow is derived in Refs. [1, 4, 5, 7, 8].

In this work, we analyze numerically some macroscopic models of pedestrian
motion such as the classical Hughes model [5] and a mean field game with
nonlinear mobilities [4], modeling fast exit scenarios in pedestrian crowds. A model
introduced by Hughes consists of a non-linear conservation law for the density of
pedestrians coupled with an Eikonal equation for a potential modeling the common
sense of the task. Mean field game with nonlinear mobilities is obtained by an
optimal control approach, where the motion of every pedestrian is determined by
minimizing a cost functional, which depends on the position, velocity, exit time
and the overall density of people. We consider a parabolic optimal control problem

N. K. Mahato (�) · A. Klar · S. Tiwari
Technische Universität Kaiserslautern, Department of Mathematics, Kaiserslautern, Germany
e-mail: mahato@mathematik.uni-kl.de; klar@mathematik.uni-kl.de;
tiwari@mathematik.uni-kl.de

© Springer Nature Switzerland AG 2019
I. Faragó et al. (eds.), Progress in Industrial Mathematics at ECMI 2018,
Mathematics in Industry 30, https://doi.org/10.1007/978-3-030-27550-1_55

437

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27550-1_55&domain=pdf
mailto:mahato@mathematik.uni-kl.de
mailto:klar@mathematik.uni-kl.de
mailto:tiwari@mathematik.uni-kl.de
https://doi.org/10.1007/978-3-030-27550-1_55


438 N. K. Mahato et al.

of nonlinear mobility in pedestrian dynamics, which leads to a mean field game
structure. We show how optimal control problem related to the Hughes model for
pedestrian motion. Furthermore, we provide several numerical results which relate
both models in one and two dimensions.

2 Optimal Control Problem of Pedestrian Flow from [4]

For completeness of the presentation up to higher dimensions, we review the
macroscopic optimal control problem for pedestrian flow, see Refs. [2–4]. There,
denoting the (normalized) density function of the pedestrians by ρ(t, x) and the
momentum (or the flux density) by m = F(ρ)v at position x ∈ Ω , velocity v ∈ Ω
and time t , where the function F(ρ(t, x)) describing the non-linear mobility of the
pedestrians (or the costs created by large densities) and Ω ∈ R

d , d = 1, 2 is a
bounded domain representing the pedestrian area. We assume the boundary ∂Ω
is split into a Neumann part ΓN ⊆ ∂Ω modeling walls or obstacles, ΓE ⊆ ∂Ω

modeling the exits such that ∂Ω = ΓN
⋃
ΓE and ΓN

⋂
ΓE = φ. If we denote the

rate of passing the exit by β, then we have an outflow proportional to βρ. Hence, for
a stochastic particle and a final time T sufficiently large, the minimization functional
is given by the following parabolic optimal control problem:

min
(ρ,m)

IT (ρ,m) = min
(ρ,m)

1

2

∫ T

0

∫

Ω

|m(t, x)|2
F(ρ(t, x))

dxdt + α

2

∫ T

0

∫

Ω

ρ(t, x)dxdt,

(1a)

subject to

∂tρ + ∇ ·m = σ 2

2
Δρ, in Ω × (0, T ), (1b)

(
m− σ 2

2
∇ρ
)

· n = 0, on ΓN × (0, T ), (1c)

(
m− σ 2

2
∇ρ
)

· n = βρ, on ΓE × (0, T ), (1d)

ρ(0, x) = ρ0(x), in Ω. (1e)
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This optimality system can be seen as the mean field game structure, see Ref. [6].
We start by defining the Lagrangian with dual variableΦ = Φ(t, x) as

LT (ρ,m,Φ) = IT (ρ,m)+
∫ T

0

∫

Ω
(∂t ρ + ∇ ·m− σ 2

2
Δρ)Φdxdt

= IT (ρ,m)+
[∫

Ω
ρΦdx

]T
0

+
∫ T

0

∫

Ω

[
ρ

(
−∂tΦ − σ 2

2
ΔΦ

)
−m · ∇Φ

]
dxdt

+
∫ T

0

∫

∂ΓE

⎛
⎜⎜⎝−σ

2

2
∇ρ · nΦ+m · nΦ

︸ ︷︷ ︸
βρΦ

+σ
2

2
ρ∇Φ · n

⎞
⎟⎟⎠ dsdt +

∫ T
0

∫

∂ΓN

σ 2

2
ρ∇Φ · ndsdt.

The optimality condition with respect to m and ρ, yields the following equations

0 = ∂mLT (ρ,m,Φ) = m(t, x)

F (ρ(t, x))
− ∇Φ,

0 = ∂ρLT (ρ,m,Φ) = −1

2

|m(t, x)|2F ′(ρ)
F 2(ρ)

+ α

2
− ∂tΦ − σ 2

2
ΔΦ.

Inserting m = F(ρ(t, x))∇Φ we obtain the following system of equations

∂tρ + ∇ · (F (ρ)∇Φ)− σ 2

2
Δρ = 0, in Ω × (0, T ),

(2a)

∂tΦ + F ′(ρ)
2

|∇Φ|2 + σ 2

2
ΔΦ = α

2
, in Ω × (0, T ),

(2b)
(
F(ρ)∇Φ − σ 2

2
∇ρ
)

· n = 0,
σ 2

2
∇Φ · n = 0, on ΓN × (0, T ),

(2c)
(
F(ρ)∇Φ − σ 2

2
∇ρ
)

· n = βρ, σ 2

2
∇Φ · n+ βρ = 0, on ΓE × (0, T ),

(2d)

ρ(0, x) = ρ0(x), Φ(T , x) = 0, in Ω. (2e)

System (2) has the structure of a mean field game for pedestrian dynamics, which
contains the Fokker-Planck equation (2a) has to be solved forward in time and the
Hamilton-Jacobi equation (2b) that has to be solved backward in time.
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3 Relation to the Classical Hughes Model [5]

In this section we discuss the relation which shows that for vanishing viscosity
σ = 0 of the optimality system (1) has a similar structure as the classical Hughes
model for pedestrian flow. Hughes proposed that pedestrians seek the fastest path
to the exit, but at the same time try to avoid congested areas, for details see
Ref. [5]. Let us consider the governing equations of Hughes model for pedestrian
flow,

∂tρ − ∇ · (ρf 2(ρ)∇Φ)− σ 2

2
Δρ = 0, in Ω × (0, T ),

(3a)

|∇Φ| = 1

f (ρ)
, in Ω × (0, T ),

(3b)
(
ρf 2(ρ)∇Φ − σ 2

2
∇ρ
)

· n = 0, Φ = ∞, on ΓN × (0, T ),
(3c)

(
ρf 2(ρ)∇Φ − σ 2

2
∇ρ
)

· n = βρ, Φ = 0, on ΓE × (0, T ),
(3d)

ρ(0, x) = ρ0(x), in Ω, (3e)

where the function f (ρ) = ρmax − ρ with ρmax denote the maximum density and
models how pedestrians change their direction and velocity due to the surrounding
density, i.e. provides a weighting or cost with respect to high densities. Saturation
effects are included via the function f (ρ) for ρ −→ ρmax.

On the other hand, if we choose the mobility/penalization function for high
densities such as F(ρ) = ρf (ρ)2, then the optimality system (2) for vanishing
viscosity can be written as

∂tρ + ∇ · (ρf (ρ)2∇Φ) = 0, in Ω × (0, T ), (4a)

∂tΦ + f (ρ)

2
(f (ρ)+ 2ρf ′(ρ))|∇Φ|2 = α

2
, in Ω × (0, T ), (4b)

where the initial, terminal and boundary conditions are same as in system (2).
Furthermore, one can expect the equilibration of Φ backward in time for large T .
Then for time t of order one the limiting model becomes

∂tρ + ∇ · (ρf (ρ)2∇Φ) = 0, in Ω × (0, T ), (5a)

(f (ρ)+ 2ρf ′(ρ))|∇Φ|2 = α

f (ρ)
, in Ω × (0, T ). (5b)
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Hence, if we set α = 1, the system (5) is almost equivalent to the Hughes model (3)
for vanishing viscosity. Note that the sign difference in Eqs. (3a) and (5a) is not an
actual, since due to the signs in the backward equation we shall obtain Φ as the
negative of the distance function used in the Hughes model.

4 Numerical Results

In this section we present a series of numerical experiments for the equations from
both proposed models. We compare the relation between the models for different
parameters in one and two dimensions. We use finite difference scheme for solving
the classical Hughes model, where central difference in space and the forward
difference in time, i.e. forward time centered space (FTCS) scheme for the nonlinear
conservation law and an upwind Godunov scheme for the Eikonal equation. We
follow the steepest descent algorithm from Ref. [4], to solve the mean field game
structure, in which we use FTCS finite difference scheme to solve both forward and
backward equations.

We consider a one-dimensional domain Ω = [−1, 1] with exits located at x =
±1 for the numerical simulation as a configuration defined in Ref. [4]. We choose
the maximum density ρmax , the weighting parameter α and the flow rate parameter
β as 1. Furthermore, we consider the time interval as t ∈ [0, 3]. The time step is set
toΔt = 10−4 for Hughes andΔt = 10−3 for MFG. We use the spatial discretization

h = 10−2, the diffusion coefficient σ
2

2 = h and the initial density ρ0 = 1
3 in both

models.
Figure 1 shows the evolution of solutions at different times for both mean field

type structures. One observes that the non-stationary Eikonal solution of the MFG
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Fig. 1 Evolution of solutions at different times for the Hughes model (top) and for the MFG
structure (bottom)
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structure has a similar behavior as the stationary Eikonal solution of the classical
Hughes model until the density is not zero, as we expected equilibration of Φ in the
Eq. (4b). One also observes from the density solution that both models have similar
behavior as pedestrians start in immediate vacuum formation at the center x = 0.
Although the models have a very similar structure, pedestrians wait for a little while
at the center and then start to move at a higher speed in the case of the mean field
game compare to the Hughes model.
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Fig. 2 Evolution of the density solution at different times for the Hughes model (top) and the
MFG structure (bottom)



Modeling and Simulation of Macroscopic Pedestrian Flow Models 443

x-axis

0

0.5

1

1.5
Ei

ko
na

l

T = 0.1
T = 0.5
T = 0.7
T = 1.0
T = 1.3
T = 1.5
T = 2.0

x-axis

0

0.1

0.2

0.3

0.4

de
ns

ity

T = 0.1
T = 0.5
T = 0.7
T = 1.0
T = 1.3
T = 1.5
T = 2.0

x-axis

0

0.5

1

1.5

Ei
ko

na
l

T = 0.1
T = 0.5
T = 0.7
T = 1.0
T = 1.3
T = 1.5
T = 2.0
T = 2.5
T = 3.0

x-axis

0.1

0.2

0.3

0.4

de
ns

ity

T = 0.1
T = 0.5
T = 0.7
T = 1.0
T = 1.3
T = 1.5
T = 2.0

-1 -0.5 0.50 1

0

-1 -0.5 0.50 1

-1 -0.5 0.50 1 -1 -0.5 0.50 1

Fig. 3 Evolution of solutions through the center along the x-axis at different times for the Hughes
model (top) and for the MFG structure (bottom)

The extension of the above method into higher dimensions is straight forward.
Here, we restrict ourselves to two-dimensional problem. Suppose the geometry for
numerical experiment is taken as Ω = [−1, 1] × [−1, 1] with exits located at
(±1,±1). Furthermore, we choose all parameters as for one dimension. Figure 2
shows the evolution of density for both the classical Hughes model and the MFG
structure at different times. Figure 3 shows the evolution of solutions through the
center along the x-axis for both models at different times. One observes that the
solutions in two dimensional cases have a similar behavior as the solutions in one
dimensional case, see Fig. 1.
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Non-renewable Fishery Resource
Management Under Incomplete
Information

Hidekazu Yoshioka, Yuta Yaegashi, Yumi Yoshioka, and Kentaro Tsugihashi

Abstract In this brief paper, stochastic control theory under incomplete informa-
tion is applied to mathematical modeling of inland fishery management. The inland
fishery resource to be managed is non-renewable in the sense that its reproduction
is unsuccessful. The incomplete information comes from the uncertain body growth
rate of the individuals due to temporal regime-switching of their foods. We show
that finding the most cost-effective harvesting policy of the non-renewable fishery
resource reduces to solving a Hamilton-Jacobi-Bellman equation. The equation is
numerically solved via a simple finite difference scheme focusing on the major
inland fishery resource P lecoglossus altivelis (P. altivelis: Ayu) in Japan.

1 Introduction

Resource management in natural environment is always subject to uncertainties, due
mainly to inherent stochasticity of the resource dynamics and our lack of knowledge
on the dynamics. Inland fishery resource management is such an example where
the body growth rate of the individuals is one of the most important biological
parameters, which highly depends on their living environmental conditions that are
usually only partially-observable. A mathematical framework for describing and
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controlling such dynamics should be established for attaining better inland fisheries;
however, such approaches are still rare to our knowledge. The stochastic control
theory under incomplete information [2, 4] can be an effective candidate for this
purpose.

The objective of this paper is to propose a prototype mathematical model
for cost-effective management of a non-renewable inland fishery resource under
uncertainty, focusing on its application to P lecoglossus altivelis (P. altivelis:
Ayu) living in Japanese rivers. The fish has an annual life cycle, but its reproduction
has not been always successful in the country [9]. Their population dynamics
are therefore reasonably considered to be non-renewable. The main source of the
partial observability is the regime-switching phenomenon of their body growth
rate caused by temporal dynamics of the benthic algae, the main food source
of the fish. The model here employs the formalism of stochastic control under
incomplete information where the population dynamics are described as a system
of stochastic differential equations (SDEs) controlled so that a performance index
as a total profit to be maximized. Finding the optimal management policy of the
fish reduces to solving a Hamilton-Jacobi-Bellman (HJB) equation: a degenerate
nonlinear parabolic equation. The non-renewability assumption combined with the
functional form of the performance index leads to an equivalent reduced HJB
equation that is easier to handle. The reduced HJB equation is discretized with a
simple finite difference scheme based on the central differencing as much as possible
strategy [7]. A demonstrative computational example of the model to management
of the fish in a Japanese river is finally presented.

2 Mathematical Model

The mathematical model for the fishery resource management, namely the system
of SDEs to be controlled, the performance index to be maximized, and the HJB
equation to be solved, are presented. Detailed mathematical setting follows that of
standard stochastic control approach [4] and is therefore not presented here.

2.1 System of SDEs

The system of SDEs describing the population dynamics of the fishery resource
is similar to that of Yoshioka and Yaegashi [8] for aquaculture management since
both handle non-renewable population dynamics. A main difference between their
and present formulations is that the former considers that the body growth rate of
the fish is observable, while it is not in the latter. Another difference is the drift
and diffusion coefficients. This paper employs the coefficients [3] so that the HJB
equation presented later is defined in a compact domain.
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The time is denoted as t and the standard Brownian motion defined through the
nonlinear filtering formalism under incomplete information (Chapter 8 of [2]) is
represented as Bt . The representative body weight of the individuals is denoted as
Wt . The growth rate is assumed to follow a two-state Markov chain, which is not
directly observable. The population of the individuals in a habitat, which is assumed
to be closed, is denoted as Nt . The two-state Markov chain has the states High and
Low, with the higher μH and lower body growth rates μL such that μH > μL > 0.
The transition rate from the state High (Low) to the state Low (High) is denoted as
λHL > 0 (λLH > 0). The conditional probability based on the filtrationGt generated
by the processes Xt and Yt is denoted as Yt = Pr(μt = μH|Gt) where μt is the
optimal estimation [2] of the body growth rate. The measurable process ct adapted
to Bt represents the harvesting rate, which is the control variable to be optimized
in the present model. This ct is valued in the compact set [0, cmax] with a constant
cmax > 0.

The harvesting is assumed to be allowed after a fixed time τ > 0. The indicator
function for the set t ≥ τ is denoted as zt . Namely, zt = 1 if t ≥ τ and zt = 0
otherwise.

The system of SDEs for the population dynamics is then formulated through
observable quantities as follows:

dNt = −(zt ct + R)Ntdt, t > 0, 0 ≤ N0, (1)

dXt = g(Xt )
(
μ̂(Yt )dt + σdBt

)
, Xt = K−1Wt, t > 0, 0 ≤ X0 ≤ 1, (2)

dYt = (λLH − (λLH + λHL)Yt )+ σ−1Δμg(Yt )Bt , t > 0, 0 ≤ Y0 ≤ 1. (3)

Here, the function g is defined as g(x) = x(1 − x) for 0 ≤ x ≤ 1 and the notation
μ̂(Yt ) = YtμH + (1 − Yt )μL is employed. The constant R > 0 represents the
mortality rate per unit time of the individuals,K > 0 represents the maximum body
weight, σ > 0 represents the magnitude of inherent stochasticity involved in the
dynamics of Xt , and Δμ = μH − μL > 0. Without significant loss of generality,
the process ct is assumed to be a Markov control.

2.2 Performance Index and Value Function

The performance index J to be maximized with respect to the control variable ct
(0 ≤ t ≤ T ) with a fixed terminal time T > 0 subject to the above-presented
population dynamics is formulated as

J (t, n, x, y; c) = E

[∫ T

t

αzscsNsXsds −
∫ T

t

βpNsXsds

]
. (4)
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Here, E represents the expectation conditioned on Gt and the notations Nt = n,
Xt = x, and Yt = y have been used. α > 0 and β > 0 are weighting constants,
and p > 0 is the management cost per unit time. The performance index J simply
measures the expectation of the profit by harvesting (the first term) minus the cost
of management (the second term), the latter comes from then maintenance cost of
the environment where the fishery resource lives [9].

The value function u = u (t, n, x, y) is the maximum of J :

u (t, n, x, y) = supcJ (t, n, x, y; c) . (5)

The optimal ct that achieves the maximum in (4) is denoted as c∗t . Finding this c∗t is
the goal of the present stochastic control problem.

2.3 HJB Equation

The formal linearity of the SDE (1) and the performance index J with respect to
the variable Nt allows us to decompose the value function u as u = n- with some
function - = - (t, x, y). The conventional dynamic programming principle then
leads to the (reduced) HJB equation that governs- as

∂-

∂t
− R- + μ̂ (y) g (x) ∂-

∂x
+ σ 2

2
g2 (x)

∂2-

∂x2 +Δμg (x) g (y) ∂
2-

∂x∂y

+ (λLH − (λLH + λHL)y)
∂-

∂y
+ (Δμ)2g2 (y)

2σ 2

∂2-

∂y2

− βpx − min
0≤c≤cmax

(zt c (- − αx)) = 0

(6)

for 0 ≤ t < T , 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1 subject to the terminal condition
- = 0 at t = T . The boundary conditions along x = 0, 1 and y = 0, 1 are specified
by directly considering (6) on these boundaries. The above-presented approach for
the boundaries is justified by the characteristics argument for second-order partial
differential equations degenerated on boundaries [5].

Hereafter, the condition αcmax − βp > 0 is assumed, meaning that there is a
possibility to make the profit be larger than the cost by choosing some ct . This is a
quite natural assumption from a fisheries viewpoint. Through the HJB equation (6),
the optimal c∗t is found as the maximizer of its last term, which is expressed with an
abuse of notation as c∗(t,Xt , Yt ). This c∗ is expressed through- as

c∗(t,Xt , Yt ) = zt argmin
0≤c≤cmax

(c (-(t,Xt , Yt )− αXt )) (7)
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Since this c∗ does not explicitly depend on the total population Nt , the optimal
harvesting strategy is based on the growth and its information uncertainty.

In the above-mentioned sense, finding the optimal management policy of the
fishery resource reduces to solving the HJB equation (6), which is carried out
numerically in this paper. This is because we have no hope to solve the equation
analytically due to its multi-dimensional and highly nonlinear nature. Nevertheless,
we have several qualitative results on the solution - . although the proofs are not
presented here, we can show that - is non-negative and bounded from the above,
and asymptotically behaves polynomially near the boundary x = 0. In addition, -
is increasing and decreasing with respect to x and t , respectively, agreeing well with
our intuition that the total profit would increase when the fishery resource is larger
and when the harvesting is carried out in a longer period.

3 Application

The HJB equation (5) is discretized with a finite difference scheme based on
the central differencing as much as possible strategy [7] with a fully-implicit
time discretization. The mixed derivative term is discretized with a conventional
central difference discretization, which is not convergent in the viscosity sense and
may violate maximum principles numerically. Nevertheless, it has been found that
the employed numerical discretization strategy can handle HJB equations without
numerical instability. We conjecture that this may be due to that solutions to
HJB equations are actually classical C1,2-class solutions almost everywhere in the
domain. The spatio-temporal domain is uniformly discretized into 256 cells in each
direction.

The parameter values are specified as follows: T = 180 (day), τ = 45(day),
R = 0.010 (1/day), cmax = 0.030 (1/day),μL = 0.016 (1/day), σ 2 = 0.004 (1/day),
μH = 0.040 (1/day), λHL = λLH = 0.1 (1/day), p = 0.015 (1/day), α = 1.0, β =
0.2. These parameter values are based on our field survey results in Hii River, Japan,
where P. altivelis is the most important inland fishery resource. Reproduction of
the fish in the river is considered to be unsuccessful, and its population is maintained
annual release of farmed juveniles in spring.

Computationally, for t ≥ τ , the optimal harvesting policy is as follows: there is
a continuous and non-negative bi-variate function b, namely a free boundary such
that c∗(t,Xt , Yt ) = cmax if Xt ≥ b(t, Yt ) and c∗(t,Xt , Yt ) = 0 if Xt < b(t, Yt ).
Figure 1 shows the computed b. In this sense, the free boundary completely
determines the optimal harvesting policy. Qualitatively the same results have been
obtained for different parameter values, supporting this conjecture. The results
suggest that harvesting the fish is not always optimal just after t = τ . This is a
theoretical, but possible policy.
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Fig. 1 Computed free
boundary b = b(t, y) for
t ≥ τ 0.42

0.00

y

t

b

τ

0

0 1

T

4 Concluding Remark

In this paper, we focused on formulating the problem. Mathematical analysis of the
model, especially the HJB equation, was not discussed. A major issue is identifying
the function space where the value function - belongs to. Several literature (For
example, see [6]) implied that solutions to degenerate parabolic equations, even
when they are linear, do not belong to standard Sobolev spaces like W 1,2, but
to some weighted Sobolev spaces: the latter are able to handle the degenerate
coefficients in domains and on boundaries. Approaches from the viewpoint of
viscosity solutions [1] would effectively work as well. Further research is necessary
from both mathematical and practical viewpoints to achieve more cost-effective
inland fisheries.
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Environmentally Optimized Management
of Urban Road Networks

Lino J. Álvarez-Vázquez, Néstor García-Chan, Aurea Martínez,
and Miguel Ernesto Vázquez-Méndez

Abstract In this paper we address the optimal management of an urban road
network by combining optimal control of partial differential equations, numerical
simulation and optimization techniques. Specifically, we are interested in analyzing
the optimal management of the intersections of an urban road network, in order to
reduce both atmospheric pollution and traffic congestion. To optimize the network
management, we consider a multi-objective optimal control problem, balancing—
within a cooperative Pareto framework—a traffic cost function involving travel
times and outflows, and a pollution cost function related to contaminant con-
centrations. In the second part of this work we present numerical tests for a
real-world example of ecological interest, posed in the Guadalajara Metropolitan
Area (Mexico), where the possibilities of our approach are shown.

1 Introduction

Two of the main urban problems in modern cities are atmospheric pollution and
traffic congestion. In order to deal with these problems (that are closely related
to each other), a careful urban planning has shown to be of crucial importance.
Urban planners are involved in design and management of the urban road network,
taking into account several issues: network topology (number and location of
roads, intersections. . . ), roads characteristics (capacity, length, number of lanes,
construction costs. . . ), intersections characteristics (existence of level crossing,
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presence of traffic lights. . . ) and so on. Nevertheless, the behaviour of traffic
network users (whose main interests usually tend to optimize travel times and costs)
commonly makes difficult the effectiveness of adopted measures (mainly directed
to a better functioning of the whole road network and to a reduction in pollution).

The analysis of traffic flow in urban networks coupled with the study of air
pollution has been dealt with the use of partial differential equations models [4, 7, 9],
but the optimal control of such coupled problem has been much less addressed. In
previous works [1, 2] the authors proposed a novel methodology that brings together
a 1D model for vehicular flow with a 2D model for pollutant dispersion, in order
to apply optimal control techniques to the interactions between road network flow
and air pollution (obtaining an explicit relation between the design variables of the
problem and the corresponding states: traffic flow and air pollution).

The present work is devoted to set, analyze and solve a multi-objective cooper-
ative (Pareto) optimal control problem, related to the optimal management of the
network intersections, looking for environmental and operational interests (that is,
minimizing air pollution and optimizing traffic flow). We also present and discuss
some numerical experiences obtained when applying our methodology to a simple,
real-world case posed in the Guadalajara Metropolitan Area (Mexico), although it
can be applied to any other, more complex scenario.

2 The Optimal Control Problem

Within an urban domainΩ ⊂ IR2 we consider a road network composed ofNR uni-
directional avenues (segments) meeting at a numberNJ of junctions (intersections).
Each segment Ai ⊂ Ω, i = 1, . . . , NR, is modelled by an interval [ai, bi ] and a
parametrization σi : s ∈ [ai, bi] → σi(s) = (xi(s), yi(s)) ∈ Ai preserving the
sense of motion on the avenue. We denote by I in, I out ⊂ {1 . . . , NR} the sets of
indices corresponding to incoming and outgoing roads in the network, respectively.
Finally, for each junction j = 1 . . . , NJ , we denote I in

j , I
out
j ⊂ {1 . . . , NR} the

sets of indices corresponding to avenues incoming and outgoing in that junction,
respectively.

To model traffic flow in the road network we consider the classical LRW model
coupled with a queue model. We denote by ρi(s, t) ∈ [0, ρmaxi ] the density of cars
in the avenue Ai , (ρmaxi standing for the maximum allowed value). We suppose
known the static relations fi : [0, ρmaxi ] → IR giving the flow rate on the avenueAi
in terms of the density (fi(ρi) = ρivi , with vi(s, t) the velocity on the avenue Ai).
Finally, for each y ∈ I in, we denote by qy(t) ≥ 0 the queue length downstream
the avenue Ay . Then, the traffic flow in the road network can be modelled by the
following system [2]: for i = 1, . . . , NR , y ∈ I in, z ∈ I out , j = 1, . . . , NJ ,
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k ∈ I in
j , and l ∈ I out

j :

∂ρi

∂t
+ ∂fi(ρi)

∂s
= 0 in (ai, bi)× (0, T ), (1)

fk(ρk(bk, .)) =
∑

l∈I out
j

min
{
α
j
lkDk(ρk(bk, .)), β

j
klSl(ρl(al, .))

}
in (0, T ), (2)

fl(ρl(al, .)) =
∑

k∈I in
j

min
{
α
j
lkDk(ρk(bk, .)), β

j
klSl(ρl(al, .))

}
in (0, T ), (3)

fz(ρz(bz, .)) = min{f outz ,Dz(ρz(bz, .))} in (0, T ), (4)

fy(ρy(ay, .)) = min{Diny (qy, .), Sy(ρy(ay, .))} in (0, T ), (5)

dqy

dt
= f iny − fy(ρy(ay, .)) in (0, T ), (6)

with corresponding initial conditions. In above system, Di, Si : [0, ρmaxi ] → IR
denote, respectively, the demand and supply functions given by:

Di(ρ) =
{
fi(ρ) if 0 ≤ ρ ≤ ρCi ,
Ci if ρCi ≤ ρ ≤ ρmaxi ,

Si(ρ) =
{
Ci if 0 ≤ ρi ≤ ρCi ,
fi(ρ) if ρCi ≤ ρ ≤ ρmaxi ,

(7)

for Ci the road capacity for avenue Ai , and ρCi its critical density.

Parameters αjlk represent the preferences of drivers arriving to a junction, that is,

α
j

lk gives the percentage of drivers that, arriving to junction j from the incoming
avenue Ak, try to take the outgoing avenue Al . Consequently, they should verify:

0 ≤ αjlk ≤ 1,
∑

l∈I out
j

α
j
lk = 1. (8)

On the other hand, parameters βjkl represent the ingoing capacities in outgoing

avenues, that is, βjkl gives the percentage of vehicles that, at a junction j and coming
from the avenue Ak , can enter the outgoing avenue Al . In a similar way to previous
case, these parameters should verify:

0 ≤ βjkl ≤ 1,
∑

k∈I in
j

β
j
kl = 1. (9)
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Finally, term Diny (qy, t) represents the demand of queue qy at time t , given by:

Diny (qy, t) =
{

min{f iny (t), Ciny } if qy = 0,
Ciny if qy > 0.

(10)

In order to simulate air pollution due to vehicular traffic, we consider a
mathematical model similar to that proposed in [1]. We denote by φ(x, t) the CO
concentration at point x ∈ Ω and at time t ∈ [0, T ], obtained as the solution of the
following initial/boundary value problem:

∂φ

∂t
+ v · ∇φ − ∇ · (μ∇φ)+ κφ =

NR∑
i=1

ξAi inΩ × (0, T ), (11)

μ
∂φ

∂n
− φ v · n = 0 on S−, (12)

μ
∂φ

∂n
= 0 on S+, (13)

with corresponding initial condition, and where v(x, t) represents the wind velocity
field, μ(x, t) is the CO molecular diffusion coefficient, κ(x, t) is the CO extinction
rate, and n denotes the unit outward normal vector to the boundary ∂Ω = S− ∪
S+, with S− = {(x, t) ∈ ∂Ω × (0, T ) : v · n < 0} the inflow boundary, and
S+ = {(x, t) ∈ ∂Ω × (0, T ) : v · n ≥ 0} the outflow boundary. Finally, each
second member term ξAi stands for pollution sources due to vehicular traffic on
road Ai , given by the following Radon measure, with γi, ηi weight parameters for
contamination rates:

〈ξAi (t), v〉 =
∫ bi

ai

(γifi(ρi(s, t)) + ηiρi(s, t)) v(σi (s)) ‖σ ′
i (s)‖ ds, ∀v ∈ C (Ω),

Two different objectives will be simultaneously considered here: the former
involving traffic flow, and the latter related to air pollution. So, regarding the
optimization of traffic flow, we try to minimize the length of queues and the
total travel time, and to maximize the outflow of the system. Thus, the following
functional will be minimized [8]:

JT =
∫ T

0

⎛
⎝ ∑

y∈I in

ε
q
y qy(t)+

NR∑
i=1

εi

∫ bi

ai

ρi(x, t)dx −
∑
z∈I out

εoutz fz(ρz(bz, t))

⎞
⎠ dt,

(14)

with εqy , εi , εoutz ≥ 0 weight parameters (alternative formulations -related to
strategic decisions from the viewpoint of game theory- can be seen, for instance,
in [5] and the references therein). With respect to contamination, we try to keep the
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mean CO concentration is as low as possible. So, we will minimize the functional:

JP = 1

T |Ω |
∫ T

0

∫

Ω

φ(x, t) dx dt, (15)

where |Ω | denotes the Euclidean measure of set Ω .
Finally, with respect to the design variables (controls) that can be managed within

the network, we will focus on the optimal management of the intersections, trying
to look for the values of the parameters that are the most suited to our objectives.

So, we can consider the following multi-objective cooperative problem: Let us
suppose that the preferences of the drivers αjlk are known. In this case, the control

of the problem will be the vector β = (β
j

kl), and, assuming a unique organization
managing the entire network, we will try to solve the multi-objective problem:

min J(β) = (JT (β), JP (β))
subject to (9)

(16)

within a cooperative framework, that is, looking for Pareto-optimal solutions.
From the computational viewpoint, in order to find the Pareto-optimal frontier of

problem (16), the use of an elitist genetic algorithm is proposed (in particular, a well-
known variant of the multi-objective non-dominated sorting-based evolutionary
algorithm NSGA-II [6], that is included in the Global Optimization Toolbox of
MATLAB R2017a).

3 Numerical Results

We discuss here some numerical results obtained when applying our methodology
to a real-world case posed in Guadalajara Metropolitan Area (Mexico) with almost
5 million inhabitants and more than 2 million vehicles. So, domain Ω shown in
Fig. 1 was taken and, for the sake of brevity, a main road network of only NR = 15
avenues and NJ = 9 junctions and a time interval of T = 24 h was chosen.

In relation to the traffic model, all the avenues of the network were assumed
to present the same theoretical characteristics. Moreover, we took the same down-
stream road capacity for the three incoming roads, and also equal maximum outflow
rates for the three outgoing roads. Finally, we considered weight parameters with
values εi = 0.5, εqy = 0.1 and εoutz = 0.5. With respect to the pollution model,
a characteristic wind field was considered (see Fig. 1), and typical values for CO
(μ = 3.5 × 10−8, κ = 0.6 × 10−2, γi = 10−6, ηi = 3.16 × 10−5) were taken.

The Pareto-optimal frontier obtained can be seen in Fig. 2, where three distin-
guished points were chosen for its analysis: βT , the best solution from the viewpoint
of traffic flows and travel times; βP , the best solution for pollution minimization;
and βC , an intermediate compromise solution.
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Fig. 1 Satellite photo of Guadalajara metropolitan area (Mexico). The domain Ω considered for
pollution simulation is drawn in black, the road network is sketched in red, and vectors show the
wind velocity field corresponding to the numerical experiment
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Fig. 2 Pareto-optimal frontier obtained for the multi-objective optimal control problem, where
three particular solutions are emphasized: the optimal solution for the optimization of traffic flow
(βT ), the optimal solution for the minimization of pollution (βP ), and a compromise solution
corresponding to an intermediate balance choice (βC )

Finally, Fig. 3 compares, for these three Pareto-optimal solutions, the values
(along the whole simulation time interval) of two variables for the traffic model.
In this case, for the sake of conciseness, only queue lengths at entry road A1 and
outflow rates at exit avenue A15 are shown. The full numerical algorithm and more
detailed computational results can be found in the recent paper of the authors [3].
Results show that, as was expected, solution βT results in a greater outflow rate at
outgoing avenues, and smaller queues for incoming roads. On the contrary, solution
βP causes lower CO concentration (since car density and flow rate decrease), but
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Fig. 3 Values for the three Pareto-optimal solutions βT (dashed lines), βP (dash-dot lines), and
βC (solid lines) of queue length for entry road A1 (left), and outflow rate for exit road A15 (right)

queue lengths increase. Finally, solution βC reaches a balancing situation that, under
satisfactory traffic conditions, reduces pollution to acceptable levels.
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Optimal Control of Heavy Metals
Phytoremediation

Aurea Martínez, Lino J. Alvarez-Vázquez, Carmen Rodríguez,
Miguel E. Vázquez-Méndez, and Miguel A. Vilar

Abstract Heavy metals enter aquatic systems as a result of very different human
activities involving the mining, processing and use of substances containing metal
pollutants. Phytoremediation is a cost-effective plant-based approach of remediation
for heavy metal-contaminated bodies of water, that takes advantage of the ability of
algae to concentrate elements from the environment in their tissues. This paper deals
with the optimization of phytoremediation methods, by combining mathematical
modelling, optimal control and numerical optimization. In particular, we propose
a 2D mathematical model coupling partial differential equations modelling the
concentrations of heavy metals, algae and nutrients in large waterbodies. Questions
related to determining the minimal quantity of algae to be used, and also to locating
the optimal place for such algal mass, are formulated as an optimal control problem
for this scenario, and several numerical results for a realistic case are presented.

1 Introduction

Heavy metals pollution is nowadays one of the major environmental engineering
problems related to the quality of coastal water in highly industrialized areas, since
its threats to human health are well known from many decades ago [6]. The main
difficulty in the remediation of heavy metals (cooper, lead, cadmium, mercury,
chromium and so on) arises from the fact that they cannot be biodegraded and,
consequently, they persist indefinitely in water.
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Among the several techniques for treating heavy metals pollution (ranging from
physical removal or detoxification to bioleaching and bioremediation) the most
commonly used in present times is phytoremediation (which refers to the use
of the adsorption capacity of plants—in this case, algae—in order to reduce the
concentration of heavy metals in water), due to its effectiveness and low cost
[10].

Usual phytoremediation techniques are based on the placement of a quantity
ã of algal mass in a subdomain K of the water region under study, in such a
way that its bioadsorbent capacity may reduce the concentration levels of heavy
metals inside its influence zone. Within this framework, the simplest example of
optimal control problem would be the determination of the minimal quantity of
algae to be placed and of the optimal location of this algal mass. So, following
techniques similar to those previously used by the authors in different environ-
mental control problems [2–4], in below sections we set a rigorous mathematical
formulation of the environmental problem, deal with its numerical resolution
and, finally, present several computational examples showing the validity of our
method.

2 Mathematical Formulation of the Environmental Problem

To fix ideas, we consider a bounded domain Ω ⊂ IR2 (for instance, an estuary)
corresponding to a shallow water region, where a heavy metals pollution problem
is detected, due to industrial wastewater discharges causing a contamination of the
body of water by surpassing allowed thresholds.

As above commented, our main aim is related to the determination of the
minimal quantity of algae ã to be placed inside Ω and of its optimal location
K ⊂ Ω . A first necessary step in this direction is the setting of a suitable
mathematical model in order to simulate the evolution of the interactions between
the main species involved in the process (water, heavy metals, algae and, eventually,
nutrients) along a time interval [0, T ]. So, following the notations previously
introduced by the authors in [7] (where full details and definitions can be found), we
consider the following concentrations (height averaged in the water column): c(x, t)
representing the concentration of heavy metal in water; q(x, t), the concentration
of heavy metal deposited in algae; a(x, t), the concentration of algae in water;
and p(x, t), the concentration of nutrients (mainly nitrogen and phosphorus) in
water.

To model the bioadsorption capacity of algae for c and q we use the classical
Lagergren’s kinetic model combined with the well-known Langmuir equilibrium
model for characterizing the adsorption isotherm [5]. To model the interactions of
algae and nutrients for a and p we use a convection-reaction-diffusion equation
with nonlinear Michaelis-Menten kinetics [3]. Thus, the proposed state system
simulating the full process reads, for x ∈ Ω ⊂ IR2 and for t ∈ (0, T ), as the



Optimal Control of Heavy Metals Phytoremediation 463

following well-posed, coupled system of partial differential equations [7]:

∂c

∂t
+ v · ∇c − μc Δc+ κc a ∂q

∂t
= F inΩ × (0, T ),

∂q

∂t
= κq

(
Qmax b c

1 + b c − q
)

inΩ × (0, T ),

∂a

∂t
+w · ∇a − μa Δa − λ p

κp + p a + γ a = 0 inΩ × (0, T ), (1)

∂p

∂t
+ v · ∇p − μp Δp + β λ p

κp + p a = G inΩ × (0, T ),

with initial conditions:

c(0, x) = c0(x), q(0, x) = q0(x) inΩ, (2)

a(0, x) = a0(x)+ ã 1K(x), p(0, x) = p0(x) inΩ,

and boundary conditions:

∂c

∂n
= ∂a

∂n
= ∂p

∂n
= 0 on ∂Ω × (0, T ), (3)

where vector field v(x, t) represents the velocity of water, averaged in height
h(x, t), being both solutions of the classical shallow water equations; μc, μa, μp
are the diffusion coefficients of metal, algae, and nutrient, respectively; κc is the
mass transfer coefficient; F(x, t) represents the source term of heavy metal; κq is
the Lagergren constant; Qmax represents the maximum adsorption capacity; b is
the Langmuir constant; w(x, t) represents the velocity of algae; λ represents the
luminosity coefficient; κp is the nutrient semi-saturation constant; γ is the mortality
rate of algae; β is the nutrient-carbon stoichiometric coefficient; G(x, t) represents
the source term of nutrients; and 1K(x) represents the indicator function of the
regionK ⊂ Ω where algae are initially added with a mean concentration ã ≥ 0.

As already commented, we try to find the optimal location K where the algal
mass can be placed, and also its minimal quantity ã, in such a way that water quality,
given by heavy metals level, is maximized. Control variablesK and ã enter the state
system via the initial condition (2) for state variable a. Regarding the first control
variable K , and based on geopolitical reasons, we impose some constraints related
to the optimal location of the mass of algae. In particular, algal area K is defined
from a central point p that we demand to be located inside an admissible region
Kad ⊂ Ω (assumed convex for simplicity). So, area K is formed by the triangle in
which the point p lies and the three adjacent triangles (that is, regionK is composed
by four contiguous elements). On the other hand, due to economic causes, for the
second control variable ã, which is nonnegative by definition, we require it not to
exceed maximal and minimal thresholdsAmax > Amin ≥ 0. That is, we are actually
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imposing the following control constraints:

p ∈ Kad, ã ∈ [Amin,Amax]. (4)

Finally, as cost function J to be minimized we take the mean concentration of
heavy metals in water inside a sensitive region to be protected S ⊂ Ω (which can
be even the whole domainΩ). For instance, the objective function could be:

J (p, ã) = 1

T |S|
∫ T

0

∫

S

c(x, t) dx dt (5)

where |S| denotes the measure of S, and c is the solution of the state system (1)–(3)
with initial conditions (2) posed for K and ã, derived from design variables (p, ã).

Then, the optimal control problem consists of finding the optimal locationK and
the optimal amount ã of algae such that verify state system (1)–(3), minimize cost
function (5) and satisfy constraints (4). Thus, the problem can be written as:

min
p∈Kad

Amin≤ã≤Amax
J (p, ã) (6)

To solve this optimization problem (6), and given its essentially geometric nature,
we propose a direct search algorithm: the Nelder-Mead simplex method [9]. This
classical algorithm is a derivative-free method, based on the mere comparison
of values of the objective function, that constructs a sequence of simplices (sets
of sample points) as an approximation to the optimal point, and that has been
successfully used by the authors in other related environmental problems (see, for
instance, previous work [1], where a full description of the algorithm can be also
found).

Moreover, although Nelder-Mead algorithm is not guaranteed to converge in the
general case, it presents good convergence properties for low dimensions (and in
our problem design variable (p, ã) ∈ IR3). However, since Nelder-Mead algorithm
has been designed for unconstrained minimization problems, in order to apply it
to the control-constrained optimization problem (6) we need first to modify our
cost function (5) by adding a penalty term related to the fulfilling of the control
constraints (4), which can be made here in a very simple and straightforward way.

3 Computational Results

We present here some numerical tests for a realistic case posed in the estuary
Ría de Vigo (Galicia, NW Spain), in the area surrounding the harbour in Cangas,
corresponding to a lead discharge from several shipyards located in the region.
Numerical results have been obtained by using the module Heavy metals of the
2D hydrodynamic model MIKE 21 [8], developed by DHI (Danish Institute of
Technology) and widely employed in the study of environmental issues.
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From the large collection of computational experiences performed to analyze the
effects of the placement of a mass of algae (in this case, green alga Ulva) in the
vicinity of the discharge zone, only two figures are presented here.

For the optimization algorithm, the admissible region Kad is given by a
rectangle surrounding the wastewater discharge point, and the lower and upper
bounds are taken as Amin = 0 and Amax = 60. Then, we start from a set of
four initial simplices: (p1, ã1) = ((518376.99, 4677839.17), 20.00), (p2, ã2) =
((518587.76, 4677845.97), 25.00), (p3, ã3) = ((518465.38, 4678070.33), 15.00),
and (p4, ã4) = ((518492.57, 4677920.76), 30.00), whose cost values range from
J = 0.0146 to J = 0.0151. After 173 cost function evaluations, we arrive to optimal
control (p, ã) = ((518864.62, 4677937.99), 59.99), where the objective function
takes the value J = 0.0106 (representing a reduction in lead concentration of a 30%
with respect to initial situation).

The two figures correspond to zooms on the area of interest in the Ría de Vigo
(Cangas harbour region). So, Fig. 1 shows lead concentration c at low tide (after
two tidal cycles: about T = 24.8 h) for the initial (uncontrolled) configuration,
obtained by the numerical resolution of the problem in a spatial triangular mesh
of 1941 elements and 1129 vertices, with a time step of 30 s. We can appreciate
there the protected area (formed by two regions delimited by a white thick line),
and the original location K for algae (region composed of four triangles depicted
by a white thin line). Figure 2 shows c at same time for the optimized (controlled)
configuration, with optimal location K depicted by a coloured thick line. It can be
easily noted how lead concentration is significantly reduced by placing the optimal
amount of algae in the optimal area near to the source of pollution (point close
to the most highly contaminated vertex in Fig. 1). It can be also observed how the
reduction of lead appears not only in the area where algae are placed, but also affects
to the surrounding zones of the estuary, due to natural tide effects. Finally, from a
quantitative viewpoint, we can see how the optimized quantity of added algae ã

Fig. 1 Lead concentration levels for the uncontrolled situation posed in a region of the estuary Ría
de Vigo. Discharge zone corresponds to black point close to concentration peak, protected areas S
are depicted by white thick lines, and initial location K is delimited by a white thin line
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Fig. 2 Lead concentration levels, corresponding to the same scenario, after the controlled
placement of a mass of algae ã = 59.99 g/m3 in the optimal area K depicted by a coloured thick
line

approaches the maximum allowed quantity Amax , and how, also as expected, the
optimal region K moves closer to the protected region S and to the wastewater
discharge point, in order to intensify phytoremediation benefits.

Alternative numerical results have been presented by the authors in a recent
paper [5], by using the finite element method for the discretization of the state
system (1)–(3) and an interior-point algorithm for the resolution of the nonlinear,
constrained optimization problem (6). These alternative results are very similar to
those given here, both qualitatively and quantitatively, which shows the robustness
of our approach: a novel and reliable combination of optimal control theory of
partial differential equations, mathematical modelling and numerical optimization.
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Intraday Renewable Electricity Trading:
Advanced Modeling and Optimal Control

Silke Glas, Rüdiger Kiesel, Sven Kolkmann, Marcel Kremer, Nikolaus
Graf von Luckner, Lars Ostmeier, Karsten Urban, and Christoph Weber

Abstract This paper is concerned with a new mathematical model for intraday
electricity trading involving both renewable and conventional generation. The model
allows us to incorporate market data e.g. for half-spread and immediate price impact.
The optimal trading and generation strategy of an agent is derived as the viscosity
solution of a second-order Hamilton-Jacobi-Bellman (HJB) equation for which no
closed-form solution can be given. We thus construct a numerical approximation
allowing us to use continuous input data. Numerical results for a portfolio consisting
of three conventional units and wind power are provided.

1 Introduction

Due to the extensive rise of renewable power supply as a response to the global
climate change, electricity short-term markets like EPEX SPOT, in particular contin-
uous intraday trading, gained more importance. This, in turn, motivates the interest
in mathematical modeling of such trading as a basis for deeper understanding and
optimization. Early work in that direction can be found in [3]. In [1], the authors
derive a Hamilton-Jacobi-Bellman (HJB) equation for determining an optimal
trading strategy by modeling the dynamics of the electricity market by stochastic
differential equations (SDEs) and formulating a corresponding value function to
be optimized. The specific market model in [1] allows to solve the arising HJB
analytically, i.e., the authors derive a solution formula. The starting point of this
paper is a statistical analysis of EPEX SPOT data, which shows that some of the
model assumptions in [1] are not satisfied under real market conditions. Thus, we
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introduce a more sophisticated model. The arising HJB equation can no longer be
solved analytically; the value function is shown to be the unique viscosity solution
of this HJB equation. Thus, we need an appropriate numerical scheme.

From an economical point of view, the main new ingredients of our model are: (1)
Portfolio of renewable and conventional energy represented by a cost function that
reflects the stepwise merit order of a portfolio rather than a systemwide quadratic
function; (2) Pricing model using time-varying half-spread and being capable of
representing time-varying liquidity; (3) Approximation of market data for half-
spread and instantaneous price impact; (4) Variable penalty depending on the state
of the market at final time. The main focus of this paper is a novel application-
related modeling of the intraday trading and the determination of a numerical
approximation for this problem. We show an example of a real-world problem and
compute the optimal trading strategy. The remainder of this paper is organized as
follows: In Sect. 2, we introduce the new model and the arising HJB equation, Sect. 3
is devoted to the presentation of numerical experiments and we finish by an outlook.

2 A New Mathematical Model

In order to take both renewable and conventional generation into account, our model
is based upon the consideration of an agent owning both kinds of power plants
and aiming at selling a combination of renewable1 and additionally conventionally
produced electricity. In detail, depending on the weather forecast and the expected
price at the final time, a combination of conventional and renewable electricity is
sold at the day-ahead market. With this sold amount, the agent starts the continuous
intraday trading aiming at maximizing her profit by determining an optimal trading
strategy as well as an optimal production of conventional power.2 We are now going
to describe both involved frameworks, namely the trading model including day-
ahead as well as intraday trading and the stochastic model of the dynamics.

Day-Ahead and Intraday Electricity Trading Consider a delivery hour h on day
d . The day before, the day-ahead auction takes place with gate closure at 12 pm.
In this auction, each participant can offer (ask) or request (bid) a certain demand of
electricity at a specific price. Then, a clearing price is set and power is exchanged
accordingly. Next, the continuous intraday trading starts at 3 pm on day d − 1 and
closes half an hour before the actual delivery hour h, see Fig. 1.

Dynamics of the Electricity Market The dynamics of the market includes the
forecasted renewable power production and the price process. The latter one is

1In our numerical experiments, we consider wind energy.
2That means that we do not optimize day-ahead and intraday trading at the same time.
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Fig. 1 Scheme of continuous intraday trading

influenced by the current trading activity of the agent. We use stochastic processes
and derive stochastic differential equations (SDEs).

Forecast Model for the Renewable Power By D = (Dt )0≤t≤T we denote the
forecasted production of renewable electricity during the trading session. The
uncertainty is modeled by means of the dynamics dDt = μD dt+σD dWt,D , where
μD is the drift, σD is the volatility and (Wt,D)0≤t≤T is a standard Brownian motion.
For the sake of simplicity, this variable is unbounded, whereas in the real world,
there are restrictions by zero (no wind) and the maximum capacity of the wind
farm.

Agent’s Position The position resulting from the agent’s trading activity is denoted
by X = (Xt)0≤t≤T , which resembles the agents current amount of electricity. The
agent participates in the intraday market with continuous trading at rate qt ∈ Q ⊂ R

(qt > 0 means buying, qt < 0 selling), i.e., dXt = qt dt and we denote by Xq,t,x

the solution of the SDE starting from x at t (for t = 0, x0 is the amount of electricity
sold on the day-ahead market).

Price Model The execution price is the price the agent pays (receives) when
actually buying (selling). We require a more advanced approach of the pricing model
as in [1], where the half-spread and its time variability as well as the time variability
of the immediate price impact are ignored. Incorporating these effects, the execution
price depends on a number of quantities to be introduced now. First, we denote by
Y = (Yt )0≤t≤T the sum of the mid price of energy and the permanent impact of the
agent’s trading modeled by some function ψ : R → R. Its dynamics is modeled
by the SDE dYt = (μY + ψ(qt ))dt + σY dWt,Y , where μY is the drift, σY is the
volatility and (Wt,Y )0≤t≤T is a standard Brownian motion. We denote by Y t,y the
solution of the SDE starting from y at t . The next ingredient is the half-spread
h : [0, T ] → R, i.e., the half of the distance between the best ask and the best bid
price. This is data which can be retrieved from the market. With all these quantities
at hand, the execution price Pq,t,y = (P q,t,ys )0≤s≤T is modeled as

P
q,t,y
s := Y t,ys + |qs |

qs
h(s)+ ϕ(t, qs), (1)

i.e., the permanently impacted mid price plus (minus) the half-spread and the
instantaneous price impact ϕ : [0, T ] ×Q → R.
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Conventional Production/Payoff At the end of the trading session T , the agent
chooses how much electricity ξ ∈ R

+
0 she will produce during the delivery period. In

doing so, she also has the option to place a final buy or sell market order, potentially
resulting in ξ �= −ZT , with Zt := Xt + Dt being the sum of the forecasted
production from renewables and what has been sold by the agent so far. For example,
she could further increase her sell position and production. The final market order
goes along with costs due crossing the half-spread h(T ) and potentially executing
limit orders whose prices are worse than the best bid/ask price due to a penalty
α : R → R

+
0 . The arising cost per unit depends on the state of the market at T . The

terminal payoff is

g(ξ, YT , ZT ) := −c(ξ)+ (ξ + ZT )
(
YT − (h(T )+ α) |ξ + ZT |

ξ + ZT
)
, (2)

where c : R+
0 → R

+
0 models the cost of the conventional generation.

Value Function The value function corresponds to the agent’s cash, so that an
optimal strategy yields maximal cash. The total running profit from the continuous
trading in the intraday market is given by f q(s; t, y) := −qs P q,t,ys . Denoting by
Zq,t,z the solution of the SDE dZt = dDt + dXt = (qt + μD) dt + σD dWt,D
starting from z at t , the resulting value function V : [0, T ] × U → R reads

V (t, y, z) := sup
(q,ξ)∈Q×R

E

[∫ T

t

f q(s; t, y) ds + g(ξ, Y t,yT , Zq,t,zT )

]
, (3)

where U := Y × Z ⊂ R
2 is a rectangle (in order to ensure well-posedness of the

optimization in (3), [2]). We prescribe Dirichlet conditions on the boundary ∂U .

Hamilton-Jacobi-Bellman (HJB) Equation Following the well-known dynamic
programming principle (e.g. [5, Ch. 4]), we derive the HJB equation: Find W :
[0, T ] × U → R,W = W(t, y, z), such that

∂tW + μY ∂yW + μD∂zW + 1

2
σ 2
Y ∂yyW + 1

2
σ 2
D ∂zzW (4)

+ sup
q(t)∈Q

{
−
(
y + h(t) |q(t)|

q(t)
+ ϕ(t, q(t))

)
q(t)+ q(t) ∂zW + ψ(q(t)) ∂yW

}
= 0,

for (t, y, z) ∈ [0, T ) × U with terminal condition W(T, y, z) = g(T , y, z),
(y, z) ∈ U . One can show that this problem is well-posed and that the unique
viscosity solution W is the value function V in (3). Due to the form of (4), we
cannot expect a first-order condition for the control q(t) and we have to resort to
numerical solvers.
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3 Numerical Experiment

Finally, we report on results of a numerical experiment concerning (4) using the
following data: U := [−50, 250] × [−1645, 145] ⊂ R

2 and T = 17.5 h. We use
a finite difference discretization from [4] with 56 × 301 points in space and 100
points in time. In particular, central differences are used for the approximation of
the first-order terms with additional artificial diffusion, which results in a stable,
consistent and monotone scheme converging to the viscosity solution, [4]. We use
the well-known policy iteration in every time-step and the control is maximized
over a discrete set (as no first-order conditions are available). Finally, the optimal
conventional generation is computed as the maximum value of (2) w.r.t. ξ using
Matlab’s intlinprog with the interior point method.

Boundary Conditions Similar to option pricing, the choice of appropriate bound-
ary conditions (here for y and z) is delicate. Here, we use a similar but easier
HJB allowing for a closed-form solution on some U ⊂ R

2. Then, we prescribe
the boundary values of this function as Dirichlet conditions on ∂U .

Data We use the data μD := μY := 0.0, σD := σY := 0.1. The functions ϕ(·, ·)
and h(·) are least-squares fifth order polynomial approximations of market data from
Q2/2015 (ψ(t) = 0). The penalty is given by market data as α(x) := 0.5 · (|x| −
20)χ20<|x|≤45 + ((|x| − 45) + 12.5)χ45<|x|≤145. We consider three conventional
units, namely a hard coal plant with 25e/MWh variable cost and min-max capacity
of 250–500 MW, one combined cycle gas turbine (CCGT) unit (35e/MWh, 100–
400 MW) and open cycle gas turbine (OCGT) unit (60e/MWh, 60–600 MW).

Our results for the optimal conventional generation ξ are displayed in Fig. 2.
Let us comment on the case whereZT = −500 MWh. As long as the final mid price
is below 25e/MWh, the agents buys the maximal amount of 145 MWh (recall, that
y ∈ [−1645, 145]) and uses the power plant with the lowest marginal costs (hard

-20 0 20 40 60 80 100
YT

0

200

400

600

800

1000

1200
ZT = −1000 MWh
ZT = −500 MWh
ZT = 0 MWh

Fig. 2 Optimal conventional generation ξ as a function of YT and ZT (left) as well as for some
values of ZT (right; the lines correspond to those on the left graph)



474 S. Glas et al.

-1500

0 2.5 7.5 12.5 17.55 10 15 0
0

2.5 7.5 12.5 17.55 10 15

-1000

-500

0

500

1000

1500

Fig. 3 Optimal trading rate over the trading window t ∈ [0, 17.5] for Zt ≡ −499.4 MWh and
Yt ≡ 59.25 e/MWh (left) as well as Yt ≡ 13.98e/MWh (right)

coal) accordingly, i.e. the remaining 355 MWh. Once the final mid price is 25–
35e/MWh (i.e., above the marginal cost of hard coal, but below the marginal cost of
CCGT) it is optimal to produce at maximum capacity with the cheapest conventional
power plant (i.e. 500 MWh by hard coal) and no final market order is required. If the
final mid price exceeds 35e/MWh, the agent sells as much electricity as possible
(145 MWh) and produces exactly that amount with the CCGT plant at 35e/MWh,
which is possible because its capacity is 100–400 MW. Finally, no matter how high
the final mid price is, the OCGT unit with the highest marginal cost is not used, since
there is not enough sell volume on the market. These results are clearly reasonable.

Trading Rate Figure 3 shows the optimal trading rate over the trading window
t ∈ [0 h, 17.5 h]. In both cases, we fix Zt ≡ −499.4 MWh (the non-integer
numbers arise from the discretization w.r.t. y and z). For the mid price, we choose
Yt ≡59.25e/MWh (left) and Yt ≡13.98e/MWh (right). In the left plot, the trading
rate is negative (selling), which is reasonable since Zt ≡ −499.4 MWh means that
the agent has only marketed the cheapest power plant and Yt ≡ 59.25e/MWh
means that the execution price is above the marginal costs of the second cheapest
power plant. Note, that the absolute value of the trading rate substantially increases
around 15 h, since half-spread and immediate price impact are minimal there. In the
right plot, the execution price is below the marginal costs of the cheapest power
plant, the agent buys electricity and reduces the production of the marketed power
plant.

Outlook The availability of a numerical approximation scheme allows us to extend
our model to all market participants, so that regulatory constraints can be determined
e.g. for reaching desired environmental goals. Ongoing work is concerned with
model order reduction to make the scheme real-time efficient 24 h a day with
continuous incoming data (market and forecast).
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Surrogate Models for Coupled
Microgrids

Sara Grundel, Philipp Sauerteig, and Karl Worthmann

Abstract We consider the operation of coupled microgrids. Each microgrid con-
sists of a number of residential energy systems, each including an energy storage
device. The goal is to determine an optimal energy exchange between the micro-
grids, which results in a two-level optimization problem. On the lower level, within
each microgrid, a grid operator sets up an optimization scheme to coordinate the
individual subsystems. We propose a surrogate model based on radial basis func-
tions to approximate this optimization based process and investigate its applicability
in the higher level by conducting a case study based on an Australian data set.

1 Introduction

The successful integration of renewable energy sources into the electricity grid
is the key factor to master the energy transition. Herein, the control of locally
distributed energy storage devices, e.g. batteries, plays a major role, see, e.g. [4].
While there are approaches for the control of a single microgrid, see, e.g. [6, 7],
coupled microgrids incur additional challenges, see [2] and the references therein.
Among them is the need to rapidly solve optimization problems at the microgrid
layer such that a negotiation process w.r.t. energy exchange between microgrids can
be set up, see, e.g. [8]. To this end, we propose a technique based on Radial Basis
Functions (RBFs) in order to derive a surrogate model replacing the outcome of an
optimization scheme.

The paper is structured as follows: In Sect. 2, we briefly recall operation of
a single and of coupled microgrids. Then, we introduce the technique based on
RBFs to construct a surrogate model in Sect. 3 before its suitability is investigated
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in a numerical case study based on data provided by an Australian distribution
network. Here, we consider an optimization loop based on the Alternating Direction
Method of Multipliers (ADMM), see [1] for details. Finally, coupled microgrids are
investigated in Sect. 4 before conclusions are drawn in Sect. 5.

Notation N denotes the natural numbers while N0 stands for N∪{0}. For k, � ∈ N0
with k ≤ �, the set {k, k + 1, . . . , �} is denoted by [k : �].

2 Coupled Microgrids

In the following we revive the idea of coupled microgrids presented in [2]. We
consider Ξ microgrids (MGs), Ξ ∈ N, that are coupled through a network of
transmission lines. In our numerical case study, we consider four microgrids coupled
as depicted in Fig. 1.

Each MG κ ∈ [1 : Ξ ] consists of a number of Iκ ∈ N residential energy
systems, residential energy systems, which can be defined as follows.

Optimal Control of a Single Microgrid We consider Iκ residential energy
systems; each equipped with a battery, which could be replaced by another energy
storage device. The battery dynamics of subsystem i and its power demand are given
by

xi(n+ 1) = αixi(n)+ T (βiu+
i (n)+ u−

i (n)), (1a)

zi(n) = wi(n)+ u+
i (n)+ γiu−

i (n). (1b)

Here, xi(n) represents the State of Charge (SoC), u+
i (n) and u−

i (n) the charging and
discharging rate, zi(n) the power drawn from/supplied to the grid, and wi(n) the net
energy consumption (load minus generation) at time n, n ∈ N0. The parameters αi ,
βi , and γi are losses due to self-discharge of the battery and energy conversion while

Fig. 1 Schematic
representation of four coupled
MGs

MG1 MG2

MG3 MG4
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T denotes the length of the sampling interval in hours. In addition, the following
constraints are imposed to model battery capacity limits (2a), bounds on the (dis-)
charging rate (2b), (2c), and to avoid simultaneous charging and discharging (2d):

0 ≤ xi(n) ≤ Ci (2a)

ui ≤ u−
i (n) ≤ 0 (2b)

0 ≤ u+
i (n) ≤ ui (2c)

0 ≤ u−i (n)
ui

+ u+i (n)
ui

≤ 1. (2d)

All systems are coupled via a common point of coupling, at which a grid operator
(Central Entity; CE) is located. The CE has to provide the desired power demand—
independently of its sign, i.e. whether there is an excess or a need of energy.
Therefore, the CE has to retain balancing energy. Hence, an objective is peak
shaving, i.e. minimizing the deviation from the average net consumption ζ̄κ (k) =
(Iκ ·min{N, k+1})−1∑k

n=k−min{k,N−1}
∑Iκ
i=1 wi(n). In summary, the optimization

problem reads as

Minimize
u=(u+,u−)

1

N

k+N−1∑
n=k

⎛
⎝ 1

Iκ

Iκ∑
i=1

[
wi(n)+ u+

i (n)+ γiu−
i (n)

]− ζ̄κ (n)
⎞
⎠

2

s.t. battery dynamics (1a) and constraints (2),

(3)

where u+ = (
u+(n)

)k+N−1
n=k with u+(n) = (u+

1 (n), u
+
2 (n), . . . , u

+
Iκ
(n))� and u− is

analogously defined. The optimization problem (3) can be solved via the Alternating
Direction Method of Multipliers (ADMM), see, e.g. [1], which may be interpreted as
follows: Compute the power demand z̄κ (n) := 1

Iκ

∑Iκ
i=1 zi(n) for n ∈ [k : k+N−1]

based on the average net consumption, i.e.

(ζ̄κ (k), . . . , ζ̄κ (k +N − 1))� ADMM� (z̄κ (k), . . . , z̄κ (k +N − 1))�. (4)

Negotiation Between Microgrids Microgrids may benefit from an energy
exchange even if this exchange involves losses as numerically shown in [2]. To
this end, we solve the minimization problem

Minimize
δ(k),...,δ(k+N−1)

k+N−1∑
n=k

⎛
⎝
Ξ∑
κ=1

(
Iκ ζ̄κ (n)−

Ξ∑
ν=1

(δν,κ (n)ην,κ)Iν z̄ν(n)
)2
⎞
⎠ (5)

s.t.
∑Ξ

ν=1
δκ,ν(n) = 1 and δκ,ν(n) · δν,κ (n) ≤ 0, κ ∈ [1 : Ξ ], n ∈ [k : k +N − 1]



480 S. Grundel et al.

for given z̄ν(n), ν ∈ [1 : Ξ ] and n ∈ [k : k + N − 1]. Here, the matrices
δ(n) ∈ [0, 1]Ξ×Ξ and the symmetric matrix η ∈ [0, 1]Ξ×Ξ denote the rate
of exchange between the microgrids at time instant n and the corresponding
losses resp. If there is no transmission line between MGν and MGκ , we set
ηκ,ν = ην,κ = 0, κ , ν ∈ [1 : Ξ ]. Furthermore, we assume no losses without
exchange, i.e. ηκ,κ = 1, κ ∈ [1 : Ξ ]. To ensure that exactly the available amount
of energy of each MG is distributed the linear constraints

∑Ξ
ν=1 δκ,ν(n) = 1 are

introduced. The nonlinear constraints δκ,ν(n) · δν,κ(n) ≤ 0, κ, ν ∈ [1 : Ξ ] with
κ �= ν, model that power cannot be exchanged in both directions of a transmission
line at one time instant n ∈ [k : k + N − 1].

Numerical Case Study We consider four MGs with I1 = 50 and I2 = I3 =
I4 = 10 and the corresponding net topology and losses given by η12 = η21 = 0.7,
η13 = η31 = 0.8, η14 = η41 = 0.9, η24 = η42 = 0.8, i.e., there is a large MG
connected to three smaller MGs, see also Fig. 1. Then, we consider 25 randomly
selected time instants and solve (the large scale optimization) Problem (5) using
ADMM [2] in a distributed manner, see Fig. 3 (left) for the results.

3 Surrogate Model: Radial Basis Function Approximations

For the negotiation process mentioned in the previous section, each MG needs
to solve its optimization problem, which may be very time-consuming. Here, we
propose a technique to replace the input-output-map (4) by a surrogate model in
form of a radial basis function approximation in order to speed up this computation
and, thus, to facilitate the optimization of coupled MGs. To be more precise, we
replace the map (4) by a function f : RN → R

N , which is given as a Radial Basis
Function interpolation of a certain training set. Assume the training set is given by
M samples of ζ̄ (n), n ∈ [k : k +N − 1], to z̄(n), n ∈ [k : k +N − 1]. We stack the
N values of the input ζ̄ 1, . . . , ζ̄M ∈ R

N and the output z̄1, . . . , z̄M ∈ R
N . Then, we

set up an interpolation function f as a sum of basis functions φi : RN → R and a
regularization term q : RN → R

N , i.e.

f (ζ̄ ) =
M∑
i=1

φi(ζ̄ )αi + q(ζ̄ )

for some α1, . . . , αM ∈ R
N . This approximation is based on a particular function

φ : R → R, which is used to define φi by φi(ζ̄ ) = φ(‖ζ̄ − ζ̄i‖). The function
q is typically a short sum of basis functions that are some polynomials. We use
a linear regularization term q(ζ̄ ) = β0 + Bζ̄ , with β0 ∈ R

N , B ∈ R
N×N . It is

obviously important and possibly difficult to choose the right radial basis function
φ. Classically this is done by dividing your data into a training and a validation set.
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Fig. 2 Comparison of the output of the first component of z̄ for a random selection of 300 points
which are not used to create the surrogate model (left) and for the 25 randomly selected samples
both for the output and w.r.t. its impact on the energy exchange (right)

In order to determine the particular approximation function we need to specify
theMN+N+N2 unknownsαi , i ∈ [1 : M], β0, andB. This is done by imposing the
NM interpolation conditions f (ζ̄i) = z̄i , i ∈ [1 : M] as well as the following N +
N2 additional constraints:

∑M
i=1 αi = 0 and Z̄AT = 0 where Z̄ = [ζ̄ 1, . . . , ζ̄M ]

and A = [α1, . . . , αM ], see [3] for further details.

Numerical Case Study We use 400 samples for input and output, a linear regression
term q(ζ̄ ) = β0 + Bζ̄ , and a spherical basis function φ : R≥0 → [0, 1], x �→
1 − 1.5 min{1, θx} + 0.5 min{1, θx}3 with θ = 0.01. With this we get an average
error of 0.03, a median of 0.02, and a standard deviation of 0.03 overall the tested
16,800 samples where we used the MatLab toolbox DACE [5] for calculations, see
also Fig. 2 (left). The type of function φ used and the value of θ are not optimized
yet.

4 Case Study

The large MG is once optimized using ADMM, see (4), and once with the help of its
approximation based on RBFs while the other MGs are computed only via ADMM.
Then, the exchange matrices δRBF and δADMM based on Problem (5) are computed.
The deviations are depicted in Fig. 2 on the right. Here, the three main peaks in both
plots occur at the same sampling time. However, the error in z̄ is no proper indicator
for the error in δ. The mean value and the standard deviation are given by 0.0352 and
0.0598 for the approximation error w.r.t. the input-output-map (4) and 0.5084 and
0.4135 w.r.t. the deviations of the coefficients δ for the energy exchange between
the MGs. In Fig. 3 the impact of the energy exchange is shown for each of the four
MGs.

In the ADMM case, it can be observed that not every MG benefits at every sam-
pling time. Since MG1 consists of 50 residential energy systems, its performance is
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Fig. 3 Deviation from the reference value ζ̄κ , κ ∈ [1 : 4], using ADMM (left) and RBF (right)
before (dashed blue line) and after the energy exchange (dotted red line)

weighted five times the performance of the other MGs, compare with (5). Hence, in
our example it always benefits from the exchange. The results are similar using the
approximation based on RBFs. Here, however, one can observe that MG1 does not
improve its performance for every sample.

5 Conclusions and Outlook

In this paper, we introduced surrogate models for the optimization of microgrids in
order to save computation time. To this end, we briefly recapped the idea of coupled
microgrids and calculated radial basis function approximations based on samplings.
Our numerical case study showed promising results that the exchange coefficients
are well approximated—even if individual elements may differ. Moreover, there
seems to be a great potential for the use in Model Predictive Control (MPC) as
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numerically shown in Fig. 2 (left), in which only the first element of the computed
vectors is applied, see, e.g. [7] for the use of MPC in smart grids.
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Optimal Inflow Control Penalizing
Undersupply in Transport Systems
with Uncertain Demands

Simone Göttlich, Ralf Korn, and Kerstin Lux

Abstract We are concerned with optimal control strategies subject to uncertain
demands. An Ornstein-Uhlenbeck process describes the uncertain demand. The
transport within the supply system is modeled by the linear advection equation. We
consider different approaches to control the produced amount at a given time to meet
the stochastic demand in an optimal way. In particular, we introduce an undersupply
penalty and analyze its effect on the optimal output in a numerical simulation study.

1 Introduction

In many real-world situations, taking uncertainty into account becomes more and
more important. In the context of supply chain management, a need for appropriate
control strategies under uncertainty naturally arises when it comes to production
planning. The size and timing of product orders is often not known in advance.
However, for a delivery on time, the production process needs to be started in
advance. In this work, we tackle the challenging question of when to feed how many
goods into a supply system to meet the stochastic demand. We use the framework
of [3], where a corresponding stochastic optimal control problem is set up in the
context of electricity injection and extend it by introducing a penalty term into the
cost function. This term penalizes a production not leading to demand satisfaction,
i.e. an undersupply.

The main contribution of this work is to provide insight into the effect of an
undersupply penalty on the optimal production plan. In a numerical simulation
study, we highlight the effect for different penalty parameters.
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2 Stochastic Optimal Control Model for Transport Systems

An analysis of optimal control strategies for a supply problem in a deterministic
demand setting can be found in [1, 2]. Here, we focus on the stochastic nature of
the demand and start from the stochastic optimal control framework originally set up
in [3]. We consider a supply system consisting of only one production line. Goods
are fed into the system at x = 0, and leave the system at x = 1. Within a finite
time interval [0, T ], the aim is to optimally match the externally given customers’
demand Yt located at x = 1 by determining the inflow control u(t) ∈ L2 of goods
at x = 0. Thereby, the transport of goods z = z(x, t) along the production line is
governed by the linear advection equation with constant transport velocity λ > 0
and the following initial and inflow conditions:

zt + λzx = 0, x ∈ (0, 1), t ∈ [0, T ]
z(x, 0) = 0, z(0, t) = u(t). (1)

The explicit solution of (1) given by z(x, t) = u(x − 1
λ
t) is well-known (note the

boundary control instead of controlling the initial state). As in real-life often more
complex dynamics than a pure advection occur (see e.g. [1, 2]), our goal is to set
up a more general stochastic optimal control framework. For simplicity, we start
our investigations assuming linear transport only. We denote by y(t) = z(1, t) the
output of the system. It is intended to match the externally given demand Yt .

The uncertainty about the height and timing of the orders entails the stochasticity
of Yt . As in [3], we assume that the demand process fluctuates around a given time-
dependent mean demand level μ(t). The latter can be seen as a forecast that is
based on historical demand data. In this demand setting, one possible model choice
is the Ornstein-Uhlenbeck process (OUP). Let Wt be a one-dimensional Brownian
motion, σ > 0, κ > 0 be constant parameters, and denote the initial demand by y0.
Then, the OUP is the unique strong solution of the stochastic differential equation
(SDE)

dYt = κ (μ(t)− Yt ) dt + σdWt , Y0 = y0. (2)

The OUP possesses a mean-reverting property, i.e., whenever the process is away
from its mean demand level, it is attracted back to it. The parameter κ describes how
strong this attraction is, and σ determines how large the fluctuations are.

In this work, we make use of the known distribution of Yt , which is given by the
following normal distribution:

Yt ∼ N
⎛
⎝y0e

−κt + κ
t∫

0

e−κ(t−s)μ (s) ds, σ 2

t∫

0

e−2κ(t−s)ds

⎞
⎠ . (3)
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We refer the reader to [3] for more details on the demand process and the possibility
to include jumps in the demand.

The problem of interest is the arising constrained stochastic optimal control
(SOC) problem

min
u∈L2([0,T−1/λ])

∫ T

1/λ

OF(Ys, t0, yt0, y(s))ds subject to (1) and (2), (4)

Thereby, 1/λ is the time that one good needs to pass the production line, and
OF(Ys, t0, yt0, y(s)) denotes the loss function.

In [3], a possible choice of an objective function as a tracking-type function
OFtrack(Ys, t0, yt0, y(s)) = E

[
(Ys − y(s))2|Yt0 = yt0

]
has been introduced. The

loss is measured in terms of the quadratic deviation between the output at the end
of the line and the actual demand. In this work, we focus on an extended loss
quantification including an undersupply penalty. This is of interest for companies
where a supply guarantee is of crucial importance and short-term external purchase
is very costly. For them, it might be more harmful to generate an output that
does not lead to demand satisfaction compared to an overproduction. Therefore,
we introduce a new term into the objective function that penalizes undersupply.
Thereby, α regulates the intensity of penalization.

OFpen(Ys, t0, yt0, y(s)) =E

[
(Ys − y(s))2|Yt0 = yt0

]

+ αE
[
(Ys − y(s))2|Ys > y(s) ∧ Yt0 = yt0

]
. (5)

According to [4, Def. 8.9], the second conditional expectation in (5) reads as

E

[
(Ys − y(s))2|Ys > y(s) ∧ Yt0 = yt0

]

=
{

E
[
(Ys−y(s))21{Ys>y(s)}|Yt0=yt0

]
P(Ys>y(s))

if P(Ys > y(s)) > 0

0 else.

Thus, both conditional expectations in (5) can be expressed in terms of the known
demand density ρYt |Yt0=yt0 at time t given by (3). Hence, for the evaluation of the
objective functions OFtrack and OFpen, this information on the demand density is
sufficient. As the objective function is the only part of the SOC problem where
the stochastic demand dynamics (2) come into play, we can replace the SDE
constraint (2) in (4) by the condition that Yt has demand density (3), which is used
to calculate the expectations in the objective function (5). We are left with

min
u∈L2([0,T−1/λ])

∫ T

1/λ

OFpen(Ys, t0, yt0, y(s))ds subject to (1) and (3). (6)



488 S. Göttlich et al.

We are now able to apply deterministic optimization algorithms to the SOC
problem (6).

However, we still need to make assumptions on the demand information that is
used to determine the optimal inflow u(t). Those assumptions result in different
control methods due to the measurability assumptions on the inflow control u(t).
We focus on two of the three presented control methods (CM) in [3] corresponding
to two information scenarios that are shortly summarized here for the sake of
completeness:

• CM1: The only available demand information is the initial demand y0 and the
demand dynamics (2). No updates on the actual evolution of the demand can be
used to determine the inflow control over the optimization horizon [0, T ]. Thus,
we assume that u(t) is Ft -measurable, where Ft = σ (Ys; 0 ≤ s ≤ t).

• CM2: We prespecify update times 0 = t̂0 < t̂1 < · · · < t̂n ≤ T − 1/λ, where
t̂i = i ·Δtup, i ∈ {0, 1, · · · , T−1/λ/Δtup}, and update frequencyΔtup ∈ [0, T −1/λ].
At those points in time, the initial demand and the demand dynamics (2)
are supplemented by the actually realized demand. The forecast is updated
accordingly and the optimal inflow control is calculated based on the updated
demand forecast. Hence, we assume u(t) is Ft̂i

-measurable for t ∈ [t̂i , t̂i+1].
CM1 is directly applicable to (6). For CM2, we divide the optimization period

[0, T ] into smaller subperiods [t̂i , t̂i+1] according to the prespecified update times t̂i
and solve our SOC problem thereon.

min
u∈L2([t̂i ,t̂i+1])

∫ min{t̂i+1+1/λ,T }

t̂i+1/λ

OFpen(Ys, t̂i , yt̂i , y(s))ds

subject to (3) and zt + λzx = 0, z(0, t) = u(t), z(x, t̂i) = zold(x, t̂i),

x ∈ (0, 1), t ∈ [t̂i ,min{t̂i+1 + 1/λ, T }], (7)

where zold(x, t̂i ) denotes the state of the production line at update time t̂i ensuring
that the SOC problems on the subintervals are correctly linked to each other.

Note that the usage of the demand density (3) enables us to tackle both the SOC
problem (6) and the subproblems (7) with methods from deterministic optimization,
which will be done in the next section.

3 A Case Study: The Effect of an Undersupply Penalty

In this section, we numerically analyze the effect of an undersupply penalty for dif-
ferent intensities α for control methods CM1 and CM2. Using the reformulations (6)
and (7) of the original SOC problem (4), the nonlinear optimization solver fmincon
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Fig. 1 Influence of penalty parameter α on optimal output. (a) α = 1. (b) α = 3

from MATLAB R2015b1 is applicable (chosen initialization for CM1 and CM2:
constant inflow of u(t) ≡ μ(0)).

The numerical implementation to solve the SOC problem can be extended to the
case of transport dynamics with non-constant, but positive transport velocity. Thus,

a left-sided upwind scheme [5], i.e. z(xj ,τi+1)−z(xj ,τi )
Δτ

+ λz(xj ,τi )−z(xj−1,τi )

Δx
= 0, is

chosen to discretize the linear advection equation (1). The applied step sizes Δx =
0.1, and Δτ = Δx/λ fulfill the CFL-condition. For our numerical simulations, we
use 103 Monte Carlo repetitions with the following parameter setting for the demand
process: T = 1, λ = 4, μ(t) = 2 + 3 · sin(2πt), κ = 3, σ = 2, y0 = 1.

In Fig. 1, we are concerned with the influence of the penalty parameter α on
the optimal output y(t) for control methods CM1 and CM2. Thereby, we depict
the updated confidence levels of the demand process in grey scale, the original
mean realization of the demand (dashed line), the optimal CM1-output (dotted line),
the optimal CM2-output (line marked by diamonds), and the tracked demand path
until the first update time (line with asterisks). The vertical lines indicate the update
times. For both control methods, the penalty leads to an output above the (updated)
mean demand. However, the CM1-output follows well the course of the original
mean demand, and the CM2-output lies well within the upper part of the updated
confidence intervals. Consistent with our intuition, a higher penalty parameter α
leads to an output higher above the (updated) mean demand.

In a next step, we want to quantify the number of undersupply cases, i.e., for
each point in time, we count how many of the 103 simulated paths lie above the
output (see Fig. 2a). By increasing the penalty parameter from α = 1 to α = 3,
we are able to drastically reduce the number of undersupply cases. Based on this
information, it is not clear whether CM2 is preferable over CM1 or not. Note that
deciding on an undersupply is a binary decision. However, in the objective function,

1https://de.mathworks.com/help/optim/ug/fmincon.html, last checked: Sept 21, 2018.

https://de.mathworks.com/help/optim/ug/fmincon.html
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Fig. 2 (a) Number of undersupply cases and (b) average undersupply

the height of the deviation plays an important role. As there is a tradeoff between not
realizing an undersupply but at the same time providing an adequate tracking of the
demand, it might pay off to accept a small undersupply. However, with respect to the
average undersupply, Fig. 2b shows that updates help to enhance the performance.
To see this, at each point in time, we consider only those realizations where an
undersupply occurs and plot the average height of the realized undersupply. The
average undersupply for CM2 (lines marked by diamonds) is less or equal to the
average undersupply for CM1 (dotted lines). Furthermore, there is less average
undersupply for a higher penalty parameter. Finally, we can conclude that the
introduction of a penalty parameter in the cost function leads to a reduction of both
the undersupply cases as well as the average height of the undersupply.
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A Production Model with History Based
Random Machine Failures

Stephan Knapp and Simone Göttlich

Abstract In this paper, we introduce a time-continuous production model that
enables random machine failures, where the failure probability depends historically
on the production itself. This bidirectional relationship between historical failure
probabilities and production is mathematically modeled by the theory of piecewise
deterministic Markov processes (PDMPs). On this way, the system is rewritten into a
Markovian system such that classical results can be applied. In addition, we present
a suitable solution, taken from machine reliability theory, to connect past production
and the failure rate. Finally, we investigate the behavior of the presented model
numerically in examples by considering sample means of relevant quantities and
relative frequencies of number of repairs.

1 Modeling Equations

We briefly recall the production network model from [1, 6] first, and according
to [4], we present the stochastic extension to a load-dependent production model
with machine failures. To keep the notation well-arranged, we consider a production
network consisting of a single queue processor unit. We assume a processor, which
is represented by an interval (a, b) ⊂ R, i.e., with length L = b − a, where
ρ(x, t) describes the density of production goods at x ∈ (a, b) and time t ≥ 0.
The dynamics of the density, and consequently of the production, is given by the
following nonlinear hyperbolic partial differential equation

∂tρ(x, t)+ ∂x min{vρ(x, t), c} = 0, (1)

where c ≥ 0 is the production capacity and v > 0 the constant production
velocity. In front of the processor a storage, also called queue, is assumed and for an
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externally given time-dependent inflowGin(t) into the production, the queue length
q follows the ordinary differential equation

∂tq(t) = Gin(t)− gout(t), (2)

with

gout(t) =
{

min{Gin(t), c}, if q(t) = 0,

c, if q(t) > 0.

The processor is coupled to the queue by a boundary condition in the form of
ρ(a, t) = gout(t)

v
and initial conditions ρ(x, 0) = ρ0(x) ∈ L1((a, b)), q(0) =

q0 ∈ R≥0 are prescribed. This deterministic model is well-defined, see, e.g. [1].
The theory of piecewise deterministic Markov processes; see, e.g. [2, 7], has been
used to define an appropriate production model with stochastic machine failures in
[4], where the probabilities of machine failures depend on the actual workload of
the processor. Since this construction only allows for a dependence on the current
workload, we can not use the amount of goods produced since the last machine
failure as a measure for the next failure. Our new idea lies in adding a variable w
governing the workload since the last repair. To do so, we use the time-dependent
variable r(t) ∈ {0, 1}, and set the capacity as μ(t) = r(t)c for a maximal capacity
c > 0. This means that r(t) = 0 ⇒ μ(t) = 0 is a down and r(t) = 1 ⇒ μ(t) = c a
working processor at time t and we define

WIP(t0, t1) =
∫ t1

t0

∫ b

a

ρ(x, t)dxdt

as the cumulative work-in-progress of the processor between time t0 and t1. The
variable w should therefore satisfy

∂tw(t) = r(t)
∫ b

a

ρ(x, t)dx, w(t0) = w0 =
∫ b

a

ρ(x, t0)dx. (3)

Altogether, we define the state space

E = R≥0 × {0, 1} × R≥0 × L1((a, b)),

which is a measurable space together with the σ -algebra E generated by the open
sets induced by the metric

d((w, r, q, ρ), (w̃, r̃ , q̃, ρ̃)) = |w − w̃| + |r − r̃| + |q − q̃| + ‖ρ − ρ̃‖L1((a,b)).
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Since we construct a piecewise deterministic Markov process, we define the
deterministic dynamics between jump times as

Φst : E → E, (w0, r0, q0, ρ0) �→ (w(t), r(t), q(t), ρ(t)),

i.e., Φst is the solution to Eqs. (1), (2), (3), and r(t) = r0 with initial conditions
(w0, r0, q0, ρ0) ∈ E. In between the jump-times, where the capacity changes, we
have a capacity, which is given by cr0 and independent of time. This allows us to
apply the theory of the deterministic model (1)–(2) to obtain continuity properties
of Φ. To characterize the stochastic part, we introduce

ψ(t, y) = λr,r(t, w), η(t, y, B) = λr,(1−r)(t, w)
ψ(t, y)

ε(rw,(1−r),q,ρ)(B)

for every y = (w, r, q, ρ) ∈ E and B ∈ E , where λi,j (t, w) describes the
transition rate from capacity i to j at time t and actual workload w, i, j ∈ {0, 1}
and εx is the Dirac measure with unit mass in x. The function ψ is the total
intensity determining whether a jump occurs, or not, and the function η describes the
probability distribution of the systems jump given the system changes at time t . For
example, given the state y = (w, 1, q, ρ) at the time of a jump, the system jumps
to (w, 0, q, ρ) and, vice versa, given the state y = (w, 0, q, ρ) the system jumps to
(0, 1, q, ρ), i.e., the workload has been “reset”. The open question is whether this
model can be represented by a piecewise deterministic Markov process. Following
[4], it is straightforward to show

Theorem 1 Let λi,j : [0, T ] ×R≥0 → R≥0 be uniformly bounded, continuous and
satisfy λi,i = λi,i−1 for i ∈ {0, 1}. Then for all initial data x0 ∈ E there exists a
Markov process

X = ((w(t), r(t), q(t), ρ(r)), t ∈ [0, T ]) ⊂ E

on some probability space (Ω,A , P ), satisfying

1. X(0) = x0 P -almost surely,
2. for every t ∈ (0, T ), (w, r, q, ρ) ∈ E and j ∈ {0, 1}, it holds that

P(r(t +Δt) = j |X(t) = (w, r, q, ρ)) = (
1 −Δtλr,r (t, w)

)
1r (j)

+Δtλr,(1−r)(t, w)11−r (j)+ o(Δt),

3. there exists a P -null set N ∈ A such that for every ω ∈ Ω \ N , there exist
times T0 = 0 ≤ T1 ≤ · · · ≤ TM = T such that for every k = 0, . . . ,M −
1, X(t) = ΦTk,t (X(Tk)) for t ∈ [Tk, Tk+1) with capacity μ(r(Tk, ω)), i.e., X
behaves deterministic between jump times.

The main and new ingredient is the mapping t �→ w(t), which is a continuous
mapping since t �→ ρ(t) is continuous.
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2 Computational Results

Due to the fact that solutions to (1) move with non-negative velocities only, we can
use the first order left-sided upwind scheme for a numerical approximation of the
density ρ. Furthermore, we use the explicit Euler scheme to approximate the queue
length q given by (2) and w given by (3), where we use a rectangular rule for the
integration. This yields an approximation of the deterministic dynamics between the
jump times. The simulation of the jump times is done with the thinning algorithm
presented in [4]. Its basic idea is to use the uniform bound on the rate functions and
generate exponentially distributed times with high intensity, representing the times
between jumps, and thin these times during the numerical simulation of the whole
system with an appropriate acceptance rejection procedure.

The choice of the rate functions λi,j (t, w) is a crucial point in numerical
examples. Here, we make use of the choice in [9] and set for θ1, θ2 > 0 the rate
function as

λ1,0(t, w) = λmin
1,0 + (λmax

1,0 − λmin
1,0 )(1 − e−(θ1w)θ2 ),

which is a scaled version of the cumulative distribution function of a Weibull
distribution, i.e., F(t) = 1 − e−(θ1t )θ2 . The classical interpretation of t in the
latter expression is the lifetime of a machine and F(t) is the probability that a
failure happens after time t , see, e.g. [8]. In our case we use the variable w, which
measures the amount of goods produced since the last repair happened. Therefore,
if w = 0, then λ1,0(t, 0) = λmin

1,0 , which corresponds to the minimal failure rate and
limw→∞ λ1,0(t, w) = λmax

1,0 . The function λ1,0(t, w) is monotonically increasing
in w and incorporates the idea of an increasing failure rate depending on past
workloads. On the other hand, we assume λ0,1(t, w) = λ0,1 because repair times do
not dependent on the amount of goods produced.

In the following, we examine the presented model using numerical examples.
Here, we assume a production velocity of v = 1, the interval a = 0, b = 1, and
the capacity is given as μ(t) = 2r(t). We use a spatial discretization with step-
sizeΔx = 10−1 and a temporal step-size that satisfies the Courant-Friedrichs-Lewy
condition, which reads as Δt ≤ Δx for the chosen parameters. The simulation
results are based on samples of the stochastic process X and we use the classical
Monte-Carlo estimator to evaluate moments or probabilities of the samples. We used
a sample size of 105 for all following results.

We analyze the expected queue length, capacity and the distribution of the
number of repairs within a time horizon [0, 50] for two different constant inflow
profiles. We denote by G1

in(t) ≡ 0.5 and by G2
in(t) ≡ 1.5 as inflow profiles and use

the parameters

λ0,1(t, w) = 1

0.5
, λmin

1,0 = 1

10
, λmax

1,0 = 1

0.5
, θ1 = 1

10
, θ2 = 5.
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(a) (b)

(c) (d)

Fig. 1 First order moments of w, the capacity, queue-length and density. (a) Expected w. (b)
Expected capacity μ(t). (c) Expected queue-length q(t). (d) Expected density at x = 1

In Fig. 1, first order moment estimations are shown. In detail, Fig. 1a shows the
expected value of the variablew, Fig. 1b the expected capacity, Fig. 1c the expected
queue length and Fig. 1d the expected density at the end of the processor. The
dynamics is quite interesting: the expected capacity decreases approximately until
time t = 6 for the second inflow, then increases and decreases again. Indeed, the
mean time to failure is given by Γ (1 + 1

θ2
)θ−1

1 , see e.g. [8]. If w corresponds to the
lifetime in our model, we see that an intact system with constant inflowGin is more
likely to fail around time Γ (1 + 1

θ2
)(θ1Gin)

−1. In our case, this leads to time 18.4
for the first and time 6.1 for the second inflow profile, which is close to the times at
which the shape of the expected capacity changes. We observe these characteristic
times also in the other graphs in Fig. 1. In contrast to the models presented in [3–
5], where quantities monotonically converge, we obtain an oscillatory behavior of
the quantities for constant inputs. The oscillatory effects are natural and caused by
the history we incorporate in w. This means, the first machine failures are likely
around time 18.4(6.1), the second around 36.8(12.2) and so on. At the same time
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Fig. 2 Distribution of the number of repairs within [0, 50]. (a) Inflow G1
in. (b) Inflow G2

in

the failures, which occur between these likely times, smooth this effect out as time
evolves and the quantities converge.

Figure 2 shows the distribution of the number of repairs within the time horizon
[0, 50] and emphasizes the impact of the chosen inflow on the reliability of the
processor. In Fig. 2a the case of G1

in is shown, where mostly 5–9 repairs have been
done. The situation for inflow profileG2

in is different, where 9–14 repairs during the
time horizon are more likely.

To conclude, we deduced a production model with random machine failures
including failure probabilities depending on the workload of the machine since the
last repair occurred. The extension of the model to complex production networks is
straightforward, see, e.g. [4]. Simulation results showed a big impact of the history
on expected workload, capacity, queue length and density. These effects are not
negligible for production planning and control and must be taken into account.
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Optimization of Buckling for Textiles

Stephan Wackerle, René Pinnau, and Julia Orlik

Abstract Textiles are present in many applications and are an interesting yet
complicated subject. For the industry mostly the macroscopic behavior of textiles
is important.

In the following article we deal with the buckling behavior of a textile shell
under uniaxial tension in the nonlinear regime. The nonlinearity redirects the
applied tensional force into bending of the plate in the third direction. To model
this behavior, we assume a homogenized shell of von-Kármán type, achieved via
homogenization of the textile with given micro-structure. Furthermore, a careful
reduction to 1D for the case of a belt-like geometry, i.e., narrow in the second
direction, gives a buckling model, which can be optimized with respect to both its
shape and retardation. The resulting macroscopic optimization problem with PDE-
constraints yields a Pareto-optimization with local minima.

1 Introduction

Textiles as versatile materials are widely used for very different purposes. During the
production processes in industry the textiles are often subjected to tensional forces.
The resulting deformations may be critical for the further treatment or even the final
product. While the in-plane deformations are usually no threat, the bending-type
deformations induce visible folds and wrinkles and produce faults or even failures.
Thus it is necessary to counteract and reduce or even inhibit such behaviors. Instead
of adapting the whole infrastructure the following article presents a way for an
optimization of such behavior of the textile itself under some constraints preserving
certain crucial properties.
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2 Mathematical Approach

In the following we present an optimization problem with PDE-constraints for the
buckling of a belt-shaped textile. The goal is to achieve a design for the textile,
where the buckling is delayed as well as the buckling-shape is adapted to a given
desired profile. While the desired profile depends heavily on the application and
the product design, the delay of the buckling is equivalent to the maximization
of the necessary critical force to reach the buckling regime. Note, buckling is
nothing but a stability loss of a structure and can be characterized by the loss
of coercivity in the problem. Furthermore it is a bifurcation problem. The loss of
stability in plates is investigated, e.g., in [1, 3, 6] with the help of the von-Kármán
model for a plate. The used von-Kármán plate is a non-linear model which is
controversially discussed [4, 5], but widely used for buckling phenomena [1–3, 6].
Henceforth, we assume a one dimensional setting, which arises by a dimension
reduction of the two dimensional von-Kármán plate for the given geometry, where
h � �1 � �2 with the height 2h the width 2�1 and the length 2�2. This reduction
eliminates the nonlinearities coming from a coupling between the bending and
tension. Consequently, the problem on the intervalΩ = (−�, �) with � = �1 fulfills
the reduced von-Kármán equation

 (B(x) uB − FuB) = 0,

where  denotes the Laplace operator, B = B(x) the bending stiffness, F > 0 is a
compressive force and uB is the outer-plane deflection of the middle line.

Note, that the buckling problem of a plate is a kind of an eigenvalue problem. Its
shape is an eigenmode and its occurrence is characterized via a related eigenvalue.
Indeed, the loss of coercivity leading to the buckling is observable by the vanishing
spectral gap, i.e., the difference between the first eigenvalue and zero.

Thus introduce the generalized Rayleigh-quotient

R(uB) =
〈uB, (B(x) uB − FuB)〉L2(Ω)

〈uB, uB〉L2(Ω)

,

to characterize the buckling problem. In fact, this generalized eigenvalue yields the
spectral gap of the plate. Consequently, observe as long as R(uB) > 0 the problem
is coercive and the only shape the plate can assume is uB ≡ 0. Hence, the buckling
of the plate appears as soon as R(uB) ≤ 0.

For further explanation of R(uB) assume a constant bending stiffness B. Then
a calculation involving the Poincaré-Wirtinger inequality (cf. [1, Sect. 14.3]) yields
the analytic expression

R(uB) = 4π2B

�2 − F.
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Thus, the necessary condition R(uB) = 0 yields the critical force Fcrit = 4π2B

�2 .
Observe, that the maximization of R(uB) for a constant F increases the spectral
gap and thereby a larger force is necessary to induce the buckling.

The second part of the objective functional concerns the eigenmode shape. This
is directly modeled by the typical tracking term

‖uB − ug‖L2(Ω),

with a predefined goal function ug. Setting both objectives together in one functional
gives

J (uB) = γ ‖uB − ug‖L2(Ω) − (1 − γ )λB,
where γ ∈ [0, 1] is a weighting factor for both objectives: the shape-optimization
and the appearance-delay of the first buckling. Also γ can be seen as the
parametrization of the Pareto front. The pareto front naturally arises in multi-criteria
optimization and describes the ambiguity of optima.

Furthermore, there are two more sensible constraints to the problem. First, the
bending stiffness as design parameter is only allowed to take values in an interval
[a, b] with 0 < a ≤ b. Secondly, the mean bending stiffness of the whole problem,
i.e., the mean 1

2�

∫
Ω B(x) dx can only differ up to 10% from its initial value M =

1
2�

∫
Ω Binit (x) dx. The last constraint takes into account that a given product can be

optimized without loosing to much from its original properties.
Combining the above considerations and constraints the final optimal control

problem reads as follows:

minB J (uB)

s.t. λB = R(uB),
a ≤ B(x) ≤ b,

1

2�M

∫

Ω

B(x)dx ∈ [0.9, 1.1].

Finally, we restrict the bending stiffness B to be piecewise constant function,
which is symmetric wrt. the midpoint. The piecewise constant character corresponds
to sections with the same bending stiffness, which originates from the production
process.

3 Numerics

In this section we show the numerical results for the optimal control problem. The
problem is implemented in Matlab. Due to the low dimensionality of the problem
the optimization is done via the Matlab-function fminsearch. To point out the



502 S. Wackerle et al.

-1 -0.5 0 0.5 1
Material width

0

0.5

1

1.5

A
m

pl
itu

de

Results

Goal shape
Optimized shape
Initial shape

-1 -0.5 0 0.5 1
Material width

0

1

2

3

4

5

6

B
(x

)

Binit
Bopt

0 200 400 600 800 1000
Iterations

-0.6

-0.5

-0.4

J(
u)

Objective Functional

0 200 400 600 800 1000
Iterations

0.05

0.1

0.15

0.2

||u
-u

g||
L2

0 200 400 600 800 1000
Iterations

30

32

34

36

B
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Fig. 2 The optimization problem for γ = 0.1. The left figure depicts in the upper picture mode-
shapes and in the lower distributions of piecewise constant the bending stiffness in different states.
On the right the evolution of the objective functional and its two components are represented

problematic of the Pareto front multiple choices of γ are depicted. Here, γ = 0.98
represents the factor for which both objectives are almost in balance (see Fig. 1).
The extreme cases γ = 0.1 and γ = 0.995 correspond to a strong weighting for the
delay of the buckling or the shape-optimization of the mode, respectively (Figs. 2
and 3).
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3.1 A Hierarchical Approach

The considered optimization problem allows easily for an hierarchical approach. As
hierarchy we use an increasing number of segments for B. Here the stages are 4, 8
and 16 segments for B in the domainΩ = [−�, �]. Figure 4 depicts the comparison
between the hierarchical and the direct approach (cf. Fig. 1). This comparison shows
that the considered optimal control problem easily reaches different local minima.
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4 Outlook

Evidently, the next step is the coupling to the micro-structure, not being restricted to
textiles. To this end a parametrized design space on a periodicity cell is needed.
While we are interested in periodicity cells arising in textile structures, it is of
course not limited to this specific use. For general examples we refer to [7] where
several toy problems with different micro-structures and even analytic results for
macroscopic properties are shown. The problem discussed in this work mostly relies
on the effective bending stiffness. For instance, a very simple model for a textile
is the regular grid of orthogonal beams, see Fig. 5. This is discussed within [7]

and yields as bending rigidities Bα = Ebαh
3

12tα
depending on Elastic modulus E and

geometric parameters h, bα and tα (see Fig. 5) for the respective direction α (Fig. 6).

t1

t2

h

b2
b1

y
x z

Fig. 5 Exemplary grid-like micro-structure consisting of beams. According to section 7.2.3 within
[7]
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Fig. 6 Development of B1 for the parameters b1 = b2 = 0.2, t1 = 2 − 2x and t2 = 4 with
x ∈ [0.1, 0.8] capturing a broad range of bending rigidities
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Optimal Control Simulations of Lateral
and Tip Pinch Grasping

Uday Phutane, Michael Roller, and Sigrid Leyendecker

Abstract Grasping is a complex human movement. During grasping, when the
hand closes around the object, the multibody system changes from a kinematic
tree structure to a closed loop contact problem. To better understand work-related
disorders or optimize execution of activities of daily life, an optimal control
simulation to perform grasping is useful. We simulate the grasping action with
a three-dimensional rigid multibody model composed of two fingers actuated
by joint torques. The grasping movement is composed of a reaching phase (no
contacts) and a grasping phase (closed contacts). The contact constraints are
imposed first through distances between the fingers and the object surfaces and then
through spherical joints. Thus, the dynamics of grasping is described by a hybrid
dynamical system with a given switching sequence and unknown switching times.
To determine a favourable trajectory for grasping action, we solve an optimal control
problem (ocp). The ocp is solved using the direct transcription method DMOCC,
leading to a structure preserving approximation of the continuous problem. An
objective involving either the contact polygon centroid or the contol torques is
minimized subject to discrete Euler-Lagrange equations, boundary conditions and
path constraints. The dynamics of the object to grasp along with Coulomb friction
is also taken into account.
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1 Introduction

Humans have developed the skills and dexterity over years to perform grasping very
naturally. However, to replicate it in simulation and practice with human precision
is challenging task given the highly sophisticated coordination between the fingers.
Although first treated as a purely kinematic problem, the dynamics concerning
grasping simulations, such as the weight of the object and the magnitude of grasping
forces are crucial. Using the paradigm of discrete mechanics and optimal control for
constrained systems (DMOCC), see [3], we simulate a two-finger multibody system
to predict motions for precision grasps subject to two objective functions.

2 Hand Model

We consider a two-finger model, as shown in Fig. 1, composed of the thumb and
index finger, hereafter both are referred to as only ‘finger’, with the wrist and
forearm.

The multibody system is modelled with q(t) ∈ R
108 time-dependent redundant

coordinates. With gint ∈ R
54 internal constraints and a combination of revolute,

cardan, nino and fixed joints set up through external constraints gext ∈ R
41, see

[4, 5], the model is reduced to thirteen degrees of freedom u(t). The model is
actuated using joint torques τ (t) ∈ R

13 to give the redundant forces f (t) ∈ R
108.

The dynamics of the object to be grasped, with configuration qO(t) ∈ R
12 is

included in the model as well. The discrete Euler-Lagrange (DEL) equations of
motion are derived through a discrete variational principle. This gives a symplectic
time stepping scheme with structure preserving properties. We employ the discrete
null-space method for both systems through null-space matrices P (q) and PO(qO),
and a discrete reparameterisation F d(u, q) for the hand to reduce the system size,
see [4].

forearm

wrist

thumb

I MC

I PP

I DP

index finger

II MC

II PP

II MP

II DP

C
C

C
N

N
R

R

R

F

PP – proximal phalanx, MP – medial phalanx, DP – distal phalanx
nino – non-intersecting, non-orthogonal

Joint type
cardan C
nino N
revolute R
fixed F

Fig. 1 The two finger model with the joint axes for different joints. The adjoining table shows the
joint types. The thumb and index finger are denoted with roman numerals I and II



Optimal Control Simulations of Lateral and Tip Pinch Grasping 509

3 Contact Model

The contact is modelled through holonomic functions gc
(
q, qO

) = 0 with contact
forces obtained through constraint Jacobians Gc and Lagrange multipliers λc(t). To
close contacts at the end of the reaching phase, we use gap functions gc1 ∈ R

nc . This
is defined for nc contact points, denoted by �, fixed on the finger digit surfaces. The
contact points are not defined on the object surface(s). However, we apply inequality
constraints h� to limit the contact points within the object dimensions. For the
grasping phase, we use spherical joint constraints gc2 ∈ R

3·nc to maintain zero
relative translational displacements. We also constrain the normal contact forces
hnormal to press on the object and to lie in the friction cone hf ric, using Coulomb’s
static friction law.

4 Optimal Control Problem for Grasping

Here we solve an optimal control problem (ocp) to determine the optimal trajectory,
controls and contact forces for a grasping motion with regard to a certain objective.
The ocp is formulated using a direct transcription method to transform it into a
constrained optimization problem. We define a discrete objective function

Jd

(
ud, τ d, q

O
d ,λc,d , Tk, Tm

)
=
N−1∑
n=0

Bd

(
un,un+1, τ n, q

O
n , q

O
n+1,λc,n, Tk, Tm

)

(1)

as a sum of a cost functionalBd , which has to be minimized. As side constraints, the
DEL equations of motion, initial and final configuration and momentum conditions,
and discrete path constraints have to be fulfilled.

As the grasping action is composed of two stages with different dynamics, the
optimal control problem is composed of two phases, as shown in Fig. 2, see [2].
Here, we define a fixed number of time nodes Nk and Nm and unknown durations
Tk and Tm for the reaching and grasping phases, respectively. For the reaching phase,
we solve the dynamics of the hand and the object independently through the DEL
equations for the two systems. After closing the contact at node Nk using the gap
functions, as introduced in Sect. 3, the two systems are coupled through the contact
constraints. Additionally, we have constraints on the contact forces as described
in Sect. 3. Also, we have discrete path constraints such as joint angle limits as
inequality constraints hlimits . Finally, we define the initial configuration, initial and
final momentum conditions for the complete system, and final configuration for the
object.
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0 1 · · · Nk − 2 Nk − 1 Nk Nk + 1 Nk + 2 N − 1 N· · ·n :

reaching phase grasping phase

q0

qO
0

p0

pO
0

gc1 qk, q
O
k = 0

h qk, q
O
k ≤ 0

P T · Duf − GT
c{1,2},d · λc{1,2},n = 0

PO,T · DO
q − GO,T

c{1,2},d · λc{1,2},n = 0

gc2 qn+1, q
O
n+1 = 0

hnormal GT
c{1,2},d · λc{1,2},n ≤ 0

hfric GT
c2,d · λc2,n, μ ≤ 0

P T · [Duf ] = 0

PO,T · DO
q = 0

gc1 qn, qO
n > 0

hlimits (qn) ≤ 0

qO
N

pN

pO
N

Fig. 2 Ocp setup with two phases. The placeholders Duf = D1Ld
(
qn, qn−1

) +
D2Ld

(
F d

(
un+1, qn

)
, qn

) + f +
n−1 + f −

n and DOq = D1Ld
(
qOn , q

O
n−1

) + D2Ld
(
qOn+1, q

O
n

)
,

see [3], define the DEL. The other terms are described in Sects. 2, 3 and 4

4.1 Objective Functions

The evolution of configurations, control torques and contact forces resulting from
an ocp constitute a minimum of the objective function. In this work, two objective
functions are chosen from two perspectives, namely a kinematic perspective which
involves the contact points on the object J1,d and a biomechanical perspective in
terms of control torques J2,d .

Grasp contact polygon centroid
(
J1,d

)
The objective here is to minimize the

distance between the object center of mass ϕO and the contact polygon centroid
�cen, see [6]. This maximizes the spread of the contact points around the object,
thereby ensuring a better distribution of the contact forces.

J1,d

(
ud, q

O
d

)
= min

1

2
||�cen − ϕO ||2, where �cen = 1

nc

nc∑
i=1

�i (2)

Rate of change of control torques
(
J2,d

)
The objective here is to ensure a

smooth movement of the fingers by minimizing changes in the control torques.

J2,d (τ d, Tk, Tm) = min
1

2

k+m−2∑
n=0

(tn+1 − tn)
(

τn+1 − τ n

tn+1 − tn
)2

(3)
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Fig. 3 The tip and lateral pinch postures as taken from [1] and initial configurations for the
simulation with contact points (∗) defined on the fingers for the corresponding grasps

4.2 Two Finger Grasp Taxonomy

We simulate two (out of three possible) two-finger precision grasps as per grasp
types defined in [1]. Being precision grasps, the hand holds objects with small
dimensions. The tip pinch grasp, see Fig. 3a, holds thin cylindrical objects such as
a toothpick or a candle. We simulate this grasp with two contact points, see Fig. 3c.
The lateral pinch grasp, see Fig. 3b, holds thin objects with flat faces such as a key
or a credit card. This is simulated with three contact points, see Fig. 3d.

5 Results

The simulations are performed as rest-to-rest actions with a fixed initial configura-
tion for the object. For tip pinch, we lift a thin cylinder to a particular height. In
the lateral pinch, we grasp a key, move it to a predefined location, and then rotate
through a small angle. We show snapshots of the resulting grasping actions for tip
pinch with J1,d and lateral pinch with J2,d in Figs. 4 and 5 respectively. For the same

n = 1

n = 7

n = 7

n = 14

n = 14

n = 22

Fig. 4 The tip pinch configuration snapshots at time nodes n = 1, 7, 14, 22 for J1,d for a lifting
motion. The contact is closed at n = 7 with points on the cylinder surface as close as possible to
its center of mass
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n = 1

n = 5

n = 5

n = 14

n = 14

n = 17

Fig. 5 The lateral pinch configuration snapshots at time nodes n = 1, 5, 14, 17 for J2,d for a lift
and turn motion. The contact is closed at n = 5. Here, the square shaped key-head is defined as
the area for the grasp. The image on the lower right shows the turning of the key through a small
angle

Table 1 Phase durations for
tip and lateral pinch grasps

Grasp Jd Tk(s) Tm(s)

Tip J1,d 0.025 0.055

J2,d 0.067 0.079

Lateral J1,d 0.022 0.064

J2,d 0.12 0.35

cost functions, the observations are common for the different grasps, suggesting a
higher influence of the objective rather than the action performed.

The reaching and grasping phase durations are noted to be higher for the J2,d
than J1,d , as noted in Table 1. This may have a physical interpretation to have
less physically intensive motions by performing them slowly. The influence of the
objective functions on the control torques is as expected, as shown in Fig. 6 for
the tip pinch simulation with both cost functions. The torque evolution profiles are
smoother for J2,d than J1,d . This also has an additional affect on the magnitude of
control torques, which are higher for J1,d than J2,d , see Fig. 6, left. Contrarily, the
grasping forces are of the same order for both cost functions as shown in Fig. 6,
right, which shows that the contact force is dependent on object weight and static
friction conditions.

Fig. 6 Tip pinch: the evolution of control torques for the MCP joint motions, namely flexion-
extension and adduction-abduction, are shown for J1,d (a) and J2,d (b). The torque evolution is
smoother and of lesser order for J2,d , rather J1,d . The evolution of grasping forces for the fingers
are shown for J1,d (c) and J2,d (d). For both objective functions, the grasping force is found to be
higher after the initial contact, while stabilising over the grasping phase
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Using Composite Finite Elements
for Shape Optimization with a Stochastic
Objective Functional

Matthias Bolten and Camilla Hahn

Abstract Shape optimization is an important tool to increase the reliability of
mechanical components. The use of stochastic objective functionals is beneficial as
the failure mechanism is usually described using stochastic models. Furthermore,
stochastic objective functionals are smoother than, e.g., maxima of point stresses.
Here, we consider a stochastic objective functional originating from modeling the
failure of ceramic. Ceramic is a material frequently used in industry because of its
favorable properties. We follow the approach above by minimizing the component’s
probability of failure under a given tensile load. Since the fundamental work of
Weibull, the probabilistic description of the strength of ceramics is standard and has
been widely applied. The resulting failure probability is used as objective function
in PDE constrained shape optimization. Often the constraining PDE is discretized
using finite elements, thus needing mesh morphing or re-meshing in every step of the
optimization. This can be expensive and it can introduce noise. Instead, we propose
to use composite finite elements for discretization. Using the Lagrangian formalism,
the shape gradient via the adjoint equation is calculated at low computational cost.

1 Shape Optimization for Ceramic Components

In shape optimization, the common approach to optimize a mechanical component
in order to improve its reliability is to consider the stress of the material and
minimize its maximum value on the component. E.g., the von Mises yield criterion
is often used. While it is a widely used objective it has several disadvantages, such
as the non-differentiability of the maximum function. This motivates to consider, in
the case of ceramic material, the components survival probability as the objective
functional, see [6], which is differentiable as shown in [1]. It is introduced shortly
in the following.
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1.1 Problem Description

Let Ω ⊆ R
d , d = 2, 3, be a domain with Lipschitz boundary ∂Ω . Assume that

the domain Ω represents the ceramic component in its initial, force free state.
Furthermore, assume that the boundary ∂Ω can be divided into three different parts
∂Ω = ∂ΩD ∪ ∂ΩNf ixed ∪ ∂ΩNf ree . Here, ∂ΩD is the part of the boundary where
Dirichlet-boundary conditions hold and therefore it is supposed to be clamped, e.g.,
to a wall. ∂ΩNf ixed is the Neumann-boundary part where surface forces may act.
Finally, ∂ΩNfree is the part of the boundary which can be modified and has zero-
Neumann-boundary conditions. Forces may act on the object with the shape given
by Ω . The volume force is represented by a function f ∈ L2(Ω,Rd), the surface
force by a function g ∈ L2(∂ΩN,R

d ).
As ceramic is a linear elastic material, the linear elasticity PDE,

B(u, v) = L(v) ∀v ∈ H 1
0 (Ω,R

d), (1)

B(u, v) :=
∫

Ω

σ(u) : ε(v) dx, L(v) :=
∫

Ω

f · v dx +
∫

∂ΩN

g · v dA, (2)

must hold, where σ and ε describe the stress and the strain tensor, respectively. For
existence and uniqueness see for instance [2].

1.2 The Objective Functional

The survival probability of a ceramic component is given by

J (Ω,Du) := Γ (d2 )

2π
d
2

∫

Ω

∫

Sd−1

(
(n · σ(u)n)+

σ0

)m
dndx, (3)

where m is the Weibull modulus and σ0 is a positive constant. For further
understanding see [1].

2 Implementation

In [1] it is shown that (3) is differentiable. Therefore it is a reasonable next step to
use it as an objective functional in a gradient-based shape optimization procedure.
As a first step we consider a toy problem of a simple test object in d = 2
whose behavior during the optimization process is well understood. The material
parameters E and ν are chosen to those of Aluminum oxide (Al2O3) ceramics and
the Weibull module is chosen to be m = 2, which is smaller then the realistic value
but leads to tractable numerics.
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Fig. 1 Visualization of the toy problem

Fig. 2 Composite finite elements

As a test object we use a deformed rod of length 0.6 m and height 0.1 m, visual-
ized in Fig. 1. It is clamped on the left part of the boundary, where the Dirichlet-
boundary condition is imposed. The force is applied on the right Neumann-
boundary. The expected bahavior of the gradient would be a smoothing of the inner
bow.

The visualization in Fig. 1 is given without discretization. For the actual imple-
mentation we use composite finite elements, which are introduced in the following
subsection.

2.1 Composite Finite Elements

Composite finite elements are a special type of finite elements introduced in [3–5].
In contrast to most approaches, we consider a supposed infinite mesh and then

adapt this mesh to the shape of the component (Fig. 2). The idea is to assume
a completely regular mesh and to superimpose the boundary of the considered
component on that mesh. The nearest nodes are then adapted to the boundary.
Thus only the elements forming the boundary are deformed, all other elements stay
completely regular. The calculations are done only on the mesh inside the shape.
This approach has several advantages: If the feasible region is described by the
regular grid, the same grid can be used for each step of the optimization, yielding
lower cost of calculation. At the same time problems of mesh morphing techniques,
such as the degeneration of the elements, are avoided.
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3 Calculation of the Shape Derivative

The linear elasticity equation and the objective functional (3) are discretized via
composite finite elements with standard Lagrange interpolation. We use n-point
Gauss quadrature for calculating the integrals. That gives us the discretized forms of
the stiffness matrix B(X)U , the right hand side F(X) and the objective functional
J (X,U(X)).

Then, the shape gradient is of the form dJ (X,U(X))
dX

= ∂J (X,U(X))
∂X

+
∂J (X,U(X))

∂U
∂U(X)
∂X

. As the calculation of ∂U(X)
∂X

is expensive, we use an adjoint
approach. Hence, the set of equations

dJ (X,U(X))

dX
= ∂J (X,U)

∂X
+ΛT

[
∂F (X)

∂X
− ∂B(X)

∂X
U

]
,

BT (X)Λ = ∂J (X,U)

∂U
,

B(X)U(X) = F(X)

(4)

give the discretized shape derivative, whereΛ is the adjoint state.
Using a hand-written sparse solver, we obtain the shape gradient visualized in

Fig. 3a. To demonstrate the universality of the chosen composite finite element
discretization we placed the shape at an angle rather. In fact, the approach is
independent from the location of the component to optimize and the location of
the different types of boundaries. Regarding the result we observe that the gradient
tends to smooth the inner bow, but also to blow up the volume. The former is what
we want to see, the latter could for example be treated with bi-objective optimization
techniques.

If we update the shape only slightly compared to the mesh width h, for example
via Ωt = Ω0 + αp, by choosing the search direction p to be the gradient and

(a) (b)

Fig. 3 Visualization of the shape gradient with CFE. (a) Test object. (b) Detail of (a)
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(a) (b)

Fig. 4 Visualization of one iteration. (a) Test object. (b) Detail of (a)

a corresponding small step size α, we only have to recalculate the entries in the
governing PDE corresponding to the elements highlighted in Fig. 4, thanks to the
use of composite finite elements. As in this case only the boundary layer needs
updating the time needed to do this is proportional to the surface volume of the
optimized object. Larger step widths result in the inclusion or exclusion of more
layers of cells, which can be handled with the chosen approach, as well.

4 Conclusion

We have seen that the functional describing the probability of failure of a ceramic
component can be used as a meaningful objective in shape optimization at least
in a toy problem. For the implementation of the problem we proposed to use
composite finite elements. The numerical examples show that this discretization
yields reasonable shape gradients and the computational demand needed to adapt
the mesh in between optimization steps is small. A detailed analysis of the meshes,
the obtained accuracies, as well as a comparison with other approaches that can be
used in shape optimization are currently being prepared.

Acknowledgements This work was supported by BMBF (German Federal Ministry for Education
and Research) as part of the project GIVEN (05M18PXA).

References

1. Bolten, M., Gottschalk, H., Schmitz, S: Minimal failure probability for ceramic design via shape
control. J. Optim. Theory Appl. 166, 983–1001 (2013)

2. Braess, D.: Finite Elements - Theory, Fast Solvers, and Applications in Solid Mechanics.
Cambridge University Press, Cambridge (1997)

3. Hackbusch, W., Sauter, S.: Adaptive composite finite elements for the solution of PDEs
containing nonuniformely distributed micro-scales. Math. Model. 8, 31–43 (1996)



520 M. Bolten and C. Hahn

4. Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of PDEs on domains
with complicated micro-structures. Numer. Math. 75, 447–472 (1997)

5. Hackbusch, W., Sauter, S.: Composite finite elements for problems containing small geometric
details. Comput. Visual. Sci. 1, 15–25 (1997)

6. Weibull, E.: A statistical theory of the strength of materials. Ingeniörsvetenskapsakedemiens
Handlingar 151, 1–45 (1939)



Reinforcement Learning in Order
to Control Biomechanical Models

Simon Gottschalk and Michael Burger

Abstract In this paper, we address the challenge of controlling a biomechanical
model to fulfill a prespecified task. We discuss the suitability of the Reinforcement
Learning formulation as an optimal control problem and point out advantages
of the Reinforcement Learning method in the particular biomechanical context.
We conclude our paper with a numerical investigation of the performance of the
presented method.

1 Introduction

These days, techniques belonging to the research field of Artificial Intelligence (AI)
are widely applied and used. Researchers increasingly understand the possibilities
and advantages of those techniques for new types of tasks as well as for solving
problems which are studied for years and solved by well known solution techniques
so far. One particular technique belonging to the field of AI is Reinforcement Learn-
ing [14]. The underlying optimization goal is comparable to the goals of optimal
control problems, which motivates the following discussion of the similarities and
differences.

2 Reinforcement Learning and Classical Optimal Control
Techniques

In the optimal control context, one is interested in finding the essentially bounded
optimal control u ∈ L∞ := L∞([t0, tf ],Rnc ) for a given dynamical system on
the time interval

[
t0, tf

]
, where nc ∈ N is the dimension of the control space. One

application of particular interest is the control of a human model in such a way
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that a specific movement is executed. To model this task, a control framework and
a biomechanical model is needed. Typically, biomechanical systems which can be
seen as multibody systems are of the following form:

q̇(t) = v(t),
M(q(t))v̇(t) = G(q(t), v(t), u(t)), q0 = q(t0), v0 = v(t0),

(1)

where q0 and v0 are given initial values, M is the mass matrix and G is a function
depending on the position (state) q(t), the velocity v(t), and the control u(t). In
the following, we assume that for a given control u ∈ L∞ and given initial values,
a unique position-velocity pair x := (q, v) ∈ W 1,∞ := W 1,∞([t0, tf ],Rns ) ×
W 1,∞([t0, tf ],Rns ) fulfilling the differential equation (1) exists in the space of
absolutely continuous functions with the additional assumption that the function
itself and its weak derivative have a finite supremum norm. By ns ∈ N, we denote
the dimension of the state space. In case of an ordinary differential equation, the
Lipschitz conditions are sufficient for a unique solution.

The biomechanical system (1) constitutes the constraint in our optimal control
framework. The objective function J : W 1,∞ × L∞ → R describes what optimal
means. Overall, we assume to have the following optimal control problem (cf. [5]):

min
x,u

J (x, u) = φ(x(tf ))+
∫ tf

t0

Φ(x(t), u(t))dt, subject to (1), (2)

where Φ : R2ns × R
nc → R is a mapping from the state and control space into

the real numbers, and defines the objective function of the optimization problem
together with φ : R

2ns → R rating the end position. Note that from the control
theory point of view, this formulation is an open-loop optimization since the control
ut does not directly depend on the current state xt .

In general, classical optimal control techniques can be divided into two classes:
On one hand first-optimize-then-discretize techniques, which, for instance, derive
optimality conditions of the continuous optimization problem in order to solve
them numerically afterwards, and, on the other hand, first-discretize-then-optimize
techniques. The latter mentioned techniques discretize the problem statement before
further numerical methods are applied.

Reinforcement Learning [14] is able to tackle discrete optimal control problems.
The most important assumption is that a Markov decision process (S,A, Pu, r)
(see e.g. [10]) is present with state space S (e.g. R

2ns ), control space A (e.g.
R
nc ), probability Pu(x, x ′) = P(xt+1 = x ′|xt = x, ut = u) for the next state
xt+1 given previous state xt , and control ut (also called action), and the reward
function r : S × A → R rating the current situation. Be aware of the assumption
that the upcoming state only depends on the current action and the previous state,
but not on older states (Markov property). The biomechanical system (1) is now
hidden in a probability distribution. This means instead of having e.g. a discretized,



Reinforcement Learning in Order to Control Biomechanical Models 523

deterministic forward simulation xt+1 = f (xt , ut ) we could have that xt+1 ∼
N (f (xt , ut ),Σ) is Gaussian distributed for a given variance Σ describing model
imperfections. However, RL is not restricted to normal distributions. The objective
function in the classical problem statement (2) is now replaced by the reward and

the overall goal is to maximize the expected total reward E

[∑
(xt ,ut )∈τ r (xt , ut )

]

of a trajectory τ = {(x0, u0), (x1, u1), . . . }, where r is given as r(xt , ut ) =
−hΦ(xt , ut )− 1t=tf φ(xtf ) with time step size h.

Since the information about the biomechanical system are given by a distribution,
it becomes clear that the controller should be able to react to distributions and
inaccuracies what motivates a closed-loop (respectively feedback) controller, where
the next control depends on the current state. The control construction is typically
called policy and can either be searched directly, which is then called policy based,
or indirectly by improving a so called value function, which is an estimation of the
expected future reward. The latter is called value-function based and an example is
Q-learning (see e.g. [15]).

RL algorithms can be divided into model-based and model-free approaches.
While the former techniques train its own approximation of the model with the
observed transition tuple (xt , ut , xt+1) and then use this approximation to improve
the controls, the model-free methods do not use any models, but only the transition
tuple itself. Model-based approaches can be sample efficient but only work if a good
model can be learned. A famous example for model-based RL is PILCO [4].

In the numerical results, we use a model-free, policy-based RL approach. The
policyπθ(ut |xt ) is parameterized by introducing an artificial neural network (ANN),
which gives back the mean of a Gaussian function, which is used to sample the next
action. The parameters θ are the weights and the biases of the ANN. Thus, instead
of optimizing with respect to (NT × nc)-variables with NT denoting the number of
time steps, we search for optimal weights and biases. The usage of the ANN is only
an ansatz which we use here since ANN can be handled very simple, because of
their structure, and their capabilities of approximating complex functions. There are
a bunch of model-free, policy-based techniques based on neural networks: Gradient-
based methods like Reinforce [16], Trust Region Policy Optimization (TRPO) [11],
Proximal Policy Optimization (PPO) [13] and many more. In the numerics in Sect. 3,
we focus on TRPO and its related PPO. Both are based on the idea that one simulates
the dynamical system with the current policy πθ and updates this policy by solving
the following optimization problem (for a suitable δ ∈ R>0) afterwards:

max
θ̃

Ex∼ρπθ ,u∼πθ
[
πθ̃ (u|x)
πθ (u|x)Aπθ (x, u)

]

s.t. Ex∼ρπθ
[
DKL

[
πθ(·, x), πθ̃ (·, x)

]] ≤ δ
(3)

withDKL
[
πθ(·, x), πθ̃ (·, x)

] = ∑
u πθ (u|x) log πθ (u|x)

π
θ̃
(u|x) known as Kullback-Leibler

divergence [8, 9]. Aπθ (x, u) describes the expected reward if we take the action u at
state x reduced by the reward one expects if we apply an average action at state x.
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Working principle of TRPO:

Step 1 Initialize the parameters θ of the policy πθ .
Step 2 Simulate M-times the dynamical system in Eq. (1) with con-

trols generated by the policy πθ . Store the trajectories τk =
{x0, u0, r0, x1, u1, r1, . . . }, k ∈ {0, 1, . . . ,M}.

Step 3 Solve the trust region problem in (3). Use the stored trajectories in
order to estimate the occurring expected values.

Step 4 Set θ := θ̃ and go to Step 2 as long as the policy seems to
improve significantly or the maximal number of executed iterations
is reached.

There are already examples where RL is applied in order to control a system.
For instance, academic examples can be found on OpenAi Gym [2], which was
designed to help to develop and compare RL algorithms. Furthermore, in [7] the
authors consider musculoskeletal models of a human with the task to walk as long
as possible without falling.

3 Biomechanical Application and Numerical Results

In the following, we consider a simplified biomechanical model of a human arm.
The model is a multibody system describing the bones as rigid bodies equipped
with Hill’s muscle model [6] in order to actuate the system. Our model consists of
two rigid bodies and three muscles. The upper arm (mass m1, length l1) is attached
at the origin as well as the forearm (mass m2, length l2) is attached at the upper arm
by a revolute joint. A sketch of the model can be seen in Fig. 1. Thus, it is enough to
consider an inverted double pendulum with muscles. The differential equations of
the well known double pendulum can be derived by Lagrangian formalism. The
posture of the arm can be described by two angles (α and β) and the resulting

Fig. 1 Sketch of the arm
model

α

β

m1, l1

m2, l2

muscle 1 muscle 2

muscle 3
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Table 1 Parameters of the biomechanical system

Label Definition Label Definition

m1 1.924 kg l1 0.351 cm

m2 1.502 kg l2 0.287 cm

α̃ 0 rad (respectively −0.3 rad) β̃ 0.5π rad

r(α, β) −
√
(α − α̃)2 + (β − β̃)2 + η η

{
100 task fulfilled

0 else

differential equation is an ordinary differential equation, which can be discretized
by an explicit Euler discretization method.

Our task is moving the arm to a specific position and then to a next position.
To be precise, we say that the task is fulfilled if, at some point, the upper arm is
vertical (α = 0) and the forearm (β = 0.5π) horizontal and if the hand is in the
position α = −0.3, β = 0.5π at the end. In our case, we do not need to think too
much about the transition between the two subtasks. We just define a not continuous
reward function.

Now, we apply RL to the described problem statement by using the parameters
which can be seen in Table 1. As implementation of the RL, we use a modified
version of the proximal policy optimization algorithm of Coady [3]. It is based
on the TRPO algorithm but instead of solving the constraint optimization problem
in (3) directly, in the numerical results, we use an adaptive KL penalty coefficient
as it is suggested in [13].The working environment is built in the programming
language Python. For the neural network with three hidden layers, each with
less than hundred neurons, and its learning updates, Tensorflow [1] is used. The
advantage function in (3) is estimated by the generalized advantage estimator (see
[12]).

Figure 2 shows the reward summed up over all trajectories in each iteration. This
visualizes the learning process and shows how the policy becomes better. In Figs. 4
and 3, we consider one trajectory based on the learned policy at the end of the
learning process. Figure 3 shows the activations of the muscles generating the path
of the arm (Fig. 4). The intermediate state is reached at the dashed line whereas the
dotted line indicates the completion of the final task.

Fig. 2 Sum over all rewards
in each iteration
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Fig. 3 Activations of the
Hill’s muscle models

Fig. 4 State of one trajectory
executed after the training

Conclusions We pointed out the connection between RL and classical optimal
control problems. We have optimized a simplified biomechanical problem, which
shows us how RL can be used in the optimal control context. We found a policy
in order to move the model of a human arm as desired. Even the realization of two
sequential tasks has been performed without thinking about the transition, which
is a significant advantage. Further work includes the extension of biomechanical
examples and a discussion of further advantages of RL techniques.
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and Research of Germany (BMBF), project number 05M16UKD.
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Optimizing Majority Voting Based
Systems Under a Resource Constraint for
Multiclass Problems

Attila Tiba, András Hajdu, György Terdik, and Henrietta Tomán

Abstract Ensemble-based approaches are very effective in various fields in raising
the accuracy of its individual members, when some voting rule is applied for
aggregating the individual decisions. In this paper, we investigate how to find and
characterize the ensembles having the highest accuracy if the total cost of the
ensemble members is bounded. This question leads to Knapsack problem with non-
linear and non-separable objective function in binary and multiclass classification
if the majority voting is chosen for the aggregation. As the conventional solving
methods cannot be applied for this task, a novel stochastic approach was introduced
in the binary case where the energy function is discussed as the joint probability
function of the member accuracy. We show some theoretical results with respect
to the expected ensemble accuracy and its variance in the multiclass classification
problem which can help us to solve the Knapsack problem.

1 Introduction

The ensemble creation is a rather popular and effective method in several problems
to outperform the decision accuracy of individual approaches [5]. To aggregate the
individual decisions of the members in the ensemble, the final decision is made by
applying voting rule, such as the classic or weighted majority ones.

In a binary classification problem, each member of the ensemble makes true
or false decision. It means that the classifier Di with accuracy pi (0 ≤ pi ≤ 1,
i = 1, . . . , n) can be considered as Bernoulli distributed random variable ηi ,
where the probability of the correct classification by Di is pi . In this particular
(Bernoulli distributed) case, the expected value of the i-th random variable ηi is pi
(i = 1, . . . , n).
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In majority voting, that alternative is selected as the final decision which has
majority in the ensemble (more than half of the n votes). In this case, the ensemble
accuracy for n ∈ N independent binary classifiers [4] can be calculated as:

qbinary =
n∑

k=3 n2 4

( ∑
I⊆{1,...,n}

|I |=k

∏
i∈I
pi

∏
j∈{1,...,n}\I

(1 − pj )
)
. (1)

In [2], the majority voting rule was extended to the spatial domain in a special
object detection problem to find the optic disc (OD) in retinal images. The votes of
the ensemble members (OD detectors) are given by single pixels as the centroid of
the disc-like anatomical feature OD. The votes are required to fall inside a disc of
a given diameter dOD to vote together. To aggregate the outputs of individual OD
detectors, the final decision is made by choosing the circle fulfilling the geometric
constraint and containing the maximal number of the votes. To find the ensemble
accuracy in this case, the term pn,k is introduced for the modified majority voting of
the classifiers D1, . . . ,Dn: if k classifiers out of the n ones give a correct vote, then
the good decision is made with probability pn,k . By applying these notations, the
ensemble accuracy (1) is transformed by the geometric restriction to the following
formula:

qmult i =
n∑
k=0

pn,k

( ∑
I⊆{1,...,n}

|I |=k

∏
i∈I
pi

∏
j∈{1,...,n}\I

(1 − pj )
)
. (2)

For the given real numbers pn,k (k = 0, 1, . . . , n) in (2), we have that 0 ≤ pn,0 ≤
pn,1 ≤ · · · ≤ pn,n ≤ 1.

In special case, we get back the classical majority voting scheme if the terms pn,k
are chosen in the following way: pn,k = 1, if k > .n/2/, and pn,k = 0, otherwise.

In the above spatial extension of the majority voting rule, the final decision is
made by choosing from the candidates (circles) with respect to their cardinalities.
The majority voting rule can be extended for a multiclass classification problem in
a very similar way.

High accuracy for an ensemble system is a very important and natural require-
ment, mainly in clinical decision making. Besides the high accuracy, other per-
formance parameters need to be discussed, as well. One of these parameters to
be considered is the execution time. The ensemble creation is more resource
demanding, because all the ensemble members have to be executed to make the
final decision. In this paper, we solve the problem how to find the ensemble with the
highest accuracy from the given possible ensemble members, with a constraint on
the total execution time. These optimization problems, when the ensemble accuracy
qbinary in (1) or qmult i in (2) is chosen as energy function, is very challenging, as
both of them result in a non-linear, non-separable task. It means we cannot apply
the classical solving methods, namely e.g. the dynamic programming, for finding
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the optimal solution. A Knapsack problem is formulated to handle the constraint
for the total execution time. We give some theoretical results with respect to the
multiclass classification problem which can help us to solve the Knapsack problem.

The rest of the paper is organized as follows. In Sect. 2, the proper formulation
of the above optimization problem as Knapsack one is given. After discussing the
multiclass classification problem in contrast with the binary one in Sect. 3, some
theoretical and experimental results are enclosed for the multiclass classification
problem in Sect. 4.

2 The Knapsack Problem with Total Time Constraint

As first step, the classic Knapsack problem is presented, then we formulate our
ensemble creation issue and discuss why finding the solution is so difficult if the
energy function of the Knapsack problem is selected as qmult i in (2).

To formulate the classic Knapsack problem, let n items be given, with value
v1, . . . , vn (vi ≥ 0, i = 1, . . . , n) and weight w1, . . . , wn (wi ≥ 0, i = 1, . . . , n),
respectively. Then let xi (xi ∈ {0, 1}, i = 1, . . . , n) be the number of the i-th item
to be packed. The maximal total weight of the knapsack is W (W ≥ 0). The aim

is to find the maximal value of the target function
n∑
k=1
xkvk fulfilling the following

conditions:
n∑
k=1
xkwk ≤ W, xk ∈ {0, 1} (k = 1, . . . , n).

With respect to the corresponding properties of the objective function com-
ing from several different kinds of applications, many variations of the origi-
nal Knapsack problem are considered: linear/non-linear, separable/non-separable,
convex/non-convex objective functions with continuous/integer variables. Although
some non-linear Knapsack problems are investigated in the literature, [1, 6], the vast
majority of the works deal with Knapsack problems having linear or a separable
convex non-linear objective function and linear constraint.

In the above presented ensemble creation motivated by the object detection
problem, each possible ensemble member is an object detector. In Knapsack
problem, the individual accuracy pi of the i-th detector is considered as the value
vi , while the individual running time ti is the weight wi , where for the aggregation,
a constrained majority voting is applied, that is, the ensemble accuracy qmult i given
in (2) is the objective function. The problem is to find the most accurate ensemble
with system accuracy qT from these members with limited total execution time T :

qT = max{i1,...,is }

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

s∑
k=0

ps,k

( ∑
I⊆{i1,...,is }

|I |=k

∏
i∈I
pi
∏
j∈{i1,...,is }\I

(1 − pj )
)
⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(3)
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with the following conditions:

s∑
j=1

tij ≤ T , {i1, . . . , is} ⊆ {1, . . . , n} (s = 1, . . . , n). (4)

The main challenge in solving this optimization problem is that the target
function qmult i of the constrained majority voting is non-linear, non-separable. In
general, Knapsack problems with these special kind of objective functions are inves-
tigated very rarely in the related papers, or only in that case when a strict restriction
on their functional structure is given (e.g., the exponential type of target function is
analyzed in [6]). That is, for a proper analysis we need some theoretical results for
the optimization of the specific target function (2) within the Knapsack framework.

3 The Multiclass Classification Problem

In binary classification, the elements of a given set are classified into two classes
(predicting which class each element belongs to). As first step, a Knapsack problem
is investigated for ensemble creation with binary classifiers D1,D2, . . . ,Dn as
possible members of the ensemble, whose outputs are aggregated by applying the
majority voting rule. It means that in this Knapsack problem, the objective function
qbinary given in (1) is maximized when the total execution time of the selected
members is bounded (see the condition in (4)).

In our proposed stochastic approach in [3], the selection of the items to the
ensemble is based on the efficiency of the individual members. Instead of the use-
fulness values pi/ti considered in the classic greedy method, the system accuracy
q(pi, ti) of the ensemble containing maximal number of i-th items characterizes the
efficiency of the i-th kind of item.

In our selection method, a discrete random variable depending on the efficiency
values of the remaining items is applied in each step to determine the probability
of choosing an item from the remaining set to add to the ensemble. This discrete
random variable reflects that the more efficient the item is, the more probable it is
selected to the ensemble in the next step.

To find and apply proper stopping criteria for this selection method, the behavior
of the random variable qbinary , the joint distribution function based on the values
pi-s in (1) is investigated. Either the distribution of the values pi is known, or it
is fitted by Beta distribution, the knowledge on the behavior of the energy function
qbinary (e.g. the expected ensemble accuracy, the probability to find more accurate
ensembles) can be efficiently involved as a stopping rule in the stochastic search.

The multiclass classification can be interpreted in a similar way as the binary one,
just in case the prediction of the class for each element where it belongs to is made
for three or more classes [7]. We encounter similar problems to find the optimal
solution qT in (3) of multiclass Knapsack problem as in the binary case, but, besides
the estimation of the behavior of the energy function qmult i , the terms pn,k need to
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be investigated, as well. It is reasonable to assume that the more classifiers out of the
n ones give correct vote, the bigger probability pn,k for the good decision we get for
the ensemble. Therefore, in the next section, the terms pn,k are considered as values
of a function F such that pn,k = F

(
k
n

)
, where F (·) is a cumulative distribution

function on [0, 1].

4 Stochastic Estimation of Ensemble Accuracy

We have the following theorem showing the behavior of the random variable qmult i
(i.e. the expected ensemble accuracy and the variance), based on the random values
of pi-s.

Theorem 1 Let p ∈ [0, 1] be a random variable with Ep = μ, Var(p) = σ 2, and
pi (i = 1, 2, . . . , n) are independent and identically distributed according to p.
Furthermore let the energy function qmult i be defined by (2). Then for the expected
ensemble accuracy E(qmult i) we have shown that

E(qmult i) =
n∑
k=0

F

(
k

n

)(
n

k

)
μk (1 − μ)n−k . (5)

Furthermore, if n is large then

n∑
k=0

F

(
k

n

)(
n

k

)
μk (1 − μ)n−k ∼

∫ 1

0
F (y) δ (μ) dy = F (μ) (6)

where δ (·) is the Dirac function.
In case of large n, we have the variance of the ensemble accuracy

0 ≤ Var (qmult i) ≤ F (μ)− F 2 (μ) = F (μ) (1 − F (μ)) . (7)

For practical issue, the following examples for the function F are important:
Arcsine law (distributed as Beta (1/2, 1/2)) with cumulative distribution func-

tion

F (y) = 2

π
arcsin

(√
y
)
, y ∈ [0, 1] , (8)

and Generalized Arcsine law (distributed as Beta (1 − α, α)), as if the distribution
of p is not known, then a Beta distribution is fitted to p.

From the results of the Theorem 1 with respect to the expected value and the
variance of the ensemble accuracy, the decision in the multiclass case for relatively
large n is considered to be Bernoulli variated with parameter F (μ).
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While the binary classification problem is closely related to the results of
the binomial distribution, then in the multiclass classification the multinomial
coefficients are supposed to have very important role in finding a formula for
the values of pn,k(d). As a first step, we simulated the multiclass classification
problem for d = 3, d = 4 and d = 5 classes, by generating random numbers
in [0, 1], to decide which class is chosen. From the results of the simulations, we get
approximate values for the terms pn,k(d). In the next step, we give a closed formula
for the values pn,k(d), as well.

Let the multinomial coefficients bn,d (x1, x2, . . . , xd) be given, (xi ≥ 0,
∑
xi =

n), x = (x1, x2, . . . , xd), and αk
(
x
)

is defined as the card
(
x
∣∣ xi = k

)+ 1. Then for
the terms pn,k(d) of accuracy in that case, we have the following formula,

pn,k (d) =
1

dn−k
∑

0≤x≤k

bn−k,d
(
x
)

αk
(
x
) , (9)

where 0 ≤ x ≤ k := (xi |0 ≤ xi ≤ k, i = 1, 2, . . . , d).
Applying this formula, we get the same results for the values of pn,k(d) in case

of d = 3, d = 4 and d = 5 classes as before with the simulations.
The closed formula for the values of pn,k(d) guarantee us that besides the exper-

imental results (e.g. simulations), further theoretical investigation and characteriza-
tion of the optimal solution of the Knapsack problem in multiclass classification can
be achieved as our future plan.
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Queues with Choice from a Symmetry
Perspective

Juancho A. Collera

Abstract Recently, a deterministic queueing model where in customers are given
the opportunity to choose between two queues was introduced. The information
provided to the customers is not up-to-date but instead customers were given the
queue length information some time units in the past. This time delay impacts the
dynamical behavior of the queues and hence the decision-making process of the
customers. We revisit this queues-with-choice model from a symmetry perspective.
We show that the symmetry structure of the model can be used to classify the types
and kinds of solutions that can occur. In particular, our results explain why only
asynchronous periodic solutions and symmetric equilibrium solutions arise in such
model, while synchronous periodic solutions and asymmetric equilibrium solutions
do not occur. Our method can also be applied to study similar models with larger
number of queues.

1 Introduction

Providing queue length information are common in the healthcare industry (e.g.
emergency room waiting time), telecommunications systems (e.g. telephone call
centers) and amusement parks (e.g. waiting times of various rides). Often times
the information provided is not real-time or up-to-date but instead based on the
information some time units in the past or based on moving average of the waiting
times (see [11] and references therein). In [10], the deterministic model describing
a single queue ż(t) = a − bz(t) was given, where z(t) represents the length of the
queue and the parameters a, b > 0. Here, the rate of change with respect to time
of a queue length is the difference between the arrival rate of the costumers and the
rate at which customers are serviced. This was extended in [11] to a model where in
the customers are given the opportunity to choose between two queues. Their model
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is given by the following system of delay differential equations (DDEs)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = a
e−x(t−τ )

e−x(t−τ ) + e−y(t−τ )
− bx(t),

ẏ(t) = a
e−y(t−τ )

e−x(t−τ ) + e−y(t−τ )
− by(t),

(1)

where x(t) and y(t) are the lengths of the first and second queues, respectively.
The initial history functions x(t) = ϕ1(t) > 0 and y(t) = ϕ2(t) > 0 for t ∈
[−τ, 0] were used. The total arrival rate to both queues is equal to the constant rate a.
Moreover, it is assumed that the arrival rates are based on delayed information. That
is, the information given to the costumers is actually the queue length information
τ time units in the past where the time delay parameter τ > 0.

According to [11], if the same initial history functions were used in system (1),
then the two queues are identical for all time and both converge to the equilibrium
value. If different history functions were used, then the two queues are oscillating
and are asynchronous. Moreover, if τ < τ ∗, for some critical delay value τ ∗, then
the asynchronous queues both converge to the equilibrium value, while if τ > τ ∗,
the asynchronous queues are periodic. It is worth mentioning that no synchronous
periodic solutions nor asymmetric equilibrium solutions were obtained in [11].

The rate at which customers are serviced, as well as how delay the provided
information is might differ for each queue. However, in system (1), we see that
the two queues are assumed to be similar, and thus exhibit some symmetry
property. This special case organizes the dynamics for the asymmetric cases where
corresponding parameters in each queue do not differ as much. Many applications,
for example, in the physical sciences [1, 4, 6] and in the biological sciences [2, 3]
are symmetric systems. In each of these examples, the symmetry properties of the
model played a significant role in determining its dynamical behavior.

The goal of this research is to utilize the symmetry structure of model (1) in
order to classify the types and kinds of solutions that this system can have. Using
a technique from [5, 8], we classify the codimension-one bifurcations into regular
and symmetry-breaking. The occurrence and non-occurrence of these bifurcations,
as we vary the time delay parameter τ , allows us to determine the types and kinds
of solutions that can only arise in model (1). These additional insights help us
understand the effects of delayed information on the dynamical behavior of queues
which are of great importance to both companies and their customers.

The rest of the paper is organized as follows. In the next section, we describe the
symmetry of system (1) and its equilibria. We then use these symmetry properties
in deriving our main results in Sect. 3. We end the paper with a summary and
discussions of future directions of this research.
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2 Symmetry Group and Symmetric Equilibrium

Consider the system of DDEs with a single discrete time delay τ > 0 given by
Ẋ(t) = f (X(t),X(t − τ )) where X : R → R

n. If we let C = C([−τ, 0],Rn) be
the space of continuous functions mapping the interval [−τ, 0] into R

n, andXt ∈ C
meansXt(θ) = X(t+θ) for θ ∈ [−τ, 0], then the system of DDEs can be written as
Ẋ(t) = F(Xt) where F : C → R

n. The reader is referred to the text in [9] for more
background on DDEs. We say that the system Ẋ(t) = F(Xt ) is G-equivariant if
there is a representation ρ ofG such that for (g, φ) ∈ G×C , we have F(ρ(g)φ) =
ρ(g)F (φ) where ρ(g)φ ∈ C is given by (ρ(g)φ)(θ) = ρ(g)φ(θ) for θ ∈ [−τ, 0].
This equivariance condition means that if X(t) is a solution of the system, then so
does ρ(g)X(t). We also call G as a symmetry group of the system.

We now show that system (1) is Z2-equivariant. Let Z2 = 〈γ 〉 and define the
action of Z2 to the state variables as γ · [x(t), y(t)]′ = [y(t), x(t)]′. Writing
the right-hand side of system (1) in the notation F([xt , yt ]′), we see that F(γ ·
[xt, yt ]′) = F([yt , xt ]′) = γ · F([xt, yt ]′). Therefore, system (1) has symmetry
group Z2.

If we seek equilibrium solutions of system (1) that are fixed by Z2, that is
(x(t), y(t)) with ẋ(t) = 0 and ẏ(t) = 0 and satisfying γ · [x(t), y(t)]′ =
[x(t), y(t)]′, then we obtain (x∗, y∗) := (a/2b, a/2b). For the rest of this paper, we
call the equilibrium solution (x∗, y∗) as the symmetric equilibrium of system (1).

3 Local Stability Analysis of the Symmetric Equilibrium

The linearized system corresponding to system (1) around the symmetric equilib-
rium has characteristic equation det(Δ(λ)) = 0 with

Δ(λ) =
[
λ+ b + (a/4)e−λτ −(a/4)e−λτ

−(a/4)e−λτ λ+ b + (a/4)e−λτ
]
. (2)

If we letA := λ+b+ 1
4ae

−λτ and B := − 1
4ae

−λτ in Eq. (2), then the characteristic

matrixΔ(λ) takes the form L :=
[
A B

B A

]
.

We now introduce a technique from [5, 8] which uses the symmetry structure
of the system in order to classify steady-state and Hopf bifurcations into regular or
symmetry-breaking. The action of the symmetry group Z2 on the physical space
R

2, yields the decomposition R
2 = T ⊕ A where the isotypic components T :={[v, v]′, v ∈ R

}
and A := {[−v, v]′, v ∈ R

}
are orthogonal complement of each

other, irreducible, and invariant under the symmetry group Z2. Moreover, the action
of Z2 on the subspace T is by the trivial representation while the action of Z2 on the
subspace A is by the alternating representation. Furthermore, observe that the action
of L on the elements v0 ∈ T and v1 ∈ A are as follows: Lv0 = (A + B)[v, v]′
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and Lv1 = (A − B)[−v, v]′. These imply that the characteristic roots of L|T are
those of (A+ B), while the characteristic roots of L|A are those of (A− B). Since
(A+ B) corresponds to the action of L on the subspace T and the symmetry group
Z2 acts trivially on T, the critical characteristic roots from (A + B) give rise to
regular bifurcations. Meanwhile, because (A − B) corresponds to the action of L
on the subspace A and the symmetry group Z2 acts non-trivially on A, the critical
characteristic roots from (A− B) give rise to symmetry-breaking bifurcations.

The isotypic decomposition also allows us to write det(Δ(λ)) = (A+B)(A−B).
Hence, the roots of the characteristic equation det(Δ(λ)) = 0 are the roots of the
equations (A+ B) = 0 and (A− B) = 0, that is, that of λ+ b = 0 and

λ+ b + (a/2)e−λτ = 0. (3)

At τ = 0, the symmetric equilibrium is locally asymptotically stable (LAS) since
both roots λ = −b and λ = −b − (a/2) of the characteristic equation are negative.
That is, all roots of det(Δ(λ)) = 0 are in the open left-half plane when τ = 0. We
wanted to know if the symmetric equilibrium may switch stability for some τ > 0,
that is, if the roots of det(Δ(λ)) = 0 will cross the imaginary axis as τ is increased
from zero. Observe that since a, b > 0, both equations (A+B) = 0 and (A−B) = 0
cannot have a zero root. Moreover, since b > 0, the equation (A + B) = 0 cannot
have purely imaginary roots. We have the following results.

Theorem 1 Steady-state bifurcations, both regular and symmetry-breaking, and
regular or symmetry-preserving Hopf bifurcations will not occur in system (1).

The non-occurrence of a symmetry-breaking steady-state bifurcation rules out
asymmetric equilibrium solutions in system (1), while the non-occurrence of a
regular Hopf bifurcation rules out synchronous periodic solutions in system (1).

Suppose now that the equation (A − B) = 0, given in Eq. (3), has a purely
imaginary root λ = iω with ω > 0. Then, iω + b + (a/2)e−iωτ = 0. This gives
a cosωτ = −2b and a sinωτ = 2ω, and hence 4ω2 = a2 − 4b2. If (a2 − 4b2) < 0,
then equation (3) cannot have purely imaginary roots. If (a2 − 4b2) > 0, then we
obtain a positive value for ω given by ω∗ := √

a2 − 4b2/2, and thus λ = iω∗ is a
root of Eq. (3). Corresponding to the roots λ = ±iω∗ of Eq. (3) is the sequence

τn := 1

ω∗

{
cos−1

(
−2b

a

)
+ 2πn

}
=

cos−1
(
− 2b
a

)
+ 2πn

√
a2 − 4b2/2

(n = 0, 1, 2, . . . ).

In view of the Hopf bifurcation theorem, we now show that the roots λ = ±iω∗
of Eq. (3) that lie in the imaginary axis when τ = τn move towards the right
half-plane. That is, we need to show that d

dτ
Re(λ(τ ))|τ=τn > 0. Note that

sign
{
d
dτ

Re(λ(τ ))
}
τ=τn = sign

{
Re(dλ/dτ)−1

}
λ=iω∗ . So we first need to compute
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for (dλ/dτ)−1. Differentiating with respect to τ in Eq. (3) yields

(
dλ

dτ

)−1

= 1 − (a/2)τe−λτ
(a/2)λe−λτ

= − 1

λ(λ+ b) − τ

λ

since (a/2)e−λτ = −(λ+ b) from Eq. (3). Consequently, we have

sign

{
d

dτ
Re(λ(τ ))

}

τ=τn
= sign

{
Re

(
1

−λ2 − bλ
)}

λ=iω∗
= sign

{
1

ω2∗ + b2

}
.

Therefore, d
dτ

Re(λ(τ ))|τ=τn > 0. Taking τ ∗ := min {τn | τn > 0} , we have the
following local stability results for the symmetric equilibrium.

Theorem 2 If (a2 − 4b2) < 0, then the symmetric equilibrium (x∗, y∗) of system
(1) is LAS for all τ > 0. If (a2 −4b2) > 0, then the symmetric equilibrium of system
(1) is LAS for all τ ∈ (0, τ ∗) and is unstable for τ > τ ∗. At τ = τ ∗, system (1)
undergoes a symmetry-breaking Hopf bifurcation at the symmetric equilibrium.

We now illustrate our result in Theorem 2 using DDE-Biftool, which is a
numerical continuation and bifurcation analysis tool for systems of DDEs [7].

Example 1 Consider system (1) with a = 10 and b = 1, so that (x∗, y∗) = (5, 5)
and τ ∗ = 0.361739 approximately. We use the history functions ϕ1(t) = 4.50
and ϕ2(t) = 4.00. The left panel of Fig. 1 shows a branch of symmetric equilibria
(horizontal line), that is LAS for τ < τ ∗ (green) and is unstable for τ > τ ∗
(magenta). The stability switch occurred at the Hopf bifurcation marked with
asterisk where τ = τ ∗. The branch of periodic solutions (green curve) that emerged
from the Hopf bifurcation is stable. A profile plot of a periodic solution when
τ = 0.4160 is shown in the right panel of Fig. 1 where the two queues are periodic
and asynchronous.
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Fig. 1 (Left) Stability switch occurred at a Hopf bifurcation (HB) where a stable branch of
periodic solutions emerges. (Right) Profile plot of a periodic solution from the branch that emerged
from the symmetry-breaking HB showing that the two queues are periodic and asynchronous
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4 Summary and Future Directions

We studied a deterministic queueing model with delayed information where in
customers are given the opportunity to choose between two queues. By utilizing
the symmetry structure of the system, we are able to classify the codimension-
one bifurcations into regular and symmetry-breaking. This classification, in turn,
allowed us to determine the types and kinds of solutions that can arise in our system
and rule out those that will not occur. This additional insights in the dynamical
behavior of queues based on the delayed information provided will help both
companies and customers in making better decisions.

Our method can also be applied to study similar models with larger number of
queues. Characteristic roots of higher multiplicity are common in symmetric sys-
tems and as a consequence, numerical bifurcation analysis of these systems is not as
straightforward. However, our group-theoretic approach can be employed to identify
codimension-one bifurcations correctly. This is the subject of an on-going research.

Acknowledgements This work was funded by the UP System Enhanced Creative Work and
Research Grant (ECWRG 2018-1-001). The author also acknowledges the support of the UP
Baguio through RLCs during the A.Y. 2018-2019.

References

1. Buono, P.-L., Collera, J.A.: Symmetry-breaking bifurcations in rings of delay-coupled semi-
conductor lasers. SIAM J. Appl. Dyn. Syst. 14, 1868–1898 (2015)

2. Buono, P.-L., Eftimie, R.: Codimension-two bifurcations in animal aggregation models with
symmetry. SIAM J. Appl. Dyn. Syst. 13, 1542–1582 (2014)

3. Buono, P.-L., Palacios, A.: A mathematical model of motorneuron dynamics in the heartbeat
of the leech. Phys. D 188, 292–313 (2004)

4. Buono, P.-L., Chan, B.S., Palacios, A., In, V.: Dynamics and bifurcations in a Dn-symmetric
Hamiltonian network. Application to coupled gyroscopes. Phys. D 290, 8–23 (2015)

5. Collera, J.A.: Symmetry-breaking bifurcations in two mutually delay-coupled lasers. Phil. Sci.
Tech. 8, 17–21 (2015)

6. Collera, J.A.: Symmetry-breaking bifurcations in laser systems with all-to-all coupling. In:
Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds.) Mathematical
and Computational Approaches in Advancing Modern Science and Engineering, pp. 81–88.
Springer, Cham (2016)

7. Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL v. 2.00: a Matlab package for
bifurcation analysis of delay differential equations. Department of Computer Science, K. U.
Leuven, Leuven (2001)

8. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory II.
Springer, New York (1988)

9. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer,
New York (1993)

10. Pender, J., Rand, R.H., Wesson, E.: Delay-differential equations applied to queueing theory. In:
Stépán, G., Csernák, G. (eds.) Proceedings of 9th European Nonlinear Dynamics Conference,
ID 62. CongressLIne Ltd., Budapest (2017)

11. Pender, J., Rand, R.H., Wesson, E.: Queues with choice via delay differential equations. Int. J.
Bifurcat. Chaos 27, 1730016 (2017)



Finite Sample Confidence Region for EIV
Systems Using Regression Model

Masoud Moravej Khorasani and Erik Weyer

Abstract Errors-In-Variables (EIV) models in which both input and output data are
contaminated by noise have applications in signal processing. We propose a method
for constructing non-asymptotic confidence regions for the parameters of EIV
models. The method is based on the Leave-out Sign-dominant Correlation Regions
(LSCR) principle which gives probabilistically guaranteed confidence region when
the input is measured without noise. A regression model is utilized to extend LSCR
to EIV systems. The newly established regression vector contains the past outputs
and the estimated past inputs. It is shown that the corresponding prediction error has
the desired properties such that it can be used to form correlation functions from
which confidence regions can be constructed. For any finite number of data points it
is proved that the region contains the true parameter with a user-chosen probability.

1 Introduction

The data generating system is

y(t) = B0(q)

A0(q)
f (t)+ e(t)

u(t) = f (t)+ v(t) (1)

where q−1 is the backward-shift operator and f (t), v(t), and e(t) are the input, the
input noise, and the output noise respectively. B0(q) and A0(q) are polynomials in
the backward shift operator:

B0(q) = b0
1q

−1 + b0
2q

−2 + · · · + b0
nb
q−nb
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A0(q) = 1 + a0
1q

−1 + a0
2q

−2 + · · · + a0
na
q−na .

Standard methods such as least squares are not able to identify EIV models
without bias [6]. Several approaches to identification of EIV models under different
assumptions and conditions have been proposed. An overview of methods for
identification of EIV models can be found in [7] and [8].

A model without a statement about its quality is limited use and constructing
confidence regions for the system parameters is the most common approach to
assess the model quality. The corresponding regions are typically derived using
asymptotic theory [4], but they may be unreliable with a finite number of data
samples [3]. The Leave-out Sign-dominant Correlation Regions (LSCR) method
[1, 2] on the other hand constructs confidence regions which are guaranteed to
contain the true system parameters with a user-chosen probability for a finite number
of data points. In this paper, we extend LSCR to EIV models.

This problem has previously been addressed in [5] under the condition that the
output noise is Gaussian i.i.d. and all variances are known. The method presented
in this paper find non-asymptotic confidence region when only a ratio between
variances is known. Moreover, except having a Gaussian distribution there are
no restrictive assumptions on the output noise e.g. it can be non-zero mean and
correlated in time.

The paper is organized as follows. In Sect. 2, the data generating system and
models are introduced. Section 3 develops LSCR for EIV system. The theoretical
properties of the confidence regions are presented in Sect. 4. A simulation example
is given in Sect. 5, followed by conclusions.

2 Preliminaries

We consider the data generating system (1). Let θ0� = [θ0�
a θ0�

b ] be the vector of
true system parameters, i.e. θ0

a = [a0
1 a

0
2 · · · a0

na
]� and θ0

b = [b0
1 b

0
2 · · · b0

nb
]�.

Assumption 1 {f (t)} and {v(t)} are zero mean sequences of mutually independent
and identically distributed (i.i.d.) Gaussian random variables with variances λ2

f

and λ2
v respectively. {e(t)} is a sequence of Gaussian random variables independent

of {f (t)} and {v(t)}.
Assumption 2 The degrees of the polynomialsB0(q) andA0(q) and the ratio Γ =
λ2
v/λ

2
f quantifying the accuracy of the observed input are known.

Assumption 3 The data generating system is strictly stable, and there are no
pole/zero cancellations.

Assumption 4 The model parameters θ belong to closed set D . For all values of
θ ∈ D the poles of A(q) is strictly inside the unit circle.
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Existence of an independent sequence corresponding to the true parameter is key
to LSCR algorithm. Knowing Γ (Assumption 2) allows us to compute output
predictions such that the corresponding prediction errors are independent of the
measured input. The predictions are given by

ŷ(t) = φ(t)�θ (2)

where

φ(t)� =
[
y(t − 1) · · · y(t − na) 1

1 + Γ u(t − 1) · · · 1

1 + Γ u(t − nb)
]

(3)

and θ� = [a1 a2 · · · ana b1 b2 · · · bnb ] is the vector of model parameters. The
dimension of parameter vector is nθ = na + nb.

3 Construction of Confidence Region

The regression vector (3) contains delayed output and Least Minimum Mean Square
Estimates (LMMSE) of true inputs given noisy inputs. This regression vector is used
to form correlation functions in LSCR. The LSCR algorithm for EIV systems is as
follows

For a given θ

1. Compute the prediction error: ε(t, θ) = y(t)− φ�(t)θ, t = 1, · · · , N
2. Form the vector ξ(t) = [u(t − 1) u(t − 2) · · · u(t − nθ )]� and compute

gi(θ) =
N∑
t=1

hi,t ξ(t)ε(t, θ), i = 0, 1, · · · ,M − 1

where h0,t = 0 for t = 1, · · · , N and the remaining hi,t s are i.i.d. and with
the following distribution:

hi,t =
{

0 w.p. 1
2

1 w.p. 1
2

gi(θ) is a nθ -dimensional vector and its kth element is denoted by gki (θ).

(continued)



546 M. Moravej Khorasani and E. Weyer

3. Select an integer q in the interval [1, (M+1)/2) and find the region ofΘ(k)N
such that at least q of the gki (θ) functions are bigger than zero and at least q

are smaller than zero. The confidence region is given by:ΘN = ⋂nθ
k=1Θ

(k)
N

It can be show that {u(t − r)}nθr=1 and ε(t, θ0) are independent. As gki (θ
0) is a

sum of zero mean random variables with a symmetric distribution around zero, it is
unlikely that the sequence {gki (θ0)}M−1

i=1 takes on either negative or positive values
nearly all the times. Hence, the LSCR method excludes those values of θ for which
there exist k ∈ {1, · · · , na + nb} such that gki (θ) no either negative or positive for
most i ∈ {1, · · · ,M − 1}.

4 Theoretical Results

In this section we prove two properties of the constructed confidence region. First, it
is shown that the confidence region is probabilistically guaranteed. Then, we prove
that any parameter different from the true system parameter θ0 will eventually be
excluded from the confidence region as the number of data points goes to infinity.

4.1 The Probability of the Confidence Region

The following theorems give the probability that the confidence region contains the
true parameter. Note that θ0 is deterministic while Θ(k)N andΘN are stochastic. The
theorems hold true for finite number of data points.

Theorem 1 Consider the system (1) and model (2), under Assumptions 1–2. The
probability that θ0 is in the confidence regionΘ(k)N is

Pr{θ0 ∈ Θ(k)N } = 1 − 2q

M
. (4)

Sketch of Proof It can be shown that {u(t− r)}nθr=1 and ε(t, θ0) are uncorrelated and
hence also independent since they are Gaussian. Let ηt := u(t − r)ε(t, θ0). It has
the same properties as the variable with the same name in the Proof of Theorem 1 in
[2], and the proof follows along the same line as the proof of Theorem 1 in [2]. )*
It is noteworthy that the parameters q andM are user-chosen.
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Theorem 2 Under the same assumptions as in Theorem 1

Pr {θ0 ∈ ΘN } ≥ 1 − 2q

M
nθ . (5)

Hence, to construct a confidence region with the minimum probability p ∈ (0, 1),
M and q should be chosen such that q

M
= 1−p

2nθ
.

4.2 Asymptotic Convergence

Asymptotically, we have the following results.

Theorem 3 Under Assumptions 1–4, for every fixed θ �= θ0,

Pr{∃N̄ |θ /∈ ΘN,∀N > N̄} = 1 (6)

Sketch of Proof It can be shown that 1
N
gki (θ) → 1

2E{u(t − k)ε(t, θ)} for k =
1, · · · , nθ and i = 1, · · · ,M − 1. The only parameter which satisfies the set of
equations

E{ξ(t)ε(t, θ)} = 0

is the true parameter. From this it follows that any value different from the true value
of the parameter will be excluded from the confidence region as the number of data
points tends to infinity. )*

5 Simulation

Here, the method is illustrated in a simulation example. The system is given by

y(t) = b0
1

1 − a0
1q

−1
f (t)+ e(t)

u(t) = f (t)+ v(t) (7)

where b0
1 = 1.0, a0

1 = 0.5, λ2
f = 1, λ2

v = 0.2, and λ2
e = 0.3.

The ratio Γ is 0.2 and the regression vector is

φ(t) = [−y(t − 1)
1

1.2
u(t − 1)].

To construct a 90% confidence region for θ0, the parameters q andM in the LSCR
algorithm are chosen as q = 5, M = 200.
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Fig. 1 90% confidence
region obtained with 250 data
points. × represents the
regions where fewer than 5 of
the g1

i (θ) functions are
smaller or larger than the zero
function, and ◦ represents the
same regions for g2

i (θ). 7 is
the true parameter
θ0 = [0.5 1]�
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We compute g1
i (θ) = ∑N

t=1 hi,t u(t − 1)ε(t, θ) and g2
i (θ) = ∑N

t=1 hi,t u(t −
2)ε(t, θ) for i = 0, 1, · · · ,M − 1. By excluding those values of θ for which fewer
than q = 5 of the functions were smaller or bigger than the zero function, the confi-
dence region shown in Fig. 1 was obtained. As proved in Theorem 2, the confidence
region contains the true parameter with probability at least 1 − 2 · q

M
· 2 = 0.9.

6 Conclusion

An algorithm for construction of non-asymptotic confidence regions for EIV system
has been developed. It assumes that the ratio between the variance of the noise
on the input and the variance of the input is known and uses it to estimate the
true input given the noisy input. Then a regression model is employed to compute
prediction errors with desirable properties. The output noise is only assumed to
be Gaussian and independent of the input and the noise on input. The confidence
region contains the true parameters with a guaranteed user-chosen probability, and
moreover, parameters different from true parameters will eventually be excluded
from the confidence region.
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Moment Matching Based Model Order
Reduction for Quadratic-Bilinear
Systems

Nadine Stahl, Björn Liljegren-Sailer, and Nicole Marheineke

Abstract For model order reduction of quadratic-bilinear systems a moment
matching approach has been recently proposed where univariate frequency
responses are constructed by means of the associated transform onto the multivariate
transfer functions. This approach comes with the obvious advantage of only one-
dimensional interpolation frequencies to be considered, but suffers from the arising
large size of the involved equation systems and the high computational demands that
make the approach impractical for most applications. In this paper, by exploiting
the problem-underlying sparse tensor structure, we propose a splitting algorithm
that overcomes this curse of dimensionality. We demonstrate the performance
of the extended univariate frequency approach and compare it with the well-
established multimoment matching approach regarding accuracy, efficiency and
need of memory.

1 Introduction

This paper deals with moment matching based model order reduction for single-
input single-output quadratic-bilinear systems of the form

ẋ = A x + H x ⊗ x + D xu+ Bu, y = C x (1)

with Kronecker product ⊗, constant coefficient matrices A, D ∈ R
n,n, H ∈ R

n,n2

and B, CT ∈ R
n, state vector x(t) ∈ R

n as well as input u(t) ∈ R and output
y(t) ∈ R at time t . To derive a reduced order model for xr (t) ∈ R

r , r � n,

ẋr = Ar xr + Hr xr ⊗ xr + Dr xr u+ Br u, yr = Cr xr ,

Ar = VTAV, Hr = VTH(V ⊗ V), Dr = VTDV, Br = VTB, Cr = CV
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we construct the projection matrix V by a univariate frequency approach applying
associated moment matching as well as by a multimoment matching approach. Mul-
timoment matching [1, 4] results in exponentially growing dimension of V coming
from the multivariate higher order transfer functions. Association of variables leads
to univariate transfer functions such that moment matching techniques for linear
systems can be used. Additionally, V only grows linearly. However, the arising
linear systems for higher orders become quickly huge such that the applicability
of the univariate frequency approach recently proposed in [8] is strongly restricted
due to the large computational demands. In this paper we present a splitting
algorithm that exploits the problem-underlying sparse tensor structure and yields
a drastic reduction of the computational effort. We demonstrate the performance
of the extended univariate frequency approach and compare it with multimoment
matching, using the nonlinear RC-Ladder [1, 4] as benchmark.

2 Moment Matching Based Model Order Reduction

In this section we present the model order reduction methods for the quadratic-
bilinear system. We describe (1) in input-output representation. Following the
Volterra ansatz from [2, 6] we particularly get

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
hk(t1, . . . , tk)u(t − t1) · · ·u(t − tk)dtk · · · dt1

with the degree-k kernel hk . Applying the multivariate Laplace transform onto hk
yields the k-th transfer function. In this paper, due to simplicity we restrict ourselves
to approximation conditions of y concerning only h1 and h2 yielding the first two
symmetric multivariate transfer functions:

H1(s) = C (s1 − A)−1 B,

H2(s1, s2) = 1

2
C ((s1 + s2)1 − A)−1

[
D
(
(s11 − A)−1B + (s21 − A)−1B

)
+

H
(
(s11−A)−1B ⊗ (s21−A)−1B + (s21−A)−1B ⊗ (s11−A)−1B

)]
.

Multimoment Matching We use the multimoment matching approach presented
in [1, 4]. To match the moments of the full and those of the reduced system when
considering the transfer functions H1 and H2, the projection matrix V is calculated
by help of three different Krylov subspaces. These Krylov subspaces contain the
moments of H1, the multimoments of the bilinear part and the multimoments of the
quadratic part of H2. For a more detailed description we refer to [1, 4].
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Associated Transform Based Moment Matching We follow the approach of [8]
where univariate frequency responses are constructed by applying the association of
variables onto the multivariate transfer functions. This yields the functions H̊1, H̊2

H̊1(s) = C (s1 − A)−1 B = H1(s),

H̊2(s) = (
C 0

) (
s1 −

(
A H
0 A ⊗ 1 + 1 ⊗ A

))−1 (
D B

B ⊗ B

)

that characterize the response of H1, H2 with a Dirac impulse as input, see [6, 8]. As
each univariate transfer function represents a linear system, the respective moments
can be computed with standard techniques, see e.g. [3]. The projection matrix Vk
is then constructed as orthonormal basis of the moments of H̊k , k = 1, 2. Together
they assemble V.

Splitting Algorithm The univariate frequency approach of [8] suffers from the large
size of the linear systems for higher orders. For growing k calculating the moments
gets untractably expensive. Already for k = 2 the linear systems involved are of
dimension n+n2. To decrease the computational effort and improve the applicability
of the approach, we propose and explore a splitting algorithm that accounts for the

inherent block structure. By splitting the moments into mi = (
κTi , η

T
i

)T
, we can

recursively compute the moments for H̊2 at the interpolation point σ ∈ C as

1. ηi = (σ1 − (A ⊗ 1 + 1 ⊗ A))−1ηi−1,
2. κ i = (σ1 − A)−1(κ i−1 + Hηi ),

with η0 = B⊗B and κ0 = D B. Here, the first equation can be solved as a Lyapunov
equation which is significantly cheaper than solving the system of linear equations.
Moreover, the sparse structure of the systems can be taken into account to reduce
the computational effort even further.

3 Numerical Results

In this section we investigate the performance of the reduction methods, using the
well-known nonlinear RC-Ladder benchmark [1, 4]. Similar results have been also
achieved for other example problems. We particularly choose here a general nonlin-
ear setting as it can be transformed into a quadratic-bilinear one by introducing new
variables [4], which further highlights the importance of such systems.

The nonlinearity in the problem is due to the diode I − V characteristics, given
by g(v) = e40 v − 1, where v is the node voltage. The current is treated as the
input u(t) and the voltage v1(t) as the output of the system at time t , see Fig. 1.
Using Kirchhoff’s current law at each of the N nodes and assuming a normalized
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u(t)

v1

v2 v3 vN−2 vN−1 vN

Fig. 1 Nonlinear RC-Ladder

capacitance, we end up with the following system (2 ≤ i ≤ N − 1):

v̇1(t) = −2v1(t)+ v2(t)− g(v1(t))− g(v1(t)− v2(t))+ u(t),
v̇i (t) = −2vi(t)+ vi−1(t)+ vi+1(t)+ g(vi−1(t)− vi(t))− g(vi (t)− vi+1(t)),

v̇N (t) = −vN(t)+ vN−1(t)g(vN−1(t)− vN(t)).

This nonlinear model can be transformed into an equivalent quadratic-bilinear
system of size n = 2N with first reformulating the upper system with the variables
x1 = v1, xi = vi−1 − vi for i = 1, . . . , N and then introducing the new variables
zi = e40xi − 1, cf. [4]. We obtain the following quadratic-bilinear system:

ẋ1 = −x1 − x2 − z1 − z2 + u(t),
ẋ2 = −x1 − 2x2 + x3 − z1 − 2z2 + z3 + u(t),
ẋi = xi−1 − 2xi + xi+1 + zi−1 − 2zi + zi+1, 3 ≤ i ≤ N − 1,

ẋN = xN−1 − 2xN + zN−1 − 2zN ,

żi = 40(zi + 1)ẋi, 1 ≤ i ≤ N.

As a numerical setup we use the input function u(t) = 0.5(1 + cos(0.2πt)). The
initial conditions are set to zero, i.e. vi(0) = 0 and thus zi(0) = 0, i = 1, . . . , N .

Implementation was done in Matlab R2017b run on a Intel Xeon with 2.2 GHz
on 88 Cores. The time integration of the ODE is performed via the implicit Euler
method, and for solving the Lyapunov equation in the splitting algorithm we use the
Matlab internal routine for full matrices and a sparse solver of [7], respectively.

Case 1 Choosing N = 1000, we compare the reduced models of size r = 12 that
we obtain from the associated transform based moment matching without (AMOR)
and with splitting (SAMOR) as well as from multimoment matching (MMOR).
The relative error in the output over time with respect to the full order model
is visualized in Fig. 2. As desired the associated versions yield the same results
(overlapping of red dashed-dotted and yellow dotted lines) such that no additional
errors are introduced by the numerical solution strategy. The approximation quality
by (S)AMOR is slightly better than by MMOR. Concerning the computation times
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Fig. 2 Case 1: N = 1000,
r = 12, σ = 1, MMOR:
matching 3, 3, 3 moments for
H1 and the bilinear and
quadratic part of H2,
(S)AMOR: matching 7
moments of H̊1 and 5 of H̊2
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Table 1 Computational
times, Case 1

Method Offline phase [s] Online phase [s]

Full nonlinear model – 88

Full quadratic-
bilinear model

– 1350

MMOR 0.3 3

AMOR 570 3

SAMOR 50 3

(cf. Table 1) the online phase is similar for all methods. But in the offline phase
(i.e., computation of the projection matrix) MMOR is way faster than the associated
versions. However, the proposed splitting algorithm yields a speed-up of a factor 10
in the univariate frequency approach (SAMOR vs. AMOR).

Case 2 To explore the performance of our proposed splitting algorithm in the
univariate frequency approach, we use in addition to AMOR and SAMOR also
a sparse Lyapunov solver (SSAMOR) for the Lyapunov equations arising in the
splitting. Note that, in general, orthonormalization is needed while calculating the
Krylov subspaces to keep the algorithm stable. This cannot be done for the sparse
Lyapunov solver without introducing further approximation errors. Therefore, we
restrict ourselves to cases when only a few moments are matched. The quality
of the reduced model is then ensured by increasing the number of interpolation
points. Here, using σ ∈ {1, 102, 104}, and matching 4 and 3 moments of H̊1 and
H̊2, respectively, yields reduced models of size r = 18. While all algorithms
provide the same approximation quality of the solution as desired (Fig. 3), the
computational offline times for the different solution strategies strongly differ (cf.
Table 2). SSAMOR gives an additional speedup of around 6. The improvement
of the performance is even more pronounced when considering larger problems.
Increasing the problem size from N = 103 to N = 104, we obtain a speedup of
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Fig. 3 Case 2: N = 1000,
r = 18, σ ∈ {1, 102, 104},
(SS)AMOR: matching 4
moments of H̊1 and 3 of H̊2
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Table 2 Computational
times, Case 2, similar online
phase for all strategies

Offline phase [s] Offline phase [s]

Method N = 103 N = 104

AMOR 1210 –

SAMOR 91 64,684

SSAMOR 15 226

more than 200, while the naive calculation in AMOR runs out of memory due to the
large system size.

4 Discussion and Conclusion

For the associated transform based moment matching approach our proposed split-
ting algorithm yields a drastic reduction of the computational time by exploiting the
inherent tensor structure, further improvements of the performance can be attained
by using a sparse solver for the Lyapunov equations involved in the splitting.
However, although in this approach only one-dimensional interpolation frequencies
have to be considered, the computational effort to compute the projection matrix
for the reduced model is much higher than for multimoment matching with its
multivariate transfer functions due to the arising large systems. The approximation
quality of the univariate frequency approach and the multimoment matching is
comparably good.

As mentioned, the associated frequency representations here only characterize
the response on the Dirac impulse. A slight generalization has been discussed in
[8], but it turns out that a much more general class of inputs can be considered in
a modified framework that we have recently developed in [5]. As deeper analysis
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reveals that gathering the associated moments in the reduction basis alone is
not sufficient for the reduced system to match the respective moments, a second
approximation condition naturally appears, for details we refer to [5].

The presented methods are certainly also relevant and applicable for more general
classes of nonlinearities, since nonlinear systems can be transformed into quadratic-
bilinear systems by introducing further variables. However, since this reformulation
is not uniquely determined, the choice and the quality of the quadratization are
problem-dependent.
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Data Science in Industry 4.0

Shirley Y. Coleman

Abstract Data science is piquing the interest of many large and small organisations
and managers are asking universities for information and advice. Typically, the
query is: I have many sensors and many measurements, what shall I do with all
this data, and how can I get ready for Industry 4.0? The so-called fourth industrial
revolution refers to automation and control based on data exchange in a digital
environment where measurements are available on all aspects of production. Data
science plays an intrinsic role in this scenario and is focused on understanding and
using data. Data science requires a challenging mix of capability in data analytics
and information technology, and business know-how. Statisticians need to work with
computer scientists; data analytics includes machine learning and statistical analysis
and these extract meaning from data in different ways. Moving towards increased
use of data requires buy in from higher management and board members. Although
serious progress involves a holistic approach, exemplars demonstrating potential
value are also beneficial. This article considers the implications for mathematicians
and statisticians of the growing industrial demands and discusses examples from
ongoing research projects with industrial partners where data visualisation, multi-
variate statistical process control charts and funnel plots have made an important
contribution.

1 Introduction

Data science is piquing the interest of many large and small organisations and
managers are asking mathematicians and statisticians in universities for information
and advice. Typically, the query is: I have many sensors and many measurements
creating a virtual copy of the physical environment of my processes, what shall I do
with all this data, and how can I get ready for Industry 4.0?
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The so-called fourth industrial revolution refers to automation and control based
on data exchange in a digital environment where measurements are available on all
aspects of production. Data science plays an intrinsic role in this scenario and is
focused on understanding and using data.

Data science requires a challenging mix of capability in data analytics and infor-
mation technology, and business know-how [3]. Mathematicians and statisticians
need to work with computer scientists to exploit the growing interest in data science.
Moving towards increased use of data requires buy in from higher management and
board members so business domain knowledge is of vital importance to ensure that
data science addresses business needs and enables evaluation of the benefits [2].

Case studies of sound data analytics carried out in different sectors [1] help
us to show companies what data science can offer and what issues have to be
considered to ensure value for money. This article gives examples from ongoing
research projects with industrial partners where data visualisation, multivariate
statistical analysis, process control charts and funnel plots have made an important
contribution.

The next section gives background to Industry 4.0, Sect. 3 considers the role of
mathematicians and statisticians in this new scenario. Section 4 gives two examples
and the final section is the conclusion and offers a forward view.

2 Industry 4.0

Human civilisation has experienced many disruptive changes with far reaching
consequences. Arguably the first big industrial revolution was in the mid-eighteenth
century with the harnessing of water and steam power which transformed not
only the way products were made but also the nature of society in manufacturing
countries. This irreversible change was followed nearly a century later by mass
production using assembly lines and electricity. Computers and automation revo-
lutionised manufacture again in the late twentieth century giving rise to the third
industrial revolution. The big change happening now and over the last decade is
the domination of intelligent systems in which machines and control are connected
by data flows independently interacting with each other. The interconnectivity
facilitated by this disruptive technology is often referred to as the “Smart Factory”
and is the basis of Industry 4.0.

Industry 4.0 leads to faster and more flexible production processes with greater
efficiency of material supply and usage, and reduction of downtime. The connec-
tivity between different parts of a company results in abundant data collected by
sensors embedded in the manufacturing systems. The data creates a virtual copy of
the physical world and is used in many diverse ways for operational and strategic
purposes including monitoring quality, performance and the interaction between
processes, failure detection and predictive modelling. The data can be viewed in
reports and dashboards. The smart factory in Industry 4.0 is highly dependent
on both technical connectivity and good communication between suppliers and
manufacturers.
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Fig. 1 Multiple data sources
relating to diverse parts of a
company

In the digital world, company personnel are faced with interconnection, not just
in the factory but in all parts of the company. Figure 1 shows how all these data
sources relate to each other. To make best use of all this data there needs to be
integration and understanding between data providers and data users [5]. Vast data
resources offer opportunities in terms of shedding light on operational performance
and how it can be improved. There needs to be an interplay between strategic
planners, data providers and data analysts to make sure that useful questions are
asked and high quality data is available to address them.

Industry 4.0 represents another massive change to the way people live. Each
industrial revolution has led to job losses and the necessity for people to adapt to new
employment. This one may have the greatest impact so far. The Bank of England
Chief Economist was recently reported in the Times newspaper [4] to say that there
will be millions of job losses due to Industry 4.0.

Andy Haldane said that the “fourth industrial revolution” would be on a much greater
scale than those that played out in the eighteenth to twentieth centuries and would lead
to widespread job losses and societal changes.

On the positive side, Industry 4.0 has led to creative advances in transportation
with autonomous cars and automobile systems, medical monitoring, process con-
trol, robotics and avionics.

With all this Industry 4.0 data around, the key means of adding value is with data
science. The essence of the many Venn diagrams about data science that started with
one by Drew Conway in 2010, is that data science consists of:

• IT skills (hardware and software) to deal with data
• Business awareness of how data can help
• Data analytics: maths, statistics, machine learning, artificial intelligence and deep

learning
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Data analytics means more than the classical statistics around total quality
management and in Six Sigma such as statistical process control and designed
experiments. For Industry 4.0 we include all the advanced predictive modelling and
meta-modelling techniques. These and the role of mathematicians and statisticians
in the new Industry 4.0 world are discussed in the next section.

3 Role of Mathematicians and Statisticians

It is useful to review the key relevant components of data analytics, which makes up
the third part of data science. Mathematical and statistical methods include summary
statistics, correlation, data visualisation, pattern recognition, modelling, simulation
and dimension reduction. Machine learning methods include decision trees, random
forests, cluster analysis, t-SNE, neural networks and long short-term memory units.

Artificial Intelligence originated in simulating the working of the human mind. It
has had varying academic respectability over the years partly because of differences
of opinion as to the nature of the mind, the diversity of topics it embraces and the
fear of unemployment due to the efforts of human beings becoming obsolete. It is
currently in a resurgence of popularity partly because of the possibilities arising
from advanced computing methods enabling so called deep learning.

Deep learning includes techniques such as Recurrent Neural Networks with
multiple layers functioning like the 3D human brain. It is applied to tasks like speech
and picture recognition. Rather than following ideas set by humans, deep learning
allows the computer to learn by itself. The ImageNet challenge involves recognising
15 million images and network analysis with over 150 layers succeeded in making
fewer than 5% errors in 2016 and beating human performance [8].

It is worth noting that many of the mathematical, statistical and machine learning
techniques have been around for many years. What has changed and brought data
analytics into its current prominence is the massive amount of data now being
retained instead of just being noted and then overwritten. The realisation that
profound insight can be gained from analysing this available data has led to a
disruption in the order of professions with data scientist becoming a highly paid,
glamorous and much sought after role. This sea change is encapsulated in the
article in the New Yorker shown in Fig. 2. Previously business lauded the “Madison

Fig. 2 The sea change in professions
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Avenue” New York creative advertising executives but now their influence is being
overthrown by the mathematical analysts who can use data for behavioural profiling
to segment customers and target advertising tailored precisely to individual tastes.

Data scientists are seen as useful and desirable. We now need to monitor the
purity of the mathematics and statistics that form part of data science.

Many data analytical practices revolve around black box solutions in which data
is fed into a black box, calculations are made and an answer comes out. Black box
techniques mask the algorithms being used and just report an answer. There can
be good reasons for encasing the methodology in a black box, for example if it is
alarmingly complex or so that it cannot be interfered with. However, the downside
of using a black box solution is that it alienates statistical thinkers and encourages
a cavalier attitude to statistical detail and theoretical niceties that is frustrating and
maybe damaging in the long term.

Black box algorithms may not be accessible. For example, in decision tree
analysis, if two contender predictor variables are equal in their chi-square or f values
with respect to the target variable, which does the algorithm choose? Is it possible
to find out?

Black box data analytical solutions for prediction lack robustness against changes
in influential variables. The solutions are often based on assemblies of models
and predictions are averaged out using a range of methods, not all of which are
appropriate for the type of data being input. It is not easy to find out which predictors
have had the major influence in the models making up the prediction. One predictor
may be much easier to collect than the other and have higher quality.

Black box users are not forced to check their data before analysis and there is
often little emphasis on residual analysis so that variables with gross outliers are not
detected. Users may miss data errors and opportunities for finding key subsets and
obvious explanations for apparent patterns. But the black box user does not mind
any of this provided their prediction is better than the one before and seems to work
in the short term.

In summary, problems with black boxes include:

• Algorithms, tuning parameters, subtle effects and assemblies are not accessible
• Black box may work adequately for the short but not long term
• Robustness to change is not certain
• Skills to understand underlying methods are not nurtured

Business people, however, tend to side with black box approaches as they are easier
to use and understand. Mathematicians and statisticians need to reclaim the field
rather than let core black box services take over. They have very important roles
to play which include constructing and validating models, checking the quality of
input data, evaluating costs of obtaining variables and using proxies, and conducting
sensitivity experiments.

Companies have a love-hate relationship with data science based on primordial
fear and lust, they fear data but want the benefits of analysing it. Case studies are
very important to show managers the sort of outcomes that are possible [6]; we
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need to encourage operational staff by emphasising the likely positive outcomes:
less rework and waste, more time to do their job properly [7].

The Industrial Statistics Research Unit (ISRU) at Newcastle University, UK
has been working with companies for many years and has extensive experience
of what can be gained from applications of mathematics and statistics in business
and industry. ISRU was set up by G.B. Wetherill and in the 1990s focussed on
statistical process control and design of experiments in the process industries. The
work incorporated Taguchi experiments and Six Sigma quality improvement with
several important European Union contracts in the 2000s including pro-ENBIS
which helped establish the European Network of Business and Industrial Statistics.
A reorientation by ISRU to focus on data mining and the service sector followed,
with ongoing work in utilities and healthcare. The most recent consultancy has been
in big data analytics particularly in small to medium enterprises (SMEs), and the
quantification of the impact of academic mathematics and statistics on society at
large.

4 Examples

Current ISRU projects include a knowledge transfer partnership (KTP) funded by
Innovate UK in the shipping sector [10]. This case study involves clear definition
of the business issue which is to reduce the cost of fuel and the quantity of
harmful emissions. Big data from engine sensors is relayed to a control centre and
data analytics enables automatic shipping mode detection, evaluation of economic
speed and calculation of emissions. Multivariate statistical analysis leads to the
construction of control charts for whole journey fuel consumption through which
the shipping company can understand the performance of its ships and the variation
due to weather and tides.

Another KTP focuses on the insight that can be obtained from analysing vast
quantities of data in the automotive aftersales market [9]. In this case study some of
the business issues were identified by the customers of the SME business partner and
some became apparent after applying data visualisation and exploratory statistical
techniques to the vast integrated big data generated within this sector. One particular
issue is the return rate of autoparts purchased by customers. Products with high
return rates need to be investigated as they add cost to the business.

Millions of autoparts are purchased every day in quantities that vary considerably
between different products. Evaluating this big data in tabular form is confusing.
A funnel plot gives a convenient and effective tool for helping to prioritise which
products to investigate. The funnel plot for return rates of air filters is shown in
Fig. 3. There are many products with return rates outside the standard 95% control
limits. Some points are due to type I errors and others apply to lower valued products
which are not investigated. The circled points refer to more valuable products and
are investigated; for example, it may be that their description in the catalogue is
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Fig. 3 Funnel plot of return rates for different autoparts

misleading. The type I error points are false alarms but do not detract from the
benefits of using this control chart approach.

Analysing data using process control and predictive models, the data scientist
is helping to improve the business and also potentially identifying new revenue
streams.

5 Conclusions

Mathematics and statistics have everything to offer to data science and are vital to
the successful exploitation of Industry 4.0. The teamwork implied by data science
means that business domain experts interact with us to answer questions such
as what, where, when and how to measure the key processes in a company and
how to improve the business. In complex manufacturing these questions involve
applications of pure science such as physics, chemistry, advanced materials and
structural engineering where there are mechanistic models and well established
laws. Mathematicians and statisticians are particularly suited to dealing with this
part of the data science triangle providing input which is complementary to that of
subject experts and computer scientists.

In some senses, we are in a golden era with great opportunities afforded by the
expansion of data science before data analytics becomes so entrenched that there
are fewer creative opportunities for developing bespoke solutions. Mathematicians
and statisticians need to act now to engage with computer scientists and keep a firm
presence in Industry 4.0 and the growing field of data science.
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Sparse Multiple Data Assimilation with
K-SVD for the History Matching of
Reservoirs

Clement Etienam, Rossmary Villegas Velasquez, and Oliver Dorn

Abstract Calibrating subsurface reservoir models with historical well observations
leads to a severely ill-posed inverse problem known as history matching. The
recently proposed Ensemble Smoother with Multiple Data Assimilation (ES-MDA)
method has proven to be a successful stochastic technique for solving this inverse
problem, but its computational cost can be high in realistic scenarios and it remains
challenging to incorporate certain non-Gaussian types of a-priori information into it.
In this work we combine the ES-MDA method with Multiple-Point Statistics (MPS)
and the K-SVD technique for building sparse dictionaries in order to obtain a novel
sparsity-based history matching scheme that preserves non-Gaussian structural
prior information and at the same time reduces computational cost. We present
numerical experiments in 3D on a modified SPE10 benchmark reservoir model that
demonstrate the performance of this new technique.

1 Introduction

The reconstruction of subsurface geological features from production data defines
an inverse problem related to data assimilation, which has long been a challenge
in the reservoir engineering community due to the small number of observations
available [6]. Recently the Ensemble Smoother with Multiple Data Assimilation
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(ES-MDA) method has become popular for this task [5]. However, the conventional
ES-MDA framework fails to accurately capture non-Gaussian spatial distributions,
for example in channelized reservoirs. In those cases, novel image processing
techniques based on sparsity representations provide an interesting tool for enabling
us to incorporate prior information in the assimilation task and thereby improve final
results [6, 7]. In the work presented here we will reformulate this inverse problem
as a sparse field recovery task which will then be solved, in contrast to previous
work, by using a combination of ES-MDA and sparsity enhancing techniques, in
particular K-SVD (an acronym for K-means and Singular Value Decomposition)
and Orthogonal Matching Pursuit (OMP).

Our forward problem consists of a three-phase flow model of water, oil and gas
fully derived using the combination of Darcy’s law and continuity equations [3]. It
consists of a system of coupled non-linear partial differential equations describing
the evolution of the dynamic state variables inside the porous medium which change
over time. These are in particular the water, oil and gas saturation levels Sγ , γ ∈
{w, o, g}, (where the subscripts {w, o, g} refer to the corresponding three different
phases water, oil and gas that are simultaneously present in the reservoir), and the
associated pressure levels pγ . For a more detailed description of the underlying fluid
flow model we refer to [3, 8].

There are also static parameters involved in the description of the fluid flow
problem that do not change over time. These are in particular the effective porosity
ϕ and the absolute permeability K (all other static parameters of the fluid flow
model are assumed known here) [3, 8]. Classically, those static parameters are the
primary unknowns of the underlying inverse problem that need to be estimated
from production data. Plugging those estimates into a simulator (e.g. [8]) will then
(ideally) reproduce the correct dynamical state variables. Notice that those static
parameters are related to the lithological structure of the reservoir of which some a-
priori knowledge is usually available from independent investigations. Those are
encoded in our training images used for generating the initial ensemble for the
ES-MDA algorithm via Multiple-Point Statistics (MPS), as well as defining the
dictionary conditioning our sparsity-based data assimilation procedure later on.
Thereby, in our algorithm this information will be incorporated throughout the data
assimilation algorithm to provide final reconstructions better satisfying this prior
structural information. In this sense, our sparsity approach does not only speed up
the reconstruction process, but also has a regularization effect on the final results.

2 Ensemble-Smoother Multiple Data Assimilation
(ES-MDA)

ES-MDA is a Monte Carlo approach to the underlying data assimilation problem
which was proposed in [5]. In ES-MDA, each given data set is assimilated multiple
times as outlined in the following. The underlying statistical properties of the
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reservoir are represented by choosing an initial ensemble of sizeNe of equi-probable
parameter distributions. Let mj denote the static petro-physical properties to be
estimated, where j indicates the ensemble member (j = 1, . . . , Ne), and let in
particular mfj denote its current estimation in a given step of ES-MDA. Following
the notation and the general approach outlined in [5], we denote the (perturbed)
observed data by duc,j and the predicted data, running our simulator on mfj , by dfj .
Denote by Na the total number of ES-MDA iteration steps taken [5]. The parameter
update/assimilation step is then carried outNa times as an iteration with update rule

maj = m
f
j + C̃

f
MD

(
C̃
f
DD + αCD

)−1 × (duc,j − dfj ) (1)

for j = 1, . . . , Ne. In (1), C̃fMD is the cross-covariance matrix between the prior

vector of model parameters,mfj , and the vector of predicted data, dfj . Furthermore,

C̃
f
DD is the auto-covariance matrix of predicted data, and CD is the inflated data

error covariance matrix. α is the data error covariance inflation factor at the given
data assimilation step which is selected prior to the history matching loop for all
iteration steps, see [5] for details on its choice and theoretical justifications.

We need an initial ensemble for starting the ES-MDA procedure. In this work,
we use MPS [10] for the creation of this initial ensemble targeting a typical
channelized model. Thereby the ensemble is conditioned on the information at the
well locations and the corresponding analysis of statistical properties. Notice that,
when introducing sparsity in this framework further below in this paper, we will
then be able to replace some of the quantities that occur in (1) by the corresponding
sparse representations, potentially leading to a significantly reduced computational
cost in each iteration.

3 Dictionary Learning and OMP

A key factor of sparse coding is the identification of a basis (also often called
dictionary or frame in this context) in which the field or signal under consideration
permits a sparse representation [2, 7]. A classical approach is to use a general-
purpose basis (dictionary) for this, for example involving wavelets or the Discrete
Cosine Transform (DCT) [6]. The disadvantage of that choice is that the basis might
not be optimal for the particular ensemble to be represented. Therefore, in this
work we follow a different approach which employs a special dictionary learning
algorithm, namely K-SVD, for determining a suitable basis [4]. To start with, we
use MPS for generating a set of training signals yi , i = 1, . . . , Nr , each of them
having length Ny (the dimension of the permeability field to be estimated), and
arrange them as columns of a matrix Y of size Ny × Nr . The K-SVD dictionary
learning algorithm constructs now simultaneously a dictionary matrix D of size
Ny ×Ns , whose columns consist of the “dictionary atoms”, and an Ns ×Nr matrix
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X, whose columns consist of the representation vectors xi , i = 1, . . . , Nr , by the
(joint) minimization task

{X,D} = argminX̃,D̃

{∥∥∥Y − D̃X̃
∥∥∥

2

F

}
subject to ∀i. ‖x̃i‖0 ≤ T0 . (2)

In (2), the parameter T0 indicates the sparsity level imposed on the algorithm and
‖ ‖F denotes the Frobenius norm. Notice that, upon completion, (2) provides a
sparse representation yi ≈ Dxi , i = 1, . . . , Nr . Practically, the K-SVD algorithm
alternates between updates for D and updates for X for a given training set until
optimality is reached. For more details of this algorithm, including a pseudo-code
describing its individual stages, we refer to [1]. The creation of this over-complete
dictionary is done off-line and only once before the history matching process starts.
In our work, it is used to transform the permeability and porosity fields from a full
spatial domain to a sparse domain and back.

Notice that the part of the K-SVD algorithm which finds an optimal sparse
representation X̃ for a given training set Y , given the current iterate for the dictionary
D̃, requires us to choose a specific sparsity promoting algorithms, for which we
select here the well-known Orthogonal Matching Pursuit (OMP) algorithm [9].
We refer the reader to [1, 9] for further information on OMP. Notice that, in
addition to its use inside this off-line K-SVD step, the OMP algorithm will also
be used throughout our proposed ES-MDA algorithm whenever permeabilities and
porosities need to be mapped from full to sparse representations.

The sparsity enhanced ES-MDA algorithm described above is summarized in the
following Algorithm 1.

Algorithm 1 Sparsity-ensemble optimization method (SEOM)
1: procedure SEOM
2: Generate Nr realizations of different permeability/porosity profiles using MPS. Learn

dictionary D consisting of Ns atoms tailored to these realizations using K-SVD, Eq. (2).
3: Independently select Ne initial ensemble realizations of permeability/porosity using again

MPS for the channelized test case.
4: Choose number of assimilation iterations Na .
5: for k = 1 to Na do
6: Progress the Ne realizations over time (using non-sparse representation,
7: here with simulator ECLIPSE 100 [8])
8: for j = 1 to Ne do
9: Find sparse representation of all mj using OMP with dictionary D.

10: Carry out the ES-MDA analysis step (1) on sparse representation.
11: Transform mj back to the (non-sparse) spatial domain.

12: STOP
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4 Numerical Results

In order to demonstrate the performance of our SEOM algorithm, we run it on
a modified version of the popular benchmark SPE10 model. Here we choose
Nr = 2000, Ns = 1500 and Ne = 100. Typical values for Na in ES-MDA
and SEOM are Na ∈ {2, 4, 6, 8}. The true model consists of five layers and can
be seen in a 3D view on the top right side of Fig. 1. The individual five layers
(permeability) can be seen in the first row on the left of the same figure. The
second and third rows of Fig. 1 display two (of the Ns = 1500) members of
the generated over-complete dictionary representing this reservoir. Row four of
this figure shows the ensemble-mean starting profile used in the ES-MDA and
SEOM algorithms for this test case. Row five displays the ensemble-mean result
of standard ES-MDA (without sparsity), and row six shows the ensemble-mean
result of the SEOM algorithm incorporating sparsity with respect to the learned
dictionary. Visually, the SEOM estimate looks more ‘channelized’ compared to the
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Fig. 1 On the left, all rows show from left to right layers 1–5 of the SPE10 reservoir as specified
in the following. First row: true permeability profile; second and third rows: two (out of Ns =
1500) members of the over-complete dictionary; fourth row: ensemble-mean initial guess; fifth
row: ensemble-mean final result of standard ES-MDA; sixth row: ensemble-mean final result of
the proposed SEOM algorithm. On the right a 3D view of the reservoir is provided in the top
image, where the bottom image shows the corresponding colour bar that applies to this figure
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Table 1 RMSE values
RMSE(j)

Realization j Initial Final (ES-MDA) Final (SEOM)

13 49.33 24.21 4.32

56 43.83 12.8 1.34

92 56.87 24.58 6.44

ES-MDA reconstruction due to the incorporated a-priori information on the true
model encoded in the dictionary. For evaluating further the performance of the
techniques compared here, the estimated final porosity and permeability profiles
are used for running the simulator from the initial time step to the final time step
Nk . For the obtained data d for all 100 ensemble members we calculate the root-
mean-square error (RMSE) for each ensemble member j , denoted by RMSE(j),
which is defined as

RMSE(j) =
⎛
⎜⎝ 1

NkNd

Nk∑
k=1

Nd∑
ν=1

⎛
⎝d

ν
uc,j (k)− df,νj (k)

σν

⎞
⎠

2
⎞
⎟⎠

1
2

. (3)

Here the index ν runs over theNd observed well data components, k indicates theNk
physical time steps, j is realization number, and σν is the error standard deviation
of data type ν. Table 1 shows and compares RMSE values for three different
realizations (j ∈ {13, 56, 92}) which we have chosen (somehow arbitrarily) to
represent the entire ensemble. Considering for example realization j = 56, the
convergence for the standard ES-MDA history matching was achieved in eight
iterations with an RMS error of 12.8. Compared to that, the proposed method SEOM
converged in four iterations with an RMS error of 1.34.
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Hypercomplex Fourier Transforms in the
Analysis of Multidimensional Linear
Time-Invariant Systems

Łukasz Błaszczyk

Abstract The aim of this paper is to further investigate the properties of octonion
Fourier transform (OFT) of real-valued functions of three variables and its potential
applications in signal and system processing. This is a continuation of the work
started by Hahn and Snopek, in which they studied the octonion Fourier transform
definition and its applications in the analysis of the hypercomplex analytic signals.
First, the octonion algebra and the new quadruple-complex numbers algebra
are introduced. Then, the OFT definition is recalled, together with some basic
properties, proved in some earlier work. The main part of the article is devoted
to new properties of the OFT, that allow us to use the OFT in the analysis of
multidimensional signals and LTI systems, i.e. derivation and convolution of real-
valued signals.

1 Introduction

The classical signal theory deals with R- or C-valued functions and their C-valued
spectra. However, in some practical applications, signals tend to be represented
by hypercomplex algebras [4]. Hypercomplex Fourier transforms deserve special
attention in this considerations. Quaternion Fourier transform (QFT) allows us to
analyze two dimensions of the sampling grid independently, while the complex
transform mixes those two dimensions. It enables us to use the Fourier transform
in the analysis of some 2-D linear time-invariant (LTI) systems described by some
linear partial differential equations (PDEs) [3].

In [2] we presented some preliminary results concerning the octonion Fourier
transform (OFT). We showed that the OFT is well defined for R-valued functions
and proved some basic properties of the OFT, analogous to the properties of the
classical FT and QFT. Our research follows previous results of Hahn and Snopek [6].
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It should be noted that octonion signal processing have already found practical
applications [5, 7], including image splicing detection [9] and neural networks [8].

In this paper, we introduce the most recent results, associating OFT (introduced
in Sect. 3) with 3-D LTI systems of linear PDEs with constant coefficients.
Properties of the OFT in context of signal-domain operations such as derivation and
convolution of R-valued functions are stated in Sect. 4. There are known results for
QFT (see [3]), but they use the notion of other hypercomplex algebra, i.e. double-
complex numbers. Results presented here require defining other higher-order
hypercomplex structure, i.e. quadruple-complex numbers defined in Sect. 2. This
hypercomplex generalization of the Fourier transformation provides an excellent
tool for the analysis of 3-D LTI systems which is presented in Sect. 5. The paper is
concluded in Sect. 6 with short discussion of those results.

2 Algebras of Octonions and Quadruple-Complex Numbers

Octonions (O) are an example of Cayley-Dickson hypercomplex algebra [2, 6]. Its
elements are of the form

o = x0+x1 e1+x2 e2+x3 e3+x4 e4+x5 e5+x6 e6 +x7 e7, x0, x1, . . . , x7 ∈ R,

where e1, e2, . . . , e7 are seven imaginary units satisfying appropriate multi-
plication rules (presented in Table 1). Octonions form a non-associative, non-
commutative (but alternative) composition and division algebra O of order 8 over
the field of real numbers R. Octonion algebra is endowed with the standard norm

|o| = √
o · o∗ =

√
x2

0 + x2
1 + . . .+ x2

7 ,

where o∗ = x0 − x1e1 − . . .− x7e7 is the octonion conjugate of o.
We define the octonion exponential function in a classical way—as the infinite

sum eo := ∑∞
k=0

ok

k! . Due to the fact, that octonion multiplication is non-

Table 1 Multiplication rules
in octonion algebra

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1
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commutative, for any o1, o2 ∈ O we have eo1+o2 = eo1 · eo2 if and only if
o1 · o2 = o2 · o1.

Due to non-associativity and non-commutativity of octonion multiplication,
many formulas concerning the Fourier transforms are quite complicated (see
Sect. 4). To improve that, inspired by Ell [3], we introduce the algebra of quadruple-
complex numbers F, which elements can be written as

p = (p0 + p1e1)︸ ︷︷ ︸
=s0∈C

+ (p2 + p3e1)︸ ︷︷ ︸
=s1∈C

e2 + (p4 + p5e1)︸ ︷︷ ︸
=s2∈C

e4 + (p6 + p7e1)︸ ︷︷ ︸
=s3∈C

e2e4.

Therefore, the algebra F consists of quadruples (s0, s1, s2, s3) ∈ C
4 of complex

numbers. Multiplication 8 in F is given by the formula

(s0, s1, s2, s3)8 (t0, t1, t2, t3) = (s0t0 − s1t1 − s2t2 + s3t3, s0t1 + s1t0 − s2t3 − s3t2,
s0t2 + s2t0 − s1t3 − s3t1, s0t3 + s3t0 + s1t2 + s2t1),

where (s0, s1, s2, s3), (t0, t1, t2, t3) ∈ F. It is easy to check that multiplication 8 is
associative and commutative, but not all nonzero elements of F are invertible with
respect to 8, e.g. (1, 0, 0, 1) = 1 + e6 ∈ F doesn’t have an 8-inverse.

3 Octonion Fourier Transform

Let u : R3 → R. The octonion Fourier transform (OFT) of u is defined by

U(f) =
∫

R3
u(x) · e−2πe1f1x1 · e−2πe2f2x2 · e−2πe4f3x3 dx,

where x = (x1, x2, x3), f = (f1, f2, f3) and multiplication is done from left to right.
Choice and order of imaginary units in the exponents is not accidental (see [2, 6]).
Conditions of existence (and invertibility) are the same as for the classical (complex)
Fourier transform. Let us recall the result from [2], where the inverse OFT formula
was proved.

Theorem 1 Let u : R3 → R be a continuous and square-integrable. Then

u(x) =
∫

R3
U(f) · e2πe4f3x3 · e2πe2f2x2 · e2πe1f1x1 df,

where multiplication is done from left to right.

In fact, the abovementioned theorem holds for the general case of O-valued
functions (see [1]), but in this paper we will consider only the R-valued functions.
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In [2] we derived basic properties of the OFT, analogous to the properties of the
classical Fourier transform. Let us recall some of those results.

Let U be the OFT of the R-valued function u and let αi(o) = −ei · (o ·ei ), where
◦ is standard function composition. We have the following octonion analogue of
Hermitian symmetry:

U(−f1, f2, f3) = (α6 ◦ α4 ◦ α2)(U(f1, f2, f3)),

U( f1,−f2, f3) = (α5 ◦ α4 ◦ α1)(U(f1, f2, f3)),

U( f1, f2,−f3) = (α3 ◦ α2 ◦ α1)(U(f1, f2, f3)).

Moreover, if Uα, Uβ and Uγ denote the OFTs of functions u(x1 − α, x2, x3),
u(x1, x2 − β, x3) and u(x1, x2, x3 − γ ), respectively, then

Uα(f1, f2, f3) = cos(2πf1α) U(f1, f2, f3)− sin(2πf1α) U(f1,−f2,−f3) · e1,

Uβ(f1, f2, f3) = cos(2πf2β) U(f1, f2, f3)− sin(2πf2β) U(f1, f2,−f3) · e2,

Uγ (f1, f2, f3) = cos(2πf3γ ) U(f1, f2, f3)− sin(2πf3γ ) U(f1, f2, f3) · e4,

which is the octonion version of shift theorem. We also have the Plancherel and
Rayleigh theorems:

∫

R3
u(x) · v∗(x) dx =

∫

R3
U(f) · V ∗(f) df, ⇒

∫

R3
|u(x)|2 dx =

∫

R3
|U(f)|2 df,

where V is the OFT of the R-valued function v. The above-presented theorems form
the basis of the octonion signal theory and are the starting point for further research.

4 Recent Results

We will now present properties that are a key element in the analysis of multidimen-
sional LTI systems described by a system of PDEs. In theorems stated below, we
will denote the OFTs of the R-valued functions u and v by U and V , respectively.

Theorem 2 (OFTs of Partial Derivatives) Let Ux1 ,Ux2 andUx3 denote the OFTs
of ∂u
∂x1

, ∂u
∂x2

and ∂u
∂x3

, respectively. Then

Ux1(f1, f2, f3) = U(f1,−f2,−f3) · (2πf1e1) = U(f1, f2, f3)8 (2πf1e1),

Ux2(f1, f2, f3) = U(f1, f2,−f3) · (2πf2e2) = U(f1, f2, f3)8 (2πf2e2),

Ux3(f1, f2, f3) = U(f1, f2, f3) · (2πf3e4) = U(f1, f2, f3)8 (2πf3e4).
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Proof of this result follows from straightforward calculations and we leave details
to the reader. It is worth noting, however, that the idea of this proof is to express the
OFT of the derivative of u as a sum of components of different parity, i.e.

Ux� = Ux�eee − Ux�oeee1 − Ux�eoee2 + Ux�ooee3 − Ux�eeoe4 + Ux�oeoe5 + Ux�eooe6 − Ux�oooe7,

(1)

where

U
x�
ijk(f) =

∫

R3

∂u

∂x�
· Fi(2πf1x1) · Fj (2πf2x2) · Fk(2πf3x3) dx (2)

and Fi(y) = cos(y) if i = e, and Fi(y) = sin(y) if i = o [2, 6]. The claim of
the theorem follows from the integration by parts. Notice that treating octonions
as elements of F and using the multiplication 8, we get the same formulas as in
classical theory.

The next result concerns function convolution. The convolution-multiplication
duality is one of the key properties used in the frequency analysis of LTI systems [3].
Recall that the convolution of u, v : R3 → R is given by the formula

(u ∗ v)(x) =
∫

R3
u(y) · v(x − y) dy.

Convolution of functions is commutative and associative while the multiplication of
octonions is not, hence the octonion version of duality theorem will have to differ
significantly from its classical equivalent.

Theorem 3 (Convolution-Multiplication Duality) Let FOFT{u ∗ v} denote the
OFT of the convolution of u and v, i.e. u ∗ v. Then

FOFT{u ∗ v}(f) = V ( f1, f2, f3) · ( Ueee(f) − Ueeo(f) e4)

+ V ( f1,−f2,−f3) · (−Uoee(f) e1 + Uooe(f) e3)

+ V ( f1, f2,−f3) · (−Ueoe(f) e2 + Uoeo(f) e5)

+ V (−f1, f2,−f3) · ( Ueoo(f) e6 − Uooo(f) e7), (3)

where

U = Ueee − Uoeee1 − Ueoee2 + Uooee3 − Ueeoe4 + Uoeoe5 + Ueooe6 − Uoooe7

is a sum of eight terms with different parity w.r.t. x1, x2, and x3, similar to (1)–(2).

As in the previous theorem, this result follow from expressing the OFT as a sum
of components of different parity. For details of such formulation see [2, 6]. Similar
formulas concerning quaternion Fourier transform can be found in literature [3].
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Notice that, as in the OFT of derivatives theorem, using the notion of quadruple-
complex numbers we can improve the abovementioned formulas.

Corollary 1 Using the F-multiplication we can rewrite formula (3) in simple form:

FOFT{u ∗ v}(f) = U(f)8 V (f).

Theorem 3 and Corollary 1 enable us to define the octonion frequency response
of a system as the OFT of impulse response. It is worth mentioning that the notion of
multiplication in F can be used to reduce parallel, cascade and feedback connections
of linear systems into simple algebraic equations, as in classical system theory.

5 Multidimensional Linear Time-Invariant Systems

It is a well-known fact that the Fourier transform converts differential equations
into algebraic equations. While the advantages of this approach in the 1-D case are
obvious, in the case of partial derivatives the classic approach has some limitations.

Consider a function u : R3 → R that is even w.r.t. all variables (making both
classical FT and OFT R-valued functions). The classical Fourier transform of ux1x2

is −U(f) · (2πf1)(2πf2), which is a R-valued function. Therefore, we loose the
information that the function u was differentiated at all. On the other hand, the
OFT of ux1x2 is U(f1,−f2,−f3) · (2πf1)(2πf2)e3, which is O-valued (purely
imaginary). This information indicates that the function has been differentiated by
x1 and x2.

As a direct consequence of Theorem 2, every linear PDE with constant coeffi-
cients (i.e. every 3-D LTI system of PDEs) can be reduced to algebraic equation
(with respect to multiplication in F). Consider the heat equation in 2-D, i.e.

ut (t, x1, x2) = ux1x1(t, x1, x2)+ ux2x2(t, x1, x2)+ f (t, x1, x2),

where we get

(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

)8 U(τ, f1, f2) = F(τ, f1, f2).

It is easy to show that
(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

)−1 exists if and only if
(τ, f1, f2) �= (0, 0, 0) and is equal to

(
(2πf1)

2 + (2πf2)
2 + (2πτ)e1

)−1 = (2πf1)
2 + (2πf2)

2 − (2πτ)e1(
(2πf1)2 + (2πf2)2

)2 + (2πτ)2
.
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Hence

U(τ, f1, f2) = (2πf1)
2 + (2πf2)

2 − (2πτ)e1(
(2πf1)2 + (2πf2)2

)2 + (2πτ)2
8 F(τ, f1, f2).

We have thus obtained a simple formula for the system’s response to the given
stimulation. What’s more, it wouldn’t be possible using multiplication in O.

6 Final Remarks

Presented results further develop the foundation of octonion-based signal and
system theory. At the moment we are left to find real-life applications of the
discussed theory. The results published in recent articles suggest that this is feasible,
e.g. in the field of multispectral image processing [5, 7, 9]. However, it would be
necessary to focus on the implementation of numerical algorithms for this purpose.
It seems that extending octonion-based signal theory to discrete-variable signals
may also be achieved by methods used so far.
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Centre (Poland) grant No. 2016/23/N/ST7/00131.
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Analog-to-Probability Conversion—
Efficient Extraction of Information
Based on Stochastic Signal Models

Christian Adam, Michael H. Teyfel, and Dietmar Schroeder

Abstract Analog-to-probability conversion is introduced as a new concept for
efficient parameter extraction from analog signals that can be described by nonlinear
models. The current state of information about these parameters is represented
by a multivariate probability distribution. Only a digital-to-analog converter and a
comparator are required as acquisition hardware. The introduced approach reduces
the number of comparisons to be done by the hardware and therefore the total energy
consumption. As a proof of concept the algorithm is implemented on a system-on-
chip and compared to a nonlinear least squares approach.

1 Introduction

Analog-to-digital converters (ADCs) are used in many electronic systems to convert
analog signals like sensor data into a digital representation. This is typically done
by discretizing the periodically sampled analog signal. However, in an increasing
number of applications, where Edge Computing concepts [1] or Near-Sensor Data
Analytics [3] are employed, the exact waveform is not important, since only certain
features of the signal are of interest. The Probabilistic Computing effort [4] even
goes one step further by working with probability distributions of the features.
Probability is integrated into sensing systems in order to take uncertainties of
real world measurements into account. Analog-to-probability conversion (APC)
supports these ideas already close to the sensor by generating and updating
probability distributions and expectation values of signal features directly from the
analog signal.
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2 Analog-to-Probability Conversion

In analog-to-probability conversion the analog input is assumed to be described
by a known signal model r(X, t), which depends on the unknown parameters X
and the time t . The parameters, which have to be determined, are modeled by a
multivariate Gaussian distribution. This distribution is completely defined by the
vector of expected values MX and the covariance matrix2X, which are successively
updated in order to increase the information about the signal parameters.

Figure 1a shows a block diagram of the sampling hardware, which consists of
a digital-to-analog converter (DAC), a comparator and a control unit that executes
the APC algorithm. The DAC generates a threshold value r0 that is compared to
the input signal. For linear signal models, the threshold corresponds to a hyperplane
dividing the space spanned by the model parameters into points (half-spaces) that
coincide with the comparator output and such that do not. This hyperplane is
described by

r0 = r(X, ts ) , (1)

where ts is the sampling time. The comparator output then indicates in which
half-space the true parameters defining the input signal are located, and the
probability distribution is set to zero in the other half-space, which decreases the
variance. After renormalization and approximation of the remaining distribution as
a Gaussian distribution again, this procedure can be repeated iteratively until the
signal parameters are determined with the desired accuracy. In Fig. 1b, c this method
is illustrated for a two-dimensional example.

The updated expected vector M+
X = E[X] and covariance matrix 2+

X = E[(X −
MX)(X − MX)

T ] are calculated by integrating the probability density function over
the coinciding half-space limited by the hyperplane defined in (1).

One advantage of the analog-to-probability conversion is that only one compar-
ison at the comparator is necessary for each sample. In contrast, a typical 10-bit
successive approximation ADC (SAR ADC) needs 10 comparisons for each sample,

Fig. 1 Concept of the analog-to-probability conversion. (a) Block diagram of the sampling
hardware. (b) Cutting the distribution along a hyperplane. (c) Renormalization to a Gaussian
distribution
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which additionally requires a sample and hold component to hold the varying
input signal long enough for all comparisons to be done. Besides the reduction of
comparisons, another advantage of the analog-to-probability conversion is that it
provides a priori information about the next samples. Therefore the most efficient
sampling time and comparison threshold can be chosen to maximize the expected
reduction of the parameter variances in each iteration.

3 Non-linear Signal Model

In the case of nonlinear signal models like

r(X, t) = X1 + c sin(X2t + X3) , (2)

the dividing hyperplane turns into a curved hypersurface. Therefore, the concept of
Gaussian Mixture is introduced. It approximates the total probability distribution
as a weighted sum f(X) = ∑L

i=1 wi fi(X) of several more dense Gaussian
distributions fi(X), which are placed in a grid to cover the whole parameter space.
For each of these Gaussian distributions the hypersurface can be approximated as a
hyperplane defined by r0 = r(X0, ts ) + (∇r(X, ts )|X0)

T (X − X0) using a Taylor
expansion about X0. Therefore the same method as described above for linear signal
models can be applied to the mixture members. The expected vector and the variance
of the true distribution are approximated from the sum of all Gaussian members.
If the weight factor wi of a Gaussian member falls below a certain threshold, the
component is removed from the mixture.

4 Hardware Implementation

As a proof of concept a prototype of an ADC utilizing the introduced algorithm
was successfully implemented using a Cypress PSoC 5LP system-on-chip [2]. A
sinusoidal input signal described by the model in (2) with parameters c = 0.3 V,
X1 = 1.1 V and X2 = 1.257 s−1 was used. X3 is irrelevant for the hardware system
as it represents only the random phase shift between the input oscillation and the
clock on the PSoC 5LP. The sampling rate was set to 2.2 Hz.

As a comparison, a more classical approach for parameter extraction, i.e. the
nonlinear least squares method, was also implemented on the PSoC 5LP. A 10-bit
SAR ADC was used for continuously sampling the input signal for the same time as
the execution time of the full APC. Afterwards the nonlinear least squares method
was applied to extract the signal parameters from the observed data. The same signal
model and sampling rate were used for both approaches.

Table 1 shows the results of the comparison. It can be seen that compared to
the nonlinear least squares approach the analog-to-probability conversion saves
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Table 1 Comparison of performance between analog-to-probability conversion and nonlinear
least squares approach (each value is averaged over ten repetitions of the same experiment)

APC Least squares Least squares (Inef. X0)

Samples 36 45 45

Comparisons 36 450 450

X1 (Relative error) 1.127 (2.46%) 1.109 (0.83%) 1.108 (0.74%)

X2 (Relative error) 1.254 (0.18%) 1.344 (6.98%) 1.888 (50.34%)

20% of the required samples and 92% of the comparisons at the comparator. As
the energy consumption of the acquisition hardware is directly proportional to
the number of comparisons, this shows the high potential for energy saving. The
performance of the nonlinear least squares method is highly dependent on the initial
guess of the parameter vector X0. For a favorable choice it can be seen that the
accuracy of both methods is approximately equal. However, for an unfavorable
choice of X0 the performance of the least squares method is significantly reduced.
Moreover, analog-to-probability conversion continuously provides approximations
for the signal parameters with increasing accuracy, while the least squares method
first needs to sample a set of measurements before it can be executed.

5 Conclusion

In this paper analog-to-probability conversion is introduced as an efficient method
for parameter extraction from signals that can be described by nonlinear signal
models. Compared to other approaches a simplified sampling hardware is sufficient,
less samples are required and for each sample only one comparison has to be done.
The signal model provides a priori information about the next samples, which can
be used to select the most efficient sampling points and corresponding comparator
thresholds. For many applications the energy consumption can be further reduced by
implementing a distributed system where the sampling hardware is separated from
the processing unit. In areas like biomedical implants this significantly reduces the
energy consumption of the implant, while a more powerful processor can be used
on a device outside the body.
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Clustering Algorithm Exploring Road
Geometry in a Video-Based Driver
Assistant System

Norbert Bogya, Róbert Fazekas, Judit Nagy-György, and Zsolt Vizi

Abstract In this paper we present two algorithms for an advanced driver assistance
system to investigate road geometry. The proposed solutions can handle both simple
and complex scenarios, e.g. construction zones. Our input data consists of segments
and polygonal paths, whose clustering gives a proper input for a lane model. The
presented methods use thresholding and spectral clustering approaches.

1 Motivation

An autonomous car is a vehicle that is able to sense environmental data and to
navigate based on them without any human action. Nowadays, the development
of self-driving cars and driver assistance systems belongs to the most dynamic
industrial projects. Advanced driver assistance systems (ADAS) are electronic
devices which help the drivers during the processing of driving. One of the most
important task is to manage the data produced by sensors. In this research we
considered a stereo video camera as a sensor of perception and we implemented
two algorithms to provide a clustering of the available lane segments. Most of
the solutions in the industry assume simple environments, e.g. highway, for a
functionality like adaptive cruise control (ACC), but these concepts fail, if the scene
has a complexity. In this work we provide algorithms, which are robust in more
complicated situations, e.g. in construction zones. As we know, there are no state-
of-the-art solution for these situations. The algorithms in use are very sensitive for
the quality and quantity of input data, and most of the well-know algorithms are
hybrid algorithms for multiple sensors.
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A stereo-camera includes two separate cameras, taking pictures of the same focus
used to model the environment in 3-dimension. At first, the pictures go through a
process that recognises the road markings and it makes a segmentation of them.
This method is not considered in this paper and we use only a little part of the data
given by the segmentation. We use only on the geometrical representation of the
lane segment and ignore e.g. colour of the lane marking, which would improve the
consistency of the lane model. Additionally, we have to care about the complexity
of the provided algorithms, because these are implemented in an embedded system
with a small computing capacity. In this environment, it is complicated to apply
neural networks, mostly model-based algorithms are considered.

2 Basic Concepts

Our input is a set of polygonal paths, whose vertices are the points of the road
markings given by the pre-segmentation method mentioned earlier in Sect. 1.
Two points are connected with a straight segment if the pre-segmentation proce-
dure marks them as points of a same road marking. In this work, we consider
a polygonal path as one object and investigate a relationship between these
objects.

Our goal is to classify which polygonal path belongs to which road marking,
thus this can be interpreted as a clustering problem. A key concept in all clustering
algorithm to define a similarity function, which measures the “conceptual distance”
of the sample data. IfH is the set of data points, similarity function f is anH×H →
R

+ symmetric map. We use a normalised similarity function in order to interpret
f (h1, h2) as the probability of h1 and h2 belong to the same cluster.

In [6], the authors investigate a very similar question raised from image
processing, namely a finite set of objects is given, and what can be said about the
global connection of the objects, if we have information about all connection of each
pairs of objects. Their global concept is a clustering into two clusters (foreground
and background). They use the concept of Gestalt psychology, that have several
principles about what kind of segments can be thought as a continuation of each
other. Following their idea, our similarity function is

f (i, j) = exp

(
−d

2
i,j

d2
0

− 2 − cos(2αi)− cos(2αj )

α0
− gi,j

g0

)
, (1)

if i and j denotes different segments, otherwise f (i, j) is zero. The distance di,j
is measured between the midpoints of the segments i and j ; and gi,j denotes the
distance between these segments. The angles αi and αj can be understood from
Fig. 1. The constants d0, α0, g0 are real parameters.

Notice that, the first term of the exponent is zero if the midpoints of the segments
coincide. Moreover, the second term is zero if and only if the segments are parts of
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Fig. 1 Parameters for
similarity of segments

i
j

di j

ai
a j

the same straight line. Finally, the last term is zero if and only if the segments have a
common endpoint. This similarity function takes its maximum, when the segments
are the same, but with a good choice of the free parameters we can reach an almost
maximum in that case, when the segments are the continuation of each other. This

improvement can be obtained by using d̃i,j =
∣∣∣ �i+�j2 − di,j

∣∣∣ (where �k denotes the

length of segment k) instead of di,j in the formula (1). Theoretically, this second
version of similarity function should produce better results, but in practice, there are
no significant difference between the two similarity functions. Therefore, we will
present our results using (1) without any modification.

Instead of similarity of individual line segments we define similarity of provided
polygonal paths. Investigating the inputs, we found that the connected polygonal
paths can be contained in a very narrow but much longer rectangle. Hence,
polygonal paths can be substituted by a segment between their first and last point.

From the similarity function, we can build a similarity matrixW ∈ R
n×n, where

the rows and columns represent the polygonal paths and Wi,j = f (i, j). If we
consider this matrix as an edge-weight matrix of a graph G, the vertices of the
defined graph are the polygonal paths and there is an edge between them if their
similarity is positive.

In this approach, the original problem is converted to the clustering of the vertices
ofG and our goal now is to construct an efficient algorithm for edge-weighted graph
clustering.

3 Algorithm #1

In [3], authors consider a thresholding method for clustering the vertices of the
edge-weighted graph, i.e. in the first step the weight matrix W is transformed to a
0-1 matrix A:

Ai,j =
{

1 ifWi,j > ε,

0 otherwise.

The matrix A is symmetric, so it can be considered as an adjacency matrix of a
graph, whose connected components give the clusters. We used depth-first search
for finding these components.

The performance of the algorithm highly depends on the choice of threshold ε.
In [3], the authors suggest an adaptive threshold ε = μ − σ + h, where μ, σ and
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h are the average, standard deviation and entropy of the nonzero elements of W ,
respectively. Our observations yield a larger threshold (thus stricter truncation of
the elements), namely ε = μ+ σ − h, and this was implemented in our algorithm.

4 Algorithm #2

Our second algorithm is based on the so-called spectral clustering presented in
[5]. Applying this method, the following question can be answered: how can we
make vectors from the vertices of a graph, and embed them into R

k saving as
much information as possible about the structure of the original graph [2, 4]. Let
S = {s1, . . . , sn} be a set of d-dimensional points in the Euclidean space, but it can
be used in arbitrary feature space with an appropriate measure of distance. The input
is the edge-weight matrix W (which is calculated with the similarity function (1)),
and the steps are the followings.

1. Let D ∈ R
n×n be a diagonal matrix, such that Di,i is the sum of elements in the

ith row ofW .
2. We compute the x1, x2, . . . , xk eigenvectors of matrix D−1/2WD−1/2 corre-

sponding to the k largest eigenvalues. For eigenvalues with multiplicities greater
than one, we choose the eigenvectors to be orthogonal to each other. We collect
the vectors (as columns) in the matrix X = [x1, . . . , xk] ∈ R

n×k .
3. We normalise the rows of X to obtain Y ∈ R

n×k .
4. We cluster the row vectors of Y , that are unit vectors.
5. The points si , sj ∈ S are declared to belong to the same cluster, if the

corresponding row vectors of Y are declared into the same cluster.

In the second step, the matrix M = D−1/2WD−1/2 is used just for make the
computations more simpler. If N is the symmetric normalised Laplacian of G, then
N = I−M . The output of the algorithm is the same using eitherN orM . Intuitively,
this step means an embedding of G into R

k according to the similarity matrix W .
Then we project the vertices of this graph onto the unit sphere and make clusters
from these points. More details about the mathematics behind the algorithm can be
found in [1] or [7].

5 Comparison

In this chapter we present some results produced by our implemented MATLAB
programs.

In the first row, on the left side of Fig. 2, the results of Algo #1 can be observed.
The two most important lanes can be recognised easily: the green one is the original
road marking, the red one is a detour. On the right side of this row, the result of the
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Fig. 2 First row: result of Algo #1 and Algo #2, respectively. Second row: result of algorithm in
[3] and [6], respectively
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Table 1 Run time of algorithms

Drive #1 Drive #2 Drive #3 Drive #4 Drive #5 Drive #6 Drive #7 Drive #8

Algo #1 0.0179 0.0306 0.0379 0.0400 0.0440 0.0643 0.0666 0.0654

Algo #2 for 5 cl. 0.0273 0.0373 0.0440 0.0472 0.0509 0.0711 0.0717 0.0729

Algo #2 for 8 cl. 0.0285 0.0374 0.0476 0.0461 0.0559 0.0723 0.0761 0.0744

Table 2 Comparison of
algorithms

Algo #1 won Tie Algo #2 won

27% 40% 33%

spectral clustering is presented, and the main lanes are almost the same as on the
left.

As it can be seen, on the left side of the second row in Fig. 2 the method suggested
in [3] with our threshold has a poor performance, since most of the line segments
goes into the same cluster (the original threshold produces an even worse result).
On the bottom right plot of Fig. 2 the result of the algorithm proposed in [6] for case
of six clusters is shown. We can notice that this method could be parametrised to
provide the same grouping as our algorithms.

In Table 1 we give some results about run times. Each drive consists of a sequence
of pictures. The corresponding run times in the table are the average of these
pictures.

In Table 2 we summarise a manual validation of our precesses. Tie means that
the outputs are almost the same (99%) and they show the lanes correctly or they
produce bad result, and it is hard to decide which is the worse. Algo #2 lost several
times because it made connection between segments that are clearly not related
to each other, just there was a pressure due to the predefined number of clusters.
These numbers were chosen separately, manually by the pre-checking of images.
Typically, they were between 3 and 6.

6 Conclusion and Further Research

As a conclusion, running the algorithms on several test cases, we cannot state, that
one of the algorithms should be preferred over the other. With the thresholding
method, a lot of information can be lost, and the theoretical investigation of spectral
clustering suggests that it should be better, because more information can be saved
and used. However, Algo #2 works with a predefined number of clusters, it may
happen, that such polygonal paths can be clustered into the same group, that are
probably not the parts of the same lane. For example, the segments 4 and 25 in
Fig. 2 are calculated into the same cluster, but more likely, there is no connection
between them, their distance is more than 35 m. Because of the predefined number
of clusters, each path is put into one of the clusters, so cluster validation can be
reasonable.
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Another idea is to use machine learning methods. Both of the algorithms works
with changeable parameters that can be tuned via training using good collections of
input data.

Algo #1 can be implemented easier, and the clusters can be computed with
depth-first search in contrast to the numeric eigenvalue problem of spectral method.
And, of course, its running time is also less. The number of clusters are computed
automatically and dynamically, we do not need any prediction about it.

Algo #2 uses k-means method, which needs an initialisation of centres (typically
random) and pre-defined number of clusters. One idea to resolve both needs is
combining the two algorithms: Algo #1 is run and centres of provided clusters
initialises the k-mean method and we choose the number of clusters given by Algo
#1.

More sophisticated evaluation of the algorithms and the latter idea will be
investigated in the future.
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Uncertainty Quantification for Real-Time
Operation of Electromagnetic Actuators

František Mach and Karel Pospíšil

Abstract Model-based approach to fault detection of the linear electromagnetic
actuators is proposed and validated in the framework of the electromagnetic
actuator in the bistable valve operation. The forward uncertainty propagation for
the nonlinear mathematical model is performed to determine the probability of
faultless operation under aleatoric and epistemic uncertainties. A basic technique
is then proposed to make a decision on occurred fault.

1 Technical Problem Formulation

Fault detection (FD), isolation, and recovery, are of huge importance in complex
cyber-physical systems [4], especially for critical points of the system, such as
high-performance electromechanical actuators. The uncertainties of the external
influences can strongly reduce the safety and reliability of actuator operation,
which brings many limitations for the cutting-edge applications. The major goal
of the presented research is to develop a model-based and also sensorless fault
detection approach for linear electromagnetic actuators in high-speed and fail-safe
applications.

The proposed technique was designed originally for a bistable electromagnetic
valve in a coaxial design, but it can be utilized for an arbitrary linear electromagnetic
actuator, for example [1, 7]. Figure 1 shows a simplified arrangement of the
considered valve. Its main part is represented by an axially symmetric segmented
magnetic circuit supplemented with permanent magnets (PM) and a hollow cylin-
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Fig. 1 A simplified arrangement of the bistable electromagnetic valve in a coaxial design. The left
part shows a fully closed valve, and the right part shows a fully opened valve. Both positions are
stable and secured by permanent magnets [6]

drical movable plunger. Two solenoidal coils are placed inside the magnetic circuit,
isolated by a non-magnetic gasket from the channel in the centre of the valve. A
ferromagnetic plunger is placed inside the valve channel, and its movement has just
one degree of freedom (along the z-axis). The conical valve body is connected to
the movable plunger by a thin shaft ([6] discusses the valve in more details).

The fluid flow in the channel is controlled by swapping of the movable plunger
position (on/off mode). This is ensured by excitation of the field coils. An illustrative
faultless and fault operations of the valve are shown in Fig. 2. Whereas presented
FD and its recovery were found by direct measurement of the fluid flow by a
flow meter, the proposed magnetic-flux FD is sensorless and takes advantage of
the measurement of the induced voltage in the field coils.

The valve works in four modes, closed, opening, open and closing. The bistable
modes (closed and opened) are secured by the cylindrical permanent magnets placed
in the magnetic circuit. Both stable modes are shown in Fig. 1. Transition modes
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Fig. 2 Flow rates Q measured on laboratory prototype [6] of the valve. The left part shows the
faultless operation of the valve and right part shows the operation when the fault was produced
by shock pressure in the experimental circuit (V denotes the volume of liquid passing through the
valve)
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(opening and closing) are initiated by excitation of the appropriate field coil by DC
current (the coils of the experimental prototype are designed for current I = 2.5 A).
In the case of opening mode, magnetic flux ΦE produced by the current ic in the
opening coil boosts magnetic flux Φ0, the plunger is actuated by the magnetic field
and starts moving to the open position. The closing mode is then driven by the
magnetic flux ΦE produced by the current ic in the closing coil. Permanent magnets
are not identical from the magnetic viewpoint (ΦPMo �= ΦPMc ).

2 Mathematical Model

The distribution of the magnetic field in the system for any position of the plunger
is described by the equation for magnetic vector potential A in the form

curl
(
μ(|B|)−1(curl A + Br

)
)− γ v × curl A + γ ∂A

∂t
= Jext , (1)

where μ denotes the magnetic permeability, which is a nonlinear function of the
magnetic flux density B = curl A, symbol Br stands for the remanent flux density, v
stands for the plunger velocity, γ stands for the specific conductivity of the magnetic
circuit and Jext denotes the density of the field current in the field coils (Jext(ic, io)).

Analysis of the magnetic field described by (1) represents a critical issue for fast
simulation by the control algorithms. In the proposed technique, the magnetostatic
problem (γ = 0) can be solved and magnetic fluxΦ coupled with the field coils can
be calculated only for the initial and final positions of the plunger in the form

Φ =
∫∫

S

B dS , (2)

where S is the oriented internal cross-section of the field coil. The mathematical
model can be solved as a 2D axisymmetric problem in the case of our prototype.
The solution area is bounded by an artificial boundary characterized by the Dirichlet
boundary condition in the form Az = 0. Figure 3 shows the results of the numerical
solution for the closing operation of the discussed valve.

3 Fault Detection Technique

The basic idea of the proposed FD technique is to observe changes of induced
voltage uic or uio in the non-excited coil due to changes of plunger position δ and
also due to time dependence of the currents ic and io. Measurement of the voltage ui
can also be performed on the excited coil with consideration of the source voltage
Uc or Uo, which is the DC component of the measured signal.

The technique compares differences in magnetic flux ,Φ = ΦE − Φ0 , where
Φ0 is magnetic flux coupled with the appropriate field coil at the beginning of the



600 F. Mach and K. Pospíšil

ΦEz
r

Φ0z
r

Fig. 3 Distribution of magnetic flux density B for two modes of the valve. The left part shows
fully opened valve (plunger position δ = 5 mm) with non-excited coils, and the right part depicts
the end of the closing operation (plunger position δ = 0 mm, closing coil is supplied by the current
ic). Magnetic flux ,Φ is calculated from the distribution of the magnetic flux density B in the
internal area of the opening coil

operation, andΦE is magnetic flux after finishing of the transition mode. FluxΦ0 ≈
ΦPMc or Φ0 ≈ ΦPMo as long as ic = io = 0 (see Fig. 1).

In the case of an FD, magnetic flux ,Φ can be calculated from the time integra-
tion of measured uic or uio during particular operations with thresholds determined
from the calculated probability density function PDF(,Φ). Whereas magnetic flux
,Φ is measured indirectly, PDF(,Φ) can be obtained by the analysis of the forward
uncertainty propagation using finite element analysis (FEA) of the model.

Whereas FD can be carried out on the basis of precalculated thresholds, fault
isolation has to be performed by the solution of the inverse problem for observed
,Φ or by the advanced analysis of the measured voltage ui with detailed knowledge
of possible faults of the valve.

4 Experimental Validation

The uncertainty of the final position1 of the plunger δ, which is caused mainly
by the uncertainty of the fluid pressure and also by intents and gaskets plasticity
and degradation, has the major impact on the probability of valve operation faults.

1The final position of the plunger is reached at the end of the operation. In the case of the opening
mode, the final position is equal to δ = 5 mm.
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Fig. 4 Results of the forward uncertainty propagation defined by the PDF of the magnetic flux
,Φ. Results are obtained for NUo (95 V, 5 V)V and Nδ(4.5 mm, σδ = 0.5 mm)

Furthermore, the uncertainties of the external source voltages Uc and Uo are also
non-negligible. PDFs for both uncertainties were experimentally estimated on the
prototype and response of the model was determined by uncertainty propagation.

The analysis of uncertainty propagation in the nonlinear magnetic model (see
Sect. 2) of the valve was performed using the latin hypercube sampling (LHS) with
multidimensional uniformity [2, 3]. The parameter space for the final plunger posi-
tion δ and the source voltageUo of the opening coil was uniformly sampled by LHS.
Inverse transform sampling was then used to the conversion of samples to normal
distribution NUo(μUo, σUo) and normal distribution of the final plunger position
Nδ(μδ, σδ). Normal distribution was used based on experimental investigation, and
Agros2D [5] was used for the numerical solution of the model (1) by FEA.

The response of the model was characterized by the PDF of the magnetic flux
,Φ. From the results can be concluded, that dominant influence on the model
response has the final position of the plunger δ. While distribution NUo with
variance σUo = 5 %μUo causes response of ,Φ equal to distribution N,Φ with
variance σ,Φ ≈ 8 %μ,Φ , distribution Nδ with variance σδ = 10 %μδ, causes
response of ,Φ equal to distribution N,Φ with variance σ,Φ ≈ 24 %μ,Φ .

Finally, Fig. 4 shows the response of the numerical model to uncertainty for
n = 500 samples from two-dimensional parameter space for both parameters,
voltage Uo and final plunger position δ (NUo(95 V, 5 V), Nδ(4.5 mm, 0.5 mm)).
Distribution of PDF(,Φ) is characterized by μ,Φ = 57.76μWb and variance
σ,Φ ≈ 25 %μ,Φ . The faultless opening operation should occur in the thresholds
,Φ ∈ [14.2, 101.3]μWb.

Experimental validation of the technique was performed based on the thresholds
obtained by the forward uncertainty propagation (see Fig. 4), and the results of
several experiments are concluded in Fig. 5. Since the uncertainty of the final
plunger position is difficult to simulate experimentally, validation was performed
for several different voltages Uo. Insufficient voltage Uo of the opening coil excites
small current io in the opening coil and the plunger does not reach the final position
δ = 4.5 mm. In this case, the plunger is returned to the closed position because of
ΦPMo < ΦPMc (plunger just jerks). On the basis of the measurement, the nominal
opening voltage is equal to UoN = 97 V and voltages Uo <= 95 V do not produce
sufficient current io (difference with designed UoN = 95 V is inflicted mainly by
differences in the material parameters, especially Hc of the PM).
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(left part) and comparison of ,Φ obtained by integration of measured uic with results of model-
based uncertainty quantification depicted by thresholds (right part)

From the measurement of the voltage uic , it is evident a huge difference between
faultless and fault operations, if source voltage Uo is close to the nominal value.
This difference is much expressed in the magnetic flux ,Φ, where magnetic flux
,Φ = 55.56μWb for source voltage Uo = 97 V and ,Φ = 195.73μWb for
voltage Uo = 95 V. Possible problems may be caused if the source voltage Uo is
close to its nominal value (Uo << UoN), where the voltage uic is different, but ,Φ
is close to the faultless operation. In this case, the additional criterion for ui ≈ 0 at
the end of the operation process has to be added to the control algorithm.

5 Conclusion

Sensorless fault detection technique was proposed and validated on the laboratory
prototype of the electromagnetic actuator in the valve operation. The technique
enables to reduce the computational effort of the uncertainty propagation while
maintaining the complexity of the mathematical model. Further research and
development in the domain will be aimed at model-based fault isolation and
recovery.
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Non-asymptotic Confidence Regions
for Regularized Linear Regression
Estimates

Balázs Csanád Csáji

Abstract Building confidence regions for regression models is of high importance,
for example, they can be used for uncertainty quantification and are also funda-
mental for robust optimization. In practice, these regions are often computed from
the asymptotic distributions, which however only lead to heuristic confidence sets.
Sign-Perturbed Sums (SPS) is a resampling method which can construct exact,
non-asymptotic, distribution-free confidence regions under very mild statistical
assumptions. In its standard form, the SPS regions are built around the least-
squares estimate of linear regression problems, and have favorable properties, such
as they are star convex, strongly consistent, and have efficient ellipsoidal outer-
approximations. In this paper, we extend the SPS method to regularized estimates,
particularly, we present variants of SPS for ridge regression, LASSO and elastic net
regularization.

1 Introduction

Estimating models based on noisy measurements is a fundamental problem for
many scientific, engineering and economic applications. A very important issue in
practice is to quantify the uncertainty of the obtained models. This is often done
by building confidence regions for the models. While these regions are frequently
built using the limiting distribution of the used point-estimate [6], such regions are
not guaranteed for finite samples, and can only be seen as heuristics. It is of high
importance to construct confidence regions with non-asymptotic guarantees, using
minimal statistical assumptions. Resampling methods, such as bootstrap and Monte
Carlo approaches, typically use some regularity of the noise to build such regions.

Sign-Perturbed Sums (SPS) is a recently developed resampling method with
favorable properties. SPS can construct exact, distribution-free confidence regions
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for finite samples [3, 7]. Its standard form constructs (star convex, strongly
consistent) confidence sets around the least-squares estimate of linear regression
problems.

Regularization is an important tool in regression which can help, for example, to
handle ill-posed and ill-conditioned problems, reduce over-fitting, enforce sparsity,
and in general to control the shape and smoothness of the regression function. The
paper extends SPS to various regularized linear regression problems, particularly, to
ridge regression (Tikhonov regularization), LASSO and elastic net regularization.

2 Preliminaries: Asymptotic Confidence Ellipsoids

We start by recalling the standard “textbook” approach to build (asymptotic) confi-
dence ellipsoids around the least-squares estimate of linear regression problems.

Assume we are given a data sample, Dn
.= {(ϕ1, y1), . . . , (ϕn, yn)}, with

yt
.= ϕT

t θ
∗ + εt , for t = 1, . . . , n (1)

where yt is the output, ϕt is the input or regressor and εt is the (non-observable)
noise for measurement t . We aim at estimating the (constant) “true” parameter, θ∗ ∈
R
d . We assume that {ϕt } ⊂ R

d are deterministic and the noise {εt} is an independent
sequence of random variables, each having a symmetric distribution about zero, that
is the distribution of εt is the same as that of −εt . Finally, for simplicity, we assume
that the regressor matrix, Φ

.= [ ϕ1, . . . , ϕn ]T, is skinny (n > d) and full rank.
One of the standard estimators is the well-known least-squares (LS) method

θ̂n
.= arg min

θ∈Rd
V (θ |Dn) = arg min

θ∈Rd
1

2
‖ y −Φθ ‖2

2, (2)

where y
.= [y1, . . . , yn] T; θ̂n, can be obtained from the normal equation, that is

∇θ V (θ̂n | Dn) = ΦTΦ θ̂n − ΦTy = 0, (3)

which has a unique analytical solution, famously given by θ̂n = (ΦTΦ)−1(ΦTy).
A crucial question is that how can we quantify the uncertainty of the so obtained

estimate? This question can be answered, e.g., by constructing confidence regions
around the point-estimate. More precisely, given a confidence probability p ∈
(0, 1), we aim at finding a region, Θ̂Dn,p around θ̂n, such that P

(
θ∗ ∈ Θ̂Dn,p

) ≥ p.
The standard method to build such regions is to use the asymptotic distribution of

the estimate [6]. It is known that the (scaled) error of LS is asymptotically Gaussian,

√
n (θ̂n − θ∗) d−→ N (0, σ 2R−1), as n→ ∞, (4)
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where N (μ,Σ) is the (multivariate) Gaussian distribution with mean μ and
covariance Σ . This property holds under various conditions, e.g., if the regressors
are bounded, there exits a positive definite matrix R as the limit of matrices
Rn

.= 1
n
ΦT
nΦn , and {εt } are i.i.d. as well as E[εt ] = 0 and E[ε2

t ] = σ 2, with
0 < σ 2 <∞.

Using the limiting distribution, a (heuristic) confidence ellipsoid can be built by

Θ̃n,p
.=
{
θ ∈ R

d : (θ − θ̂n)TRn (θ − θ̂n) ≤ q σ̂ 2
n

n

}
, (5)

where p = Fχ2(d)(q), with Fχ2(d) being the CDF of the χ2 distribution with d
degrees of freedom; and σ̂ 2

n is an (unbiased) estimate of the noise variance, that is

σ̂ 2
n
.= 1

n− d
n∑
t=1

(yt − ϕT
t θ̂n)

2. (6)

Then, we approximately have P( θ∗ ∈ Θ̃n,p ) ≈ p (and, obviously, θ̂n ∈ Θ̃n,p).
However, the confidence regions constructed using the asymptotic distribution

are not guaranteed for finite samples, and are typically imprecise if the sample
size is small. Another drawback of the asymptotic approach is that it presupposes
the existence of a limiting distribution, which cannot be guaranteed in certain
cases.

3 Sign-Perturbed Sums: Non-asymptotic Confidence Regions

Now, we overview the Sign-Perturbed Sums (SPS) method [3, 7] that can con-
struct exact, non-asymptotic, distribution-free confidence regions around the LS
estimate.

As first glance, SPS can be seen as a hypothesis testing method. It tests the null
hypothesis θ = θ∗, against the alternative hypothesis θ �= θ∗. SPS is based on the
idea that if θ = θ∗, then (1) we can compute the exact realization of the noise vector,
ε = (ε1, . . . , εn)

T, by “inverting” the system, and (2) using some regularity of the
noise (e.g., symmetry), alternative noise realizations can be generated, leading to
alternative samples and estimates, which behave “similarly” (in the statistical sense)
to the original ones. On the other hand, if θ �= θ∗, then the residuals will be biased
and the alternative samples and estimates based on them will behave statistically
differently than the original ones. SPS applies a rank-test to decide whether the
perturbed objects are similar to the original ones. Unlike other resampling based
approaches, SPS avoids actually constructing the alternative samples and fitting
surrogate models to them, as it directly perturbs the gradient of the objective
function.
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The principal building blocks of SPS are the following evaluation functions,

Zi(θ)
.= ‖ Ψ 1/2ΦTGi

(
y −Φθ) ‖2

2, (7)

for i ∈ {0, 1, . . . ,m − 1}, where Ψ = (ΦTΦ)−1, m > 0 is a user-chosen integer,
G0

.= I , the identity matrix, and for i �= 0, Gi
.= diag(αi,1, . . . , αi,n); {αi,j } are

i.i.d. Rademacher variables1; and diag(·) builds a diagonal matrix from its argument.
Notice that, apart from an (optional) linear transformation, Ψ 1/2, whose role is to

make a covariance correction,Z0(θ) is basically the norm of the (negative) gradient
of the least-squares objective. The difference between Z0(θ) and Zi(θ), i �= 0,
is that in latter functions the signs of the residuals (y − Φθ) are perturbed in the
gradient.

In case θ = θ∗, the residuals are the true noises, y − Φθ∗ = ε, and we
know from the symmetry assumption that for all i, ε and Gi ε have the same
distribution, where Gi is a diagonal matrix containing random signs as defined
above. Then,

Z0(θ
∗) = ‖Ψ 1/2ΦTε ‖2

2
d= ‖Ψ 1/2ΦTGi ε ‖2

2 = Zi(θ
∗), (8)

for i = 1, . . . ,m − 1, where “
d=” denotes equality in distribution. Nevertheless,

variables {Zi(θ∗)} are of course not independent. On the other hand, it can
be proved [3] that they are conditionally i.i.d., conditioned on the σ -algebra
generated by {|εt |}. Consequently, they are also exchangeable and hence each
ordering2 of them, Zi0(θ

∗) ≺ · · · ≺ Zim−1(θ
∗), has the same probability, namely,

1/m!.
If however, θ �= θ∗, then this exchangeability argument does not hold, moreover,

Z0(θ) will eventually dominate {Zi(θ)}i �=0 with high probability as ‖θ−θ∗‖ → ∞.
To make these ideas more precise, let us define the normalized rank of Z0(θ) as

R(θ)
.= 1

m

[
1 +

m−1∑
i=1

I (Z0(θ) ≺ Zi(θ))
]
, (9)

where I(·) is an indicator (its value is 1 if its argument is true and 0 otherwise).
Assume that the target confidence probability can be written as p = 1 − q/m

where 0 < q < m are user-chosen integers. Then, SPS accepts the null hypothesis,
θ = θ∗, if R(θ) ≤ p, and rejects it if R(θ) > p. As m and q are free-
parameters, they are under our control, hence any (rational) probability can be
achieved.

1Random variables which take values +1 and −1 with probability 1/2 each.
2Relation “≺” is a total order which we get from “<” by random tie-breaking, see [3].
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Based on these observations, the SPS confidence regions can be defined as

Θ̂n,p
.=
{
θ ∈ R

d : R(θ) ≤ p
}
. (10)

It can be proved [3] that these regions have exact confidence P
(
θ∗ ∈ Θ̂n,p

) = p.
Note that the exact confidence of the regions is guaranteed for finite samples despite
no knowledge about the particular noise distributions is assumed, moreover, each
noise term may have a different distribution with arbitrarily large variance.

There are several important properties of SPS confidence regions [3, 7]. For
example, (1) they are star convex with the LS estimate as a star center; (2) they
are uniformly strongly consistent; (3) they have asymptotically the same size and
shape as the classical confidence ellipsoids; finally (4) they have ellipsoidal outer
approximation that can be efficiently computed via semidefinite programming
problems.

SPS has several generalizations, for example, it can be extended to general
stochastic linear (dynamical) systems, even if they are operating in closed-loop [2],
and to various non-linear dynamical systems, such as GARCH models [1].

Finally, we note that working with symmetric noises is not crucial for SPS as
the theory can be extended to other noise distributions, as long as we know a
group of transformations that leave the (joint) distribution of the noises unchanged.
For example, one can assume that the noises are exchangeable and use random
permutation matrices as {Gi}, see [5]. We refer to these generalized variants as
(G)SPS.

4 Non-asymptotic Confidence Sets for Regularized Estimates

In this section we are going to extend the theory of (G)SPS, in order to construct
non-asymptotic, distribution-free confidence regions around regularized estimates.

First, we consider ridge regression (RR) which has the objective function

VR(θ )
.= 1

2
‖ y − Φθ ‖2

2 + λ

2
‖ θ ‖2

2 , (11)

for a λ ≥ 0 hyper-parameter. It is well-known that RR can be reformulated as LS,

Φ̃ =
[
Φ√
λ I

]
, and ỹ =

[
y

0

]
, (12)

where I is the identity matrix, after which we have VR(θ ) = 1/2 ‖ ỹ − Φ̃θ ‖2.
Then, one might be tempted to apply standard SPS to the obtained (ordinary)

LS formulation. However, we should proceed with caution, as the new problem has
some auxiliary output terms, the zero part of ỹ, to which there are no real noise terms
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in the original problem. Therefore, the last d terms of the residual vector, ỹ − Φ̃θ ,
should not be perturbed, as the distributional invariance was only assumed for the
original noise vector. Consequently, the {Gi} matrices should be extended by

G̃i
.=
[
Gi 0

0 I

]
, (13)

for i = 1, . . . ,m−1. Then, using an analogue of (7) to the new LS system with {G̃i}
perturbations, we arrive at the (G)SPS evaluation function for ridge regression,

Zi(θ)
.= ∥∥ Ψ 1/2

R

[
ΦTGi (y −Φθ)− λθ

] ∥∥2
2, (14)

where ΨR = (ΦTΦ + λ I)−1(ΦTΦ)(ΦTΦ + λ I)−1 is a correction term from the
covariance of RR. Based on this evaluation function, exact confidence regions can
be built around the RR estimate, using the same steps as we had for standard SPS.

Now, let us consider LASSO (least absolute shrinkage and selection operator)
which applies L1 regularization to enforce sparsity. It has the objective function

VL(θ )
.= 1

2
‖ y − Φθ ‖2

2 + λ ‖ θ ‖1 , (15)

for λ ≥ 0. This objective is no more quadratic and it cannot be traced back to LS.
However, the underlying idea of SPS, i.e., to perturb the residuals in the (negative)
gradient of the objective, can still be applied. A (sub-) gradient3 of (15) is

∇θVL(θ ) = ΦTΦ θ −ΦTy + λ sign(θ), (16)

where the sign function is understood component-wise.
Then, we can proceed in the same way as before and perturb the residuals in (16)

with {Gi}, leading to the (G)SPS evaluation function for LASSO,

Zi(θ)
.= ∥∥ Ψ 1/2

L

[
ΦTGi (y −Φθ)− λ sign(θ)

] ∥∥2
2, (17)

where ΨL is an (optional) correction term, e.g., using the (asymptotic) results of [4],
we may use ΨL = (ΦTΦ)−1. The correction matrix can be interpreted as the square-

3For our purposes, one of the subgradients is sufficient, thus we do not treat ∇θV set-valued.
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root of the (estimated) covariance of LASSO (modulo the variance of the noise, as
multiplying each Zi with the same positive scalar does not affect their ordering).

The last method that we discuss is the elastic net regularization with objective

VE(θ )
.= 1

2
‖ y − Φθ ‖2

2 + λ1 ‖ θ ‖1 + λ2

2
‖ θ ‖2

2 , (18)

were λ1, λ2 ≥ 0 are hyper-parameters. As the objective is the combination of the
ridge regression and LASSO objectives, it can be handled using similar ideas. That
is we can compute a subgradient of the objective and perturb the residuals based on
the transformations {Gi} which leave the (joint) distribution of the true noise terms
invariant. Then, the (G)SPS evaluation function for elastic net regularization is

Zi(θ)
.= ∥∥ Ψ 1/2

E

[
ΦTGi (y −Φθ)− λ1 sign(θ)− λ2 θ

] ∥∥2
2, (19)

where ΨE can again be an (optional) covariance estimate for the elastic net solution.
The exact confidence of the constructed regions easily follows from the related

results for SPS. We leave the investigation of their other properties for further work.
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Detecting Periodicity in Digital Images by
the LLL Algorithm

Lajos Hajdu, Balázs Harangi, Attila Tiba, and András Hajdu

Abstract In this paper we provide an algorithm to decide (or, to help the decision
about) whether some repeatedly occurring pattern in a digital image can be
considered to have periodical nature or not. Our approach extracts specific image
components and represent them by single pixels. To decide upon the gridness nature
of the resulting point set we use lattice theory and the LLL algorithm to fit lattices
to the point set, and an efficient lattice point counting method of Barvinok. With
this work we complete some of our corresponding former results, where the fitting
of the lattice ignored possible holes inside the point set. Namely, now after some
appropriate transformations we consider the convex hull of the point set which way
we can detect and punish such fitted lattice points that fall in holes of the original
point set, or equivalently image pattern. As a practical demonstration of our method
we present how it can be applied to recognize segmentation errors of atypical/typical
pigmented networks in skin lesion images.

1 Introduction

Patter analysis is a traditional task in digital image processing. In various fields the
regularity/irregularity of the pattern directly relates to the underlying problem, so
a proper decision on this phenomenon is the essence of the solution. To address
the recognition of pattern regularity primarily some kind of periodicity check can
be performed based on e.g. auto-correlation like in [8]. As an own contribution
to this field, we have proposed a procedure based on the LLL algorithm [9] to
find best approximating grids to an input point set. The theory is worked out for
point sets, which can be composed e.g. via the extraction of dominant digital image

L. Hajdu
Institute of Mathematics, University of Debrecen, Debrecen, Hungary
e-mail: hajdul@science.unideb.hu

B. Harangi · A. Tiba · A. Hajdu (�)
Faculty of Informatics, University of Debrecen, Debrecen, Hungary
e-mail: harangi.balazs@inf.unideb.hu; tiba.attila@inf.unideb.hu; hajdu.andras@inf.unideb.hu

© Springer Nature Switzerland AG 2019
I. Faragó et al. (eds.), Progress in Industrial Mathematics at ECMI 2018,
Mathematics in Industry 30, https://doi.org/10.1007/978-3-030-27550-1_78

613

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27550-1_78&domain=pdf
mailto:hajdul@science.unideb.hu
mailto:harangi.balazs@inf.unideb.hu
mailto:tiba.attila@inf.unideb.hu
mailto:hajdu.andras@inf.unideb.hu
https://doi.org/10.1007/978-3-030-27550-1_78


614 L. Hajdu et al.

Fig. 1 Segmentation results for a skin lesion image to extract pigment network; original image
(left) and some false segmentation results (right) causing holes in the pattern are marked with
white rectangle

components and the representation of them with single points e.g. in terms of their
centroids. However, segmentation errors may occur during this extraction steps
causing holes in the pattern. Such a scenario can be observed in Fig. 1, where
our intention is to extract pigment networks from skin lesion images and classify
them as typical (regular pattern) or atypical (irregular one). In our former approach
[5] we have required only that an approximating grid point should fall in a close
environment of each point in the input set. However, this error measurement ignores
possible holes in the input pattern since does not punish the reversed cases, when
there are no base points close to the approximating grid points. Thus, to resolve
this issue now we complete our former error measurement with a complementary
check that the number of the approximating grid points should be close to that of
the cardinality of the input point set. The proper extra condition can be formulated
by counting lattice points in the convex hull of the original point set.

The structure of the paper is the following: first, we formulate the problem
precisely and give a mathematical framework for it using lattice theory. Then, we
propose an efficient method based on the LLL algorithm (see [9] and [4, 5, 11])
and lattice point counting in convex domains (see [1, 2]) to produce a descriptive
value measuring that ‘how much’ the occurrence of the investigated pattern can be
considered to be periodic. Finally, to demonstrate the practical applicability of our
approach, we explain how to detect possible holes in extracted pigment networks to
suppress segmentation errors.

2 Periodicity and Lattices

Suppose that we observe the occurrence of a certain pattern on a digital image
repeatedly, and we wonder whether this occurrence can be regarded as periodic,
or not. Such questions appear in several problems of image processing.
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As a first step in building our model, we assume that we have to deal with a
finite number of points on the plain. This can be achieved by standard discretization
techniques, e.g. after considering the centroids of the occurring copies of the pattern.

Now letH be a subset of R2. Following the standard terminology, we say thatH
is periodic if there exist linearly independent vectors u, v ∈ R

2 such that for any h
in H , the vectors h± u and h± v are in H as well. Let

Λ = {xu+ yv : x, y ∈ Z}

be the lattice generated by u, v in R
2. Then the periodicity of H implies that H =

H +Λ. (Indeed,H ⊆ H +Λ is obvious, while H +Λ ⊆ H follows directly from
the definition, by noting that h + xu + yv (x, y ∈ Z) can be obtained from h by
adding |x| times u or −u, and |y| times v or −v.) Clearly, any periodic set in R

2 has
to be infinite. However, we obviously need to consider the periodic property of finite
subsets of R2. For this, first observe that ifH is a countably infinite subset of R2 and
H is periodic, thenH is a shifted lattice, that is,H is of the shapeH = o+Λ =: Λ′
for some o ∈ R

2 and lattice Λ in R
2. Let now T be a finite subset of Λ′ with Λ′ as

above. Adopting the discrete convexity notion of Kim [6] (see also [7]), we say that
T is convex if T c∩Λ′ = T , where T c is the convex hull of T in R

2. Altogether, this
is the property we use for the definition of periodicity. That is, a finite subset T of
R

2 is called periodic if there exists a shifted lattice Λ′ in R
2 such that T is a convex

subset of Λ′. To measure the periodicity of finite subsets T of shifted lattices, we
introduce the following function:

per(T ) = min
Λ′

|T |
|T c ∩Λ′| ,

where |S| denotes the number of elements of a set S and the minimum is taken over
all shifted lattices Λ′ containing T . (Clearly, this minimum exists.) In this way, T
is periodic if and only if per(T ) = 1. (Indeed, it is clear that if T is periodic then
per(T ) = 1. On the other hand, if per(T ) = 1 then there exists a Λ′ as above,
containing T , such that |T | = |T c ∩ Λ′|. As T ⊂ T c ∩ Λ′, the equality |T | =
|T c ∩Λ′| shows that in fact T = T c ∩Λ′, so T is a convex subset of Λ′.)

Then we can measure (decide about) the periodicity of an arbitrary finite subset
S = {s1, . . . , sk} ⊂ R

2 of cardinality k in the following way.

Step 1 Following the method of Hajdu et al. [4] (based upon the LLL algorithm,
see [9]) we can find a ‘well approximating’ shifted lattice Λ′ for S. Namely, let the
error of the approximation be calculated as

Eapprox :=
√∑

s∈S |s −Λ′|2
Δ

(
diam S

Δ

) 2
k−3

,

where diam S is the diameter of the point set S, and Δ is the square root of the
lattice determinant of Λ′. If Eapprox is ‘too large’ (see the paper of Tiba et al. [11]
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for experiments; c.f. also [4] and [5]), then we can immediately say that the pattern
in question does not appear periodically, and the forthcoming steps are superfluous.

Step 2 Write S′ for the points of Λ′ = o + Λ (with the previous notation)
corresponding to the (approximated) points of S, and let u, v be a basis ofΛ. (They
can be obtained by the already mentioned method of Hajdu et al. [4].) Put

A := {(x, y) ∈ Z
2 : o + xu+ yv ∈ S′}.

Observe that per(S′) = per(A).

Step 3 Find a sublattice L of Z2 of largest index containing A. (Typically, L will
be Z2 itself.) For this, observe that L = ∑

(x,y)∈A
(x, y)Z. Thus it is standard to find a

basis p, q of L; see e.g. p. 73 of Cohen’s book [3], where an algorithm based upon
the Hermite normal form of integer matrices is given. Then, transformA as follows:

B := {(x, y) ∈ Z
2 : xp + yq ∈ A}.

In this way we have

per(S′) = per(B) = |B|
|Bc ∩ Z2| .

Step 4 Note that |B| = |S′|, so this number can be calculated easily. The number
|Bc ∩ Z

2| can be obtained in a very efficient way, based upon Barvinok’s algorithm
[2]. We use the Maple 15 [10] implementation of Baldoni et al. [1]. So, altogether
we have an efficient way to calculate per(S′).

Step 5 We can combine the error of approximationEapprox obtained in Step 1 and
the measure per(S′), e.g. say using a threshold, for deciding about the periodicity of
S.

We illustrate our method by a simple example.

Example 1 Let our starting set of points be given by

S = {(0, 0), (3.218875824, 3.891820298), (4.007333185, 4.510859506),

(4.795790546, 5.129898714), (6.405228458, 7.075808863),

(8.014666370, 9.021719012)}.

In Step 1, we get S′ = S together with u = (1.609437912, 1.945910149), v =
(4.007333185, 4.510859506). Further, we get Eapprox = 0.

In Step 2, we obtain

A = {(0, 0), (0,−2), (−1, 0), (−2, 2), (−2, 1), (−2, 0)},
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where the elements in A are the coefficients of the elements of S′ in the basis u, v,
in the given order. (In this case we have o = (0, 0).)

In Step 3, we see that L = Z
2 and p = (1, 0), q = (0, 1). Thus

B = A = {(0, 0), (0,−2), (−1, 0), (−2, 2), (−2, 1), (−2, 0)}.

This follows from the fact that the gcd of the 2 × 2 subdeterminants of the matrix

(
0 0 −1 −2 −2 −2
0 −2 0 2 1 0

)

(composed of the entries of the elements of A) is 1.
In Step 4, using the Maple code of Baldoni, Berline and Vergne we obtain

that |Bc| = 9. (In fact, in this simple case Bc is a 2 × 2 square, with vertices
(−2, 0), (0,−2), (0, 0), (−2, 2).) Hence we get

per(S′) = |B|
|Bc| = 6

9
= 2

3
.

In Step 5, based upon Eapprox = 0 and per(S′) = 2/3, depending on the actual
application we are dealing with, we can decide whether we consider S to be periodic
or not.

3 Application to Pigment Network Segmentation

As we have presented in the introduction, checking the periodicity (gridness) of a
point set was motivated by the regularity analysis of pigment networks in skin lesion
images. In this task we exploit the method introduced in the paper to check whether
the extraction of the components on a pigment network was successful or not. The
latter case generally occurs when our detector algorithm misses some components
causing holes in the extracted pattern. With the proper details are given in [5], the
extraction of the pigment cells can be summarized as follows:

• the input color image is converted to grayscale,
• for each pixel, the intensity profiles of lines passing through the given pixel are

considered,
• second order derivative of the Gaussian filters are matched to the profiles,
• large filter response values are considered for pigment hole candidates,
• a hysteresis thresholding technique is applied to this response map for the final

network components.

As it can be seen above, the number of extracted components can be increased
with a corresponding threshold. Consequently, when a low periodicity score is found
for an extracted pigment network, we lower the threshold to eliminate some holes
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Fig. 2 Segmented pigment network in a skin lesion image with a low periodicity score (left) and
the result of re-segmentation with a higher periodicity score (right)

in the pattern. As a demonstrative example, Fig. 2 depicts such a scenario, when an
extracted network with a low periodicity score (0.14) has been improved to a higher
score (0.91), since re-segmentation with a lower threshold has found more network
components. As simple technical issues note that the point set is generated as the
centroids of the binary components, and using low threshold in our segmentation
method in an unjustified way is risky, since it can lead to over-segmentation.

Acknowledgements Research was supported in part by the project EFOP-3.6.2-16-2017-00015
supported by the European Union and the State of Hungary, co-financed by the European Social
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Fusion Markov Random Field Image
Segmentation for a Time Series of
Remote Sensed Images

Tamas Sziranyi, Andras Kriston, Andras Majdik, and Laszlo Tizedes

Abstract Change detection on images of very different time instants from remote
sensing databases and up-to-date satellite born or UAV born imaging is an emerging
technology platform today. Since outdoor sceneries, principally observation of nat-
ural reserves, agricultural meadows and forest areas, are changing in illumination,
coloring, textures and shadows time-by-time, and the resolution and geometrical
properties of the imaging conditions may be also diverse, robust and semantic
level algorithms should be developed for the comparison of images of the same
or similar places in very different times. Earlier, a new method, fusion Markov
Random Field (fMRF) method has been introduced which applied unsupervised or
partly supervised clustering on a fused image series by using cross-layer similarity
measure, followed by a multi-layer Markov Random Field segmentation. This paper
shows the effective parametrization of the fusion MRF segmentation method for the
analysis of agricultural areas of fine details and difficult subclasses.

1 Introduction

As we have more and more remote sensing platforms for scanning the terrestrial
surface, like satellite and airborne imaging, UAV based surveillance; and we have
very different modalities as multi-band images, Lidar or Radar, the task to use them
together in some fusion methodology and to find labelled changes among the very
different scans needs new mathematical solutions. This paper presents a most recent
methodology, where the different modalities of different time-instances can be fused
to proceed a Markov Random Field (MRF) segmentation; the resulted label-map of
fused MRF (fMRF [1]) is then used as master label-map to train the single layers for
a forthcoming MRF segmentation procedure, where the single-layer MRF labeling
can be compared to find labelled changes.
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The multi-band remote imaging methods, including UAV scanning from 20 m
to 100 m altitudes, help us to collect data for agriculture/environmental protection
analysis. When applying an appropriate energy optimization algorithm we can
exploit labelled maps and we can track the changes through time and modalities. In
precision farm management biomass monitoring is crucial. As shown in the study
presented in [2] red, green and blue imaging obtained from UAV found to be a good
alternative to other sensors used for precision agriculture. Dynamic monitoring of
agricultural terraces in China was efficiently performed by the application of UAVs,
[3]. The use of UAVs play a more and more significant role in monitoring natural
hazards due to their cost efficiency and versatility, [4].

The main challenge is that the images of the series are very different in lighting,
color and micro-structure. The framework of fMRF makes it possible to merge
different data-structures, even for semi-supervised parameter-setting, like in [5] for
Lidar ground-truths.

In our tests we used 3DR Solo1 UAV for data capturing, equipped with an RGB
and a four channel (Green-550 nm, Red-660 nm, Red edge -735 nm, Near infrared
-790 nm) multispectral camera system (i.e. Parrot Sequoia) over the farming site
in the vicinity of Biatorbagy town, Budapest metropolitan area, Hungary. In the
course of the multi-session mapping we captured more than 2100 narrow-band
1.2 mega pixel images covering 8 hectare (ha) of fruit and vineyard. Next, geo-
referenced orthomosaic photos were computed corresponding to every multispectral
band captured at different time instances using the Pix4D2 software tools.

2 Fusion MRF

Fusion MRF (fMRF) has been introduced in [1] for remote sensing change
detection. Different multilayer MRF based algorithms have been compared for
change detection in [7], where fMRF proved to be most effective in some change
detection tasks, as Fig. 1 shows. This fusion based method has been also used in a
recent project, where aerial Lidar and satellite born images have been fused in a new
MRF based solution to find small wetland areas [5].

In a series of N layers of remote sensing images, let xLis denote the feature
vector at pixel s of layer Li , i = 1, 2, . . . , N . This feature vector might contain
color, texture/micro-structural features, cross layer similarity measures, or mixture
of these. Set X = {xs |s ∈ S} marks the global image data. An example of a feature
vector would be

xLis = [xLiC(s), xLiM(s)]T (1)

13DR Solo: https://3dr.com/solo-drone/.
2Pix4d photogrammetry software: https://pix4d.com.

https://3dr.com/solo-drone/
https://pix4d.com
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Image I
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Fig. 1 The model of fusion MRF in case of three different time instants of scanning (Luminance—
CRA [6] feature-set) [1, 7]

where xLiC(s) contains the pixel’s color values, and xLiM(s) is the cross layer similarity
measures between the image and other two or more images in the series. The cross
layer similarity measure might be correlation, mutual information, or CRA. In this
study Cluster Reward Algorithm (CRA) was used [6], defined between image pairs,
calculated using the joint histogram of the two images and the marginal histograms,
see more in [1].

The multiple layers of remote sensed image time series are characterized by the

stack x
Li1...in
s of these vectors for a reasonable set of them, n ≤ N :

x
Li1...in
s = {xLi1s , x

Li2
s , . . . x

Lin
s } (2)

2.1 Fusion-MRF: Multi-Layer Segmentation and Change
Detection

For MRF segmentation, more details can be found in [8–11]. Once feature vectors
are generated, the six steps of the algorithm proposed here are applied, as it
is introduced in [1]. This segmentation and change detection procedure contains
different levels of MRF optimization in the following main steps:

1. Selecting and registering the image layers; In case of professional data suppliers
orthonormed and geographically registered images are given; no further regis-
tration is needed. In our method no color-constancy or any shape/color semantic
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information is needed; the color of the corresponding areas and the texture can
differ strongly layer-by-layer.

2. Finding clusters in the set of vectors (x
Li1...in
s ) and calculating the cluster

parameters (mean and covariance) for the fusion based “multi-layer clusters”.
This step can be performed by using unsupervised methods such as the K-means
algorithm.

3. Running MRF segmentation on the fused layer data (x
Li1...in
s ) containing the

cross-layer measures (refer to similarity measure in [1]), and the multi-layer
cluster parameters, resulting in a multi-layer labelingΩLi1...in ;

4. Single-layer training: the map of multi-layer labelingΩLi1...in is used as a training
map for each image layer Li : cluster parameters are calculated for each single
layer controlled by the label map of multi-layer clusters.

5. For each label k ∈ Λ the corresponding subspace of (xMLns ) is collected;
6. For each single layer Li (containing only its color and maybe texture features) a

MRF segmentation is processed, resulting in a labeling:ΩLi ;
7. The consecutive image layers (. . . , (i − 1), (i), . . .) are compared to find the

changes among the different label maps to get the change map.

The above fusion MRF model and its processing can be seen in Fig. 1, [1, 7].
In our application a graph cut based α-expansion algorithm was used for energy
minimization of MRF, with the adherent implementation of [10].

3 Segmentation of UAV Based Remote Sensed Image Time
Series

3.1 Datasets and Features

During the measurement series, data was collected from April, June and July. The
vegetation—thus the difference between images—is expected to change quite much
between April and June and less between June and July. The vegetation intensity,
health of plants, soil composition, presence of water or building can be analyzed
by the near infrared band of the image. Since living plants with more chlorophyll
reflect more near-infrared energy they appear darker on the images which makes
their classification more accurate. Non-supervised segmentation is performed to see
the evolution of vegetation from one month to the other and to observe locations
where changes occur.

In this study the red, green and red-edge bands were used to create the feature
vectors for the fMRF model and two different feature-sets and their combination
were tested:

• In the Multi-band feature-set a twelve element vector was created for each pixel
of the three image stack: red–green–red-edge values, Normalized Difference
Vegetation Index (NDVI); NDVI = (red-edge − red)/(red-edge + red); It has
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advantages when microstructure is not so characteristic, but color spectra have
discriminative power.

• In the microstructure based description (Luminance-CRA) the intensity values are
used together with the mutual microstructure measure, defined by Cluster Reward
Algorithm (CRA) [6]. It has advantages in case of higher resolution where texture
can characterize the fine details.

• A composition of Multi-band and Luminance-CRA has high dimensionality;
however, including all the possible features in one feature-vector has a higher
complexity at an increased noise level as well.

In the case of both levels of processing steps (fused layer clustering and MRF;
single layer MRF) the above detailed feature vectors were applied. This feature
setting is powerful when there are image layers with color variation of nearly
obvious clusters.

3.2 Evaluation of the Time-Series Images

Figure 2 shows the original input images from three consecutive months, then the
fused master fMRF images originated from the inputs for different CRA window

Fig. 2 Original images used for creating fused layer by K-means clustering and fMRF segmenta-
tion based on four color channels and CRA fine-texture statistical distance: above is the series of
three input images of different time instants, while below the fused master-maps: left with CRA
windows of 15, right with CRA windows of 7. Clusters are: meadows, vinegard, trees, road, house



626 T. Sziranyi et al.

Fig. 3 Single layer mapping; left: segmented single layer of July, trained by the label-map of
fMRF master (CRA width: 15); right: GoundTruth label-map for comparison

sizes. We see that the level of details can be tuned by the CRA window, characteristic
for the microstructure similarity.

Based on the master fMRF label-maps, segmentation for each single layer can be
proceeded, getting unified labelling to all the layers. Figure 3 shows a segmentation
result on the left, with a GroundTruth label-map on the right. The label-mapping
Recall error evaluation can be found in Table 1.

Besides unsupervised segmentation, supervised segmentation using predefined
class masks was also performed. Figure 4 shows the selected training mask that
were used for supervised segmentation. Class parameters were calculated from the
pixels covered by masked regions followed by MRF segmentation.

Results of supervised segmentation (additional to unsupervised k-means segmen-
tation) on fused and single images are given in Fig. 5. Calculated recall values (using
GroundTruth reference label-map) are presented in Table 3.

Recall values show, given by Table 1 that in the case of applying four channels
multi-band set + CRA detection of Low Intensity Vegetation areas was more
accurate compared to the other feature-sets. However, colored labeled result image
shows that Bare Soil class disappeared, merged into Low Intensity Vegetation class.
Precision values were uniformly very good for building/roads cluster in all three
cases, see Table 2, and low for bare soil.

Table 1 Recall values for the unsupervised segmentation results, for the image taken in July

4-channel Luminance + CRA 4-channel

Class multi-band set statistical measure multi-band set + CRA

High intensity vegetation 0.84 0.52 0.44

Low intensity vegetation 0.26 0.62 0.73

Buildings/roads 0.82 0.8 0.81

Bare soil 0.67 0.16 0.02

Column names indicate which layers was used to create the master image
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Fig. 4 Training masks used for supervised segmentation

Fig. 5 Training label maps were used for training the four classes. Results on fused (April, June,
July), and single layer (July) are presented, furthermore a simple k-means segmentation was
performed on single layer (July). Recall values are presented in Table 3

Table 2 Precision values for the unsupervised segmentation results, for the image taken in July

4-channel Luminance + CRA 4-channel

Class multi-band set statistical measure multi-band set + CRA

High intensity vegetation 0.74 0.7 0.45

Low intensity vegetation 0.6 0.48 0.51

Buildings/roads 0.78 0.77 0.75

Bare soil 0.35 0.19 0.34

Column names indicate which layers was used to create the master image

The best results were achieved by trained fMRF segmentation, given by Table 3.
However, training areas were selected on the July image, recall values are lower
compared to the fused layer results, except the Bare Soil class. Similarly to unsu-
pervised segmentation, precision in Table 4 was uniformly high for building/roads
cluster and lower for bare soil, but still higher than in the case of unsupervised
segmentation.
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Table 3 Recall values for the supervised segmentation (with training masks) on fused and single
layer (July) results, and for simple K-means segmentation on single layer (July) using only spectral
channels and calculated NDVI map

Supervised fMRF K-means Supervised MRF

Class on multi-layer on single layer on single layer

High intensity vegetation 0.88 0.78 0.79

Low intensity vegetation 0.68 0.15 0.66

Buildings/roads 0.95 0.63 0.88

Bare soil 0.67 0.61 0.7

Table 4 Precision values for the supervised segmentation (with training masks) on fused and
single layer (July) results, and for simple K-means segmentation on single layer (July) using only
spectral channels and calculated NDVI map

Supervised fMRF K-means Supervised MRF

Class on multi-layer on single layer on single layer

High intensity vegetation 0.82 0.63 0.82

Low intensity vegetation 0.83 0.3 0.74

Buildings/roads 0.89 0.91 0.84

Bare soil 0.57 0.33 0.54

4 Conclusion

Unsupervised clustering on multilayer image dataset combined with MRF segmen-
tation is a powerful tool to segment multispectral images into relevant classes. When
MRF segmentation is used for multi-band+CRA images we may get proper results,
however low texture classes, like bare soil, is likely to merged into another similar
class. Additional CRA layer might help to segment classes with similar spectral
properties. Supervised clustering could achieve even more accurate segmentation,
but one has to give accurate training areas. In case of severe combination of
subclasses due to heavy differences in lighting and color content, the fused MRF
segmentation is better to use fine-structure information, as the CRA.
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Stochastic Order Relations in a
Gambling-Type Environment

Sándor Guzmics

Abstract In this work we examine some stochastic ordering relations, namely the
increasing convex order and the Lorenz order, between random variables which arise
from a simple lottery setting as well as the relation between their natural continuous
variants. We will provide stochastic ordering results for the continuized random
variables.

1 Introduction

The notion of stochastic dominance has been established originally for comparing
the riskiness of possible scenarios in financial and insurance mathematics. Later
these concepts have been also applied in other probabilistic environments, for
instance in gamblings. We examine the structure of a lottery type gambling by
introducing advanced indicators that stem from the distribution of the random
variables which are naturally associated with the corresponding game. Our work
is motivated by a standard 90/5 type lottery setting. The outcomes are described
by five-tuples, and we consider the ordered sample, and investigate the ordered
differences between the elements of the ordered sample with respect to the
increasing convex order and the Lorenz order. We illustrate our computations by
a data set obtained from Hungarian lottery history from 1957 to 2018. It consists
of 3217 five-tuples drawn from the set {1, . . . , 90}, and it is available under the
link https://bet.szerencsejatek.hu/cmsfiles/otos.html . In addition we will examine
a natural continuization of the above setting, which possesses nicer mathematical
properties than the original discrete one. In particular, the ordered differences in the
discrete setting are not ordered in the Lorenz order, in contrast to the continuous
setting. Finally we present some ideas for possible extensions.
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2 The Discrete Setting

Let us consider a standard lottery setting, where five numbers are drawn form the
fundamental set H = {1, . . . , 90} without replacement. In accordance with this,
the players have to fill in a lottery coupon by crossing five numbers from the set H.
It is well known, that the number of scores follows a hypergeometric distribution
and it is also obvious, that if we denote the result of one draw by the set-valued
random variable X = {X1,X2,X3,X4,X5} , then X is uniformly distributed on
the 5-element subsets of H , i.e., on the set H = { h ⊆ H : |h| = 5 } and
P(X = h) = 1/(90

5 ) = 1/43949268 < 2.2754 × 10−8 for all h ∈ H . (Since in the
following it will play an important role that H consists of equally placed numbers,
we will sometimes refer to such a discrete set as a grid.)

Let us introduce the usual notation X∗
j for the ordered sample, i.e., in our case

X∗
j is j -th smallest out of the five drawn numbers (j = 1, . . . , 5). Due to the current

setting X∗
1 < X

∗
2 < X

∗
3 < X

∗
4 < X

∗
5 holds with probability 1. It is easy to see that

the probability distribution function of X∗
j ( j = 1, . . . , 5 ) is

P(X∗
j = k) =

(
k−1
j−1

) · (90−k
5−j

)
(90

5

) for k = j, . . . , 85 + j, (1)

and its expectation is

E(X∗
j ) < 15.1667 · j . (2)

In order to obtain a better insight into the structure of this lottery, we focus on
the differences

Dj = X∗
j+1 −X∗

j (j = 1, . . . , 4) (3)

between the neighbouring elements in the ordered sample (X∗
1 ,X

∗
2 ,X

∗
3 ,X

∗
4 ,X

∗
5) ,

and we will investigate D∗
j (j = 1, . . . , 4), i.e., the ordered sample of the random

variables Dj . Notice that each inequality of the general relation D∗
1 ≤ D∗

2 ≤ D∗
3 ≤

D∗
4 can also hold with equality (with positive probability). First we study the range

of the sample, which coincides with the sum of the differences defined in (3).

The Range of the Sample

Z := max
1≤j≤5

{Xj } − min
1≤j≤5

{Xj } = X∗
5 −X∗

1 =
4∑
j=1

Dj =
4∑
j=1

D∗
j . (4)

It is easy to see that P(Z = k) = c · (90 − k) · (k − 1) · (k − 2) · (k − 3) for
k = 4, 5, . . . , 89 , where c = 20

90·89·88·87·86 < 3.7923 × 10−9. The expected value
is E(Z) < 60.6667, while the mode of Z is 68 .
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The Distribution of D∗
j (j = 1, . . . , 4)

We provide the distribution of D∗
j (j = 1, . . . , 4) via an implicit, combinatorial

consideration, namely in terms of certain partitioning problems. The derivation of
an explicit form will only be possible for D∗

1 . As an introductory step, for each
j = 1, . . . , 4 we give Nj , the largest possible value of D∗

j , which are respectively
N1 = 22, N2 = 29, N3 = 43, N4 = 86.

Let us introduce the notion of a gap, the number of integers lying between two
neighbouring drawn numbers in some realization. As a distinction, we will call
initial gap the number of integers smaller than X∗

1 . In notation

l0 := X∗
1 − 1, lj := X∗

j+1 −X∗
j − 1 (j = 1, . . . , 4). (5)

It is clear that the sequence of gaps l0, l1, l2, l3, l4 uniquely determines
X∗

1, . . . , X
∗
5 . Since a difference of size k between neighbouring drawn numbers

corresponds to a gap of size k−1 , it is worth to introduce the following index sets:

I1 := {1 ≤ i ≤ 4 | li ≥ k − 1 }, I2 := {1 ≤ i ≤ 4 | li > k − 1 }. (6)

Using I1 and I2 , the distribution of D∗
j can be written as

P(D∗
j = k) = #{(l0, l1, l2, l3, l4) | Condition 1., 2., 3. hold }

(90
5

) for k = 1, . . . ,Nj ,

(7)
where

Condition 1. l0 + l1 + l2 + l3 + l4 ≤ 85,
Condition 2. |I1| ≥ 5 − j ,
Condition 3. |I2| ≤ 4 − j .

Figure 1 shows the probability distributions of D∗
1 ,D

∗
2 ,D

∗
3 .D

∗
4 along with their

realizations in the data that we have described in Sect. 1. Note that for visualizing
purposes we display the probability distributions with continuous curves, but
meanwhile we have to keep their discreteness in mind.

Explicit Formula for the Probability Distribution Function of D∗
1

We do not attempt to solve the combinatorial problems given in (7), but by

another combinatorial consideration we get P(D∗
1 ≥ k ) = (94−4k

5

)/(90
5

)
, which

implies P(D∗
1 = k) =

((94−4k
5

)− (90−4k
5

)) /(90
5

)
(k = 1, . . . , 22). The expected

value is E(D∗
1 ) < 4.1844, and since P(D∗

1 = k) is decreasing in k , the mode of
D∗

1 is 1.
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Fig. 1 The pdfs of the ordered differences along with their realizations in the data. For the sake of
convenience the pdfs are visualized by continuous curves

Numerical Evaluations of the Probability Distribution Function of D∗
2 ,D

∗
3 ,D

∗
4

We succeeded in determining the pdfs P(D∗
j = k), (j = 1, 2, 3) numerically

(look at also Fig. 1), and we computed the expected value and the mode of the
distributions: E(D∗

2 ) = 9.0528 and its mode is 7 , E(D∗
3 ) < 16.3838 and its

mode is 15 , E(D∗
4 ) < 31.0457 , and its mode is 28.

What would be a natural continuous analogue of the lottery setting described
above? We define such a continuous analogy of the discrete setting, where the
expectations of X∗

1 , . . . , X
∗
5 and D∗

1 , . . . ,D
∗
4 nearly coincide with those of the

discrete setting. In order to obtain this, we suggest the following continuous model.

3 The Continuous Setting

Let {X1,X2,X3,X4,X5} be the sample drawn from the discrete grid {1, . . . , 90} .
Then

Yj := Xj + Uj j = 1, . . . , 5 ,

where Uj ∼ UNI[−0.5, 0.5] are independent of Xj and of each other. It is obvious
that Yj ∼ UNI[0.5, 90.5], furthermore the construction has the favourable property
that three or more Yi cannot fall very close to each other, so an important feature of
the discrete grid is preserved.
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They also fulfil our previously described aim, that is, their expected values nearly
coincide with the expected values of the corresponding discrete variables, as the
following table shows. For sake of simplicity we will use the notation D∗

1 ≤ . . . ≤
D∗

4 for both the discrete and the continuous setting and we will always make it clear
which variant is actually meant.

Discr.
settinga

E(X∗
1) E(X∗

2) E(X∗
3) E(X∗

4) E(X∗
5) E(D∗

1 ) E(D∗
2 ) E(D∗

3 ) E(D∗
4 )

15.1667 30.3333 45.5000 60.6667 75.8333 4.1844 9.0528 16.3838 31.0457

Cont.
settingb

E(Y ∗
1 ) E(Y ∗

2 ) E(Y ∗
3 ) E(Y ∗

4 ) E(Y ∗
5 ) E(D∗

1 ) E(D∗
2 ) E(D∗

3 ) E(D∗
4 )

15.1612 30.3281 45.4965 60.6652 75.8320 4.1606 9.0610 16.3918 31.0573

a The values are exact and they are displayed up to four decimal place accuracy
b Values based on a sample of 10 Million drawn from the distribution (Y1, . . . , Y5)

4 Stochastic Order Relations in the Lorenz Order and in the
Increasing Convex Order

It is worth to examine whether some stochastic order relation holds between the
ordered differences D∗

1 , . . . ,D
∗
4 . Here we will consider the increasing convex order

and the Lorenz order. For their definitions we refer to Shaked and Shantikumar
[5, 6], Denuit et al. [1], Scarsini [4], Lorenz [3], and Kämpke and Radermacher [2].

Investigations in the Lorenz Order
We found that the ordered differences in the discrete setting are not ordered in the
Lorenz order, while in the continuous case they are, i.e., D∗

1 >L D∗
2 >L D∗

3 >L
D∗

4 . Figure 2 depicts the Lorenz curves. Looking at Fig. 2a one might conjecture
an order relation for the discrete case, too, but by examining the lower tails of
the distributions carefully (the left part of the Lorenz curves), the opposite can be
concluded.

Proposition 1 sg

1. In the continuous setting D∗
i >L D∗

j for 1 ≤ i < j ≤ 4 .
2. In the discrete setting D∗

i �L D
∗
j for i �= j .

Sketch of the Proof We have to examine the pointwise orderedness of the Lorenz
curves. We omit the details but provide a graphical justification (Fig. 2).

Investigations in the Increasing Convex Order
Proposition 2 s In both settings D∗

i >ICVX D∗
j for 1 ≤ i < j ≤ 4 .

Sketch of the Proof According to Denuit et al. [1] Proposition 3.4.6 we have to
examine whether E((D∗

i − t)+) ≤ E((D∗
j − t)+) holds for all t ∈ R when i < j .
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Fig. 2 Lorenz curves of D∗
j (j = 1, . . . , 4) in the discrete and continuous settings. (a) Discrete

setting. (b) Continuous setting
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Fig. 3 The expressions E(D∗
i − t)+ (i = 1, . . . , 4) are plotted as functions of t to illustrate the

stochastic order relations in the increasing convex order: D∗
i >ICVX D∗

j for 1≤ i < j ≤ 4

In the discrete setting it is enough the examine this relation for t ∈ {1, . . . , 43}. In
the continuous setting Fig. 3 confirms the statement.

5 Summary

We have seen that the application of stochastic order relations can lead to a better
understanding in some settings which inherently possess a stochastic nature, such
as a lottery game. The perspective is wider, since some extensions of the discussed
tools (e.g., the multivariate Lorenz dominance) might enable us to investigate
stochastic dominance in multivariate settings. That can be the topic of possible
future research.
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Damage Detection in Thin Plates
via Time-Harmonic Infrared
Thermography

Manuel Pena and María-Luisa Rapún

Abstract Non-destructive damage detection has become a very active research
topic recently. This paper is devoted to the processing of time-harmonic thermo-
grams (color images of one side of the sample to be inspected, obtained by a thermal
camera) for structural health monitoring of thin plates. Our approach is based on the
evaluation of an indicator function, the so-called topological derivative, which will
identify the regions inside the plate where damage is located.

1 Statement of the Problem

Infrared thermography has become a powerful tool for non-destructive testing in a
wide range of applications, ranging from medical imaging, to building and material
diagnosis. In this work we aim at finding small defects inside metallic plates by
processing time-harmonic thermograms, which are obtained after heating the plate
to be inspected by a time-harmonic excitation from one lamp at the same side of the
sample where the thermogram is taken, see Fig. 1.

The plate R ⊂ R
d (where d = 2 or 3) is assumed to be surrounded by air at room

temperature, Tair, with whom it exchanges heat by radiation and natural convection.
The convection coefficient h is assumed to be constant and the surface of the plate is
modeled as a gray body with absorptance α and emissivity ε. The lamp is modeled
as a point source which radiates in a time-harmonic manner with an amplitude I and
frequency ω. The defects conform a region D ⊂ R. For simplicity, we assume the
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Fig. 1 Layout of the
experiments: the plate R is
defined as a bounded box
region of R2 or R3, with one
of its dimensions much
smaller than the remaining
ones. The lamp and the
thermal camera are located at
the same side of the plate.
The illuminated side is
denoted as Γfront, and the
opposite side is Γback. The
remaining sides, much
smaller in area, are denoted as
Γsides. The angle between the
incoming light rays and the
normal n is denoted as θinc

thermal conductivity κ , the density ρ and the specific heat capacity c to be piecewise
constant functions, i.e.:

κ (x) =
⎧⎨
⎩
κe x ∈ R \ D
κi x ∈ D

, ρ (x) =
⎧⎨
⎩
ρe x ∈ R \ D
ρi x ∈ D

, c (x) =
⎧⎨
⎩
ce x ∈ R \ D
ci x ∈ D

.

(1)

Then, the complex amplitude T (x) of the time-harmonic temperature distribution
T (x, t) = T̃ (x)+Re

(
T (x)e−ıωt

)
(where T̃ (x) is a steady mean value) satisfies the

set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div (κe∇T )+ iωρeceT = 0 in R \ D
div (κi∇T )+ iωρiciT = 0 in D

T + − T − = 0 on ∂D

κe∂nT
+ − κi∂nT

− = 0 on ∂D

κe∂nT = 0 on Γsides

κe∂nT + AT = −α qs on Γfront

κe∂nT + AT = 0 on Γback

(2)
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where A = h + 4εσT 3
air is a constant that takes into account both the effects of

convective terms and a linearization around Tair of the radiative terms. The heat
qs (x) coming from a lamp located at a point s is modeled by

qs (x) = I

2π

cos θinc(x)
|x − s| or

I

4π

cos θinc(x)
|x − s|2 (3)

for the two-dimensional and three-dimensional cases respectively.
Given a thermogram Tfront, that is, a measurement of the temperature distribution

along Γfront for a given experiment, we would like to obtain the domain Dapp such
that TDapp (x) = Tfront (x), for all x ∈ Γfront, where TDapp stands for the solution
of the set of equations (2) setting D = Dapp. Since experimental errors of very
different nature are expected, we will consider a less demanding formulation and
seek for Dapp such that the functional

J
(
R \ Dapp

)
=
∫

Γfront

∣∣∣TDapp (x)− Tfront (x)
∣∣∣
2

d� (4)

attains a global minimum. This will be done by computing its topological derivative,
defined in the next section.

2 Topological Derivative

The topological derivative (TD in the sequel) of the shape functional J at a point
x measures the sensitivity of such functional to locating an infinitesimal ball Bε(x)
of radius ε > 0 at x, providing the asymptotic expansion (see [6]):

J
(
R \ Bε (x)

) = J (R)+ DT (x) f (ε)+ o (f (ε)) as ε → 0+. (5)

where f (ε) is a positive increasing function chosen such that the expansion (5)
holds. In our case, we can take f (ε) to be the measure of Bε(x). In view of
expansion (5), the points where DT attains large negative values are the most
effective in minimizing the functional (4), and therefore, our guess of Dapp will
be defined as [1, 5]:

Dapp :=
{

x ∈ R; DT (x) < λmin
y∈R

DT(y)
}
, (6)

where 0 < λ < 1 is a parameter that can be tuned.
Formula (5) is not practical from the numerical point of view. Adapting the

results in [1, 2, 4], we obtain a closed-form formula for the TD: for all x ∈ R,

DT (x) = Re

(
dκe(κe − κi)

(d − 1) κe + κi
∇T 0 (x)·∇V 0 (x)−iω (ρece − ρici) T

0 (x) V 0 (x)
)
,

(7)
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where T 0 is solution to the direct problem

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div
(
κe∇T 0

)+ iωρeceT
0 = 0 in R

κe∂nT
0 = 0 on Γsides

κe∂nT
0 + AT 0 = −α qs on Γfront

κe∂nT
0 + AT 0 = 0 on Γback

(8)

and V 0 is solution to its associated adjoint problem

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div
(
κe∇V 0

)− iωρeceV
0 = 0 in R

κe∂nV
0 = 0 on Γsides

κe∂nV
0 + AV 0 = Tfront − T 0 on Γfront

κe∂nV
0 + AV 0 = 0 on Γback

. (9)

As can be seen, for the computation of the TD no a priori information is needed
about the number or size of defects, as both T0 and V0 are defined on the plate
without any defect. The adjoint problem compares the thermogram expected at a
healthy plate T 0 with the measured thermogram Tfront.

In general, we will have several experiments with the lamp at a number Nlamps
of different positions si and a numberNfreq of different frequencies ωj . In that case,
we replace the functional (4) by a functional of the form

J
(
R \Dapp

)
=
Nlamps∑
i=1

Nfreq∑
j=1

pij

∫

Γfront

∣∣∣T (i,j)Dapp
(x)− T (i,j)front (x)

∣∣∣
2

d�, (10)

where the superscripts stand for the different configurations (namely T (i,j) corre-
sponds to the temperature associated with the i-th position of the lamp and the j -th
frequency), and pij > 0 are weights that can be tuned. By linearity, the TD of (10)
is nothing but the linear combination of each individual derivative. The weights pij
are defined in terms of the inverse of the largest negative value of each individual
TD, as done in [3].

3 Numerical Experiments

In this section we present a couple of numerical experiments. The following
parameters model an aluminum plate with air defects:

• κe = 200 W/(m · K), ρe = 2700 Kg/m3 and ce = 900 J/(Kg · K)
• κi = 0.025 W/(m · K), ρi = 1 Kg/m3 and ci = 1000 J/(Kg · K)
• α = 0.4, ε = 0.08, Tair = 290 K and h = 15 W/(m2 · K)
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The lamp will have an amplitude I = 6000 W and will be located at a distance
of 0.15 m from the plate.

Given that the thermograms are no actual measures but simulated data, a gaussian
random error is added to them to simulate noisy experimental data, see [5] for further
details about the generation of such error.

First, we present a two dimensional example, where the plate is the box [0, �x]×
[0, �y] with �x = 0.01 m and �y = 1 m, and contains three different defects: an
elliptical hole located at

(
0.5�x, 0.25�y

)
and semi-axis of 0.1�x and 0.3�y , a circular

hole located at
(
0.6�x, 0.6�y

)
with radius 0.125�x, and a circular hole located at(

0.4�x, 0.8�y
)

with radius 0.1�x .
In Fig. 2 we represent the TD for two different data sets. The true defects have

been superimposed in white. The plate is distorted in the non-zoomed drawing for
a better visualization. The TD is normalized in such a way that its largest negative
value is equal to −1 for an easier comparison between both experiments. It can
be seen that the TD accurately pinpoints the position, size and number of defects
(regions in blue) even for a relatively high noise level. However it is unable to
provide the correct depths, since the largest negative values are always attained in
regions close to Γfront. The biggest region corresponds to the elliptical hole, which
is bigger in size. Reconstructions correlate not only with size but also with depth.
We observe that the smaller and less deep circular hole is better identified than the

×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××
×××

×
×
×
×
×
×
×
×
×
×
×
×

Fig. 2 Left: TD forNlamps = 48 different lamp positions marked as × at frequency of 1 Hz. Right:
TD for Nlamps = 12 lamp positions at Nfreq = 4 linearly spaced frequencies between 0.8 and 2 Hz.
The level of noise in the thermograms for both experiments is 20%
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Fig. 3 TD at Γfront and reconstructed defects for several values of λ

remaining one, which is bigger but is farther located from Γfront. When comparing
both figures, we see that for a fixed number of thermograms, reconstructions are
sharper when thermograms correspond to both several locations of the lamp and
several excitation frequencies.

In Fig. 3 we represent the TD at Γfront to better visualize the sharpness of the
minima. The sharper the minimum the less dependent is the reconstruction on the
parameter λ in (6). In the same figure we also represent the (rotated) plate where the
three true holes are in white and the reconstructed holes corresponding to different
values of λ are shown in different color regions.

To illustrate the performance of the method in the three dimensional case, we
consider now the plate [− �x

2 ,
�x
2 ] × [− �y

2 ,
�y
2 ] × [− �z

2 ,
�z
2 ] with �x = 0.5 m,

�y = 0.01 m and �z = 1 m, which contains two different defects: a spherical hole

located at (0, 0, 0)with radius of 0.3�y , and a box hole defined by [ �x−3�y
4 ,

�x+3�y
4 ]×

[− �y+3�y
6 ,

−�y+3�y
6 ] × [ �z−6�y

4 ,
�z+6�y

4 ].
The TD at Γfront for two different data sets is shown in Fig. 4. In the first one,

four positions and six frequencies are combined, and the thermograms contain a
5% relative error. We identify the position of the rectangular box, however we
can barely see the spherical defect. For the second experiment, we combine noisy
thermograms with a 10% level of noise, corresponding to nine lamp positions
and six frequencies. Although thermograms are more polluted, we can clearly
identify the position and approximate size of the two defects. However, the method
has again problems in detecting the correct depth. More sophisticated (and much
more computational costly) iterative methods using the TD as a first step can be
developed to try to overcome this difficulty. This will be done in future work. We
have limited our study to time-harmonic excitations. The extension to the full time-
dependent heat equation could also overcome this problem, and will be considered
in future.
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Fig. 4 Left: TD for Nlamps = 4 lamp positions and Nfreq = 6 linearly spaced frequencies between
0.8 and 2 Hz. Right: TD for Nlamps = 9 lamp positions and Nfreq = 6 linearly spaced frequencies
between 0.8 and 2 Hz
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