
End-to-End Deep Imitation Learning:
Robot Soccer Case Study

Okan Aşık(B), Binnur Görer, and H. Levent Akın

Department of Computer Engineering, Boğaziçi University, 34342 Istanbul, Turkey
{okan.asik,binnur.gorer,akin}@boun.edu.tr

Abstract. In imitation learning, behavior learning is generally done
using the features extracted from the demonstration data. Recent deep
learning algorithms enable the development of machine learning meth-
ods that can get high dimensional data as an input. In this work, we use
imitation learning to teach the robot to dribble the ball to the goal. We
use B-Human robot software to collect demonstration data and a deep
convolutional network to represent the policies. We use top and bottom
camera images of the robot as input and speed commands as outputs.
The CNN policy learns the mapping between the series of images and
speed commands. In 3D realistic robotics simulator experiments, we show
that the robot is able to learn to search the ball and dribble the ball, but
it struggles to align to the goal. The best-proposed policy model learns
to score 4 goals out of 20 test episodes.

1 Introduction

In robot learning, it is a challenging problem to collect training data set in
real-world environment. One possible solution is to isolate the problem from the
entire robotic system. For example, object detection, which is a highly impor-
tant problem in robotics vision, can be addressed separately in development of
a home service robot. Image data can be captured from the robot camera with-
out requiring fully functional robotic system and can be used with supervised
or unsupervised learning methods. In contrast to supervised and unsupervised
learning, reinforcement learning is inherently hard for real-world robotics as it
requires direct interaction with the environment. Let’s consider the problem of
high-level behavior (task) learning such as learning to play soccer. Reinforcement
learning is based on the exploration of the state-action space and the iterative
improvement of the values of experienced state-action pairs. That exploration
takes many time steps and may harm the robot during the interaction with the
environment. Therefore, it is not feasible to use direct reinforcement learning for
behavior learning in robotics.

One of the most common approaches to solve behavior learning is the imita-
tion learning. The imitation learning can be classified as one of the supervised
learning approaches since the learning model imitates data provided by demon-
stration. A demonstrator controls the robot to complete a specific behavior (task)
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 137–149, 2019.
https://doi.org/10.1007/978-3-030-27544-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_11


138 O. Aşık et al.

using the robot. During the demonstration, data is collected from the sensors
and actuators of the robot. By using many demonstration sessions, a data set is
created that can be used to learn sensor-actuator tuples. In this study, we use
imitation learning to dribble the ball to score a goal using a humanoid robot.

These behavior learning approaches require a symbolic representation of the
behavior. This representation determines the abstraction of the problem. For
example, in the case of the ball dribbling behavior, we can represent the world
of the robot as the pose of the robot and the position of the ball on the field.
To be able to construct a learning problem and apply it in real-world, we need
to have robot perception algorithm that is able to calculate the pose of the
robot and the position of the ball. Most of the behavior learning approaches in
the literature uses this level of abstraction in learning [3,10,11,13]. However,
this level of abstraction requires solving complex perception problems such as
determining its own pose using the features extracted from the camera image.
In this study, we learn the behavior using the camera image as an input to
our machine learning model. Therefore, the basic robotics problems such as
perception, localization, and planning would be inherently learned by our model.

We create a training data set that is collected while a teacher realizes the
behavior on the robot. The dataset consists of images taken from the robot
camera and movement commands. Instead of recruiting a human teacher to make
the task to the robot a number of times, we use a robotics software developed for
the robot soccer as a teacher. The simulation environment makes it easy to code
the behavior since we have the pose of the robot and the ball without running
any perception or localization algorithm. We train a deep learning model using
the training data set. The model that can replicate the same speed commands
given the images achieves the imitation learning without requiring any complex
solutions to subproblems in the task.

The robot soccer problem is a partially observable problem because the robot
cannot sense the current state of the environment using its own onboard sensors.
Therefore, a policy that maps the current perception to an action command may
have suboptimal behavior. Therefore, we propose to use recurrent convolutional
neural network since it has the capability of estimating the current state from a
series of perceptions. In addition to the recurrent convolutional neural network,
we also propose to use a hierarchical model to divide the ball dribbling behavior
into sub-skills such as searching for the ball and aligning to the goal and a more
basic convolutional neural network approach to compare the performances.

We measure the learning performance of our models on the test demonstra-
tion data set. On the test data set, we achieved an average error of 0.16, 0.17, and
0.14 with the convolutional neural network, hierarchical convolutional neural net-
work, and recurrent convolutional neural network policies, respectively. The error
is calculated as the average Euclidean distance between two action vectors. Also,
we count the number of goals scored in 20 test episodes; CNN scores 3 goals, H-
CNN scores 3 goals, and R-CNN scores 4 goals. In this study, we show that we can
teach a humanoid robot to carry out a complex task that requires perception and
planning using deep imitation learning. We test our method on a realistic robotics
simulator, but our future aim is to evaluate the approach using real robots.



End-to-End Deep Imitation Learning: Robot Soccer Case Study 139

2 Related Work

Imitation learning is a promising research area since it has the potential of
enabling non-technical domain experts to teach their expertise to a computa-
tional machine. There are many ways of demonstrating a behavior to a robot
such as teleoperation and exoskeleton suit. In this study, a high-level behavior
control software controls the robot in simulation, and raw sensor readings and
mid-level actions are collected as demonstration data set. Our mid-level actions
are 2D speed commands. We use teleoperation based data demonstration and
direct state-action policy representation according to the categorization of Hus-
seion et al., and Argall et al. since we learn state-action mapping [2,7].

This study is based on end to end deep learning. The first study shows that
an agent can learn to play Atari using the screen inputs as the state of the
game [14]. Although end to end learning is a reinforcement learning method,
its key feature is that the policy representation is powerful enough to learn
without abstracting the state or action of the problem. For example, in Atari
learning, state is the screen of the game and action is joystick command so that
no feature engineering is involved. Our study also uses sensor inputs (camera
images) without any feature engineering, but the actions have an abstraction
since humanoid walking problem is still quite complex to be used in such end
to end learning. Also, most of the end to end learning approaches use deep
convolutional neural network to represent the expected reward of state-action
pairs. However, we represent our policy as a simple mapping function that maps
states to actions. We could also use reinforcement learning, but it would take
quite long time to learn to score a goal. We know that if the reward is deep
in reinforcement learning problems, it gets harder to learn (consider the Atari
game Montezuma’s Revenge [14]).

We structure our related work in two subsections; end to end deep learning
and ball dribbling behavior. In the first section, we overview the methods using
end to end deep learning. In the second section, we overview the methods that
directly issue the ball dribbling behavior.

2.1 End to End Learning

The first study that combines deep learning and reinforcement learning is done
by Mnih et al. [14]. They achieved human-level atari game playing by using
a deep convolutional neural network to represent the policy that evaluates the
expected reward of state-action pairs. Their most important contribution is using
the state representation as the actual screen of the game as if a human player
perceives the game. This approach is also the most important part of our work
where relevant features are automatically discovered by the convolutional neural
network instead of human-engineered features.

Guo et al. use Monte Carlo Planning algorithm to collect data that will
be used to train the convolutional neural network [4]. Although Monte Carlo
Planning has better performance than reinforcement learning algorithms, it is
quite slow compared to neural networks. They show that reinforcement learning



140 O. Aşık et al.

that uses the data generated by Monte Carlo Planning improves the performance.
This is also one of the inspiration for this study where an expert software is used
to teach an end-to-end neural network policy. However, we do not represent
policy as a Q-function [18], but as a state-action mapping function. Another
work that combines the Monte Carlo planning and deep learning is the amazing
Alpha Go that beats the Go champion [16].

One of the most important robotics application of the end-to-end deep learn-
ing method is the study that learns to manipulate objects using the raw camera
images [12]. The robot learns to send joint commands to motors using a con-
volutional neural network. In contrast to them, we generate high-level motion
commands to control the 2D motion of the robot using 2D speed commands.
They improve the performance of their method by using many different pre-
processing and pre-learning methods. In contrast to them, we train the whole
network at once using the data generated by the demonstrator.

Husseion et al. combine the deep imitation learning with active learning
to learn to navigate in the 3D maze [6]. The use of imitation learning in 3D
simulation environment to solve such complex tasks are also our aim. In contrast
to their work, we use realistic 3D robotics simulator.

2.2 Ball Dribbling Task

One of the early studies that aim to learn to dribble the ball in robot soccer is
done by Latzke et al. [10]. They use imitation learning to improve the perfor-
mance of reinforcement learning algorithm. The data generated by the teacher
is used to initialize the reinforcement learning policy. They train a humanoid
robot to dribble the ball to the empty goal. They report a reduction in training
time and increase in the learning performance when imitation data and function
approximation is used. Leottau et al. propose two layer approach for humanoid
robot ball dribbling [11]. They use a fuzzy logic controller for alignment to the
ball and reinforcement learning to push the ball towards the goal. Although
pushing the ball towards the goal after the alignment seems a simple task, in
addition to the dribbling the ball as fast as possible, they try to keep the ball
possession, i.e. keep the ball as close as possible. Therefore, they use reinforce-
ment learning to optimize for two conflicting goals; being as fast as possible, but
also keeping the ball as close as possible. Mericli et al. propose to use a corrective
human feedback system to teach the robot to dribble the ball through stationary
defender robots [13]. The main contribution of the work is the combination of
hand-coded behavior with the active demonstration of the human. The perfor-
mance of the ball dribbling, that is the time to scoring a goal, is improved by
the integration of the demonstrations. All these ball dribbling tasks have lower
ambitions compared to our work. They use the model of the problem, robot
perception, and localization and solve one of the subtasks of the behavior, that
is ball dribbling.



End-to-End Deep Imitation Learning: Robot Soccer Case Study 141

3 Methods

This study consists of two parts; dataset creation and the training of deep neural
networks. In imitation learning, the dataset is created by an expert who knows
how to control the robot to carry out a task. In this study, we use a hand-coded
behavior on B-Human simulation environment instead of a human expert. We
define a behavior that searches the ball, goes towards the ball, aligns to the goal,
and dribbles the ball to the goal. The collected data set, a set of image-speed
tuples, is used to train the convolutional neural networks with three different
architectures. These neural networks learn to predict robot speed commands
based on the images taken from the cameras.

3.1 Dataset Creation

RoboCup Standard Platform League (SPL) is a competition where robot soccer
teams compete using 5 Nao robots. B-Human is one of the successful teams in
SPL and they make their robot software publicly available1. They provide all
their software with a 3D robotics simulation software called SimRobot with the
modules that can both run on the robot and in the simulator. A screenshot of the
simulator can be seen in Fig. 1a. In this study, we use the SimRobot simulation
environment and robot software [15].

Fig. 1. (left) SimRobot environment and (right) robot and ball positions (Color figure
online)

The Nao robot that is used in SPL has two cameras, one views the forward
(top camera) and another one (bottom camera) is aligned to view the feet of the
robot. These cameras do not (almost) overlap. Although we can get the images
from those cameras at different resolutions, most of the teams use 640× 480 for

1 https://github.com/bhuman/BHumanCodeRelease.

https://github.com/bhuman/BHumanCodeRelease


142 O. Aşık et al.

Fig. 2. A series of sample pre-processed images. The bigger images on the left are top
camera images, the smaller images on the right are bottom camera images.

the top camera and 320 × 240 for the bottom camera. Those cameras provide
images at 33 Hz.

We use the images of these two cameras as input our learning approach. We
pre-process images to lower the dimensionality of images to able to use as input.
We scale and convert images to gray-scale. Scaling is done by averaging the pixel
values corresponding to a particular region by Thumbnail provider of B-Human
software module [15]. We scale top camera images to 160 × 120 resolution and
bottom camera images to 80×60. A series of sample images can be seen in Fig. 2.

B-Human software components have two main categories; cognition and
motion. The motion commands calculated by the cognition modules are car-
ried out by the motion modules. The distinction between these two processes is
due to the different operating frequencies of motors and sensors. In this study,
due to the practicality, we developed a simple behavior in B-Human software
and created our data set from this behavior. However, we can safely assume
that we can replace the behavior software with a human operator and collect
similar data. Our behavior has the following components; searching for the ball,
going towards the ball, turning around the ball to align to the closest goal and
dribbling the ball towards the closest goal. By default, the software calculates a
speed command at every time step when a new camera image is taken. Since we
aim to learn a policy that maps image to speed commands, we create a motion
command when images from both top and bottom cameras are taken. Therefore,
at the current time step, if we have not received images from both cameras, we
repeat the last command. Otherwise, if the images captured from two cameras
processed separately, the predicted actions for each of them may conflict.

We create our dataset by selecting random robot position in 4 m by 4 m area
on the center of the field, and random ball position in 4 m by 2 m area on either
side of the field. We choose the position of the ball such that the ball is at least
one meters away from the center line of the field. In this way, we aim to choose
a side for the ball where the robot will score a goal. The random positions of the
robots and balls can be seen in Fig. 1b. Data collection starts when the robot



End-to-End Deep Imitation Learning: Robot Soccer Case Study 143

starts to move and ends when the robot scores a goal. We created our dataset
using 100 episodes with the random ball and robot positions. Our dataset has
160×120 and 80×60 grayscale images with speed commands (speed commands
consist of forward, left and turn speeds).

3.2 Deep Imitation Learning

There are two important research questions of the imitation learning; handling
the states that are not part of the learning and the generalizing capability of
the model and representation. A teacher demonstrates the expected behavior by
controlling the robot at every time step. That way, we construct state-action
tuples. By using this demonstration data, we learn the policy of the task. If
the teacher’s demonstrations cover very limited part of the state space or the
learning model is not able to generalize well, the performance of the imitation
learning decreases.

In this study, we use convolutional neural networks as our learning models.
In this way, we are able to directly use camera images as input to our learning
model. This is called end-to-end learning since we do not use intermediate feature
extraction approach. In other words, the model itself learns to extract useful
features based on the task. This approach is closer to the human’s cognition
where real neural network processes the image and produces an action.

When the state is fully observable by the robot, the direct state-action map-
ping has the capability of representing the optimal policy taught by the teacher
assuming that the dataset encompasses every state. However, when the prob-
lem is partially observable, where a single observation is not enough to infer
the world state, our learning model needs to learn to infer action from a series
observations. For example, in the robot soccer problem, the robot perceives the
world from its cameras. Therefore, the robot can perceive only a small part of
the field. If there is a ball in the camera, the robot knows the position of the ball,
but if the ball is not in the field of view of the camera, the robot does not know
the current state of the world about the ball. A convolutional neural network
(CNN) can only map the current image to an action so that previous actions or
images does not affect the choice of the action. However, the robot soccer behav-
ior needs the information of previous camera images to act properly. Therefore,
we extend basic CNN with a hierarhical neural network (H-CNN) and recurrent
convolutional neural network (Recurrent-CNN).

Convolutional Neural Network (CNN). This is the straightforward neural
network to learn state-action mapping. We assume that the images taken from
two cameras of the robot are powerful enough to learn the behavior operated by
the teacher. To be able to process the two images having different resolutions, we
have two different channels of input layers. The first hidden layer consists of 16
units for top camera image and 8 for bottom camera image 5 by 5 convolutional
filters that convolve the images with stride 2. After the convolution, a 2 by 2
maximum pooling filter is used. The second hidden layer consists of 32 for top



144 O. Aşık et al.

Fig. 3. The architecture of deep convolutional neural network

Fig. 4. Sample representative images from different clusters.

camera image and 16 for bottom camera image 5 by 5 convolutional filters that
convolves the images with stride 2. After the convolution, a 2 by 2 maximum
pooling filter is used. We also used ReLU [9] activation function after every
convolutional layer. After this four layers, we have a fully connected layer with
128 units and ReLU activation. The last layer is a fully connected linear output
layer with three units. The layers of the neural network model can be seen in
Fig. 3.

Hierarchical Convolutional Neural Network (H-CNN). We propose a
hierarchical approach to learn a behavior that consists of sub-behaviors or skills.
For example, our robot soccer behavior consists of four sub-behaviors such as
searching the ball, going to the ball, aligning to the goal and dribbling the ball.
Our assumption is that our demonstration data including the actions can be
clustered into four classes where each may correspond to a sub-behavior. A set
of example images from different clusters can be seen in Fig. 4. Therefore, we first
cluster the whole data into a predetermined number of classes. Then, we learn
a separate convolutional neural network with the same architecture as Fig. 3



End-to-End Deep Imitation Learning: Robot Soccer Case Study 145

Fig. 5. The Recurrent-CNN with LSTM layer

for each cluster. During the test phase, we find the closest cluster to the given
images and use the learned CNN of that cluster.

For the clustering, we first create histograms of images with 5 bins. We
concatenate the top and bottom histogram features. Then, we use the K-Means
clustering algorithm [1] to cluster the whole dataset. After the clustering, we
obtain a different demonstration dataset for each cluster. Finally, we train a
CNN for each of these datasets.

Recurrent Convolutional Neural Network (Recurrent-CNN). We also
propose a recurrent convolutional neural network model (Recurrent-CNN) to
learn the mapping between a series of states and a series of actions. We augment
the CNN model proposed in Sect. 3.2 by adding a Long-Short Term Memory
(LSTM) layer after the convolutional layers as seen in Fig. 5. LSTM cells have
the capability to learn to keep which part of the data in its memory and which
part to forget [5]. It is shown that LSTM is the state of the art method on
sequence learning [17].

The LSTM layer of Recurrent-CNN has 64 units. It is trained using a 100
time step window of data that corresponds to approximately three seconds of the
data sequence. We empirically determine the window size in order to balance the
training time and the performance. We test and evaluate the model by sliding a
100 time step window over the data sequence.

4 Experiments and Results

Our training data set consists of 100 episodes where every episode includes a
complete robot soccer behavior as explained in Sect. 3.1. We train all of our
three models using ADAM neural network optimization algorithm [8]. We used
different maximum iterations for different models since we used fixed processing
time. Finally, we measure the overall training error as the root mean square of
the Euclidean distance between the true action vector and predicted vector. We
also measure the performance of the models on 20 test episodes that is not used
in training.



146 O. Aşık et al.

4.1 The Learning Performance

One of the most important factors that determine the success of imitation learn-
ing methods is the learning performance. This is based on how well the model
can learn the demonstration data. Also, the model should not memorize all
the demonstrations in order to avoid over-fitting. A robust imitation learning
method is supposed to learn which action to take for the states which are not
in the demonstration. The model should be able to generalize for new states as
well. The learning performance of an imitation learning model can be measured
by the average error on the demonstration data. The generalization performance
can be measured by the average error on the test demonstration data.

Table 1. The performance of CNN models

Models # of Training
iterations

Training
error

Test
error

Goals
scored

CNN 106 0.12 0.16 3

H-CNN 15 × 104 0.15 0.17 3

Recurrent-CNN 3 × 103 0.036 0.14 4

The overall performance of different models can be seen in Table 1. The
R-CNN has the best performance by having the least training error and least
test error. Test and training errors are reported as the average distance of the
calculated speed vector and the demonstration speed vector. The training results
are provided over all training data and the test results are provided on the data
from 20 new episodes. When we observe the overall learned behavior, we see
that robot struggles to find the direction of the goal and turns around while
dribbling the ball. However, the robot robustly performs searching for the ball,
moving towards the ball and dribbling the ball actions. When we measure the
number of goals scored in test scenarios, the robot scores 4 goals using R-CNN,
3 goals using CNN and 3 goals using H-CNN models over 20 test episodes.
The trajectories of the robot with R-CNN model and demonstration trajectories
are seen in Fig. 6. The left trajectories present the goal scored ones, the right
trajectories present some of the failed ones.

4.2 Discussion

There are two important research questions about imitation learning; how to
represent and collect demonstration data, and how to represent and optimize
the policy. Our approach generates demonstrations from an expert software such
that the behavior of the robot is consistent. By using a software for the collection
of the demonstration data, we minimize the possibility of demonstrator errors
and instability.



End-to-End Deep Imitation Learning: Robot Soccer Case Study 147

Fig. 6. The comparison of robot trajectories while running test episodes. The left fig-
ures show goal scored episodes. The right figures show some of the failed test episodes.

Since demonstrator errors are minimized, the success of our approach basi-
cally depends on the data representation and model selection for the policy. We
use deep convolutional neural networks (CNN) to represent our policies because
they enable us to represent the demonstration data as camera images. It is
known that CNNs perform well on visual classification and detection tasks [9].
The dataset we generated can be viewed as a machine learning dataset for visual
regression task. However, basic use of CNN comes with the assumption that we
can infer the expected action using camera images of the current time step.
Although the problem is not fully observable, we see that the performance of
different policy representations (CNN, H-CNN, Recurrent-CNN) are close. This
might be due to the possible overlap between training data set and test data set.
We argue that learned models are able to memorize some of the training cases
to reduce the error, but not able to generalize or memorize the whole task.



148 O. Aşık et al.

When we investigate the behaviors generated with different learning models,
we see that all of the models are able to carry out three basic subtasks; searching
the ball, going towards the ball, and dribbling the ball. However, they generally
fail to align with the goal. This is due to the demonstration behavior. The
demonstration behavior decides to align to the goal when the ball is close to
dribbling and orientation of the robot is not towards the goal. However, the
behavior does not use the robot images to carry out aligning to the goal behavior.
It uses the true position of the robot provided by the simulator. Hence, how to
align to the goal using only the camera images is not explicitly exhibited in the
demonstration data.

Although the real world application of this method is limited, the policy
learned in the simulation can be further improved with less amount of real-world
data. Also, we keep the CNN architectures as small as possible to be able to have
real-time performance. On a laptop having 2.8 GHz cpu2, the forward pass of
CNN architecture takes 0.0018 s, and Recurrent-CNN architecture takes 0.0021 s
on average. Based on these statistics, we expect near-real-time performance on
Nao robot.

5 Conclusion

Using the deep imitation learning method, we learned a basic robot soccer behav-
ior of searching the ball, moving towards the ball, and dribbling the ball to the
goal. Our proposed convolutional neural network uses two images from two dif-
ferent cameras of the robot as input. We created our dataset using RoboCup
SPL team B-Human software modules and carried out our experiments using
SimRobot 3D realistic robot simulator. We show that using quite a few samples,
we can learn simple robot soccer behaviors using end-to-end training. In the
future, we aim to scale our method to more complex behaviors on real robots in
real environments.

Acknowledgments. This project is supported by Turkey Technology Team Founda-
tion (T3).

References

1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2014)
2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning

from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)
3. Aşık, O., Akın, H.L.: Solving multi-agent decision problems modeled as Dec-

POMDP: a robot soccer case study. In: Chen, X., Stone, P., Sucar, L.E., van der
Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 130–140. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39250-4 13

4. Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time
Atari game play using offline Monte-Carlo tree search planning. In: Advances in
Neural Information Processing Systems, pp. 3338–3346 (2014)

2 Intel 7700HQ 4 cores 2.8 GHz, 32 GB 2400 MHz RAM.

https://doi.org/10.1007/978-3-642-39250-4_13


End-to-End Deep Imitation Learning: Robot Soccer Case Study 149

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Hussein, A., Elyan, E., Gaber, M.M., Jayne, C.: Deep imitation learning for 3D
navigation tasks. Neural Comput. Appl. 29, 1–16 (2017)

7. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of
learning methods. ACM Comput. Surv. (CSUR) 50(2), 21 (2017)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

10. Latzke, T., Behnke, S., Bennewitz, M.: Imitative reinforcement learning for soccer
playing robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.)
RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 47–58. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74024-7 5

11. Leottau, L., Celemin, C., Ruiz-del-Solar, J.: Ball dribbling for humanoid biped
robots: a reinforcement learning and fuzzy control approach. In: Bianchi, R.A.C.,
Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI),
vol. 8992, pp. 549–561. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18615-3 45

12. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

13. Meriçli, Ç., Veloso, M., Akın, H.L.: Task refinement for autonomous robots using
complementary corrective human feedback. Int. J. Adv. Robot. Syst. 8(2), 16
(2011)

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

15. Röfer, T., et al.: B-Human team report and code release 2017 (2017). http://www.
b-human.de/downloads/publications/2017/coderelease2017.pdf

16. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–
3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

18. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
Press, Cambridge (1998)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-540-74024-7_5
https://doi.org/10.1007/978-3-319-18615-3_45
https://doi.org/10.1007/978-3-319-18615-3_45
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

	End-to-End Deep Imitation Learning: Robot Soccer Case Study
	1 Introduction
	2 Related Work
	2.1 End to End Learning
	2.2 Ball Dribbling Task

	3 Methods
	3.1 Dataset Creation
	3.2 Deep Imitation Learning

	4 Experiments and Results
	4.1 The Learning Performance
	4.2 Discussion

	5 Conclusion
	References




