
Dirk Holz
Katie Genter
Maarouf Saad
Oskar von Stryk (Eds.)

RoboCup 2018:
Robot World Cup XXII

 123

LN
AI

 1
13

74

Lecture Notes in Artificial Intelligence 11374

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Dirk Holz • Katie Genter •

Maarouf Saad • Oskar von Stryk (Eds.)

RoboCup 2018:
Robot World Cup XXII

123

Editors
Dirk Holz
X: The Moonshot Factory
formerly Google [x]
Mountain View, CA, USA

Katie Genter
The University of Texas at Austin
Austin, TX, USA

Maarouf Saad
Ecole de Technologie Supérieure
Montreal, QC, Canada

Oskar von Stryk
Technical University of Darmstadt
Darmstadt, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-27543-3 ISBN 978-3-030-27544-0 (eBook)
https://doi.org/10.1007/978-3-030-27544-0

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustrations: Different images from RoboCup events 2016–2018. By Courtesy of RoboCup
Federation. Used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-27544-0

Preface

RoboCup fosters robotics and AI research by setting formidable challenges, which
bring researchers from around the world together through publicly appealing
competitions and organized scientific meetings. RoboCup 2018 was held in the Palais
des congrès de Montréal, Montréal, Québec, Canada, during June 18–22, 2018. The
competition had 2,350 participants from 39 countries with over 1,000 robots competing
in various disciplines. In the RoboCupJunior leagues the focus is on the technical
education and development of middle and high school students through
project-oriented robotic challenges. The research-oriented major leagues were held in
the areas of: RoboCup Soccer, with five leagues spanning simulated robots to full-size
humanoid robots competing in soccer; RoboCup Rescue, with three leagues investigating
how robots can support first-responders in emergency situations; RoboCup@Home,
with three leagues where the development of service robots in everyday environments
is promoted; and RoboCup Industrial, with two leagues exploring future uses of robots
in industrial applications.

This book highlights the approaches of champion teams from the competitions and
documents the proceedings of the 22nd annual RoboCup International Symposium that
was held at the Palais des Congrès on June 22, 2018. Due to the complex research
challenges set by the RoboCup initiative, the RoboCup International Symposium offers
a unique perspective for exploring scientific and engineering principles underlying
advanced robotic and AI systems. The highly experimental and interactive character of
RoboCup, along with its unique opportunities to benchmark and validate research
progress, provides a natural forum where novel ideas and promising technologies can
be disseminated across a large and growing community.

For the RoboCup 2018 Symposium, a total of 53 submissions were received. The
submissions were carefully reviewed by the 69 members of the international Program
Committee who generously helped to read and evaluate each of the submissions. Each
paper was scored and discussed by three reviewers. The committee ultimately decided
to accept 32 regular papers and one paper for a special track on open source hard- and
software for an overall acceptance rate of 60%. Among the accepted papers, 10 were
selected for oral presentations and the remainder were presented as posters. In addition,
the poster session featured 18 projects that RoboCup funded for the promotion and
development of RoboCup Leagues.

The RoboCup 2018 Symposium was fortunate to have three invited keynote
speakers:

– Yoshua Bengio (Université de Montréal): “Deep Learning for AI”
– Jeannette Bohg (Stanford): “On the Role of Structure in Learning for Robot

Manipulation”
– Torsten Kroeger (Karlsruhe Institute of Technology): “Robot Manipulation:

Real-time Motion Planning, Hybrid Control, and Reinforcement Learning”

Yoshua Bengio, who recently received the Turing Award, discussed deep learning
as a highly capable machine learning approach inspired by brains, learning multiple
levels of representation and different levels of abstraction. Jeannette Bohg focused on
motion-based segmentation of an unknown number of simultaneously moving objects
and a method for predicting the effect of physical interaction with objects in the
environment. Torsten Kroeger presented a talk on robot manipulation. His focus was
on embedding multiple sensors - force/torque, vision, and distance - in the feedback
loops of motion controllers and the new robot applications involved.

Their three exciting presentations helped to attract over 500 participants to the
symposium.

The Award Committee selected one best paper, printed first in the book: Best Paper
Award for Scientific Contribution: Thomas Gabel, Philipp Klöppner, Eicke Godehardt,
and Alaa Tharwat: “Communication in Soccer Simulation: On the Use of Wiretapping
Opponent Teams.”

We want to thank the members of the Program Committee and our additional
reviewers for their time and expertise to ensure the quality of the technical program, as
well as the members of the Award Committee for their work during the symposium.
Our thanks go to the local Organizing Committee, who supported us in the preparation
and running of the symposium. The support and efforts of our local co-chair, Maarouf
Saad, are especially acknowledged by all other symposium co-chairs. We also thank all
the authors and participants for their contributions and enthusiasm. Finally, we are
grateful to the General Chair of RoboCup 2018, Sara Iatauro, who dedicated her
complete time and energy, as well as the members of the Organizing Committee and all
team members who helped to make RoboCup 2018 a very special cooperative event.
As symposium co-chairs, we had the great pleasure of working together and seeing
each other in Montreal. We sincerely thank the entire RoboCup community for their
support and friendship!

December 2018 Dirk Holz
Katie Genter

Maarouf Saad
Oskar von Stryk

vi Preface

Organization

Symposium Co-chairs

Dirk Holz X: The Moonshot Factory - formerly Google [x], USA
Katie Genter The University of Texas at Austin, USA
Maarouf Saad Ecole de Technologie Superieure, Canada
Oskar von Stryk TU Darmstadt, Germany

Program Committee

H. Levent Akin Bogazici University, Turkey
Hidehisa Akiyama Fukuoka University, Japan
Minoru Asada Osaka University, Japan
Jacky Baltes National Taiwan Normal University, Taiwan
Sven Behnke University of Bonn, Germany
Joydeep Biswas University of Massachusetts Amherst, USA
Joschka Boedecker University of Freiburg, Germany
Ansgar Bredenfeld Dr. Bredenfeld UG, Germany
Stephan Chalup The University of Newcastle, Australia
Kai Chen University of Science and Technology of China, China
Xiaoping Chen University of Science and Technology of China, China
Esther Colombini Unicamp, Brazil
Anna Helena Reali Costa University of São Paulo, Brazil
Bernardo Cunha University of Aveiro, Portugal
Klaus Dorer Hochschule Offenburg, Germany
Farshid Faraji Bonab Azad University, Iran
Thomas Gabel Frankfurt University of Applied Sciences, Germany
Reinhard Gerndt Ostfalia University of Applied Sciences, Germany
Justin Hart The University of Texas at Austin, USA
Masahide Ito Aichi Prefectural University, Japan
Ulrich Karras RoboCup Germany Regional Committee, Germany
Thierry Karsenti University of Montreal, Canada
Piyush Khandelwal The University of Texas at Austin, USA
Gerhard Kraetzschmar Bonn-Rhein-Sieg University, Germany
Gerhard Lakemeyer RWTH Aachen University, Germany
Nuno Lau University of Aveiro, Portugal
Olivier Ly LaBRI - Bordeaux 1 University, France
Patrick MacAlpine The University of Texas at Austin, USA
Sebastian Marian Elrond Network, Romania
Ehsan Marjani Islamic Azad University, Iran
Mauricio Matamoros Universität Koblenz-Landau, Germany
Eric Matson Purdue University, USA

Tekin Meriçli Carnegie Mellon University, USA
Çetin Meriçli Carnegie Mellon University, USA
Francois Michaud Université de Sherbrooke, Canada
Kazuhito Murakami Aichi Prefectural University, Japan
Tomoharu Nakashima Osaka Prefecture University, Japan
Daniele Nardi Sapienza University of Rome, Italy
Tim Niemüller RWTH Aachen University, Germany
Asadollah Norouzi Singapore Polytechnic, Singapore
Oliver Obst Western Sydney University, Australia
Maike Paetzel Uppsala University, Sweden
Paul G. Plöger Bonn-Rhein-Sieg University of Applied Science,

Germany
Mikhail Prokopenko The University of Sydney, Australia
Caleb Rascon Universidad Nacional Autónoma de México, Mexico
Luis Paulo Reis University of Porto - FEUP/LIACC, Portugal
Javier Ruiz-Del-Solar Universidad de Chile, Chile
Thomas Röfer Deutsches Forschungszentrum

für Künstliche, Intelligenz GmbH, Germany
Soroush Sadeghnejad Amirkabir University of Technology, Iran
Benjamin Schnieders University of Liverpool, UK
Raymond Sheh Curtin University, Australia
Masaru Shimizu Chukyo University, Japan
Saeed Shiry Amirkabir University of Technology, Iran
Marco Simoes Universidade do Estado da Bahia (UNEB), Brazil
Jivko Sinapov The University of Texas at Austin, USA
Frieder Stolzenburg Harz University of Applied Sciences, Germany
Komei Sugiura NICT, Japan
Yasutake Takahashi University of Fukui, Japan
Federico Tombari Technical University of Munich, Germany
Flavio Tonidandel Centro Universitario da FEI, Brazil
Arnoud Visser University of Amsterdam, The Netherlands
Ubbo Visser University of Miami, USA
Sven Wachsmuth Bielefeld University, Germany
Alfredo Weitzenfeld University of South Florida, USA
Timothy Wiley The University of New South Wales, Australia
Aaron Wong The University of Newcastle, Australia
Junhao Xiao National University of Defense Technology, China
Sebastian Zug Universität Magdeburg, Germany

Additional Reviewers

Philipp Allgeuer University of Bonn, Germany
Alexander Biddulph The University of Newcastle, Australia
Domenico Bloisi University of Verona, Italy
Huseyin Coskun Technical University of Munich, Germany
Hafez Farazi University of Bonn, Germany

viii Organization

Josiah Hanna The University of Texas at Austin, USA
Amirhossein Hosseinmemar University of Manitoba, Canada
Trent Houliston The University of Newcastle, Australia
Meng Cheng Lau University of Manitoba, Canada
Maria Teresa Lazaro Sapienza University of Rome, Italy
Jakob Mayr Technical University of Munich, Germany
Arul Selvam Periyasamy University of Bonn, Germany
Pedro Peña University of Miami, USA
Stefan Schiffer RWTH Aachen University, Germany
Vida Shams Amirkabir University of Technology, Iran
Akira Taniguchi Ritsumeikan University, Japan
Alaa Tharwat Frankfurt University of Applied Sciences, Germany
Ruben van Heusden University of Amsterdam, The Netherlands
Jonathan Vincent Université de Sherbrooke, Canada
Shun-Cheng Wu Technical University of Munich, Germany
Behnam Yazdankhoo University of Tehran, Iran

Organization ix

Contents

Best Paper Award

Communication in Soccer Simulation: On the Use of Wiretapping
Opponent Teams. 3

Thomas Gabel, Philipp Klöppner, Eicke Godehardt, and Alaa Tharwat

Oral Presentations

Multi-Robot Fast-Paced Coordination with Leader Election 19
Ricardo Dias, Bernardo Cunha, José Luis Azevedo, Artur Pereira,
and Nuno Lau

Visual SLAM-Based Localization and Navigation for Service Robots:
The Pepper Case . 32

Cristopher Gómez, Matías Mattamala, Tim Resink,
and Javier Ruiz-del-Solar

Visual Mesh: Real-Time Object Detection Using Constant Sample Density. . . . 45
Trent Houliston and Stephan K. Chalup

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling . . . 57
Mihai Polceanu, Fabrice Harrouet, and Cédric Buche

Combining Simulations and Real-Robot Experiments for Bayesian
Optimization of Bipedal Gait Stabilization . 70

Diego Rodriguez, André Brandenburger, and Sven Behnke

Learning Skills for Small Size League RoboCup. 83
Devin Schwab, Yifeng Zhu, and Manuela Veloso

Real-Time Scene Understanding Using Deep Neural Networks
for RoboCup SPL . 96

Marton Szemenyei and Vladimir Estivill-Castro

Training a RoboCup Striker Agent via Transferred Reinforcement Learning . . . 109
Warren Blair Watkinson II and Tracy Camp

Playing Soccer Without Colors in the SPL: A Convolutional Neural
Network Approach . 122

Francisco Leiva, Nicolás Cruz, Ignacio Bugueño,
and Javier Ruiz-del-Solar

Poster Presentations

End-to-End Deep Imitation Learning: Robot Soccer Case Study 137
Okan Aşık, Binnur Görer, and H. Levent Akın

Designing Convolutional Neural Networks Using a Genetic Approach
for Ball Detection . 150

Georg Christian Felbinger, Patrick Göttsch, Pascal Loth, Lasse Peters,
and Felix Wege

ImageTagger: An Open Source Online Platform for Collaborative
Image Labeling. 162

Niklas Fiedler, Marc Bestmann, and Norman Hendrich

Mimicking an Expert Team Through the Learning of Evaluation
Functions from Action Sequences . 170

Takuya Fukushima, Tomoharu Nakashima, and Hidehisa Akiyama

Jetson, Where Is the Ball? Using Neural Networks for Ball Detection
at RoboCup 2017 . 181

Alexander Gabel, Tanja Heuer, Ina Schiering, and Reinhard Gerndt

Bridging the Gap - On a Humanoid Robotics Rookie League 193
Reinhard Gerndt, Maike Paetzel, Jacky Baltes, and Olivier Ly

Context Aware Robot Architecture, Application
to the RoboCup@Home Challenge . 205

Fabrice Jumel, Jacques Saraydaryan, Raphael Leber,
Laetitia Matignon, Eric Lombardi, Christian Wolf, and Olivier Simonin

From Commands to Goal-Based Dialogs: A Roadmap to Achieve
Natural Language Interaction in RoboCup@Home 217

Mauricio Matamoros, Karin Harbusch, and Dietrich Paulus

RoboCupSimData: Software and Data for Machine Learning from
RoboCup Simulation League . 230

Olivia Michael, Oliver Obst, Falk Schmidsberger, and Frieder Stolzenburg

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 238
Federico Nardi, María T. Lázaro, Luca Iocchi, and Giorgio Grisetti

Towards Long-Term Memory for Social Robots: Proposing
a New Challenge for the RoboCup@Home League 251

Matías Pavez, Javier Ruiz del Solar, Victoria Amo,
and Felix Meyer zu Driehausen

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 262
P. Peña, M. Polceanu, C. Lisetti, and U. Visser

xii Contents

Evaluation of Situations in RoboCup 2D Simulations Using Soccer
Field Images. 275

Tanguy Pomas and Tomoharu Nakashima

Near Real-Time Object Recognition for Pepper Based on Deep Neural
Networks Running on a Backpack. 287

Esteban Reyes, Cristopher Gómez, Esteban Norambuena,
and Javier Ruiz-del-Solar

Multimodal Movement Activity Recognition Using a Robot’s
Proprioceptive Sensors. 299

Robin Schmucker, Chenghui Zhou, and Manuela Veloso

Survey of Rescue Competitions and Proposal of New Standard Task
from Ordinary Tasks . 311

Masaru Shimizu and Tomoichi Takahashi

Adjusted Bounded Weighted Policy Learner . 324
David Simões, Nuno Lau, and Luís Paulo Reis

Towards Real-Time Ball Localization Using CNNs 337
Daniel Speck, Marc Bestmann, and Pablo Barros

Deep Learning for Semantic Segmentation on Minimal Hardware 349
Sander G. van Dijk and Marcus M. Scheunemann

RoboCup Junior in the Hunter Region: Driving the Future of Robotic
STEM Education . 362

Aaron S. W. Wong, Ryan Jeffery, Peter Turner, Scott Sleap,
and Stephan K. Chalup

Distributed Circumnavigation Control with Dynamic Spacing
for a Heterogeneous Multi-robot System . 374

Weijia Yao, Sha Luo, Huimin Lu, and Junhao Xiao

Prediction of a Ball Trajectory for the Humanoid Robots:
A Friction-Based Study . 387

Behnam Yazdankhoo, Mohammad Navid Shahsavari,
Soroush Sadeghnejad, and Jacky Baltes

Champion Papers

RoboCup SSL 2018 Champion Team Paper . 401
Zheyuan Huang, Lingyun Chen, Jiacheng Li, Yunkai Wang, Zexi Chen,
Licheng Wen, Jianyang Gu, Peng Hu, and Rong Xiong

Contents xiii

Tech United Eindhoven Middle Size League Winner 2018 413
Yanick Douven, Wouter Houtman, Ferry Schoenmakers, Koen Meessen,
Harrie van de Loo, Dennis Bruijnen, Wouter Aangenent, Jorrit Olthuis,
Cas de Groot, Marzieh Dolatabadi Farahani, Peter van Lith,
Pim Scheers, Ruben Sommer, Bob van Ninhuijs, Patrick van Brakel,
Jordy Senden, Marjon van ’t Klooster, Wouter Kuijpers,
and René van de Molengraft

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize
Soccer Competitions . 425

Muhtadin, Muhammad Reza Arrazi, Sulaiman Ali, Tommy Pratama,
Dhany Satrio Wicaksono, Ahmad Hernando Pradanatta Putra,
I. Made Pande Ari, Alfi Maulana, Oktaviansyah Purwo Bramastyo,
Syifaul Qolby Asshakina, Muhammad Attamimi, Muhammad Arifin,
Mauridhi Hery Purnomo, and Djoko Purwanto

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize
Soccer Competitions . 436

Hafez Farazi, Grzegorz Ficht, Philipp Allgeuer, Dmytro Pavlichenko,
Diego Rodriguez, André Brandenburger, Mojtaba Hosseini,
and Sven Behnke

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 450
Hidehisa Akiyama, Tomoharu Nakashima, Takuya Fukushima,
Jiarun Zhong, Yudai Suzuki, and An Ohori

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 462
Patrick MacAlpine, Faraz Torabi, Brahma Pavse, John Sigmon,
and Peter Stone

Integrating the Latest Artificial Intelligence Algorithms
into the RoboCup Rescue Simulation Framework . 476

Arnoud Visser, Luis G. Nardin, and Sebastian Castro

A Robust and Flexible System Architecture for Facing the RoboCup
Logistics League Challenge . 488

Thomas Ulz, Jakob Ludwiger, and Gerald Steinbauer

RoboCup@Work 2018 Team AutonOHM . 500
Jon Martin, Helmut Engelhardt, Marco Masannek, Tobias Scholz,
Kay Gillmann, and Benjamin Schadde

homer@UniKoblenz: Winning Team of the RoboCup@Home Open
Platform League 2018 . 512

Raphael Memmesheimer, Ivanna Mykhalchyshyna, Viktor Seib,
Tobias Evers, and Dietrich Paulus

xiv Contents

ToBI - Team of Bielefeld Enhancing the Robot Capabilities
of the Social Standard Platform Pepper . 524

Florian Lier, Johannes Kummert, Patrick Renner, and Sven Wachsmuth

Author Index . 537

Contents xv

Best Paper Award

Communication in Soccer Simulation: On
the Use of Wiretapping Opponent Teams

Thomas Gabel(B), Philipp Klöppner, Eicke Godehardt, and Alaa Tharwat

Faculty of Computer Science and Engineering,
Frankfurt University of Applied Sciences,

60318 Frankfurt am Main, Germany
{tgabel,godehardt,aothman}@fb2.fra-uas.de,kloeppne@stud.fra-uas.de

Abstract. Inter-agent communication has been playing an important
role in soccer simulation 2D since its introduction. Its primary usage has
been to communicate with teammates in order to share state observations
to fill gaps in the players’ world models, to announce near future actions
like passes or requesting passes, as well as for sharing and synchronizing
on locker room agreements. In this paper, by contrast, our focus is on
the communication of the opponent team. We present an approach for
wiretapping and decoding opponent communication and systematically
evaluate its impact. Our main finding is that a team that wiretaps its
opponent and exploits intercepted information appropriately, can boost
its own playing performance significantly.

1 Introduction

When multiple agents need to act independently of one another, under real-time
constraints, and under a partial view of the world, inter-agent communication
is one mean to mitigate the challenges of distributed decision-making and of
coordinating agent behaviors. In robotic soccer, we face all of these challenges,
with different nuances across leagues. Given that robotic soccer represents also a
highly competitive domain, it is standing to reason that nearly any team exploits
the granted possibilities of communication to the extent the rules of the respec-
tive RoboCup league permit. As a consequence, the question arises whether some
team might gain an advantage, if it decides to wiretap its opponent and if it –
assuming that it somehow understands the contents of foreign communication –
exploits such eavesdropped information during its own decision-making process.
This is the research question that we are going to explore for the 2D simulation
league, subsequently.

We start off by providing relevant background information on the mechanics
and the general role of communication in soccer simulation (Sect. 2), before we
present the core ideas of an approach to learn the meaning of opponent communi-
cation in Sect. 3 [4]. The task will be cast as a supervised learning problem where
deep convolutional neural networks will do the actual work of decoding some for-
eign language message to readable data. Since the belonging implementation has
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-27544-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_1

4 T. Gabel et al.

been realized using the TensorFlow (TF) framework [1], we advocate Sect. 4 to a
brief review of software engineering challenges encountered when incorporating
the TF-based implementation into an existing RoboCup team. In Sect. 5, we
return to our research question and empirically evaluate the quantitative impact
of our approach. In so doing, we introduce various communication-related mod-
ifications to our team FRA-UNIted, including the aforementioned wiretapping
ideas, and assess its performance against the current world champion (Helios [2]).
Besides reporting and visualizing the remarkable impact, we critically discuss the
approach before we conclude (Sect. 6).

2 Background

In what follows, we outline the general mechanics of communication in the 2D
simulation league and discuss relevant related work.

2.1 Communication in RoboCup’s Soccer Simulation 2D League

While direct communication among agents is prohibited, each agent is allowed
to broadcast a string of up to 10 characters in each of the 6000 time steps that
a regular game is made of. Such say messages are received by the Soccer Server
[9] and are handed on to those players in the subsequent simulation cycle which
had put their listening attention to the sender. Each agent can maximally hear
one message from a teammate plus one message from an opponent at a time.

9,0 Recv HELIOS2017_10: (kick 86.8 63.1)(turn_neck -73)(attentionto our 11)(say "BybzQQ(u9U")
9,0 Recv FRA-UNIted_5: (dash 100 -0)(turn_neck 7.65998)(say "72gtaUuDWT")(attentionto our 4)
9,0 Recv HELIOS2017_2: (turn -53.967)(turn_neck -31)
9,0 Recv HELIOS2017_4: (dash 60)(turn_neck -1)
9,0 Recv FRA-UNIted_4: (dash 100 -0)(turn_neck -89.2104)(say "6zfuDWN9VT")(attentionto our 6)
9,0 Recv HELIOS2017_11: (dash 100)(turn_neck 0)(say "PzdAc_")

Fig. 1. Excerpt of the text log file of RoboCup 2017’s final match (shortened).

Figure 1 shows an excerpt of the text log file of the 2017 final match, which
among other things reveals which actions were taken by some of the players
during time step 9. Most interestingly, some of the players made use of com-
munication by issuing say messages of up to 10 chars length, though, from a
human perspective, it seems nearly impossible to understand the contents of
these strings. In this regard, we refer to Sect. 5.2, where we exemplarily and
empirically reason on the actual contents of such say messages.

2.2 Related Work

Communication is an active field of research in the multi-agent systems com-
munity and, specifically, in robotic soccer. There has been a lot of work on

Communication in Soccer Simulation 5

communication across leagues (e.g. in the MidSize league [8] or in the 3D sim-
ulation league [7]). For the 2D league, communication has been an important
building block ever since, though the rules on how to communicate, as enforced
by the Soccer Server [9], have changed over the years. In early work, Stone and
Veloso [12] focused on developing techniques for inter-agent communication in
unreliable, low-bandwidth environments, assuming that agents can communicate
256 bytes every two time steps. Starting with the change from Soccer Server ver-
sion 7 to 8 in 2002, the maximum length of players’ say messages has, however,
been limited severely (to the 10 chars mentioned), rendering “plain text” com-
munication nearly useless. The general potential for communication to improve
distributed decision-making in multi-agent systems is also considered in [13].
Our experimental methodology is, to some extent, in line with [10], who theoret-
ically and empirically evaluated the utility of varying communication protocols
in soccer simulation, and with [15] to which we relate our work more thoroughly
in Sect. 5. Finally, we point the reader to the related work section in [15] for an
excellent overview on multi-agent communication and coordination.

3 Eavesdropping Opponent Agent Communication

In this section, we aim at providing a concise overview of the approach to eaves-
drop and decode intercepted messages sent by an opponent soccer simulation
team, which has first been presented in [4]. The basic idea of this approach is to
pose the problem as a supervised learning task and to leverage state-of-the-art
deep learning techniques for recognizing the meaning of messages heard. The
authors make the obvious assumption that the contents of an intercepted mes-
sage bears information whose transmission is beneficial to the opponent team,
containing match-related data such as (1) ball-related, (2) player-related, (3)
pass-related, or (4) team strategy-related junks of information. While the authors
of [4] have primarily concentrated on (1) and (3), the focus of the paper at hand
is on pass-related information, more specifically on the recognition of adversarial
pass announcements, as well as on the quantitative impact that wiretapping the
opponent agents can have on our own team’s playing performance.

3.1 Learning Problem Formalization

Defining the problem as a supervised learning task, a set of training patterns
P = {(xp, tp)|p = 1, . . . , |P|} is required. An input vector xp corresponds to a say
message C = (cs, . . . , c0) with s < 10 and literals ci from the alphabet A of 94
printable ASCII-128 characters. So, the discrete set of transmittable messages is
A = ∪9

i=0A
i which in our setting boils down to |A| ≈ 5.1 · 1019.

In regard to the target values tp, however, we arrive at two sub-tasks relevant
to the specific task of opponent pass announcement recognition:

(a) The problem of classifying whether an intercepted say message C contains a
pass announcement or not. Accordingly, it holds tp ∈ {true, false}.

6 T. Gabel et al.

(b) Given that the classifier from (a) states that C contains a pass announcement,
the next logical challenge is to extract details of the pass announcement from
C, such as its starting point or velocity. Thus, we obtain a classical regression
problem with tp ∈ R

l (l = 4 in case of pass announcements, as x and y
components of the start position and velocity characterize the pass).

If we proceed on the assumption that the opponent team under consideration
does announce its pass (this is a valid assumption for the 2D league), the training
data set can be compiled easily by running a large batch of matches against the
considered opponent team, recording its communication as well as observing its
actual passes played. If, in so doing, a pass is accompanied by a say message C
sent simultaneously to or shortly before the pass is played, then it is likely that
C contains a pass announcement plus details of the intended pass.

3.2 Bit-Level Representation of Communicated Messages

As pointed out, the goal is to build and train a deep neural network into which
some representation of the say message C is fed and whose output neuron(s)
provide(s) decoded pass-related information. Intuitively, it seems tempting to
feed a numeric representation of each letter ci (e.g. its ASCII code) into the
first layer of the network. Such an approach might indeed be expected to yield
good results, if the payload to be transmitted is generally not distributed across
multiple chars and if certain pieces of information were known to be located at a
fixed position within C. Given the limited communication bandwidth, however,
these assumptions are unrealistic to be made. Accordingly, in [4] it has been
suggested to employ a bit level representation of C. Among other merits, such a
representation will contain bit patterns that hint to the type of data encoded in
the message as well as patterns that can be decoded to pass parameters1.

Most importantly, a bit representation allows for the utilization of convolu-
tional neural networks [5,6] that perform one-dimensional convolution on the
bit sequence in order to detect features that allow for classifying a message as
containing a pass announcement or for extracting pass parameters. Therefore,
any say message C ∈ A is mapped to a bit sequence b(C) using a function
b : A → {0, 1}B where B is determined by the length of the message and the
size of the underlying alphabet (in our case B = 10�log2 94� = 70).

The authors of [4] suggest different ways of defining that function b, discussing
in detail the motivation, advantages and limits of each suggested bit level encod-
ing. In the rest of this paper, we stick to the “Base-|A| Bit Level Representation”
(b|A|) which, according to [4], makes some assumptions on how opponent teams
might have encoded their say messages, and which has brought about superior
empirical results when using it as the basis of the decoding approach.

1 Under the assumption, that the opponent team does not employ some form of sophis-
ticated data encryption or compression techniques before broadcasting messages.
Hence, we proceed on the assumption that communicated data is not encrypted.

Communication in Soccer Simulation 7

3.3 Model Architecture and Performance

We utilize the same deep convolutional neural network architecture as the one
described in [4] (two convolutional layers, ReLu activations, max pooling, fully
connected final layers, dropout, Adam optimizer) with one minor exception: For
the task of extracting the numeric pass details (x/y of pass start position and
velocity) we do not employ a single trained model with an output vector of length
four, but four separately trained models with the same base architecture, but
a single output neuron each (one of these for each of the four pass announcing
variables, px, py, vx, vy). With four models using a single output neuron each
and trained separately, we were able to achieve better generalization capabilities,
i.e. the average test errors of the to-be-predicted four numeric pass details were
significantly smaller compared to the monolithic model with a four-dimensional
output (even when the latter was allowed to be trained for a much longer time).

For the general empirical performance of the approach, we again refer to
[4]. Most notably, it is possible to train a reliable pass announcement classi-
fier with as little as 50 sample passes observed (accuracy of 98.6%). For 20k
training examples, the accuracy increases to 99.2%. Inferring pass announce-
ment details reliably requires substantially more training samples. However, with
20k passes in the training data set, the average error of the pass start position
is less than one meter (on the 2D playing field with 105 m length and 68 m
width), and the average pass velocity error is generally less than 0.1 m

step (where
vx/y ∈ [−3 m

step , 3 m
step]).

Based on these definitions, implementations and the reported decoding accu-
racies, our idea was to incorporate this approach to eavesdrop and understand
opponent team communication into our competition team. This raised two ques-
tions. First, what engineering effort is required to make such an approach prac-
tically usable in an existing soccer simulation team. And second, what are the
benefits in terms of possibly increased playing performance, if we succeed in
enabling our team to reliably decode and exploit opponent team communica-
tion.

4 Implementation Within the FRA-UNIted Framework

The learning approach outlined above had first been implemented in a proto-
typical manner utilizing TensorFlow’s well-documented Python API. However,
deploying this approach within the FRA-UNIted competition team, which is
implemented in C++ entirely, issued quite an engineering challenge.

– Doing classification/regression with the trained networks utilized via Python
scripts and using inter-process communication with our C++-based agent
binary would have been a first option. But the resulting IPC overhead in
conjunction with the need to possibly set up TF on competition machines
render this approach impractical from our point of view.

– Porting the entire approach to C++ did not represent a valid option, too,
since TF’s C++ API does not enable access to optimizer classes such as the
Adam optimizer for training the decoding models.

8 T. Gabel et al.

– We thus had to opt for a hybrid approach where the network topology defini-
tion and the training process of the deep networks takes place in the Python
world. During matches, stored networks (TF checkpoints) are loaded via TF’s
C++ API and are utilized by our agent via a shared TF library that we built
and that is dynamically loaded by the FRA-UNIted agent.

TF TF FRA-UNIted
Agent

Opponent
Agent

Soccer Server

Training
Data

Python C++

Training Phase Deployment (during matches)

Model
Definition

Training Process
(StochasƟc Gradient Descent)

Protocol Buffers

Shared
Library

Checkpoint
(deep networks)

Fig. 2. Python scripts define the topology of the deep networks and use previously
gathered data for training. Training results and model definitions are stored in sepa-
rate files. The latter are generic for all teams, while the former are different for each
opponent team we face. Via TF’s C++ API, both files are then utilized by our agent.

The specific challenges and hurdles of creating and utilizing a shared C++
library that contains vast parts of TensorFlow as well as the technical and engi-
neering details of our corresponding implementation can be found in our current
team description paper [3].

5 Empirical Evaluation

In [15], the authors have presented the results of a study to measure the effi-
ciency of inter-agent communication and its influence on the general playing per-
formance of robotic soccer simulation teams. While in that paper the focus has
been on the analysis of the structural and functional connectivity of the graph
of communicating players, our main interest is on quantifying the differences in
playing strength of a team that applies varying communication behaviors which
is related to the notion of design points used by the authors of [15].

5.1 Communication Behavior Variants (CBV)

In all our experiments, we abbreviate our team FRA-UNIted as Team A. The
version with which Team A participated in last year’s world championships
(RoboCup 2017) represents our baseline, labeled A Baseline17. We selected
the current world champion (Helios [2]) as the opponent (calling it Team B)
against which to compare. More specifically, we selected both, its 2017 cham-
pion binary as well as its predecessor from RoboCup 2016 (labeled B Baseline17

Communication in Soccer Simulation 9

and B Predecessor16, respectively). In order to reliably quantify the contribution
of communication to the overall performance of Team A, we adapted its base-
line version, thus yielding the four communication behavior variants (CBVs)
considered subsequently.

(a) A Baseline17 : Version of Team A used at the RoboCup 2017 tournament.
(b) A NoComm: While no change to the agents’ playing behavior has been made,

the agents of Team A no longer use any form of inter-agent communication.
So, this CBV should perform worse than the baseline.

(c) A NoOwnPasses: Again, there is no change in the agents’ playing behavior,
but passes that are intended and/or are being played will no longer be com-
municated among the players of Team A. All other aspects of team-internal
communication (like communicated player information or ball data) remain
untouched.

(d) A OppPassExploit : This communication behavior variant is in the center
of our interest since it represents the baseline version enhanced by the
implementation of the approach to eavesdrop and understand opponent pass
announcements, whose basic ideas are described in Sect. 3.

It is important to stress that the actual exploitation of an intercepted oppo-
nent pass announcement in (d) has intentionally been implemented in a straight-
forward manner in order to facilitate an utmost fair assessment of the impact of
the approach. Each decoded opponent pass announcement is treated in exactly
the same manner as a pass announcement received from a teammate (like in
(a) or (b)). Accordingly, no additional logic or special cases for opponent passes
were programmed, which allows us to assess the benefits of having wiretapped
the opponent team as accurately as possible. Hence, from the point of view of
an A OppPassExploit agent, there are just “a few more” pass announcements
compared to the baseline version of the agents. As a consequence, the advantage
of (d) over (a) is, essentially, time: An A OppPassExploit agent will, in general,
know earlier about an opponent pass than a baseline agent and, thus, will be able
to react on this faster. Besides the changes mentioned, the only necessary mod-
ification of A OppPassExploit agents compared to their baseline counterparts
concerned their listening attention-to behavior: In order to be able to reliably
receive say messages from the opponent ball holder h, the listening attention
had to be put to h instead of putting it to some teammate (as a baseline agent
would do, by contrast), if h controls the ball.

5.2 Distribution of Communication Data

In order to assess the communication restrictions imposed on the A NoComm
and A NoOwnPasses CBVs, it is advisable to quantify the amount of communi-
cation data that is on average received by a A Baseline17 agent. We refer to the
publicly available source code release of Team A which reveals the inner workings
of its communication policy [11]. Table 1 shows that 70% of all communicated
pieces of information are player-related, i.e. positions of teammates or opponents

10 T. Gabel et al.

recently seen. By contrast, pass-related information make up for only 0.8% of all
communicated data chunks, corresponding to 96.3 pass announcements and 2.6
pass requests per player per game on average. Moreover, that table summarizes
the average distribution of the total amount of data sent among the five con-
sidered types of soccer-related information (in total number of bits received and
the corresponding share of communication channel usage per type). Essentially,
only 1.7% of the overall communication bandwidth is used for announcing passes
to teammates.

Table 1. Utilization of the communication channel by A Baseline17 : besides overhead
(headers etc.), 4 soccer-related categories of information are shared across agents.

Overhead Ball-Rel Pass-Rel Player-Rel Strategy-Rel

Avg. number of payload units 714.4 615.5 98.9 8535.8 3030.4

Sent per match (total and share) 5.0% 0.8% 69.5% 24.7%

Avg. amount of bits sent per match 3571.9 104.4k 3102.8 153.6k 15151.9

Share of comm. channel usage 1.9% 5.6% 1.7% 82.6% 8.2%

As a consequence, A NoOwnPasses agents (which do not receive pass
announcements from teammates) disregard circa 0.8% of all data chunks that
are communicated in our team, which makes up for 1.7% of the overall data pay-
load. By contrast, A Baseline17 disregards nothing, and A NoComm disregards
the entire communication.

5.3 Empirical Methodology

All four communication behavior variants of Team A were matched against both
versions of Team B. For each combination, 5000 matches were played in order
to form score averages and, hence, to account for the stochastic nature of the
Soccer Server. To assess the overall team playing strength and to analyze the
impact of altered communication schemes, we adopt the perspective of Team A
and, for the rest of this paper, focus on the following performance measures.

– μa: average number of goals scored during a single match by Team A with
belonging standard deviation σa, calculated over the set of matches played.

– μb: average number of goals scored by Team B, i.e. the average number of
goals conceded by Team A with belonging standard deviation σb.

– μp: expected number of points Team A gains from a match against Team B
on average, when a victory is rewarded with three points, a draw with one,
and a defeat with none.

Given that the modifications to the communication behavior of the CBVs will
most likely have affected the standard deviations of the performance measures
considered, we applied an unequal variance t-test (also known as Welch test [14])
in order to determine whether any empirically observable change of μa or μb is
statistically significant (and if so, at which confidence level).

Communication in Soccer Simulation 11

5.4 Results

Figure 3 shows the variability in playing strength of the four Team A CBVs
considered. Here, A Baseline17 is considered as the baseline (100%) against
which the three other variants are compared with respect to the relative amount
of goals scored and conceded against both versions of Team B. Consistently,
an increased utilization and exploitation of communicated information brings
about an increased overall performance. Interestingly, when playing against
B Baseline17, the activation of our wiretapping and opponent pass announce-
ment decoding approach yields an increase in the number of goals shot by 8.8%
and a simultaneous decline in the number of goals conceded by 4.4%.

48.51%

85.47%

100.00%
108.83%

160.57%

104.89% 100.00% 95.60%

40%

60%

80%

100%

120%

140%

160%

A_NoComm A_NoOwnPasses A_Baseline17 A_OppPassExploit

Scored against B_Baseline17
Conceded against B_Baseline17

41.83%

81.99%

100.00% 102.19%

163.38%

103.13% 100.00% 96.32%

40%

60%

80%

100%

120%

140%

160%

A_NoComm A_NoOwnPasses A_Baseline17 A_OppPassExploit

Scored against B_Predecessor16
Conceded against B_Predecessor16

Am
ou

nt
of

G
oa

ls
Sc

or
ed

/C
on

ce
de

d
of

Di
ffe

-
re

nt
De

sig
n

Po
in

ts
 R

el
aƟ

ve
 to

A_
Ba

se
lin

e

Fig. 3. Taking CBV A Baseline17 as the ground truth, these charts visualize the rela-
tive changes in µa and µb when the other three considered CBVs are matched against
Team B (left: against B Predecessor16, right: against B Baseline17).

While Fig. 3 shows performance measures relative to Team A’s baseline, the
left chart in Fig. 4 highlights absolute values of μa and μb for all combina-
tions of CBVs of Team A having played against both Team B versions. The
lengths of the line segments in both data series convey a good impression of
how the overall playing capabilities of Team A are impacted by switching off/on
the entire team-internal communication, just team-internal pass announcements,
and eavesdropping and exploiting opponent pass-related communication. Appar-
ently, the impact and usefulness of the opponent pass decoding, is more dis-
tinct when playing against Team B ’s 2017 champion version than when play-
ing against its 2016 predecessor, though the former has, of course, a generally
higher playing strength than the latter. It is also worth noting that, when testing
against B Baseline17, the gain/loss of switching on/off the exploitation of Team
B ’s decoded pass announcements is almost as pronounced as the one resulting
from switching on/off our team-internal pass announcements.

The right part of Fig. 4 concentrates on the expected points μp to be obtained
when playing against the two versions of Team B, but just focuses on a compari-
son of the two CBVs A Baseline17 and A OppPassExploit. To do so, it visualizes
the share of matches won/drawn/lost by Team A as well as the exact value of μp

(secondary axis). With respect to opponent B Predecessor16, the exploitation
of heard opponent pass announcements reduces the percentage of games lost
by roughly 1%, increasing the share of draws accordingly, thus resulting in an

12 T. Gabel et al.

0.146:0.895

0.287:0.565
0.350:0.548

0.358:0.527

0.151:1.199

0.265:0.783
0.310:0.747

0.338:0.714

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.1 0.2 0.3 0.4

Av
er

ag
e

G
oa

ls
Sc

or
ed

 B
y

Te
am

 B

Average Goals Scored By Team A

A_NoComm
A_NoOwnPasses
A_Baseline17
A_OppPassExploit

Team A vs. B_Predecessor16
Team A vs. B_Baseline17

19.1% 19.0%
12.2% 15.0%

49.0% 50.2%
45.2% 45.5%

31
.9

%

30
.8

%

42.6%
39.5%

1.
06

3

1.
07

2

0.
81

8

0.
90

6

0.6

0.7

0.8

0.9

1

1.1

0%

10%

20%

30%

40%

50%

60%

A_Baseline A_OppPassExploit A_Baseline A_OppPassExploit

Ex
pe

ct
ed

 P
oi

nt
s p

er
 M

at
ch

Sh
ar

e
of

 M
at

ch
es

 W
on

/D
ra

w
n/

Lo
st

Won
Draw
Lost
Exp.Pts.

Team A vs. B_Predecessor16 Team A vs. B_Baseline17

Fig. 4. Left: Average scores of the four Team A CBVs when facing both Team B
versions considered. Right: Share of matches won/drawn/lost as well as expected points
µp when A Baseline17 and A OppPassExploit face both Team B versions.

improvement of μp by about 1%, too. By contrast, when evaluating against the
current world champion B Baseline17, we observe an increase of ≈3% in the
share of matches won at a constant level of draws, which amounts to a 10.8%
growth of the expected points per match (from 0.818 to 0.906).

Table 2. Performance measures µa and µb for all CBV pairings. pa and pb stand for
the error levels at which a change in µa and µb (i.e. a change from µA Baseline17

a/b to any
other µa/b value) is statistically significant.

Opponent Measure CBV with conf. level of a significant change vs. A Baseline17

A NoComm pa/b A NoOwnPass pa/b A Baseline17 A OppPassExp pa/b

B Prede- μa ± σa 0.146± .490 .001 0.287± .536 .001 0.350± .578 0.358± .575 .25

cessor16 μb ± σb 0.895± .966 .001 0.565± .730 .1 0.548± .746 0.527± .739 .1

B Base- μa ± σa 0.151± .380 .001 0.265± .506 .001 0.310± .553 0.338± .555 .01

line17 μB ± σb 1.199± 1.135 .001 0.783± .895 .01 0.747± .878 0.714± .842 .025

Table 2 summarizes the values of performance measures μa and μb for
n = 5000 game repetitions for each CBV playing against both Team B ver-
sions. Also, we report the significance levels at which the null hypothesis for
the Welch test has to be rejected (null hypothesis: performance measure did
not improve/worsen (compared to A Baseline17) due to switching on/off the
communication feature of the respective CBV). While the test statistic allows
us to confirm the expected changes at very low error rates in most cases, for the
evaluation of A OppPassExploit versus the older 2016 version of Team B we can
attest the expected improvements in μa and μb at an error level of 0.1 and 0.25,
only.

5.5 Discussion

In the experimental evaluation at hand, our selected opponent (Team B) was
the current world champion. Thus, all conclusions refer to this opponent in the

Communication in Soccer Simulation 13

first place. However, as pointed out by [4], similar or even better communication
learning performance can be expected, when playing against other 2D top teams.
Besides, by having selected the currently best team in the world, we have set a
high standard and it is standing to reason that our findings can be generalized
to (at least several) weaker teams. Clearly, when switching to another opponent
a separate decoding model in the form of a deep convolutional neural network
would have to be trained beforehand. Also, we should emphasize the fact that the
advantages reported can only be exploited in real tournament games under the
assumption that the opponent does not change or encrypt its communication.

The disk space requirements of Team A increase substantially, when incor-
porating the presented approach into our team. Having consumed 6.9 MB
in total in its RoboCup 2017 version (A Baseline17), the new working binary
(A OppPassExploit) now requires 110 MB where 96 MB are consumed by the
created TensorFlow shared library and 7.3 MB are due to newly trained neural
networks for communication decoding.

The computational burden caused by the TensorFlow-based opponent com-
munication decoding is acceptable. On a 4-core i7 with 3 GHz (with all 22 players
plus 2 coaches plus the Soccer Server running in parallel on this single machine)
without GPU support a say message classification requires between 3 and 4 ms.
The subsequent determination of pass start and velocity vectors costs between
9 and 10 ms on average. Given that during competitions teams are allowed to
employ several machines (typically only 3–4 agents play on a multi-core machine,
i.e. a separate CPU core is available for each agent), the mentioned calculation
times are likely to be around or even below 1.5 ms. With respect to the required
training times of the deep neural networks, which of course strongly depend on
the hardware used and on the availability of powerful GPUs, we refer to the
numbers we reported in [4].

It is worth noting that an agent of CBV A OppPassExploit does receive,
decode, and exploit 66.2 passes from Team B during one full match on aver-
age, and that this is almost 70% of the number of pass announcements they
receive from their own teammates (96.3 on average per game). However, a sub-
stantial amount of these opponent pass announcements are “safe passes” which,
despite the fact that we hear and understand them, by no means, allow for tack-
ling the pass receiver or in conquering the ball, immediately. We found that an
A OppPassExploit agent gets to know that an opponent pass is being played on
average 2.2 time steps earlier than an A Baseline17 agent which has to rely on its
(restricted, noisy, and non-omnidirectional) vision system to see the pass. Given
the comparatively small number of exploitable opponent passes and, hence, intu-
itively small qualitative influence on the overall course of the game, the reported
quantitative impact on the general playing strength of Team A is remarkable.

6 Conclusion

It has been argued by numerous authors that the utilization of team-internal
communication is highly beneficial in soccer simulation 2D. In this paper, we

14 T. Gabel et al.

have substantiated that claim by two means. On the one hand, we have com-
pared the empirical playing strength of our team (FRA-UNIted) when disabling
certain paths of communication across teammates. On the other hand, we have
utilized a deep learning-based approach for decoding the contents of say messages
broadcast by the opponent team. In so doing, we could show that the playing
performance of a team that wiretaps an opponent and exploits intercepted infor-
mation (in our case pass announcements) can be boosted significantly.

Since the mentioned deep learning-related part of the approach relies on a
TensorFlow-based implementation, a critical question concerns the practicability
of our approach. Powerful machine learning libraries and their APIs evolve fast.
In regard to the fact that our team binary should retain easily deployable on
any machine (e.g. during competitions or for reproducibility) it was our goal
to utilize the required TensorFlow functionality into our team with as little
installation or maintenance effort as possible. Hence, our delineations in Sect. 4
(and, in addition, in our current team description paper [3]) are meant as an aid
for teams in the simulation league and beyond which intend to merge their team
sources with TensorFlow utilizing its C++ API.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/. Software available from tensorflow.org

2. Akiyama, H., Nakashima, T., Fukushima, T.: HELIOS2017: Team Descrip-
tion (2017). www.robocup2017.org/file/symposium/soccer sim 2D/TDP HEL
IOS2017.pdf. Supplementary to RoboCup 2017: Robot Soccer World Cup XXI

3. Gabel, T., Klöppner, P., Godehardt, E.: FRA-UNIted - Team Description 2018
(2018). http://tgabel.de/cms/fileadmin/user upload/documents/Gabel EtAl FU-
18.pdf. Supplementary material to RoboCup 2018: Robot Soccer World Cup XXII

4. Gabel, T., Tharwat, A., Godehardt, E.: Eavesdropping opponent agent communi-
cation using deep learning. In: Berndt, J.O., Petta, P., Unland, R. (eds.) MATES
2017. LNCS (LNAI), vol. 10413, pp. 205–222. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64798-2 13

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2017)

6. LeCun, Y.: Generalization and network. Design strategies. Technical Report CRG-
TR-89-4, University of Toronto (1989)

7. MacAlpine, P.: Multilayered skill learning and movement coordination for
autonomous robotic agents. Ph.D. thesis, University of Texas at Austin, USA
(2017)

8. Mota, L., Reis, L.: An elementary communication framework for open co-operative
RoboCup soccer teams. In: Proceedings of the 3rd International Workshop on
Multi-Agent Robotic Systems, pp. 97–101. SciTePress, France (2007)

9. Noda, I.: Soccer server: a simulator of RoboCup. In: Proceedings of the AI Sym-
posium 1995, pp. 29–34. Japanese Society for Artificial Intelligence (1995)

10. Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In:
Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS
(LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25940-4 8

http://tensorflow.org/
www.robocup2017.org/file/symposium/soccer_sim_2D/TDP_HELIOS 2017.pdf
www.robocup2017.org/file/symposium/soccer_sim_2D/TDP_HELIOS 2017.pdf
http://tgabel.de/cms/fileadmin/user_upload/documents/Gabel_EtAl_FU-18.pdf
http://tgabel.de/cms/fileadmin/user_upload/documents/Gabel_EtAl_FU-18.pdf
https://doi.org/10.1007/978-3-319-64798-2_13
https://doi.org/10.1007/978-3-319-64798-2_13
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-540-25940-4_8

Communication in Soccer Simulation 15

11. Riedmiller, M., Gabel, T., Schulz, H.: Brainstormers 2D: public source code release
2005. Technical Report, University of Osnabrück (2005). http://sourceforge.net/
projects/bsrelease/files/bs05publicrelease.documentation.pdf

12. Stone, P., Veloso, M.: Communication in domains with unreliable, single-channel,
low-bandwidth communication. In: Drogoul, A., Tambe, M., Fukuda, T. (eds.)
CRW 1998. LNCS, vol. 1456, pp. 85–97. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0033376

13. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning per-
spective. Auton. Robots 8(3), 345–383 (2000)

14. Welch, B.: The significance of the difference between two means when the popula-
tion variances are unequal. Biometrika 29, 350–362 (1938)

15. Zuparic, M., Jauregui, V., Prokopenko, M., Yue, Y.: Quantifying the impact of
communication on performance in multi-agent teams. Artif. Life Robot. 22(3),
357–373 (2017)

http://sourceforge.net/projects/bsrelease/files/bs05publicrelease.documentation.pdf
http://sourceforge.net/projects/bsrelease/files/bs05publicrelease.documentation.pdf
https://doi.org/10.1007/BFb0033376
https://doi.org/10.1007/BFb0033376

Oral Presentations

Multi-Robot Fast-Paced Coordination
with Leader Election

Ricardo Dias(B), Bernardo Cunha, José Luis Azevedo, Artur Pereira,
and Nuno Lau

DETI/IEETA, University of Aveiro, Aveiro, Portugal
ricardodias@ua.pt, mbc@det.ua.pt, {jla,artur,nunolau}@ua.pt

Abstract. Coordination in Multi-Robot Systems is an active research
line in Artificial Intelligence applied to Robotics. Through coordination,
a team of robots can efficiently achieve their pre-defined global objec-
tive. From a wide range of multi-agent coordination sub-topics, one of
the current open issues is task assignment and role selection in fast-
paced environments. In homogeneous teams, where robots have the abil-
ity to dynamically change roles, working in highly dynamic and stochas-
tic environments, it is important that any solution is able to perform and
achieve results while complying with realtime constraints. In this paper,
we balance the advantages and disadvantages of completely decentralised
solutions and centralised ones, and then present our solution for leader
election among a team, which is based on the Raft algorithm and tack-
les two of its limitations. The proposed solution was implemented in a
real team of soccer-playing robots and the experimental results are thor-
oughly presented and discussed.

1 Introduction

In Multi-Agent Systems, several interacting intelligent agents pursue a goal by
performing a set of tasks. To do so, they need to share information and coor-
dinate to maximize the group gain. Among different topics that orbit around
multi-agent coordination [13], one of the most common is task assignment. In
particular, when dealing with homogeneous teams, where any agent can assume
any available role, fixing the role per agent would not be the wisest decision, since
it would restrict the ability to dynamically change roles between team members,
therefore decreasing the overall performance. On the other hand, dynamically
assigning roles in a team can have some associated costs, namely processing time
and computing power.

One environment that has been empowering research in multi-agent coordina-
tion on autonomous and mobile robots is the RoboCup [7] - an event that occurs
annually since 1997 and gathers together researchers and robotics enthusiasts
from all around the world in a series of competitions around R-Sports (Robotic-
Sports) and a symposium. Among the different leagues present in RoboCup,
one of the strongest theme is robotic soccer, for which the Federation defined a
bold objective: “By the middle of the 21st century, a team of fully autonomous
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 19–31, 2019.
https://doi.org/10.1007/978-3-030-27544-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_2

20 R. Dias et al.

humanoid robot soccer players shall win a soccer game, complying with the offi-
cial rules of FIFA, against the winner of the most recent World Cup”.

One of the RoboCup soccer leagues is the MSL (Middle-Size League) [14], a
league that is very challenging, not only in terms of regulations, but also due to
its rich environment (Fig. 1) - complex and semi-structured - that provides an
excellent testbed for autonomous robotic teams in stochastic and highly dynamic
environments.

Fig. 1. Middle-Size League finals in RoboCup 2013 at Eindhoven, Netherlands

The reason why a robotic soccer match has proved over the years to be
an excellent testbed is because it resembles more the real world than typical
pre-conceived research lab setups, especially due to its natural characteristics:
agents must be resilient both to unexpected situations (because the opponent
team actions can only be predicted up to a certain point) and to expeditious
changes of the world state at any time.

In this league, teams play with 5 field robots (including the goalkeeper)
and an auxiliary computer that usually acts as the coach, providing the user
interface for visualisation and establishes the link between the referee signals
and the playing robots. Humans are not allowed to interact with any system
that is taking part in the match. Additionally, since the coach computer is not
allowed to have sensors and there are no extra sensors installed around the field,
the playing robots must act as a sensor network for the coach, providing it with
the necessary information to base its decisions on.

The work described in this paper was accomplished within the MSL context,
more specifically in the CAMBADA (Cooperative Autonomous Mobile roBots
with Advanced Distributed Architecture) team [10], the MSL Robotic Soccer
team from the University of Aveiro. The project was founded in 2003 and is cur-
rently hosted by the IEETA IRIS (Intelligent Robotics and Intelligent Systems)
group.

For inter-robot communications, this team uses the Realtime Data Base
(RtDB) middleware [1], that provides seamless access to the complete state of

Multi-Robot Fast-Paced Coordination with Leader Election 21

the team using a distributed database, partially replicated to all team members.
Robots push information such as perceived ball position, self pose belief, coordi-
nation signals provided to achieve team-work tasks and other state variables. A
portion of the information present locally on an agent is periodically and asyn-
chronously broadcasted to all team members by a running process (‘comm’) that
runs on each robot processing unit.

In a fast-paced and highly dynamic environment such as the RoboCup MSL,
if task assignment constantly relied on negotiation techniques, they could easily
become timely ineffective, due to the strict timing restrictions of the application
and the delays caused by the negotiation itself. This is why fully-distributed tech-
niques have generally been avoided for applications with realtime constraints.
However, roles switch occurs with a low frequency, thus promoting the use of
the coach computer to perform role selection among the team. However, as it
will be discussed later, this constitutes a major single point of failure that, in
the case of an actual collapse, may compromise the performance of the team.

In this paper, a thorough description of the leader election mechanism imple-
mented in the CAMBADA team is described. We will start by discussing the
coordination techniques widely used and described in the literature in Sect. 2.
In Sect. 3, we formally describe the consensus problem and present two of the
most reputable solutions to solve it, as well as their limitations. Sections 4 and 5
describe the proposed solution and its results, respectively. We finally conclude
the paper with some final considerations on Sect. 6.

2 State of the Art

2.1 Distributed Assignment

In multi-agent systems, a common distributed approach is to dynamically assign
roles locally (on each agent) based on a set of pre-defined policies that depend
on their world-state belief. These policies must be defined in a way that guaran-
tees convergence and avoid conflicts between intentions and/or actions [4]. This
is often achieved using policy reconstruction methods, which make explicit pre-
dictions about an agent action, by explicitly running the decision-making algo-
rithm of that agent, using shared plans [5] or by using a learned model of the
other agent behaviour [3,6]. Some related work can achieve coordination when
in low-communication and time-critical environments, provided that agents can
periodically have full connectivity [15].

However, each agent has a slightly different world-state belief at a given time.
Assuming that it would be possible to, in a real application, take an instant
snapshot of the beliefs of all agents at the same time and, by looking into them,
we would find (slight) differences between them. This is due to the fact that the
information residing on the agent world state is affected by many disturbances
(starting on the measurement itself, partial observance, unideal modelling, noise,
integration errors and even network delays). Therefore, the obvious drawback of
the distributed approach is that agents are basing their decisions upon different
beliefs, which can easily lead to lack of consensus and conflicting decisions. Most

22 R. Dias et al.

distributed policies designed to reach a consensus on task assignment are based
on the fact that there is a common world state belief for all agents, which in real
realtime highly dynamic applications is rare.

To overcome this problem the agents can, instead of deciding locally and
instantly committing to that decision, broadcast the intention and then use
distributed negotiation algorithms to deal with any conflicts [17]. However, this
approach is dependent on the network conditions and negotiation is not practical
when the application demands a high level of reactivity.

2.2 Centralised Assignment

As opposed to fully distributed approaches, centralised architectures rely on a
single agent to control and monitor the action plans of all other agents. Since
this coordinator agent gets to decide on the final plan (which includes all agents
partial plans), any conflicts between agents’ plans can be taken into account
during the planning process.

Centralising the decision to achieve consensus has some advantages over a
distributed approach:

– Centrally solves the problem of tightly-coupled coordination that arises when-
ever there are one or more actions of one agent that affect the optimal action
choice of another team member, since the decisions are based on a single
belief of the world state.

– From a software architecture point of view, it is simpler to implement and
maintain.

Albeit these positive aspects, a completely centralised approach has three
main drawbacks with respect to decentralised solutions:

– No redundancy. The coordinator agent constitutes a single point of failure
- if it fails, the whole team may fail due to lack of coordination.

– Network delays can propagate to actions. Decisions need to be commu-
nicated to the agents, which takes time that, in some applications, depending
on the authority level of the coordinator agent, may be critical.

– Limited scalability. A higher number of agents will require higher compu-
tational power on the coordinator agent to process and to devise a plan for
the complete team of agents.

2.3 Centralised Assignment with Leader Election

When scalability is not a priority, some systems rely on centralised decision taken
by one of the participating agents. However, network delays make it unfeasible for
the leader to make realtime decisions when the environment requires a high level
of reactivity. Therefore, the leader has to provide the team high-level coaching
hints that will work towards a group consensus, while leaving low-level decisions
(the fast-paced action that needs to be taken locally) to the other team-members.

Multi-Robot Fast-Paced Coordination with Leader Election 23

The election of the coordinator agent is a fundamental part of this type of
architecture to overcome a possible faulty coordinator. In case the coordinator
fails, the agents need to recognise a coordinator failure and then coordinate to
find the next leader - the agent that will replace the previous one.

3 The Consensus Problem

The consensus algorithms described below were designed to achieve consensus
between processes or between server clusters, but in this section, we will refrain
from using the term agent or server and will use the more inclusive term node.
Consensus is a general term used to describe a state where participating nodes
on a system agree on something, bound under certain conditions.

When applied to Multi-Agent Systems, consensus algorithms allow a group
of agents to work coherently, enabling the system as a whole to survive in the
event of sporadic failures of one or more of its members. For example, consensus
algorithms have been successfully implemented for distributed storage on server
clusters using log replication [11], as well as in robotic networks [9].

3.1 Paxos

Over the last decade, Paxos [8] has dominated the subject of consensus algo-
rithms for software systems. Paxos has either been applied to or influenced many
systems to solve a consensus problem. Multi-Paxos [16] is also referred in the
literature - it was proposed as an optimisation to Paxos, since it essentially skips
one step, which has no impact on coherence, provided that the leader remains
the same and online for a long period of time.

However, the (Multi-)Paxos algorithm, which was conceived upon a complex
theoretical model makes it less convenient to implement in real-world systems:
in order to properly run it on practical systems, significant changes to its archi-
tecture are required [2].

3.2 Raft

As a response to the concerns mentioned above, Diego Ongaro and John Ouster-
hout have developed the Raft [12] protocol, with understandability and imple-
mentability as a primary goal, but without compromising the correctness or effi-
ciency of the (Multi-)Paxos. Using techniques such as decomposition and state
space reduction, the authors have not only been able to separate leader election,
log replication and safety, but also reduce the possible states of the protocol to
a minimal functional subset.

Assumptions. The following three assumptions are made by Raft:

– Machines run asynchronously: there is no clock synchronisation between
different systems and there are no upper bounds on message delays or com-
putation times.

24 R. Dias et al.

– Unreliable links: possibility of indefinite networks delays, packet loss, par-
titions, reordering, or duplication of messages.

– Unreliable nodes: processes may crash, may eventually recover, and in that
case rejoin the protocol. Byzantine failures are assumed not to occur (Fig. 2).

time

term

i
term

i+1
term

i+2
term

i+3

Election

Normal Operation

Legend

Fig. 2. Timeline of example execution of Raft, adapted from [12]. In three of the
presented terms, a leader was elected after an election period. Only in term i + 2,
consensus was not reached during the election process, so a new election stars.

Consensus by Strong Leadership. Raft achieves the consensus by a strong
leadership approach. In steady-state, a node in a Raft cluster is either a LEADER
or a FOLLOWER. There can only be one leader in the cluster and when the
leader becomes unavailable, an election occurs, and nodes can become CANDI-
DATE s.

In the original Raft system applied to log replication, the LEADER is fully
responsible for managing log replication to the followers (the remaining nodes)
and regularly informs the followers of its existence by sending heartbeat mes-
sages. Upon receiving this heartbeat, a FOLLOWER node resets a timer and
whenever it reaches a timeout value the node can become a CANDIDATE to
initiate a new election.

Each leader is elected for a term - a discrete temporal identifier (counter). At
most, one leader can be elected in a given term and the event of a new election
marks the start of a new term.

During an election, three situations can occur:

1. The majority of the nodes vote for the CANDIDATE, meaning this node can
switch to the LEADER state and start sending heartbeat messages to others
in the cluster to establish authority.

2. If other CANDIDATE s receive a packet, they check for the term number. If
the term number is greater than their own, they accept the node as the leader
and return to FOLLOWER state. If the term number is smaller, they reject
the packet and still remain a CANDIDATE.

3. The CANDIDATE neither loses nor wins. If more than one node becomes a
CANDIDATE at the same time, the vote can be split with no clear majority.
In this case, a new election begins after one of the CANDIDATE s times out.

Limitations. Two main limitations have been identified in the Raft protocol:

– 1 and 2 active nodes corner-cases: when there are less than 3 nodes
available, Raft will fail to elect a leader, because it is impossible to achieve
the majority of votes in either of the cases.

Multi-Robot Fast-Paced Coordination with Leader Election 25

– No prioritisation: nodes are equally probable of becoming the leader. In
some heterogeneous clusters, the user might want to defer the leadership to
a node that has more computing power available.

4 Proposed Solution

Our leader election solution is based on the Raft algorithm for that purpose, with
some adaptations to overcome the aforementioned limitations. Furthermore, we
have integrated it in the RtDB middleware as an asynchronous service. By doing
so, the information from the current leader is available for all agents at any time
without re-configuration.

4.1 Timing Parameters

Three crucial aspects to consider when implementing this solution are the param-
eterisation of the sending frequency of heartbeat packets (fHB = 1/ΔTHB), the
heartbeat timeout (Tmax,HB) and the election timeout (Tmax,E). Despite Raft
originally suggesting times in the order of tens or hundreds of milliseconds, the
selection of these times depend a lot on the application, fail-frequency and the
communication medium between nodes.

In most mobile robotic teams, the robots communicate with each other in
one or more of the many different available forms of radio communication. In
this particular application, robots are using the Wi-Fi (IEEE 802.11a standard)
in a spectrally dense environment, with strict bandwidth limitations (currently
2.2 Mbit/s).

To select the heartbeat frequency fHB , a trade-off between delay in the start
of a new election and bandwidth expense has to be considered, while accounting
for the actual role of the leader and the frequency that its orders change. This is
important because the robots will follow the latest available order while a new
leader is being elected.

The heartbeat timeout Tmax,HB should be selected in line with the packet loss
experienced in the testbed environment. For example, when selecting an heart-
beat timeout that is more than twice the maximum heartbeat packet period,
then a new election will occur when two consecutive heartbeats are not received
from the leader.

The election timeout Tmax,E accounts for the time we allow the exchange of
vote packets and is important whenever no majority of votes is achieved by any
of the candidates.

Based on these assumptions, the values were selected as follows, with the
ranges defining the limits of random uniform distributions.

40ms ≤ ΔTHB ≤ 60ms (1)

250ms ≤ Tmax,HB ≤ 400ms (2)

Tmax,E = 100ms (3)

26 R. Dias et al.

4.2 The Backup State

To tackle the first limitation (failure to achieve majority in an election with less
than 3 active nodes), apart from LEADER, FOLLOWER and CANDIDATE
states in the original Raft algorithm, we have introduced the BACKUP state,
which is triggered whenever there is only 1 or 2 active nodes in the system. The
complete state machine is present in Fig. 3.

CANDIDATEFOLLOWER LEADER

times out,
starts election

receives votes from
majority of servers

times out,
new election

starts up

discovers node
with higher term

discovers current leader
or new term

BACKUP

number of
nodes < 3

number of
nodes < 3

number of
nodes < 3

number of
nodes >= 3

Fig. 3. State machine of the proposed solution

A node maintains a dynamic dictionary of timers, indexed by the peer ID.
The timer belonging to a peer node is reset whenever a heartbeat or acknowledge
packet is received. The active nodes list is determined by the peer IDs in the
dictionary that have an elapsed timer lower than the heartbeat timeout. When
in a BACKUP state, the leader is determined by the lowest ID among the active
nodes.

4.3 Preferred Leader Agent

In our particular application, in order to free computational resources from the
robots, it is wise to give preference to a coach computer to be the leader, when-
ever it is available, while keeping the leader election functionality active as a
redundancy mechanism for when it fails.

In order to achieve this priority for the coach agent, while keeping harmony
and consistency among the voting agents and the voting process, we skip the
heartbeat timer reset on the coach agent. When joining the network, the coach
agent will start as a follower and will start receiving the heartbeat packets from
the current leader, updating its term accordingly, but ignoring the heartbeat
timer reset step. When reaching the heartbeat timeout, the coach agent will
start a new election in a higher term and the previous leader will retreat. This
constitutes the only situation when an agent intentionally takes over the team
leadership.

Multi-Robot Fast-Paced Coordination with Leader Election 27

5 Experimental Setup and Results

To test this solution, an experimental setup has been devised with 5 computers
running the communication process with the leader election algorithm described
in the previous section and an experiment coordinator. The coach agent was dis-
connected. The coordinator was impaired from becoming the leader, but partic-
ipates in the voting phase and is responsible for monitoring the leader selection
evolution, measuring times and forcing periodic communication failures (each
5 s, approximately) on the elected leader, hence triggering a new election, and
logging data for offline analysis. The setup is depicted in Fig. 4.

3

2
4

5
Experiment
Coordinator

0

Wi-Fi 802.11a
Access-Point

Wi-Fi
(14m distance)

Wi-Fi
(2m distance)

6

Fig. 4. Experimental setup

The system has been setup and worked for 16 h and 37 min, producing a
total number of 11970 terms. From this dataset it is possible to statistically
analyse the performance of the proposed solution with respect to term period,
election time, occurrence of simultaneous multiple candidates in an election,
leader attribution distribution and also the number of failed elections due to
lack of majority in the voting process. Among all samples, the measured term
time was 5000.15± 92.73 ms (mean and standard deviation), which is consistent
with our experimental setup described above.

5.1 Failed Elections

Having the coordinator participating in the voting rounds, makes it possible to
tie a voting, because the total population consists of 6 agents. A failed election
occurs whenever none of the candidates receives the majority of votes. From the
total number of 11970 terms, there were 2 registered failed elections.

5.2 Election Time

Election times were inspected (Fig. 5) and it was verified that they follow a dis-
tribution that is consistent with the selected heartbeat timeout time Tmax,HB ∈
[250 –400] ms, picked by a random uniform distribution on that range.

28 R. Dias et al.

Fig. 5. Election time histogram

It is also important to mention that apart from the results presented on
Fig. 5, there were 5 other samples with higher election times, namely: 1.1, 2.2,
2.6, 2.7 and 2.8 s. These 5 samples were not included in the Figure to improve
visibility of most samples in the plot.

5.3 Simultaneous Multiple Candidates

The occurrence of multiple candidates for election was also analysed. These
results are shown in Fig. 6 (with the y axis in a logarithmic scale), were we
can see that in 97.4% of the samples there is only one candidate, 2.5% two
candidates and 0.03% (only 3 times in the whole run) three candidates, which
was the maximum count for multiple candidates in a single round.

Fig. 6. Number of candidates histogram - y axis in logarithmic scale

5.4 Leadership Attribution

A uniform distribution of leaders among the eligible agents was expected, how-
ever there are small differences between the agents, as shown in Fig. 7a Since
agent 3 (the laptop closer to the access-point) showed the maximum number of
wins in elections, we wanted to investigate further if this was merely a coinci-
dence or if the relative position to the access-point would affect the priority of
being selected as a leader when there are multiple candidates.

Multi-Robot Fast-Paced Coordination with Leader Election 29

(a) Global attribution (b) Multiple candidates attribution

Fig. 7. Leadership attribution analysis

To test that hypothesis, we analysed the leader attribution in the terms for
which there were more than one candidate (Fig. 7b). These results do not show a
clear higher chance of agent 3 to become a leader in conflict situations. Because
in this setup many external factors can influence the communication medium,
further tests must be performed with laptops’ positions shuffled between runs.

6 Conclusion

After discussing the original Raft approach to achieve consensus on machine
clusters, two main limitations have been identified - a corner-case when there
are only 1 or 2 active nodes and the lack of prioritisation among agents to
become a leader. A solution that is based on the Raft leader election protocol has
been described and successfully implemented to overcome the aforementioned
limitations.

An experimental setup has been created to test our leader election solution,
by continuously forcing a new election. The obtained results are in line with the
timings set for the asynchronous activity of this mechanism, set accordingly to
the requirements of the application - in this case, a robotic soccer team.

In a nutshell, the proposed solution is suitable to select a leader among
the team agents. It accounts for the possibility of having a preferred leader
agent, providing a fault-tolerant and reliable redundancy mechanism whenever
the leader becomes inactive.

Acknowledgement. This research is supported by Portuguese National Funds
through Foundation for Science and Technology (FCT), in the context of the project
UID/CEC/00127/2013 and by European Union’s FP7 under EuRoC grant agreement
CP-IP 608849.

30 R. Dias et al.

References

1. Almeida, L., Santos, F., Facchinetti, T., Pedreiras, P., Silva, V., Lopes, L.S.: Coor-
dinating distributed autonomous agents with a real-time database: the CAMBADA
project. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol.
3280, pp. 876–886. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30182-0 88

2. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering per-
spective. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 2007, pp. 398–407. ACM, New York (2007).
https://doi.org/10.1145/1281100.1281103

3. Farouk, G.M., Moawad, I.F., Aref, M.M.: A machine learning based system for
mostly automating opponent modeling in real-time strategy games. In: 12th Inter-
national Conference on Computer Engineering and Systems (ICCES), pp. 337–346,
December 2017. https://doi.org/10.1109/ICCES.2017.8275329

4. Groen, F.C.A., Spaan, M.T.J., Kok, J.R., Pavlin, G.: Real world multi-agent sys-
tems: information sharing, coordination and planning. In: ten Cate, B.D., Zeevat,
H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 154–165. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-75144-1 12

5. Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Mag.
20(4), 23 (1999). https://doi.org/10.1609/aimag.v20i4.1476

6. Hsieh, J.L., Sun, C.T.: Building a player strategy model by analyzing replays of
real-time strategy games. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 3106–3111,
June 2008. https://doi.org/10.1109/IJCNN.2008.4634237

7. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot
world cup initiative. In: The First International Conference on Autonomous Agent,
Agents 1997, pp. 340–347 (1997). 10.1.1.50.5425

8. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

9. Montijano, E., Sagüés, C.: Robotic Networks and the Consensus Problem, pp. 9–19.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15699-6 2

10. Neves, A., et al.: CAMBADA soccer team: from robot architecture to multiagent
coordination (chap. 2), pp. 19–45. I-Tech Education and Publishing, Vienna (2010)

11. Oki, B.M., Liskov, B.H.: Viewstamped replication: a new primary copy method
to support highly-available distributed systems. In: Proceedings of the Seventh
Annual ACM Symposium on Principles of Distributed Computing, PODC 1988,
pp. 8–17. ACM, New York (1988). https://doi.org/10.1145/62546.62549

12. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In:
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Con-
ference, USENIX ATC 2014, pp. 305–320. USENIX Association, Berkeley (2014)

13. Reis, L.: Coordination in multi-agent systems: applications in university manage-
ment and robotic soccer. Ph.D. thesis, FEUP, July 2003

14. Soetens, R., van de Molengraft, R., Cunha, B.: RoboCup MSL - history, accom-
plishments, current status and challenges ahead. In: Bianchi, R.A.C., Akin, H.L.,
Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp.
624–635. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3 51

15. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artif. Intell. 110(2),
241–273 (1999). https://doi.org/10.1016/S0004-3702(99)00025-9

https://doi.org/10.1007/978-3-540-30182-0_88
https://doi.org/10.1007/978-3-540-30182-0_88
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1109/ICCES.2017.8275329
https://doi.org/10.1007/978-3-540-75144-1_12
https://doi.org/10.1609/aimag.v20i4.1476
https://doi.org/10.1109/IJCNN.2008.4634237
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/978-3-319-15699-6_2
https://doi.org/10.1145/62546.62549
https://doi.org/10.1007/978-3-319-18615-3_51
https://doi.org/10.1016/S0004-3702(99)00025-9

Multi-Robot Fast-Paced Coordination with Leader Election 31

16. Van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Comput.
Surv. 47(3), 42:1–42:36 (2015). https://doi.org/10.1145/2673577

17. de Weerd, H., Verbrugge, R., Verheij, B.: Negotiating with other minds: the role
of recursive theory of mind in negotiation with incomplete information. Auton.
Agent Multi-Agent Syst. 31(2), 250–287 (2017). https://doi.org/10.1007/s10458-
015-9317-1

https://doi.org/10.1145/2673577
https://doi.org/10.1007/s10458-015-9317-1
https://doi.org/10.1007/s10458-015-9317-1

Visual SLAM-Based Localization
and Navigation for Service Robots:

The Pepper Case

Cristopher Gómez1, Mat́ıas Mattamala1(B), Tim Resink3,
and Javier Ruiz-del-Solar1,2

1 Department of Electrical Engineering, Universidad de Chile, Santiago, Chile
{cristopher.gomez,mmattamala,jruizd}@ing.uchile.cl

2 Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
3 Delft University of Technology, Delft, The Netherlands

p.w.resink@student.tudelft.nl

Abstract. We propose a Visual-SLAM based localization and naviga-
tion system for service robots. Our system is built on top of the ORB-
SLAM monocular system but extended by the inclusion of wheel odome-
try in the estimation procedures. As a case study, the proposed system is
validated using the Pepper robot, whose short-range LIDARs and RGB-
D camera do not allow the robot to self-localize in large environments.
The localization system is tested in navigation tasks using Pepper in two
different environments: a medium-size laboratory, and a large-size hall.

1 Introduction

Pepper is the official robot used in the RoboCup@Home Standard Platform
League. It presents several advantages for human-robot interaction such as its
friendly appearance but has important limitations such as its reduced sensing
and computing capabilities. In contrast to custom robots which generally rely
on expensive LIDARs for metric localization and navigation, which work in both
indoor and outdoor environments, Pepper has short-range LIDARs and an RGB-
D camera that provide reliable localization only in small indoor rooms, being
unable to provide useful information to localize the robot in large environments.
This is a big deal for Pepper, which is expected to be used not only in homes,
but also in public places like hospitals, shopping malls, and schools.

To address this issue, we built upon the recent advances of visual SLAM sys-
tems to develop a visual-SLAM based self-localization solution aided by wheel
odometry, which allows Pepper to self-localize and navigate in large environ-
ments. The reason to include odometry in the visual estimation procedures is
to recover the metric scale (unknown in typical pure-visual schemes) and to

C. Gómez, M. Mattamala, T. Resink—Equal contribution.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 32–44, 2019.
https://doi.org/10.1007/978-3-030-27544-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_3

Visual SLAM-Based Localization and Navigation for Service Robots 33

make the visual system more robust to tracking failures. This is vital for nav-
igation tasks that require a “continuous” localization hypothesis to work. The
proposed solution is based on an open-source visual SLAM system, ORB-SLAM
[10], which is extended by the inclusion of the wheel’s odometry in the estimation
procedures.

In Sect. 2 we present a brief overview of modern SLAM systems. Then, in
Sect. 3 we describe some basic notation as well as relevant characteristics of the
Pepper robot. Afterwards, we present our localization and navigation approach
in Sect. 4. In Sect. 5 we present two experiments of localization and navigation
with the Pepper robot in different environments. Finally, Sect. 6 concludes the
work with discussion and recommendations for future developments along this
line.

2 Visual SLAM

Visual SLAM has been a hot topic during the last years since it presents a low-
cost solution for applications that require localization and mapping features such
as augmented reality, virtual reality, and autonomous systems (e.g. autonomous
cars, inspection drones). Being originally formulated as a filtering problem, nowa-
days optimization-based approaches are preferable by its superior accuracy at
similar computational cost [13]. Optimization-based approaches model the prob-
lem as a factor graph which probabilistically relates several variables -such as
poses and landmarks-, by the so-called factors, that correspond to sensor mea-
surements or physical constraints between the variables [1]. An example of a
visual SLAM system is shown in Fig. 1.

Fig. 1. Different factor graphs related to optimization approaches in ORB-SLAM. Cir-
cles denotes variables such as map points and keyframes within a visual SLAM scheme;
white are active, gray fixed. Squares denote factors or measurements.

The factor graph can be formulated as a non-linear least squares problem [1]
that aims to find the states X ∗ = X1, ... , Xm that minimize the error between
the measurements Zi, and an observational model hi(Xi) that “predicts” the
expected measurement given the state Xi

1:

1 The operator � generalizes the concept of subtraction for non-Euclidean spaces.
Please refer to Hertzberg et al. [5] for a complete treatment.

34 C. Gómez et al.

X ∗ = arg min
X

=
m∑

i=1

‖hi(Xi) � Zi‖2Ωi
(1)

The same formulation holds for the visual case, where the states correspond to
selected camera poses of the trajectory -keyframes- and also the map represen-
tation -3D points, surfels, voxels, etc.-, and the measurements are reprojections
of the map into the image plane.

Regarding some actual systems, different solutions have been developed for
monocular and stereo/depth sensors. We are concerned about monocular solu-
tions since cameras are ubiquitous in current robots while being “cheap” sensors
in comparison to the other two; they also can work in both indoor and outdoor
environments. Monocular visual SLAM systems are either feature-based that uti-
lize just some features in the image, such as ORB-SLAM [10], or direct methods
that exploit the complete information from every image as in LSD-SLAM [3].

The main issue with monocular systems is that they require a moving cam-
era in order to estimate the depth of the scene, as well as depending on an
unknown scale factor that maps the estimated states to physically consistent
dimensions. The typical approach to solve the problem relies on the usage of
different sources of information that provides the scale, such as inertial measure-
ments units (IMU); however, this increases the computational requirements of
the estimation problem, since the number of states increases [12].

The utilization of visual localization systems in the RoboCup@Home has
been disregarded since most of the custom robots could afford accurate but
expensive LIDAR systems [2,7], which provide a simpler solution. Nevertheless,
since the range of Pepper’s LIDARs and depth camera are defined by the man-
ufacturer, and the RoboCup@Home SSPL (Social Standard Platform League)
forbids the use of additional sensors, it is unfeasible for the robot neither local-
ize nor navigate in large environments. For this reason, we propose a visual
approach for the localization problem based on an open-source visual SLAM
system, ORB-SLAM [10], and we present a strategy to solve visual SLAM issues
(mainly the lack of a metric scale) by aiding the system with wheel odometry
measurements.

3 Platform, Coordinate Systems and Notation

3.1 Notation

To prevent confusion in notation, we follow the conventions of Paul Furgale2:

– Coordinate frame A is notated as F−→A.
– Homogeneous transformation matrix OTWC ∈ SE(3) represents the pose of

the camera frame F−→C with respect to the world frame, F−→W , seen from frame
F−→O. A vector expressed in world frame W, Wv can be hereby transformed to
the camera frame C by the rotation matrix RWC ∈ SO(3), as Cv = RWC Wv

2 http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-
and-the-ugly.

http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly

Visual SLAM-Based Localization and Navigation for Service Robots 35

Fig. 2. Coordinate frames used in this work, we follow the classic conventions with X
red, Y green and Z blue. F−→C denotes the camera frame, F−→O the odometry frame and

F−→B the body’s. Pepper picture is based on Philippe Dureuil’s. (Color figure online)

– The homogeneous transformation matrix CTWC will be abbreviated to TWC

for reader convenience unless otherwise indicated.

3.2 Pepper Robot

Pepper is a wheeled humanoid platform. It has a mobile omnidirectional base
and 20 degrees of freedom, including an actuated pelvis and neck. It has two
Omnivision OV5640 cameras, located in the forehead and the mouth, in addition
to an RGB-D sensor in the eyes. Additionally, the base has three LIDARs and
an IMU. In order to access the sensors and control the robot, Softbank provides
an API to its middleware, NAOQi.

Since we base our system in the ROS framework, we access sensing and
perform control through the naoqi driver ROS package. We principally use
the images from the forehead camera at a 640 × 480 pixels resolution, as well as
the internally computed odometry measurements; the algorithmic details about
the latter are unknown to the user.

We considered two main reference frames for this work (Fig. 2): On the one
hand, the odometry frame denoted by F−→O describes the pose of the robot relative
to the initial pose, as defined in ROS REP 1053. We use this frame to describe
the pose of the robot’s torso (body) computed by the internal wheel odometry,
denoted by OTOB. On the other, ORB-SLAM has its own reference frame (world)
F−→W that depends on the initialization of the system, hence it may change every

3 http://www.ros.org/reps/rep-0105.html.

http://www.ros.org/reps/rep-0105.html

36 C. Gómez et al.

Fig. 3. Overview of our proposed system. The camera images are feed to the ORB-
SLAM system together with the camera position with respect to the odometry frame
(odom). An estimated camera position with respect to an arbitrary fixed frame is given
as output by ORB-SLAM. The visual localization node takes this information and
the Pepper kinematic information to compute a transformation between the standard
fixed frame map and the odom frame.

time the system is reset. The estimate provided by ORB-SLAM corresponds to
the world position with respect to the camera pose, CTCW .

4 Localization and Navigation System

Our visual SLAM-based localization and navigation system for Pepper con-
sist of three main components, which are shown in Fig. 3. Firstly, an ORB-
SLAM-based localization and mapping system, which uses a single RGB cam-
era located in Pepper’s forehead, and odometry measurements computed by
the proprietary Pepper’s software. The second component correspond to the
visual localization4 ROS node that transforms ORB-SLAM’s camera pose
estimate to a transformation between the standard map frame and the odom
frame. Finally, the node move base5 executes the navigation process.

4.1 ORB-SLAM-based Localization

Our localization system maintains the same software architecture with 3 parallel
threads, original from ORB-SLAM2 [11]: incoming images are processed in the
Tracking thread, creating new map points and estimating the current camera
pose TCW in world frame F−→W ; a Local Mapping thread which builds on the map
and the keyframes and frequently performs local bundle adjustments to update
the positions of map points and camera poses at the keyframes; a Loop Closing
thread which detects loops in the trajectory and propagates a correction through
the trajectory poses and the map. In addition, we implemented the following
improvements:
4 https://github.com/ristofer/visual localization/.
5 http://wiki.ros.org/move base.

https://github.com/ristofer/visual_localization/
http://wiki.ros.org/move_base

Visual SLAM-Based Localization and Navigation for Service Robots 37

Tracking Modifications. We changed the Tracking thread to process not only
images but also odometry measurements, obtained directly from ROS. Odometry
measurements are computed within the Pepper’s internal software and published
in ROS through NAOqi wrappers with respect to the odom frame, shown as F−→O

in Fig. 2. Our ROS-compatible wrapper for ORB-SLAM subscribes the tf topic
and images, and requests an odometry measurement every time a new image is
received, obtaining a synchronized pair image-odometry. Later, every time a new
keyframe is created after a successful camera tracking, the odometry information
is also included in the keyframe.

In addition, since the original behavior of ORB-SLAM is to stop providing
camera poses when camera tracking fails, and wait until a relocalization, which
is not a desirable strategy while navigating6, we set the camera estimation equal
to the odometry prediction. This ensures a continuous camera pose hypothesis
for planning tasks but requires that the metric scale is initialized.

Metric Scale Initialization. We did not utilize any general system initializa-
tion solution as in [9] but preferred a multi-step approach as in [12]. We first wait
until the pure visual SLAM system is initialized and the unscaled map built, to
then compute the scale from the odometry information between keyframes.

By comparing the relative translations between keyframes as predicted by
ORB-SLAM ΔpO(i − 1, i) and the odometry ΔpW (i − 1, i), the scale can be
retrieved and the map and keyframe poses can be updated by the method of
Horn [6] (Eq. (2)). However, the initial map is subject to major change in the
early stages of the mapping. Therefor the scale correction is done after a fixed
number of N keyframes have been created, ensuring a satisfactory converged
map and thus a reasonably reliable scale correction. The success of this strategy
only depends on the environment’s size and the motion performed by the robot;
an additional discussion is given in Sect. 5.

s =

√∑N
i ‖ΔpO(i − 1, i)‖2

√∑N
i ‖ΔpW (i − 1, i)‖2

(2)

After the scale update, a Global Bundle Adjustment (Global BA) is per-
formed to guarantee an optimal map reconstruction.

Local Mapping. Every time a new keyframe is created, Local Mapping per-
forms an optimization in a subset of the complete trajectory updating both the
poses and the map -the so-called local window. The parts of the trajectory to
be optimized are keyframes in the neighborhood of the last added keyframe,
and also map points being observed by those; the neighbors are selected by the
so-called covisibility graph [10]. This operation on the local window ensures an
efficient optimization process even in large maps.

6 Unless high-level behaviors to detect failures are considered.

38 C. Gómez et al.

Since the initialization procedure makes the current trajectory and map met-
rically consistent, it is possible to fuse the visual information with wheel odom-
etry information to avoid drift. This is done by adding odometry factors or
constraints between keyframes. In order to do so, the odometry measurement
is mapped from the odometry frame F−→O to the camera frame F−→C by using
Pepper’s forward kinematics. Hence, we compute the difference between the
odometry measurements i−1 and i, CTCi−1,Ci

, between all the keyframes in the
local window, which hopefully match the difference between the keyframes’ pose,
(TCi−1WTCiW

). The error between the odometry’s and ORB-SLAM’s differences
are defined in the minimal representation of the pose, i.e. 6-dimensional, which
is achieved by using the logarithm map of SE(3):

εodo = LogSE(3)

(
CT−1

Ci−1,Ci
TCi−1WT−1

CiW

)
. (3)

This residual is defined for every pair of keyframes within the local window;
additionally, keyframes with neighbors which are not in the local window, are
also added as fixed nodes in the optimization. The corresponding optimization
problem that minimizes visual error terms εvis (as defined in [10]) and odometry
terms εodo (Eq. (3)), is:

X ∗ = arg min
X

=
∑

(i,k)

‖εvis‖2Ωvis
+

∑

(i−1,i)

‖εodo‖2Ωodo
(4)

The optimization problem in Eq. 4 is solved with the graph optimization
framework g2o[8] using fixed information matrices Ωodo,Ωvis. The resulting
keyframe poses and map points are then updated, and the Local Mapping thread
awaits until a new keyframe is added from Tracking.

Localization Mode and Map Reuse. ORB-SLAM provides the option to
localize in a previously built map, disabling the SLAM capabilities. This local-
ization can run in a single thread, hence requiring a fraction of the computational
requirements compared to the full ORB-SLAM system. Nevertheless, in order to
perform localization-only, it is required a map that was built in the same session.

Since this is not generally the case, we use map saving capabilities (taken from
a fork of ORB-SLAM7) and implemented a different behavior for the system
when it is launch with a pre-built map, that first tries to relocalize and then
continue mapping incrementally. These minor changes allowed us to build maps
even during different sessions once the relocalization is successful.

4.2 Navigation

For the navigation part, we assume the ORB-SLAM’s map was already built, so
we can rely on the localization mode.

7 https://github.com/Alkaid-Benetnash/ORB SLAM2.

https://github.com/Alkaid-Benetnash/ORB_SLAM2

Visual SLAM-Based Localization and Navigation for Service Robots 39

The pose estimation performed by ORB-SLAM is 6-dimensional since it con-
siders a camera freely moving in the space, which would be an overkill to perform
planning with Pepper. In order to use ORB-SLAM’s estimates within a pla-
nar navigation framework, we developed the visual localization node, which
takes the estimated position of the camera with respect to the ORB-SLAM world
frame and computes a transformation between the ROS standard map and odom
frames. This transformation represents the Pepper position in the ORB-SLAM
map based on the estimated pose of the Pepper’s camera and its kinematic
information.

The move base package is used to navigate. Our localization system basically
replaces the amcl8 package in the ROS Navigation Stack. The move base package
uses the pose estimate provided by the localization system and Pepper’s laser
readings to compute the cost map necessary for planning. Thus, lasers are not
used for localization, but for obstacle detection and path planning.

5 Experiments and Results

5.1 Experimental Setup

We considered two real environments of the Faculty of Physical and Mathemati-
cal Sciences of Universidad de Chile to test our system: Mechatronics Laboratory
and School Building South Hall. The chosen places were different in size, furni-
ture, and visual features complexity, being the latter of paramount importance
for the visual SLAM system.

– The Mechatronics Laboratory (Fig. 4a) is a 10 × 9 m2 space. The main furni-
ture are rolling chairs and work tables. It is a feature-rich space comparable
to the RoboCup Arena; however, it has various windows that enable the pass
of natural light.

– The School Building South Hall (Fig. 4b) has an area of 16× 27.5 m2. It is an
open space with pillars and doors, but generally feature-less, making it the
most challenging environment for our system.

To have a ground truth reference, a Google Tango Tablet is used (Fig. 4c).

5.2 Experiments

Mapping. The first experiment considered a localization and mapping task; this
was performed in both the Mechatronics Lab (Fig. 4a) and South Hall (Fig. 4b).
We remote controlled the robot to build a three dimensional map to be later used
for localization. Table 1 compare different mapping results through the Absolute
Trajectory Error [14], a metric that calculates the root mean square error RMSE

defined as
(

1
N

∑N
i ‖pei − pgti‖2

)1/2

between the localization estimate pei and
the ground truth pgti through all the time indices.

8 http://wiki.ros.org/amcl.

http://wiki.ros.org/amcl

40 C. Gómez et al.

Fig. 4. Left: Mechatronics Lab. Center: South Hall. Right: Pepper with Google Tango
Tablet attached for ground truth measurements.

Table 1. Absolute Trajectory Error (ATE) in meters, for each place and axis. A
mapping experiment was performed in the Mechatronics Laboratory and in the South
Hall. The estimated trajectory and the ground truth was used to calculate the ATE.

Place ATE X [m] ATE Y [m] ATE Z [m]

Mechatronics Laboratory 0.270 0.249 0.080

South Hall 0.619 0.849 0.390

During all the experiments we noticed that the robot must move smoothly
and preferably sideways in order to triangulate the initial map; pure rotational
factors must be avoided despite the offset between the head camera and the base’s
axis of rotation. The initial displacement is primordial to recover a reliable scale
factor as well. However, this also depends on a parameter that sets the number of
keyframes to wait until the scale is recovered with Eq. 2, which is set empirically.

Regarding mapping, as is expected from a feature-based visual SLAM sys-
tem, the number of points and quality of the map increases in feature-rich envi-
ronments. In addition, compared to LIDAR mapping, visual mapping requires
significantly more time. This because map creation depends on the field-of-view
(FOV) of the camera, which is very narrow in Pepper, requiring to map the
same place from multiple views in order make it useful for robust localization.
LIDAR does not suffer from this issue since localization is performed by point
cloud alignment rather than feature matching. However, feature matching has
the advantage of providing instantaneous relocalization when the robot is lost
since places are uniquely defined by a bag-of-words representation [10].

Localization and Navigation. We performed a second experiment to test the
localization and navigation in a known place, i.e., with a pre-built map. This
was also executed in the Mechatronics Laboratory and South Hall.

We commanded the robot to navigate without operator help to a relative
point with respect to its initial pose, which exploited the localization capabilities
of our system in a known environment. Localization results are shown in Figs. 5
and 6.

Our experiments show the performance of the system, which uses both visual
localization and odometry fusion (highlighted in gray) and odometry-only local-

Visual SLAM-Based Localization and Navigation for Service Robots 41

Fig. 5. Navigation test on the Mechatronics Laboratory. The estimate of the local-
ization system is compared to ground truth. Grey areas in the graph indicated when
the robot is correctly localized with ORB-SLAM. When the robot is not localized, an
odometry estimate is used

ization when the robot is lost (in white). In the navigation experiment in the
Mechatronics Lab, showed in Fig. 5, Pepper correctly navigated through the test.
However, between seconds 275 and 350 there exists a considerable drift between
the ground truth and the localization estimate. These problems can result in
reaching an erroneous navigation goal or even collide if no safety procedures
are considered. We believe that a cause of this issue was the lack of viewpoints
during the mapping step, as mentioned in the previous experiment.

Regarding South Hall experiments, the multiple discontinuities in the local-
ization estimate (Fig. 6, Z axis) made navigation unfeasible. This was caused by
the large distance between the robot and the landmarks in this environment,
which was not the case of the Mechatronics Lab. Since visual SLAM systems
are based on optimization and Pepper’s FOV is narrow, it is more difficult to
correctly estimate the pose because the triangulation uncertainty is higher; this
is a known problem in visual systems [4].

However, in both experiments we noticed that localization is robust to
changes in the environment, like a change in furniture position and, if the map
is correctly built, there is minimal (if not zero) accumulation of drift error.

5.3 Discussion

The previous experiments evidence several advantages but also challenges of our
proposed system. We summarizes them as follows:

42 C. Gómez et al.

Advantages. Our localization system is not affected by Peppers’ LIDARs short
range, which is one of the main limitations of it in RoboCup environments. Since
we used the map created visually, the robot is able to localize with a single look
by exploiting the relocalization capabilities of ORB-SLAM. Our scale recovery
solution also allowed us to perform metric mapping despite using a single camera.
In addition, since the motion estimation is based on features, it is robust to
partial occlusions, and odometry is used when no visual features are tracked. All
these advantages demonstrate that it is possible for our system to localize the
robot in RoboCup@Home arenas successfully.

Challenges. Despite the previous advantages, we cannot avoid to mention some
challenges and difficulties we noticed during our experiments. The first one
relates to illumination changes, which can deteriorate hugely visual tracking.
If we set the camera exposure to automatic we can deal with dynamic lighting,
but the system is more susceptible to motion blur, which is still an issue despite
the robot performs planar motion; the main cause of this is joint backslash. If
the environment has non-variable illumination, we recommend to fix the camera
exposure to diminish those problems. The second challenge regards glossy sur-
faces, which produce fake landmarks because of reflections. Despite ORB-SLAM
is able to deal with outliers that do not match the predicted motion, it is still
an open challenge in our opinion. Finally, localization turns noisier when the
landmarks are far away, which is caused by the optimization procedures and the
point’s triangulation uncertainty.

Fig. 6. Navigation test on the South Hall. The robot tries to navigate but the local-
ization system does not work correctly.

Visual SLAM-Based Localization and Navigation for Service Robots 43

6 Conclusions

In this work, we presented a localization system for a Pepper robot based on
a visual SLAM system. Our solution, built upon ORB-SLAM, was focused on
developing a self-localization system able to deal with large environments despite
the LIDARs’ short range. In order to do so, we presented an approach that fused
visual and wheel odometry information. We tested the system in two real envi-
ronments, showing the feasibility performing SLAM and navigation with our
system with the current Pepper sensors, despite displaying some issues such as
weakness to illumination changes, ambiguities to glassy surfaces and far land-
marks.

Nowadays we are working towards an on-board implementation of the self-
localization system on Pepper, which will allow us to perform a more exhaustive
evaluation and comparison with other sensors such as lasers. In the future, we
would like to improve robustness to illumination changes and reducing the noisy
behavior in large environments.

Acknowledgments. This work was partially funded by the FONDECYT 1161500
project.

References

1. Cadena, C., et al.: Past, present, and future of simultaneous localization and map-
ping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332
(2016)

2. Cheng, M., et al.: Synthetical benchmarking of service robots: a first effort on
domestic mobile platforms. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.)
RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 377–388. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-29339-4 32

3. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

4. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2004)

5. Hertzberg, C., Wagner, R., Frese, U., Schröder, L.: Integrating generic sensor fusion
algorithms with sound state representations through encapsulation of manifolds.
Inf. Fusion 14(1), 57–77 (2013)

6. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions.
J. Opt. Soc. Am. A 4(4), 629 (1987)

7. Iocchi, L., Holz, D., Ruiz-Del-Solar, J., Sugiura, K., Van Der Zant, T.:
RoboCup@Home: analysis and results of evolving competitions for domestic and
service robots. Artif. Intell. 229, 258–281 (2015)

8. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general
framework for graph optimization. In: IEEE ICRA, pp. 3607–3613 (2011)

9. Martinelli, A.: Closed-form solution of visual-inertial structure from motion. Int.
J. Comput. Vis. 106(2), 138–152 (2014)

https://doi.org/10.1007/978-3-319-29339-4_32
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54

44 C. Gómez et al.

10. Mur-Artal, R., Montiel, J.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate
monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

11. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for
monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262
(2017)

12. Mur-Artal, R., Tardos, J.D.: Visual-inertial monocular SLAM with map reuse.
IEEE Robot. Autom. Lett. 2(2), 796–803 (2017)

13. Strasdat, H., Montiel, J.M.M., Davison, A.J.: Visual SLAM: why filter? (2012)
14. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for

the evaluation of RGB-D SLAM systems. In: IEEE ICRA, pp. 573–580 (2012)

Visual Mesh: Real-Time Object Detection
Using Constant Sample Density

Trent Houliston(B) and Stephan K. Chalup

School of Electrical Engineering and Computing, The University of Newcastle,
Callaghan, NSW 2308, Australia

trent@houliston.me, stephan.chalup@newcastle.edu.au

Abstract. This paper proposes an enhancement of convolutional neural
networks for object detection in resource-constrained robotics through a
geometric input transformation called Visual Mesh. It uses object geome-
try to create a graph in vision space, reducing computational complexity
by normalizing the pixel and feature density of objects. The experiments
compare the Visual Mesh with several other fast convolutional neural
networks. The results demonstrate execution times sixteen times quicker
than the fastest competitor tested, while achieving outstanding accuracy.

Keywords: Convolutional neural network · Deep learning ·
Ball detection · Graph transformation · TensorFlow · Machine vision

1 Introduction

This paper introduces a Visual Mesh that defines an input transformation for
convolutional neural networks (CNN). By normalizing object size, the Visual
Mesh accounts for differences in an object’s appearance when detecting and
localizing it. This allows simpler network architectures to be used and reduces
oversampling, improving the computational performance substantially.

CNNs require powerful hardware to perform in real-time. Despite this, some
networks have been developed to run on constrained hardware with limited suc-
cess. Speck et al. [13] built a CNN for detecting the coordinates of a soccer ball
on an image. When implemented on their target platform it ran in 26 ms and
had an accuracy of 58% in x and 52% in y. The accuracy dropped to less than
30% in distances over two meters. Therefore, this approach had limited success
in object localization.

Faster and more accurate systems have been developed that only perform
object classification. These systems utilize color segmentation to provide propos-
als for a CNN to classify. As a result they were much faster than systems that
localize objects, however, color segmentation is sensitive to changes in lighting
conditions and must be manually calibrated. Javadi et al. [7] utilized such a sys-
tem for detecting humanoid robots. The best performing network ran in 2.36 ms
with 97.56% accuracy per proposal on an Intel Core i5 2.5 GHz. Cruz et al. [5]

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 45–56, 2019.
https://doi.org/10.1007/978-3-030-27544-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_4&domain=pdf
http://orcid.org/0000-0002-7744-0472
http://orcid.org/0000-0002-7886-3653
https://doi.org/10.1007/978-3-030-27544-0_4

46 T. Houliston and S. K. Chalup

developed a system to classify Aldebaran NAO robots. This network executed in
≈1 ms per proposal. Albani et al. [2] and Bloisi et al. [3] utilized a similar tech-
nique for ball detection. This system was implemented on an Aldebaran NAO
robot and processed 14–22 frames per second as the only process running. The
reliance on color segmentation for proposals limits these networks to color coded
environments.

(a) Side view: φn+1 for a cir-
cle on the observation plane
is found using Equation (1).

(b) φn+1 for a sphere can be
found by inspecting its tangent
lines and using Equation (3).

(c) Δθn segments
in top view of the
observation plane.

Fig. 1. Geometry for calculating φn+1 and Δθn.

2 Visual Mesh Geometry

The Visual Mesh detects objects that lie on a plane at a known distance and
orientation from the camera. This plane is referred to as the observation plane.
The geometry of the Visual Mesh can be described using Fig. 1 where the camera
is assumed to be at point A. The target object’s geometry determines the pixel
resolution, i.e., the placement of points in the Visual Mesh. The geometry for
two target object shapes are analyzed in this paper: Circles are appropriate for
detecting two-dimensional objects on the observation plane (Fig. 1a). Spheres
are appropriate for three-dimensional objects that have an approximately equal
extension in all dimensions (Fig. 1b). More complex objects such as cylinders
could also be modeled.

For establishing the Visual Mesh two orthogonal angular components have to
be determined. These are Δφn and Δθn and are given by the angular diameters
of the target object with respect to points A and B. The height h of the camera
above the observation plane and the radius r are required to calculate the mesh.

The first component is Δφn := φn+1 − φn and is determined by the incli-
nations φn from directly below the camera. A series φn, n = 0, .., N is given
recursively by function f : R → R, φn+1 = f(φn) = φn + Δφn where φ0 = 0.

Visual Mesh 47

The second component, Δθn, is measured around point B in the observation
plane and depends on φn for both, circle and sphere objects (Fig. 1c).

The inclinations (φn)n=0,...N induce a series of nested concentric cones with
vertex at A and center axis orthogonal to the observation plane. Each of these
cones is radially segmented at its basis by Δθn and the tangent rays from B.

2.1 Circle

The geometry for circles is shown in Fig. 1a. φn+1 for a circle is calculated by
adding the diameter 2r of the circle to its distance BD to obtain

φn+1 = tan−1

(
tan (φn) +

2r

h

)
(1)

Figure 1c shows the geometry for Δθn within the 2D observation plane where

Δθn = 2 sin−1

(
r

h tan (φn)

)
(2)

This formulation of Δθn has a singularity when the center of the object is closer
than its radius making it more difficult for the mesh to detect objects directly
below the camera.

2.2 Sphere

For spheres Δφn is determined by the sphere’s shadow from a virtual light at A
and it decreases more slowly with n than for circles. Figure 1b shows how φn+1

is calculated. Using the triangle �AEZ and edges AE and EZ gives

φn+1 = 2 tan−1

(
dφ + dr

h − r

)
− φn

= 2 tan−1

(
r sec (φn)

h − r
+ tan (φn)

)
− φn

(3)

The calculation of Δθn is the same as for circles and uses Eq. (2).

2.3 Object Dependent Sample Density

The current description guarantees one point in the mesh for the target object.
For use in computer vision, multiple sample points per object are required. Let’s
assume our object requires k pixels to be recognizable. In the Visual Mesh this k
corresponds to the number of intersections of the φn rings with the object. A φn

ring is obtained by rotating vector
−−→
AD about the axis

−−→
AB. If Δφn and Δθn are

reduced, the spacing between the φn rings will be decreased which leads to more
intersections with the target object.

48 T. Houliston and S. K. Chalup

Fig. 2. Multiple sample points on a
sphere can be calculated by finding
the smaller sphere’s radius.

An increase in the number of sample
points for the circle model can be achieved by
dividing Δθn in (2) by k and also the diame-
ter of the circle by k, i.e., replacing 2r in (1)
by 2r/k.

In the sphere model k sample points can
be achieved by creating a version of the
mesh where the original sphere is replaced
by smaller spheres so that the original sphere
intersects with k φn rings associated with the
smaller spheres (Fig. 2). If k is expressed as
fraction k = p

q , p, q ∈ N − {0}, the equa-
tion relating the radii of the spheres is given
by fq (φ0, r0) = fpq (φ0, r1) where r0 is the
radius of the target and r1 is the radius of
the small spheres in the mesh. A solution for
r1 can be obtained numerically.

2.4 Graph Structure of the Mesh

P

1 2
3

4

5 6
A sample point in the

mesh and its six neighbors

Fig. 3. The Visual Mesh projected onto an
image. Note that four φn rings pass through
the ball regardless of its location.

A mesh can be generated using the
points around φn rings (see arcs in
Fig. 3). In each φn ring, points are
separated by Δθn. This ensures that
the number of points within an object
falls within a small range (±1 in φ
and θ). Each point is connected with
edges to the two adjacent points on
the same φn ring as well as to the
two nearest points on the φn±1 rings.
The single point below the camera
is connected by six equally spaced
points. Projecting these points onto
an image creates a mesh structure as
shown in Fig. 3.

Another method to view the mesh
is to project the φn rings onto con-

centric circles as in Fig. 4. Due to perspective, the size of objects decreases in
distance within the original image, while the Visual Mesh ensures objects are
always the same size.

2.5 Network

Once the image data has been transformed by the Visual Mesh, it exists as a
graph, rather than a grid of pixels. The pixels no longer have nine neighbors,
but six. This changes how convolutions occur when executed on the graph.

Visual Mesh 49

Fig. 4. The Visual Mesh projected in concentric rings. Due to perspective, the size of
the ball decreases with distance in the original (left). In the Visual Mesh, the ball has
always a similar size (right).

For example, a 3 × 3 convolution in a typical CNN accesses eight pixels
around a central pixel. The equivalent operation in the graph accesses points
with a graph distance of one, its six neighbors. This has a positive impact on
performance, as two fewer values need to be considered. Larger convolutions
would be equivalent to operating on points at a larger maximum graph dis-
tance. For example, a 5 × 5 convolution would operate on all points that have a
maximum graph distance of two to the central point.

3 Evaluation of the Visual Mesh

3.1 Dataset

A semi-synthetic dataset with masks that segment out the ball was created for
training. By using 360◦ high dynamic range (HDR) images to provide image-
based lighting, along with physics-based rendering, realistic semi-synthetic scenes
were generated. From this, the mask images, as well as the camera orientation
and position can be obtained.

50 T. Houliston and S. K. Chalup

Using a number of different HDR scenes taken from RoboCup 2017, the
NUbots’ laboratory and online1, as well as over a hundred different soccer ball
designs, over 160,000 images were generated. These soccer ball designs were not
limited to 50% white as per RoboCup rules and included balls of various colors.
Each of these images varied the position of the soccer ball and switched between
equisolid and rectilinear camera projections.

The distance of the balls from the camera varied between zero and ten meters.
The intensity of the lighting varied in the scene. The rendered soccer ball was
selected from a set of 140 different models. The distribution of distances was
designed to provide a uniform variation in the pixel size of the ball. This allowed a
consistent variation in the angular diameter of the ball in the image. It prevented
a large number of visually small balls that would have occurred with a uniform
distribution over distance.

3.2 Network Architecture

Each node in the Visual Mesh performed a 3× 3 convolution using its six neigh-
bors. These layers were stacked to varying depths from two to nine and with
output widths varying from two to eight, resulting in a fully convolutional net.

Networks of width four performed significantly better than networks of other
widths as the hardware utilized can vectorize on four elements. The results dis-
cussed in Sect. 3.4 only include network widths of four.

Networks were also tested with ReLU [9], ELU [4] and SELU [8]. SELU
consistently outperformed ELU and ReLU in terms of training time and network
accuracy. SELU is computationally more expensive than ReLU but is similar to
that of ELU. Results in Sect. 3.4 only include those tested with SELU.

The network depths used for evaluation were three, five, and nine layers.
These were chosen as their receptive fields were half, one and two ball radii,
respectively. This ensured the networks had sufficient contextual information to
correctly classify the ball.

In addition to these Visual Mesh networks, similar CNNs using a regular
hexagonal grid were trained. These networks allowed a comparison between the
Visual Mesh and a network that has equal computational cost due to selecting
the same number of pixels. This network provides a comparison to an equivalent
network without the constant sample density of the Visual Mesh.

3.3 Training

The training of these networks was undertaken using the TensorFlow library [1].
The pixel coordinates from the Visual Mesh and the indices of each pixel’s six
neighbors were used to apply the Visual Mesh at each layer. Once this gather
step was performed, the neural network steps were undertaken as normal.

When training these neural networks, the number of ball points and non-ball
points were balanced. This was achieved by selecting an equal number of points

1 HDRI Haven https://hdrihaven.com/.

https://hdrihaven.com/

Visual Mesh 51

from each class. The backpropagation gradients were only calculated from the
selected points.

This method was chosen instead of the traditional method of weighting the
gradients intentionally. The majority of non-ball points in training images are
grass. As a result, the initial networks experienced over-fitting on the field.

Once the initial network was trained, the error in its classification of each
point in the image was used as a probability to select that point. This resulted
in fewer grass points selected in future training. This resampling was run twice,
with the probabilities added together with a 5% baseline probability. This greatly
improved the accuracy in subsequent training.

In addition to these networks, five convolutional network architectures were
fine-tuned on this dataset. These networks were SSD MobileNet and RCNN
Inception V2 trained using TensorFlow [1,6] and YOLOv1 [10], YOLOv2 [11]
and YOLOv3 [12] trained using Darknet2. These networks were chosen as they
were regarded as some of the fastest real-time networks.

3.4 Results

Precision. In addition to the Visual and hexagonal meshes, five typical CNNs
were also evaluated. Their results were measured using a 75% IoU. 75% was
chosen as 50% was considered a poor match. With 50% IoU, the center of the
detection can be at the edge of the object.

As shown in Fig. 5a, the accuracy of the Visual Mesh consistently outperforms
the hexagonal mesh of an equivalent size. Increasing the depth of the network
increases its performance.

The performance of the Visual Mesh remains approximately constant as dis-
tance increases. However, as shown in Fig. 5c the performance of the hexagonal
mesh, as well as the other CNNs degrades with increased distance. Note that
as the generated data was made uniform over pixel size rather than distance,
the number of sample images falls off as distance increases. The fewer samples
increase noise in the plot.

The performance of the Visual Mesh exceeds the performance of the hexago-
nal mesh even when the number of points in the object is the same. The number
of points in both tested networks are equal at 2.5 m. Figure 5b shows the number
of points in the Visual Mesh stays constant over distance, except for a peak at
0 m. This peak is when points are directly below the camera. This is a singularity
point for the Visual Mesh as it is currently implemented. The hexagonal mesh
has a decreasing number of points as distance increases.

Detections. Figure 6a shows a typical set of detections from each of the trained
networks. YOLOv1 is omitted as it performs strictly worse than YOLOv2. The
Visual Mesh has a good detection while the hexagonal mesh has several false

2 Darknet http://pjreddie.com/darknet/.

http://pjreddie.com/darknet/

52 T. Houliston and S. K. Chalup

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

Visual Mesh 3L
Hexagonal Mesh 3L
Visual Mesh 5L
Hexagonal Mesh 5L
Visual Mesh 9L
Hexagonal Mesh 9L
YOLO
YOLOv2
YOLOv3
SSD MobileNet
RCNN Inception V2

a: Precision/Recall

5 10
0

20

40

Distance (m)

Sa
m
pl
e
P
oi
nt
s

k = 5
k = 4
k = 3

5 10
0

20

40

Distance (m)

Sa
m
pl
e
P
oi
nt
s

VM
HM

b: Sample Points/Distance

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Distance (m)

M
ea
n
A
ve
ra
ge

P
re
ci
si
on

c: MAP/Distance

Fig. 5. (a) The Precision/Recall curve over all data. (b) The number of sampled points
in an object over distance (VM is Visual Mesh HM is Hexagonal Mesh). (c) The Average
Precision of the detectors over distance.

positives. The five other networks all detect the ball. YOLOv2 has a lower con-
fidence than the other networks on the dataset. SSD MobileNet, YOLOv2 and
YOLOv3’s bounding boxes are less accurate across the dataset.

The Visual Mesh excels at distant detections as shown in Fig. 6b. Except for
the Visual Mesh and RCNN Inception V2, none of the other networks detect the
ball. RCNN Inception V2 has a poorly fitted bounding box. This is typical of
distant balls in the dataset.

Figure 6c shows how the Visual Mesh is able to use scale to identify target
objects. The hexagonal mesh found many false positives on objects that had a
different size than expected, but similar appearance as the target.

Execution Performance. Each network was tested on the CPU and GPU
from the Intel NUC7i7BNH as well as on an NVIDIA 1080Ti. The input images
were 1280×1024 for all networks. SSD MobileNet and RCNN Inception V2 were
not executed on the Intel GPU as TensorFlow does not support OpenCL at this

Visual Mesh 53

V
is
u
a
l
M

e
sh

H
e
x
a
g
o
n
a
l
M

e
sh

Y
O

L
O

v
2

Y
O

L
O

v
3

S
S
D

M
o
b
il
e
N
e
t

R
C
N
N

In
c
e
p
ti
o
n

V
2

(a
)

D
et
ec
ti
on

on
an

em
pt
y

fie
ld
.
A
ll

ne
t-

w
or
ks

ac
hi
ev
e
ac
ce
pt
ab

le
pe

rf
or
m
an

ce
.
H
ow

-
ev
er
,t
he

he
xa

go
na

lm
es
h
ha

s
so
m
e
fa
ls
e
po

s-
it
iv
es
.

V
is
u
a
l
M

e
sh

H
e
x
a
g
o
n
a
l
M

e
sh

Y
O

L
O

v
2

Y
O

L
O

v
3

S
S
D

M
o
b
il
e
N
e
t

R
C
N
N

In
c
e
p
ti
o
n

V
2

(b
)

D
et
ec
ti
on

s
at

ex
tr
em

e
di
st
an

ce
.
O
nl
y

th
e
V
is
ua

l
M
es
h

ac
hi
ev
es

a
go

od
de

te
ct
io
n.

R
C
N
N

In
ce
pt
io
n
V
2
de

te
ct
s
bu

t
Io
U

of
th
e

bo
un

di
ng

bo
x
is

<
50

%
.

V
is
u
a
l
M

e
sh

H
e
x
a
g
o
n
a
l
M

e
sh

Y
O

L
O

v
2

Y
O

L
O

v
3

S
S
D

M
o
b
il
e
N
e
t

R
C
N
N

In
c
e
p
ti
o
n

V
2

(c
)

D
et
ec
ti
on

on
a
fie

ld
w
it
h

a
ro
bo

t.
T
he

he
xa

go
na

l
m
es
h
ha

s
m
an

y
fa
ls
e
po

si
ti
ve
s
on

th
e
ro
bo

t,
w
hi
le

th
e
ot
he

r
de

te
ct
or
s
pe

rf
or
m

w
el
l.

F
ig
.
6
.
E

x
a
m

p
le

d
et

ec
ti

o
n
s

w
h
er

e
co

n
fi
d
en

ce
in

te
rv

a
ls

a
re

re
p
re

se
n
te

d
b
y

co
lo

rs
:
R

ed
>

5
0
%

,
Y

el
lo

w
>

7
5
%

a
n
d

W
h
it

e
>

9
0
%

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

54 T. Houliston and S. K. Chalup

time. YOLOv3 was not executed as it is not supported by the OpenCL version
of Darknet. Table 1 summarizes the results with respect to execution time. The
times for all networks are measured from when the image is first sent to the
algorithm until the inferences are returned. Therefore, the time taken to project
Visual Mesh points is included.

Table 1. Execution performance: For the Visual Mesh on the Iris Plus Graphics and
the NVIDIA 1080Ti the device utilization was 70% and 35% respectively. For all other
cases utilization was at 100%.

Intel Core
i7 7567U

Intel Iris Plus
Graphics 650

NVIDIA 1080Ti

Visual Mesh 5 1.64 ms 2.10 ms 2.18 ms

Visual Mesh 9 2.44 ms 2.48 ms 2.25 ms

YOLOv1 1468.24 ms 721.13 ms 17.55 ms

YOLOv2 1221.49 ms 613.73 ms 16.13 ms

YOLOv3 2651.33 ms N/A 19.00 ms

SSD MobileNet 37.76 ms N/A 11.32 ms

RCNN Inception V2 1521.32 ms N/A 47.75 ms

3.5 Discussion and Conclusion

The results for the Visual Mesh show that consistent feature density improves
the accuracy of the network. When the Visual Mesh and the hexagonal mesh
had an equal number of points on the ball the Visual Mesh was more accurate.
As distance increased, the accuracy of the hexagonal mesh degraded while the
Visual Mesh remained consistent. This degradation can also be seen in other
networks as accuracy declines over distance.

The nine-layer Visual Mesh is used for the following comparisons. It provided
the highest accuracy and its computational performance was not significantly
worse than the five-layer Visual Mesh.

RCNN Inception V2 and YOLOv3 performed the best of the other networks
tested. While the other CNNs failed to detect distant objects, these networks
continued to detect them. However, the bounding boxes became increasingly
inaccurate. At a lower IoU threshold they have a higher detection rate. Visual
Mesh exceeds their performance after 4 m.

As seen in Table 1, the execution performance of the Visual Mesh exceeds that
of the other convolutional networks. Of these networks, only SSD MobileNet and
the Visual Mesh could be considered for real-time use on resource-constrained
systems. The performance of the Visual Mesh is fast enough that the transfer
times of images is a significant factor for GPU based computation. The NUC’s
CPU outperforms its GPU for the five-layer Visual Mesh because of this. The
NVIDIA 1080Ti also suffers this effect, resulting in only 35% utilization.

Visual Mesh 55

The Visual Mesh has a number of advantages beyond its accuracy and speed.
As objects always have a similar number of points additional post-processing
options are available to improve accuracy. Within detected areas, metrics such
as graph diameter can be used to filter out irrelevant areas. Additionally the
best fitting subgraph can be used to remove invalid points in a detection.

Higher resolution does not increase the computational cost of the Visual
Mesh. The number of points that are projected onto the image does not change
for the same camera lens and orientation. However, increased resolution will allow
the Visual Mesh to project points that are a greater distance from the camera.
If the resolution of the camera is insufficient for the level of detail requested,
the Visual Mesh will begin sampling the same pixel multiple times. The Visual
Mesh is still accurate with limited amounts of this duplicated data. However, as
the amount of information decreases, the accuracy of the network will decline.

As the distance to objects increases, typical networks must learn to account
for the differences in scale that occur. Often these differences are not well rep-
resented in the training data or, can be biased in the training data. This can
require additional training data to be generated by scaling. For the Visual Mesh,
this is not necessary as the object will always appear the same size. This reduces
the complexity of training as well as the complexity of the required network.

As the Visual Mesh is always oriented relative to the observation plane,
the resulting network is better able to handle changes in the orientation of the
camera. This form of transformational invariance only applies to rotations in
the camera, not rotations on the object. This can reduce the amount of training
required if the object can be assumed in a particular rotation. For example, if
extended to detect the goal posts the training data would not need to be modified
for different orientations of the camera as they would always be normal to the
observation plane. Without this invariance, training for goal posts would have
to include multiple orientations.

Networks based on the Visual Mesh also have an independence to the lens
used. As the sample points are always in the same place in the world, changing
to a different lens geometry does not change the points. This makes it easier to
train using data from different lenses and apply trained networks to new lenses.

The presented formulation of the Visual Mesh has two primary limitations.
One concern is that it cannot function when the height of objects are greater
than or equal to the height of the camera. In these cases, the Visual Mesh
correctly predicts that all objects are visible on the horizon. This results in a
single line of points. In practice, this does not afford good detection performance.
The second limitation is that objects that are directly below the camera fall into
a singularity. When in this singularity, twice as many points intersect with the
objects until they move beyond this position. This increases the complexity that
the Visual Mesh must learn.

The training and execution code for the Visual Mesh is available at https://
github.com/Fastcode/VisualMesh.

Acknowledgments. TH was supported by a Australian Government Research Train-
ing Program scholarship and a completion scholarship from 4Tel Pty. Ltd.

https://github.com/Fastcode/VisualMesh
https://github.com/Fastcode/VisualMesh

56 T. Houliston and S. K. Chalup

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2016, pp. 265–283. USENIX Association, Berkeley (2016)

2. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

3. Bloisi, D., Duchetto, F.D., Manoni, T., Suriani, V.: Machine learning for realistic
ball detection in robocup SPL. CoRR abs/1707.03628 (2017)

4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015)

5. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del Solar, J.: Using convolutional neural
networks in robots with limited computational resources: detecting NAO robots
while playing soccer. CoRR abs/1706.06702 (2017)

6. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detec-
tors. CoRR abs/1611.10012 (2016)

7. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS
(LNAI), vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00308-1 28

8. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing
Systems 30, pp. 971–980. Curran Associates, Inc. (2017)

9. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML 2010, pp. 807–814. Omnipress, USA (2010)

10. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified,
real-time object detection. CoRR abs/1506.02640 (2015)

11. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525
(2017)

12. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR
abs/1804.02767 (2018)

13. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-319-68792-6_2

Fast Multi-scale fHOG Feature Extraction
Using Histogram Downsampling

Mihai Polceanu(B), Fabrice Harrouet, and Cédric Buche

LAB-STICC, ENIB, Brest, France
{polceanu,harrouet,buche}@enib.fr

Abstract. Object detection is crucial for autonomous robotic systems
to interact with the world around them but, in robots with low com-
putational resources, deep learning is difficult to take advantage of. We
develop incremental improvements to related work on feature approx-
imation and describe an adaptive fHOG feature pyramid construction
scheme based on histogram downsampling, together with a SVM clas-
sifier. Varying the pyramid level to which the scheme is applied gives
control over the trade-off between precision or speed. We evaluate the
proposed scheme on a modern computer and on a NAO humanoid robot
in the context of the RoboCup competition, i.e., robot and soccer ball
detection, in which we obtain significant increase (1.57x and 1.68x on
PC and robot respectively) in pyramid construction speed relative to our
baseline (the dlib library) without any loss in detection performance. The
scheme can be adapted to increase speed while trading off precision until
it reaches the conditions of a state-of-the-art power law feature scaling
method.

Keywords: Vision for robotics · Object detection ·
Feature approximation · Histogram of Oriented Gradients

1 Introduction

Object detection has seen tremendous progress in the past years, which stemmed
both from hand-crafted features and the relatively recent convolutional neural
networks (CNN). As CPUs improved and with the advent of cheaper GPU pro-
cessing, some subfields witnessed super-human image recognition accuracy.

Our focus is however on conditions where the system is required to function
with low computational resources. Such conditions can be found in the Standard
Platform League (SPL) of the RoboCup soccer competition. Here, teams must
use the commercially available SoftBank NAO humanoid robot without hardware
modifications. The resources available in this setup are an Intel Atom 1.6 GHz
processor with one thread and 1GB of RAM. Although sufficient for vision, these
resources must be shared by several processes to perform locomotion, localization
and strategic behavior necessary for the soccer match, hence in reality, object

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 57–69, 2019.
https://doi.org/10.1007/978-3-030-27544-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_5

58 M. Polceanu et al.

detection can only account for a small amount of resources (roughly 5% CPU in
the implementation we used for this work) when the robot is in motion.

The main tasks for computer vision in this competition are the detection
of lines, goal posts, the ball and other robots (teammates and opponents). For
humanoid detection we turn to the subfield of pedestrian detection, where His-
tograms of Oriented Gradients (HOG) continue to play an important role since
their invention in 2005 [5]. HOG consists in dividing an image into cells, com-
puting the gradient of each cell, binning gradients into a histogram of main
orientations and finally normalizing over blocks of cells to produce features
(originally 36-dimensional) that are used for training a Support Vector Machine
(SVM) classifier over a sliding window. Later, [8] introduced a refined version
of HOG features (commonly referred to as Felzenszwalb HOG or fHOG) which
proved more robust for pedestrian but also generic object detection. Despite
its high popularity, HOG-like (HOG, fHOG, or other variants) feature extrac-
tion is known to be slow, although more energy efficient than more accurate
CNNs [19].

While many other flavors of object detectors have been proposed, most com-
bine HOG-like features with other types to obtain better results under different
conditions. Our main focus is to accelerate fHOG feature extraction in order for
it to run on a robotic platform with low computational resources, while maxi-
mizing detection precision.

We first discuss existing work on feature approximation and how our work
differs from the state-of-the-art method [6]. We then present a series of eval-
uations on a modern computer (Intel Core i7, 2.60 GHz) to observe how our
choices have an impact on detection quality and execution speed. All results
are obtained using a single execution thread and averaged over multiple runs to
ensure validity. From these evaluations we make several observations that lead
to an adaptive scheme that gives control over the trade-off between average pre-
cision and execution speed. Finally we validate the results on the chosen robotic
platform, where we obtain higher execution time compared with the modern
computer as expected, due to the lower quality processor, but still observe sig-
nificant improvement relative to the baseline.

2 Related Work

The Histogram of Oriented Gradients is a widely used feature descriptor, first
proposed for human detection by [5]. The intuition behind this approach is that
the shape and appearance can be characterized by the distribution of local edge
directions (intensity gradients). The main steps in obtaining a HOG-based detec-
tor, as originally described by [5], are to compute gradients that are binned in
histogram of 9 dominant directions (bins), which are then normalized over blocks
of 4 cells and finally concatenated to obtain the HOG features (9×4 = 36 dimen-
sional). These features are then fed as input to a SVM classifier that is trained
with the corresponding labels such as pedestrians. Afterwards, [8] improved upon
the result with insights gained from applying Principal Component Analysis

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 59

(PCA) to reduce the dimension of the initial features while retaining the same
performance and used additional contrast sensitive components to improve over-
all performance.

Our work falls in the concept of feature approximation, notably used by [7]
to significantly increase the speed of the feature pyramid construction for non
scale invariant features like HOG. The feature pyramid is constructed by down-
sampling the image by a factor, i.e., a smaller image is obtained by downscaling
the original by a chosen fraction. For example, downsampling a 640× 480 image
by a 4/5 factor means that the obtained image is 640∗4/5 = 512 pixels wide and
480∗4/5 = 384 pixels high. The main intuition is that instead of downscaling the
image and extracting features at each level of the pyramid, intermediary levels
could be approximated using nearby feature maps. Approximating intermediary
pyramid levels is complementary to other works focusing on optimized variants
of HOG, such as faster cell-based scanning [18], heavy use of parallelism [12] and
different approaches to computing gradients [4].

Successive image down-sampling and calculating features at each pyramid
level are computationally expensive. Taking advantage of the generally fractal
structure of natural images, it is possible to obtain similar performance by only
downsampling and computing the features for each halved image; i.e., at each
octave [6]. In-between, the features are approximated (upsampled and downsam-
pled) from the ones directly calculated at each octave, which directly leads to
higher execution speed that is crucial for embedded systems [11].

Regarding the context of application, object detection in the RoboCup Soccer
competition (standard platform league) has been achieved with (generally man-
ually tuned) detectors based on color segmentation [13,16] or color histograms
[17], statistical modeling [2], line detection, rough shapes [3], or simply as non-
green patches which differentiate themselves from the green football field [10].
We note that some approaches [16] make use of smaller image sizes and regions
of interest (instead of sliding windows) to limit the search space in the image to
improve performance; this technique is complementary to our work on analyzing
the effects of feature approximation on performance.

In our experiments, we use the object detector provided by Dlib [14] which
uses the well known 31-dimensional feature extraction method described by
[8] (fHOG) together with Max-Margin Object Detection (MMOD) [15] which
improves training efficiency. While other implementations exist (such as OpenCV
and others), our focus is on studying the impact of feature approximation,
regardless of particular implementation. Final detections are obtained by apply-
ing non-maximum suppression on the ensemble of overlapping detection boxes.
Dlib represents one of the most efficient implementations of state-of-the-art clas-
sical object detection and is used by both academia and industry. Throughout
this work, our contribution is compared to the current implementation of fHOG-
based SVM classifier in Dlib as primary baseline.

60 M. Polceanu et al.

3 Image and Histogram Downsampling

The first important observation is that the main bottleneck in computing fHOG
features resides in calculating the gradient histogram which happens before com-
puting the final feature map. Most modern processors provide Single Instruc-
tion, Multiple Data (SIMD) instructions, which have the same execution time
and electricity consumption as their scalar counterparts, but handle 16 bytes of
data simultaneously which, for our purposes, enables 4 floating point operations
instead of one. This is also the case for the Intel Atom 1.6 GHz processor of
the NAO robot used in our research. However, computing histograms involves
the decision of which bin is associated with each data point, and therefore can-
not be fully vectorized. This observation led us to consider avoiding succes-
sive histogram computations, similar to how other authors avoid direct feature
extraction.

Another important aspect to consider is that the bulk of computational
expense rests in the first few levels of the pyramid that use large scale images. For
example, for a 10-level pyramid that uses 4/5 downscaling factor on a 640× 480
image, computing features for each level costs 36.70%, 23.23%, 14.81%, 9.54%,
6.02%, 3.91%, 2.53%, 1.52%, 1.07% and 0.67% of the total time, respectively.

We can identify three aspects of the fHOG feature extraction algorithm that
can be accelerated: (a) The level to which the scheme is applied, (b) Image down-
sampling strategy and (c) Histogram downsampling strategy. Here we describe
each of these aspects, and then put them to the test in the following section, in
comparison with related state-of-the-art schemes.

All tests are performed on a dataset that contains images from the publicly
available SPQR dataset [1] and also includes new frames coming from robots
during test matches in different lighting conditions and of lower resolution. Lower
resolution images were upscaled to 640 × 480 which is the chosen resolution of
our evaluation, as this is the real image size that is usable from the NAO robot
camera; in fact, the output of the camera is 960p/30fps (1280 × 960) and is
provided in YUYV format (also known as Y’UV422), but processing the full sized
image exhausts much of the resources available on the robot [9]. For training and
testing, we only consider the Y value which can very efficiently be read directly
from the raw camera output. The images in the enhanced dataset have been
randomized and divided into 100 training images (50 with horizontal flip added)
and 98 test images, amounting to 190 and 185 positive examples respectively.
The training set was kept small to avoid excess robot pose variation which makes
training a HOG detector inefficient (i.e. the resulting vignette becomes blurred);
this proves to obtain acceptable accuracy without the need to train multiple
detectors for several poses which drastically increase the amount of resources
required, while in practice it also allows training for a different object with few
on-site images.

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 61

3.1 Approximating Levels

As seen previously, it is most important to approximate lower levels of the pyra-
mid (i.e. larger image sizes), as they have the highest cost in terms of computa-
tion time. Throughout this work, we evaluate different downsampling strategies
by applying them up to a certain level of the pyramid. Applying each scheme
up to a level means that some or all intermediary levels are approximated from
histograms from a lower level (source level depends on each scheme). After doing
a hyperparameter (pyramid downscaling factor; C and risk gap of SVM; and box
matching threshold) search (grid followed by random search) on the Dlib fHOG
object detector [14] which we use as a baseline, we chose to use a 4/5 downscale
factor which in our implementation leads to a pyramid with 10 levels (0–9). In
the following, we report the precision and execution time of each approach by
applying the scheme (approximating histograms) up to a given level exclusively,
while higher levels are computed in the same way as the baseline; this way,
results at level 1 are equivalent for all schemes and baseline since the scheme is
not applied to any level. Starting from level 2 and up to 9, the charts illustrate
the effect of the chosen scheme on performance and speed. We also include level
10, which means that the entire pyramid (levels 0–9) is approximated, using the
chosen scheme.

3.2 Image Downsampling

Constructing smaller scale images is originally performed in the Dlib baseline at
each pyramid level using bilinear interpolation, while histograms and features
are also extracted at each level. The power law based feature approximation
approach [6] proposes to only subsample images at each octave (ratio of 1/2)
while approximating the intermediary final features (as opposed to histograms
in our work). To test how approximation influences performance, regardless of
octaves, we approximate histograms up to a given level while downsampling
images for the higher levels in two ways: in the first scheme (dubbed slow method
in the following) we continue to downsample images from each previous level,
even if these intermediary images are not used for feature extraction, and in the
second scheme (dubbed fast method) we do not keep intermediary images, but
downsample from the original image directly to the level up to which the scheme
is applied (see Fig. 1 for clarification). While significantly faster, one may argue
that this method can lead to important information loss for higher levels (smaller
image scales), due to the fact that entire pixels are ignored in the downsampled
image.

We put this intuition to the test, and evaluate quality when skipping several
levels when downsampling image. We note that using the fast approach, we
obtain “pixelated” parts of the image, where gradient information is lost, but
this only becomes clear when the gap between downsampled images increases,
in our case, further than 4 or 5 levels. We therefore expect that having at least
some intermediary images, such as in the case of the power law approach [6]
which subsamples images at each octave, should improve results.

62 M. Polceanu et al.

Fig. 1. Image downsampling approaches of Dlib baseline (left), slow (center) and fast
(right) schemes applied up to level N .

To study the impact of the two image downsampling strategies, we measure
speed and performance at each level in the pyramid. To visualize the progres-
sion in function of level, we plot the average execution time (Fig. 2 left) obtained
by a single image pyramid, measured for 10 configurations. Each configuration i
consists in an fHOG detector that performs feature downscaling using the respec-
tive image downsampling strategy (slow/fast) until level i − 1 and then, from
level i onwards it performs the default feature extraction (which corresponds to
downsampling the image and extracting features at each step).

Fig. 2. Average execution time (in seconds) on modern computer (left) and average
precision (right) of slow vs. fast image downsampling when applying each scheme up to
each level of the pyramid (yielding multiple configurations of each scheme). Dotted lines
show the performance of the detector in each case using the same hyperparameters
initially found for the baseline. Because features differ when approximation is used, we
retrained each configuration on the same dataset to obtain the true average precision
for each level (indicated as “optimal” in figure), being equivalent to having a different
model per configuration.

As expected, the fast approach is more desirable in terms of execution time.
However, we find that the performance of extracted fHOG features depends on
the quality of the image at higher levels, but remain robust to drastic downsam-
pling at lower levels. Figure 2 (right) shows that, with hyperparameter tuning
for each configuration, slow downsampling outperforms the fast method overall.
However, this also implies a significant loss in execution speed. Nevertheless, we
note that for the first few levels, the performance difference is not as pronounced.

Therefore, if the approximated gap between downsampled images is small
enough, the fast downsampling strategy should retain enough information to
minimize performance loss while offering good execution speed gains.

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 63

3.3 Histogram Downsampling

In this work, we refer to “histogram” as the frequency of gradients binned into
each of the 18 orientations described by [8] that is computed before calculating
the final 31-dimensional fHOG features, while [6] describe feature downsampling
on final features. Downsampling final features would seem much faster, because
recomputing and normalizing them is directly avoided, however it turns out that
the time lost on this process is regained in our approach because the downsam-
pling is done on 18 dimensions instead of 31. This leads to very similar runtime
for both approaches, but we observe higher performance loss in scaling final
features. This loss could be alleviated by smoothing the feature maps as [6] pro-
pose, but this would inevitably lead to slower runtime only to reach detection
performance similar to our approach. In all experiments we use downsampling on
18-dimensional histograms and then compute and normalize the 31-dimensional
fHOG features.

As with images, histograms can be downscaled using bilinear interpolation
of bins between adjacent cells, either by always starting from the first level and
obtaining the rest (which we dub direct method), or by successively obtaining
level i+ 1 from level i (progressive method), see Fig. 3 for clarification. Because
the algorithm requires histograms for all levels, the progressive method yields
faster overall computation time as the source histogram is smaller, but leads to
additional blur that, contrary to the case of images, decreases detection accuracy.

Fig. 3. Dlib baseline (left) and histogram downsampling schemes – slow (center) and
fast (right) – applied up to level N .

In the following we evaluate execution speed and performance of each
method, by successively applying it up to a given level ranging from 2 to 10,
where 10 is actually a completely approximated pyramid, the entire pyramid
has 10 levels (0–9) as in the previous results. From Fig. 4 we observe that the
speed of both progressive and direct schemes are very similar, with little loss at
higher levels for the direct histogram downsampling.

As for the slow and fast schemes, we compute the average precision of the
detector using progressive and direct histogram downsampling with hyperpa-
rameters of the baseline and with best scores after a parameter search for each
level. Results in Fig. 4 show that direct downsampling outperforms progressive
by a small but real margin. We must note however that this advantage only
appears after a few levels, where the blur introduced by the progressive method
accumulates.

64 M. Polceanu et al.

Fig. 4. Average execution time (in seconds) on modern computer (left) and average
precision (right) of progressive vs. direct histogram downsampling. Dotted lines show
the performance of the detector in each case using the same hyperparameters initially
found for the baseline.

4 Adaptive Feature Pyramid Construction

It is clear that a trade-off exists between detection performance and the frame-
rate at which the algorithm can run. While it is ideal to obtain accurate detec-
tions, in real setups such as the RoboCup competition the robot must also spend
computational resources on other tasks, such as maintaining balance while walk-
ing. In fact, resource consumption varies throughout the game, depending on the
situation. Therefore, it is desirable to have an adaptive control of the trade-off
between accuracy and speed, while maximizing detection precision (i.e., mini-
mizing false positives).

In the previous section, we evaluated the drop in performance that comes with
“skipping” feature computations up to each level of the pyramid. Meanwhile,
the power law approach [6] provides a good trade-off: approximately 4% loss in
average precision (in our setup, on images of robots) for almost doubling the
speed of feature extraction. Here we evaluate a hybrid1 between the skipping
approach described previously and the power law based method.

We begin by skipping feature extraction up to level N exclusively, while
retaining it at levels that coincide with a 1/2 downscale of the image (octave).
This way, we obtain a method that is bounded in speed and average precision
by the original baseline (upper bound) and the power law based results (lower
bound). The setup presented herein uses 4/5 downscale from one level to the
next, therefore octaves correspond roughly to levels 3, 6 and 9. The proposed
scheme skips levels excepting those corresponding to octaves and applying the
scheme up to (but excluding) level N , thus we have equivalence between levels
3–4, 6–7 and 9–10 as the same conditions are met.

We note that the approximation of levels following an octave is done using
the result that was obtained from a downsampled image, therefore the quality
of the histogram is superior to the case where the approximation had continued
from the first level, as is the case in the previously described results.

In Fig. 5 we compare our approach with the original algorithm, power law
method and the previously described level skipping strategies. As with the opti-
mal versions of previous strategies, we performed a hyperparameter search and
1 Full code and dataset available at: https://github.com/polceanum/fast.fhog.

https://github.com/polceanum/fast.fhog

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 65

Fig. 5. Average execution time in seconds (left) and average precision (right) of studied
feature approximation methods. Baseline and power law based approaches [6] shown
as a straight lines, due to no level parameter.

retrained each configuration on the same dataset (equivalent to having a different
model for each level to which the scheme is applied).

We observe the importance of retaining image downsampling at octave inter-
vals as described by [6]. Applying our scheme up to level 4 does not sacrifice
average precision, even though the most computationally expensive levels are
approximated. At higher levels, average precision gradually decreases until it
matches its lower bound, the power law baseline.

As the previous experiments have shown, gains in execution speed are signif-
icant especially for the first few levels of the pyramid. Figure 5 illustrates how
execution time drops with each level, on the modern computer. At level 4, which
had no average precision loss, the scheme offers 1.57x speed increase relative to
the original algorithm. Increasing the level up to which the scheme is applied to
7 gives a 1.87x speed increase with only ∼1% decrease in average precision.

We note that the slow image downsampling strategy could give slightly higher
average precision results, but the loss in execution speed would be much higher.

5 Results

The processor equipped on the NAO v4 robot platform is, according to our
estimates, approximately 25 times slower than the modern CPU on which we
ran the evaluation. This is due to several factors such as lower frequency, less
processor cache and other aspects which are outside the scope of this paper.
These differences impose a hard standard on what algorithms can be run on this
model of robots.

We evaluated the scheme on the NAO robot, obtaining gains in execution
speed similar to the PC version (see Table 1). In fact, the speed increase is 1.68x
without average precision loss relative to the dlib baseline, which is higher than
the PC version, due to optimizations that are not available on the robot. At level
7, we obtain 1.95x speed increase with only 1.14% loss in average precision, while
at level 10 (which is equivalent to the power law approach) the speed increase is
2.05x but the loss rises to 3.21%.

66 M. Polceanu et al.

Table 1. Summary of proposed scheme performance. Average precision (AP), feature
extraction execution time in milliseconds on modern computer (TMC) and on robot
(TR), false positives per image (FPPI) and miss rate (MR) are shown for each level
up to which the scheme is applied. For total detection time that includes SVM classifi-
cation, add ∼7 ms to TMC and ∼117 ms to TR. Small FPPI variations most probably
due to different SVM hyperparameter C values for each level.

Level 1 2 3–4 5 6–7 8 9–10

AP 89.3% 89.4% 89.4% 87.7% 88.2% 87.0% 86.1%

TMC 11.9 9.0 7.5 6.8 6.3 6.2 6.1

TR 298.2 227.1 177.0 162.3 152.4 148.9 145.3

FPPI 5.4× 10−2 8.6× 10−2 3.7× 10−2 2.1× 10−2 3.2× 10−2 4.3× 10−2 3.7× 10−2

MR 11.3% 8.6% 10.2% 11.8% 11.3% 12.9% 13.5%

We note that the time needed to compute the feature pyramid on the robot
is still elevated, and thus more optimizations will be required. However, the
∼150 ms drop with minimal loss in average precision is an important improve-
ment in this case. To retain smooth motion and cognition, the algorithm can
be broken down into multiple steps, and tracking can be performed in between.
The important aspect is that the number of false positives per image is low,
while some such cases are actually correct hits which were not annotated in the
dataset (see Fig. 6).

Fig. 6. Robot (a–d) and ball (e–h) detection examples and extreme lighting conditions
(i). Note: true positives in (a, b); false negative in (c) (fallen robot was not annotated
in the dataset; false negatives in (d, h) due to excessive blur and similar background;
detection in cluttered image (e); near (f) and far (g) detections. Slight box mismatches
due to sliding window size; over time, detected bounding boxes vary slightly, especially
visible in the extreme lighting scenario.

Results on ball detection are also satisfactory with the ability to detect soccer
balls that are close and far away. We do note however that when the background
has very similar color and texture, detection does not perform well. The algo-
rithm is relatively robust to lighting conditions, as well as to a reasonable amount
of motion blur. We notice that a limitation is represented by situations in which
the objects “blend in” with the background. Outside the scope of the RoboCup

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 67

competition, we expect that our approach will offer a better, adjustable trade-off
between average precision and execution speed. For more difficult object detec-
tion problems, if hardware resources are more readily available, finer sampled
image pyramids may improve results, and the gain from approximating interme-
diate levels becomes much more pronounced.

6 Conclusions and Future Work

In this work we provided a detailed evaluation of the trade-off between feature
extraction speed and detector average precision, at each level of the feature
pyramid. In our experiments, we used histogram downsampling instead of final
feature downsampling used in related work. Results showed that this trade-off is
not linear and that average precision is not lost by skipping the first few levels
of the pyramid, which in fact account for a major part of the total computation
time. We compared these results with the dlib library and with a state-of-the-
art method based on image downsampling power law as baselines. Based on this
analysis, we developed a hybrid method which is upper bounded by dlib and
lower bounded by the power law approach in both execution time and average
precision. We significantly improved the execution time compared to the dlib
library and obtained a better trade-off than proposed by [6]. In practice, the
proposed method can be adapted, by changing the level up to which it is applied,
to favor average precision or execution speed. This way, on a modern computer,
we obtain 1.57x increase in pyramid construction speed without any loss in
average precision, ∼1% average precision loss with 1.87x speed increase, and
finally the same results as power-law approach when reaching the lower bound.

Execution speed gains are retained on the robot implementation, where we
obtain 1.68x speed increase compared to the baseline with no loss and 1.95x
increase with ∼1% average precision loss, compared with 2.05x obtained with
the power law baseline that presents ∼3% average precision loss.

Following from the observation that the first few levels of the pyramid account
for the majority of execution time, and that in our approach we compute the
first level (level 0), extra time should be saved by upscaling level 0 from higher
levels. Future work will include performance evaluation of this idea, as well as
vectorizing histogram downsampling to the extent possible, including adopt-
ing complementary optimization techniques from related work. While this work
improved the execution speed of the algorithm, the resulting framerate is still
low on the NAO robot and requires further optimization (including vectoriza-
tion which is not fully taken advantage of in this work), however it is possible to
divide the feature pyramid extraction and object detection algorithm into steps
that can be executed over multiple cognition cycles and couple the detection
process with computationally cheaper tracking.

Acknowledgements. We thank the RoboCanes team of the University of Miami for
providing their RoboCup software platform for our research. We also thank François

68 M. Polceanu et al.

Lasson for help with hyperparameter search, and anonymous reviewers for their valu-
able feedback. The work in this paper was partially funded by the ANR project SOM-
BRERO (ANR-14-CE27-0014).

References

1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

2. Brandão, S., Veloso, M., Costeira, J.P.: Fast object detection by regression in robot
soccer. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011.
LNCS (LNAI), vol. 7416, pp. 550–561. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32060-6 47

3. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection
for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS
(LNAI), vol. 7691, pp. 827–838. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35101-3 70

4. Cao, T.P., Deng, G.: Real-time vision-based stop sign detection system on FPGA.
In: 2008 Digital Image Computing: Techniques and Applications, DICTA 2008, pp.
465–471. IEEE (2008)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 886–893. IEEE (2005)

6. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

7. Dollár, P., Belongie, S.J., Perona, P.: The fastest pedestrian detector in the west.
In: British Machine Vision Conference, vol. 2, p. 7 (2010)

8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.
Intell. 32(9), 1627–1645 (2010)

9. Genter, K., et al.: UT Austin Villa: project-driven research in AI and robotics.
IEEE Intell. Syst. 31(2), 94–101 (2016)

10. Gudi, A., de Kok, P., Methenitis, G.K., Steenbergen, N.: Feature detection and
localization for the RoboCup Soccer SPL. Project report, Universiteit van Ams-
terdam, February 2013

11. Hemmati, M., Niar, S., Biglari-Abhari, M., Berber, S.: Real-time multi-scale pedes-
trian detection for driver assistance systems. In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2017)

12. Iandola, F.N., Moskewicz, M.W., Keutzer, K.: libHOG: energy-efficient histogram
of oriented gradient computation. In: International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1248–1254. IEEE (2015)

13. Khandelwal, P., Hausknecht, M., Lee, J., Tian, A., Stone, P.: Vision calibration and
processing on a humanoid soccer robot. In: 2010 The Fifth Workshop on Humanoid
Soccer Robots at Humanoids (2010)

14. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10(Jul),
1755–1758 (2009)

15. King, D.E.: Max-margin object detection. arXiv preprint arXiv:1502.00046 (2015)

https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-642-32060-6_47
https://doi.org/10.1007/978-3-642-32060-6_47
https://doi.org/10.1007/978-3-642-35101-3_70
https://doi.org/10.1007/978-3-642-35101-3_70
http://arxiv.org/abs/1502.00046

Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 69

16. Menashe, J., et al.: Fast and precise black and white ball detection for robocup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

17. Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection
using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 149–161. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32060-6 13

18. Mizuno, K., Terachi, Y., Takagi, K., Izumi, S., Kawaguchi, H., Yoshimoto, M.:
Architectural study of HOG feature extraction processor for real-time object detec-
tion. In: 2012 IEEE Workshop on Signal Processing Systems (SiPS), pp. 197–202.
IEEE (2012)

19. Sze, V., Chen, Y.H., Einer, J., Suleiman, A., Zhang, Z.: Hardware for machine
learning: challenges and opportunities. In: 2017 IEEE Custom Integrated Circuits
Conference (CICC), pp. 1–8. IEEE (2017)

https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-642-32060-6_13

Combining Simulations and Real-Robot
Experiments for Bayesian Optimization

of Bipedal Gait Stabilization

Diego Rodriguez(B), André Brandenburger, and Sven Behnke

Autonomous Intelligent Systems, Computer Science, University of Bonn,
Bonn, Germany

{rodriguez,behnke}@ais.uni-bonn.de, andre.brandenburger@uni-bonn.de

http://ais.uni-bonn.de

Abstract. Walking controllers often require parametrization which
must be tuned according to some cost function. To estimate these param-
eters, simulations can be performed which are cheap but do not fully
represent reality. Real-robot experiments, on the other hand, are more
expensive and lead to hardware wear-off. In this paper, we propose an
approach for combining simulations and real experiments to learn gait
stabilization parameters. We use a Bayesian optimization method which
selects the most informative points in parameter space to evaluate based
on the entropy of the cost function to optimize. Experiments with the
igus�Humanoid Open Platform demonstrate the effectiveness of our app-
roach.

1 Introduction

Walking is a crucial task for legged robots. The state-of-the-art walking con-
trollers and generators typically require a fine-tuned parametrization that due
to its complexity is determined by experts. This puts a constraint on the appli-
cability of these methods. They can be used mainly by the people who designed
them. In recent years, learning approaches have been proposed in order to reduce
the amount of work and expert knowledge required to tune these methods [7,18].
This implies thus to perform experiments to estimate parameters. Consequently,
sample-efficient learning approaches are required in order to reduce the hardware
wear-off induced by the experiments. One way to reduce the need for real-robot
experiments is to use simulations, which are cheaper to perform but do not fully
represent reality. This point is particularly relevant for low-cost robots whose
hardware is not as precise as expected. In this paper, we propose a method to
combine simulations and real-robot experiments to optimize gait parameters,
specifically to learn activation values of corrective actions that act on top of
an open-loop bipedal gait generator. The optimization uses a state-of-the-art
sample-efficient Bayesian method which selects the most informative points in
parameter space to evaluate based on the entropy of a cost function (Fig. 1).

D. Rodriguez and A. Brandenburger—Both authors contributed equally.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 70–82, 2019.
https://doi.org/10.1007/978-3-030-27544-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_6

Bayesian Optimization of Bipedal Gait Stabilization 71

Fig. 1. Combining multiple sources of information for learning gait parameters x. Based
on the largest relative entropy E(ΔH) of a cost function J , a walking sequence is
performed in simulation or with the real robot. The number of walking sequences
performed with the real robot is reduced by using simulations.

2 Related Work

Several learning methods have been used to optimize manipulation or locomo-
tion parameters [1,7,9,12,18,20]. Most of the methods are based on Bayesian
optimization—due to its high sample efficiency. Deisenroth et al. [9], for example,
developed a Bayesian approach to tune a cart-pole system, whereas Berkenkamp
et al. [6] proposed to use Bayesian optimization to safely tune robotic controllers
for quadrotors. Moreover, Marco et al. [16] combined Bayesian optimization with
optimal control to tune LQR regulators. In contrast to these approaches, Akrour
et al. [1] suggested to direct the optimization process by using a search distri-
bution, however, the optimization loses expressibility on a global scope since it
only optimizes locally. Even though these methods take advantage of the sample
efficiency of the Bayesian optimization, the robotic hardware is worn off unneces-
sarily in the learning process, especially in the initial stages where the controllers
do not possess any prior knowledge.

Specifically for the problem of gait parameter optimization, Calandra et al. [7]
suggested a Bayesian optimization in order to replicate a given target trajectory
for a bipedal robot. Based on only real experiments, the algorithm was able to
find a stable gait. Because only the real hardware was used for all experiments,
we expect a considerable wear-off of the robot. On the other hand, Heijmink
et al. [12] proposed a method to learn gait parameters and impedance profiles
in simulation for a quadruped robot. This was accomplished by using the PI2

algorithm with a cost function consisting of speed tracking, energy consump-
tion, joint limits, and torques. Although the results were validated in the real
hardware, no transfer between simulation and the real hardware was addressed.
Similarly, Hengst et al. [13], use a simulator to learn gait parameters that will
be tested in the real robot. This is a reinforcement learning approach that learns
the ankle joint position of the stance leg and the placement of the swing foot.

There exist several approaches that have transferred knowledge gathered
in simulation to real robotic platforms. Farchy et al. [10], for example, learn

72 D. Rodriguez et al.

several dynamic parameters of a simulator in order to get a similar performance
compared with real-robot experiments. This approach was extended by Hanna
and Stone [11] by learning the dynamics of the simulator using the differences
of the actions between the real world and the simulation. The walk velocity
of the NAO robot was increased by 43% starting from a state-of-the-art walk
engine. Nevertheless, a human expert was required to select the appropriate
parameters to be learned. Additionally, Cutler and How [8] uses a simulator to
learn a nonparametric prior that will parametrize a learning algorithm that acts
directly on the real platform, in other words, there is an one-step transfer from
simulation to the real robot. In a recent work, Rai et al. [18] uses simulations to
build a lower-dimensional space which is later used to learn gait parameters on
the real hardware. Although this approach was able to achieve good results for a
9-dimensional controller with only 20 iterations, it requires—due to its informed
kernel structure—a large amount of precomputed simulator data.

3 Preliminaries

3.1 Gaussian Process Regression

Given a training set D = {(xi, yi)|i = 1, . . . , n)} of n observations, a Gaussian
Process attempts to infer the relationship between the inputs and the targets
given some prior knowledge. The observations are assumed to be corrupted by
normally distributed noise ε ∼ N (0, σ2), such that

y = f(x) + ε (1)

f(x) ∼ GP(μ(x), k(xi,xj)) , (2)

where μ(x) is the prior mean, which can be uniform, and k(xi,xj) is the kernel
also called the covariance function. Using a kernel allows us to transform the
input space into a higher-dimensional feature space such that a non-linear map
from the input vector x to the function value f(x) can be inferred. The kernel
models the uncertainty of the mean estimate and encodes how similar f(x) is
expected to be for two vectors xi and xj . A high value of k(xi,xj) would mean
that the posterior value of f(xj) is significantly influenced by the value of f(xi).
Note that using kernels we do not need to know the shape of the corresponding
feature space, because only the inner products in the input space are required.

3.2 Bayesian Optimization

Bayesian optimization is a gradient-free sample-efficient framework that opti-
mizes a cost function f(x) using statistical models. Its goal is to find a global
optimum of a cost function which is typically expensive to evaluate. In our case,
it would imply to wear-off the hardware of the robot by performing walking
experiments. This optimum is found by minimizing a posterior mean function.
Often, the mean and covariance of f(x) are described by a Gaussian Process.

Bayesian Optimization of Bipedal Gait Stabilization 73

The points to evaluate f(x) are selected through an acquisition function, which
also trades off exploration and exploitation, i.e., to select promising points were
the optimum might be and to reduce the uncertainty about f(x).

A prominent example of those acquisition functions is Entropy Search (ES)
[14]. ES is based on the expected change of entropy E[ΔH(x)], such that the
point to evaluate in the next iteration is the one that offers most information
(highest entropy change). The location of the minimum is approximated by a
non-uniform grid, which, upon convergence, will be peaked around the actual
minimum. The acquisition function for ES is defined as:

xt+1 = arg max
x∈X

(E[ΔH(x)]). (3)

The approximations to make ES computationally tractable can be found in [14].

3.3 Multi-Fidelity Entropy Search

Marco et al. [15] extends the ES algorithm to integrate multiple sources of infor-
mation (Fig. 2). The resulting method is called Multi-Fidelity Entropy Search
(MF-ES) and typically trades off real experiments with simulations. MF-ES opti-
mizes the cost function

Jreal(x) = Jsim(x) + εsim(x) (4)

over a parameter set x ∈ X. The key idea is to model the cost on the physical sys-
tem Jreal as the cost in simulation Jsim(x) plus a systematic error εsim(x). This
error εsim can be a complex transformation, which is learned by the Bayesian
optimization. MF-ES defines two kernel functions ksim and kε, which model the
cost on simulation and the difference to the real experiments, respectively. In
this manner, the kernel is expressed as:

k(ai,aj) = ksim(xi,xj) + kδ(δi, δj)kε(xi,xj), (5)

where a = (δ,x) is an augmented vector in which δ indicates if a real experiment
was performed and kδ(δi, δj) = δiδj is a kernel indicator that equals one if both
evaluations were performed with the real robot. Accordingly, two real experi-
ments are expected to covary stronger than evaluations containing simulations.

Since kε is modeled inside the GP, we do not need to address explicitly
the mapping between Jsim and Jreal; we only require assumptions about the
difference between simulation versus real experiments in form of a mean and a
covariance function. Additionally, δ has to be explicitly incorporated into the
acquisition function of the optimization—otherwise only real experiments would
be selected, because they deliver more information about the target function.
This is done by introducing weight parameters wi for both information sources.
Thus, the acquisition function is expressed as

xt+1 = arg max
x∈Rd,i∈{sim,real}

(
ΔHt(x)

wi

)
. (6)

74 D. Rodriguez et al.

Fig. 2. Combination of simulation (blue dots) and real-robot (red dots) experiments
in a synthetic example. The dashed red line represents the true cost function. Top:
simulation experiments condition the mean posterior (red line) of the cost function of
the physical system Jreal and influence considerably the simulation uncertainty (blue
shaded), but the uncertainty of the real system (red shaded) is only slightly affected.
Bottom: this uncertainty is significantly reduced by real-robot experiments. Note that
the difference of the simulation data points and Jreal is captured by εsim (Eq. 4) The
influence of simulation costs to the real system uncertainty is encoded in Eq. (5). (Color
figure online)

3.4 Bipedal Walking with Feedback Mechanisms

In this section, we briefly describe the gait we want optimize [3]. The gait is based
on an open-loop gait pattern generator as presented in [5]. It essentially produces
high-dimensional trajectories for omnidirectional walking given a desired target
velocity vector. The open-loop gait makes use of: the joint space, the inverse, and
the abstract leg representations [17]. The abstract leg space is a representation
of the leg pose, consisting of the leg extension, leg and foot angles, and is, in
contrast to representations in Cartesian or joint space, designed for easy use for
walking. The gait starts from a halt pose in the abstract space and incorporates
several motion primitives such as leg lifting and leg swinging, also defined in
the abstract space. The resulting pose is converted into the inverse space where
more motion primitives are incorporated. Finally, the open-loop gait outputs a
joint trajectory by converting the resulting inverse pose into the joint space.

In order to improve the stability and robustness of the robot, feedback mech-
anisms were added to the open-loop gait [3]. The orientation of the robot is
represented by fused angles [2]. Using the deviations dα and dβ of the fused
roll αB and fused pitch βB from a desired orientation, e.g., from an upright
torso pose, the activation value u of different corrective actions is calculated.

Bayesian Optimization of Bipedal Gait Stabilization 75

The elements of u can be considered as the strength of corresponding correc-
tive actions (feedback mechanisms) which are then applied to the open-loop gait
in the abstract or inverse space. The corrective actions include: arm swinging,
hip movement, COM shifting, ankle tilting, and support foot tilting. In order to
obtain the activation values u, the deviations dα and dβ are passed through a
feedback pipeline composed of integrators, derivatives, mean filters and smooth
deadband filters to produce a PID vector e ∈ R

6. This vector is then multi-
plied by a gain matrix Ka ∈ R

m×6 to generate the activation values of the
corresponding m corrective actions.

4 Gait Parameter Learning

As explained in Sect. 3.4, the gait is composed of two main components: an
open-loop central pattern generator and feedback mechanisms. In this paper, we
address the problem of optimizing of the feedback mechanisms. Specifically, the
activation gains Ka of the corrective actions will be optimized.

4.1 Cost Function

The fused angle deviations dα =αdes − α (pitch) and dβ =βdes − β (roll) give us
an estimate about the unintended tilt of the robot induced by walking. These
measurements are, however, very noisy. We apply thus a mean filter and a smooth
deadband to dα and dβ as proposed in [3]. In other words, we end up with the
proportional part ePα and ePβ of the fused feedback vector e. So, we define the
stability criterion of the entire gait as the integral of ePα and ePα along the gait
duration T ∫ T

0

‖ePα(x)‖1 + ‖ePβ(x)‖1dt . (7)

This stability criterion will be part of our cost function. Additionally, we
introduce a penalty term that smoothly regularizes the parameter x. The penalty
term is a logistic function of the form:

ν(x) =
s

1 + exp (−γ(‖x‖2 − λ‖xmax‖2)) , (8)

where xmax is the upper bound of x, λ is a factor that affects the position of the
transition, s represents the magnitude of the penalization and γ ∈ R controls
the smoothness of the phase transition.

Since corrective actions in the sagittal plane are only activated by the fused
angle pitch α and in the lateral plane by the fused angle roll β, we propose a
cost function for the parameters xl that have an effect on the lateral plane and
another cost function for the parameters xs that affect the sagittal plane:

Jα(xl) =
∫ T

0

‖ePα(xl)‖1dt + ν(xl) (9)

76 D. Rodriguez et al.

Jβ(xs) =
∫ T

0

‖ePβ(xs)‖1dt + ν(xs) . (10)

In order to overcome the intrinsic error of the simulator, i.e., same parameters
yield different results, we perform N evaluations in simulation with the same
parameters and incorporate their mean into the cost function for the simulation:

J̄sim,i(x) =
1
N

(
N∑

i=1

∫ T

0

‖ePi(x)‖1dt

)
+ ν(x), i ∈ {α, β}. (11)

For real-robot experiments, we set Jreal as given by Eqs. (9) and (10). In both
(simulations and real-robot experiments), if the robot falls, a large cost is
assigned to x.

To define the kernel function of the optimization (Eq. (5)), we used the Ratio-
nal Quadratic (RQ) kernel for ksim and kε. The RQ kernel introduces three
parameters (σ2

k, α and l) to be tuned, also called hyperparameters. The l param-
eter roughly determines the distance of two points to significantly influence each
other, the scale factor σ2

k determines the problem-specific signal variance, and α
is a relative weight of large-scale and small-scale variations.

4.2 Termination Criteria

The most simple and frequently used criterion to stop global optimization algo-
rithms is based on the number of iterations. Whereas this condition works fine
for problems that are fast to compute, it looses applicability when iterations
become more expensive. We propose a termination criterion which is based on
entropy. We formulate a criterion that stops the algorithm as soon as the relative
entropy E[ΔH(xt)] reaches a defined value. Moreover, to ensure that outliers do
not lead to a premature stop, we apply a saturated filter to the relative entropy
(Fig. 3) defined for each iteration t with a velocity factor 0 < v < 1 as:

(1 − v)E[ΔH(xt−1)] + vE[ΔH(xt)]. (12)

This criterion is applied after a minimum number of iterations since a bad
prior mean can lead to a low relative entropy right after the first iteration.
The entropy termination criterion is also combined with a maximum number of
iterations criterion in case the relative entropy threshold is not reached mainly
because the prior assumptions might not represent reality well enough.

Bayesian Optimization of Bipedal Gait Stabilization 77

Fig. 3. Unfiltered (blue) and filtered with v = 0.9 (orange) relative entropy. The latter
is used to terminate the optimization. Iterations after the magenta line can be skipped
because of their very low information gain. (Color figure online)

5 Evaluation

5.1 Experiment Setup

Robot Platform. We test our approach on the igus� Humanoid Open Platform
[4]. The robot has in total 20◦ of freedom: 6 for each leg, 3 for each arm and
2 for the neck. The links of this platform are fully 3D printed. The robot is
92 cm tall and weights 6.6 kg. The platform incorporates an Intel Core i7-5500U
CPU running a 64-bit Ubuntu OS and a Robotis CM730 microcontroller board,
which electrically interfaces with its Robotis Dynamixel MX actuators. A 3-axis
accelerometer and gyroscope sensors are also contained in the CM730, for a total
of 6 axes of inertial measurement.

Software Architecture. Due to the limited computational power of the robot,
the optimization and simulations are performed on a desktop PC with a Core
i7-4890K CPU and 8 GB of RAM. The simulations are carried out in Gazebo
2.2 with a real-time factor of 1.5. We use ODE as the dynamics engine without
constraint force mixing and an error reduction parameter of 0.2. The geometries
of the joint links are approximated using convex hulls. The joints are controlled
using the ros control package. To avoid induced noise in the simulation, the
simulator is reset after each performed trial. The Bayesian optimization run
in Matlab 2017b. All the components required for the gait are implemented in
C++ and executed on the robot’s computer. The interprocess communication is
implemented using the ROS middleware.

Scenarios. We propose two scenarios to evaluate our approach. We initially
perform a 2D optimization to learn the P- and D-gain of the Ankle Tilt corrective
action. In the second scenario, a 4D optimization to learn the P- and D-gains
of the Swing Arm and Ankle Tilt actions is performed. In both scenarios, there
are no other feedback mechanisms active. To avoid artifacts coming from the
transient of a robot in a static configuration, all experiments start with the

78 D. Rodriguez et al.

robot walking on the spot. The walking sequence is then defined as walking on
the spot during three seconds and then walking forward with a speed of 0.3 m/s.
We do not bias the optimizer specifying any initial values of the parameters. We
compare the results of our algorithm against manually tuned parameters devised
by experts. These parameters were used by the winning team NimbRo TeenSize
at the RoboCup 2017 competition [19].

Parameters. We parametrize the kernel function with l =
(
xmax

8

)
and α = 0.25

to produce a reasonable trade-off between exploration and exploitation. We use
the same values of l and α for ksim and kε. The standard deviation of ksim is set
to σsim = 2.48 and the standard deviation of kε is set to σε = 2.07 for the 2D
optimization, whereas σsim = 2.07 and σε = 1.79 are set for the 4D optimization.
The prior means are set to μsim = 53.3502 and με = −37.1385. These values
are chosen from initial experiments. Additionally, the penalty function ν(x) is
parametrized with λ = 0.75 and s = 7.5 to punish parameters larger than
λxmax. The smoothness of the phase transition is set to γ = 6. The effort of
the simulation and real-robot experiments are set to wsim = 10 and wsim = 50,
respectively, i.e., a real-robot walking sequence is five times as expensive as a
simulated one.

5.2 Experimental Results

2D Optimization. The algorithm performed in total 126 iterations, from which
20 walking trials were carried out with the real robot. This implies that approxi-
mately one real robot walking trial was required for every five simulations, which
shows the applicability of the integration of simulation and real robot experi-
ments for learning the activation value of the Ankle Tilt corrective action. The
optimized values yielded a cost of 9.3, while the manually tuned ones resulted
in a cost of 13.77. Thus, the optimization process found parameters that are
approximately 32% better than the manually by-expert-tuned parameters. The
resulting posterior is depicted in Fig. 4. The difference in the cost of the simula-
tion compared to the cost with the real robot is mainly caused by the noise of
the simulator, e.g., by modeling errors of the floor impacts.

Our approach was compared with a Random Search algorithm that greedily
searches for the optimal value by corrupting the current best guess with uniform
noise at each iteration. We applied this algorithm on the same experimental
setup and a maximum of 25 real-robot experiments. With a cost of 11.04, the
parameters of the random search outperformed the manually tuned ones. How-
ever, our method performed 20 real experiments and yielded 15% better results
than random search. Additionally, the evaluations of the random search caused
one fall of the robot which never occurred with our approach.

Bayesian Optimization of Bipedal Gait Stabilization 79

Fig. 4. Optimization of the parameters for the Ankle Tilt corrective action. The purple
mesh resembles the posterior mean while the gray mesh shows the covariance. At the
first iterations, the algorithm decided to perform only simulations (blue). Once enough
information has been gathered in the simulation, real experiments (red) are carried
out. To stress the contribution of the simulation, the rightmost plot shows the posterior
considering only real-robot experiments. (Color figure online)

4D Optimization. For the 4D optimization, 301 iterations were carried out:
271 in simulation and 30 with the real robot, i.e., in average one real-robot
experiment is required for every nine simulations. The resulting parameters were
evaluated against manually tuned parameters, performing with the real robot 15
walking sequences for each set of parameters. The optimized parameters yielded
an average cost of 10.38 and resulted, in comparison to the manually tuned gait
with a mean cost of 16.28, in an improvement of 35%. In order to evaluate only
the contribution of the stability in the cost, we subtract the penalty term of the
cost; the resulting performance of the optimized parameters is 53% better than
the manually tuned parameters.

Moreover, we compared the measured fused angle deviation (not fused angle
feedback) and its integral during five trials. As expected, during the first three
seconds (walking on spot) there are no significant differences. However, as soon
as the robot starts walking forward, the deviations start to diverge and the differ-
ence between the set of parameters becomes apparent. In general, the optimized
parameters reproducibly generate deviations of lower amplitude. The difference
becomes more apparent observing the integral of the mean absolute deviation
D̄α =

∫ T

0
E [‖dα‖] dt depicted in Fig. 5.

A remarkable property of our approach is the fact that the real robot did
not fall a single time during the optimization process, because parameters that
resulted in a fall in simulation were ruled out without the need for real-robot
experiments. Furthermore, the optimized gait looks qualitatively more stable
and generally walks with a more upright torso compared to the manually tuned
parametrization. A video of the gait with the optimized parameters is available

80 D. Rodriguez et al.

online1. The optimized gait was also tested in a very rough terrain, where the
robot successfully traversed a series of debris (Fig. 6).

Fig. 5. Phase plots of the optimized (left) and manually (middle) tuned parameters
for our gait. For clarity, only one walking sequence is displayed but all the evaluated
sequences show a similar behavior. Right: integral of the mean absolute fused angle
deviation D̄α of the optimized (red) and the manually tuned (blue) parameters. The
shaded regions cover the values within two standard deviations (±2σ). (Color figure
online)

Fig. 6. Evaluation of the optimized gait parameters on very rough surfaces (artificial
grass with small debris). (a) Evaluation setup (leftmost) and pictures of the robot
traversing the debris. (b) The corresponding fused angle deviation over time. The
magenta line indicates the moment of contact with the debris.

6 Conclusions

We presented an approach to trade off simulations and real-robot experiments
for learning gait parameters based on a state-of-the-art Bayesian optimizer. We
showed how the gait stability was improved with the parameters found by our
approach. During the optimization process, the real robot did not fall a single

1 http://www.ais.uni-bonn.de/videos/RoboCup Symposium 2018.

http://www.ais.uni-bonn.de/videos/RoboCup_Symposium_2018

Bayesian Optimization of Bipedal Gait Stabilization 81

time, which shows that the algorithm was successfully generalizing the infor-
mation gathered from the simulation. This generalization also leads to a lower
number of required physical experiments, which enables the applicability of our
approach.

We observed a limitation of our method to be applied in higher dimensions.
We hypothesize to solve this issue by using dimensionality reduction methods
and by performing the optimization in a lower-dimensional space. Additionally,
in the future, we also want to learn the hyperparameters of the kernel during
optimization.

Acknowledgements. The authors would like to thank Alonso Marco from the Max
Planck Institute for Intelligent Systems for providing the MF-ES implementation. This
work was partially funded by grant BE 2556/13 of German Research Foundation.

References

1. Akrour, R., Sorokin, D., Peters, J., Neumann, G.: Local Bayesian optimization
of motor skills. In: Proceedings of the 34th International Conference on Machine
Learning (PMLR) (2017)

2. Allgeuer, P., Behnke, S.: Fused angles: a representation of body orientation for
balance. In: International Conference on Intelligent Robots and Systems (IROS)
(2015)

3. Allgeuer, P., Behnke, S.: Omnidirectional bipedal walking with direct fused
angle feedback mechanisms. In: International Conference on Humanoid Robots
(Humanoids) (2016)

4. Allgeuer, P., Farazi, H., Schreiber, M., Behnke, S.: Child-sized 3D printed igus
humanoid open platform. In: International Conference on Humanoid Robots (2015)

5. Behnke, S.: Online trajectory generation for omnidirectional biped walking. In:
Proceedings of IEEE International Conference on Robotics and Automation
(ICRA) (2006)

6. Berkenkamp, F., Schoellig, A.P., Krause, A.: Safe controller optimization for
quadrotors with Gaussian processes. In: IEEE International Conference on
Robotics and Automation (ICRA) (2016)

7. Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian
gait optimization for bipedal locomotion. In: Pardalos, P.M., Resende, M.G.C.,
Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 274–290.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09584-4 25

8. Cutler, M., How, J.P.: Efficient reinforcement learning for robots using informative
simulated priors. In: IEEE International Conference on Robotics and Automation
(ICRA) (2015)

9. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2),
408–423 (2015)

10. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk
faster: from the real world to simulation and back. In: Proceedings of the Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)
(2013)

https://doi.org/10.1007/978-3-319-09584-4_25

82 D. Rodriguez et al.

11. Hanna, J.P., Stone, P.: Grounded action transformation for robot learning in sim-
ulation. In: Association for the Advancement of Artificial Intelligence Conference
(AAAI) (2017)

12. Heijmink, E., Radulescu, A., Ponton, B., Barasuol, V., Caldwell, D.G., Semini, C.:
Learning optimal gait parameters and impedance profiles for legged locomotion.
In: IEEE-RAS 17th International Conference on Humanoid Robots (Humanoids)
(2017)

13. Hengst, B., Lange, M., White, B.: Learning ankle-tilt and foot-placement control
for flat-footed bipedal balancing and walking. In: 11th IEEE-RAS International
Conference on Humanoid Robots (Humanoids) (2011)

14. Hennig, P., Schuler, C.: Entropy search for information-efficient global optimiza-
tion. J. Mach. Learn. Res. 13(Jun), 1809–1837 (2012)

15. Marco, A., et al.: Virtual vs. real: trading off simulations and physical experiments
in reinforcement learning with Bayesian optimization. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) (2017)

16. Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.: Automatic LQR tuning
based on Gaussian process global optimization. In: IEEE International Conference
on Robotics and Automation (ICRA) (2016)

17. Missura, M., Behnke, S.: Self-stable omnidirectional walking with compliant joints.
In: 8th Workshop on Humanoid Soccer Robots, International Conference on
Humanoid Robots (2013)

18. Rai, A., Antonova, R., Song, S., Martin, W.C., Geyer, H., Atkeson, C.G.: Bayesian
optimization using domain knowledge on the ATRIAS biped. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (2018)

19. Rodriguez, D., et al.: Advanced soccer skills and team play of RoboCup 2017
teensize winner nimbro. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F.
(eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 435–447. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00308-1 36

20. Röfer, T.: Evolutionary gait-optimization using a fitness function based on pro-
prioception. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.)
RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 310–322. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32256-6 25

https://doi.org/10.1007/978-3-030-00308-1_36
https://doi.org/10.1007/978-3-540-32256-6_25

Learning Skills for Small Size League
RoboCup

Devin Schwab(B), Yifeng Zhu, and Manuela Veloso

Carnegie Mellon University, Pittsburgh, PA 15217, USA
digidevin@gmail.com

Abstract. In this work, we show how modern deep reinforcement learn-
ing (RL) techniques can be incorporated into an existing Skills, Tactics,
and Plays (STP) architecture. STP divides the robot behavior into a
hand-coded hierarchy of plays, which coordinate multiple robots, tac-
tics, which encode high level behavior of individual robots, and skills,
which encode low-level control of pieces of a tactic. The CMDragons
successfully used an STP architecture to win the 2015 RoboCup compe-
tition. The skills in their code were a combination of classical robotics
algorithms and human designed policies. In this work, we use modern
deep RL, specifically the Deep Deterministic Policy Gradient (DDPG)
algorithm, to learn skills. We compare learned skills to existing skills
in the CMDragons’ architecture using a physically realistic simulator.
We then show how RL can be leveraged to learn simple skills that can
be combined by humans into high level tactics that allow an agent to
navigate to a ball, aim and shoot on a goal.

Keywords: Reinforcement learning · Robot software architecture ·
Autonomous robots

1 Introduction

RoboCup soccer is an international competition where teams of researchers com-
pete to create the best team of autonomous soccer playing robots [22]. Multiple
leagues from simulation, to full humanoid leagues compete each year. In this
work we focus on the Small Size League (SSL) RoboCup, which is a challenging,
fast paced, multi-agent league.

The Skills, Tactics, and Plays (STP) [3] software architecture has been used
by the 2015 winning champions, CMDragons. STP is a hierarchical architecture
consisting of three levels. Skills are coded policies that represent low-level tasks,
used repeatedly in a game of soccer. These are tasks such as: dribbling the ball,
navigating to a point, etc. Tactics combine skills into behaviors for a single

This research is partially sponsored by DARPA under agreements FA87501620042 and
FA87501720152 and NSF grant number IIS1637927. The views and conclusions con-
tained in this document are those of the authors only.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 83–95, 2019.
https://doi.org/10.1007/978-3-030-27544-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_7

84 D. Schwab et al.

robot. Typical tactics are roles such as: attacker, goalie, defender, etc. They are
typically coded as state machines, where specific skills are called in each state.
Plays are how multiple tactics are coordinated. Each robot is assigned a tactic
based on cost functions, and then the robots execute these tactics independently.

In prior years, all levels of the STP architecture have been written by hand
using classical robotics algorithms. Low-level policies such as navigation can use
algorithms such as an RRT [9], while the tactic state machines have been written
by intuition and improvement through extensive testing. Writing new skills is a
large investment of human time and coding. Ideally, these low-level skills could
be learned automatically, and then reused by the human-coded tactics in order
to save time and man-power.

Recently, deep reinforcement learning (Deep RL) techniques have made
major breakthroughs in performance. Deep Q-Networks (DQN) [13,14] have
been used to learn policies from pixels in Atari that exceed human performance.
More recently, Deep RL has been used to beat human performance in the game
of Go [17,18]. Outside of games, Deep RL has been used to learn complex con-
tinuous control tasks such as locomotion [7]. It is therefore an attractive idea to
use Deep RL for SSL RoboCup. However, it is unclear how best to learn policies
in such a complex, multi-agent, adversarial game.

In the rest of this paper, we explore how Deep RL can be used to auto-
matically learn skills in an STP architecture. While it would also be useful to
learn tactics and plays, skills are small enough problems to be effectively learned
using Deep RL in a short amount of time. Tactics are much more complicated,
and plays would require multi-agent RL algorithms, therefore, in this work we
focus on learning skills. A learning algorithm can be implemented once and then
applied to learn many different skills. Whereas, each hand-coded skill will require
it’s own implementation, testing and tweaking. By learning skills, human coders
can spend time working on the more complicated tactics and plays. We show
that after skills are learned using Deep RL they can be effectively combined by
humans into useful tactics.

2 Small Size League (SSL) RoboCup

Figure 1 shows an example of the CMDragons SSL robot. The robots are approx-
imately 18 cm in diameter and move omni-directionally. The robots can kick at
various speeds both flat along the ground and through the air. The robots also
have spinning dribbler bars, which apply backspin to the ball.

Figure 1 shows an overview of the field setup. Overhead cameras send images
to a central vision server. The vision server uses colored patterns to determine
ball position and robot field positions, orientations, ID and team. This informa-
tion is sent to each team at 60 Hz. Teams typically use a single computer that
sends radio commands to all robots on the field. Therefore, centralized planning
and coordination can be used.

The full game of SSL has many different parts: kickoff, free kicks, penalty
kicks, main game play, etc. In this work we focus on skills that can be useful

Learning Skills for Small Size League RoboCup 85

Computer

Camera
Images

Robot
Commands

Fig. 1. (Left) A typical Small Size League (SSL) robot and ball. (Right) SSL field
setup. Overhead cameras capture dot patterns on the tops of robots to determine
positions, orientations, team and robot ID. Ball position is also determined from color.
A central computer publishes this position information to each team. Teams then send
radio commands to their robots on the field. (Color figure online)

in many different parts of the game: namely capturing the ball on the dribbler,
and aiming and shooting at the goal.

3 Related Work

Deep RL algorithms, such as Deep Q-Networks (DQN), Asynchronous Advan-
tage Actor (A3C) and others, have been shown to work in complex Markov
Decision Processes (MDPs) such as Atari games and the game of Go [12–14,17].
There have also been some initial successes in applying Deep RL to continuous
control tasks using policy gradient methods such as Deep Deterministic Policy
Gradients (DDPG), Trust Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO) [10,15,16]. Unlike traditional RL, Deep RL algo-
rithms can often work from low-level features such as joint angles or even pixels.
This can alleviate the need for domain specific feature engineering.

Our work is not the first attempt to apply learning to RoboCup domains.
Many techniques have been developed and applied for the game of Keep-
away [20]. In Keep-away, teams or robots must learn to coordinate by moving
and passing the ball so that an opponent team cannot steal the ball. Many tech-
niques have been applied including genetic algorithms [1,8,11] and reinforcement
learning [21,23].

Multiple groups have applied genetic programming techniques to learn team
robot soccer policies [1,8,11]. Genetic programming uses genetic algorithm opti-
mization techniques with a set of composable functions in order to “evolve” a
program capable of completing some objective. Prior attempts have had limited
success, either relying heavily on carefully hand-coded sub-policies or failing to
learn cooperative team behaviors.

Reinforcement learning (RL) based approaches have also been popular in
this domain [4,21,23]. Stone et al. [21], utilized an options [19] like framework.
The low-level controls were hand-coded. The agent learned to call these sub-
policies at the appropriate times. They were able to successfully train in up to
a 4 teammates vs 3 opponents scenario. While their approach was successful, a
significant amount of effort went into determining the proper low level actions

86 D. Schwab et al.

and the proper state-features to use. There is also no guarantee that the higher
level features chosen are the best possible features. The features chosen can have
a large impact on the final policy performance, and are in practice difficult to
choose.

Most of these previous works have focused on learning multi-agent policies
in sub-games, such as Keep-away. In this work, we are focused on learning small
single agent skills that a human coder can combine into higher level behaviors
in the STP architecture.

There has been more recent work on applying Deep RL to single agent skills
with parameterized action spaces [5,6]. In Hausknecht, Chen and Stone [5], exist-
ing Deep RL techniques were extended to work in an action space that combines
discrete and continuous components. They then learned a policy from demonstra-
tions, that allowed the agent to navigate to the ball and score on an empty goal.
Hausknecht and Stone [6] later extended this work to learn ball manipulation
in this setting completely from scratch. Both of these approaches demonstrated
the applicability of Deep RL based algorithms to robot soccer, however, they
learned an end-to-end policy to go to the ball and score on the goal. It would
be difficult to divide up this policy after training and use the different parts in
other contexts. In this work, we aim to learn small reusable skills that can be
combined by human written tactics.

4 Approach

4.1 Algorithm

In this work we use the Deep Deterministic Policy Gradient (DDPG) algorithm
to train our skills [10]. DDPG is an actor critic, policy gradient algorithm that
has been shown to work for continuous action spaces in complex control tasks.
Like DQN, DDPG uses a target network for the actor-critic along with a replay
memory. Samples are collected and stored in a replay memory. Batches of the
samples are used to optimize a critic network which estimates the Q-value of a
state-action input. Then the actor network, which takes in a state and returns a
continuous action, is optimized to maximize the critic’s estimate. We use DDPG
in this work, because it is well studied and has been shown to work on a variety
of interesting continuous control tasks [10].

4.2 Simulation

We train our skills in the CMDragons simulator. This simulator is physically
realistic including configurable amounts of radio latency, observation noise and
different robot dynamics models. This simulator has been used to develop the
existing STP. The API of the simulator is similar to the real robots, so that a
network trained on the simulator can then be run directly on a real robot.

To train the skills we setup different initial conditions in the simulator and
applied the DDPG algorithm. When training the simulation is set in “step

Learning Skills for Small Size League RoboCup 87

mode”, meaning that the simulation will only advance when a new command is
sent. This guarantees that when training, the extra computation time for updat-
ing the network does not cause the agent to miss observation steps. However,
when we evaluate the skills we set the simulator to real-time mode. In this mode,
the physics runs in real time, and if the agent takes more than 16ms to send a
command, then it will miss control time steps.

4.3 Skills

All of the skills use a vector of relevant state features as the input. While Deep
RL algorithms such as DDPG can work with pixel based inputs, the state vector
allows us to directly include information about velocities. The state-vector rep-
resentation also requires less computation than an image based representation.

Go to Ball Skill. go-to-ball is a skill where the robot learns to navigate
to the ball and get the ball on it’s dribbler. The go-to-ball environment uses
positions and velocities in the robot’s own frame. By making the coordinates
relative to the robot, the learned policy should generalize to different positions
on the field better.

The state input for go-to-ball skill is as follows:

s = (PB
x ,PB

y , V R
x , V R

y , ωR,

dr−b, xtop, ytop, xbottom, ybottom, xleft, yleft, xright, yright)

where PB
x and PB

y are the ball position, V R
x and V R

y are the robot’s translational
velocity, ωR is the robot’s angular velocity, dr−b is the distance from robot to
ball, xtop and ytop are the closest point on the top edge of the field to the robot,
xbottom and ybottom are the closest point on the bottom edge of the field to the
robot, xright and yright are the closest point on the right edge of the field to the
robot, and xleft and yleft are the closest point on the left edge of the field to
the robot.

The action space of this skill is robot’s linear velocity, and angular velocity,
which are: (vR

x , vR
y , ωR).

The terminal condition for training go-to-ball skill is that if the robot has
the ball on its dribbler, the episode ends and is marked as a success. If the robot
fails to get the ball on its dribbler in 10 s, the episode ends and is considered a
failure.

Aim and Shoot Skill. aim-to-shoot is a skill where the robot learns to aim
towards goal and take a shot. In this skill, we assume that the robot already has
a ball on its dribbler.

The state input is as follow:

s = (PB
x , PB

y , V B
x , V B

y , ωR, dr−g, sin(θl), cos(θl), sin(θr), cos(θr))

88 D. Schwab et al.

where V B
x and V B

y are the x and y translational velocity of the ball, dr−g is
the distance from the robot to the goal, sin(θl) and cos(θl) are the sine and
cosine of the angle of the left goal post with respect to the robot’s orientation,
sin(θr) and cos(θr) are the sine and cosine of the angle of the left goal post with
respect to the robot’s orientation, and the remaining state components match
the go-to-ball skill. We use the sine and cosine of the angle, so that there is
not a discontinuity in the input state when the angle wraps around from −π to
π.

The action space of aim-to-shoot skill contains robot’s angular velocity,
dribbling strength and kick strength: (ωR, dribble, kick).

The terminal condition for training aim-to-shoot skill is that if the robot
has kicked and scored, the episode ends and is considered as a success. Otherwise,
the episode ends with the following failure conditions: the ball is kicked but does
not go into the goal, ball is not kicked yet but the ball has rolled away from the
dribbler, or the episode reaches the maximum episode length of 1.6 s.

Reward Functions. We use reward shaping to help speed up the learning. In
the go-to-ball , our reward function is:

rtotal = rcontact + rdistance + rorientation

where,

rcontact =

{
100 ball on the dribbler
0 ball not on the dribbler

rdistance =
5√
2π

exp(
−d2r−b

2
) − 2

rorientation =
1√
2π

exp
(

−2
θr−b

π2

)

where θr−b is minimum angle between the robot’s dribbler and the ball.
For the aim-to-shoot skill, the agent gets positive reward when it kicks

towards the goal and negative when it kicks away from the goal. We also want
the robot to shoot as fast as possible on the goal, so we scale the reward by
the ball velocity. Kicking fast towards the goal gives higher reward. The reward
function for aim-to-shoot skill is as follows:

r =

{
0.05(α − β)|V B | α > β

(α − β)|V B | α < β

where, α is the angle between left goal post and right goal post, β is the larger
angle of one of the goal posts relative to robot’s orientation.

Learning Skills for Small Size League RoboCup 89

4.4 Go to Ball and Shoot Tactic

We combined the go-to-ball skill and the aim-to-shoot skill into a tactic that
can go to the ball, get the ball on the dribbler, turn towards the goal and shoot.
Figure 2 shows a flow-chart for the tactic state machine. The robot starts out
using the trained go-to-ball skill. Once the ball is near the dribbler (defined
by dd−b ≤ 35mm, where dd−b is the distance from the dribbler to the ball),
the robot transitions to a fixed “drive forward” skill. The drive forward skill
just turns on the dribbler and moves the robot forward for 1 s. After the skill
completes, if the ball is no longer near the dribbler (i.e. dd−b > 35mm), then the
robot starts the go-to-ball skill again. Otherwise, the robot starts the learned
aim-to-shoot skill. If the ball is lost during the aim-to-shoot , then the robot
transitions back to go to ball and tries again.

Go-to-
Ball

Drive
Foward
for 1s

Aim
and
Shoot

Start
Ball near dribbler

Ball not near dribbler

Ball near dribbler

Ball near dribbler

Ball near dribbler

Ball not near dribbler

Fig. 2. Flowchart of Go to ball and shoot tactic.

5 Empirical Results

In this section we evaluate the learning performance and the final policy perfor-
mance of our skills. We also evaluate the performance of our tactic composed of
the two learned skills and one hard-coded skill.

5.1 Skill Learning

Tables 1 and 2 shows the hyperparameters used while training both skills. We
used an Ornstein-Uhlenbeck noise process [10]. The table also shows the layer
sizes for the actor and critic networks. Each layer is a fully connected layer.
The hidden layers use ReLU activations, the final layer of the actor uses a tanh
activation. The final layer of the critic uses a linear activation. Layer-norm layers
were inserted after each hidden layer [2]. When training each skill we initialize
the replay memory with examples of successful trajectories. This has been shown
in the past to improve the convergence speed of DDPG [24].

During the training of go-to-ball skill, we start by collecting 50,000 steps of
demonstrations of a good policy as part of the replay memory “burn-in”. These
samples initialize the replay memory before collecting samples according to the

90 D. Schwab et al.

current actor and noise policy. To get these good demonstrations, we spawn the
robot at an arbitrary position on the field so that is facing the ball. We then
drive the robot forward until it touches the ball. During the actual training, the
robot must learn to reach the ball from arbitrary positions and orientations.

For the training of aim-to-shoot skill, we initialize the replay memory with
10,000 samples from a good policy. To get these initial samples we spawn the
robot near the goal, facing the goal, and then kick the ball at full strength.
During the actual training, the robot must learn to orient itself and the ball
towards the goal and then kick.

Figure 3a shows the learning curve from training the go-to-ball skill. The
initial part of the curve shows the initial policy demonstrations used to seed
the replay. While there is variance in the final policy performance, we see that
the agent takes about 500,000 training samples before it has converged to an
acceptable policy. Figure 3b shows the average episode length while training.
There is a large difference in the maximum number of steps taken to successfully
complete an episode between the initial policy and the final policy.

We tested the learned go-to-ball skill against the existing go-to-ball skill. The
existing skill moves the robot in a straight line while turning to face the ball. We
spawn the ball in a random location of the field. Then the robot is also spawned
at a random position and orientation. We then run the skill until either 10 s has
elapsed or the ball has been touched on the dribbler.

Figure 4 shows a histogram of the times taken for the go-to-ball skill to get
to the ball from 1000 different runs. We can see that while the learned skill has
more variance in the times, the max time is still within approximately 2 s of the
max time taken by the baseline skill. While the learned skill may take slightly
longer, it does reach the ball as intended. The discrepancy in time is likely due
to an inability of the DDPG algorithm to perfectly optimize the policy given the
training samples. Table 3 shows the success rate of both policies. We see that the
baseline is always successful, and the trained policy only failed to get the ball in
a single run.

Qualitatively, the path the learned skill takes is very different from the base-
line. The baseline is very consistent, moving in a straight line and slowly turning
to face the ball. The learned policy’s path curves slightly as it adjusts it’s orien-
tation to face the ball. Sometimes there are also overshoots in the learned policy.
Figure 7 shows an example of a sequence of frames which includes part of the
learned go-to-ball skill.

Figure 6 shows the training curve for the aim-to-shoot skill. This skill’s
learning curve is more unstable than the go-to-ball skill. However, we were
still able to utilize the learned policy to aim and score on the goal.

Figure 5a shows the time taken to shoot by the baseline and Fig. 5b shows
the time taken to score by the learned policy. Both the baseline and the learned
policy were tested on 1000 different runs with different initial conditions. Each
run, the robot is spawned at some position, with some orientation, with the ball
on the dribbler. We then run the policy and measure the time taken to score.
From the figures, we see that again, learned policy takes about 2 s longer to

Learning Skills for Small Size League RoboCup 91

Table 1. Hyperparameters used
for go-to-ball skill

Name Value

Critic learning rate 1 × 10−3

Actor learning rate 1 × 10−4

Critic size 300, 400

Actor sizes 300, 400

Replay mem size 1,000,000

Noise parameters θ = 0.15, μ = 0,

σ = 0.3

Table 2. Hyperparameters used for
aim-to-shoot skill

Name Value

Critic learning rate 1 × 10−4

Actor learning rate 1 × 10−4

Critic size 200, 300, 300, 300

Actor sizes 200—300, 300, 300

Replay mem size 600,000

Noise parameters θ = 0.15, μ = 0,

σ = 0.3

Table 3. Success rate for
go-to-ball skill

Name Value

Baseline 1.0

Trained policy 0.999

Table 4. Success rate for
aim-to-shoot skill

Name Value

Baseline 0.71

Trained policy 0.772

score the goal on average. We believe the learned policy takes longer because the
reward function prioritizes accuracy over time, whereas the hand-coded policy
was designed to shoot at the first available opportunity.

Table 4 shows the success rate of the baseline aim-to-shoot skill vs the suc-
cess rate of the learned aim-to-shoot skill. While the baseline takes shots on
goal faster, we see that the learned policy is actually more accurate by approxi-
mately 6%. This makes sense, as our reward function gives negative rewards for
failures, so the agent will be incentivized to prioritize good aim over time taken
to score.

(a) Total reward vs Number of Samples
while training go-to-ball skill. Higher
is better. Initial part of the curve shows
replay memory burn-in.

(b) Number of time-steps vs Number
of samples while training go-to-ball

skill. Each time-step is equal to 0.16ms.
Lower is better. Initial part of the curve
shows replay memory burn-in.

Fig. 3. Training curves for go-to-ball skill.

92 D. Schwab et al.

(a) Time taken by existing go-to-ball

skill.
(b) Time taken by neural network
go-to-ball skill.

Fig. 4. Comparison of existing go-to-ball skill vs learned go-to-ball skill.

(a) Time taken by existing
aim-to-shoot skill.

(b) Time taken by neural network
aim-to-shoot skill.

Fig. 5. Comparison of existing aim-to-shoot skill vs learned aim-to-shoot skill.

Fig. 6. Total reward vs number of samples while training aim-to-shoot skill. Higher
is better.

5.2 Tactics Evaluation

In order to be useful in an STP hierarchy, the learned skills must be easily com-
posable by human coders. The tactic state machine from Fig. 2 was implemented
using the learned go-to-ball and aim-to-shoot skills. To evaluate the perfor-
mance, we executed the state machine across 500 different runs. Each run, the
robot was spawned at a random location on the field with a random orientation.

Learning Skills for Small Size League RoboCup 93

Fig. 7. Sequence of key-frames from execution of go to ball and shoot tactic using
learned skills. The blue circle shows the robot. The blue line shows the history of the
robot’s trajectory. The orange circle is the ball and the orange line shows the trajectory
of the ball. The following link contains videos of the simulated policy: https://goo.gl/
xB7VAE (Color figure online)

The ball was also spawned at a random location on the field. We then run the
tactic until either (1) a goal is scored or (2) the maximum time of 15 s elapses.
The tactic was able to succeed 75.5% of the time. On average the tactic took
7.49 s with a standard deviation of 3.87 s.

6 Conclusion

In this work we have shown that Deep RL can be used to learn skills that plug
into an existing STP architecture using a physically realistic simulator. We have
demonstrated learning on two different skills: navigating to a ball and aiming
and shooting. We showed that these learned skills, while not perfect, are close
in performance to the hand-coded baseline skills. These skills can be used by
humans to create new tactics, much like how hand-coded skills are used. We
show that using a simple state machine, the two skills can be combined to create
a tactic that navigates to the ball, aims, and shoots on a goal. Given these
results, we believe that reinforcement learning will become an important part
in future competitions. Future work will address how well the learned policies
transfer from the simulation to the real robots.

https://goo.gl/xB7VAE
https://goo.gl/xB7VAE

94 D. Schwab et al.

References

1. Andre, D., Teller, A.: Evolving team Darwin united. In: Asada, M., Kitano, H.
(eds.) RoboCup 1998. LNCS, vol. 1604, pp. 346–351. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48422-1 28

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: skills, tactics and plays for
multi-robot control in adversarial environments. J. Syst. Control Eng. 219, 33–52
(2005). The 2005 Professional Engineering Publishing Award

4. Fernandez, F., Garcia, J., Veloso, M.: Probabilistic policy reuse for inter-task trans-
fer learning. Robot. Auton. Syst. 58, 866–871 (2009). Special Issue on Advances
in Autonomous Robots for Service and Entertainment

5. Hausknecht, M., Chen, Y., Stone, P.: Deep imitation learning for parameterized
action spaces. In: AAMAS Adaptive Learning Agents (ALA) Workshop, May 2016

6. Hausknecht, M., Stone, P.: Deep reinforcement learning in parameterized action
space. In: Proceedings of the International Conference on Learning Representations
(ICLR), May 2016

7. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. CoRR
(2017). http://arxiv.org/abs/1707.02286v2

8. Hsu, W.H., Gustafson, S.M.: Genetic programming and multi-agent layered learn-
ing by reinforcements. In: GECCO, pp. 764–771 (2002)

9. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot.
Res. 20(5), 378–400 (2001)

10. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
Internal Conference on Learning Representations (2016). http://arxiv.org/abs/
1509.02971v5

11. Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J.: Co-evolving soccer softbot
team coordination with genetic programming. In: Kitano, H. (ed.) RoboCup 1997.
LNCS, vol. 1395, pp. 398–411. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-64473-3 76

12. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning (2016).
http://arxiv.org/abs/1602.01783v2

13. Mnih, V., et al.: Playing atari with deep reinforcement learning (2013). http://
arxiv.org/abs/1312.5602v1

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

15. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. CoRR, abs/1502.05477 (2015)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

17. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

18. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

19. Stolle, M., Precup, D.: Learning options in reinforcement learning. In: Koenig, S.,
Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, pp. 212–223. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45622-8 16

https://doi.org/10.1007/3-540-48422-1_28
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1707.02286v2
http://arxiv.org/abs/1509.02971v5
http://arxiv.org/abs/1509.02971v5
https://doi.org/10.1007/3-540-64473-3_76
https://doi.org/10.1007/3-540-64473-3_76
http://arxiv.org/abs/1602.01783v2
http://arxiv.org/abs/1312.5602v1
http://arxiv.org/abs/1312.5602v1
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/3-540-45622-8_16

Learning Skills for Small Size League RoboCup 95

20. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: from machine
learning testbed to benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi,
Y. (eds.) RoboCup 2005. LNCS, vol. 4020, pp. 93–105. Springer, Heidelberg (2006).
https://doi.org/10.1007/11780519 9

21. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup
soccer keepaway. Adapt. Behav. 13(3), 165–188 (2005). https://doi.org/10.1177/
105971230501300301

22. The RoboCup Federation: RoboCup (2017). http://www.robocup.org/
23. Uchibe, E.: Cooperative behavior acquisition by learning and evolution in a multi-

agent environment for mobile robots. Ph.D. thesis. Osaka University (1999)
24. Vecerik, M., et al.: Leveraging demonstrations for deep reinforcement learning on

robotics problems with sparse rewards. CoRR (2017). http://arxiv.org/abs/1707.
08817

https://doi.org/10.1007/11780519_9
https://doi.org/10.1177/105971230501300301
https://doi.org/10.1177/105971230501300301
http://www.robocup.org/
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1707.08817

Real-Time Scene Understanding Using
Deep Neural Networks for RoboCup SPL

Marton Szemenyei1(B) and Vladimir Estivill-Castro2

1 Budapest University of Technology and Economics, Budapest, Hungary
szemenyei@iit.bme.hu

2 Griffith University, Brisbane, QLD, Australia

Abstract. Convolutional neural networks (CNNs) are the state-of-the-
art method for most computer vision tasks. But, the deployment of CNNs
on mobile or embedded platforms is challenging because of CNNs’ exces-
sive computational requirements. We present an end-to-end neural net-
work solution to scene understanding for robot soccer. We compose two
key neural networks: one to perform semantic segmentation on an image,
and another to propagate class labels between consecutive frames. We
trained our networks on synthetic datasets and fine-tuned them on a
set consisting of real images from a Nao robot. Furthermore, we investi-
gate and evaluate several practical methods for increasing the efficiency
and performance of our networks. Finally, we present RoboDNN, a C++
neural network library designed for fast inference on the Nao robots.

Keywords: Computer vision · Deep learning ·
Semantic segmentation · Neural networks

1 Introduction

Deep learning [10] is rapidly revolutionising the field of computer science. While
deep neural networks (DNNs) have many usages, they are now undoubtedly the
most popular technique in the field of intelligent perception, especially computer
vision. In RoboCup, especially in the SPL league, several teams [7,12,15,17,
19] have used CNNs to classify relevant objects on the soccer field. However,
due to the limitations of the robot’s hardware, these networks were relatively
shallow and were designed to classify fixed-resolution image patches only. This
straightforward design meant that the teams had to use separate object-proposal
methods to feed their network with candidate image regions.

We propose an end-to-end real-time object detection method for the Nao
robots using deep neural networks. Our method combines two separate networks
to achieve high accuracy at reasonable speed. The first network is a deep neural
network trained to perform semantic segmentation (pixel-wise classification) on
the image from the robot’s camera. The second is a smaller network, trained to
propagate the class labels from the previous image onto the next. Our system

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 96–108, 2019.
https://doi.org/10.1007/978-3-030-27544-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_8&domain=pdf
http://orcid.org/0000-0003-1397-6080
http://orcid.org/0000-0001-7775-0780
https://doi.org/10.1007/978-3-030-27544-0_8

Real-Time Scene Understanding Using DNNs for RoboCup SPL 97

is capable of localizing four foreground classes (ball, robot, goalpost, and field
line), without the use of a separate object proposal system.

Furthermore, we also report on the comparison of methods to accelerate deep
neural networks. These techniques include using field edge detection to reduce
the image size without decreasing the resolution of the relevant image parts,
and pruning the weights of the neural network. We also compare with different
network structures and show how to find the optimal accuracy/runtime trade-off.

Finally, we present RoboDNN, a lightweight C++ deep neural network
library. RoboDNN is a forward-only library, designed for maximum performance
on the Nao robot. The library has no dependencies, and does not use new con-
structs of the C++11 standard, facilitating compilation for the Nao. Moreover,
we designed RoboDNN using the strictest compiler settings. Our implementa-
tion also offers compatibility with the popular Pytorch [1] DNN framework, with
the ability to import neural nets trained using Pytorch. The RoboDNN library,
the code and datasets are all available on our website [2].

2 Related Work

The availability of high-quality datasets and computational resources has
enabled the training DNNs, once some numerical problems were surpassed [9].
The use of deep learning is perhaps most prominent in the field of computer
vision, where DNNs are used for standard classification [13] and (semantic or
instance) segmentation tasks [21,23]. Fast architectures, such as YOLO [20] exist
for object detection, however, segmentation provides a more complete under-
standing of the scene. Also YOLO struggles with cluttered objects, which is
frequent in robot soccer scenes.

Semantic segmentation aims to achieve visual scene understanding. The
objective is to segment the image by classifying each pixel individually. The sim-
plest way to achieve this with neural networks is to use a classification network,
and replace the final fully connected layers by (usually 1× 1) convolutional lay-
ers. This network can output a segmented image at a lower resolution, which can
be upsampled using techniques, such as bilinear upsampling [5]. Other works [25]
employ a superpixel segmentation method, and classify these superpixels indi-
vidually in order to approximate object boundaries with higher accuracy.

The SegNet architecture [5] uses so-called unpooling layers to upsample the
feature maps. In SegNet the max pooling layers in the first half of the network
store the index of the maximum value and share this information with the corre-
sponding unpooling layer. This extra piece of information allows the unpooling
layer to recover the spatial information lost during downscaling. Nonetheless, the
full feature map is not recovered, since the non-maximum values are permanently
lost. Several important advances have improved the accuracy of SegNet-based
segmentation, especially when it comes to capturing the fine details of objects.
The first of these improvements is the Fully Convolutional Network (FCN) archi-
tecture [23], which introduced shortcuts (skip connections) from the front layers
of the network. By adding shortcuts from early layers, the final layer has more

98 M. Szemenyei and V. Estivill-Castro

information on the fine-resolution details of the image, resulting in better approx-
imation of object boundaries. Shortcuts also improve the convergence properties
of deep neural networks considerably [11].

Choosing the upscaling and downscaling methods in the network can also
affect the performance significantly. The FCN network uses strided convolu-
tions instead of pooling. It introduces costly transposed convolutional layers
instead of unpooling to implement learnable downsampling and upsampling
operations [23]. Wang et al. [24] introduced the dense upsampling convolution
operation (DUC), which was shown to increase the accuracy further, but again,
at a considerable increase of computational cost.

The field of view of the final classification neuron also influences the accu-
racy of the segmentation network, since it determines the amount of contextual
information the final neuron can use to determine the class of each pixel. Chen
et al. [6] showed that using dilated/atrous convolutional filters increases the per-
formance without increasing the computational cost. Pooling operations may
also be atrous [6], resulting in a similar improvement.

While convolutional neural networks have achieved staggering accuracy in
numerous applications, their power comes with a high computational cost. Such
high computational cost seems to prohibit the use of CNNs on board of mobile
and embedded platforms. While several methods have been proposed for reduc-
ing the size and computation required for neural networks, the most relevant to
our application is pruning [4]. During the pruning process, a ranking method
is used to order the weights or neurons of a layer by importance, then a fixed
percentage of the least important neurons/connections are deleted/set to zero.
Next, the network is fine-tuned while keeping the pruned elements at zero value.
Several ranking methods exist ranging from brute-force methods, that only use
the magnitude of the weights to more complex ones, such as pruning weights so
that the change in the network’s loss function would be minimal [18].

Computer Vision in RoboCup. Achieving human-level vision and scene
understanding is an essential component of achieving RoboCup’s goals and the
RoboCup environment has steadily changed from featuring objects that are easy
to recognize using low-level features, such as colour, to ones that greatly resemble
objects used in human soccer. The vision pipelines used by the competing teams
have changed in tandem, going from human-engineered vision methods [16,22] to
pipelines relying increasingly on machine learning. Several teams have used con-
volutional neural networks either for binary classification tasks [7,17] or to detect
several relevant object categories [15,19]. These methods, however, use CNNs for
classification only, therefore they still require a separate object proposal method,
and the quality of the system may largely depend on the efficiency of the algo-
rithm used to generate candidates for classification. A further disadvantage is
that running the same neural network on potentially overlapping image regions
is wasteful, since the same features are computed twice.

Hess et al. [12] present a high-quality virtual RoboCup environment created
in Unreal Engine. Their work allows to easily create large datasets of realistic

Real-Time Scene Understanding Using DNNs for RoboCup SPL 99

images of a soccer field along with pixel-level semantic labelling. Since the per-
formance of a trained neural network is highly dependent on the quality and
quantity of the training data, and creating a large hand-labelled database is
highly time-consuming, their work was profoundly valuable for our research.

3 Preparation of the Training Data

To ensure the quality and amount of the training data for training the seman-
tic segmentation network, we created a synthetic image set of 5000 images [12].
We used 100 different random sets of environmental variables, and generated 50
images with each setting. The images were separated into train and test sets ran-
domly, using an 80–20 division. The automatically generated labels are available
as PNG images, and contain labels for all five relevant categories (background,
ball, robot, goal and line).

In addition, we extended the challenge to allow for the creation of image
sequences instead of independent scenes. We used this mode to create a dataset
of 800 images to train the label propagation network. This database also features
100 individual image sequences with different random scene parameters. In each
sequence, however, the position and orientation of the camera and field objects
only changes marginally between consecutive frames.

Synthetic images are an excellent way of pre-training a network on a large
dataset, yet due to the differences between a synthetic and a real environment we
require a database of real images to fine-tune the network. But the pre-training
allows a much smaller dataset for fine tuning than would be otherwise required.
For these reasons, we created a real semantic segmentation database consisting
of 570 images taken at 3 separate locations: at the venue of RoboCup17, at the
venue of IJCAI17 and in our lab at Griffith University. The images are from
the top camera, since these usually contain more complex scenes, justifying the
use of neural networks. A portion of this database consists of image sequences,
which are used as a dataset for label propagation.

We manually annotated the images using a tool of our own creation. Our tool
provides several ways to aid the annotation process, such as tools for drawing
polygons and lines, as well as square and circular brush tools. The program also
uses the superpixel segmentation method proposed by Li and Chen [14] to speed
up the labelling process. In the case of successive images, the tool is able to use
dense optical flow to approximate the labels of the next image. Using the tool, it
is also possible to mark the edges of the field, setting pixels and labels outside the
field to black and background respectively. This dataset can be used for detection
easily by computing bounding boxes for the connected label components.

Despite having a fair number of real images, they were considerably less
varied than the synthetic images, since they included only three locations with
their unique environmental settings (such as lighting and carpet colour). To
compensate for this disadvantage, we used aggressive, unique data augmenta-
tion in addition to standard techniques, such as flipping images horizontally.
To emulate changes in lightning conditions, we applied random changes in the

100 M. Szemenyei and V. Estivill-Castro

Conv16

Conv16

DConv16

Conv32

Conv32

DConv32

Conv64

Conv64

DConv64

Conv128

Conv128

TrConv64

TrConv32

TrConv16

Classifier

(a) Standard FCN-based design.

Conv8

DConv16

Conv16

DConv32

Conv32

DConv64

Conv128

Conv128

Conv128

Conv128

Conv64

TrConv32

TrConv16

TrConv8

Classifier

(b) “Pot-Bellied” FCN

Fig. 1. Our architectures: green nodes are strided convolution, while red nodes are
transposed convolution. We have batch normalization in every node. (Color figure
online)

brightness and contrast of the images. To introduce further variation into the
dataset, we also applied random shifts to the hue and saturation of our pictures,
which may help the robots with unique carpet colours. In Sect. 6 we show that
our data augmentation techniques improve the accuracy of the trained models
greatly.

4 Model Selection and Training

We used the Pytorch framework [1] for training the network. We applied stochas-
tic gradient descent (SGD) optimisation with momentum and weight decay reg-
ularisation. During training, we used an adaptive learning rate schedule, which
reduced the learning rate of the network after N consecutive epochs in which the
validation loss could not fall below the current lowest value. We made a slight
modification to Pytorch’s learning rate scheduler, to allow us to reload the cur-
rent best model in every learning-rate reduction event. We remark that this

Real-Time Scene Understanding Using DNNs for RoboCup SPL 101

variation results in the optimiser finding a new optimum more often after reduc-
ing the learning rate. Table 1 displays the hyperparameters used for pre-training
and fine-tuning the semantic segmentation and label propagation networks.

The nature of the scenes specific to robot soccer fields offers a major chal-
lenge. Typical soccer images offer few pixels belonging to objects of interest. In
our datasets, the ratio of background pixels is around 93–94%. Moreover, the
rest distribute somewhat unevenly amongst the relevant classes. This uneven
dataset usually complicates convergence and may result in a final network that
is heavily biased towards making false negative-type errors. We stress that this
imbalance stems from the distribution of classes in the individual images them-
selves. Therefore it is not possible to re-sample the training set.

We propose two solutions to overcome this difficulty. First, we selected the
images for the training set so that they would contain a relatively high percent-
age of pixels from objects of interest (so called foreground). Second, we used a
weighted version of the 2-dimensional negative log-likelihood (NLL) loss func-
tion, which is implemented in Pytorch, encouraging the network to emphasize
more the relevant object categories.

The next challenge is to define an efficient and powerful network structure.
Our review of the literature suggests an architecture based on FCN [23], using
strided convolution for downsampling and transposed convolution for upsam-
pling, as well as employing dilated convolutions to increase the field of view of
the final classification layer. But, we avoided using DUC for upsampling, due
its higher computational requirements. This first design (refer to Fig. 1a) had
three modules consisting of convolutional and downsampling layers, combined
with three upsampling layers.

Most CNNs used for semantic segmentation are relatively waist-heavy, mean-
ing that the middle section of network, where the feature map has the smallest
spatial dimensions has the largest number of filters. This has obvious advan-
tages when it comes to memory consumption and computational efficiency. In
our experiments, we decided to push this feature even further, using few and shal-
low layers to downsample the feature map quickly, then using a larger number of
deep convolutional layers at the lowest level, followed by a similarly shallow and
quick upsampling. In Sect. 6 we demonstrate that this network structure is much
more efficient, providing better accuracy for lower computational cost. Figure 1b
illustrates our new alternative, the “Pot-Bellied” (PB-FCN) architecture.

Our training procedure consists of three steps. First, the first half of the
segmentation network is trained on the dataset provided using Hess et. al [12]
generation for classification. We modified the dataset by separating the back-
ground and field line classes. Next, the full segmentation network is trained on
the synthetic database. Finally, the full segmentation network is fine-tuned on
the real database. The training procedure for the label propagation network is
similar, except the first step is omitted.

102 M. Szemenyei and V. Estivill-Castro

Table 1. Hyperparameters used for the training procedures.

Parameter LR Momentum Decay Reduction Patience Batch Epochs

Segmentation 0.1 0.5 1e−3 0.5 20 32 200

Fine-tune 0.01 0.1 1e−3 0.5 50 8 500

Label prop 0.2 0.5 1e−5 0.5 10 16 100

LP fine-tune 0.05 0.1 1e−5 0.5 25 8 250

5 Real-Time Implementation

To ensure real-time performance of our object detection pipeline, we must employ
several techniques to improve the speed of the trained neural network. For the
Nao hardware, these improvements are critical, since the networks resulting from
training as in the previous section require approximately 1 s to run on a Nao V5
robots using the Darknet library [20]. For all our experiments, we used 160× 120
images in YUV colour space.

The first technique we employ is weight pruning: since convolution is imple-
mented as a matrix multiplication, setting weights to zero increases the efficiency
significantly, even when an extra operation (checking if the weights are zero) is
introduced. We used a brute-force pruning technique, simply setting 75% of the
smallest weights in every layer to zero, and then fine-tuning the network, while
forcing the pruned weights to remain zero. We found, that this technique reduced
the runtime of the network by approximately 70%.

Moreover, our vision pipeline includes a hand-crafted field detection system,
which is used by our network to crop part of the image (the outside the field is
usually the top part of the image). This approach comes with two advantages.
First, it reduces the number of pixels to be processed without reducing the level
of detail. Second, if the network is trained on images where the parts outside the
field are omitted, it avoids learning complex backgrounds outside the field (which
are easily confused with field objects). While this technique provides considerable
improvement in the networks speed, this improvement is highly dependent on
the robot’s position in the field. For this reason, we used uncropped images when
comparing the execution times of different models and methods.

Our second technique for increasing the speed of our pipeline is label propa-
gation. Here, we estimate the labels of the next image by using the labels of the
previous one. We can achieve a considerable increase in speed, by only running
the main neural network every 10 or 20 frames, and provided that accurate label
propagation can be implemented using a significantly faster algorithm.

We first employed Gunnar Farneback’s dense optical flow (OptFlow method)
algorithm [8] to move the labels to their new location. While the algorithm’s
speed was satisfactory, the accuracy suffered. Namely, small, single-pixel errors
would accumulate over time, constantly eroding small objects. Also, the optical
flow-based method is completely unable to handle faster movements or new
objects appearing in the image (or partially seen objects sliding in).

Real-Time Scene Understanding Using DNNs for RoboCup SPL 103

Table 2. Accuracy variations from the baseline by the training techniques.

Technique Baseline Augment. Field Reload Prune

TPA 97.72 0.61 0.31 0.09 −0.18

MCA 92.19 2.55 0.82 1.08 −0.8

MIoU 75.57 6.66 2.36 0.19 −0.4

This problem can be remedied by training a neural network to predict the
labels of the next image from the labels of the previous one. Since this is much
easier, than predicting the labels from the raw image, we used considerably
smaller version of PB-FCN (Fig. 1), which would run at approximately twice
the speed of the segmentation network (PB-FCN-LP method). The network
takes an 8-channel input, consisting of the Y channels of the two images, their
difference and the 5-channel label image. For numerical reasons, the binary labels
were scaled between −1 and 1. The label propagation network was trained using
sequential the synthetic and real datasets mentioned in Sect. 3. We used the same
data augmentation techniques, and trained the network to be able to predict the
new labels in both ways (previous-to-next and vice versa), since the vast majority
of movements might occur in both directions.

Since this method combines knowledge about the visual appearance of the
classes and the movement between the images it is arguably able to account
for the appearance of new objects and handle larger movements. Moreover, for
the same reason, the label propagation network has some form of self-correcting
ability, thus misclassifying a pixel in one frame does not mean that the error
will be carried on until the next run of the segmentation network. We observed
during our experiments that the label propagation network seemed to be able to
incrementally correct the mistakes made by the segmentation network, especially
when the robot was not moving (Fig. 2).

While implementation could use an existing library, the target platform (Nao
robot) is a challenge. For example, Caffe [3] is a relatively old library with numer-
ous dependencies, making it difficult to compile for the Nao robot. While the
newer Darknet [20] has no dependencies, it lacks support for several important
features we used in our design, such as dilated convolutions and affine batch
normalization. Thus, we created our own C++ library called RoboDNN, based
on Darknet, implementing the most common neural network layers. Our library
is designed for inference only, therefore all code for training the networks was
stripped. Our library has no external dependencies, does not require C++11,
and - like all of MiPal’s code - compiles using the strictest compiler settings.

The current version of RoboDNN is compatible with Pytorch. Our code
includes support for dilated convolutions, output padding for transposed con-
volutions, and layers for affine batch normalization. Thus, RoboDNN is fully
compatible with neural networks trained in Pytorch, and we provide code to
export the weights Pytorch models along with the library. Our library is also

104 M. Szemenyei and V. Estivill-Castro

Table 3. Comparison of the different neural network architectures.

Model FCN PB-FCN PB-FCN-VGA ResNet-DUC OptFlow PB-FCN-LP

TPA 98.42 98.50 98.87 98.71 95.82 96.52

MCA 94.95 94.40 96.50 94.88 86.15 90.7

MIoU 80.31 81.30 84.00 83.98 82.70 79.15

optimized for maximum efficiency, including support for accelerating pruned net-
works, running on cropped images and several in-place operations for memory
efficiency.

6 Results

We now demonstrate experimentally the virtues of our design and training
method. First we evaluate the accuracy across model design and learning tech-
niques. Second, we asses the speed of our pipeline on the Nao V5 robots. Figure 3
shows some of the best and worst results of the segmentation.

Tests on Accuracy. We use three measures to evaluate accuracy. The first is
the percentage of pixels classified correctly, called Total Pixel Accuracy (TPA).
Taking the average of TPA per class is what we call Mean Class Accuracy
(MCA). These two measures are relevant because our class imbalance. Note that
TPA will favour models that are more likely to err on the side of background, but
MCA will be higher for models that are more likely to make false positive pre-
dictions. The third measure is Mean Intersection over Union (MIoU), which (on
our dataset) prefers models with minimal confusion between foreground classes.

We now demonstrate the change in accuracy provided by our data augmenta-
tion operations, field extraction, reloading learning rate scheduler, and pruning.
We measured the improvements of these techniques separately on a fine-tuned
PB-FCN network. Table 2 presents variations in accuracy from the baseline. The
results indicate that our techniques increase the accuracy considerably, while our
brute-force pruning retains most of the predictive power.

Table 3 compares four different models: The standard FCN-based model,
our PB-FCN used on both 160× 120 and 640× 480 (PB-FCN-VGA) resolu-
tion images, and a fourth model using ResNet152 [11] and deep DUC upsam-
pling. From these results, we can draw several conclusions. First, PB-FCN is
slightly more powerful compared to the standard FCN structure. Second, a
comparatively shallow PB-FCN loses surprisingly little accuracy compared to
the ResNet152 model, and even outperforms it considerably when used at VGA
resolution.

Lastly, we compare our pruned, fine-tuned PB-FCN-based label propagation
network with the optical-flow based method (see Table 3). Note that neural label
propagation clearly outperforms the optical-flow method. Moreover, optical flow

Real-Time Scene Understanding Using DNNs for RoboCup SPL 105

Table 4. Detection results on our validation set.

Model PB-FCN PB-FCN-VGA ResNet-DUC BBN-L BBN-MC BBN-L BBN-MC

Accuracy 95.53 98.86 95.36 83.36 81.39 95.39 94.89

False pos. 2.69 1.00 2.32 26.19 21.58 5.27 4.45

False neg. 4.47 1.14 4.64 16.64 18.61 4.61 5.11

Table 5. Comparison of the execution times of different models.

Model PB-FCN Pruned VGA FCN ResNet Opt-flow Neural LP BBN-L BBN-MC

Time (ms) 1480 380 2850 640 8000 80 170 70 22

FpS 0.7 2.6 0.35 1.56 0.125 12.5 5.9 14 46

produces slightly better MIoU results due to the heavily unbalanced dataset
(optical flow introduces minimal confusion between foreground classes). We used
the real-image dataset for all the results in this section.

Comparison Against Other Solutions. We also compare our results against
the networks used by other teams. First, we evaluate the first half of our PB-FCN
network against the classification results reported by Hess et al. [12] using the
same test dataset. Our algorithm clearly outperforms theirs, producing 96.66%
accuracy compared to 94.4% and 93.52% with their BBN-L and BBN-M-C mod-
els respectively. Moreover, we managed to achieve this result on a significantly
smaller dataset, consisting of 9,000 images per class only (compared to 25,000
per class). This improvement is largely due to our data augmentation methods.

Since to our knowledge this is the first work to publish semantic segmentation
results in the context of robot soccer, there is no established baseline to compare
our method against. We are also aware that other teams may use an object
detection method instead of a pixel-wise classification algorithm. For this reason,
Table 4 presents the performance of our networks in a detection task by simply
counting the percentage of relevant objects that were correctly detected. Note,
that a portion of false negatives and false positives may be objects that were
incorrectly merged or separated by our network.

We also evaluated BBN-L and BBN-M-C on this dataset by providing it with
all the relevant image patches, as well as three background patches per image to
measure the false positive rate. This setting is equivalent to an object candidate
generation method with zero false negative rate and here our PB-FCN clearly
outperforms the two other networks. The comparison is fair since we test all
classification networks on patches extracted form our training database.

Evaluating Execution Time. We tested the execution time of our entire
vision pipeline on a Nao V5 robot, using the top camera image. We used a
single core to run the neural network, and we ran the pipeline with other soccer
subsystems active. Table 5 shows the execution time of the pruned versions of

106 M. Szemenyei and V. Estivill-Castro

(a) Original image (b) Original (c) After 5 frames (d) After 10 frames

Fig. 2. The self-correcting ability of the label propagation network.

Fig. 3. A few examples of good (top) and bad (bottom) results.

the models compared in the previous subsection. For reference, we also included
the non-pruned version of PB-FCN. The results show a clear improvement as a
result of pruning, and that PB-FCN outperforms the vanilla FCN in speed as
well. We remark that the data shows that running a relatively shallow network
on a higher resolution image seems to be much faster than running ResNet on a
downscaled version, while providing superior accuracy.

In Table 5 we also present the comparison of label propagation using optical
flow and CNNs. The results show that the extra accuracy coming with the neural
network comes at lower speeds. Still, the fully neural vision pipeline runs at 6
frames per second, which is sufficient to enable real-time reactions at robot soccer
speeds. For reference, we include our measurements of the speed of the neural
network used by Hess et al. [12]. The comparison shows, that although we could
achieve significant improvements in accuracy and the neural network’s efficiency,
it is still several times slower than other methods.

7 Conclusion

In this paper, we presented a deep neural network-based method for scene under-
standing in the context of robot soccer. Our method uses a semantic segmenta-
tion network and a separate label propagation net to increase the frame rate of
the vision system. With our experiments, we demonstrated the efficiency of our
method, including the improvements we achieved using our data augmentation

Real-Time Scene Understanding Using DNNs for RoboCup SPL 107

techniques, pruning and field-edge cropping. Our method has superb accuracy
at satisfactory speed.

We also presented large semantic segmentation and label propagation
datasets consisting of synthetic images, as well as small real datasets for the
same tasks, including a tool for manual pixel-wise labelling of images. Finally,
we presented a Pytorch-compatible C++ deep neural network library designed
for fast inference on the Nao robots supporting the acceleration techniques dis-
cussed in this paper. Our library has been designed to compile for the Nao robots
using the strictest compiler settings.

Acknowledgments. Our research was supported by NVIDIA and Erasmus Mundus
PANTHER.

References

1. http://www.pytorch.org
2. http://3dmr.iit.bme.hu/research/robocup/index.html
3. http://caffe.berkeleyvision.org
4. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural

networks. ACM J. Emerg. Technol. Comput. Syst. 13(3), 1–11 (2017)
5. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional

encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

6. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

7. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J.: Using convolutional neural net-
works in robots with limited computational resources: detecting NAO robots while
playing soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS, vol. 11175, pp. 19–30. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00308-1 2

8. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

12. Hess, T., Mundt, M., Weis, T., Ramesh, V.: Large-scale stochastic scene generation
and semantic annotation for deep convolutional neural network training in the
RoboCup SPL. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS, vol. 11175, pp. 33–44. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 3

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

http://www.pytorch.org
http://3dmr.iit.bme.hu/research/robocup/index.html
http://caffe.berkeleyvision.org
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/978-3-030-00308-1_3
https://doi.org/10.1007/978-3-030-00308-1_3

108 M. Szemenyei and V. Estivill-Castro

14. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1356–1363
(2015)

15. Menashe, J., et al.: Fast and precise black and white ball detection for RoboCup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS, vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00308-1 4

16. Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection
using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS, vol. 7416, pp. 149–161. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32060-6 13

17. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS,
vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00308-1 28

18. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. arXiv:1611.06440 (2016)

19. O’Keeffe, S., Villing, R.: A benchmark data set and evaluation of deep learning
architectures for ball detection in the RoboCup SPL. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS, vol. 11175, pp. 398–409.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 33

20. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

22. Schwarz, I., Hofmann, M., Urbann, O., Tasse, S.: A robust and calibration-free
vision system for humanoid soccer robots. In: Almeida, L., Ji, J., Steinbauer, G.,
Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 239–250. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-29339-4 20

23. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

24. Wang, P., et al.: Understanding convolution for semantic segmentation.
arXiv:1702.08502 (2017)

25. Xing, F.Z., Cambria, E., Huang, W.B., Xu, Y.: Weakly supervised semantic seg-
mentation with superpixel embedding. In: IEEE International Conference on Image
Processing (ICIP), pp. 269–1273 (2016)

https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-642-32060-6_13
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
http://arxiv.org/abs/1611.06440
https://doi.org/10.1007/978-3-030-00308-1_33
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-29339-4_20
http://arxiv.org/abs/1702.08502

Training a RoboCup Striker Agent via
Transferred Reinforcement Learning

Warren Blair Watkinson II(B) and Tracy Camp

Department of Computer Science, Colorado School of Mines, Golden, CO 80401, USA
{wwatkinson,tcamp}@mines.edu

Abstract. Recent developments in reinforcement learning algorithms have made
it possible to train agents in highly complex state and action spaces, including
action spaces with continuous parameters. Advancements such as the Deep-Q
Network and the Deep Deterministic Policy Gradient were a critical step in mak-
ing reinforcement learning a feasible option for training agents in real world sce-
narios. The viability of these technologies has previously been demonstrated in
training a RoboCup Soccer agent with no prior domain knowledge to success-
fully score goals; however, this work required an engineered intermediate reward
system to direct the agent in its exploration of the environment. We introduce
the use of transfer learning rather than engineered rewards. Our results are posi-
tive, showing that it is possible to train an agent through a series of increasingly
difficult tasks with fewer training iterations than with an engineered reward. How-
ever, when the agent’s likelihood of success in a task is low, it may be necessary to
reintroduce an engineered reward or to provide extended training and exploration
using simpler tasks.

Keywords: Reinforcement learning · Transfer learning ·
Multiagent systems

1 Introduction

An elusive goal in artificial intelligence is the training of a robotic agent to solve prob-
lems or to act within a domain without being specifically programmed, modeled, or
provided with heuristics to direct its behavior. Reinforcement learning techniques, in
which an agent can explore and develop an understanding of its environment on its
own, have the potential to realize that goal. The most interesting applications of rein-
forcement learning are in domains having extremely large or continuous state or action
spaces. Despite several recent advances that have yielded excellent results in these types
of domains, reinforcement learning continues to have challenges in domains where an
agent must follow a long sequence of actions before it achieves a goal. These chal-
lenges are especially pronounced when the actions available to an agent have contin-
uous parameters. The compounding effect of the long action sequence along with the
infinite number of actions available to the agent at each step in the sequence may make
it impossible for the agent to successfully explore the environment to reach a goal state.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 109–121, 2019.
https://doi.org/10.1007/978-3-030-27544-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_9&domain=pdf
http://orcid.org/0000-0002-4830-3890
http://orcid.org/0000-0002-8570-7966
https://doi.org/10.1007/978-3-030-27544-0_9

110 W. B. Watkinson II and T. Camp

The most common way to deal with the divide between an agent’s initial state and
a goal state is with intermediate rewards. Some domains have naturally occurring inter-
mediate rewards, such as video games, where points might be earned for destroying
enemies. Using reinforcement learning, an agent will explore its options within the
game and quickly learn the value of actions that destroy enemies. If destroying ene-
mies eventually leads to winning the game, the intermediate rewards will help direct
the agent toward a winning goal state. Where the domain does not have naturally occur-
ring intermediate rewards, the reinforcement learning scenario designer might engineer
intermediate rewards that he or she believes will lead an agent toward an ultimate goal
state. For example, in a video game where an agent starts on the extreme “left side” of a
world with the goal of reaching the extreme “right side,” such as in Super Mario Broth-
ers on the 8-bit Nintendo Entertainment System (NES), an intermediate reward might
be given every time the agent successfully advances toward the right. While these inter-
mediate rewards address the lack of feedback between an agent’s initial state and goal
state, this approach will be suboptimal since the agent would likely not take shortcuts
or other optimizations along the way. As an alternative to this intermediate reward app-
roach, we explore a method of transfer learning in the RoboCup Soccer domain.

Transfer learning is the idea that the experience an agent gains while learning one
task can help it successfully learn a different task. In this paper, we explore the viability
of using transfer learning to train a robotic soccer striker agent to successfully score
a goal. A striker agent has the problem we described previously. Specifically, from
a random start state, the number of actions the agent must correctly select in order
to score a goal, including moving to the ball, dribbling the ball toward the goal, and
eventually scoring, is extremely large, and at each new state, the agent has nearly an
infinite number of actions from which to choose. In order to overcome this challenge of
exploration, we first train an agent on a simple goal scoring task followed by a series of
increasingly difficult tasks.

In the sections that follow, we summarize background on reinforcement learning
using Markov Decision Processes (MDPs) and recent advances that have seen success
in the application of reinforcement learning approaches in large and continuous domain
and action spaces, such as in RoboCup Soccer. We also provide an overview of the app-
roach we took to train a RoboCup Soccer striker agent in 2d simulation and the results
of our simulations. Lastly, we discuss our conclusions and future research opportunities.

2 Background

2.1 Reinforcement Learning and Markov Decision Processes

The most common approach in reinforcement learning problems is to model the domain
as an MDP [14]. In an MDP, an agent perceives that it is in some state s ∈ S within
the environment where s is a feature vector: s = 〈x1, x2, . . . , xn〉. The agent chooses
an action a ∈ A, which causes the agent to enter a new state according to a transition
function T : S × A → S , a probability distribution mapping each state and action pair
to the resulting state of the environment after the action is executed. The agent receives
a numerical reward according to a reward function R : S → � which is a mapping of
each state to the instantaneous numerical award for arriving in that state. Usually, the

Transferred Reinforcement Learning 111

MDP is designed such that most states yield a reward of 0 and the goal state yields a
positive reward. An agent’s policy π : S → A is a probability distribution that governs
which action the agent will choose from a particular state.

Table 1. Approximate state and action
space for various games
Game State space Action space

Tic-tac-toe 103 4.5

Checkers [2] 1018 2.8

Backgammon [16] 1020 20

Chess [4] 1046 35

Go [18] 10127 181

RoboCup Soccera 10408 10320

Starcraft 2 [10] 101685 [1050 , 10200]
aThe RoboCup Soccer state space is a lower-bound
estimate using 22 players, their positions and velocities, and
individual stamina. To calculate the RoboCup state space,
we assume the ball and each of the 22 players can be in one
of 680 × 1050 positions on the field with a velocity in one
of 360◦ and a magnitude as one of 10 values. Furthermore,
each player has a stamina [0, 8000]. When we consider that
these features are actually continuous and that each player
may have many different player characteristics, the state
space is far greater than this estimate. The actions used to
calculate the action space is the subset of RoboCup actions
available to the agents in our simulations.

In a typical reinforcement learning problem,
the agent can observe (or partially observe) its
state s and is aware of the set of actions A
available, but it does not know R or T . Some
reinforcement learning approaches attempt to
directly learn the model R and T . Other
approaches seek to estimate the action-value or
the state-value, which is the discounted value
of a present action or state in earning a future
reward according to a discount factor γ. The
effectiveness of an agent is determined by how
well its policy obtains rewards over the long
run. The goal of reinforcement learning is to
find an optimal policy π∗ that maximizes future
rewards. When the state or action space is rela-
tively small, developing such a policy is trivial
(as the entire environment could be explored by
the agent). On the other hand, many domains,
such as RoboCup Soccer, have such vast state and action spaces that it would be impos-
sible to directly explore every possible state and action sequence. For example, see
Table 1 for the state and action space complexity of various domains. In such domains,
it is helpful to use reinforcement learning techniques that approximate an action-value
or state-value by inferring similarities between various states. These action-value or
state-value functions can then be used to discover an optimal policy.

2.2 Large and Continuous State and Action Spaces

Some of the earliest reinforcement learning work in 2D RoboCup Soccer [11] devel-
oped aggressive defensive behaviors in RoboCup defenders. Using a neural network
to optimize the action-value function, Riedmiller et al. saw a significant increase in
the success of an agent using learned behavior over hand-coded behavior. This success
relied on significant reductions in the state and action space. For example, the learning
agents used only the dash and turn commands and the parameters were discretized such
that only 76 actions were available to each agent. The state space was also significantly
reduced, as the set of starting states was limited to 5,000, and an episode would proceed
for 35 time steps. While this seminal work was significant, to fully realize reinforcement
learning in the large state and action space of RoboCup soccer, algorithmic advances
were necessary.

In 2015, Mnih et al. developed the Deep-Q Network (DQN), an Artificial Neural
Network (ANN) to estimate the action-value function [9], and demonstrated that an
agent could learn to play Atari games, which involve highly complex state spaces. The
DQN developed by Mnih et al. received game state information in the form of screen
pixels. The DQN would output one of 18 discrete joystick commands that directed

112 W. B. Watkinson II and T. Camp

the agent’s behavior, and the agent received the change in game score as reward. The
DQN uses an experience replay, a stored vector of experiences et = 〈st, at, rt, st+1〉, at
each time step t. All previous experiences are pooled together and sampled randomly
during the gradient-descent update of the ANN. This experience replay has several
advantages when approximating the action-value function. First, each sample can be
reused many times to update the ANN, increasing the efficiency of data collected as
the agent explores the environment. Second, because sequential states tend to be very
similar, sampling from the experience replay avoids using highly correlated experiences
to update the network. Finally, the experience replay approach provides an off-policy
mechanism for developing an action policy. This is advantageous because samples in
an on-policy mechanism can become saturated with states dictated by the current action
policy. This saturation could lead to limited exploration of the state space and a policy
that stagnates at a local optimum. The DQN also utilized a target network that would
follow the actual ANN at a rate of tau 	 1. The target network generated the tar-
get action-values used to update the network, thereby stabilizing learning. These ben-
efits combine to make DQNs effective in high-dimensional state spaces. Mnih et al.
demonstrated the success of the DQN in reinforcement learning on 49 Atari games;
their trained agent learned to play Atari games at a human-expert level of performance
with only the raw frames from the Atari game as input.

Another significant advancement in reinforcement learning [12] concerns the Deep
Deterministic Policy Gradient (DDPG). In DQN, the policy gradient is estimated
stochastically over an integration of both the action and state spaces, and it was believed
that a deterministic policy gradient could not be found without a model-based learning
approach. Silver et al. proved that a deterministic descent policy gradient can be inte-
grated over state spaces alone in model-free learning. Lillicrap et al. incorporated the
deterministic descent policy gradient into DQN in 2016 [8] creating the DDPG. This
key advancement extended DQNs to allow agents to select actions with continuous
parameters.

The DDPG is an actor-critic network where both the actor and critic is an ANN.
The input to the actor network is the state feature vector. The actor network has two
linear output layers. The first output layer selects discrete actions, and the second output
layer provides continuous parameter values that correspond with the actions. The actor’s
outputs are then provided as inputs to the critic network with the state feature vector.
The critic network generates an estimate of the action-value. Back-propagation of the
critic network calculates the gradients of the action-value function with respect to the
action. These gradients are provided as input to the actor for back-propagation, and the
actor updates the agent’s policy.

Hausknecht and Stone extended the DDPG actor-critic network by implement-
ing an inverting gradients technique that reduces the magnitude of the gradient as it
approaches its bounds and then inverts the gradient when the parameter exceeds its
bounds. The inverting gradients method reduces the tendency of the critic to demand
that the actor push the continuous parameters outside the parameter bounds [5]. They
also introduced other enhancements to the DDPG algorithm including a hyperparameter
β as a ratio of on-policy and off-policy learning updates. These enhancements stabilized
the learning of the agent and yielded more consistent results from the DDPG algorithm.

Transferred Reinforcement Learning 113

Their results are impressive; after approximately 3 million iterations, they trained a
RoboCup Soccer striker agent to score a goal against an expert goalie. As it would be
impossible for an agent to discover the correct sequence of actions leading to a goal
state in such a large and continuous state and action space, Hausknecht and Stone used
an engineered intermediate reward. To direct the exploration of the agent within the
soccer domain, the intermediate rewards provided up to one point for approaching the
ball, up to three points for moving the ball toward the goal, and finally, five points for
scoring a goal.

2.3 Transfer Learning

Despite extensive use of transfer learning techniques in reinforcement learning [15],
we are aware of only one instance where transfer learning has been used in RoboCup
Soccer. Torrey et al. [17] trained agents in RoboCup Keepaway [13] and transferred the
knowledge gained to agents in Half-Field Offense [6]. Keepaway is a RoboCup part-task
simulator in which M keepers keep the ball away from N takers. Half-Field Offense is a
game in which M attackers attempt to score against N defenders. In their experiments,
the authors of [17] initialized the reinforcement learning keepers with advice such as
“when a taker is close, pass the ball to a teammate.” Over a series of Keepaway games,
the learning keeper agents refined the advice. A human user then mapped the refined
advice learned in the Keepaway task to appropriate scenarios in the Half-Field Offense
task. Thus, the learning attacker agents in Half-Field Offense benefited from the refined
advice learned in Keepaway. Torrey et al. discovered that, initially, Half-Field Offense
attackers without advice outperformed attackers receiving advice; however as learn-
ers continued learning and refining the advice over many games, the attackers which
received advice outperformed attackers with no advice.

In [17], agents started with domain awareness. In particular, agents understood the
meaning of state features, such as the distance to the ball, and they had the ability to
perform fairly high level tasks, such as kick the ball to a distant teammate. We are
not aware of any other use of transfer learning to support reinforcement learning in
RoboCup Soccer, and certainly none where the agents are starting tabula rasa. In the
following section, we describe an approach using transfer learning to train a RoboCup
Soccer striker agent to score on a goal with no prior domain knowledge.

3 Methodology

3.1 Overview

Our experiments leveraged the idea of learning from easy missions [3,15]. To train
a striker agent, we used a DDPG actor-critic network similar to the one used in [5].
Previous work used reward shaping, or an engineered intermediate reward, which is
an artificial reward signal rather than a reward based directly on the actual goal. In our
work, we trained an agent over a series of successively difficult learning phases. The
action-value function approximation learned in previous phases, along with the replay
memory, was preserved in the transfer, and allowed the agent to “jump start” its learning

114 W. B. Watkinson II and T. Camp

Table 2. Agent learning phases

in the new phase. Through reinforcement and transfer learning, we trained agents to
perform in two different experiments in Half-Field Offense: an empty goal experiment
(Experiment 1) and a defended goal experiment (Experiment 2).

In the empty goal experiment, we trained an agent to start from somewhere on the
right half of the soccer field, run to the ball positioned randomly on the same side of the
field, and then kick the ball into an undefended goal. In the defended goal experiment,
we also trained an agent to run to the ball and kick it into a goal, but this time the goal
was defended by an Agent2d [1] hand-coded expert goalie. Agents in Experiment 1
used 59 egocentric features such as distance and angle to the goal, ball, and other land-
marks on the field. Each feature was a scalar value ranging from [−1, 1]. The game state
was fully observable to the agent. As a low-level feature set, these features represented
a fundamentally basic viewpoint in the agent’s frame of reference and did not include
synthesized features, such as the direction of the largest angle between the goalie and
a goal post, which a programmer might synthesize for the agent based on an under-
standing of how to successfully score. Agents in Experiment 2 had an additional nine
features representing information about the goalie. The agents had four discrete actions
and a total of six continuous parameters: dash, with continuous parameters of power
and degrees; turn, with a continuous parameter of degrees; tackle, with a continuous
parameter of degrees; and kick, with continuous parameters of power and degrees.

We trained the agents using a simple reward, i.e., five points for a goal. Since the
agent received no other feedback for positive behavior, such as advancing the ball to the
goal or attempting a shot on the goal, we used a series of increasingly difficult learning
phases, transferring the agent’s learning from one phase to the next.

3.2 Training Experiences

The series of learning phases listed in Table 2 represent our attempt to train the agent to
understand how its behavior affects the environment and how it can score goals. Exper-
iment 1, Phase1 is a simple task in which the agent and ball are placed at a random

Transferred Reinforcement Learning 115

(a) Phase1 (b) Phase2 (c) Phase3 (d) Phase4

Fig. 1. Sample starting positions of Learning Phases 1 through 4

position directly in front of the goal. To be successful, the agent simply needs to kick
the ball with any amount of power in the direction of the goal. By the end of this task,
the agent should understand the effect of kicking the ball, with a marginal understanding
of kick direction and power. Building on its former experience, Phase2 places the agent
with the ball at a random position near the penalty line in order to have the agent develop
a greater understanding of kick direction and power. In Phase3, the ball is placed at a
random position near the penalty line, but the agent is placed just outside its kickable
range from the ball. In this phase, the agent learns to move toward the ball in order to
kick it, thus it learns about movement and direction of movement. Phase4 keeps the
ball at a random position near the penalty line, but the agent is moved further away
from the ball. This phase requires the agent to sustain a movement direction over time
to approach and kick the ball. Phase5 places both the ball and the agent at a random
position on the field. This phase brings all of the previous learning of the agent together
as the agent is expected to run across the field and, through a series of kicks, score on
an empty goal. In Phases 1 through 5 the agent is able to fully observe its state without
noise (full-state information is used), regardless of what its sensors actually perceive.
Phase6 has the agent observe its environment through noisy and limited sensors (stan-
dard view used in RoboCup competitions). This phase demonstrates how effectively an
agent, having learned in a fully observable simulation, can transfer its knowledge to a
partially observable and noisy version of the same task. To assist with limited and noisy
sensors, the agent has an underlying layer which updates an approximate world model
by integrating information over multiple observations. This layer also governs the focus
and direction of the visual sensor so that the agent can update and maintain its world
model. This layer was not controlled by our DDPG (Fig. 1).

The first five phases are common to both experiments, with the exception of the
addition of a goalie in the defended goal experiment. In Phases 1 through 5 of the
defended goal experiment, the goalie is stationary in the center of the goal. In these
phases, the goalie makes no attempt to intercept the ball, but if the ball hits the goalie,
the ball is “captured” and no goal is scored. In Phase6, the goalie is permitted to move,

116 W. B. Watkinson II and T. Camp

but because the hand-coded goalie possesses significant skill, we restrict the goalie’s
ability so it can move in only 10% of the server iterations. In Phases 7, 8, and 9, the
goalie is allowed to move more frequently in 25%, 50%, and 75% of server iterations,
respectively, and in Phase10, the goalie defends the goal at full capacity.

3.3 Training Implementation

In a given learning phase, an agent would explore its environment and learn to per-
form a task by executing multiple simulation episodes. An episode begins with starting
positions as described in the previous section and ends under one of the following con-
ditions: (1) the agent scores a goal, (2) the goalie captures the ball, (3) the ball goes out
of bounds, or (4) more than 50 real world seconds have elapsed. The agent evaluates its
environment and executes an action every 1/10 of a real world second, which we refer
to as an iteration. Thus, a single episode can have up to 500 iterations, though many
episodes are much shorter.

We trained four agents in each of our two experiments, for a total of eight agents.
In Experiment 1, Agent1 and Agent2 progressed from one learning phase to the next
immediately after demonstrating a 96% success rate against the goal. Agent3 and Agent4
progressed to the next learning phase after completing 500,000 iterations of the current
learning phase. Similarly, in Experiment 2, Agent5 and Agent6 progressed to the next
learning phase after demonstrating a 96% success rate, and Agent7 and Agent8 pro-
gressed after completing 500,000 iterations.

3.4 DDPG Architecture Details

We employed a similar actor-critic network as in [5]. Both the actor and critic had the
same network architecture consisting of four fully connected layers with 1024, 512,
256, and 128 units. Inputs to the actor network were the 59 or 68 (if a goalie is present)
state features. Inputs to each neuron in the hidden layers were first processed through a
leaky rectified linear unit (ReLU) with a negative slope of 0.01. The actor network had
two linear output layers. The first was for the four discrete actions, and the second was
for the six continuous parameters. These outputs were provided as inputs to the critic
network, in addition to the 59 or 68 state features. The critic had the same hidden layer
architecture as the actor network, and provided a scalar representing the approximated
action-value. The actor used the feedback from the critic to update the agent’s policy.
The critic’s update to the actor regarding the parameter gradient was bound according
to the inverting gradients algorithm.

We used the Caffe Deep Learning Framework by Berkeley Artificial Intelligence
Research with the Adam [7] solver using the hyperparameters identified in [5] that
yielded the best results through experimentation: a 10−5 learning rate for the actor and
10−3 for the critic; 20% on-policy updates, and 80% off-policy updates; and τ of 0.001
to temper the rate of change in learning. At initialization, the agent selected all actions
at random, and over the first 10,000 actions we anneal this stochastic selection linearly
to 10%, favoring the best action according to our trained policy 90% of the time. We
use a reward discount rate γ of 0.99.

Transferred Reinforcement Learning 117

Table 3. Performance of each agent in the empty goal experiment

Full observability Partial observability

Iter (103) Goal rate Iter (103) Goal rate

[5] ∼1500 1.00 N/A N/A

Agent1 710 1.00 980 1.00

Agent2 820 1.00 890 1.00

Agent3 2290 1.00 2620 1.00

Agent4 2300 1.00 2580 1.00
We estimate that it was approximately 1,500,000 iter-
ations to train the agent in [5] after which it was able
to consistently score against an empty goal. We note
the authors of [5] did not present results for a sce-
nario with partial observability.

4 Results

Overall, the agents trained in the empty goal experiment performed exceedingly well.
Alas, those trained against the defended goal ultimately stopped learning and failed
when the goalie was allowed to move more quickly (i.e., in Phases 6–10). We found it
necessary to reintroduce a shaped reward to assist the agent’s learning. Figure 2 shows
the change in the agents’ performance (with respect to goal percentage) as the agents
experienced additional iterations. For the sake of space, the figures depict only the odd-
numbered agents; the even-numbered agents had a similar performance compared to
their odd-numbered counterpart. The following sections discuss our results in more
depth.

4.1 Empty Goal Experiment

In the empty goal experiment, we found that our transfer learning phases provided a
responsive learning opportunity from one phase to the next. In general, Agent1 and
Agent2, which transferred to the next phase immediately after demonstrating success in
the current phase, had an initial significant drop in performance when assigned to the
new phase. These agents, however, returned to an acceptable degree of performance in
the course of training (see Fig. 2a, transitions from Phase1 to Phase2 and from Phase2
to Phase3). In Phase5 and Phase6, we continued training the agents until they reached
flawless performance. The iterations required to reach this level of performance are
reported in Table 3. Despite the early struggles with a new phase, Agent1 and Agent2
learned the empty goal task more quickly than any previous benchmark. Moreover,
all four agents learned the empty goal task in the fully observable scenario (Phase5)
and were able to transfer that learning successfully to the partially observable scenario
(Phase6).

118 W. B. Watkinson II and T. Camp

Fig. 2. Performance of agents in empty and defended goal experiments

4.2 Defended Goal Experiment

In contrast, the agents learning in the defended goal experiment had a much more dif-
ficult time. Agent5 and Agent6, which transitioned immediately to the next phase after
becoming an expert in the current phase, initially struggled with the new phase (similar
to Agent1 and Agent2) but were able to eventually learn the skills necessary to advance
in the first five phases (see Fig. 2c). Agent7 and Agent8, which continued to practice
the phase for a full 500,000 iterations before advancing, adapted more quickly to the
new phase. After completing the first five phases in which the goalie was immobile,
all four agents had significant difficulties as the goalie’s capabilities increased. Agent5
and Agent6 struggled with the goalie at 25% capacity and were not able to continue to
the next phase. Agent7 and Agent8 performed slightly better, but stopped learning with
a goalie at 50% capacity. All four agents, when faced with a goalie that would block
their goal attempts, would eventually stop attempting to score and simply run off the
field. We suspect this result occurred because the agents prefer exploration behaviors
when prior experience indicates the likelihood of success using previous strategies is
marginal.

Transferred Reinforcement Learning 119

Table 4. Performance of each agent with
shaped reward

Iter (103) Goal rate

Agent5 2950 0.97

Agent6 2730 1.00

Agent7 5210 0.96

Agent8 4370 0.92

Agent2D N/A 0.96

HELIOS N/A 0.98

In summary, as the goalie’s ability increased,
the agents stopped attempting a shot in favor of
exploring other avenues for earning a reward.
We, therefore, experimented with reward shap-
ing [15]. After training agents in Phase5, we
provided agents with a proportional reward for
moving the ball toward the goal, up to a max of
three points. This artificial reward encouraged
the agents to move the ball toward the goal. With
this modification, all agents eventually learned
to score against a skilled goalie at full ability.
Table 4 summarizes the number of iterations required for each of these modified agents
to reach a performance threshold, using transfer learning for Phases 5–10 and shaped
rewards for Phases 6–10. Remarkably, the agents quickly learned how to defeat the
hand-coded goalie. The performance of most of the agents equaled or exceeded that of
both the Agent2D base and the 2016 championship team HELIOS attacker (Table 4).
With this alternative, we duplicated some of the efforts of [5], but demonstrate that
shaped rewards can work alongside transfer learning.

4.3 Other Observations

Early performance in a learning experiment was not a consistent indicator for how well
the agents would ultimately succeed in that learning phase. For instance, the initial
performance of Agent7 and Agent8 in Phase5 was around 1% in terms of successful
goals (Fig. 2d), but over time, their performance improved such that they were eventu-
ally scoring in over 90% of the scenarios. On the other hand, when Agent7 and Agent8
started Phase8, they were scoring 30% and 40% of the time; within 500,000 iterations,
however, the performance dropped to zero, and the agents stopped attempting shots on
the goal.

We also observed that more practice with a phase did not create a disadvantage when
transitioning to the next phase. Indeed, those agents having more experience adapted to
the new task more quickly.

We now consider our ad-hoc experiment using the shaped reward signal. After the
agents learned how to successfully score consistently against the goalie, we removed
the reward for advancing the ball towards the goal. Our preliminary results indicate that
the agents continued to attempt goals against the goalie, and, despite no incentive for
unsuccessful shots on the goal, they maintained a high level of performance.

Overall, there appears to be promise in utilizing the transferred learning approach
in complex domains with large and continuous action and state spaces. Our approach,
however, does introduce additional variables. For example, we believe the success and
rate of learning is dependent upon the specific learning phase tasks chosen. If the gap
between phases is too great, or if the learning phase tasks were performed in a different
order, we expect the results would be different, e.g., agents either failing to learn the task
or learning the task more quickly. With respect to the defended goal task, we suspect
one issue is the learning phases have too large a gap between them. That is, in our
experiment the goalie develops skill more quickly than the striker can learn. If we could

120 W. B. Watkinson II and T. Camp

improve the skill of the goalie more gradually, perhaps the striker would learn to score
through successive learning phases.

5 Conclusions and Future Work

We have applied a novel approach of transfer learning in the RoboCup Soccer domain
by training agents via a series of learning phases of increasing difficulty. Using a DDPG
with replay memory, we are able to select optimal actions in continuous action param-
eter space to meet a simple, single objective: score on a goal.

We found the agents exhibit no negative transfer in the range of iterations we’re
using for training. In fact, agents with more experience in the environment adapted
more quickly to novel tasks than agents with less experience. On the empty goal task,
our agents exceeded previous benchmarks in reinforcement learning, suggesting that
transfer learning of increasingly complex tasks can reduce learning time when com-
pared to all other known techniques. In addition, skills learned in a fully observable state
are transferable to a partially observable state when the agent maintains an approximate
world model integrated over several observations.

Our results with the defended goal task are less positive. Specifically, when the
rewards received were too scarce, the agents stopped attempting to earn the reward and
instead turned to exploring the model. We found that in those situations, it may be nec-
essary to introduce reward shaping to help direct the agent’s behavior toward successful
strategies. After the agent has learned a policy which yields a higher probability of suc-
cess, it appears as though we can remove the “training wheels” without ill-effect. That
is, after the agent develops a policy yielding a higher probability of success, the agent
continues to learn, successfully scoring while it improves its performance, even without
the shaped reward.

As for future research, we would like to explore whether longer training times
beyond 500,000 iterations would prove effective in the defended goal task. We would
also like to adapt our transfer and reinforcement learning approach to train a striker
agent and a goalie in tandem. After some initial orientation to the state and action space,
we would like to see if it is possible to bring both a novice attacker and a novice goalie
online together to learn as they compete against one another.

Further development toward principled methods for determining whether an agent
can successfully learn via learning phases would be valuable to the reinforcement learn-
ing community. As it is, early performance in a target learning task provides little to no
indication as to whether or not the agent will demonstrate continued learning over the
long term. Finally, we’d like to explore other domains for reinforcement learning in con-
tinuous parameter action space. Pushing the DDPG model into more complex domains
will help to further our understanding of the opportunities and limitations of the DDPG
reinforcement learning model.

Transferred Reinforcement Learning 121

References

1. Akiyama, H.: Agent 2D Base Code 3.1.1 (2012). https://osdn.net/projects/rctools/releases/
p4887

2. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. Ponsen and Looijen,
Wageningen (1994)

3. Asada, M., Noda, S., Tawaratsumida, S., Hosoda, K.: Vision-based behavior acquisition for
a shooting robot by using a reinforcement learning. In: IAPR/IEEE Workshop on Visual
Behaviors, Seattle, Washington, June 1994

4. Chinchalkar, S.: An upper bound for the number of reachable positions. Int. Comput. Chess
Assoc. J. 19, 181–183 (1996)

5. Hausknecht, M., Stone, P.: Deep reinforcement learning in parameterized action space, pp.
1–12. arXiv preprint arXiv:1312.5602, February 2016. arXiV:1511.04143v4

6. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in RoboCup soccer: a multiagent
reinforcement learning case study. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi,
T. (eds.) RoboCup 2006. LNCS, vol. 4434, pp. 72–85. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74024-7 7

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412:6908, December 2014

8. Lillicrap, T., et al.: Continuous control with deep reinforcement learning. In: Proceedings of
the International Conference on Learning Representations, San Juan, Puerto Rico, May 2016

9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

10. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey
of real-time strategy game AI research and competition in StarCraft. IEEE Trans. Comput.
Intell. AI Games 5(4), 293–311 (2013)

11. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot soccer.
Auton. Robots 27(1), 55–73 (2009)

12. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy
gradient algorithms. In: International Conference on Machine Learning, June 2014

13. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup soccer keep-
away. Adapt. Behav. 13(3), 165–188 (2005). 0301

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

15. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J.
Mach. Learn. Res. 10, 1633–1685 (2009)

16. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68
(1995)

17. Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using advice to transfer knowledge acquired in
one reinforcement learning task to another. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge,
A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 412–424. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564096 40

18. Tromp, J., Farnebäck, G.: Combinatorics of go. In: van den Herik, H.J., Ciancarini, P.,
Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 84–99. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75538-8 8

https://osdn.net/projects/rctools/releases/p4887
https://osdn.net/projects/rctools/releases/p4887
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.04143v4
https://doi.org/10.1007/978-3-540-74024-7_7
https://doi.org/10.1007/978-3-540-74024-7_7
http://arxiv.org/abs/1412:6908
https://doi.org/10.1007/11564096_40
https://doi.org/10.1007/978-3-540-75538-8_8

Playing Soccer Without Colors
in the SPL: A Convolutional Neural

Network Approach

Francisco Leiva(B), Nicolás Cruz, Ignacio Bugueño, and Javier Ruiz-del-Solar

Advanced Mining Technology Center and Department of Electrical Engineering,
Universidad de Chile, Santiago, Chile

{francisco.leiva,nicolas.cruz,ignacio.bugueno,jruizd}@ing.uchile.cl

Abstract. The goal of this paper is to propose a vision system for
humanoid robotic soccer that does not use any color information. The
main features of this system are: (i) real-time operation in the NAO
robot, and (ii) the ability to detect the ball, the robots, their orienta-
tions, the lines and key field features robustly. Our ball detector, robot
detector, and robot’s orientation detector obtain the highest reported
detection rates. The proposed vision system is tested in a SPL field with
several NAO robots under realistic and highly demanding conditions.
The obtained results are: robot detection rate of 94.90%, ball detection
rate of 97.10%, and a completely perceived orientation rate of 99.88%
when the observed robot is static, and 95.52% when the observed robot
is moving.

Keywords: Deep learning · Convolutional Neural Network ·
Robot detection · Ball detection · Orientation detection ·
Proposals generation

1 Introduction

The perception of the environment is one of the key abilities for playing soccer;
without an adequate vision system it is not possible to determine the position of
field’s features or to self-localize. It is also impossible to determine the position of
the ball and the other players, which is necessary in order to play properly. Given
that the soccer environment is highly dynamic and has a predefined physical
setup, most of the current vision systems use color information.

In the case of the SPL and the former Four-Legged League, the first genera-
tion of vision systems analyzed colored objects which were then segmented [1,2].
Year by year, the restriction of having colored objects in the field was relaxed:
(i) the number of colored beacons was first reduced and then beacons were not
used anymore, (ii) the goals were first colored and solid, then non-solid, and
finally white, (iii) the ball used to be orange, and since 2016, black and white.

F. Leiva and N. Cruz—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 122–134, 2019.
https://doi.org/10.1007/978-3-030-27544-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_10

Playing Soccer Without Colors in the SPL 123

However, still most of the teams use color information to detect field features
(e.g., lines and their intersections), other players and the ball. Very recently,
Convolutional Neural Networks (CNNs) have been used for detecting the robots
and/or the ball (e.g., [3–6]), but even in these cases, the CNN-based detectors
require object proposals which are usually obtained using color information.
Therefore, to the best of our knowledge, color-free vision systems have not been
used in robotic soccer, at least not in the SPL. Some of the main reasons are: (i)
the challenge of achieving real-time operation when using limited computational
resources, (ii) the problem of training deep detectors without having very large
databases, and (iii) the challenge of having fast and color-free object proposals.

The goal of this paper is to propose a color-free vision system for the SPL.
The main features of this system are: (i) real-time operation in the NAO robot,
and (ii) the ability to detect the ball, the robots, their orientations, the lines and
key field features very robustly. In fact, our ball, robots and robots’ orientation
detectors are highly performant; they obtain the highest reported detection rates.

2 Playing Soccer Without Color Information

In this section we present the proposed vision system. Section 2.1 broadly
explains the general characteristics and functioning of the vision framework,
while Sects. 2.2, 2.3, 2.4, 2.5 and 2.6 detail the operation of each of its main
modules.

2.1 The General Framework

The main feature of our framework is that it manages to detect the ball, other
players, their orientations, and key features of the field without using any color
information: all the processing is performed on grayscale images. This is done
by following a cascade methodology (inspired in [16]) that combines classical
approaches widely used in pattern recognition and modern CNN-based classi-
fiers.

Raw Input Image Grayscale Image

Scan Lines

Field Lines and
Features Detector

High Contrast
Regions Detector

Robot Proposals
Generator

Deep Robot
Detector

Line Regions
Proposals Generator

Deep Orientation
Detector

Ball Proposals
Generator

Deep Ball Detector

 ...

16x16 windows

robot proposals

... ...

line regions
proposals

ball proposals

...

 ...

detected robots

Fig. 1. Block diagram of the proposed vision system.

124 F. Leiva et al.

The proposed vision framework is illustrated in Fig. 1. While the detection
of lines and field features is done by using a set of rules and heuristics, both the
detection of the ball and the other robots is done by means of object proposals
and their subsequent classification using CNNs. This cascade approach takes
advantage of the information previously extracted from the image to use it in
benefit of following processing modules.

2.2 High Contrast Regions Detection

Since the robots and the ball used in the SPL possess high contrast, an effective
approach to know where to search for them is to find high contrast regions in
the images. To do this, the grayscale input images are scanned using windows
of 16 × 16 pixels. Regions outside the field boundaries and within the body of
the observer robot are discarded. The remaining windows are used to construct
histograms of pixels, which are used to estimate thresholds for image binarization
using Otsu’s method [7]. Windows with thresholds over a predefined value are
considered as important, since they may be close or within another robot or the
ball. Since the chosen threshold for the selection of windows could be restrictive
and leave out image regions belonging to objects of interest, a morphological
dilation operation is applied on the previously selected windows, which means
that all the 16×16 pixels blocks adjacent to selected windows are also considered
as high contrast regions.

2.3 Robot Detection

In [3] we presented a robot detector based on CNNs, capable of operating in
real time. The system was based on the classification of color-based robot pro-
posals (generated by B-Human’s robot perceptor [8]). This was modeled as a
binary classification problem where proposals could be labeled as robots or non-
robots. The system processed hypotheses in ∼1 ms with an average accuracy
of ∼97%. Although this system achieved a very high performance, it possessed
some major drawbacks. First, while the CNN classifier was very robust to noise
and variations of the illumination, the same did not apply to the color-based
robot proposal generator. Adverse environmental conditions could lead the algo-
rithm to produce an excessive amount of object hypotheses, or none at all. The
second drawback derived from the CNN inference time of ∼1 ms. While such a
network is deployable on a NAO robot, it is much slower than alternative algo-
rithms based on heuristics or shallow classifiers, and can be prohibitively slow
when too many robot proposals are generated. In this paper we address both
problems by changing the robot proposals generation approach, and by further
reducing the inference times while maintaining the detection accuracy.

The proposal generation of this new framework does not use any color infor-
mation: it uses vertical scan lines over all the image x-coordinates where high
contrast regions were detected (see Sect. 2.2). The scan lines search for luminance
changes in order to find the robots’ feet positions, and by performing geometric
sanity checks, the proposal generator provides a set of bounding boxes which

Playing Soccer Without Colors in the SPL 125

may contain the robots’ body. Most checks are similar to the rules used in the
B-Human player detector [8], but applied to a grayscale image. This approach is
more robust to changes in lighting since it relies on contrast information rather
than heuristic color segmentation.

The obtained grayscale image regions are then fed to a CNN, which we call
RobotNet, that classifies the proposals as robots or non-robots. This CNN is
based on the architecture described in Sect. 3.1. Using grayscale image regions
allows the system to perform in real time for a large number of robot proposals,
since the reduction of input channels greatly reduces the CNN’s inference time.

2.4 Robot Orientation Determination

Inspired on [10], we propose an improved Vision-Based Orientation Detection
for the SPL League, which makes use of CNNs in order to achieve much better
prediction accuracy than the original system. The general architecture of the
module is presented in Fig. 2.

Deep Classification

Lines Generator ...

detected robots Line Regions
Proposals
Generator

 ...

line regions proposals

OriBoostNeT OriNeT Consistency
Check

Orientation
Determination

Fig. 2. Robot orientation module pipeline.

This system uses the bounding boxes of the Detected Robots as inputs. Over
these regions, the set of points that compose the robots’ lower silhouette [10] is
calculated by the Lines Generator module, which extracts a region corresponding
to the robot’s feet and analyses its Contrast-Normalized Sobel (CNS) image [11]
by using vertical scan lines. Over each scan line pixel an horizontal median
filter is applied and its response is compared to a threshold. Pixels with a filter
response below the threshold are considered as part of the lower silhouette.
Then, by iterating for each scan line, the subset of points that make up a closed
convex region can be obtained by using Andrew’s convex hulls algorithm [12].
For each consecutive pair of points of the convex set we calculate a line model
in field coordinates. Each line model is then validated with the set of points
of the lower silhouette, by using a voting methodology akin to the RANSAC
algorithm [17]. The line with the higher number of votes is selected as the first
line. Once the linear model has been chosen, a second line may be generated by
iterating over the remaining pairs of convex points. This line must comply with
a series of conditions such as a minimum and maximum length and approximate
orthogonality to the first line in order to be accepted as valid.

To estimate the orientation of the observed robot, the lines are classified to
determine the robot’s direction. To do this, a region that includes the robot’s feet
and legs is constructed around each line by the Line Regions Proposals Generator

126 F. Leiva et al.

module. The regions are then classified by the Deep Classification module which
is based on CNNs, whose structure is shown in Fig. 4. For each of the line’s
regions a CNN that measures its quality, OriBoostNet, is first applied. Regions
with too much motion blur or that were incorrectly estimated are discarded to
decrease the number of wrong orientation estimations. If a region is accepted, it
is then fed to a second CNN, OriNet, that in turns classifies it as a side, front or
back region. Afterwards, we perform a Consistency Check by imposing that no
more than one region of each class must exist. This further reduces the number
of incorrect orientation estimations. Finally, the Orientation Determination is
performed by combining the rotation given by the inverse tangent from two
points belonging to the analyzed line, with the direction of the line determined
by its class. The resulting orientation is added to a buffer that stores the last 11
measurements and a circular median filter is applied over it. In order to avoid
invalid results, we consider the direction as valid only for a small period of time
if no new samples are added to the buffer.

2.5 Ball Detection

In the proposed vision framework, the ball detector follows the paradigm of
proposal generation and subsequent classification. Figure 3 shows the general
architecture of this module.

 ...

detected robots

 ...

high contrast windows

Ball Radius
Estimation

Difference of
Gaussians Filtering Deep Boosting Deep Classification

 ...

ball proposals

Fig. 3. Ball detection module pipeline.

Our ball proposal generator is inspired on the hypothesis provider developed
by the HTWK team [13]. The main differences between both approaches are:
(i) we only use grayscale images, (ii) we use a different method to estimate high
contrast regions (see Sect. 2.2), and (iii) we use the robots’ detections in order
to improve the generation of proposals.

The proposal generator uses the high contrast regions and the robots’ detec-
tions to provide the ball hypotheses. To accomplish this task, the generator
performs a pixel-wise scan over all image windows that were detected by the
high contrast detector and over image regions corresponding to the detected
robots’ feet. During this stage, a Ball Radius Estimation is calculated for every
analyzed position in image coordinates.

The next stage consists in a Difference of Gaussians (DoG) Filtering. During
this process, DoG filters’ local responses are calculated for each scan coordinate.

Playing Soccer Without Colors in the SPL 127

The support regions of the filters are dependent on the estimated ball radii, so
we are actually searching for blobs by means of the same approach used by the
SIFT algorithm [15]. Additional DoG responses are calculated in front of the
other robots’ feet given that the ball may be in these regions. Finally, only the
highest responses are used to construct a set of proposals, whose size depends
on the estimation of the radius of the ball.

To perform the ball detection, the proposals are fed to a cascade of two CNNs
which classifies them as ball or non-ball. The first CNN, BoostBallNet, performs
Deep Boosting to both limit the proposals’ number to a maximum of five, and
sort them based on their confidence. The second CNN, BallNet, performs Deep
Classification, meaning that it processes the filtered hypotheses to detect the
ball. Both networks are extremely fast and accurate, having execution times of
0.043 ms and 0.343 ms, and accuracy rates of 0.965 and 0.984, respectively.

2.6 Field Lines and Special Features Detection

The field lines and features detection follow the same algorithm released by B-
Human [8]. The main difference with respect to the original approach, is that in
the proposed framework no color information is used. To do this, a set of vertical
and horizontal scan lines are used, which save transitions from high-to-low and
low-to-high luminance. This allows the detection of a set of points which are
then fed to the B-Human’s algorithm in order to associate them with lines and
other features such as the middle circle, corners and intersections.

3 Design and Training of the CNN-Based Detectors

In this section we focus on the design and training methodologies used to obtain
highly performant CNN based classifiers for our vision framework. Section 3.1
presents the network architectures of our classifiers and Sect. 3.2 describes the
active learning-based algorithm that was developed to train them.

3.1 Base CNN

The proposed vision system makes use of several classifiers based on CNNs.
While these CNNs are used for different purposes, their architectures remain
similar across all the developed modules and are based on the work presented in
[3], with slight variations to achieve higher speeds while maintaining accuracy.
The main component of these architectures is the extended Fire module, which
was developed in [3] inspired on the original Fire module proposed in [9]. This
module concatenates the outputs produced by filters of different sizes in order to
achieve increased accuracy while being computationally inexpensive. Small filters
are used to extract local information across channels, while bigger filters obtain
global information which is more spatially spread out. The information obtained
at different scales is then combined into a single tensor and fed to the next layer.
This allows the network to extract and work with both local and detailed features

128 F. Leiva et al.

as well as broad, global features. Following this approach allows the training of
performant models, but concatenating the information of several filters could be
prohibitively expensive in terms of computational cost. To account for this, a 1×1
filter is placed at the beginning of each Fire module to compress the size of the
representation that correspond to the input of the subsequent larger and more
expensive filters. In contrast with the previous miniSqueezeNet version, all newly
developed CNNs have grayscale image inputs. Since most of the computational
cost of the network correspond to the first convolutional layers, this translates
in sharply reduced inference times, and an accuracy loss of about 0.01. Another
change is the use of leaky ReLU [18] instead of ReLU as activation functions.
Previously, we used ReLU in most layers, however, this sometimes resulted in
the “dying ReLU” problem while training (no gradients flow backward through
the neurons). The use of leaky ReLU solves this, while incurring in no accuracy
loss. All CNNs were developed using the Darknet library [14]. A diagram of the
new CNN structure is presented in Fig. 4.

Grayscale Input
Image

Conv 3x3

Leaky ReLU

M
ax

 P
oo

l 3
x3

C
on

ca
te

na
tio

n

M
ax

 P
oo

l 3
x3

Conv 1x1

Leaky ReLU

G
lo

ba
l A

vg
 P

oo
l

So
ftm

ax

Extended Fire
Module

Leaky ReLU

Squeeze 1x1

Expand 1x1

Leaky ReLU

Expand 5x5

Leaky ReLU

Expand 3x3

Leaky ReLU

Fig. 4. Modified MiniSqueezeNet network structure.

3.2 Active Learning Training Methodology

In order to train the classifiers, we implemented an active learning-based algo-
rithm that automatically selects and pseudo-annotates unlabeled data.

We start by initializing the parameters of the CNNs by training them using
publicly available datasets (e.g., SPQR datasets [4]). However, if we directly use
the obtained CNN weights in our vision framework, the classifiers behave poorly
because there is a distribution mismatch between the samples present in the
public datasets, and the ones that our proposal generators output.

To address this problem, the classifiers must be trained using the same kind
of samples that would actually reach the networks during games. To accomplish
this, the vision system is deployed on the NAO robot and data is collected using
the proposal generators. Each proposal is then stored in the robot’s memory with
a label annotated by the CNN. To get uncorrelated data, we set a constraint for
the object hypotheses to be saved: for the robot proposals, data is acquired peri-
odically in accordance to a predefined time step; for the ball proposals, samples

Playing Soccer Without Colors in the SPL 129

can only be saved if no other proposals with the same position and estimated
radius were previously collected. The next stage consists in actively checking
the data saved by the observer robot, and manually annotate the samples that
were incorrectly labeled. We then aggregate this data to the original dataset and
re-train the models.

The above process is repeated until the CNNs reach a high performance.
By doing this, we are progressively aggregating correctly labeled samples to
provide enough training data for robust feature learning, but also aggregating
hard examples which the models fail to correctly infer, to actively shape the
decision boundary of the classifiers.

After we obtain proficient models by following the described methodology,
we further enhance them by switching to a bootstrap procedure. To do this, we
add confidence-based constrains to collect new training data in environments
where the object we want to detect is absent. For instance, if we are getting false
positives from the ball detector, we would set the NAO robot to collect data
from proposals with high confidence in environments were no balls are present.
The samples collected would then be used to re-train the ball classifiers.

This active learning-bootstrap procedure results in a dramatical improvement
in the performance of the classifiers after only a few iterations, and also allows the
fine tuning of the CNN parameters by means of using data aggregation when an
abrupt domain change occurs. Since the inputs to our models have relatively low
dimensionality, the space used in the NAO memory during the data collection
process is very small, for instance, 1,000 robot proposal samples weight about 3
MB. This procedure, combined with the automatic selection and labeling of the
new samples, make the training process extremely time-wise efficient.

4 Results

4.1 CNN Classification

Table 1 shows the model complexity (number of CNN parameters), average infer-
ence time (on the NAO robot), and accuracy for each developed CNN.

Table 1. Performance of the developed CNNs.

Model RobotNet BoostBallNet BallNet OriBoostNet OriNet

Input size 24× 24× 1 12× 12× 1 26× 26× 1 12× 12× 1 24× 24× 1

No. of parameters 884 125 444 246 657

Inference time (ms) 0.382 0.043 0.343 0.059 0.329

Accuracy 0.969 0.965 0.984 0.962 0.984

Results show that the classifiers achieve very high performance while main-
taining low inference times, which proves that their use is suitable for real time
applications such as playing soccer. This also validates the effectiveness of the

130 F. Leiva et al.

proposed methodology for the design and training of the classifiers. Finally, this
also proves that the use of color information is not necessary to detect robots or
balls when using expressive classifiers such as CNNs. In fact, the CNN used in
the robot detector achieves a similar accuracy rate that the model proposed in
[3], while being approximately 2.75 times faster.

4.2 Robots, Ball and Field Features Detection Systems

For the robots and ball detectors, results are divided on proposal generation
and module performance. We replicated typical and challenging game conditions
in order to acquire about 600 processed frames by an observer robot. Several
lighting conditions were imposed while collecting these frames in order to test the
robustness and reliability of our modules. The analysis of these frames allowed
the extraction of empirical results in relation to the performance of the proposals
generators and each detector, which are shown in Table 2.

Results show that the robots and ball proposals generators achieve high recall
rates, while producing an average number of hypotheses per frame that can be
processed in real time by the subsequent classifiers. Given the recall rate of
the ball proposals module and the percentage of true positives of the boosting
stage, the overall detection module has a very high detection rate. In fact, our
ball detector outperforms B-Human’s implementation, which achieves an overall
accuracy rate of 0.697 when testing it under the same conditions.

Finally, the field lines and features detector was tested by comparing the
difference between the real and the estimated robot pose. The estimation was
obtained by using the field lines and features detected by our module. By using
this approach we calculated a mean squared error of 40.07 mm, which indicates
that our detector is very accurate and reliable.

Table 2. Performance of the robots and ball detection systems.

Module Robot detector Ball detector

Avg. proposals per frame 3.05 10.3

Proposals recall 0.972 0.993

Overall accuracy 0.949 0.971

4.3 Robot Orientation Determination

In Fig. 5 we present a comparison between the B-Human algorithm proposed in
[10], our base orientation determination system, and its output after applying
a circular median filtering. For this experiment, the observer and the observed
robot are static and placed at a distance of 120 cm from each other. For each
measurement the observed robot was rotated 22.5◦ around its axis. As in [10], we

Playing Soccer Without Colors in the SPL 131

157.5◦ 135.0◦ 112.5◦ 90.0◦ 67.5◦ 45.0◦ 22.5◦ 0.0◦0%

20%

40%

60%

80%

100% BH BH BH BH BH BH BH BHUC
h

UC
h

UC
h

UC
h

UC
h

UC
h

UC
h

UC
h

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

-22.5◦ -45.0◦ -67.5◦ -90.0◦ -112.5◦ -135.0◦ -157.5◦ -180◦0%

20%

40%

60%

80%

100%

not perceived (UChRT filtered)
not perceived (UChRT)
not perceived (B-Human)

perceived (UChRT filtered)
perceived (UChRT)
perceived (B-Human)

semi perceived (UChRT filtered)
semi perceived (UChRT)
semi perceived (B-Human)

false positive (UChRT filtered)
false positive (UChRT)
false positive (B-Human)

Fig. 5. Results obtained for the first experiment. Graph shows a performance compar-
ison between raw (UCh) and filtered (UChF) estimations for our orientation detector
and a B-Human system replication (BH).

define a false positive as any estimation that deviates more than a tolerance angle
of 11.25◦ from the ground-truth. The orientation is classified as semi perceived
when the rotation can be determined but the facing direction is unknown. The
class not perceived corresponds to any frame where the orientation could not
be calculated, while an orientation estimation is perceived if it does not deviate
more than a tolerance angle of 11.25◦ from the ground-truth orientation.

In Fig. 6 we show the results obtained when testing our system in a dynamic
environment, where the observed robot is moving at a speed of 12.0 cm/s, while
the observer remains static. The observed robot is rotated in 45◦ around its axis

-45◦ -90◦ -135◦ 180◦ 135◦ 90◦ 45◦ 0◦0%

20%

40%

60%

80%

100% UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
hF

UC
h

UC
h

UC
h

UC
h

UC
h

UC
h

UC
h

UC
h

not perceived (filtered)
not perceived (raw)

perceived (filtered)
perceived (raw)

semi perceived (filtered)
semi perceived (raw)

false positive (filtered)
false positive (raw)

Fig. 6. Dynamic experiment results. Graph shows a performance comparison between
raw (UCh) and filtered (UChF) estimations for our orientation detector.

132 F. Leiva et al.

for each measurement. We define the same classes for the orientation estimations
as in the static experiment, but using a tolerance angle of 22.5◦.

As shown in Figs. 5 and 6, the proposed method outperforms the original
B-Human implementation. The orientation estimation is completely perceived
99.88% of the time in static conditions, and 95.52% of the time in the dynamic
experiment. It is clear that the algorithm proposed is better at determining the
facing direction of the observed robots. This results in an increased number of
completely perceived orientations while sharply decreasing the number of semi
perceived orientations. Also, noise filtering techniques such as the median filter
and RANSAC algorithm, combined with the utilization of a CNN contribute to
lowering the number of false positive estimations. Finally, the integration of the
circular median filter further reduces the number of false positives.

4.4 Profiling

Table 3 shows the maximum and average execution times for the different mod-
ules of the proposed vision framework when deployed on the NAO v5 platform.
The results obtained show that the proposed color-free vision system is deploy-
able on platforms with limited processing capacity (such as the NAO robot). In
addition, they prove the importance of the dimensionality reduction of CNN-
based classifier inputs, and how this design decision impacts the performance of
the system from a time-efficiency point of view.

Table 3. Vision framework profiling.

Module Max. (ms) Avg. (ms)

High contrast regions detector 2.755 1.478

Field lines & features detector 2.909 1.300

Robot proposals generator 2.692 1.083

Robot detector 2.417 0.939

Robot orientation detector 4.537 1.366

Ball proposals generator 2.506 1.132

Ball detector 6.959 2.452

5 Conclusions

This paper presents a new vision framework that does not use any color informa-
tion. This is a novel approach for vision systems designed for the SPL, achieving
very high performance while being computationally inexpensive.

The proposed vision system we present introduces four new modules: a
redesigned robot detector, a visual robot orientation estimator, a brand new

Playing Soccer Without Colors in the SPL 133

ball detector, and finally, a color-free field lines and features detector. All mod-
ules developed for this paper are able to run simultaneously in real-time when
deployed on the NAO robot, and greatly outperform our previous perception
system.

Furthermore, we demonstrate that CNN-based classifiers are a useful tool to
solve most of the perception requirements of the SPL, and generally translate in
an overall better performance of the corresponding module when coupled with
good region proposal algorithms, and proper design and training techniques.

Acknowledgements. This work was partially funded by FONDECYT Project
1161500 and CONICYT-PFCHA/Maǵıster Nacional/2018-22182130.

References

1. Veloso, M., Lenser, S., Vail, D., Roth, M., Stroupe, A., Chernova, S.: CMPack-02:
CMU’s Legged Robot Soccer Team. Carnegie Mellon University Report (2002)

2. Zagal, J.C., Ruiz-del-Solar, J., Guerrero, P., Palma, R.: Evolving visual object
recognition for legged robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida,
K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 181–191. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-25940-4 16

3. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J.: Using convolutional neural net-
works in robots with limited computational resources: detecting nao robots while
playing soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 19–30. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00308-1 2

4. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

5. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

6. Menashe, J., et al.: Fast and precise black and white ball detection for RoboCup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

7. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979)

8. Röfer, T., et al.: B-Human Team Report and Code Release 2017 (2017). http://
www.b-human.de/downloads/publications/2017/coderelease2017.pdf

9. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model
size. CoRR (2016). http://arxiv.org/abs/1602.07360

10. Mühlenbrock, A., Laue, T.: Vision-based orientation detection of humanoid soccer
robots. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 204–215. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 17

https://doi.org/10.1007/978-3-540-25940-4_16
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-319-68792-6_2
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://arxiv.org/abs/1602.07360
https://doi.org/10.1007/978-3-030-00308-1_17
https://doi.org/10.1007/978-3-030-00308-1_17

134 F. Leiva et al.

11. Röfer, T., Müller, J., Frese, U.: Grab a mug - object detection and grasp
motion planning with the Nao robot. In: IEEE-RAS International Conference on
Humanoid Robots (HUMANOIDS 2012), Osaka, Japan (2012)

12. Andrew, A.M.: Another efficient algorithm for convex hulls in two dimensions. Inf.
Process. Lett. 9(5), 216–219 (1979)

13. Nao-Team HTWK: Team Research Report (2018). http://www.htwk-robots.de/
documents/TRR 2017.pdf?lang=en

14. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

15. Lowe, D.G.: Int. J. Comput. Vis. 60, 91 (2004). https://doi.org/10.1023/B:VISI.
0000029664.99615.94

16. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2001, vol. 1. IEEE (2001)

17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceeding of the ICML, vol. 30. no. 1 (2013)

http://www.htwk-robots.de/documents/TRR_2017.pdf?lang=en
http://www.htwk-robots.de/documents/TRR_2017.pdf?lang=en
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Poster Presentations

End-to-End Deep Imitation Learning:
Robot Soccer Case Study

Okan Aşık(B), Binnur Görer, and H. Levent Akın

Department of Computer Engineering, Boğaziçi University, 34342 Istanbul, Turkey
{okan.asik,binnur.gorer,akin}@boun.edu.tr

Abstract. In imitation learning, behavior learning is generally done
using the features extracted from the demonstration data. Recent deep
learning algorithms enable the development of machine learning meth-
ods that can get high dimensional data as an input. In this work, we use
imitation learning to teach the robot to dribble the ball to the goal. We
use B-Human robot software to collect demonstration data and a deep
convolutional network to represent the policies. We use top and bottom
camera images of the robot as input and speed commands as outputs.
The CNN policy learns the mapping between the series of images and
speed commands. In 3D realistic robotics simulator experiments, we show
that the robot is able to learn to search the ball and dribble the ball, but
it struggles to align to the goal. The best-proposed policy model learns
to score 4 goals out of 20 test episodes.

1 Introduction

In robot learning, it is a challenging problem to collect training data set in
real-world environment. One possible solution is to isolate the problem from the
entire robotic system. For example, object detection, which is a highly impor-
tant problem in robotics vision, can be addressed separately in development of
a home service robot. Image data can be captured from the robot camera with-
out requiring fully functional robotic system and can be used with supervised
or unsupervised learning methods. In contrast to supervised and unsupervised
learning, reinforcement learning is inherently hard for real-world robotics as it
requires direct interaction with the environment. Let’s consider the problem of
high-level behavior (task) learning such as learning to play soccer. Reinforcement
learning is based on the exploration of the state-action space and the iterative
improvement of the values of experienced state-action pairs. That exploration
takes many time steps and may harm the robot during the interaction with the
environment. Therefore, it is not feasible to use direct reinforcement learning for
behavior learning in robotics.

One of the most common approaches to solve behavior learning is the imita-
tion learning. The imitation learning can be classified as one of the supervised
learning approaches since the learning model imitates data provided by demon-
stration. A demonstrator controls the robot to complete a specific behavior (task)
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 137–149, 2019.
https://doi.org/10.1007/978-3-030-27544-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_11

138 O. Aşık et al.

using the robot. During the demonstration, data is collected from the sensors
and actuators of the robot. By using many demonstration sessions, a data set is
created that can be used to learn sensor-actuator tuples. In this study, we use
imitation learning to dribble the ball to score a goal using a humanoid robot.

These behavior learning approaches require a symbolic representation of the
behavior. This representation determines the abstraction of the problem. For
example, in the case of the ball dribbling behavior, we can represent the world
of the robot as the pose of the robot and the position of the ball on the field.
To be able to construct a learning problem and apply it in real-world, we need
to have robot perception algorithm that is able to calculate the pose of the
robot and the position of the ball. Most of the behavior learning approaches in
the literature uses this level of abstraction in learning [3,10,11,13]. However,
this level of abstraction requires solving complex perception problems such as
determining its own pose using the features extracted from the camera image.
In this study, we learn the behavior using the camera image as an input to
our machine learning model. Therefore, the basic robotics problems such as
perception, localization, and planning would be inherently learned by our model.

We create a training data set that is collected while a teacher realizes the
behavior on the robot. The dataset consists of images taken from the robot
camera and movement commands. Instead of recruiting a human teacher to make
the task to the robot a number of times, we use a robotics software developed for
the robot soccer as a teacher. The simulation environment makes it easy to code
the behavior since we have the pose of the robot and the ball without running
any perception or localization algorithm. We train a deep learning model using
the training data set. The model that can replicate the same speed commands
given the images achieves the imitation learning without requiring any complex
solutions to subproblems in the task.

The robot soccer problem is a partially observable problem because the robot
cannot sense the current state of the environment using its own onboard sensors.
Therefore, a policy that maps the current perception to an action command may
have suboptimal behavior. Therefore, we propose to use recurrent convolutional
neural network since it has the capability of estimating the current state from a
series of perceptions. In addition to the recurrent convolutional neural network,
we also propose to use a hierarchical model to divide the ball dribbling behavior
into sub-skills such as searching for the ball and aligning to the goal and a more
basic convolutional neural network approach to compare the performances.

We measure the learning performance of our models on the test demonstra-
tion data set. On the test data set, we achieved an average error of 0.16, 0.17, and
0.14 with the convolutional neural network, hierarchical convolutional neural net-
work, and recurrent convolutional neural network policies, respectively. The error
is calculated as the average Euclidean distance between two action vectors. Also,
we count the number of goals scored in 20 test episodes; CNN scores 3 goals, H-
CNN scores 3 goals, and R-CNN scores 4 goals. In this study, we show that we can
teach a humanoid robot to carry out a complex task that requires perception and
planning using deep imitation learning. We test our method on a realistic robotics
simulator, but our future aim is to evaluate the approach using real robots.

End-to-End Deep Imitation Learning: Robot Soccer Case Study 139

2 Related Work

Imitation learning is a promising research area since it has the potential of
enabling non-technical domain experts to teach their expertise to a computa-
tional machine. There are many ways of demonstrating a behavior to a robot
such as teleoperation and exoskeleton suit. In this study, a high-level behavior
control software controls the robot in simulation, and raw sensor readings and
mid-level actions are collected as demonstration data set. Our mid-level actions
are 2D speed commands. We use teleoperation based data demonstration and
direct state-action policy representation according to the categorization of Hus-
seion et al., and Argall et al. since we learn state-action mapping [2,7].

This study is based on end to end deep learning. The first study shows that
an agent can learn to play Atari using the screen inputs as the state of the
game [14]. Although end to end learning is a reinforcement learning method,
its key feature is that the policy representation is powerful enough to learn
without abstracting the state or action of the problem. For example, in Atari
learning, state is the screen of the game and action is joystick command so that
no feature engineering is involved. Our study also uses sensor inputs (camera
images) without any feature engineering, but the actions have an abstraction
since humanoid walking problem is still quite complex to be used in such end
to end learning. Also, most of the end to end learning approaches use deep
convolutional neural network to represent the expected reward of state-action
pairs. However, we represent our policy as a simple mapping function that maps
states to actions. We could also use reinforcement learning, but it would take
quite long time to learn to score a goal. We know that if the reward is deep
in reinforcement learning problems, it gets harder to learn (consider the Atari
game Montezuma’s Revenge [14]).

We structure our related work in two subsections; end to end deep learning
and ball dribbling behavior. In the first section, we overview the methods using
end to end deep learning. In the second section, we overview the methods that
directly issue the ball dribbling behavior.

2.1 End to End Learning

The first study that combines deep learning and reinforcement learning is done
by Mnih et al. [14]. They achieved human-level atari game playing by using
a deep convolutional neural network to represent the policy that evaluates the
expected reward of state-action pairs. Their most important contribution is using
the state representation as the actual screen of the game as if a human player
perceives the game. This approach is also the most important part of our work
where relevant features are automatically discovered by the convolutional neural
network instead of human-engineered features.

Guo et al. use Monte Carlo Planning algorithm to collect data that will
be used to train the convolutional neural network [4]. Although Monte Carlo
Planning has better performance than reinforcement learning algorithms, it is
quite slow compared to neural networks. They show that reinforcement learning

140 O. Aşık et al.

that uses the data generated by Monte Carlo Planning improves the performance.
This is also one of the inspiration for this study where an expert software is used
to teach an end-to-end neural network policy. However, we do not represent
policy as a Q-function [18], but as a state-action mapping function. Another
work that combines the Monte Carlo planning and deep learning is the amazing
Alpha Go that beats the Go champion [16].

One of the most important robotics application of the end-to-end deep learn-
ing method is the study that learns to manipulate objects using the raw camera
images [12]. The robot learns to send joint commands to motors using a con-
volutional neural network. In contrast to them, we generate high-level motion
commands to control the 2D motion of the robot using 2D speed commands.
They improve the performance of their method by using many different pre-
processing and pre-learning methods. In contrast to them, we train the whole
network at once using the data generated by the demonstrator.

Husseion et al. combine the deep imitation learning with active learning
to learn to navigate in the 3D maze [6]. The use of imitation learning in 3D
simulation environment to solve such complex tasks are also our aim. In contrast
to their work, we use realistic 3D robotics simulator.

2.2 Ball Dribbling Task

One of the early studies that aim to learn to dribble the ball in robot soccer is
done by Latzke et al. [10]. They use imitation learning to improve the perfor-
mance of reinforcement learning algorithm. The data generated by the teacher
is used to initialize the reinforcement learning policy. They train a humanoid
robot to dribble the ball to the empty goal. They report a reduction in training
time and increase in the learning performance when imitation data and function
approximation is used. Leottau et al. propose two layer approach for humanoid
robot ball dribbling [11]. They use a fuzzy logic controller for alignment to the
ball and reinforcement learning to push the ball towards the goal. Although
pushing the ball towards the goal after the alignment seems a simple task, in
addition to the dribbling the ball as fast as possible, they try to keep the ball
possession, i.e. keep the ball as close as possible. Therefore, they use reinforce-
ment learning to optimize for two conflicting goals; being as fast as possible, but
also keeping the ball as close as possible. Mericli et al. propose to use a corrective
human feedback system to teach the robot to dribble the ball through stationary
defender robots [13]. The main contribution of the work is the combination of
hand-coded behavior with the active demonstration of the human. The perfor-
mance of the ball dribbling, that is the time to scoring a goal, is improved by
the integration of the demonstrations. All these ball dribbling tasks have lower
ambitions compared to our work. They use the model of the problem, robot
perception, and localization and solve one of the subtasks of the behavior, that
is ball dribbling.

End-to-End Deep Imitation Learning: Robot Soccer Case Study 141

3 Methods

This study consists of two parts; dataset creation and the training of deep neural
networks. In imitation learning, the dataset is created by an expert who knows
how to control the robot to carry out a task. In this study, we use a hand-coded
behavior on B-Human simulation environment instead of a human expert. We
define a behavior that searches the ball, goes towards the ball, aligns to the goal,
and dribbles the ball to the goal. The collected data set, a set of image-speed
tuples, is used to train the convolutional neural networks with three different
architectures. These neural networks learn to predict robot speed commands
based on the images taken from the cameras.

3.1 Dataset Creation

RoboCup Standard Platform League (SPL) is a competition where robot soccer
teams compete using 5 Nao robots. B-Human is one of the successful teams in
SPL and they make their robot software publicly available1. They provide all
their software with a 3D robotics simulation software called SimRobot with the
modules that can both run on the robot and in the simulator. A screenshot of the
simulator can be seen in Fig. 1a. In this study, we use the SimRobot simulation
environment and robot software [15].

Fig. 1. (left) SimRobot environment and (right) robot and ball positions (Color figure
online)

The Nao robot that is used in SPL has two cameras, one views the forward
(top camera) and another one (bottom camera) is aligned to view the feet of the
robot. These cameras do not (almost) overlap. Although we can get the images
from those cameras at different resolutions, most of the teams use 640× 480 for

1 https://github.com/bhuman/BHumanCodeRelease.

https://github.com/bhuman/BHumanCodeRelease

142 O. Aşık et al.

Fig. 2. A series of sample pre-processed images. The bigger images on the left are top
camera images, the smaller images on the right are bottom camera images.

the top camera and 320 × 240 for the bottom camera. Those cameras provide
images at 33 Hz.

We use the images of these two cameras as input our learning approach. We
pre-process images to lower the dimensionality of images to able to use as input.
We scale and convert images to gray-scale. Scaling is done by averaging the pixel
values corresponding to a particular region by Thumbnail provider of B-Human
software module [15]. We scale top camera images to 160 × 120 resolution and
bottom camera images to 80×60. A series of sample images can be seen in Fig. 2.

B-Human software components have two main categories; cognition and
motion. The motion commands calculated by the cognition modules are car-
ried out by the motion modules. The distinction between these two processes is
due to the different operating frequencies of motors and sensors. In this study,
due to the practicality, we developed a simple behavior in B-Human software
and created our data set from this behavior. However, we can safely assume
that we can replace the behavior software with a human operator and collect
similar data. Our behavior has the following components; searching for the ball,
going towards the ball, turning around the ball to align to the closest goal and
dribbling the ball towards the closest goal. By default, the software calculates a
speed command at every time step when a new camera image is taken. Since we
aim to learn a policy that maps image to speed commands, we create a motion
command when images from both top and bottom cameras are taken. Therefore,
at the current time step, if we have not received images from both cameras, we
repeat the last command. Otherwise, if the images captured from two cameras
processed separately, the predicted actions for each of them may conflict.

We create our dataset by selecting random robot position in 4 m by 4 m area
on the center of the field, and random ball position in 4 m by 2 m area on either
side of the field. We choose the position of the ball such that the ball is at least
one meters away from the center line of the field. In this way, we aim to choose
a side for the ball where the robot will score a goal. The random positions of the
robots and balls can be seen in Fig. 1b. Data collection starts when the robot

End-to-End Deep Imitation Learning: Robot Soccer Case Study 143

starts to move and ends when the robot scores a goal. We created our dataset
using 100 episodes with the random ball and robot positions. Our dataset has
160×120 and 80×60 grayscale images with speed commands (speed commands
consist of forward, left and turn speeds).

3.2 Deep Imitation Learning

There are two important research questions of the imitation learning; handling
the states that are not part of the learning and the generalizing capability of
the model and representation. A teacher demonstrates the expected behavior by
controlling the robot at every time step. That way, we construct state-action
tuples. By using this demonstration data, we learn the policy of the task. If
the teacher’s demonstrations cover very limited part of the state space or the
learning model is not able to generalize well, the performance of the imitation
learning decreases.

In this study, we use convolutional neural networks as our learning models.
In this way, we are able to directly use camera images as input to our learning
model. This is called end-to-end learning since we do not use intermediate feature
extraction approach. In other words, the model itself learns to extract useful
features based on the task. This approach is closer to the human’s cognition
where real neural network processes the image and produces an action.

When the state is fully observable by the robot, the direct state-action map-
ping has the capability of representing the optimal policy taught by the teacher
assuming that the dataset encompasses every state. However, when the prob-
lem is partially observable, where a single observation is not enough to infer
the world state, our learning model needs to learn to infer action from a series
observations. For example, in the robot soccer problem, the robot perceives the
world from its cameras. Therefore, the robot can perceive only a small part of
the field. If there is a ball in the camera, the robot knows the position of the ball,
but if the ball is not in the field of view of the camera, the robot does not know
the current state of the world about the ball. A convolutional neural network
(CNN) can only map the current image to an action so that previous actions or
images does not affect the choice of the action. However, the robot soccer behav-
ior needs the information of previous camera images to act properly. Therefore,
we extend basic CNN with a hierarhical neural network (H-CNN) and recurrent
convolutional neural network (Recurrent-CNN).

Convolutional Neural Network (CNN). This is the straightforward neural
network to learn state-action mapping. We assume that the images taken from
two cameras of the robot are powerful enough to learn the behavior operated by
the teacher. To be able to process the two images having different resolutions, we
have two different channels of input layers. The first hidden layer consists of 16
units for top camera image and 8 for bottom camera image 5 by 5 convolutional
filters that convolve the images with stride 2. After the convolution, a 2 by 2
maximum pooling filter is used. The second hidden layer consists of 32 for top

144 O. Aşık et al.

Fig. 3. The architecture of deep convolutional neural network

Fig. 4. Sample representative images from different clusters.

camera image and 16 for bottom camera image 5 by 5 convolutional filters that
convolves the images with stride 2. After the convolution, a 2 by 2 maximum
pooling filter is used. We also used ReLU [9] activation function after every
convolutional layer. After this four layers, we have a fully connected layer with
128 units and ReLU activation. The last layer is a fully connected linear output
layer with three units. The layers of the neural network model can be seen in
Fig. 3.

Hierarchical Convolutional Neural Network (H-CNN). We propose a
hierarchical approach to learn a behavior that consists of sub-behaviors or skills.
For example, our robot soccer behavior consists of four sub-behaviors such as
searching the ball, going to the ball, aligning to the goal and dribbling the ball.
Our assumption is that our demonstration data including the actions can be
clustered into four classes where each may correspond to a sub-behavior. A set
of example images from different clusters can be seen in Fig. 4. Therefore, we first
cluster the whole data into a predetermined number of classes. Then, we learn
a separate convolutional neural network with the same architecture as Fig. 3

End-to-End Deep Imitation Learning: Robot Soccer Case Study 145

Fig. 5. The Recurrent-CNN with LSTM layer

for each cluster. During the test phase, we find the closest cluster to the given
images and use the learned CNN of that cluster.

For the clustering, we first create histograms of images with 5 bins. We
concatenate the top and bottom histogram features. Then, we use the K-Means
clustering algorithm [1] to cluster the whole dataset. After the clustering, we
obtain a different demonstration dataset for each cluster. Finally, we train a
CNN for each of these datasets.

Recurrent Convolutional Neural Network (Recurrent-CNN). We also
propose a recurrent convolutional neural network model (Recurrent-CNN) to
learn the mapping between a series of states and a series of actions. We augment
the CNN model proposed in Sect. 3.2 by adding a Long-Short Term Memory
(LSTM) layer after the convolutional layers as seen in Fig. 5. LSTM cells have
the capability to learn to keep which part of the data in its memory and which
part to forget [5]. It is shown that LSTM is the state of the art method on
sequence learning [17].

The LSTM layer of Recurrent-CNN has 64 units. It is trained using a 100
time step window of data that corresponds to approximately three seconds of the
data sequence. We empirically determine the window size in order to balance the
training time and the performance. We test and evaluate the model by sliding a
100 time step window over the data sequence.

4 Experiments and Results

Our training data set consists of 100 episodes where every episode includes a
complete robot soccer behavior as explained in Sect. 3.1. We train all of our
three models using ADAM neural network optimization algorithm [8]. We used
different maximum iterations for different models since we used fixed processing
time. Finally, we measure the overall training error as the root mean square of
the Euclidean distance between the true action vector and predicted vector. We
also measure the performance of the models on 20 test episodes that is not used
in training.

146 O. Aşık et al.

4.1 The Learning Performance

One of the most important factors that determine the success of imitation learn-
ing methods is the learning performance. This is based on how well the model
can learn the demonstration data. Also, the model should not memorize all
the demonstrations in order to avoid over-fitting. A robust imitation learning
method is supposed to learn which action to take for the states which are not
in the demonstration. The model should be able to generalize for new states as
well. The learning performance of an imitation learning model can be measured
by the average error on the demonstration data. The generalization performance
can be measured by the average error on the test demonstration data.

Table 1. The performance of CNN models

Models # of Training
iterations

Training
error

Test
error

Goals
scored

CNN 106 0.12 0.16 3

H-CNN 15 × 104 0.15 0.17 3

Recurrent-CNN 3 × 103 0.036 0.14 4

The overall performance of different models can be seen in Table 1. The
R-CNN has the best performance by having the least training error and least
test error. Test and training errors are reported as the average distance of the
calculated speed vector and the demonstration speed vector. The training results
are provided over all training data and the test results are provided on the data
from 20 new episodes. When we observe the overall learned behavior, we see
that robot struggles to find the direction of the goal and turns around while
dribbling the ball. However, the robot robustly performs searching for the ball,
moving towards the ball and dribbling the ball actions. When we measure the
number of goals scored in test scenarios, the robot scores 4 goals using R-CNN,
3 goals using CNN and 3 goals using H-CNN models over 20 test episodes.
The trajectories of the robot with R-CNN model and demonstration trajectories
are seen in Fig. 6. The left trajectories present the goal scored ones, the right
trajectories present some of the failed ones.

4.2 Discussion

There are two important research questions about imitation learning; how to
represent and collect demonstration data, and how to represent and optimize
the policy. Our approach generates demonstrations from an expert software such
that the behavior of the robot is consistent. By using a software for the collection
of the demonstration data, we minimize the possibility of demonstrator errors
and instability.

End-to-End Deep Imitation Learning: Robot Soccer Case Study 147

Fig. 6. The comparison of robot trajectories while running test episodes. The left fig-
ures show goal scored episodes. The right figures show some of the failed test episodes.

Since demonstrator errors are minimized, the success of our approach basi-
cally depends on the data representation and model selection for the policy. We
use deep convolutional neural networks (CNN) to represent our policies because
they enable us to represent the demonstration data as camera images. It is
known that CNNs perform well on visual classification and detection tasks [9].
The dataset we generated can be viewed as a machine learning dataset for visual
regression task. However, basic use of CNN comes with the assumption that we
can infer the expected action using camera images of the current time step.
Although the problem is not fully observable, we see that the performance of
different policy representations (CNN, H-CNN, Recurrent-CNN) are close. This
might be due to the possible overlap between training data set and test data set.
We argue that learned models are able to memorize some of the training cases
to reduce the error, but not able to generalize or memorize the whole task.

148 O. Aşık et al.

When we investigate the behaviors generated with different learning models,
we see that all of the models are able to carry out three basic subtasks; searching
the ball, going towards the ball, and dribbling the ball. However, they generally
fail to align with the goal. This is due to the demonstration behavior. The
demonstration behavior decides to align to the goal when the ball is close to
dribbling and orientation of the robot is not towards the goal. However, the
behavior does not use the robot images to carry out aligning to the goal behavior.
It uses the true position of the robot provided by the simulator. Hence, how to
align to the goal using only the camera images is not explicitly exhibited in the
demonstration data.

Although the real world application of this method is limited, the policy
learned in the simulation can be further improved with less amount of real-world
data. Also, we keep the CNN architectures as small as possible to be able to have
real-time performance. On a laptop having 2.8 GHz cpu2, the forward pass of
CNN architecture takes 0.0018 s, and Recurrent-CNN architecture takes 0.0021 s
on average. Based on these statistics, we expect near-real-time performance on
Nao robot.

5 Conclusion

Using the deep imitation learning method, we learned a basic robot soccer behav-
ior of searching the ball, moving towards the ball, and dribbling the ball to the
goal. Our proposed convolutional neural network uses two images from two dif-
ferent cameras of the robot as input. We created our dataset using RoboCup
SPL team B-Human software modules and carried out our experiments using
SimRobot 3D realistic robot simulator. We show that using quite a few samples,
we can learn simple robot soccer behaviors using end-to-end training. In the
future, we aim to scale our method to more complex behaviors on real robots in
real environments.

Acknowledgments. This project is supported by Turkey Technology Team Founda-
tion (T3).

References

1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2014)
2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning

from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)
3. Aşık, O., Akın, H.L.: Solving multi-agent decision problems modeled as Dec-

POMDP: a robot soccer case study. In: Chen, X., Stone, P., Sucar, L.E., van der
Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 130–140. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39250-4 13

4. Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time
Atari game play using offline Monte-Carlo tree search planning. In: Advances in
Neural Information Processing Systems, pp. 3338–3346 (2014)

2 Intel 7700HQ 4 cores 2.8 GHz, 32 GB 2400 MHz RAM.

https://doi.org/10.1007/978-3-642-39250-4_13

End-to-End Deep Imitation Learning: Robot Soccer Case Study 149

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Hussein, A., Elyan, E., Gaber, M.M., Jayne, C.: Deep imitation learning for 3D
navigation tasks. Neural Comput. Appl. 29, 1–16 (2017)

7. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of
learning methods. ACM Comput. Surv. (CSUR) 50(2), 21 (2017)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

10. Latzke, T., Behnke, S., Bennewitz, M.: Imitative reinforcement learning for soccer
playing robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.)
RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 47–58. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74024-7 5

11. Leottau, L., Celemin, C., Ruiz-del-Solar, J.: Ball dribbling for humanoid biped
robots: a reinforcement learning and fuzzy control approach. In: Bianchi, R.A.C.,
Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI),
vol. 8992, pp. 549–561. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18615-3 45

12. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

13. Meriçli, Ç., Veloso, M., Akın, H.L.: Task refinement for autonomous robots using
complementary corrective human feedback. Int. J. Adv. Robot. Syst. 8(2), 16
(2011)

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

15. Röfer, T., et al.: B-Human team report and code release 2017 (2017). http://www.
b-human.de/downloads/publications/2017/coderelease2017.pdf

16. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

17. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–
3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

18. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
Press, Cambridge (1998)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-540-74024-7_5
https://doi.org/10.1007/978-3-319-18615-3_45
https://doi.org/10.1007/978-3-319-18615-3_45
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Designing Convolutional Neural Networks
Using a Genetic Approach for Ball

Detection

Georg Christian Felbinger(B), Patrick Göttsch, Pascal Loth, Lasse Peters,
and Felix Wege

RobotING@TUHH e.V., Hamburg University of Technology, Hamburg, Germany
hulks@tuhh.de, https://hulks.de

Abstract. At RoboCup 2017, the HULKs reached the Standard Plat-
form League’s quarter finals and won the mixed team competition
together with our fellow team B-Human. This paper describes the design
of a convolutional neural network used for the detection of the black and
white ball - one of the key contributions that led to the team’s success. We
present a genetic design approach that optimizes network hyperparam-
eters for a cost effective inference on the NAO, with limited amount of
training data. Experimental results demonstrate that the genetic algo-
rithm is able to optimize the hyperparameters of convolutional neural
networks. We show that the resulting network is able to run in real-time
on the robot with a very precise classification in generalization test.

1 Introduction

In 2016, a black and white patched ball was introduced into the Standard Plat-
form League (SPL). While in previous years color based approaches [2,5] were
sufficient to achieve a acceptable detection and classification performance, the
new ball requires more sophisticated techniques. Requirements for a detection
algorithm comprise a robust detection and classification in dynamically changing
environments, as well as a cost-effective real-time computation on the NAO.

Approaches based on convolutional neural networks (CNN) for object detec-
tion led to promising results in RoboCup SPL [7,8]. However, hyperparameters
for the structural setup of such networks need to be chosen carefully. Genetic
approaches as described in [4] and [9] can be used to determine an optimized
network topology. Stanley and Miikkulainen described the evolution of fully con-
nected network topologies [10]. The idea can easily be applied to other model
components, e.g. convolutional layers. A similar genetic approach was used by
Sun, Xue, and Zhang to automatically discover good architectures of CNNs [11].

This paper presents a genetic framework to design CNNs for real-time appli-
cations on computationally weak hardware by simultaneously optimizing the
classification performance and inference complexity. Our approach considers a
bounded capability to collect large amounts of training data and allows the user
to prioritize true negative rate and true positive rate suitable for a specific task.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 150–161, 2019.
https://doi.org/10.1007/978-3-030-27544-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_12

Designing CNN Using a Genetic Approach for Ball Detection 151

The detection of a black and white ball on the NAO robot is used to demonstrate
the performance of the framework.

Section 2 outlines the general idea of a genetic algorithm as well as the com-
ponents used to assemble a CNN. Section 3 describes the resulting search space
and the fitness function used for the genetic optimization. Section 4 presents the
process of data acquisition. Herein the techniques used to generate and setup
training data are described. Finally, in Sect. 5 the conducted experiments are
presented and the evaluation results are discussed.

2 Prerequisites

2.1 Genetic Algorithm

The method used in this work follows a genetic algorithm pattern [4]. The basic
elements are chromosomes or individuals c ∈ S, a possible solution in given k-
dimensional search space S. The algorithm works in an iterative manner with a
fixed number of generations N . A set of n chromosomes used during iteration j
is called population Pj = {c1, ..., cn} ⊂ S. The initial population P0 is generated
randomly. In each generation j ∈ [1, N] the population of the previous iteration is
evaluated using a fitness function f(c) : Ck �→ R. Given the individuals fitnesses
of the previous population a set Sj is selected from Pj−1 as parents. In the next
step a mutation function will be applied to every element in Sj . Finally, mutated
parent elements are recombined yielding the next generation Pj .

2.1.1 Selection
The selection is done using the following steps. According to a given clipping
parameter c ∈ [0, 1] individuals in the lower cth percentile is dropped. The
minimal fitness within the population is given by mink∈[1,n](f(ck)). Given the
other m individuals the probability of survival is calculated by Eq. (1).

p(ci) =
f(ci) − minscore

∑m
j=1 (f(cj) − minscore)

(1)

Hence, the individual with the lowest fitness value is assigned to the survival
probability zero. According to this distribution, n elements are sampled for muta-
tion and reproduction.

2.1.2 Mutation
For every value within chromosome c a new value will be sampled based on a
given mutation probability pm. If a gene is to be replaced a new random value
is chosen.

2.1.3 Reproduction
In the reproduction phase the selected and mutated chromosomes are pairwise
randomly sampled. Each pair yields two new children. For every value within
the chromosome of a child, the corresponding parent value is chosen randomly.

152 G. C. Felbinger et al.

2.2 Convolutional Neural Networks

In our recent work [7] convolutional neural networks showed promising results in
the field of object detection. The following briefly describes the basic components
used for our CNN structure.

2.2.1 Convolutional Layer
In this work multiple two-dimensional convolutions are used, i.e. an input image
with q channels is mapped to an output image with k channels. Equation (2)
shows the computation of a convolutional layer.

yi,j,k =
∑

di,dj,q xi+di,j+dj,q · mdi,dj,q,k

x ∈ R
i×j×q,m ∈ R

di×dj×q×k
(2)

2.2.2 Pooling Layer
Pooling layers reduce every dimension of each image channel by applying a func-
tion to neighboring pixels using a 2×2 mask. In this paper max(a, b, c, d) (maxi-
mum value of arguments) and avg(a, b, c, d) (arithmetic mean of arguments) are
used.

2.2.3 Normalization Layer
Batch normalization layers are used to increase the learning rates and to reduce
the sensitivity to the initialization of the weights [6]. During training normal-
ization is calculated batch-wise. For input vectors [1,m] ∈ N it is calculated by
Eq. (3).

BNγ,β(xi) = γ · xi − μB√
σB + ε

+ β (3)

The scale γ and offset β are trainable parameters which get optimized due
to the training problem. The batch mean is element-wise computed by μB =
1
m

∑m
j=1 xj . The batch variance is also element-wise computed by σB =

1
m

∑m
j=1(xj − μB).

For the inference mean and variance are approximated by a moving average
approach during training [6, pp. 4]. Mean μn and variance σn after nth batch
can be computed recursively using a moving average.

3 Genetic Design of Convolutional Neural Networks

To find an optimal topology of the CNN the genetic algorithm mentioned in
Sect. 2.1 is used. Each topology set corresponds to a single individual within the
search space. CNN structure and search space are specified in this chapter.

Designing CNN Using a Genetic Approach for Ball Detection 153

3.1 Network Structure

The uniform structure used for all evaluated individuals is given in Fig. 1. The
input is a YCbCr candidate image of arbitrary quadratic size. It is resized to a
fixed quadratic size using nearest neighbor interpolation. Then, multiple convo-
lutional layers are applied. The next step is a batch normalization layer. Finally,
multiple fully connected layers are applied. The output is a vector representing
the class scores.

Each individual specifies the remaining hyperparameters within this struc-
ture. These are the input size, number of convolutional and fully connected layers
as well as their internal configuration. Each convolutional layer is parameterized
with a mask size, pooling type and activation function. Likewise, the parameters
of a fully connected layer consists of the size and activation function.

Fig. 1. General structure of a CNN. Each convolutional layer consists of a two dimen-
sional convolution mask (2DCL) followed by a pooling layer (Pool) and an activation
function (Act). The convolved and normalized image is fed into multiple fully connected
layers yielding the final output vector.

3.2 Search Space

The search space for the genetic algorithm consists of parameters described
in Sect. 3.1 with the value ranges described in the following. The size of the
quadratic input image is sampled within the range [8, 16] ∈ N. The amount of
convolutional layers is limited to two. For each convolutional layer the number
of kernels is chosen from [1, 5] ∈ N. The kernel size is equal within each convo-
lutional layer and is either two or three in both dimensions. Either no pooling,
max-pooling or avg-pooling is used in the pooling layer. The activation function
for the CNN and the fully connected layer is either tanh or rectified linear unit
(ReLU). There are four fully connected layers at maximum each with a number
of neurons within [2, 20] ∈ N.

3.3 Fitness Function

We optimize classification performance and inference complexity at the same
time. In the fitness function classification performance is represented by the true
negative and true positive rate. Inference complexity is approximated asymptot-
ically.

154 G. C. Felbinger et al.

3.3.1 Classification Performance
For each network a k-fold cross validation was performed which yielded k values
for true negative rate TNRnk and true positive rate TPRnk. In order to approx-
imate a lower bound of these performance metrics the difference of mean and
variance were used in the fitness function. The TPRn and TNRn for a network
n was computed by:

TPRn = Avg(TPRn1, ...,TPRnk) − Var(TPRn1, ...,TPRnk) (4)
TNRn = Avg(TNRn1, ...,TNRnk) − Var(TNRn1, ...,TNRnk) (5)

where Avg is the arithmetic mean and Var is the variance.

3.3.2 Inference Complexity
The complexity of a network was asymptotically approximated and linearly
scaled. The complexity cc of a convolutional layer i is approximated by Eq. (6).

cci =
Ix · Iy · Ic · mx · my · mc

Îx · Îy · Ic · m̂x · m̂y · m̂c

=
Ix · Iy · mx · my · mc

Îx · Îy · m̂x · m̂y · m̂c

(6)

Symbols Ix, Iy, Ic correspond to layer input size and depth, mx,my,mc to
amount and size of the convolution masks in this layer. While Îx, Îy, m̂x, m̂y, m̂c

represent maximum values as defined by the Sect. 3.2.
The complexity cf of the fully connected part is approximated by Eq. (7).

cf =
∑k

i=1 si · si−1
∑k

i=1 ŝi · ŝi−1

(7)

The number of hidden layers is denoted by k and the size of layer i by si. The
input vector size is s0.

Hence, the final complexity of a network topology with j convolutional layers
is

cn = 1 −
∑j

i=1 cci + cf

j + 1
. (8)

3.3.3 Resulting Fitness Function
Given the approximation of classification performance and inference complexity
the resulting fitness function is chosen as follows:

fn = 0.7 · TNR2
n + 0.25 · TPR2

n + 0.05 · cn. (9)

In our case for the desired behavior of the ball detection, the TNR is much more
important than the TPR. Hence, this component is assigned the largest weight.
The search space is already limited to topologies which are feasible for inference
on the target system. Therefore, the inference complexity is weighted with a
very low weight in the fitness function. If networks have similar classification

Designing CNN Using a Genetic Approach for Ball Detection 155

performance the smaller network is preferred. These weights were chosen based
on empirical considerations.

For networks with a good classification performance it is disproportionally
difficult to further increase the TNR and TPR. Thus, the TNR and TPR are
squared in the fitness function.

4 Data Acquisition

4.1 Data Setup

The data used for training and evaluation of the classifier were collected during
various events (RoboCup 2017, Iran Open 2017, German Open 2017, weekly
test games). It consists of 16880 positive examples (candidate images containing
a ball) and 23876 negative examples (candidate images not containing a ball).
During training negative examples are subsampled randomly to ensure that in
every cross-validation set the same amount of positive and negative examples
are present.

4.2 Candidate Generation

The training data is collected directly on the robot to ensure equally sampled
data during training and inference. This allows an iterative process consisting of
the following steps.

1. Training a network with the collected data.
2. Running the newly trained model in a test environment while collecting data

not yet seen by the network.
3. Labeling newly collected data and evaluating classification performance based

on the test set.

4.2.1 Generating Seeds
In the first step of the candidate generation the algorithm determines seeds
for possible candidates. The image is segmented using vertical scan lines on
every second column of the image. The two dimensional gradient is computed
along the scan lines. Whenever this gradient exceeds a preconfigured threshold
a new segment along this scan line is created. The median of five pixels equally
distributed over the segment determines the color of the segment. A seed is the
central pixel of a segment which passes a series of checks.

1. The luminance of the corresponding region must be lower than 100 which
naturally corresponds to the black patches of the ball.

2. The corresponding ball radius in pixels rp at the seed’s position is determined
by projecting the assumed ball onto the image. If the ratio rs = ls

rp
of the

segment’s length ls to the pixel radius is not within the range [0.1, 0.7] the
seed is dropped.

156 G. C. Felbinger et al.

3. Neighboring areas of the black patch are checked. Therefore the luminance
in eight directions around the seed with a distance of rp

2.5 are sampled. All of
those sampled values must be slightly higher than the luminance of the seed.
Also, five of those values must have a significant difference in luminance.

If all conditions match, the seed is used for the candidate generation.

4.2.2 Merging Seeds To Candidates
Seeds are merged into a single candidate if they are close to each other. First, an
empty set of candidates is initialized. For every seed in the image it is checked if
there is a nearby candidate with a maximum distance of a ball diameter in pixels.
If a candidate is found the current seed will be merged into that candidate by
taking the mean of the position and radius. Otherwise a new one with position
and radius of the current seed is added. Afterwards candidates are filtered such
that only candidates based on at least two seeds remain.

4.2.3 Reprojection of Found Balls
Our existing software framework features a filter to estimate the ball state. The
physical model of the ball is used to predict the ball position in the current
image which yields another candidate.

Fig. 2. Visualization of ball candidates [3, pp. 17–18]. (a) Seed is corresponding to
the center of the black patches on the ball. (b) Merged seeds and projection of the
corresponding ball radius. (c) Reprojected ball from result of the ball filter (green
circle bounded black rectangle). (Color figure online)

5 Experiments and Evaluation

The computational power of the NAO is severely limited. Therefore, designing
the CNN using the genetic algorithm is done offline on a more powerful machine.
The resulting network is transferred to the robot and is evaluated in a final
generalization test. The classification performance is measured based on labeled
data collected by the candidate generation.

Designing CNN Using a Genetic Approach for Ball Detection 157

5.1 Setup

In every experiment 15 generations with 50 networks in each generation were
evaluated. The worst 10% in each generation were excluded from reproduction.
The mutation probability was set to 1

16 according to the maximum number of
degrees of freedom of the given search space.

The algorithm should be able to design a CNN as a solution to the ball
detection problem considering a limited amount of training data. To show that
this can be achieved three experiments were conducted, sampling 25%, 50% and
100% of the available training data.

5.2 Results

For the experiment with 25% of the data the best networks in the last generation
reached a TNR of 0.91 to 0.95 with a TPR of about 50% to 75%. The resulting
network has a very small sample size of 8 × 8, one convolutional layer of four
masks and only three hidden layers in the fully connected part.

With 50% of data the best networks in the last generation reached a TNR
of about 0.93 with a TPR above 0.85. Networks with one large convolutional
layer and mainly three hidden layers in the fully connected part dominated this
experiment.

With the full amount of data the best networks in the last generation reached
a TNR of about 0.95 with a TPR above 0.90. While the sample size and con-
volutional layers remained similar to those in the second experiment, the fully
connected part converged to four hidden layers instead of three.

5.3 Evaluation

In early generations of the first experiment networks with a very high TNR also
had a very low TPR as Fig. 3a illustrates. These individuals were eliminated
due to the weights of the fitness function. Networks of the last generation were
highly biased to reject input which yields a high TNR while having a poor TPR.
Classification performance in the second experiment was significantly higher.
Therefore, not only individuals with a bad TNR were eliminated but also the
TPR converged over time. Figure 3b shows that there were no outliers with a
TPR below 0.70 in later generations. Figure 3c shows that later generations of
the final experiment also formed a very dense cluster. Hence, the algorithm could
not really find a much better solution throughout generations but was able to
select better networks and remove outliers.

The network having the highest score in the last generation is considered to
be the resulting network. Table 1 shows a summary of those networks in each
experiment. Networks became more complex while increasing the amount of data
resulting in better classification performance.

158 G. C. Felbinger et al.

Fig. 3. Evolution of classification performance. Note that scaling differs between exper-
iments as the overall results got better. Results of the first generation are plotted with
white filled circles. Results of the following generations are plotted in increasingly
darker shades of gray.

Designing CNN Using a Genetic Approach for Ball Detection 159

Table 1. Overview of the resulting networks of experiments. Column Exp lists the
number of the experiment. The second column Data corresponds to the amount of
data used. Columns TNR, TPR and Comp show the components of the fitness function.
Note that the TNR and TPR parts are the lower bound approximations described in
Eqs. (4) and (5). Column Score corresponds to the resulting score.

Exp Data TNR TPR Comp Score

1 25% 0.921 0.700 0.732 0.856

2 50% 0.932 0.853 0.663 0.899

3 100% 0.972 0.958 0.638 0.922

5.4 Generalization Test

The best network of the last generation that was trained with all of the training
data is subjected to a final generalization test. This final network is evaluated
with data collected in another environment which can be considered to be a
proper generalization test because no data from these testing conditions was
used during training. The classifier predicted 4989 of 5687 positives and 12680
of 12730 negatives correctly resulting in a TNR = 0.99 and a TPR = 0.87.

5.5 Runtime Analysis on the NAO Robot

The whole ball detection including the resulting network running on the NAO
was evaluated. For this test we fixed the number of generated candidates per
image to the average amount five to get stable measurement results. Figure 4
shows the result of those measurements. With an average runtime of about 8 ms
on the top and 4 ms on the bottom camera we reached our real-time criteria
which is 30 ms for a vision cycle.

Fig. 4. Runtime of the ball detection including the resulting network on the NAO. The
green line indicates the mean of the runtime. The interquartile range is shown by the
blue box. The upper black bar illustrates the 0.75-quantile, respectively the lower black
bar the 0.25-quantile. The circles correspond to outliers. (Color figure online)

160 G. C. Felbinger et al.

6 Conclusion

The goal of this paper was to optimize the topology of neural networks with
respect to classification performance and inference complexity simultaneously.
We presented a genetic framework that was successfully applied to the problem of
black and white ball detection using little computational power. Our experiments
showed that a genetic approach is able to identify a small yet efficient network
suitable for a specific classification task. The presented optimization strategy
obtains suitable hyperparameters even with limited amount of training data.
However, the optimization of the architecture needs a lot of computation time
as the algorithm has to train and evaluate plenty of CNNs, in our case 2250
networks. Thus, applying the presented optimization strategy to classification
problems that require significantly more complex networks may be infeasible.

In order to enhance convergence speed future work should focus on evaluat-
ing different variants of genetic algorithms such as elitism [1]. Additionally, we
would like to apply the approach to multiclass problems using a modified fitness
function.

References

1. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algo-
rithm. Technical report CMU-CS-95-141. Pittsburgh, PA: Carnegie Mellon Uni-
versity, May 1995

2. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection
for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS
(LNAI), vol. 7691, pp. 827–838. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35101-3 70

3. Felbinger, G.C.: A genetic approach to design convolutional neural networks for
the purpose of a ball detection on the NAO robotic system. Project Work, October
2017. https://www.hulks.de/ files/PA Georg-Felbinger.pdf

4. Harbich, S.: Einführung genetischer Algorithmen mit Anwendungsbeispiel. Univer-
sität Magdeburg, December 2007

5. Härtl, A., Visser, U., Röfer, T.: Robust and efficient object recognition for a
humanoid soccer robot. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.)
RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 396–407. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44468-9 35

6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456, March 2015

7. Kahlefendt, C.: A Comparison and Evaluation of Neural Network-based Classifica-
tion Approaches for the Purpose of a Robot Detection on the Nao Robotic System.
Project Work. April 2017. http://www.hulks.de/ files/PA Chris-Kahlefendt.pdf

8. Menashe, J., et al.: Fast and precise black and white ball detection for RoboCup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

9. Mitchel, M.: An Introduction to Genetic Algorithms A Bradford Book. The MIT
Press, Cambridge (1999). ISBN 0-262-63185-7

https://doi.org/10.1007/978-3-642-35101-3_70
https://doi.org/10.1007/978-3-642-35101-3_70
https://www.hulks.de/_files/PA_Georg-Felbinger.pdf
https://doi.org/10.1007/978-3-662-44468-9_35
http://www.hulks.de/_files/PA_Chris-Kahlefendt.pdf
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4

Designing CNN Using a Genetic Approach for Ball Detection 161

10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augment-
ing topologies. Evol. Comput. 10(2), 99–127 (2002). http://nn.cs.utexas.edu/?
stanley:ec02

11. Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks for image
classification. In: CoRR abs/1710.10741 (2017). arXiv: 1710.10741. url: http://
arxiv.org/abs/1710.10741

http://nn.cs.utexas.edu/?stanley:ec02
http://nn.cs.utexas.edu/?stanley:ec02
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1710.10741

ImageTagger: An Open Source Online
Platform for Collaborative Image

Labeling

Niklas Fiedler1,2(B), Marc Bestmann1,2, and Norman Hendrich2

1 Hamburg Bit-Bots, Department of Informatics, University of Hamburg,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

{5fiedler,bestmann}@informatik.uni-hamburg.de
2 TAMS, Department of Informatics, University of Hamburg,

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
hendrich@informatik.uni-hamburg.de

http://robocup.informatik.uni-hamburg.de

Abstract. The need for labeled training data for object recognition
in RoboCup increased due to the spread of deep learning approaches.
Creating large sets of training images from different environments and
annotating the recorded objects is difficult for a single RoboCup team.

This paper presents our tool ImageTagger which facilitates creating
and sharing such data sets. The tool is already being successfully used in
RoboCup Soccer, and a large amount of labeled data is publicly available.
Other leagues are invited to use this tool to create data for their contexts.

Keywords: RoboCup · Open source · Image labeling · Deep learning

1 Introduction

The approaches for object recognition in RoboCup Soccer evolved significantly
during the last few years. This was triggered by rule changes in multiple leagues,
replacing the simple color-coded environment with a realistic one. Combined
with the increase of the field size and the change to artificial grass ball and goal
recognition got more difficult, and previously popular algorithms, e. g. [5] were
not able to reliably detect objects over large distances anymore. Therefore, many
teams started to use different kinds of machine learning techniques [4,11,12]. A
huge amount of labeled images is needed for training deep neural networks,
which requires a lot of image recording and labeling. Furthermore, in order to
achieve good training sets, multiple recording locations, e. g. different RoboCup
competitions and various objects have to be used.

This makes it very difficult for a single team, especially for a new one, to
achieve large, high-quality training sets. This problem also exists in other leagues,
e. g. RoboCup@Home, where objects and environment change from year to year.

The workload can be lowered by either providing a tool which enables faster
labeling or by sharing training data with other teams. We tried to achieve both
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 162–169, 2019.
https://doi.org/10.1007/978-3-030-27544-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_13

ImageTagger: Collaborative Image Labeling 163

by implementing an online tool called ImageTagger. It provides intuitive user
interfaces for labeling images, for verifying annotations and for managing image
sets. The labels are saved internally in a common format to ensure compatibility
but can be exported in user-defined formats, so that no changes in the existing
training processes of the teams are needed. The integrated user and permission
management system allows the team admins to decide which of their image sets
are be public or private. While these features allow collaboration in any RoboCup
league, this paper will focus on our results in the soccer context.

The remainder of the paper is structured as follows: first, already existing
tools are compared to ImageTagger in Sect. 2. The core features of our tool are
explained in Sect. 3 and an evaluation of the tool is provided in Sect. 4. The
paper concludes with a summary and an outlook to future work in Sect. 5.

2 Related Work

Manual labeling of images for object recognition is a common task since it is
needed for many supervised learning approaches. Therefore, many different tools

Table 1. List of commonly used image labeling tools compared by compliance to
requirements for collaboration of RoboCup teams.

O
n
li
n
e

O
p
en

S
o
u
rc

e

L
a
b
el

T
y
p
es

(s
h
a
p
es

)

L
a
b
el

C
a
te

g
o
ri

es

E
x
p
o
rt

F
o
rm

a
t

U
se

r/
P
er

m
is

si
o
n

M
a
n
a
g
em

en
t

V
er

ifi
ca

ti
o
n

L
a
b
el

Im
p
o
rt

Im
a
g
e

P
re

lo
a
d
in

g

Im
a
g
e

U
p
lo

a
d

Im
a
g
e

M
a
n
a
g
em

en
t

sloth [6] � user
definable

user
definable

self
impl.

0 0 0 0 0

Ratsnake [8]
(free)

polygon,
grid

user
definable

multiple 0 0 0 0 0

LabelImg [9] � polygon
user

definable
PASCAL

VOC
0 0 0 0 0

via [7] � � multiple
free
text

JSON,
CSV

2 �

Rhoban
Tagger [3]

� � binary
admin
defined

JSON 1 �

LabelMe [10] � � polygon
free
text

XML � �

Labelbox [2] � admin
defined

admin
defined

JSON,
CSV

� � � �

ImageTagger � � multiple
admin
defined

user
definable

� � � � � �
0 Not applicable in an offline tool 1 Users start in training mode
2 Images are stored in the browser cache

164 N. Fiedler et al.

already exist. Though, none of the programs presented in Table 1 offers the
combination of labeling with other features (e. g. online image access, user, and
annotation management) needed to allow collaboration between teams.

Proprietary products are difficult to use in a community like RoboCup
because they are not customizable enough to fit the specific requirements of
the environment. Furthermore, teams cannot contribute to the development and
implement desired features for the whole community.

Offline tools are afflicted by multiple problems such as the installation process
and compatibility issues. The main reason to exclude them from our options is
the image and label management. Multiple team members need to coordinate
their work and progress, and the files they are working with.

Most of the competing online tools require a lot of server-side management
of images and annotations, which makes it difficult for multiple teams and users
to work together efficiently. While a cloud could handle the image exchange
between multiple users, it lacks useful metadata about these image collections
(e. g. location or description of the situation) and most notably the labels in a
universal format. For online tools, the image preloading feature is essential to
overcome the latency to the server which gets significantly high for large images
and high distances between the users and the server. The ability to export the
labels in a format defined by the teams themselves is required for sharing the
image and label data. In this domain, the ImageTagger offers customizability
comparable to self-implementation of the export for every user. In the RoboCup
environment, the amount of label categories is rather limited. It proved to be a
faster way to label only one category at a time, which is easily applicable in the
RoboCup environment.

3 ImageTagger Overview and Features

ImageTagger provides an efficient browser-based user interface for all required
tasks: image labeling, verifying annotations, up- and downloading images/labels,
managing users and teams, and the definition of image and label categories. The

ball robot goalpost

Fig. 1. Exemplary labels from categories common in RoboCup soccer. Precise labels
are created to allow learning of exact object localization.

ImageTagger: Collaborative Image Labeling 165

software is written in Python, using the web framework Django. Its key features
are explained in the following subsections.

3.1 Manual Labeling

The annotation view allows the user to create labels (Fig. 1) on images. The
ImageTagger offers tools to create bounding box, polygon, line and point anno-
tations (Fig. 2). Since this is a highly repetitive task, it has to be done as fast
as possible. Therefore, the images are sorted in a list which can be filtered by
existing label types (e. g. ball). The user then iterates through the images using
shortcuts, leaving the mouse free for creating annotations. Successive images get
preloaded while the user creates an annotation for the current image, allowing
a fast transition to the following image. An option to keep the last annotation
enables faster labeling since the image sets are often created sequentially and
require only a small adaption in the position of the label between two images.
Labels can be marked as “blurred” and “concealed”. Existing annotations are
listed below the image and can be drawn into the image if needed. The option
to label a category as “not in the image” allows users to create negative data.

Fig. 2. The annotation view while creating a ball annotation. On the left is a list
of images which can be filtered for missing annotations. In the center, the image is
displayed and an annotation can be created. On the right, controls are provided, most
of which can also be accessed via keyboard shortcuts for speed.

3.2 Automated and Offline Labeling

ImageTagger enables users to upload existing labels to its database. This upload
feature allows users to share labels between multiple instances of ImageTagger,
to restore local backups of labels and to migrate existing training data which
was created with other tools.

Some deep learning methods, e. g. deep FCNNs, are not applicable during
RoboCup games due to their runtime, but they can be used to create labels
automatically. The results do not need to be optimal since users can verify the
labels after uploading them (cf. Sect. 3.3).

166 N. Fiedler et al.

3.3 Label Verification

To ensure sufficient accuracy and quality of the image labels, ImageTagger
includes a special mode for label verification. The verification view allows per-
mitted users to inspect a label and give it a positive or negative verification.
As the annotation view, it preloads the images and annotations to reduce the
perceived latency. Additionally, it is optimized for mobile usage. A positive ver-
ification increases the verification level of a label, while a negative one decreases
it. The verification is a binary decision; thus it is much faster than the labeling
process itself.

A manually created annotation is automatically positively verified by the
user creating it. This results in label data where one positive verification means
that at least one human considered the annotation as acceptable. Therefore, a
verification count of two or more can be considered as sufficient for most use
cases.

3.4 Image Management

To keep the high number of images required for most deep learning approaches
manageable, images are grouped into image sets. Each set has a context, e. g. the
same ball and field type, and belongs to a team. The image set view consists of an
image list like the annotation view, general information, a management section,
an export section and links to manage the annotations of the set. Members of the
team that owns the image set can update the name, location, and description of
the set and upload new images or labels. The image-lock option can be selected
to disable further image upload to keep sets in a static state, e. g. to provide an
immutable benchmarking set.

3.5 Collaboration

The labeling process is easy for humans, but it is a tedious and time-consuming
task. Thus, collaboration is necessary to reduce the workload on each team. How-
ever, different algorithms [4,11,12] usually expect their own specific categories
and data representations, leading to a high variance in requirements that the
tool has to accommodate. To make labels usable for multiple teams, use cases
and processing approaches, ImageTagger allows the creation of custom export
formats. For every export format, the creator chooses which label categories to
include and whether blurred or concealed labels are included. The user employs
placeholders (cf. Table 2) which get replaced with the corresponding values in
the export creation. All values representing a measure or coordinate in the image
are available in an absolute or relative (to the size of the image) form. Resulting
from the variable amount of points in a label, the list of x- and y-values has to
be generated following a user-defined pattern. The “concealed” and “blurred”
flags can be exported by defining text which is only included in the export of
the label when the corresponding flag is (not) set.

ImageTagger: Collaborative Image Labeling 167

Table 2. The available placeholders according to their contexts. Each value is provided
in an absolute pixel value or as a value relative to the image size. The file name format
specifies the format of the name of the export file, which the user can download. The
image placeholders are only used when the user selects the option to aggregate the
labels by images. The vector placeholders are used to generate the list of x/y values
for label types with a variable number of points.

file name placeholders label placeholders
name, team, location and unique id name of the image/image set
of the image set width/height of the image

label category
image set placeholders the amount of verifications for the label

name, team, location, description
of the image set

width/height, center/upper left/lower right
point, mean height/diameter of the label

the content of the image/label format representation of the vector
alternative text for ”not in image” labels

image placeholders (optional)
name of the image/image set
width/height of the image vector placeholders (optional)
number of labels for the image the number of the current point
the content of the label format x/y-coordinate of the current point

Image set
Label 1
Label 2
Label 3
Label 4
Label 5

Image set
Image 1

Label 1
Image 2

Label 1
Label 2
Label 3

Fig. 3. export format composition
hierarchy with (right) and without
(left) label aggregation by image

In addition to a simple list of annota-
tions, the option to concatenate the annota-
tions (cf. Fig. 3) by images is given. Depend-
ing on the chosen option, the user has to
define an image set format, an image format
(only when the label concatenation is used)
and a label format. Created export formats
can be saved privately or publicly and can be
used by other users.

While most of the data management is
handled by ImageTagger, some tasks need to
be processed locally on a system, e. g. the cre-
ation of rosbags or writing the label data into the metadata of the images.

Tools, designed for those tasks can be shared using ImageTagger since some
of them can be useful for multiple teams in a shared instance.

A permission management system for users and teams is needed to be able to
create and share training data in a controlled way. Read and write permissions
of image sets can be set by the owning team.

The variety of collaboration options allows teams to define whether they work
together with the whole community in every way, to just share the training data
without the possibility to collaborate or to keep the set completely private. The
distinction between users and admins in a team helps to coordinate the members.
To motivate the users to keep labeling and to detect wrongly labeling users, a
scoring system was introduced. The score of a user is the sum of positive minus
the sum of the negative verifications that were made on the annotations created
by the user. This way good annotations are rewarded and wrong annotations

168 N. Fiedler et al.

are penalized. In the user explore view and the team view, the users are ranked,
based on their score. The team view offers a 30-day user high score to focus on
a shorter timespan, to make it possible for new team members to compete with
the rest and engage users to keep up their effort over a longer time period.

4 Evaluation

We provide a public ImageTagger instance for the RoboCup Soccer environment.
The server is open for everyone to log in, to download existing images and
annotations, or to upload images, label them and verify the labels. See Table 3
for our current server statistics. At the moment, there are 119 public image
sets recorded in the RoboCup environment available for download. They belong
to participating teams, most notably Hamburg Bit-Bots, Nao Devils and WF
Wolves. Based on these sets, team Bit-Bots recently proposed a ball localization
challenge, which gives teams a benchmark to compare their approaches [1]. The
training data was used to train neural networks proposed by Daniel Speck [13].

Table 3. Current numbers on our instance of the ImageTagger of images and labels
(left) as well as users and teams (right).

image
sets images

ball
labels

robot
labels

goalpost
labels

all 171 171,057 95,352 41,016 18,800
public 119 155,602 92,588 37,981 17,004

users
(50+ labels) teams

active teams
(2+ active users)

50 61 6

5 Conclusion and Further Work

In this paper, we presented a tool which facilitates the production and sharing
of labeled image data for supervised learning in object recognition. It is already
actively used by multiple teams in the Humanoid and Standard Platform League,
and image sets from future RoboCup competitions will be uploaded.

Currently, the tool is only used in the soccer context, but it would be possible
to use it for other areas as well, e. g. labeling household objects for the @Home
League. The modular design allows the adaption of the labeling interface also
for the labeling of RGB-D data while keeping the rest of the framework. In the
future, the usability of the tool should be improved for usage on mobile systems
to enable precise labeling on tablets and smartphones.

We encourage other RoboCup Soccer teams to use the public ImageTagger
instance hosted on our server, to download training sets, and to upload further
images and labels: https://imagetagger.bit-bots.de
The project source code is available at:
https://github.com/bit-bots/imagetagger

https://imagetagger.bit-bots.de
https://github.com/bit-bots/imagetagger

ImageTagger: Collaborative Image Labeling 169

Acknowledgments. Thanks to the RoboCup teams Hamburg Bit-Bots, Nao Devils
and WF Wolves for taking part in the development. Thanks to the Server AG. Thanks
to the contributors, particularly to Timon Engelke, Rebecca Glaser, Jonas Hagge,
Jennifer Meyer, Daniel Speck, and Pascal Wichmann.

This research was partially funded by the German Research Foundation (DFG) and
the National Science Foundation of China (NSFC) in project Crossmodal Learning,
TRR-169.

References

1. Bit-bots ball localization challenge. https://robocup.informatik.uni-hamburg.de/
en/documents/bit-bots-ball-localization-challenge-2018/. Accessed 31 Mar 2018

2. Labelbox. https://www.labelbox.io/. Accessed 25 May 2018
3. Rhoban tagger. http://rhoban.com/tagger/index.php. Accessed 30 Mar 2018
4. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-

roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

5. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection
for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS
(LNAI), vol. 7691, pp. 827–838. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35101-3 70

6. Bäuml, M.: Sloth documentation (2014). http://sloth.readthedocs.io/en/latest/
7. Dutta, A., Gupta, A., Zissermann, A.: VGG image annotator (VIA) (2016). http://

www.robots.ox.ac.uk/∼vgg/software/via/. Accessed 10 Mar 2018
8. Iakovidis, D., Goudas, T., Smailis, C., Maglogiannis, I.: Ratsnake: a versatile image

annotation tool with application to computer-aided diagnosis. Sci. World J. (2014).
https://doi.org/10.1155/2014/286856

9. Lin, T.: Labelimg. https://github.com/tzutalin/labelImg. Accessed 29 Mar 2018
10. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database

and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173
(2008). https://doi.org/10.1007/s11263-007-0090-8

11. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.:
Detection and localization of features on a soccer field with feedforward fully con-
volutional neural networks (FCNN) for the adult-size humanoid robot Sweaty. In:
Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS Inter-
national Conference on Humanoid Robots, Birmingham (2017)

12. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

13. Speck, D., Bestmann, M., Barros, P.: Towards real-time ball localization using
CNNS. In: Holz, D. et al. (eds.) RoboCup 2018. LNAI, vol. 11374, pp. xx–yy.
Springer, Heidelberg (2018)

https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-localization-challenge-2018/
https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-localization-challenge-2018/
https://www.labelbox.io/
http://rhoban.com/tagger/index.php
https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-642-35101-3_70
https://doi.org/10.1007/978-3-642-35101-3_70
http://sloth.readthedocs.io/en/latest/
http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/
https://doi.org/10.1155/2014/286856
https://github.com/tzutalin/labelImg
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1007/978-3-319-68792-6_2

Mimicking an Expert Team Through
the Learning of Evaluation Functions

from Action Sequences

Takuya Fukushima1(B), Tomoharu Nakashima1, and Hidehisa Akiyama2

1 Osaka Prefecture University, Osaka, Japan
{takuya.fukushima,tomoharu.nakashima}@kis.osakafu-u.ac.jp

2 Fukuoka University, Fukuoka, Japan
akym@fukuoka-u.ac.jp

Abstract. In the RoboCup Soccer Simulation 2D League, the perfor-
mance of teams highly leans on the evaluation functions used for their
decision making process. The aim of this paper is to propose a method
that improves the performance of a team by mimicking a stronger one.
For this purpose, a neural network is employed to model an expert team’s
evaluation function. The neural network is trained by using positive and
negative episodes of action sequences that are extracted from game logs.
In our experiments, we successfully improved the performance (e.g., win
rate, scored goal, and so on) of our team by mimicking the winner of
RoboCup 2017 soccer simulation 2D league.

Keywords: Soccer simulation · Machine learning ·
Supervised learning · Evaluation function · Decision making

1 Introduction

In the game of RoboCup soccer simulation 2D league, player agents make a deci-
sion at each cycle in real time. A game consists of 6000 cycles (excluding periods
of set-play), thus the decision making process of each player is executed about
6000 times. Therefore, the performance of a team highly leans on the decision
process of its agents. Akiyama et al. [1] implemented a tree search algorithm
for the decision making process in the RoboCup soccer simulation. Each node
(which corresponds to an action) is assessed by an evaluation function during
the tree search. Then, the node with the highest value is selected as the action to
take. Evaluation functions are commonly tuned by hand: for example, additional
points if the ball is close to the goal, or deducting points if the possibility of an
opponent’s interception is high. Akiyama and Nakashima [2] also described that
using an evaluation function including such rules gives higher team performance
than using a simple function with no rules. However, tuning such an evaluation
function is laborious and provides sub-optimal results most of the time. In addi-
tion, since there is no perfect strategy, it is difficult to win against all teams
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 170–180, 2019.
https://doi.org/10.1007/978-3-030-27544-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_14

Mimicking an Expert Team Through the Learning of Evaluation Functions 171

with a single game plan. As a result, when implementing a team, it is common
to define various strategies. In this case, each strategy might require its own
evaluation function. Therefore, it is desirable to have an automatic method to
tune them.

In a previous work, we tried to solve this task by using a four-layered neural
network [3]. Evaluation functions could be tuned successfully by using super-
vised learning with a training set that was extracted from an expert team’s
behavior. However, it did not improve the performance of the team. This was
caused by a strong relationship between evaluation functions and action candi-
dates. Action candidates are generated around the kicker or receivers, thus team
formations should correspond to the expert players’ positioning in order to solve
this problem.

The aim of this paper is to solve this problem by proposing a method that
makes the team mimic an expert team known to play soccer well. If player
agents imitate the experts’ behaviors, the team would be able to win against
opponents it could not defeat with a simple or hand-coded evaluator. In this
work, we model the expert’s decision making process by using a neural network.
The neural network evaluates the action for the next cycle, and is trained by
supervised learning. In the experiments, we evaluate the performance of the team
using the modeled decision making process by counting the number of times
the ball enters into a target area, scored goals and successful through passes.
The proposed method is compared with a team using a simple or hand-coded
evaluation function. Moreover, we investigate whether all players should use the
same evaluation function or not.

2 Related Work

The recent advances in deep learning have allowed the design of successful meth-
ods in various control domains by using either supervised learning or reinforce-
ment learning. For example, Warnell et al. [4] proposed a method that uses
the representational power of deep neural networks in order to learn complex
tasks, such as the Atari game BOWLING, in a short amount of time with a
human trainer. Stanescu et al. [5] presented a deep convolutional neural net-
work to evaluate states in real-time strategy games. Silver et al. [6,7] used deep
neural networks to evaluate board positions and to select moves in the game of
Go. In the case of soccer game, Hong et al. [8] proposed a deep policy infer-
ence Q-network that targets multi-agent systems. Their model is evaluated in
a simulated soccer game whose field is a grid world. In the RoboCup environ-
ment, especially the soccer simulation league, it is difficult to train deep neural
networks to evaluate actions because the soccer field is a continuous environ-
ment. Therefore, supervised learning and reinforcement learning are applied to
simple experimental settings [9,10], such as “one on one” or “keepaway”. Deep
learning methods are also used for offline game analysis [11]. These researches
were applied to improve not team performances but a single player’s behavior
or decision making. Therefore, it would be difficult to apply these approaches to
multi-agent systems.

172 T. Fukushima et al.

On the other hand, not an individual policy but team strategies improvement
are required to defeat opponents in a soccer game. In soccer simulation 2D
league, various strategies are implemented by teams to win the competition,
and it becomes difficult to win against all teams with a single strategy. For these
reasons, in a previous work, we proposed a model that determines the best player
formation for corner-kick situations to switch our strategies [12]. Moreover, we
proposed a model that identifies the opponent defensive strategies in an online
manner [13].

Floyd et al. [14] proposed a case-based reasoning approach to imitate player
agents in terms of action selection. Their approach focused on imitating low-level
actions (i.e., dash, kick, turn). In this paper, in order to create new strategies,
we approximate the evaluation function of an expert team to score high level
actions (i.e., pass, dribble, shoot) by using a deep/shallow neural network. Unlike
[9] and [10], the neural networks can learn strategies because the training data
consist of kick sequences. Moreover, the aim of our method is not improving an
individual behavior but mimicking team strategies.

3 Action Selection

A cooperative action planning by tree search method [1] is employed to model
the players’ decision making process. In this model, an action plan is created by
generating and exploring a decision tree at the time of kicking the ball. Nodes
of the tree correspond to situations of the soccer field, and edges correspond to
the actions that players take. An evaluation value is assigned to each node. The
action plan is defined as a fixed-length action sequence that the player should
perform from the next cycle. In this work, we explore the tree by using a best-first
search strategy.

The generation of an action plan is done as follows. First, the current state
is stored in the root node of the decision tree. Actions (pass, dribble, shoot,
etc.) that can involve other players as well as itself are generated based on the
current state and predicted state observed by itself. At this moment, it precisely
calculates whether it is an executable action or not. If it is not the case, the
action is deleted. Therefore, only possible actions are generated as a candidate.
Then, generated actions are evaluated by an evaluation function. The action, the
state, and the evaluation value are stored as a child node in the decision tree.
Once all nodes have been added, the node with the highest value is selected,
and further action candidates are generated from this node with the predicted
state. The decision tree is expanded by repeating this procedure, and the action
planning is executed. When the depth of the tree reaches a fixed threshold, if an
action cannot be generated from the predicted state of the node, or even when
an action set in the terminal condition of the action sequence is generated, the
child node generation at the leaf node is not performed. Connecting the node
strings to the generated decision tree provides action sequences. Once the search
process completes, the node with the maximal value in the generated action
sequences is taken as the action plan. Thanks to the action planning, players

Mimicking an Expert Team Through the Learning of Evaluation Functions 173

can select higher strategic action by considering the above-mentioned proactive
approach.

Figure 1 depicts an example decision tree. For the sake of simplicity, only an
evaluation value of each action is indicated in each node and actions are written
on the edges. This example shows that actions generated in the soccer field are
one dribble and two passes. Then, each action is evaluated by the evaluation
function. Since in this example, dribble is the first action that maximizes the
evaluation function, executable actions are generated from this action node. In
Fig. 1, the resulting action plan would be the sequence of a pass and a shoot.

In this paper, we focus on the efficient development of evaluation functions,
which is an important factor of designing decision making. In order to make
strong teams, it is necessary for each player to select the best actions. Generally,
evaluation functions are almost made by hand. Thus, they are not necessarily
optimal. In addition, designing such a function needs a trial-and-error iterative
process. Therefore, in this work, we investigate the use of supervised learning to
automatically design the optimal function.

Fig. 1. Example of an action plan

4 Learning Evaluation Functions by Neural Networks

Positive and negative episodes of kick sequences have to be defined in order to
train neural networks by using a supervised learning approach. In this paper, we
consider as positive episodes, sequences of kicks that end up into the opponent’s
penalty area. On the other hand, sequences that end up outside this area, are
considered as negative episodes (i.e., opponents’ interceptions). The target value
for the negative episodes is defined as 0, while that for the positive ones is 1.
Figure 2 depicts examples of such episodes, where red lines represent positive
episodes and dotted blue lines correspond to negative ones. From Fig. 2, we can
see that an episode consists of a series of ball coordinates.

174 T. Fukushima et al.

Fig. 2. Extracted positive episodes (red lines) and negative episodes (dotted blue lines)
(Color figure online)

Neural networks are employed to model evaluation functions. The main rea-
son we employ neural networks is that they are universal function approximators.
Additionally, the architecture of a neural network can be easily changed. There-
fore, neural networks allow us to investigate various settings. In this paper, two
versions of input features are used. One is the position at the next kick (xn, yn),
which means that a two-dimensional input feature vector is used for training
data. And the other input features are the position at the current kick and the
ball position at the next kick ((xc, yc) and (xn, yn)). In this case, the training
data consist of four features.

The extracted episodes from log files are converted to generate training data
for the learning of neural networks. As there are two versions of input features
as described above, an extracted feature is analyzed in two ways. For generating
training data for two-dimensional training data, the ball positions in an episode
are separated into individual ball positions. Each of such ball positions is used
as a training vector which consists of the ball position (xn, yn) as well as a
positive/negative target value. This process is shown in the above side of Fig. 3.
On the other hand, in the case of four-dimensional training data, a pair of
successive two ball positions are used to generate a training vector. The former
term of the pair is regarded as the current ball position and the latter is the
predicted ball position at the next kick. Each of the two ball positions in the
pair is concatenated to generate a four-dimensional input vector (xc, yc, xn, yn).
The target value for the generated vector is determined by the label (i.e., positive
or negative) that is associated with the episode that the four-dimensional vector
was generated from. The lower part of Fig. 3 shows this process.

Mimicking an Expert Team Through the Learning of Evaluation Functions 175

Fig. 3. Conversion of an episode into training data

5 Experiments

5.1 Experimental Settings

We evaluate the performance of evaluation functions modeled by neural net-
works that are trained with using supervised learning. Performances are evalu-
ated by counting the number of times the ball enters into a target area, scored
goals and successful through passes. Training data such as passes and dribbles
were extracted from the game logs between an expert and an opponent team.
HELIOS2017 [15], which won the RoboCup2017 tournament in soccer simulation
2D league, was employed as the expert. On the other hand, HillStone [16], which
won the eighth position was employed as the opponent team. In this experiment,
we tried to defeat the target team by making our own team, opuSCOM, mimic
the expert team (i.e., HELIOS2017). opuSCOM is developed by Osaka Prefec-
ture University for JapanOpen competitions, which is the Japanese national
RoboCup contest. We designated Hillstone as our target team because while it
is not a top ranked team, it is much more stronger than our team opuSCOM.
On the other hand, we chose HELIOS2017 as the expert team since it is one of
the top rank teams for several years. In addition, opuSCOM and HELIOS2017
share the same base code, Agent2D (HELIOS base) [17], which is currently one
of the most popular base code for the RoboCup soccer simulation 2D league.
Particularly, their formation configuration files are almost the same. Therefore,
it should be easy for opuSCOM to copy the HELIOS2017’s formation strategies.

In this experiment, we set three types of formation strategies. The first forma-
tion consists of four defenders, three midfielders, and three attackers, named as
433-formation that is mainly used by our team. The second is the HELIOS2017’s
formation, 4231-formation. The last is the 442-formation, that have 2-top attack-
ers. The main reason for employing the last formation is that we want to inves-
tigate the effect of using a different number of attackers.

176 T. Fukushima et al.

Table 1. Summary of experimental settings

Variation Abbreviation

Layers (Activation function) 4-layered (Sigmoid), 7-layered (Leaky-ReLU) sig, relu

Output layer’s activation function Sigmoid (Probability), Linear (Regression) sig, reg

Evaluation function all kick sequences, One player’s kick sequences all, each

Formation 4231-formation, 433-formation, 442-formation 4231, 433, 442

Input (xn, yn), (xc, yc, xn, yn) 2input, 4input

Depth for tree search Up to 1, 2, 3 and 4 1, 2, 3, 4

In addition, we investigate several neural network’s architectures. The dif-
ferent architectures are summarized in Table 1. The four-layered (2or4-100-100-
1) neural networks’ activation functions are sigmoid functions. On the other
hand, the Leaky-ReLU function [18] is employed as an activation function in
the seven-layered (2or4-50-50-50-50-50-1) neural networks to prevent vanishing
gradient problems and dead neurons. Moreover, we investigate two types of out-
put layer’s activation function. The first one is the sigmoid function, and the
second one is a linear activation (i.e., no activation function). The output layer
using a sigmoid function outputs values in [0, 1], thus the output can be consid-
ered as the probability of entering the opponent’s penalty area at the end of the
sequence. On the other hand, the output layer with a linear activation outputs
an unbounded value. This function is usually employed for regression problem.
The learning rate are set as 0.001 for all structures.

In addition, we investigate two types of training procedures. One uses all kick
sequences, thus all players have the same evaluation function. The other one uses
only the sequences involving the learning player itself. Therefore, players learn
their own evaluation functions. While this procedure requires to train several
neural networks, the training may be easier.

We assume that players of the expert team consider a team strategy when
selecting an action. Therefore, the expert’s kick sequences are expected to include
the information of the considerations. By modeling each player’s action selector
to the expert’s one, a team behaviors are close to the expert.

Learned evaluation functions are implemented in opuSCOM. We evaluate the
performance by making it play against HillStone. Performances are measured
over 100 games.

5.2 Results

Figure 4 shows the performance of several trained neural networks in comparison
with the opuSCOM’s default hand-coded evaluation functions. Comparisons are
based on three different criteria: the number of scored goals, the number of
times the ball entered the opponent’s penalty area and the number of successful
through passes. Evaluation functions modeled by neural networks outperform
those designed by humans regardless the criterion.

Mimicking an Expert Team Through the Learning of Evaluation Functions 177

Fig. 4. Team performance with various neural network models

Tables 2, 3 and 4 summarize the opuSCOM’s win rate against Hillstone for
each experimental settings. Automatically designed evaluation functions helped
to increase the win rate by a factor greater than or equal to 10%. Neural network
evaluators helped to win more than 50% of games, in spite of default evaluators
whose win rate is at most 40%. On the other hand, there was also a performance
decrease in some experimental settings. This is particularly the case with the sig-
sig model when used for formations that involve a few number of top attackers
(formation 442).

Table 2. opuSCOM’s win rate against HillStone when using a hand-coded evaluator

Formation Win rate

4231 0.27 (Depth 3, 4)

433 0.40 (Depth 1)

442 0.14 (Depth 3)

Figures 5, 6, 7 and 8 depict examples of evaluation functions modeled by
neural networks trained by supervised learning. Note that the x − y plane rep-
resents the soccer field. For example, the area x > 0 is the opponent’s side
while the area is our side when x < 0. They represent the functions learned
by the models: sig-sig-all-2input, sig-reg-all-2input, relu-sig-all-2input and relu-
reg-all-2input according to the abbreviated name in Table 1. In order to draw
such visualization, we discretized the soccer field and evaluated every position
by using the different trained models. As shown in Figs. 5, 6, 7 and 8, neural

178 T. Fukushima et al.

Table 3. opuSCOM’s win rate against HillStone when using an “all” evaluator

4-layer (sig) 7-layer (relu)

Sigmoid (sig) Linear (reg) Sigmoid (sig) Linear (reg)

2 input 4231 0.39 (Depth 4) 0.37 (Depth 3) 0.35 (Depth 4) 0.31 (Depth 4)

433 0.46 (Depth 2) 0.48 (Depth 4) 0.41 (Depth 2) 0.43 (Depth 4)

442 0.01 (Depth 1) 0.25 (Depth 3) 0.22 (Depth 3) 0.25 (Depth 3)

4 input 4231 0.16 (Depth 3) 0.28 (Depth 3) 0.22 (Depth 4) 0.40 (Depth 2)

433 0.30 (Depth 3) 0.45 (Depth 1) 0.23 (Depth 2) 0.53 (Depth 3)

442 0.00 (Depth 1–4) 0.24 (Depth 1) 0.17 (Depth 3) 0.30 (Depth 3)

Table 4. opuSCOM’s win rate against HillStone when using an “each” evaluator

4-layer (sig) 7-layer (relu)

Sigmoid (sig) Linear (reg) Sigmoid (sig) Linear (reg)

2 input 4231 0.34 (Depth 3) 0.31 (Depth 1, 4) 0.36 (Depth 4) 0.36 (Depth 2)

433 0.15 (Depth 4) 0.36 (Depth 3) 0.43 (Depth 3) 0.42 (Depth 4)

442 0.02 (Depth 2, 3, 4) 0.19 (Depth 4) 0.13 (Depth 4) 0.11 (Depth 2)

4 input 4231 0.09 (Depth 3) 0.28 (Depth 4) 0.33 (Depth 4) 0.35 (Depth 2)

433 0.07 (Depth 3) 0.32 (Depth 1) 0.41 (Depth 3) 0.48 (Depth 2)

442 0.01 (Depth 3, 4) 0.13 (Depth 1) 0.25 (Depth 1) 0.18 (Depth 1)

Fig. 5. Evaluation function learned by
the sig-sig model

Fig. 6. Evaluation function learned by
the sig-reg model

networks learned meaningful evaluation functions regardless the experimental
settings. Actions that could bring the ball inside the opponent’s penalty area
have a high evaluation value. On the other hand, actions with a low predicted
success probability tend to have a lower evaluation value, even if the ball is close
to the goal. The observations suggest the neural networks learn the expert’s kick
sequences to mimic their action selections. In Fig. 6, the state value produced
by the neural network exceeds 1.0 because of an activation function and many

Mimicking an Expert Team Through the Learning of Evaluation Functions 179

Fig. 7. Evaluation function learned by
the relu-sig model

Fig. 8. Evaluation function learned by
the relu-reg model

contradictions in the training data. Some situations (e.g., a corner kick) are
labeled differently even though the field information is completely the same.

6 Conclusion

In this paper, we proposed a method that improves the performance of a team by
making it mimic a stronger one. For this purpose, a neural network is employed
to model the team to mimic its evaluation function. The neural network is
trained by using positive and negative episodes of action sequences. The pro-
posed method can train the behavior of a given team, and outperform the eval-
uation function designed by human beings. This method allows to easily and
automatically improve the performance of a team. By automatically designing
evaluation function, we could focus on the development of efficient strategies.
In a future work, we will try to improve our mimic performance by investigat-
ing various neural network’s structures. In addition, we will consider the use of
reinforcement learning in order to outperform the expert team itself.

References

1. Akiyama, H., Aramaki, S., Nakashima, T.: Online cooperative behavior planning
using a tree search method in the RoboCup soccer simulation. In: Proceedings of
4th IEEE International Conference on Intelligent Networking and Collaborative
Systems (INCoS), pp. 170–177 (2012)

2. Akiyama, H., Nakashima, T.: HELIOS2012: RoboCup 2012 soccer simulation 2D
league champion. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.)
RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 13–19. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39250-4 2

https://doi.org/10.1007/978-3-642-39250-4_2

180 T. Fukushima et al.

3. Fukushima, T., Nakashima, T., Hidehisa, A.: Learning evaluation functions with
neural network for RoboCup soccer situation. In: Proceedings of the First
IEEE International Symposium on Artificial Intelligence for ASEAN Development
(ASEAN-AI 2018), pp. 18–24, Phuket, Thailand (2018)

4. Warnell, G., Waytowich, N., Lawhern, V., Stone, P.: Deep TAMER: interactive
agent shaping in high-dimensional state spaces. arXiv:1709.10163 (2017)

5. Stanescu, M., Barriga, N.A., Hess, A., Buro, M.: Evaluating real-time strategy
game states using convolutional neural networks. In: Proceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–7 (2016)

6. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

7. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)

8. Hong, Z.-W., Su, S.-Y., Shann, T.-Y., Chang, Y.-H., Lee, C.-Y.: A deep policy
inference Q-network for multi-agent systems. arXiv:1712.07893 (2017)

9. Liu, Y., Stone, P.: Value-function-based transfer for reinforcement learning using
structure mapping. In: Proceedings of the 21st National Conference on Artificial
Intelligence, pp. 415–420 (2006)

10. Hausknecht, M., Stone, P.: Deep reinforcement learning in parameterized action
space. arXiv:1511.04143 (2015)

11. Michael, O., Obst, O., Schmidsberger, F., Stolzenburg, F.: Analysing soccer games
with clustering and conceptors. In: Akiyama, H., Obst, O., Sammut, C., Tonidan-
del, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 120–131. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 10

12. Henrio, J., Henn, T., Nakashima, T., Akiyama, H.: Selecting the best player forma-
tion for corner-kick situations based on bayes’ estimation. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 428–439.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 36

13. Fukushima, T., Nakashima, T., Akiyama, H.: Online opponent formation identifi-
cation based on position information. In: Akiyama, H., Obst, O., Sammut, C.,
Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 241–251.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 20

14. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing RoboCup players. In: Proceedings of the 21st International FLAIRS Confer-
ence, pp. 251–256 (2008)

15. Akiyama, H., Nakashima, T., Tanaka, S., Fukushima, T.: HELIOS2017: team
description paper. In: RoboCup2017 Nagoya, Japan (2017)

16. Kiura, T., Omori, T., Watanabe, N.: Team HillStone2017 in the 2DSimulation
league team description paper. In: RoboCup2017 Nagoya, Japan, 6 p. (2017)

17. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the
RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 46

18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of International Conference on Machine
Learning (ICML), vol. 30, no. 1 (2013)

http://arxiv.org/abs/1709.10163
http://arxiv.org/abs/1712.07893
http://arxiv.org/abs/1511.04143
https://doi.org/10.1007/978-3-030-00308-1_10
https://doi.org/10.1007/978-3-319-68792-6_36
https://doi.org/10.1007/978-3-030-00308-1_20
https://doi.org/10.1007/978-3-662-44468-9_46

Jetson, Where Is the Ball?
Using Neural Networks

for Ball Detection at RoboCup 2017

Alexander Gabel(B), Tanja Heuer, Ina Schiering, and Reinhard Gerndt

WF Wolves, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
{ale.gabel,ta.heuer,i.schiering,r.gerndt}@ostfalia.de

Abstract. The approach of using neural networks in the RoboCup
humanoid league for ball detection is investigated in a case study at
the RoboCup 2017 competition. A patch-based classification approach is
used. Two different ConvNet architectures, the Inception v3 network by
Google and AlexNet are evaluated in the context of a ROS-based archi-
tecture on a robot with a Jetson GPU board. The aim is to allow for an
efficient re-training of neural networks in the context of the competition.

Keywords: Ball detection · Neural network · Humanoid league ·
RoboCup

1 Introduction

Based on the intention of RoboCup Humanoid league, that in 2050 “a team of
autonomous humanoid robots shall play soccer against the human world cham-
pion” [5], the complexity of the tasks of RoboCup are increasing. Examples of
this increasing complexity are the use of a standard FIFA ball, increasing field
sizes and the use of artificial grass. These challenges lead to increasing require-
ments concerning object detection.

The WF Wolves team previously used the Haar cascade algorithm [21]. This
algorithm is integrated in frameworks as OpenCV and allows for a very time-
efficient ball recognition when the ball is in medium range. It is not able to cope
with far away balls or partial occlusion. In such situations, which will occur more
often because of the growing field size and an increasing number of players, the
prior approach is unable to reliably detect balls in larger distances (Fig. 1).

A promising approach is the use of neural networks, which were recently
investigated in the context of the humanoid league [18]. However, in the past,
neural networks, particularly fully-connected ones, were too computationally
intensive for usage in image classification. Due to improved architectures (i.e.
convolutional neural networks - CNN) and adapted hardware, this has changed
in the last decade. However, the usage of deep neural networks for end-to-end
learning in the context of the humanoid league was not feasible until the recent
introduction of fast embedded GPUs, for (small) mobile robot platforms.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 181–192, 2019.
https://doi.org/10.1007/978-3-030-27544-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_15

182 A. Gabel et al.

Fig. 1. Far balls detected by CNN (pink circles), false positive by Haar Cascade classi-
fier (violet circle). Red line: approximated field outline. Blue squares: patches analysed
by CNN. Blue rectangles: goal post hypotheses (Color figure online)

Our approach is based on pre-trained convolutional neural network models,
which are fine-tuned1 to the RoboCup ball classification scenario. Advantages
of this approach include vastly reduced training times, higher accuracy and less
overfitting, when compared to a model trained from scratch. To localize the
ball, not the whole image is classified by the CNN, but the image is divided into
patches, which are filtered based on color information.

In this paper the use of neural networks for ball detection, in particular far
away balls, is evaluated based on experiences of the RoboCup 2017 competition.
The aim of the proposed approach is a CNN based classifier, which is fast-
adaptable to on-site conditions. We present the adapted vision pipeline, the
machine learning approach and experimental results.

2 Related Work

Neural networks are a widespread used technology for object recognition. In
the RoboCup soccer league neural network based systems for object recognition
have mainly been used in the middle size league. Mayer et al. [12] proposed a
neural network for robot detection on the field. Their approach uses the classical
feature extraction/classification separation with hand-crafted features designed
by humans. Our approach rather uses the more recent, but also more compu-
tationally intensive approach of end-to-end learning (deep learning), which also
learns the feature extraction from the raw pixels. Furthermore neural networks
are sometimes used in combination with other approaches, such as Kalman filters
[11,20] to improve performance for objects in motion (i.e. predict their position).
1 https://cs231n.github.io/transfer-learning/.

https://cs231n.github.io/transfer-learning/

Jetson, Where Is the Ball? 183

At present, neural networks become computationally feasible also for the
humanoid league and standard platform league for ball and opponent recogni-
tion. In the humanoid league the team Hamburg Bit-Bots [18] proposed a CNN
approach for ball localization. They used a custom network architecture trained
from scratch by using a normal distribution as teaching signal for each coordinate
axis. The team AUTMan [6] presented the idea of a CNN model for recognizing
opponents. In the Standard Platform League the approach using neural networks
was also recently investigated by several teams [1,3,14,15].

CITBrains from Japan are the only team stating the use of CNNs for ball,
goal post and opponent recognition for the RoboCup competition in their team
description paper for the RoboCup 2017 [16]. Hence until now mainly preliminary
lab results about the use of CNNs in the humanoid league are described. Besides
the RoboCup, CNNs implemented on a Jetson TX1 board is currently a gladly
used approach in a low-power environment [2,13]. The CNN AlexNet is retrained
for car plate and person recognition with satisfying results [4,10]. In the following
we present our results and experiences from using CNNs during the RoboCup
2017.

3 Vision Pipeline

In general, we use a patch-based classification approach, to decide whether a
particular region of interest (ROI) in the image contains a (partial) ball or not.
To increase computational efficiency, classification is only applied to patches,
which potentially contain a ball. Therefore the image is preprocessed and filtered
(Fig. 2).

Fig. 2. Vision pipeline (Color figure online)

184 A. Gabel et al.

First we generate binary images (masks) by classifying the color of each pixel
in the source image. For ball detection the masks for soccer field green and for
ball white are relevant.

To keep rectangular sum calculations in the mask efficient, we transform the
masks into integral images. Based on the detection of field outlines, regions
outside of the field, without touching it, are not considered as a possible
ball region. The image is then divided into a grid of n × n patches with a
default patch size n of 50 pixels (Fig. 5). This hyper-parameter was chosen as a
performance/accuracy-trade-off.

For each patch, we determine the number of pixels belonging to the ball
white color class using the integral image. Patches where this number exceeds a
predefined threshold (default: 30), are considered as a region of interest (ROI)
for classification.

Each of those ROIs is then fed into the classifier, a deep convolutional neural
network, which calculates probabilities for the two classes ball/partialball and
noball. The classifier itself is running as a separate ROS2 node.

4 Machine Learning

We evaluated two different ConvNet architectures, the modern Inception v3
network by Google [19] and AlexNet [9], one of the first well-performing deep
convolutional neural networks. As we use TensorFlow for our model, all opera-
tions in the training refer to the corresponding functions and implementations
in TensorFlow (Fig. 3).

Fig. 3. Machine learning pipeline

For both evaluated networks, we did not perform a full training of the net-
work, as the goal during the competition was to be able to relatively fast adjust
2 Robot Operating System (http://www.ros.org).

http://www.ros.org

Jetson, Where Is the Ball? 185

the network to on-site conditions. Hence we fine-tune models of each network,
which were pre-trained for ImageNet. Also these models should be able to gen-
eralize better, as they already learned common features for object recognition
and overfitting is less likely to occur, as we only retrain the last layer(s). For
fine-tuning Inception v3, there is already a script and tutorial provided by Ten-
sorFlow3. Also for AlexNet there exists a project for fine-tuning4, where the
pretrained model is converted from the Caffe [7] model of BVLC AlexNet5.

For collecting training images, we use a regular tripod in the height of our
robot with the camera of our robot. We capture single images instead of the whole
data stream to include common situations, which might also occur during a real
game, while avoiding too many pictures of a single perspective, which would
introduce an unwanted bias to our dataset, and look for difficult situations like
other white objects on/near the field.

After capturing, the images are labeled using the ImageTagger6 by the Ham-
burg Bit-Bots team, which allows to build up a shared image database for
humanoid soccer competitions. In the tagger application, we annotate balls in
the image using bounding boxes.

The images are then divided into small patches (see Fig. 5). To generate
training data, no patches are filtered out in this step, as this has proven to
result in a better, more flexible model. In an automated labeling patches are
labeled as ball if the overlap of any ball bounding box with the region is larger
than a certain threshold.

As this automated sorting is still error-prone, after this step a human has
to validate the resulting patches and potentially to move images to the correct
folder. Files where even the human is unsure about classification are removed
from the dataset.

In general we do not perform additional preprocessing of the train-
ing/validation images (i.e. translation/noise addition/etc.) to reduce the time
needed for on-site training. Due to the high amount of patches, we expect to
have enough translation variety already present in the dataset.

As the training data is highly unbalanced between the classes, i.e. we have a
lot of negative samples, but comparably only a very small percentage of positive
(ball) samples, the training process has to be adjusted. Otherwise the classi-
fier might prefer the overrepresented class over the other. This effect is called
accuracy paradox.

There are multiple ways of handling imbalanced classes, including oversam-
pling, undersampling, class weights or balanced batches. To cope with the highly
imbalanced training data, instead of using oversampling on the ball class under-
sampling on the noball class was investigated. This led to an increased false pos-
itive rate due to less negative (noball) samples. Using alternatively class weights

3 https://www.tensorflow.org/tutorials/image retraining.
4 https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html.
5 https://github.com/BVLC/caffe/tree/master/models/bvlc alexnet.
6 https://github.com/bit-bots/imagetagger.

https://www.tensorflow.org/tutorials/image_retraining
https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/bit-bots/imagetagger

186 A. Gabel et al.

led to a more robust model with a reduced false positive rate. Also balanced
batches yielded good results for the Inception network.

For fine-tuning AlexNet, we re-train the last two fully-connected layers (fc7
and fc8). Softmax cross entropy is used as loss function. Batches of 128 randomly
chosen patches are fed into the network for training. Adam [8] is used as opti-
mization procedure and TensorBoard for monitoring the training and validation
accuracy, as well as the cross-entropy loss over time.

5 Experimental Results

The presented approach is evaluated in the following based on the experience
of the RoboCup 2017. A description of the dataset used for training is provided
and the performance of the inference process is investigated based on the built-in
Jetson board of the robot.

The proposed CNN-based method (pink circles) is able to detect partially
covered balls and far away balls, as shown in Fig. 1, with less false-negatives
compared to the Haar cascade approach (violet circles) (Fig. 4).

Fig. 4. Close ball detected by Haar
Cascade classifier and CNN (Color
figure online)

Fig. 5. Examples of patches (non-filtered)

5.1 Dataset

The images used as the basis for our dataset were recorded at 3 different loca-
tions: our lab test field, German Open 2017 and RoboCup 2017 Japan. The
original ∼1800 images had a resolution of 640×480 respectively 640×360 pixels
and were all taken with our robot’s camera.

The dataset consists of ∼158k patches, where ∼3k were labelled as ball or
partial ball, and the rest ∼155k patches were labelled as no ball. The images
contain different kinds of white balls, with difficult situations, such as partial
occlusion by robots, sun light from open doors and various shaped and sized
objects of white color. We particularly included problematic situations on the
RoboCup, where we experienced a lot of false positives.

Jetson, Where Is the Ball? 187

For evaluation of the different models, we captured an additional dataset
consisting of ∼1000 images. This dataset, in this paper referenced as ‘evaluation
dataset’, is used for performance testing on whole-frame pictures, as well as for
the confusion matrix.

5.2 Validation

We evaluated several models varying training epochs/steps7, validation split
and class imbalance handling (Table 1). The true positive rate is defined as the
number of correctly detected balls divided by the number of ground truth balls.
The false discovery rate is defined as the number of false positive balls divided
by the sum of false positive and true positive balls.

Table 1. Evaluated models with true positive rate (TPR), false discovery rate (FDR),
validation accuracy and training duration (inception has constant bottleneck creation
time = only required once for all models). (AlexNet 20 epochs (10% validation data,
class weights); Inception v3 500 steps (10% validation data, balanced batches); Incep-
tion 4000 steps (10% validation data, balanced batches); Inception 20000 steps (10%
validation data, class weights); AlexNet 38 epochs (20% validation data, class weights);
AlexNet 64 epochs (10% validation data, undersampling); AlexNet 9 epochs (10% val-
idation data, class weights))

Model Haar AlexNet 20

epochs

Inception

500 steps

Inception

4000 steps

Inception

20000

steps

AlexNet 38

epochs

AlexNet 64

epochs

AlexNet 9

epochs RC2017

TPR 24.135% 74.382% 96.34% 96.736% 98.811% 72.908% 88.131% 68.546%

FDR 7.925% 10.9% 10.724% 14.06% 80.697% 18.568% 39.346% 12.278%

Val.

acc.

- 99.25%

(N=15776)

98%

(N=100)

88%

(N=100)

93%

(N=100)

99.48%

(N=15776)

96.97%

(N=1076)

99.14%

(N=15776)

Train.

Dur.

- ∼8, 5 h 2, 5 h

+1m

2, 5 h

+7m

2,

5 h+36m

∼16 h ∼45m ∼4 h

From the Table 1 it can be seen, that the Haar Cascade algorithm has a
low TPR, therefore not detecting a large percentage of balls. AlexNet performs
better, but with an increased FDR. We suspect that the rather high FDR for
AlexNet 64 epochs, is due to less amount of training data caused by under-
sampling. Inception with 20000 epochs is probably overfitted. We have selected
Inception 500 steps and AlexNet 20 epochs, as they have the best trade-off
between true positives and false positives8. As can be seen in Fig. 6, the Haar
cascade algorithm is unable to detect balls at distances larger than 3.50 m, in
contrast to both CNN algorithms.

We achieved ∼99% validation accuracy during the RoboCup competition
(AlexNet 9 epochs). During the RoboCup, the time available for training is very

7 Number of batches (batch size 100) used for training.
8 Additional results are left out because of page limitations, but can be downloaded

from our website (https://www.wf-wolves.de/jetson-rc2017/).

https://www.wf-wolves.de/jetson-rc2017/

188 A. Gabel et al.

constrained, therefore we only trained for 9 epochs, which already took about 4 h.
The TensorFlow retrain.py script used for fine-tuning Inception, uses a technique
to first generate bottleneck files, which are the results of processing each training
image through the first layers (which are not changed). This leads to a constant
start-up cost, and greatly reduces training time in total. The concept may be
applied to AlexNet as well, which might decrease training time by a large portion.
However, the false positive rate slightly increases for the CNNs.

Haar

AlexNe
t 20 epochs

Incepti
on 500 steps Haar

AlexNe
t 20 epochs

Incepti
on 500 steps Haar

AlexNe
t 20 epochs

Incepti
on 500 steps

0

200

400

600

800

1000
False Positive (FP)
False Negative (FN)
True Positive (TP)

All 0m-3.50m 3.50m-6.50m

Fig. 6. Comparison of three different classifier models: Haar Cascade; AlexNet trained
for 20 epochs with class weights; inception v3 trained for 500 steps with class weights

5.3 Performance of Inferencing

For the evaluation we investigated Inception v3 and AlexNet as described in
Sect. 4. The Inception v3 model might in principle lead to better classification
accuracy results, but was too slow for this use case. Figures 7 and 8 show the
processing time required for the whole image pipeline (time between publishing
of a camera image to the receiving of the debug image).

AlexNe
t GPU

(paralle
l)

@ Jetson
TX2 Max P Core ARM Incepti

on v3

@ GTX 980 Incepti
on v3

@ Jetson
TX2 Max N

0

2

4

6

8

10

12

pr
oc
es
si
ng

ti
m
e
in

s

Fig. 7. Pipeline performance AlexNet
vs Inception v3 (outliers excluded)

HaarCa
scade

@ Jetson
TX2 Max N

AlexNe
t GPU

(paralle
l)

@ GTX 980 AlexNe
t GPU

(paralle
l)

@ Jetson
TX2 Max N

AlexNe
t GPU

(paralle
l)

@ Jetson
TX2 Max P Core ARM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p r
oc
es
si
ng

ti
m
e
in

s

Fig. 8. Pipeline performance AlexNet vs
Haar Cascade (outliers excluded)

Running the Inception network on a CPU, took about 1 s per inference
run/patch. Running it on a Desktop GPU, increased the performance to about

Jetson, Where Is the Ball? 189

0.2 s per patch, which is still slow, when having to handle a large number of
patches. Therefore we switched to AlexNet, a more lightweight model, which
still promised sufficient classification accuracies, while achieving better real-time
performance. With AlexNet, we achieved approximately 0.1 s for the inference
time per patch on a CPU. For larger amounts of patches this was still too slow.
Using the Jetson TX2 GPU board the duration could be further reduced.

To further optimize the performance, we compared the sequential execution
of the network with a parallelized version taking a variable batch of patches as
input. The results for this can be seen in Figs. 9 and 10. While the processing
time in the sequential version grows linearly, the parallel version has a relatively
high amount of outliers. Based on mean execution times, the parallel version
offers a huge advantage compared to the sequential method.

(1
.0
,
12
.0
]

(1
2.
0,

22
.0
]

(2
2.
0,

33
.0
]

(3
3.
0,

44
.0
]

(4
4.
0,

54
.0
]

(5
4.
0,

65
.0
]

(6
5.
0,

76
.0
]

(7
6.
0,

87
.0
]

(8
7.
0,

97
.0
]

(9
7.
0,

10
8.
0]

number of patches

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pr
oc
es
sin

g
tim

e
in

s

min
mean
max

Fig. 9. Execution time of sequential
AlexNet on the Jetson GPU

(1
.0
,
12
.0
]

(1
2.
0,

22
.0
]

(2
2.
0,

33
.0
]

(3
3.
0,

44
.0
]

(4
4.
0,

54
.0
]

(5
4.
0,

65
.0
]

(6
5.
0,

76
.0
]

(7
6.
0,

87
.0
]

(8
7.
0,

97
.0
]

(9
7.
0,

10
8.
0]

number of patches

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p r
oc
es
sin

g
tim

e
in

s

min
mean
max

Fig. 10. Execution time of parallel AlexNet
on the Jetson GPU

We used the Max-P ARM performance mode of the Jetson TX2, which was
the most stable, but at the same time well-performing setting. We also inves-
tigated the Max-N mode, with which we had stability issues, which may have
been caused by current limitations of the power supply. Table 2 gives an overview
about the investigated performance modes.

Table 2. Tested performance modes of the Jetson TX2

Mode ARM Denver GPU Power w/o GPU Power w/ GPU

Max-P 2.0 GHz Disabled 1.12 GHz 0.6 A 0.9 A

Max-N 2.0 GHz 2.0 GHz 1.30 GHz 1 A >2 A

6 Discussion

In general the presented approach was feasible during the competition and the
accuracy and model performance is promising. An advantage of the patch-based

190 A. Gabel et al.

approach compared to approaches operating on the whole image is, that it is
easier to generate an adequate amount of training data, as one image contains
already many patches. Also training samples are usually better distributed, as
e.g. the ball is not always in the center or often only partly visible. This improves
especially the detection of partially covered balls. Still, there may be a bias from
other sources, such as illumination and exposure. When choosing a patch size of
50 × 50 pixels with a stride-size of 50 pixels, we had an accuracy-performance
trade-off in mind. Lowering the stride-size, will lead to more patches, which might
simplify the problem for the classifier, but decreases the runtime-performance.
Furthermore it might be worth to investigate adaptive patch sizes, for example
based on the distances from the robot’s view.

A potential disadvantage of the patch based approach are patches containing
small parts of a ball without further context in the image, where even humans
would not be sure. Whole-image models may need a longer training time, since
there are typically no pre-trained models available, and the object localization
problem is harder compared to a binary classification problem.

The general approach to fine-tune a pre-trained networks with a verified
architecture offers several advantages. The risk of overfitting is reduced and
training times are shorter, which is important for on-site training during compe-
titions. However, publicly available pre-trained networks are often designed for
a different, more generic use-case. In our case the pre-trained networks AlexNet
and Inception v3 were designed for fixed input dimensions. Inception v3 uses
299 × 299 × 3 and AlexNet 227 × 227 × 3 as input dimensions. This is consider-
ably larger than the patch size (50 × 50 × 3) chosen here. Therefore each patch
has to be scaled up to the network’s input dimension. This yields to a compu-
tational overhead, which would not be necessary in case of a custom designed
network. Furthermore the parallelization on the Jetson may suffer from this, as
there are more CUDA units necessary to compute the larger network.

To enhance the inference performance, it would be interesting to investigate
custom network architectures or available networks with smaller input dimen-
sions, which are pre-trained similarly on a general purpose challenge (e.g. Ima-
geNet Large scale Visual Recognition Challenge) and afterwards fine-tuned to
the specific requirements of the RoboCup environment.

Furthermore the performance could possibly be enhanced by adapting models
to the specific hardware capabilities. For example TensorRT9 optimizes trained
neural networks for execution on NVIDIA hardware by weight quantization (i.e.
quantize floating point weights to 8-bit integers), layer and tensor fusion and
other optimizations. However at the time of writing this framework is only avail-
able as a release candidate for the Jetson TX2 board currently missing some
APIs when compared to the x86 version.

To improve the validation process, the ability to explain the network’s deci-
sion may be useful. Selvaraju et al. developed Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) [17], which highlights regions, that are ‘impor-
tant’ for the prediction outcome. Further investigation into explanations of the

9 https://developer.nvidia.com/tensorrt.

https://developer.nvidia.com/tensorrt

Jetson, Where Is the Ball? 191

network’s decision may allow to decide whether a network has actually learned
the general concept of a soccer ball, or something else.

7 Conclusion

Ball detection by deep neural networks in the RoboCup humanoid league proved
promising. The accuracy is adequate for the intended application, leading to
less false negatives compared with previous approaches, as the Haar cascade
algorithm that was used before. It is possible to adjust the approach to changing
on-site conditions during a competition. By including a Jetson board in the
robot, the use of CNNs is computationally feasible in a ROS based architecture.

The approach fosters the cooperation between teams by the possibility to
build up common training sets and to share ROS nodes with pre-trained classi-
fiers with other teams.

References

1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

2. Balleda, K., Menon, S.K.: D-face: parallel implementation of CNN based face clas-
sifier using drone data on K40 & Jetson TK1 (2015)

3. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del Solar, J.: Using convolutional neural
networks in robots with limited computational resources: detecting NAO robots
while playing soccer. arXiv preprint arXiv:1706.06702 (2017)

4. Eisenbach, M., Stricker, R., Seichter, D., Vorndran, A., Wengefeld, T., Gross, H.M.:
Speeding up deep neural networks on the jetson TX1. In: CAPRI 2017, p. 11 (2017)

5. Gerndt, R., Seifert, D., Baltes, J.H., Sadeghnejad, S., Behnke, S.: Humanoid robots
in soccer: robots versus humans in RoboCup 2050. IEEE Robot. Autom. Mag.
22(3), 147–154 (2015)

6. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS
(LNAI), vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00308-1 28

7. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

10. Lee, S., Son, K., Kim, H., Park, J.: Car plate recognition based on CNN using
embedded system with GPU. In: 2017 10th International Conference on Human
System Interactions (HSI), pp. 239–241. IEEE (2017)

11. Li, X., Lu, H., Xiong, D., Zhang, H., Zheng, Z.: A survey on visual perception for
robocup msl soccer robots. Int. J. Adv. Rob. Syst. 10(2), 110 (2013)

https://doi.org/10.1007/978-3-319-68792-6_33
http://arxiv.org/abs/1706.06702
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1412.6980

192 A. Gabel et al.

12. Mayer, G., Kaufmann, U., Kraetzschmar, G., Palm, G.: Neural robot detection
in RoboCup. In: Wermter, S., Palm, G., Elshaw, M. (eds.) Biomimetic Neural
Learning for Intelligent Robots. LNCS (LNAI), vol. 3575, pp. 349–361. Springer,
Heidelberg (2005). https://doi.org/10.1007/11521082 21

13. Mhalla, A., Gazzah, S., Ben Amara, N.E., et al.: A faster R-CNN multi-object
detector on a Nvidia Jetson TX1 embedded system. In: Proceedings of the 10th
International Conference on Distributed Smart Camera, pp. 208–209. ACM (2016)

14. Militão, G., Colombini, E., Técnico-IC-PFG, R., de Graduação, P.F.: RoboCup
soccer ball depth detection using convolutional neural networks (2017)

15. O’Keeffe, S., Villing, R.: A benchmark data set and evaluation of deep learning
architectures for ball detection in the RoboCup SPL. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp.
398–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 33.
Robocup symposium: poster presentation

16. Seki, Y., et al.: CIT Brains (kid size league) - team description paper (2017)
17. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-

CAM: why did you say that? arXiv preprint arXiv:1611.07450 (2016). https://
arxiv.org/pdf/1611.07450.pdf

18. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for Robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. arXiv:1512.00567, December 2015

20. Taleghani, S., Aslani, S., Shiry, S.: Robust moving object detection from a moving
video camera using neural network and kalman filter. In: Iocchi, L., Matsubara,
H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp.
638–648. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02921-
9 55

21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)

https://doi.org/10.1007/11521082_21
https://doi.org/10.1007/978-3-030-00308-1_33
http://arxiv.org/abs/1611.07450
https://arxiv.org/pdf/1611.07450.pdf
https://arxiv.org/pdf/1611.07450.pdf
https://doi.org/10.1007/978-3-319-68792-6_2
http://arxiv.org/abs/1512.00567
https://doi.org/10.1007/978-3-642-02921-9_55
https://doi.org/10.1007/978-3-642-02921-9_55

Bridging the Gap - On a Humanoid
Robotics Rookie League

Reinhard Gerndt1(B), Maike Paetzel2, Jacky Baltes3, and Olivier Ly4

1 Ostfalia University of Applied Sciences, 38304 Wolfenbüttel, Germany
r.gerndt@ostfalia.de

2 Uppsala Univeristy, 75105 Uppsala, Sweden
maike.paetzel@it.uu.se

3 National Taiwan Normal University, Taipei 10610, Taiwan
jacky.baltes@ntnu.edu.tw

4 University of Bordeaux, 33405 Talence, France
ly@labri.fr

http://www.wfwolves.de, http://bit-bots.de,

http://www.ntnu.edu.tw/ee/erc/, http://rhoban.com

Abstract. The 2050 robot-human soccer game is among the most
prominent goals of RoboCup. All RoboCup leagues contribute to this
goal, for example the Simulation Leagues with research on strategic game
play, the Standard Platform League with stable walking and vision algo-
rithms and the Humanoid League with mechatronics of bipedal robots.
However, especially in the Humanoid League, the swift improvement in
performance of the robots makes it significantly harder for newcomers
to enter into this field of research. With robots increasing in size, with
new challenges in mechatronics for bipedal robots and software increas-
ing in complexity, the gap for new teams is widening on the course to
the 2050 game. There have been many approaches to easy entry, such as
the introduction of a two-league system in the Standard Platform (SPL)
and Small Size League (SSL) or an ‘educational challenge’ at regional
@home events. While the SPL and SSL approaches require fully devel-
oped hard- and software in order to compete, as the @home challenge,
we propose an entry-level league with a reduced set of requirements to
bridge the gap between the Junior level and advanced Humanoid League.
We believe that the Humanoid League can only reach the 2050 goal if new
researchers and universities can be attracted on a regular basis. Attract-
ing new researchers requires an easy entry path for new teams, suitable
for undergraduate students and universities with a limited budget. The
‘Humanoid Rookie (Sub-) League’ (HRL) will give new researchers and
teams the time to gather experience and funds that are necessary to suc-
cessfully participate in and contribute to the Humanoid League’s devel-
opment towards the 2050 game. This paper intends to spark discussion
about the current state and the roadmap of the Humanoid League within
the RoboCup community.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 193–204, 2019.
https://doi.org/10.1007/978-3-030-27544-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_16

194 R. Gerndt et al.

1 Introduction

When the RoboCup Humanoid League started in 2002, the competition initially
consisted of technical challenges only, exercises that were considered useful ele-
ments of a soccer game play [13]. In the following years, the challenges devel-
oped into 2 vs. 2 robot soccer games. The games raised considerable attention
among researchers and led to the participation of 20 teams in the 2005 RoboCup
Humanoid League. At that time, the two robots per team had a size of about
40 cm, the environment was color-coded and the surface was a flat carpet. More-
over, constraints on the robot’s body parameters like height of the center of
mass and foot size were very favorable for new teams to enter. The current rules
allow 4 robots with a height between 40 and 90 cm for the kid size sub-league,
3 robots with a size between 80 and 140 cm in teen size and a single robot of
130 to 180 cm in adult size. However, most successful robots range between 70
and 90 cm. There is no more color-coding, except for the identification of robot
teams. The games are now played with white goals on both sides and a regu-
lar FIFA-compliant ball. However, there is still a considerable gap between the
current requirements in the league and the regular FIFA rule book: The cur-
rent field size is 9 * 6 m with a playing period of two times 10 min. Aiming for
the 2050 game, the field size must increase to about 100 * 60 m within the com-
ing 30 years. Robots will need to reach a height of about 1.80 m or more, and
an endurance of 45 min. While the walking speed of the current robots rarely
exceeds 1.5 km/h, they must be able to run at a minimum of 15 km/h (sustained)
to 36 km/h (burst) as the human competitors in the 2050 game are capable of.
In addition, robots must be able to kick the ball at more than 100 km/h and
have a vertical leap that is better than 50 cm to be competitive against the best
human players. Note that we chose these physical skills since they are easy to
measure and we believe that they are necessary, but not sufficient for world class
soccer players. Many attributes such as speed with the ball, ability to change
direction quickly, and to predict the play are of the utmost importance but
too hard to measure experimentally. Table 1 gives an indication of the current
value, the 2050 requirements and the required average yearly increase to reach
the goal. However, requirements may not increase gradually but rather stepwise.
For example the endurance requirement may jump from 10 to 20 min as a next
step rather than increasing by 1.2 min every year.

Table 1. Necessary robot attributes for the 2050 challenge

Parameter 2018 2050 Required average Δ/Year

Height 40–180 cm 180–200 cm ≈1.5 cm

Endurance 10min 45min ≈1.2 min

Running speed <1.5 km/h >36 km/h (Burst) ≈0.9 km/h

Kick speed <2.0 km/h >100 km/h ≈3.3 km/h

Vertical leap <1 cm >50 cm ≈1.6 cm

Bridging the Gap - On a Humanoid Robotics Rookie League 195

The league already faces stagnation of the number of teams participating.
We believe that a main reason is that teams fear both the cost as well as the
hardware and software challenges connected to larger robots. New teams enter
the Humanoid League almost exclusively through the kid size league and few of
them eventually work their way up to teen and adult size, which supports this
hypothesis. However, with the increasing level of difficulty in all sub-leagues,
it is expected that even this entry-level will become too high for new teams,
especially undergraduate student teams, in the very next years. As an evidence,
the Humanoid League at RoboCup German Open was cancelled in 2018 after
many years of successful competitions due to lack of new teams.

Figure 1 gives an indication of the planed evolution of the robot and the
field size in the league as discussed within the league in 2014 [4]. The roadmap is
driven by scientific challenges that the Humanoid League TC believes are crucial
to accomplish the 2050 goal and that they hope to achieve by controlling the
playing field and associated rules of the league. For example, larger playing fields
naturally lead to improvements in the running speed of robots and their visual
acuity. Furthermore, special scientific challenges are approached via technical
challenges (e.g., the 2018 competition includes jumping and kicking a rolling ball
challenges as they are crucial scientific goals, but are not currently beneficial in
the soccer matches).

However, the increasing number of robots per team will put high demands on
each team’s logistics and budget. The Technical Committee already addressed
this matter by introducing the drop-in games [10], which allows participants to
attend the competition with only a single robot. It was inspired by the drop-in
challenges introduced by the FIRA United Soccer competition (2011), and the
Standard Platform League (where drop-in was introduced in 2013 [2], and later
improved [1]). However, rather sooner than later, costs for research, components
and equipment even for a single humanoid robot will reach a level that may
be too high to be taken in one step. We propose a Humanoid Rookie League,
which we will detail in the coming sections, to ease the path for new teams and
to guide towards full participation. The HRL will combine elements of robotics
and artificial intelligence education and research and shall enable undergraduate
teams to develop a robot to participate in the league within the time frame of a
year’s project. The design follows research on robotics in education, e.g. [14] and
[12]. The small rule set [3] will prioritize the principles of robotic entertainment
and avoid complex regulations and requirements, such that participation and
watching shall be highly attractive.

2 Soccer Leagues Development

As the abilities of the robots increase, it is clear that the amount of human inter-
action with the robots must be reduced for safety reasons alone. New teams must
implement a large amount of code to simply fit into the league’s infrastructure
(e.g., listening and providing status updates to the game controller or automatic
referee). Even though established teams publish their code base, this is still a

196 R. Gerndt et al.

Fig. 1. Development of field and robot sizes as stated in the Humanoid League
Roadmap from 2014 [4].

non-trivial work that is not at the core of soccer playing robots and thus of little
interest to new teams, but still necessary to participate in the advanced leagues
during RoboCup.

While league infrastructure is required in all leagues, the Humanoid League
is at a great disadvantage when compared to the other RoboCup soccer leagues:
Both in 2D and 3D simulation as well as in the Standard Platform League no
hardware development is involved, which means that a good solution from a sin-
gle team can be shared with all other teams and the league can make significant
progress in this respect. Most teams in the Humanoid League use their own hard-
ware and software, which makes sharing more difficult. There have been several
attempts to use common middle-ware (e.g., ROS) or frameworks (FUmanoids
player communication library [6]) to standardize at least some components in the
Humanoid League. These attempts have not been very successful. For example,
even though a lot of teams are interested in ROS, few teams actually implement
it in their robots, first and foremost because updating a whole architecture takes
considerable time away from implementing new features to keep up with the rule
updates every year. The Technical Committee tried to foster a more collabora-
tive approach within the league in the last years: In 2017, a drop-in challenge
was introduced as a mandatory part of the competition for all teams participat-
ing in kid and teen size. While team collaboration increased during RoboCup,
only few adaptations to hardware and software are actually made on-site. By
announcing the drop-in teams in advance, the Technical Committee will make
another attempt to strengthen the code exchange and development of a common
code basis between the teams for 2018.

Bridging the Gap - On a Humanoid Robotics Rookie League 197

The increasing level of difficulty in the software development is only one of the
development tracks in the Humanoid League. Similar to the Small and Middle
Size League, the Humanoid League teams have to develop their own hardware,
too. However, in contrast to the other hardware leagues, which

– use wheel-based locomotion,
– allow for non human-like hardware and vision-approaches and
– do rarely include rule changes which forces significant changes in the robot’s

hardware,

the Humanoid League imposes a very different level of hardware challenges on
participating teams.

Even the Standard Platform League with the potential of easily exchangeable
code faces a situation with few very advanced teams leaving the majority of
other teams behind. The introduction of a Champions Cup creates an option for
advanced teams to keep their games challenging, while still enabling new and
less successful teams to play balanced games in the classical competitions [8]. A
similar approach will be taken by the Small Size League in 2018 for the first time
[5]. The idea of introducing a Rookie League, however, proposes a competition
scenario at the ‘lower’ end of the performance range, because the ‘higher’ end
is already defined by the 2050 challenge. A similar approach is followed by the
@home Educational Challenge, co-located with the 2018 European RoboCup
Junior [9]. Without the HRL, new teams will soon not be able to even meet
the requirements for participating before putting in years of development effort
and after significant investment. However, we strongly believe that new teams
benefit from entering real competitions and networking with other teams during
RoboCup events early on. Therefore, we need to provide a possibility for new
teams to enter the Humanoid League and play against equally strong opponents
while still developing towards the 2050 game for the experienced teams.

3 The Humanoid Rookie League

The user story of the Humanoid Rookie League is based on a group of undergrad-
uate or early graduate students, interested in humanoid robotics and robotics
soccer. They are assumed to have a yearly budget of a few thousand Dollars and
some faculty support and should be able to design, build and program robots to
enter the league within a time-frame of one year. With competitions organized at
regional, super-regional and international level, the RoboCup Federation already
allows for limited traveling budget of new-coming teams. Considering bipedal
locomotion the core element of the Humanoid League, bipedal locomotion and
kicking or driving a ball should be at the center of the Rookie League. At a
lower, yet necessary level we see basic perception, localization with a local map
and elementary planing. It is a core idea of the Rookie League that the rules
and requirements of the league are simple enough as an entry point while simul-
taneously clearly guiding the development of a hardware platform and software
base which can be used to compete in the regular Humanoid League within two
or three years of participating in the Rookie League.

198 R. Gerndt et al.

Fig. 2. HL Rookie League robot (left) and cardboard goal keeper (right).

3.1 Bipedal Locomotion

Constraints on the robots shall be reduced to the minimum. The regular league
imposes restrictions on the center of mass (COM), height and foot size, just to
mention a few. Except for the requirement of bipedal locomotion and a maximum
size and weight, the Rookie League rules may not foresee any further constraints
on the robot design. Avoiding or reducing the danger of falling, e.g. by sufficiently
large feet, would allow to implement a robot with as few as 4 motors. Avoiding
rules requiring to kick the ball, instead of just pushing it, would make robot
design and control easier. However, locomotion on the difficult artificial turf
used in the Humanoid League is still considered a significant challenge. Figure 2
shows a prototype of a basic 4-DOF bipedal robot for the HRL next to a FIFA
size-1 ball. A game shall be played by robot teams of 3–6 robots, with each
participant or participating team providing a single robot. Scoring and team
building will be done according to the Humanoid League drop-in scheme [7],
which awards points for scoring goals and supporting other robots. The range
of number of robots per team allows for easy adjustment to the actual number
of participants. In this case a competition with multiple games can be held with
as little as 6 participating teams (forming 2 teams with 3 robots each). There
are 10 different configurations of teams to play against each other with 6 robots,
such that multiple games can be played.

3.2 Basic Perception

Color coding provides an easy way of identifying objects for a soccer scenario.
Color blob detection is among the content of many entry-level computer vision
courses. There are even integrated hardware solutions for color blob detection,
like CMUCam (PixyCam) smart cameras. As in the earlier Humanoid League
times, an orange colored ball, however, now a larger FIFA size-1 ball, shall be
used. Coloring the goals is not suitable since this would require additional effort
when using the goals of the regular league. Instead, a colored cardboard figure
shall be placed in the goal (Fig. 2 right). Goal keepers shall be colored blue
and red for the two different teams. This should ease orientation of the robots.

Bridging the Gap - On a Humanoid Robotics Rookie League 199

Fig. 3. HL Rookie League local map example.

Not having a dedicated goal keeper robot comes with multiple benefits. First,
there is no need to implement a dedicated behavior and second, the drop-in
scoring scheme becomes much easier and fair, since all robots follow the same
behavior. Additional information on the environment can be derived from the
fixed size of the objects, such that distances can be estimated with mono vision
already.

3.3 Localization with Local Maps

Local, ego-centric models may serve as a very basic means of localization. This
approach showed to be very easy to acquire for new coming students [11]. Figure 3
gives an example of a robot facing the ball and the opposing goal or more
precisely the opposing cardboard goal keeper. From the position and size of the
respective color blobs in the image, the position and distance relative to the
own position can be estimated. A vector representation lays the base for easy
calculations of positions and paths, as well as later decision making and planing.

3.4 Elementary Decision Making and Planing

Based on the local map as sketched in the previous subsection, basic decisions
can be derived easily by adding and subtracting vectors. For example, in order to
identify a suitable position for a goal kick, the robot may calculate the difference
between the goal vector and the ball vector and extend it by an offset. After
reaching the position the robot has to align to the goal and start driving the
ball towards it.

200 R. Gerndt et al.

3.5 The Playing Field

The Rookie League competitions shall be co-located with the regular RoboCup
Humanoid League competitions. Therefore, the same playing field and goals
should be used. If needed, the playing field may be reduced in size, e.g. to a
single half, playing left to right and moving the goals to the touch lines or
maintaining the playing direction with one goal moved to the center line. The
field markings may require additional considerations. With a left-right playing
direction in one half, temporary field lines may be drawn or taped within the
free space between the lines of the current regular field, such that a rectangle
of 6 m times 2.7 m without any otherwise misplaced goal box and center circle
can be realized. With the main competition moving to larger fields, the free
space will increase. Ultimately, the goal box of a full-size FIFA field, with up to
approximately 5.5 m times 18 m could be used as afield for the HRL. However,
with a strict local model based on the goals and the ball, it is possible for robots
to play the game without evaluating field markings at all.

Similar to the field lines, the definition of the goals may impose some chal-
lenges. Making use of the same equipment was one of the objectives. However,
eventually the main league will arrive at goals with a width of 7.3 m, such that
they can not be used for the HRL. Instead we propose to make use of standard
soccer goals as used for training purpose.

3.6 A Road Towards the Main Competition

While each challenge in itself is kept simplistic on purpose, the setup of the game
allows for teams to advance their software and hardware development over time
and step by step while still being able to participate in the league. For example,
the white goals require more sophisticated vision to differentiate them from the
white field lines. The hardware can be extended to using fully developed robots
complying with the kid and teen size rules which poses additional challenges
in the locomotion. Every year teams participate in the Rookie League they are
encouraged to advance in one of the fields, so by the end of the three-year
period they are allowed in the Rookie League their robots shall be advanced
enough to participate in the regular kid or teen size league. While completely
new teams are qualified to participate by default, teams have to demonstrate
their advancements in a simplified application process for their second and third
year in the Rookie League. This shall ensure that teams actually advance towards
being compliant with the main tournament.

4 Draft Rookie League Rule Sheet

The guiding principles of the rules are fostering exiting games for partici-
pants and visitors and paving new robotics researchers a path to the RoboCup
Humanoid League. Aiming for exiting games, robustness of the robots and the
robot behavior, as well as minimal human robot handler interaction is crucial.

Bridging the Gap - On a Humanoid Robotics Rookie League 201

Attracting many new researchers shall be assured by introducing as few rules as
possible to allow for easy implementation of the robot behavior and game play.
At the same time they should avoid levering out the competitive advantage of
more capable and robust robots. AppendixA shows an initial draft of the rules
[3]. In order to guide the participants towards the main Humanoid League, we
propose to allow participation to the HRL for a maximum of three years only In
order to make robots more easy to handle, rules foresee a limitation to 1 m in
size and 10 kg in weight. Robots may be started manually at the touch line, such
that human robot handlers do not need to enter the field during start or restart.
However, robots listening to the start command of the Humanoid League game
controller may be positioned anywhere on the field as an advantage. For start
and restart of the game a drop ball is carried out at the center point. The games
continue until time is up, a goal is scored or until there is no further progress in
the game (stuck game) for whatever reason. Typical scenarios for a stuck games
could be robots not being able to find the ball or move it over a longer period of
time e.g. because it is too close to a goal post or the goal keeper. Then there is a
fresh start. The quality of the overall game play, whilst attempting to make sure
that robust robots are not put at a disadvantage by other faster failing robots,
is accounted for by restarting, if less than half of the robots of one of the teams
are active and on the field. As stable locomotion is of paramount importance
and restrictions are few, disallowing to pick up fallen robots, other than during
a stoppage of the game, is considered a suitable rule to foster the development
of robust robots. If the robot is in danger of damaging itself or others, standing,
walking or fallen, it will be removed until next restart. As a default rule, signifi-
cant authority is given to the referee. It is expected, that during implementation
and the first trial run during a competition a few more rules need to be added.

5 Conclusions

The Humanoid Rookie League is an attempt to advance the RoboCup Humanoid
League towards the 2050 game while still allowing new teams to easily enter with
minimal requirements. It bridges the gap between a newcomer’s budget of a few
thousand Dollars and a 50.000 and more Dollars adult size robot. The HRL
competitions provide motivation to new robotics students through manageable
challenges and entertaining competitions. The Rookie League is closely linked
with the overall league development and sets a clear path towards participation
in the main competition after a maximum of three years. In this paper, we laid
out the motivation for the Rookie League, presented the guiding principles and
discussed a rule draft as a base for a broad discussion within the RoboCup
community.

202 R. Gerndt et al.

Appendix A

Draft of the RoboCup Humanoid Rookie League Rule
Sheet

The games in the RC Humanoid Rookie League (HRL) are played as drop-in
games for bipedal robots, with a minimal rule set. Every participating individual
or group contributes a single robotic player to a robot team. Scoring is according
to the HL drop-in rules. Individuals may participate in the Rookie league for a
maximum of three years only and must not have participated in the Humanoid
league before.

1. Field of Play

The HRL league is played on the fields of the RoboCup Humanoid League (cur-
rently 9 * 6 m). Cyan, respectively magenta cardboard figures represent the goal
keepers. They are suspended from the respective goals cross bars, reaching the
floor. Both figures have the same form. They are positioned by the referee, who
may change their position during any stoppage of the game.

2. The Ball

The ball is a FIFA size 1 ball with orange colored surface.

3. The Number of Players

The teams consist of 3–6 randomly chosen robots and change during the tour-
nament.

4. The Players

The robot players are bipedal autonomous robots that walk on two legs and
drive a ball by pushing or kicking. The maximum size of the robots is 1 m, the
maximum weight is 10 kg. Robots must bring red and blue team markers and
must not use blue or red on any part that is not interchangeable. Robots may
be started manually at the touch line of their team’s own half. Robots that are
started by the game controller may be positioned anywhere in their own half
After positioning and possibly starting the robots, human team members must
not interfere with the game play, except if explicitly called for by the referee.
Robots need to be equipped with a handle to be safely picked up by a referee and
an emergency switch off that is clearly marked and reachable. Pick-up of robots
by robot handler and re-entry only is allowed during stoppage of the game.

5. The Referee

Each match is controlled by a team of referees with one head referee, who has
full authority to enforce the Laws of the Game.

Bridging the Gap - On a Humanoid Robotics Rookie League 203

6. The Duration of the Match

A match is played in two half times of 10 min each with a break of 5 min.

7. Start and Restart of Play

The play is started and restarted by a drop ball at the kick-off point at the
center. The ball is in play for both teams immediately. Goals may be scored
immediately. A game is restarted for:

– second half time,
– after a goal was scored,
– after more than half of the robots of a team became inactive or removed after

a (re-)start,
– stuck game.

For (re-)start of game robots may be placed and possibly manually started by a
robot handler.

8. The Ball In and Out of Play

If the ball leaves the field of play, it is returned to field by the referee or an
assistant referee, one meter into the field, perpendicular to the point where it
crossed the line. There is no stoppage of the game.

9. The Method of Scoring

A goal is scored if the ball completely crossed the goal line between the two goal
posts.

10. Fouls and Misconducts

The following cases are considered as fouls, resulting in a removal penalty until
next restart of the game:

– any action posing the potential to significantly damaging a robot, including
itself,

– leaving the playing field (field of play and surrounding green surface),
– any other significant offense, e.g. obstructing the game, as considered by the

referee.

Robots potentially endangering humans by whatever activity are excluded
from the game (red card).

204 R. Gerndt et al.

References

1. Genter, K., Laue, T., Stone, P.: Three years of the RoboCup standard platform
league drop-in player competition: creating and maintaining a large scale ad hoc
teamwork robotics competition. JAAMAS 31, 790–820 (2017)

2. MacAlpine, P., Genter, K., Barrett, S., Stone, P.: The RoboCup 2013 drop-in player
challenges: experiments in ad hoc teamwork. In: IROS 2014 (2014)

3. N.N. Humanoid League Proposed HRL Rules. http://www.robocuphumanoid.org/
wp-content/uploads/HL-rookie-league-2.pdf

4. N.N. Humanoid League Proposed Roadmap. www.robocuphumanoid.org/wp-
content/uploads/HumanoidLeagueProposedRoadmap.pdf. Accessed 25 Mar 2018

5. N.N. Laws of the RoboCupSoccer Small Size League 2018 http://wiki.robocup.
org/images/4/4f/Small Size League - Rules 2018 Diff.pdf. Accessed 10 Apr 2018

6. N.N. Mixed Team Communication Protocol. github.com/fumanoids/mitecom.
Accessed 10 Apr 2018

7. N.N. RoboCup Humanoid League Rule Book 2018. https://www.robocuphuman
oid.org/wp-content/uploads/RCHL-2018-Rules-Proposal final.pdf

8. N.N. RoboCup Standard Platform League (NAO) Rule Book 2017. http://
spl.robocup.org/wp-content/uploads/downloads/Rules2017.pdf. Accessed 10 Apr
2018

9. N.N. RoboCup @home Educational Challenge. www.robocupathomeedu.org/
challenges/robocup-home-education-challenge-eurcj-2018. Accessed 22 May 2018

10. Paetzel, M., Baltes, J., Gerndt, R.: Robots as individuals in the Humanoid League.
In: RoboCup Symposium (2016)

11. Gerndt, R., Bohnen, M., da Silva Guerra, R., Asada, M.: The RoboCup mixed
reality league - a case study. In: Dubois, E., Gray, P., Nigay, L. (eds.) The Engi-
neering of Mixed Reality Systems. HCIS. Springer, London (2010). https://doi.
org/10.1007/978-1-84882-733-2 20

12. Gerndt, R., Schiering, I., Luessem, J.: Elements of SCRUM in a students robotics
project - a case study. In: Robotics in Education, RiE 2013 (2013)

13. Gerndt, R., Seifert, D., Baltes, J., Sadeghnejad, S., Behnke, S.: Humanoid robots
in soccer. IEEE Robot. Autom. Mag. 22(3), 147–154 (2015)

14. Gerndt, R., Luessem, J.: Designing robotics student projects from concept inven-
tories. In: Robotics in Education, RiE 2017 (2017)

http://www.robocuphumanoid.org/wp-content/uploads/HL-rookie-league-2.pdf
http://www.robocuphumanoid.org/wp-content/uploads/HL-rookie-league-2.pdf
www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
http://wiki.robocup.org/images/4/4f/Small_Size_League_-_Rules_2018_Diff.pdf
http://wiki.robocup.org/images/4/4f/Small_Size_League_-_Rules_2018_Diff.pdf
https://github.com/fumanoids/mitecom
https://www.robocuphumanoid.org/wp-content/uploads/RCHL-2018-Rules-Proposal_final.pdf
https://www.robocuphumanoid.org/wp-content/uploads/RCHL-2018-Rules-Proposal_final.pdf
http://spl.robocup.org/wp-content/uploads/downloads/Rules2017.pdf
http://spl.robocup.org/wp-content/uploads/downloads/Rules2017.pdf
www.robocupathomeedu.org/challenges/robocup-home-education-challenge-eurcj-2018
www.robocupathomeedu.org/challenges/robocup-home-education-challenge-eurcj-2018
https://doi.org/10.1007/978-1-84882-733-2_20
https://doi.org/10.1007/978-1-84882-733-2_20

Context Aware Robot Architecture,
Application to the RoboCup@Home

Challenge

Fabrice Jumel1,4, Jacques Saraydaryan1,4, Raphael Leber1,
Laetitia Matignon3,4,5, Eric Lombardi5, Christian Wolf2,4,5,

and Olivier Simonin2,4(B)

1 CPE Lyon, Université de Lyon, Villeurbanne, France
2 INSA Lyon, Université de Lyon, Villeurbanne, France

olivier.simonin@insa-lyon.fr
3 UCBL Lyon 1 Univ., Université de Lyon, Villeurbanne, France

4 CITI Lab., INRIA Chroma, Université de Lyon, Villeurbanne, France
5 LIRIS Lab., CNRS, Université de Lyon, Villeurbanne, France

Abstract. This paper presents an architecture dedicated to the orches-
tration of high level abilities of a humanoid robot, such as a Pepper, which
must perform some tasks as the ones proposed in the RoboCup@Home
competition. We present the main abilities that a humanoid service robot
should provide. We choose to build them based on recent methodologies
linked to social navigation and deep learning. We detail the architecture,
on how high level abilities are connected with low level sub-functions.
Finally we present first experimental results with a Pepper humanoid.

1 Introduction

Most of robotic architectures focus on a specific ability: autonomous navigation,
grasping, human-robot interaction, etc. Today, more and more applications and
professional or public contexts require a robot to be able to perform several tasks
with a high level of abstraction (help a human, execute a human order, serve
humans). While AI1 methods and technologies progress, expectations about ser-
vice robotics are growing. This is particularly true in complex human-populated
environments [1]. In this context we aim to define software architectures that
orchestrate and combine different high level abilities and their sub-functions.

Each high-level ability is generally built on sub-functions, that we call also
low level tasks or controls. We can mention for instance path-planning compu-
tation, SLAM2 function, object and human detection, or speech output. In this
paper we present an architecture which is able to perform high level tasks that
require several skills: navigation in dynamic - human-populated - environments,
object detection, people detection and recognition, speech recognition, and task

1 Artificial Intelligence.
2 Simultaneous Localization and Mapping.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 205–216, 2019.
https://doi.org/10.1007/978-3-030-27544-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_17

206 F. Jumel et al.

planning. Interacting with humans and answering to their orders is a very large
and challenging problem. In this paper, as a first step, we limit our study to the
high-level tasks proposed in the RoboCup@Home competition, by focusing on
social navigation. These tasks are presented in the next section.

Our approach distinguishes two main levels. The first one is the “decision”
level which selects the main high level task to do, and potentially in parallel.
The second level is defined as a set of general tasks which are required in several
high level tasks. We organize this level in a limited set of generic tasks, which
are themselves built on sub-functions that can be shared.

The paper is organized as follows. Section 2 presents the context of the
RoboCup@Home challenge and its relative tasks. We also discuss existing works
on robot software architectures. Then in Sect. 3 we give an overview of the pro-
posed architecture, before to detail in Sect. 4 how the General Behavior Manager
orchestrates the execution and selection of tasks. Section 5 details the naviga-
tion strategy selection and Sect. 6 gives on overview of methodologies used for
human detection and interaction. Section 7 illustrates in details the approach on
a complex scenario, then Sect. 8 presents first results in the RoboCup@Home
challenge. Finally Sect. 9 concludes the paper.

2 Service Robots and Software Architectures

We aim at developping software architectures and AI modules allowing
mobile/humanoid robots to navigate in human-populated environments and to
carry out high-level tasks. In this context, we focus on tasks proposed in the
RoboCup@Home challenge3, which requires to develop and to connect different
modules providing image analysis, decision making and learning, human-robot
interaction, and autonomous navigation. These modules must be orchestrated
in a whole architecture.

The scenarios driving our research concern mainly tour guide robots [2] and
waiter robots [3] which are variants of tasks proposed in the Robucup@Home
competition. For example, the cocktail party challenge of the RoboCup@Home
[4] consists for a robot to take orders during a private party in a flat. In order to
score, the robot has to find the room, ask guests about orders and give them to
the bartender located in another room. In order to fulfill this scenario, naviga-
tion skill and human-robot interaction skill (principally speech interaction) are
required. Other tasks are aimed, that are optional part of the challenge:

– Navigate inside the cocktail party room to find calling guests to take order
– Find a more discreet guest to take order
– Find a missing order (drink) on a table or equivalent (object recognition)
– Find back the guest concerned by the missing order (person recognition)
– Be able to describe the guests to the bartender, so that it can correctly

distribute the orders in the cocktail party room (person description).

3 http://www.robocupathome.org/.

http://www.robocupathome.org/

Context Aware Robot Architecture 207

A major issue in the design of a robot architecture is to allow the robot to
fulfill high level objectives while dealing with a complex and dynamic environ-
ment. More precisely, the robot has to simultaneously sense the environment,
navigate and detect people to interact, and so on. This requires to define dedi-
cated architectures able to orchestrate several tasks, mostly in parallel. Such an
issue requires to build behaviors over a middleware embedded in the robot. In
Calisi et al. [5] authors showed that a lot of frameworks have been proposed for
robotics software development. More recently, Chitic et al. [6] have underlined
that ROS has become a classic middleware to support such a development, with
a rich library of functions. Other middlewares, as [7], focus on tasks description
language and life cycles. To build a generic architecture, we have chosen ROS as
middleware: we inherit the publish-subscribe way of communication, as well as
services and actions, and the manager of concurrent processes (or nodes). Our
objective is to propose a generic architecture, able to deal with high level tasks,
ie. not focusing on a specific task, scenario, or robot. Concerning software archi-
tectures dedicated to humanoids, there are, up to now, few generic solutions to
manage service tasks. We can mention the work of Natale et al. [8] dedicated
to the iCub, where the architecture is turned towards code generation, motor
control, and interfaces.

3 Overview of the LyonTech Architecture

In this section we present the embedded AI software architecture of LyonTech’s
team, aiming at managing both high level decisions and low level tasks of Pep-
per. Figure 1 gives a general view of the proposal. It contains modules which
have been developed in different research work of the consortium, completed by
off-the-shelf modules which tackle standard tasks, as well as engineering bricks
interconnecting these modules.

On top, the General Behavior Manager works like an orchestrator and
gives orders to other blocks. Their combination allows to achieve high level tasks,
as detailed later. The architecture is organized in four principal functionality
blocks (cf. Fig. 1), that we detail below.

The Robot Navigation Manager is in charge of localizing the robot and
allowing dynamic navigation (obstacles avoidance). It uses two sub-functions
which are the ROS Navigation layer and the ROS Mapping layer (ie. provided
by ROS).

Perception of the environment is performed by the Object Detection and
learning module, based on deep neural networks [9] and off-the-shelf modules
like YOLO-2 [10], which have been retrained and fine-tuned on additional data
which we collected specifically for the targeted tasks. Labeled object positions
are provided to other blocks. In addition, detailed human information such as
human activity, posture, and identity is provided by the complementary People
Detection Learning module.

208 F. Jumel et al.

Fig. 1. LyonTech software architecture overview

Fig. 2. Our recent visual perception work: (a) gesture recognition [11]; (b) activity
recognition [12]

All human-robot interactions are managed by the Robot Human Inter-
action block embedded in the robot. The robot also maintains a knowledge
database about its environment (humans, objects, and points of interest posi-
tions).

Context Aware Robot Architecture 209

Fig. 3. Example of integration scenario including navigation and object recognition.

The last module, called the World Mapping, is in charge of mapping the
environment, including also semantic information, and relies on the ROS Map-
ping layer shared with the Robot Navigation Manager.

These modules are built on previous team’s work, which can be summarized
in four topics:

Perception: Our computer vision module brings knowledge in gesture recogni-
tion [11] and activity recognition [13], see illustrations in Fig. 2. These meth-
ods are capable of running in real time and have been integrated in our
platforms of mobile robots. Combined with object detection [10], this allows
us to be aware of the objects present in a room, their locations, as well as the
ongoing activities in this room (see illustration in Fig. 3).

Motion planning and Decision making: This module aims to deal with
motion planning in dynamic and uncertain environments, 2D mapping, and
2D localization. We combine our work on autonomous navigation in crowded
environments (human-aware navigation) [14] with service delivery strategies
[3].

Human-Robot Interactions: We have been working for several years on differ-
ent interactions with robots (from teleoperation to multi-robot orchestration
[15,16]). The Naoqi SDK, provided by Softbank Robotics with the Pepper
robot, gives a set of API that are mainly used for Robot and Human inter-
actions (speech recognition, text to speech, robot behavior feedbacks). In
order to highlight the robot activity, the Pepper tablet gives visual feedbacks
(javascript framework). In the context of the RoboCup@Home we use these

210 F. Jumel et al.

different functionalities to give a user friendly interaction with robots includ-
ing Animations, Tablet, and Dialogues.

Integration: All components are integrated using the ROS middleware, which is
the base system of our architecture. Figure 3 illustrates an integration scenario
and its implementation with a Pepper robot.

4 General Behavior Manager

The General Behavior Manager acts as an orchestrator of high level tasks. Four
main tasks are executed in parallel: Perception Task, Navigation Task, HRI Task,
and General Manager Task.

The General Manager task is in charge of loading a scenario description and
managing high level call of Perception, Navigation, and HRI tasks. Each task call
could interact synchronously or asynchronously with the General Manager Task.
This interaction is based on action as defined in ROS Architecture and leads
to a task state (pending, success, failure). The scenario description defines the
sequence and conditions of task calls including task timeout, multi-conditional
success, and target of the task (navigation point, dialogues, object to find, . . .).

With the help of given ontologies, when a task failure occurs, the general
manager attempts to change the task target before retrying. As mentioned in
[17], ontologies can be used to select objects that share same properties/usages.
For example, if the robot was asked to find a coke bottle, and if no one was
found, the general manager could provide the alternative target “fizzy drink”
(considered as parent class of coke) to the perception task.

5 Navigation Strategy Selection

The main objectives of a social aware robot navigation is first to be safe for
people around him, to be safe for himself, and then to navigate as quickly as
possible while respecting social conventions. The targeted environment can be
composed of dynamic obstacles, and of populated or congested areas. To deal
with such constraints, we provide our robot with the ability to select a navigation
strategy compliant with the current environment. To optimize robot navigation,

Fig. 4. Navigation strategy selection

Context Aware Robot Architecture 211

we propose to maintain a context of the robot environment. To do so we
distinguish two main dynamic parameters, the human density in the environment
and the environment complexity (level of congestion). On one hand, with the
help of the built map, we are able to compute the obstacle density of an area.
Once the area delimitation is computed, a percentage of obstacle pixel in this
area is computed. With the combination of the color distribution entropy [18] we
can determine if an area contains a lot of obstacles and how they are distributed
in the targeted area (complexity). The higher the obstacle density and dispersion
is, the higher the probability to freeze the robot during navigation is. On the
other hand, the world mapping function helps to maintain the observed human
locations into a map. The area delimitation is then provided by segmentation
following the approach of [19].

As shown in Fig. 4, maintaining different contexts into a map allows the
general manager to ask the navigation manager to select a navigation strategy
according to the goal to achieve and the context of the environment. The Navi-
gation manager holds a set of navigation strategies. Each navigation strategy is
focused on different objectives:

– optimize the robot navigation to go as quickly as possible to the objective,
while being adapted to the environment.

– ensure a safe navigation including recovery mode in case of freezing (eg. replay
last command before robot freeze).

– optimize the robot navigation into populated environment (eg. by following
the human flow [14]).

When the General Behavior Manager needs a Navigation Task, a first path is
computed from the robot actual position A to the goal G. This path, A → G is
computed by the ROS navigation task service (make plan service). Once the path
is computed, the General Behavior Management gets Context information and
the associated areas. Regarding to the path A → G, crossed areas are considered
and become sub navigation goals Si. Then the General Behavior Management asks
for a navigation task according to the appropriated navigation strategy πi for each
sub goal until the goal is reached: A → S0, . . . , Si−1 → Si, . . . , Sn−1 → G.

6 Human Detection and Interaction

The interaction of the robot with close people requires that the robot can col-
lect information about humans. To do so we build interaction abilities from the
following functionalities which are finally integrated (see Fig. 5 Human Detec-
tion/Learning block):

– Human Detection: with the huge increase of the efficiency of Deep learning
based tools, detection of objects and people is quickly carried out using stan-
dard RGB camera. For this purpose, we integrate the well known Yolo-2
model [10] (in its original C++ “darknet” implementation) in order to get
estimates of bounding boxes centered on humans in the visual field.

212 F. Jumel et al.

Fig. 5. People perception processing organization

– Human Identification (face detection): to allow interaction with human, it
is also required to recognize already met people. To tackle this problem, we
adapt a module of face recognition to our system. We use the method provided
by Adam Geitgey’s library4.

– Human pose: articulated pose provides important information for interaction
with humans. The openpose tools5 are used to extract information about the
skeleton of each person, i.e. a set of body key point positions. In addition, we
developed a function to determine main people poses like standing, sitting,
lying and hand call, by calculating the different key points relative positions.
Thanks to camera settings and pose, combined with human 2D normalized
data, we can estimate partial 3D pose of people. Therefore, we can improve
the posture detection, estimate the depth, and discern the different people
groups.

– Human dominant color top/trousers: all different clues are important to dis-
criminate people. Using openpose and a dominant color detection we can
detect main colors of specific body position if available (we developed a ROS
node including a HSV color transformation and a K-mean color clustering).

– Human activities: we recognize complex human activities with our own
method, recently introduced, and getting state of the art performance on
standard datasets [13]. This method was specifically designed for robot appli-
cations: it is capable of running in near time and requires only standard sen-
sors, i.e. a single RGB camera, while at the same time outperforming other
methods, which use multiple modalities.

An additional process is required to track all these data/encountered humans.
To do so we customize the world state estimator of detected object wire6. Wire
4 https://github.com/ageitgey/face recognition.
5 https://github.com/CMU-Perceptual-Computing-Lab/openpose.
6 http://wiki.ros.org/wire.

https://github.com/ageitgey/face_recognition
https://github.com/CMU-Perceptual-Computing-Lab/openpose
http://wiki.ros.org/wire

Context Aware Robot Architecture 213

provides a toolset to track various object attributes during the time. Object loca-
tion, color and label can be tracked through various models including Kalman
Filter (e.g for position attribute). All these tools include a model of uncertainty to
be robust in real situation. For this purpose, we customize world object model of
wire to track human position according to a defined Kalman filter and all addi-
tional labels (such as id, pose, activity, and dominant color) through uniform
distribution models.

With the help of this information, the General Manager updates the context
map. The people density of a given area could be computed and the navigation
strategies change according this update.

7 Step by Step Scenario Execution

In order to illustrate the functioning of our architecture, let’s see the execution of
an example of a general purpose robot scenario. The following scenario is aimed:
after the operator is found by the robot, the operator asks the robot to go to the
kitchen, to find Tom, and to say him a joke. First of all, with the existing map,
the World Mapping block provides to the General Behavior Manager a Context
including different room polygons with associated congestion level and people
density (0.5 by default).

The General Behavior Manager starts the 4 main tasks: Perception (using the
Object Detection/learning and People Detection/Learning blocks), Navigation,
HRI, and General Manager Task (GMT).

The GMT loads the targeted scenario, including sequences of executions
and task controls. The execution of this scenario is presented in Table 1. In this
table, gray rows refer to actions executed by the GMT itself and other rows to
task calls. Concerning the columns, the id refers to the sequence number of the
operation, the operation column to the type of general manager execution, the
task type column gives the name of the task called, the mode column can take
two values synchronous (Sync.) or asynchronous (ASync.). In the target column,
the inputs of the task call is set. Finally, The success conditions are defined by
the column of the same name.

After waiting the door is opened (1), the GMT computes sub goals and
get the associated strategy to go to the living room (2). For each sub goal
(3), the Navigation Task is called to go to the current sub-goal Si applying
the associated navigation strategy πi. When all Navigation Task succeeded, a
Perception Task is called to find a people (4). The GMT waits until a people is
detected. After that, it is asked to the operator to explain the mission to do (5).
When achieved, the GMT transforms the given information into a set of actions
(6). After recomputing sub goals (7), the robot is asked to detect human around
(8) and to go to the kitchen (9). Note that during the robot navigation, human
information is collected and transmitted to the World Management Block. When
the destination is reached, the GMT calls the World Management database
to see if there is a human in the kitchen (10). The robot asks to the human
confirmation about it’s identity (11). However, it is not Tom. The GMT tries

214 F. Jumel et al.

Table 1. Operation list of the General Manager (gray rows are GMT actions, others
are task calls)

id. Operation Task Type Mode Target Success Condition

1 Loop until Success Perception Sync. Opened Door State=success

2 Make Path to living Room, Compute sub. goals Si, get navigation strategy πi

3 For all Si Navigation Sync. Si, πi State=success

4 Loop until Success Perception Sync. Human State=success

5 Wait Success HRI Sync. Ask for Goal State=success

6 Compute task list from results of task.id=5

7 Make Path to Kitchen, Compute sub. goal Si, get Navigation strategy πi

8 Loop until Success of task.id=9 Perception ASync. Human State=success

9 For all Si Navigation Sync. Si, πi State=success

10 Call world management and check if human is in the kitchen

11 Wait Task End HRI Sync. Ask for Name Result=Tom

12 In case of Failure get new HRI Task Target = Human

13 Call world management and check if human is in the kitchen

14 Wait Task End HRI Sync. Tell a joke State=Success

to find a new valid target by changing the level of abstract of Tom resulting into
“Human” (12). After checking again if a human is still there (13), the robot tells
a joke (14).

8 Experimental Evaluation

In order to experiment our architecture with a Pepper humanoid, we prepared
Pepper to be controlled by a PC with ROS. The gateway between ROS and the
Pepper robot has been customized and allow to gather Pepper sensor information
(RGBD data, laser information, odometry,..). The ROS Pepper navigation task
has been defined with the ability to map the environment and avoid obstacles.
After comparing two object/people detection techniques (tensorflow Single Shot
Multibox Detector SSD and MobileNet, Darknet Yolo 2), the Darknet framework
with the Yolo 2 model gives currently better results concerning object detection.

Interaction between ROS and Naoqi Dialogue System has been made allowing
to test a simple general purpose robot service scenario: detect a people, ask for
a task, understand task “Find Maria”, navigate to search people, and identify
the targeted people.

Preliminary results with these tasks can be shown in the video7. In this
video, after introducing our research work on perception and navigation, a first
7 https://www.youtube.com/watch?v=TPTh KjVUJQ.

https://www.youtube.com/watch?v=TPTh_KjVUJQ

Context Aware Robot Architecture 215

experimental result with this scenario is shown. On the left side, the Robot
navigation is presented including map representation and simple object detection
from the robot side view. On the right side, results of object and people detection
are shown thanks to the Darknet framework and Yolo 2 model. Finally, in the
last part of the video, a simple general purpose robot service is presented.

9 Conclusion

In this paper, we offered an overview of the architecture developed by the Lyon-
Tech team to target the SSPL RoboCup@Home competition with a Pepper
humanoid. After introducing the different AI modules we developed, we pre-
sented the architecture which allows to organize them. Then we detailed the
navigation strategy selection and the human detection blocks. Finally, we intro-
duced first experimental results in a robot service scenario, including detection
of people, navigation and search for a person. The video presented in Sect. 8
illustrates the ability of the Pepper to manage such high level tasks. The last
stage of this work has been its evaluation during the Social Standard Platform
League (SSPL) competition, in Montreal, June 2018. We achieved fifth place,
showing the efficiency of the proposed architecture and its ability to orchestrate
several tasks and their sub-functions.

References

1. Iocchi, L., Lázaro, M.T., Jeanpierre, L., Mouaddib, A.-I., Erdem, E., Sahli, H.:
COACHES cooperative autonomous robots in complex and human populated envi-
ronments. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS
(LNAI), vol. 9336, pp. 465–477. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24309-2 35

2. Burgard, W., et al.: The interactive museum tour-guide robot. In: Proceedings
of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, AAAI 1998/IAAI 1998, Menlo Park, CA,
USA, pp. 11–18. American Association for Artificial Intelligence (1998)

3. Saraydaryan, J., Jumel, F., Simonin, O.: Robots delivering services to moving peo-
ple: individual vs. group patrolling strategies. In: IEEE ARSO, IEEE International
Workshop on Advanced Robotics and its Social Impacts (2015)

4. van Beek, L., Holz, D., Matamoros, M., Rascon, C., Wachsmuth, S.:
RoboCup@home 2018: rules and regulations (2018). http://www.robocupathome.
org/rules/2018 rulebook.pdf

5. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: Design choices for modular and flexible
robotic software development: the OpenRDK viewpoint (2012)

6. Chitic, S.-G., Ponge, J., Simonin, O.: Are middlewares ready for multi-robots sys-
tems? In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIM-
PAR 2014. LNCS (LNAI), vol. 8810, pp. 279–290. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11900-7 24

7. Lutkebohle, I., Philippsen, R., Pradeep, V., Marder-Eppstein, E., Wachsmuth, S.:
Generic middleware support for coordinating robot software components: the task-
state-pattern. J. Softw. Eng. Robot. 1(2), 20–39 (2011)

https://doi.org/10.1007/978-3-319-24309-2_35
https://doi.org/10.1007/978-3-319-24309-2_35
http://www.robocupathome.org/rules/2018_rulebook.pdf
http://www.robocupathome.org/rules/2018_rulebook.pdf
https://doi.org/10.1007/978-3-319-11900-7_24
https://doi.org/10.1007/978-3-319-11900-7_24

216 F. Jumel et al.

8. Natale, L., Paikan, A., Randazzo, M., Domenichelli, D.: The iCub software archi-
tecture: evolution and lessons learned. Front. Robot. AI 3, 24 (2016)

9. Moysset, B., Louradour, J., Wolf, C.: Learning to detect and localize many objects
from few examples. Pre-print: arXiv:1611.05664 (2016)

10. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference
on Computer Vision and Pattern Recognition CVPR (2017)

11. Neverova, N., Wolf, C., Taylor, G.W., Nebout, F.: ModDrop: adaptive multi-modal
gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(8), 1692–
1706 (2016)

12. Baradel, F., Wolf, C., Mille, J.: Pose-conditioned spatio-temporal attention for
human action recognition. Pre-print: arXiv:1703.10106 (2017)

13. Baradel, F., Wolf, C., Mille, J., Taylor, G.W.: Glimpse clouds: human activity
recognition from unstructured feature points. In: IEEE Conference on Computer
Vision and Pattern Recognition CVPR (2018)

14. Jumel, F., Saraydaryan, J., Simonin, O.: Mapping likelihood of encountering
humans: application to path planning in crowded environment. In: The European
Conference on Mobile Robotics, ECMR 2017, Paris, France (2017)

15. Sevrin, L., Noury, N., Abouchi, N., Jumel, F., Massot, B., Saraydaryan, J.: Prelim-
inary results on algorithms for multi-kinect trajectory fusion in a living lab. IRBM
Innov. Res. BioMed. Eng. 36(6), 361–366 (2015). Special Issue: SI

16. Nauer, E., Cordier, A., Gaillard, E.: Man-machine collaboration to acquire adap-
tation knowledge for a case-based reasoning system. In: ACM DL (ed.) WWW
2012, 21st International Conference on World Wide Web - SWCS 2012 Workshop,
Semantic Web Collaborative Spaces, Lyon, France, pp. 1113–1120. ACM, April
2012

17. Sommaruga, L., Perri, A., Furfari, F.: DomoML-env: an ontology for human home
interaction. In: Proceedings SWAP 2005, the 2nd Italian Semantic Web Workshop,
Trento, Italy, 14–16 December 2005. CEUR Workshop Proceedings (2005)

18. Sun, J., Zhang, X., Cui, J., Zhou, L.: Image retrieval based on color distribution
entropy. Pattern Recogn. Lett. 27(10), 1122–1126 (2006)

19. Mielle, M., Magnusson, M., Lilienthal, A.J.: A method to segment maps from dif-
ferent modalities using free space layout - MAORIS: map of ripples segmentation.
CoRR, abs/1709.09899 (2017)

http://arxiv.org/abs/1611.05664
http://arxiv.org/abs/1703.10106

From Commands to Goal-Based Dialogs:
A Roadmap to Achieve Natural Language

Interaction in RoboCup@Home

Mauricio Matamoros(B) , Karin Harbusch, and Dietrich Paulus

Active Vision Group (AGAS), University of Koblenz-Landau,
Universitätsstr. 1, 56070 Koblenz, Germany

mmatamorosmc@gmail.com

Abstract. On the one hand, speech is a key aspect to people’s communi-
cation. On the other, it is widely acknowledged that language proficiency
is related to intelligence. Therefore, intelligent robots should be able to
understand, at least, people’s orders within their application domain.
These insights are not new in RoboCup@Home, but we lack of a long-
term plan to evaluate this approach.

In this paper we conduct a brief review of the achievements on
automated speech recognition and natural language understanding in
RoboCup@Home. Furthermore, we discuss main challenges to tackle in
spoken human-robot interaction within the scope of this competition.
Finally, we contribute by presenting a pipelined road map to engender
research in the area of natural language understanding applied to domes-
tic service robotics.

Keywords: Robotic competitions ·
Natural language understanding · Artificial intelligence and robotics

1 Introduction

From its foundation, RoboCup@Home has stressed the importance of natural
interaction between humans and robots. With the target perspective that intel-
ligent robots can understand people’s orders that fall within their application
domain. Thus, Human-Robot Interaction (HRI) has always been pursued in the
competition.

However, a detailed evaluation of natural language interactions is not easy.
In favor of many other functions in early stages of the robot development, sim-
ple straightforward commands often served the purpose of interaction. This,
along with (a) the noisy competition environments, (b) the biased, non-native
speaker operators; and (c) the use of command generators to instruct robots have
impeded the definition of fine-grained evaluation measures RoboCup@Home for
natural language understanding in the domain of RoboCup@Home.

In order to achieve this goal, we first analyzed the progression of the league
in Automatic Speech Recognition (ASR) and Natural-Language Understanding
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 217–229, 2019.
https://doi.org/10.1007/978-3-030-27544-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_18&domain=pdf
http://orcid.org/0000-0002-4054-9079
https://doi.org/10.1007/978-3-030-27544-0_18

218 M. Matamoros et al.

(NLU) in the last nine years. Our proposal is based on claims made by the partic-
ipating teams in their Team Description Papers (TDPs), relevant publications,
rulebooks, multimedia material available on-line, and our cumulative experience
as participants and referees in RoboCup@Home since 2009.

In this paper we present a road map to pave the way towards a completely
natural interaction between humans and robots. This ultimate goal is achieved
by defining milestones that promote the use of natural-language interaction. We
underpin our strategy by getting the general public involved in the creation of
a large annotated dataset of untrained and unbiased operators, inexistent to
the extent of our knowledge. Here, the competition plays a fundamental role,
since RoboCup@Home sets the perfect scenario to involve the audience in data
production for scientific use. We believe this data will foster research in both,
Natural-Language Processing (NLP) and HRI.

The paper is organized as follows. In Sect. 2, we briefly introduce the
RoboCup@Home league. In turn, we present a summary of the last nine years
of the competition, and give an overview of the strategies used by the teams
to solve the tests. In Sect. 3 we summarize the main unresolved challenges in
human-robot interaction. In Sect. 4 we discuss a roadmap and its milestones to
deal with the key problems. Finally, in Sect. 5 we sum up and draw conclusions.

2 Speech Recognition and Natural Language
Understanding in RoboCup@Home

RoboCup@Home aims at developing service and assistive robot technology by
evaluating a robot’s performance with a series of tests in an unstandardized
and realistic scenario. Here, new approaches are tested in a competitive setup
where robots have to solve a set of common household tasks upon request. Con-
sequently, the competition influences research, even sometimes directing it. Such
is the case of ASR and NLU, since they are fundamental to HRI.

In a test, a task is divided in a sequential set of subgoals or phases, being
necessary to fulfill one goal to advance to the next phase [8]. This approach
keeps difficulty reasonably low for newcomers, while still striving for high top
level performance [25]. Usually, in the beginning, the operator gives a spoken
command to the robot. A command is typically a short imperative sentence
containing all required information to execute a predefined task. Normally, the
operator and the referee take account of the robot’s processing, whereas the
scoring is executed by the Technical Committee (TC), which is also in charge of
design tests and review rules. Detailed descriptions can be found in [8,27].

In RoboCup@Home, ASR and NLU are closely related. Spoken commands
have always been the preferred way to operate a robot and, since robots need to
confirm they have understood the command, both abilities are commonly scored
together.

The evolution process of Automatic Speech Recognition and Natural-
Language Understanding in RoboCup@Home is addressed as follows. In Sect. 2.1,
we summarize the last nine years of competition, focusing on the main challenges

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 219

the teams had to face. In Sect. 2.2, we present an overview on strategies used to
solve the tests.

2.1 Historical Overview of HRI Testing

Our review starts in 2009. We have chosen this year because the rulebook of
2009 is the oldest available on the RoboCup@Home website1.

For the competition in Graz 2009 the guidelines for operating a robot were
loose. Most interactions were hardwired, based on each team’s preconceptions
of what a natural HRI could be. In addition, the use of headsets and wireless
microphones was common, and some tests rewarded the use of gestures over
speech.

Istanbul 2010 came with important changes: (a) scoring was made explicit,
(b) score sheets were included in the rulebook, and (c) interaction guidelines
were included as part of the tasks in each test. For instance, a robot could score
for catching the name of a person or room (typically, only the name was given).

But the cornerstone of 2010 was the inclusion of the General Purpose Service
Robot (GPSR) test. In this test the operator could command the robot to perform
any task from any of other test (including those of former years). Moreover,
robots had to deal with long sentences and incomplete information for the first
time; a big step in NLU and HRI. Notwithstanding, all interactions in GPSR
followed the patterns used in the other tests.

For Singapore 2011 most interaction guidelines had been removed and a
command generator2 was developed by the TC for GPSR (teams only had
access to a limited version).

No significant changes in NLP or spoken HRI were introduced in the next
three years. Nevertheless, the TC noticed a sustained performance decrease in
command retrieval.

To help teams, in João Pessoa 2014 the TC introduced a way to bypass
speech recognition in order to solve the task: the Continue rule. However, only
few teams took advantage of it.

For Hefei 2015 the use of QR codes to bypass ASR was made compulsory.
Moreover, the data recording feature allowed teams to get a scoring bonus and
contributing with the league by providing all data acquired by the robot during a
test. In addition, a new command generator was open sourced. Notwithstanding,
even having access to the verbatim output of the GPSR command generator via
the QR Code, many robots remained unresponsive.

In consequence, Leipzig 2016, the TC decided to provide open access to
the command generator and the generation grammars about one month before
the competition. This was a crucial decision due to its direct impact on natural
HRI, as explained in Sect. 3. Cloud Computing was another minor but important
change. Prior to this year, the availability of an Internet connection through the
arena’s wireless network wasn’t granted. However, in combination with the low

1 http://www.robocupathome.org.
2 Available on-line: http://komeisugiura.jp/software/2010 GeneralPurposeTest.tgz.

http://www.robocupathome.org
http://komeisugiura.jp/software/2010_GeneralPurposeTest.tgz

220 M. Matamoros et al.

reliability of the network, discouraged teams from exploring solutions based on
cloud services.

By Nagoya 2017, the previous two years of tests focused on benchmarking
had paid off (See Table 2). In addition to an increase in performance in ASR,
the relevance of command interpretation and NLU grew with the inclusion of
the Standard Platform Leagues (SPL). The out-of-the-box-ready robots allowed
teams to focus on high-level problems such as command interpretation, NLU,
and task planning and reasoning. This year was the first time in which robots
had to answer questions about their environment and previously executed tasks.
Moreover, in the Tour-Guide test they also had to attract people outside the
competition area, introduce themselves, and answer people’s questions without
the help of any grammar.

2.2 Adopted Strategies and Software Solutions for HRI

Either in face-to-face communication or remotely like by phone, radio, or TV,
the hearer decodes the produced sounds of the speaker, trying to match them
with the best interpretation given the current context. Similarly, spoken Human-
Robot Interaction requires the extraction and analysis of the language elements
of the uttered sentence.

Fig. 1. One of the most common processing chains for spoken commands

Table 1. Most used ASR software in
2017
Usage ASR engine name

25.81% CMU [Pocket] Sphinx

16.13% Google Speech Api

16.13% Microsoft Speech Api

12.90% Julius

9.68% Nuance VoCon/DNS

6.45% Rospeex

6.45% Intel RealSense SDK

3.23% Amazon AWS/Alexa

3.23% Kaldi

3.23% iFlyTek

9.68% Unreported

Although possible, dealing with audio
signals can be extremely difficult in high lev-
els of abstraction [3,16]. Therefore, the most
broadly adopted solution consists in using
an Automatic Speech Recognition (ASR)
engine to get a text-transcript for further
processing as depicted in Fig. 1. Typically,
cardioid microphones are used as main
audio input for the ASR engine to cope with
noise. Afterwards, the ASR engine output
is preprocessed by some sort of [natural]
language processor so the task planner can
select the most adequate behavior.

Other than the microphone itself, filters
are normally absent and the filtering task
is delegated to the ASR engine itself [4].
Although several noise-reduction filters have

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 221

been tested in the competitions, we couldn’t find any reported successful solution
other than HARK3 [2,7,14]. However, HARK is used mostly for sound-source
localization and separation.

Continuing with the pipeline of Fig. 1, the most commonly adopted software
solutions include Loquendo (now Nuance) ASR [22], and the Microsoft Speech
API [17], being most popular CMU Sphinx [19,23] as Table 1 shows. However,
in 2017, due to the limited computing power of the robots in the SPL, most
teams used cloud services (mainly the Google speech API [14,26]) or relied on
the built-in ASR system [12,24] which, as the rightmost two columns of Table 2
show, were not as good as other solutions.

Table 2. Top-10 scores in ASR-related tests (final rank in parentheses)

Rank 2015 2016 2017

OPL DSPL SSPL

1 86.7% (1) 86.7% (3) 96.7% (1) 67.3% (1) 71.5% (1)

2 83.3% (2) 83.3% (6) 83.3% (3) 45.3% (5) 52.1% (2)

3 70.0% (8) 72.7% (13) 73.3% (5) 37.3% (3) 36.4% (4)

4 70.0% (10) 60.7% (2) 70.0% (4) 12.0% (4) 30.3% (5)

5 66.7% (6) 60.7% (5) 66.7% (2) 3.3% (7) 29.1% (6)

Top5 x 75.3% 72.8% 78.0% 33.0% 43.9%

Top5 σ 9.0% 12.2% 12.2% 25.8% 18.0%

Despite the remarkable advances achieved in Natural-Language Processing
and task planning in recent years, RoboCup@Home has taken little advantage of
it. Some reasons include (a) the sequential nature of the tests, (b) the simplicity
of the tasks (HRI-wise), (c) the computational power available in the robot, (d)
the lack of awareness due to sensors’ limitations, and (e) the need of recognizing
only a few words. In consequence, most approaches for NLP relied in keyword

spotting or pattern matching to trigger the execution of a state machine [15,20].
At least in the beginning, this strategy seemed to be faster and more robust than
its more advanced counterparts, albeit much simpler.

Despite this, robust A.I. solutions have always been in play. As of 2013, it was
common to find the task planner and the natural language processor fused in the
same module, which doesn’t seem to be the case anymore. Common strategies
included (a) the use of rules of inference for both, sentence parsing and task
planning [11]; (b) probabilistic parsers [5], (c) semantic networks [17], and (d)
regular expressions [15] to name some.

Although keyword spotting, pattern matching, and state machines are cur-
rently used solutions (specially in simple tests), we spotted more powerful and
3 HARK (Honda Research Institute Japan Audition for Robots with Kyoto Univer-

sity) is an open-source robot audition software that includes modules for ASR and
sound-source localization and sound separation. Source: https://www.hark.jp/.

https://www.hark.jp/

222 M. Matamoros et al.

avant-garde approaches. Whilst in 2017 only 39% of the teams didn’t mentioned
neither NLP nor NLU approaches in their Team Description Paper (TDP), in all
other reports the task planner and the NLP are separated. Among the approaches
for processing language, we found (a) Probabilistic Semantic Parsers [6]; (b) Mul-
timodal Residual Deep Neural Networks [10], (c) ontology-based parsers over
inference engines [18], and (d) probabilistic parsers for syntax-tree extraction
along with lambda calculus for semantic parsing [9]. The Stanford Parser [21]
is the most broadly adopted solution for POS-tagging and syntactic tree extrac-
tion, and LU4R [1], a Spoken Language Understanding Chain for HRI developed
in La Sapienza [13] by participants of RoboCup@Home which is used by several
teams.

These newer solutions have increased the robots’ performance in the latter
versions of GPSR when some ambiguity was added. Nevertheless, the league
does not acquire these newer approaches. Most robots are still using grammar-
based ASR engines, which limit the input of the NLP unit. Moreover, so far
no test requires the resolution of ellipsis or anaphora. Finally, another major
inconvenience, is the use of command generators instead of natural interactions.
How to develop HRI tests which focus on these problems is discussed in Sect. 3.

3 Challenges

As stated in previous sections, several setbacks have been holding back the
league’s advances in natural language dialogs with the robot. Here we exem-
plify challenges and come up with guidelines for future research when addressing
tougher scenarios.

3.1 Noise

One of the most problematic aspects (and to which most attention has been
paid) is the noise in the competition environment. Having a separated hall as
in 2012 didn’t help much. The ambient noise produced by over two hundred
people greatly exceeds the noise levels of an average apartment.

In the past, several solutions have been proposed to this problem. Having a
separate hall, arenas with tall walls, and transform the arena in a sound-proof
closed area with glass walls are recurrent examples. However, service robots will
also operate in noisy environments such as airports and shopping malls. Thus,
we think it is best to deal with this issue in an early stage. For this reason, noise
is addressed in the roadmap presented in Sect. 4.

3.2 Operators

An aspect that has characterized RoboCup@Home is that the league has always
been robot-friendly. People volunteering as operators in RoboCup@Home are
often patient and prone to follow the robot’s instructions, unconsciously trying
to help the robot to succeed (e.g. repeat a given command louder when the

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 223

robot seems unresponsive). In addition, almost all the operators are specialists,
or at least familiar with service robotics. In other words, all testing has been
performed by (unconsciously) biased operators, making it easier for the robots
to accomplish their tasks. However, trying to give a positive impression to the
audience, has the disadvantage of voiding the purpose of RoboCup@Home of
providing real-case scenarios for testing.

Another important closely related aspect addresses the demographics of the
league’s participants. An international community will offer diverse accents

to the robots and styles (which may not be correct). But this diversity comes
with a price. With few exceptions, operators having English as second language
lack the richness and verbal fluency of a native speaker. Same hold for gender
and age.

Therefore bias, variety of speech and diversity of accents, lexicon, and styles,
are also addressed in the roadmap of Sect. 4.

3.3 Generators

Although the rulebooks never provided interaction templates, suggested guide-
lines and the sentences produced by the command generators codify biased HRI
in a similar way. Besides, officializing the release of the command generator and
its grammars had the pernicious effect of replacing natural language with a sim-
plistic one, i.e. artificializing interactions. Moreover, the person in charge of the
generator (one of the authors of this paper), although proficient, is not a native
speaker of the official competition language (US-English). In summary, despite
stimulating immediate positive results and supplying the teams with a powerful
tool, the careless use of generators might delve into a ballast in the long term.
For this reason, the use of command generators is revised in the roadmap of
Sect. 4.

In order to overcome the problems discussed in this section, the proposed
solution should force robots to deal with a vast diversity of unbiased operators
speaking freely and under reasonable conditions of noise, while keeping tests fair
and scientifically meaningful. This ultimate goal is analyzed and split into small
steps which are presented in Sect. 4.

4 Solution Strategy and Roadmap

Ideally, the robots will lead a natural-language dialogue in real-environment
conditions. This is the ultimate goal in service robotics regarding NLU. Consid-
ering the challenges presented in Sect. 3 we propose a series of specific tests and
changes to the existing ones.

In the previous section we identified the biased operators in combination
with restricted GPSR as a main obstacle for the stagnation in elaborate HRI.
In order to set up a rich corpus of human-robot dialogs, we opt for recruiting
untrained English native speakers as untrained operators, e.g. selected from the
audience. The unbiased operators must have little to no previous experience

224 M. Matamoros et al.

in RoboCup@Home (or preferably in robotics), and be allowed to interact freely
with the robot. With these changes, we are solving biasing, variety and diversity
of speech, and tackling the artificiality introduced with the command generators.

Needless to say, the proposed changes towards free natural-language dialogs
with the robot have to be applied gradually. Therefore, in this section we present
a roadmap of three phases that takes as axis the General Purpose Service Robot
test before changes are propagated and adapted for other tests. Each phase
sets a constraint that will rule over the upcoming featured milestones. Mile-
stones present small increments in the difficulty of the NLU task, presumably
achievable with the data collected in former years. Once solved in GPSR, the
constraints of a milestone would become standard practices in other tests. In
addition, milestones are planned to respect the two-years-limit established by
the founders of the league [8]. Furthermore, the proposed roadmap has the
advantage of being adaptable. If sufficient performance hasn’t been achieved,
the milestones can be shifted forward in time.

In order not to overtax the teams, we propose the following 3-step pipeline to
implement the changes by small increments towards free natural-language dialogs
with the robots. First, teams test and benchmark with recordings addressing the
features of the milestones newly defined; then, those features are tested in GPSR;
and finally, propagated to all other pertinent tests.

Hence, the strategy considers also the inclusion of a Natural-Language Under-
standing and Action Planning benchmark in Stage I with a small contribution
to the overall score. In this benchmark, a team receives a set of sound files,
each one containing a task-execution request from an unbiased operator of the
same kind that would be given in GPSR. The A.I. of the robot needs to tran-
scribe and analyze these recordings, extracting either a goal, a plan with a set
of actions to carry out, or a set of questions or statements to continue the inter-
action. The score should consider not only the analytical quality of producing
transcripts (where applicable penalizing hard-wired constructions in favor of gen-
eralized NLP-rules), but also how far the robot went in its planning, and if it
was following the right direction. In this way, milestones could be tested one
or two years before being implemented in GPSR and propagated to other tests,
giving time to teams to prepare. Furthermore, by giving the same recordings to
all teams, fairness and replicability are addressed, while noise can be tackled by
superposing ambient noise to the recordings of the operators. It will be up to
the TC to decide on the nature and intensity of the noise regarding the league’s
advances in the subject.

In addition, to support the league and foster research, the proposed strategy
exploits the Data Recording feature, incorporated in 2015 to the competition.
This is deemed as fundamental for the success of our proposal. We think all inter-
actions between the operator and the robot should be recorded and distributed
under Open Access license as soon as a transcription is available. This includes
all benchmarking sets from previous years. In this way, the league supports both,
experienced and new competitors. Beyond this obvious assistance the entire sci-
entific community gains relevance. In early stages, teams providing recordings

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 225

of all speech-based interactions during a test might receive a bonus proportional
to the score obtained, as well as an additional bonus or a certificate (as decided
by the TC) for annotating the provided data. Later on, such policy should be
made compulsory for the roadmap to work with full efficiency, automating the
collection process if possible.

Before summing up by means of presenting the roadmap, we have to state
some minor clarifications: (1) In all phases, operators with no background in
robotics are selected from the audience by the TC. (2) Unless the test specifies
otherwise, chosen operators shall be fluent English speakers. (3) Commands,
goals, and tasks are generated before the test. A referee must explain all pertinent
information to the operators before spoken interactions are recorded and noise
overlapped. (4) The TC randomly assigns to each robot a set of generated tasks
from the pool. The robot will listen to the recording, but the operator must be
present for further (unexpected) interactions.

Roadmap Phase 1: From Commands to Goal Formulation

The referee gives a specific goal to the operator along with all pertinent informa-
tion regarding the desired task. For this purpose, a random command generator
can be used. When required, the operator can practice with the referee. Referees
assist operators in unexpected situations.

The intensity of overlapped noise should increase gradually, starting from rel-
atively quiet environments (country house, city apartment, office, etc.) towards
moderately noisy ones (busy office, or a restaurant with background music).

Yearly Progress

2019 The operator reads the generated command.
Note: This vanilla milestone introduces no change to allow the bench-
marking of the next milestone in the pipeline.

2020 The operator tries to memorize the command, repeating it to the robot
afterwards. Slight variations are expected.

2022 The referee explains the task to the operator, who has to command the
robot using their own words (e.g. rephrasing).

2024 The operator requires the robot to accomplish a task, although not neces-
sarily in an imperative way, as if suggesting.

2028 The operator tries to explain the goal to the robot, not specifying what
to do, but the expected final result.

While no big changes are expected during the first four years in NLP, we fore-
see the inclusion of more robust filters and the use of less constrained grammars.
However, by the third milestone (2022), operators might unintentionally neglect
information, so robots will need to reconcile information as it arrives, making
questions as needed. Furthermore, people normally make a very efficient use of
language, so references are very common. Therefore, we expect the exploration
of reference resolution such as ellipsis and anaphora by this year. Finally, the
latter milestones will keep the pace, slightly moving the focus to task planning
while addressing new types of sentences.

226 M. Matamoros et al.

Roadmap Phase 2: Towards Dialog-Based Interaction

The referee gives to the operator a set of examples of what robots can do in a
given domain. The operator must propose a similar task for the robot which has
to be approved by the referee. The robot may not know how to accomplish the
task, in which case the procedure is explained by the operator.

The intensity of overlapped noise ranges from medium to high, with sudden
bursts of loud recorded human voices like in shopping malls, grocery stores, and
airports are good examples.

Yearly Progress

2032 After receiving a set of examples, the operator elicits a similar behavior
to the robot. The procedure can be explained in detail step by step.

2036 After receiving a topic and a set of examples, the operator requests some-
thing of the same difficulty. Sub-goals are detailed to the robot, but not
the individual commands. The operator corrects the robot’s plan.

In these phases, we continuously add new elements to NLU, integrating it
deeper with planning, while, at the same time, we are collecting new applications
from users (the potential market). Plan-learning using natural language requires
the integration of cardinality, as well as spatial and temporal relationships (e.g.
the operator may request make me a sandwich, explaining later on the steps like
grab a slice of bread, spread mayo. . .).

In contrast to only presenting an initiated plan to the operator, the tasks
stimulate that the operator and the robot have to enter in a dialog towards an
unconstrained natural interaction.

Roadmap Goal: Reaching Unconstrained Interaction

In the last phase, the operators only get explained the State-of-the-Art, i.e. the
limits of what the robots can achieve. They can request anything crossing their
minds within those limits the way they want. The robot may not know how
to accomplish the task, in which case the procedure is freely explained by the
operator in a dialog.

Yearly Progress

2040 The operator explains to the robot how to perform an entirely new task
and what the results should be.

2044 The operator requires anything from the robot within the state-of-the-art.
All planning is left to the robot.

We believe the presented roadmap helps the RoboCup@Home community to
push the boundaries of research in HRI.

The first steps will force teams to look for alternatives to grammar-based
ASR engines, or at least a less restricted ones. Besides, the continuous analysis
of audio signals to separate the operators’ voice from noise is also addressed,
although dealing with noise can be left as an option for daring teams.

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 227

Regarding NLU, the first steps will take current approaches to the limit.
Unbiased operators will gradually expose robots to the richness of free speech,
while the pipeline will grant time to prepare.

Later on, moving from imperative sentences (e.g. clean the bedroom) to goal-
driven sentences of any kind (e.g. I need the room clean for tonight, is the break-
fast ready?) will not only have the league working with semantics and pragmatics,
but also might foster research in action planning.

Especially, in the second phase, more complex elements of language analysis
are incorporated, paving the road towards a dialog-based interaction. On that
basis, we stipulate conversational robots in RoboCup@Home. This claim is sub-
stantiated in the last phase by widening the domain and removing all constrains
from the operators, in order to deal with real-world situations.

Nevertheless the roadmap provides the necessary flexibility for the worst-case
scenario where direct instructions can be given to the robots.

5 Conclusions

In this paper we provided a historical overview of testing natural-language inter-
actions with robots over the last nine years of RoboCup@Home. We outlined the
state-of-the-art Automatic Speech Recognition and Natural-Language Process-
ing. We quantified recent strategies and software solutions adopted by teams to
overcome the trials set in the competition.

In these observations we identified a set of challenges that haven’t been tack-
led. Critical components that hamper free dialogs with the robot are posed by
the command generator along with the subconscious unintentional bias of the
operators. We inspected how individual test features prevent the league from
dealing with free natural language. Based on this study, we propose a strategy
and a roadmap that formulate key features to implement the in the individual
NLP components of the robot (see Fig. 1) to conquer those challenges. Many test
details strongly depend on the advancement of ASR engines, neglects non-verbal
communication, so there should be an entangled roadmap for these features.

We hope this roadmap will serve as initiative to promote long-term planning
in RoboCup@Home. In particular our contribution elaborates on stepstones to
elicit thorough NLP to empower robots with strong natural-language skills.

References

1. Bastianelli, E., Croce, D., Vanzo, A., Basili, R., Nardi, D.: A discriminative
approach to grounded spoken language understanding in interactive robotics. In:
IJCAI, pp. 2747–2753 (2016)

2. Demura, K., et al.: Happy mini 2017 team description paper. RoboCup@Home
2017 Team Description Papers (2017)

3. Dominey, P.F.: Learning grammatical constructions from narrated video events for
human–robot interaction. In: Proceedings IEEE Humanoid Robotics Conference,
Karlsruhe, Germany (2003)

228 M. Matamoros et al.

4. Doostdar, M., Schiffer, S., Lakemeyer, G.: A robust speech recognition system for
service-robotics applications. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou,
C. (eds.) RoboCup 2008. LNCS, vol. 5399, pp. 1–12. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02921-9 1

5. Gaisser, F., et al.: Delft robotics RoboCup@Home 2013 team description paper.
In: Proceedings RoboCup Competition (2013)

6. Hart, J.W., Stone, P., Thomaz, A., Niekum, S.: UT Austin villa RoboCup@Home
domestic standard platform league team description paper. RoboCup@Home 2017
Team Description Papers (2017)

7. Hori, S., et al.: Hibikino-Musashi@Home 2017 team description paper.
RoboCup@Home 2017 Team Description Papers (2017)

8. Iocchi, L., Holz, D., Ruiz-del Solar, J., Sugiura, K., Van Der Zant, T.:
RoboCup@Home: analysis and results of evolving competitions for domestic and
service robots. Artif. Intell. 229, 258–281 (2015)

9. Lee, B.J., et al.: 2017 AuPair team description paper. RoboCup@Home 2017 Team
Description Papers (2017)

10. Liu, J., Zhang, Z., Tang, B., Chen, X.: WrightEagle@Home 2017 team description
paper. RoboCup@Home 2017 Team Description Papers (2017)

11. Llarena, A., Boldt, J.F., Steinke, N.S., Engelmeyer, H., Rojas, R.: Berlin-
United@Home 2013 team description paper. In: Proceedings RoboCup Compe-
tition (2013)

12. Mart́ınez, L., et al.: UChile HomeBreakers 2017 team description paper.
RoboCup@Home 2017 Team Description Papers (2017)

13. Lázaro, M.T., Iocchi, L., Nardi, D., Hanheide, M., Fentanes, J.P.: SPQReL 2017
team description paper. RoboCup@Home 2017 Team Description Papers (2017)

14. Oishi, S., et al.: AISL-TUT@Home league 2017 team description paper.
RoboCup@Home 2017 Team Description Papers (2017)

15. Pineda, L., et al.: The Golem team, RoboCup@Home 2013 (2013)
16. Roy, D.K., Pentland, A.P.: Learning words from sights and sounds: a computational

model. Cogn. Sci. 26(1), 113–146 (2002)
17. Savage, J., et al.: Pumas@Home 2013 team description paper (2013)
18. Savage, J., et al.: Pumas@Home 2017 team description paper. RoboCup@Home

2017 Team Description Papers (2017)
19. Schiffer, S., Niemüller, T., Doostdar, M., Lakemeyer, G.: AllemaniACs@Home 2009

team description. In: Proceedings CD RoboCup (2009)
20. Seib, V., Manthe, S., Memmesheimer, R., Polster, F., Paulus, D.: Team

Homer@UniKoblenz—approaches and contributions to the RoboCup@Home com-
petition. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015.
LNCS, vol. 9513, pp. 83–94. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-29339-4 7

21. Stanford: CoreNLP (2011). http://nlp.stanford.edu:8080/corenlp/
22. Stückler, J., Dröschel, D., Gräve, K., Holz, D., Schreiber, M., Behnke, S.: Nim-

bRo@Home 2010 team description (2010)
23. Wachsmuth, S., Lier, F., Meyer zu Borgsen, S., Kummert, J., Lach, L., Sixt, D.:

ToBI - team of Bielefeld a human-robot interaction system for RoboCup@Home
2017. RoboCup@Home 2017 Team Description Papers (2017)

24. Williams, M.A., et al.: UTS unleashed! For RoboCup 2017@home SPL.
RoboCup@Home 2017 Team Description Papers (2017)

25. Wisspeintner, T., Van Der Zant, T., Iocchi, L., Schiffer, S.: RoboCup@Home: sci-
entific competition and benchmarking for domestic service robots. Interact. Stud.
10(3), 392–426 (2009)

https://doi.org/10.1007/978-3-642-02921-9_1
https://doi.org/10.1007/978-3-319-29339-4_7
https://doi.org/10.1007/978-3-319-29339-4_7
http://nlp.stanford.edu:8080/corenlp/

A Roadmap to Achieve Natural Language Interaction in RoboCup@Home 229

26. Yaguchi, H., et al.: JSK@Home: team description paper for RoboCup@Home 2017.
RoboCup@Home 2017 Team Description Papers (2017)

27. van der Zant, T., Wisspeintner, T.: RoboCup@Home: creating and benchmarking
tomorrows service robot applications. In: Robotic Soccer. InTech (2007)

RoboCupSimData: Software and Data
for Machine Learning from RoboCup

Simulation League

Olivia Michael1 , Oliver Obst1(B) , Falk Schmidsberger2 ,
and Frieder Stolzenburg2

1 Centre for Research in Mathematics, Western Sydney University,
Locked Bag 1797, Penrith, NSW 2751, Australia

O.Obst@westernsydney.edu.au
2 Automation and Computer Sciences Department,

Harz University of Applied Sciences,

Friedrichstr. 57–59, 38855 Wernigerode, Germany

Abstract. The main goal of this work is to facilitate machine learning
research for multi-robot systems as they occur in RoboCup, an inter-
national scientific robot competition. We describe our software (a sim-
ulator patch and scripts) and a larger research dataset from games of
some of the top teams from 2016 and 2017 in Soccer Simulation League
(2D), where teams of 11 agents compete against each other, recorded
by this software. We used 10 different teams to play each other, result-
ing in 45 unique pairings. For each pairing, we ran 25 matches, leading
to 1125 matches or more than 180 h of game play. The generated CSV
files are 17 GB of data (zipped), or 229 GB (unzipped). The dataset is
unique in the sense that it contains local, incomplete and noisy percepts
(as sent to each player), in addition to the ground truth logfile that the
simulator creates (global, complete, noise-free information of all objects
on the field). These data are made available as CSV files, as well as in
the original soccer simulator formats.

Keywords: Mobile robotics · Multi-robot systems · Simulation ·
RoboCup · Reinforcement learning · Self-localization

1 Introduction

RoboCup is an international scientific robot competition in which teams of
multiple robots compete against each other. The RoboCup soccer leagues pro-
vide platforms for a number of challenges in artificial intelligence and robotics
research, including locomotion, vision, real-time decision making, dealing with
partial information, multi-robot coordination and teamwork. In RoboCup, sev-
eral different leagues exist to emphasize specific research problems by using dif-
ferent kinds of robots and rules.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 230–237, 2019.
https://doi.org/10.1007/978-3-030-27544-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_19&domain=pdf
http://orcid.org/0000-0002-5719-2299
http://orcid.org/0000-0002-8284-2062
http://orcid.org/0000-0002-7806-0340
http://orcid.org/0000-0002-4037-2445
https://doi.org/10.1007/978-3-030-27544-0_19

RoboCupSimData: Software and Data for Machine Learning 231

There are different soccer leagues in the RoboCup with different types and
sizes of hardware and software: small size, middle size, standard platform league,
humanoid, 2D and 3D simulation [7]. In the 2D soccer simulation league [1], the
emphasis is on multi-robot teamwork with partial and noisy information in real-
time. Each of the robots is controlled by a separate program that receives sensor
information from the simulator as an input and, asynchronously to sensor input,
also decides on a next action that is sent back to the simulator, several times a
second. This complexity of the environment, with continuous state and action
spaces, together with the opportunity to compete against each other, makes
RoboCup soccer an interesting testbed for machine learning among many other
applications.

To assist automated learning of team behavior, we provide software to gen-
erate datasets from existing team binaries, as well as a large dataset generated
using 10 of the top participants in RoboCup 2016 or 2017. While it is possi-
ble to use the simulator directly for machine learning, it is not easily possible
to use the system to learn from existing teams. Our software allows to record
data that facilitates this by recording additional data that is not normally avail-
able from playing other teams directly. For this, we modified and extended the
simulator software to record data from each robots local perspective, i.e., with
the restricted views that depend on each robots situation and actions, and also
include the sensor noise. In addition, for every step of the game (100 ms), we
recorded ground truth information (such as positions and velocities) of all objects
on the soccer field, as well as basic actions of each robot. This ground truth infor-
mation is usually recorded in a binary format logfile, but not available to teams
during a match. We also provide scripts to translate these logfiles and the local
player information into comma-separated values (CSV) files.

Using this software, we created a dataset from all pairings of the selected
teams with 25 repetitions of each game, i.e., 1125 games in total. With 11 robots
in each team, a single game dataset consists of 22 local views plus a global
(ground-truth) view. These views are made available as CSV files, in addition
to the original logfiles, that include additional sensors and actions of each robot
recorded as text files.

The provided data are useful for various different tasks including imitation
learning (e.g., [3]), learning or testing of self-localization (e.g., [11]), predictive
modeling of behavior, transfer learning and reinforcement learning (e.g., [15]),
and representation learning for time series data [9]. The next sections describe
the environment, robots, and data in more detail.

2 Description of the Software Environment

The RoboCup Soccer Simulation Server rcssserver [10] is the software used for
the annual RoboCup competitions that have been held since 1997. It is hosted at
github.com/rcsoccersim/. We used the rcssserver version 15.3.0 to create our
software and the data. The simulator implements the (2D) physics and rules of
the game, and also handles the interface to the programs controlling each player.

http://github.com/rcsoccersim/

232 O. Michael et al.

By default, players use a 90◦ field of view and receive visual information every
150 ms. Throughout the game, this frequency can actively be changed by each
player individually to 75 ms, 150 ms, or 300 ms, by changing the field of view
to 45◦, 90◦, or 180◦, respectively. Visual information is transmitted in the form
of (Lisp-like) lists of identified objects, with the level of detail of information
depending on object distances. Potential objects include all other players on the
field, the ball, and landmarks like goal posts, flags, and side lines. Each player also
receives additional status information, including energy levels, referee decisions,
and the state of the game, every 100 ms. Each robot can issue parameterized
actions every 100 ms, to control its locomotion, the direction of its view, and its
field of view. A more detailed description of the information transmitted can be
found in the simulator manual [6].

3 Overview on the Provided Data

In robotics, data collections often comprise lidar data recorded by laser scans.
This is very useful in many applications, e.g., field robotics, simultaneous local-
ization and mapping (SLAM) [16], or specific purposes such as agriculture [4].
Other datasets have been collected, e.g., for human robot interaction [2] or
human-commentated soccer games [5]. In many contexts, there is not only one
but several robots which may be observed. The data from RoboCup that we
consider here include information about other robots in the environment and
hence about the whole multi-robot system.

Data from multi-agent systems like the RoboCup or the multi-player real-
time strategy video game StarCraft [8] provide information on (simulated) envi-
ronments as in robotics. However, in addition, they contain data on other agents
and thus lay the basis for machine learning research to analyze and predict agent
behavior and strategies important for multi-robot systems. To provide a diverse
dataset, we include several teams from the last two RoboCup competitions,
allowing for different behaviors and strategies.

Perception and behavior of each robot during a game depends on the behavior
of all other robots on the field. Game logfiles, i.e., files containing ground truth
information obtained from recording games, can be produced from the simula-
tor and are recorded in a binary format. Access to individual player percepts,
however, is only possible from within the player code. To learn from behavior
of other teams, it is useful to use the exact information that individual players
receive, rather than the global (and noise-free) information in recorded logfiles.
We therefore modified the simulator to additionally also record all local and
noisy information as received by the robots on the field in individual files for
each player. This information is stored in the same format as it is sent to play-
ers. We also provide code to translate these individual logs into CSV files that
contain relative positions and velocities (cf. Sect. 6).

We chose ten of the top teams from the RoboCup 2D soccer simulation world
championships 2016 in Leipzig, Germany (CSU Yunlu, Gliders, HELIOS2016,
Ri-one) and 2017 in Nagoya, Japan (CYRUS, FRA-UNIted, HELIOS2017,

RoboCupSimData: Software and Data for Machine Learning 233

HfutEngine, MT, Oxsy). Team binaries including further descriptions can be
downloaded from archive.robocup.info/Soccer/Simulation/2D.

We played each team against each other team for 25 times, resulting in 1125
games. Generated CSV files from one match vary in size (approx. 200 MB),
in total we collected about 229 GB of CSV files (17 GB of data zipped). For
each game, we also recorded the original logfiles including message logs. We also
generated files with ground truth data as well as local player data in human-
readable format. Finally, we made our generating scripts available (cf. Sect. 6), so
that they can be used to reproduce our results or to produce additional datasets
using other robotic soccer teams. There is also a smaller subset of 10 games
where the top-five teams play against each other once (163 MB CSV files plus
217 MB original logfiles). Our software and data is available at

bitbucket.org/oliverobst/robocupsimdata/

with a detailed description of the ground truth and the local player datasets.

4 Description of the Ground Truth Data

According to rules of the world soccer association FIFA, a soccer pitch has the
size of 105 m× 68 m. This is adopted for the RoboCup soccer simulation league.
Nevertheless, the physical boundary of the area that may be sensed by the robots
has an overall size of 120 m× 80 m. For the localization of the robot players, the
pitch is filled with several landmark objects as depicted in Fig. 1: flags (f), which
are punctual objects, lines (l), the goal (g), and the penalty area (p). The origin
of the coordinate system is the center point (c). The pitch is divided horizontally
(x-direction) into a left (l) and right (r) half and vertically (y-direction) into a
top (t) and a bottom (b) half. Additional numbers (10, 20, 30, 40, or 50) indicate
the distance to the origin in meters. Since every soccer game takes place on the
same pitch, there is only one file with information about the landmarks for all
games that lists all these coordinates, given as a table in CSV format, with name
landmarks.csv. For example, the row f r t,52.5,34 says that the right top
flag of the pitch has the (x, y)-coordinates (52.5, 34).

Further table files provide information about the respective game. The names
of all these files – all naming conventions are summarized in Fig. 2 – contain the
names of the competing teams, the final scores for each team, possibly extended
by the result of a penalty shootout, a time stamp (when the game was recorded),
and some further identifier.

The central SoccerServer [6] controls every virtual game with built-in physics
rules. When a game starts, the server may be configured by several parameters
which are collected in one file with the identifier parameters. For example, the
row ball_decay,0.94 denotes that the ball speed decreases by the specified
factor (cf. [14]). However, from a robotics point of view, most of the information
in this file is not very relevant, like the stamina of the robots, the noise model,
or the format of the coach instructions. We therefore skip further details here.

http://archive.robocup.info/Soccer/Simulation/2D
http://bitbucket.org/oliverobst/robocupsimdata/

234 O. Michael et al.

Fig. 1. Flags and lines in the robotic soccer simulation (cf. [6]).

1. landmarks: landmarks (static information for all games, 1 file)
2. game data: <time>-<team left>_<score left>-vs-<team right>_<score right>-<id>

where <id> =
– parameters (server configuration parameters, 1 file)
– groundtruth (logfile information for each game, 1 file)
– <team name>_<player number>-<suffix>

where <suffix> =
• landmarks (relative distances and angles to landmarks, 22 files)
• moving (relative distances and angles to ball and other players, 22 files)

Fig. 2. Name conventions for the log and data files.

A soccer simulation game in the RoboCup 2D simulation league lasts 10 mins
in total, divided into 6000 cycles where the length of each cycle is 100 ms. Simu-
lations are different from each other even with the same teams, as noise is added
to sensor data and player actions, and even attributes of players randomly vary
between runs. Games are recorded in logfiles, which comprise information about
the game, in particular about the current positions of all players and the ball
including their velocity and orientation for each cycle. This information is col-
lected for the whole game in a table with the identifier groundtruth. For each
time point, the play mode (e.g. kickoff), the current ball position coordinates
and its velocity is listed. Furthermore, the positions and velocities of each player
of the left (L) and the right (R) team including the goalkeeper (G) is stated.

RoboCupSimData: Software and Data for Machine Learning 235

For example, the column with head LG1 vx contains the velocity of the left
goalkeeper in x-direction. Finally, information about the robots body and head
orientation and their view angle and quality is included. The absolute direction
a player is facing (with respect to the pitch coordinate system) is the sum of the
body and head direction of that player.

5 Description of Local Player Data

The visual sensor of the players reports the objects currently seen. The informa-
tion is automatically sent to players every sense step with a frequency depending
on the player view width and quality. By default it is set to 150 ms. Thus, in
addition to the three files mentioned above, 44 more files are available for each
game. For each of the altogether 22 robots (ten field players and one goalkeeper
per team), two files with local player data is provided, hosting information about
where the respective player sees the landmarks and moving objects, respectively.

The file with final identifier (suffix) landmarks provides the distances (in
meters) and angles (in degrees) to the respective landmarks relative to the robot
head orientation for each step. Analogously, the file with final identifier moving
provides the actual relative distances and angles to the ball and all other players.
Sometimes the player number or even the team name is not visible and hence
unknown (u) to the robot. In this case, the respective piece of information is left
out. If data is not available at all, then this is marked by NAN in the respective
table element. The server also provides information about the velocity, stamina,
yellow and red cards, and the commands (e.g. dash, turn, or kick) of the robots.
In some cases there is also information about the observed state of other robots
available, in particular, whether they are kicking (k), tackling (t), or are a goal-
keeper (g).

6 Code

The soccer simulator communicates with players using text messages in form of
lists, via UDP (see also Sect. 2). These individual messages can currently not
be recorded, in contrast to the simulator logfiles. One option for developers of
teams is to implement recording of messages that their own agents receive. But to
collect data from other teams, the simulator software had to be modified instead.
Our code contains patches to the simulator that allow recording of visual and
body messages in individual files for each player. Messages are stored in their
original format to keep the amount of processing during the game minimal.
Running a simulation with our additional software will result in a number of
recorded files:

– the visual and body messages (two files for each player). The file names follow
the same naming convention as the game data CSV files (cf. Fig. 2) but use
the .rcv suffix for visual messages and .rcb for body messages.

236 O. Michael et al.

– a recording of the game (the ground truth in a binary format), using the
suffix .rcg.

– commands from players as received by the simulator (in plain text), using the
suffix .rcl.

Recording these files for all players on the field into files on a network drive
can result in significant traffic, and it may be preferable to record onto a local
drive and transfer the data after each match in order to reduce the impact of
recording on the simulation.

Three different pieces of code are part of this project:

1. There is the rcssserver-patch written in C++ which modifies the RoboCup
simulator to also log each player’s visual and body sensors.

2. To convert the simulator logfile (ground truth) into a CSV file, we provide
rcg2csv, a C++ program that is built using the open source librcsc library
(see osdn.net/projects/rctools/releases/p3777). Logfiles are recorded at reg-
ular intervals of 100 ms. Optionally, rcg2csv stores all simulation parameters
in an additional CSV file.

3. To convert visual messages into CSV files, we provide a Python program
see2csv.py that translates player visual messages into two files: a CSV file
for moving objects (other players and the ball), and a CSV file with perceived
landmarks.

7 Conclusions

RoboCup provides many sources of robotics data, that can be used for fur-
ther analysis and application of machine learning. We released software to cre-
ate research datasets for machine learning from released RoboCup simulation
league team binaries, together with a large and unique dataset of 180 h of game
play. This package allows a number of problems to be investigated: approaches
to learning and test self-localization, predictive world-models, or reinforcement
learning. The publicly available research dataset has proven itself instrumental
as it has already been used as a testbed for time-series analysis and autoencod-
ing (data compression) by recurrent neural networks [12,13] as well as for the
analysis of soccer games with clustering and so-called conceptors [9].

Funding. The research reported in this paper has been supported by the Ger-

man Academic Exchange Service (DAAD) by funds of the German Federal Min-

istry of Education and Research (BMBF) in the Programme for Project-Related Per-

sonal Exchange (PPP) under grant no. 57319564 and Universities Australia (UA)

in the Australia-Germany Joint Research Cooperation Scheme within the project

Deep Conceptors for Temporal Data Mining (Decorating).

http://osdn.net/projects/rctools/releases/p3777

RoboCupSimData: Software and Data for Machine Learning 237

References

1. Akiyama, H., Dorer, K., Lau, N.: On the progress of soccer simulation leagues. In:
Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014.
LNCS (LNAI), vol. 8992, pp. 599–610. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18615-3 49

2. Bastianelli, E., Castellucci, G., Croce, D., Iocchi, L., Basili, R., Nardi, D.: HuRIC:
a human robot interaction corpus. In: Calzolari, N., et al. (eds.) Proceedings of the
Ninth International Conference on Language Resources and Evaluation, LREC
2014, pp. 4519–4526 (2014)

3. Ben Amor, H., Vogt, D., Ewerton, M., Berger, E., Jung, B., Peters, J.: Learning
responsive robot behavior by imitation. In: International Conference on Intelligent
Robots and Systems, IROS-2013, pp. 3257–3264, November 2013

4. Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., Stachniss,
C.: Agricultural robot dataset for plant classification, localization and mapping on
sugar beet fields. Int. J. Robot. Res. 36(10), 1045–1052 (2017)

5. Chen, D., Mooney, R.J.: Learning to sportscast: a test of grounded language acqui-
sition. In: Proceedings of the 25th International Conference on Machine Learning
(ICML) (2008). http://nn.cs.utexas.edu/?chen:icml08

6. Chen, M., et al.: RoboCup Soccer Server – for Soccer Server Version 7.07 and
Later. The RoboCup Federation, February 2003. https://sourceforge.net/projects/
sserver/files/rcssmanual/manual-7.08.1/manual.pdf

7. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
RoboCup: achallenge problem for AI. AI Mag. 18(1), 73–85 (1997)

8. Lin, Z., Gehring, J., Khalidov, V., Synnaeve, G.: STARDATA: a StarCraft AI
research dataset. CoRR - Computing Research Repository abs/1708.02139, Cornell
University Library (2017). http://arxiv.org/abs/1708.02139

9. Michael, O., Obst, O., Schmidsberger, F., Stolzenburg, F.: Analysing soccer games
with clustering and conceptors. In: Akiyama, H., Obst, O., Sammut, C., Tonidan-
del, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 120–131. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 10

10. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: a tool for research on
multiagent systems. Appl. Artif. Intell. 12(2–3), 233–250 (1998)

11. Olson, C.F.: Probabilistic self-localization for mobile robots. IEEE Trans. Robot.
Autom. 16(1), 55–66 (2000)

12. Steckhan, K.: Time-series analysis with recurrent neural networks. Project the-
sis, Automation and Computer Sciences Department, Harz University of Applied
Sciences (2018). (in German)

13. Stolzenburg, F., Michael, O., Obst, O.: Predictive neural networks. CoRR - Com-
puting Research Repository abs/1802.03308, Cornell University Library (2018).
http://arxiv.org/abs/1802.03308

14. Stolzenburg, F., Obst, O., Murray, J.: Qualitative velocity and ball interception. In:
Jarke, M., Lakemeyer, G., Koehler, J. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp.
283–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45751-8 19

15. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a
survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

16. Tong, C.H., Gingras, D., Larose, K., Barfoot, T.D., Dupuis, É.: The Canadian plan-
etary emulation terrain 3D mapping dataset. Int. J. Robot. Res. (2013). http://
asrl.utias.utoronto.ca/datasets/3dmap/

https://doi.org/10.1007/978-3-319-18615-3_49
https://doi.org/10.1007/978-3-319-18615-3_49
http://nn.cs.utexas.edu/?chen:icml08
https://sourceforge.net/projects/sserver/files/rcssmanual/manual-7.08.1/manual.pdf
https://sourceforge.net/projects/sserver/files/rcssmanual/manual-7.08.1/manual.pdf
http://arxiv.org/abs/1708.02139
https://doi.org/10.1007/978-3-030-00308-1_10
http://arxiv.org/abs/1802.03308
https://doi.org/10.1007/3-540-45751-8_19
http://asrl.utias.utoronto.ca/datasets/3dmap/
http://asrl.utias.utoronto.ca/datasets/3dmap/

Generation of Laser-Quality 2D
Navigation Maps from RGB-D Sensors

Federico Nardi(B) , Maŕıa T. Lázaro , Luca Iocchi , and Giorgio Grisetti

Department of Computer, Control and Management Engineering,
Sapienza University of Rome, Rome, Italy

{fnardi,mtlazaro,iocchi,grisetti}@diag.uniroma1.it

Abstract. The use of RGB-D cameras has become an affordable solu-
tion for robot mapping and navigation in contrast to expensive 2D laser
range finders. Although these sensors provide richer information about
the 3D environment, most successful mapping and navigation techniques
for mobile robots have been developed considering a 2D planar envi-
ronment. In this paper, we present our system for 2D navigation using
RGB-D sensors. The key feature of our system is the extraction of 2D
laser scans out of the 3D point cloud provided by the camera that can be
later used by common mapping or localization approaches. Along with
the real experiments we raise the question “how far can we go with the
use of RGB-D sensors for 2D navigation?” and we analyze performance
and limitations of the system compared to accurate, yet expensive, laser-
based systems.

Keywords: RGB-D sensors · 2D mapping · Educational robots

1 Introduction

Robot mapping and navigation in indoor environments are fundamental abili-
ties in many different application scenarios, including home service robots (e.g.,
cleaning robots) and educational robots. In particular, several competitions
in RoboCup require such abilities, especially within the RoboCup@Home and
RoboCupIndustrial domains, and other junior competitions would benefit from
these functionalities.

Two major components must be developed: a mapping system, able to gen-
erate a map of the environment, and a navigation system, able to plan and exe-
cute paths in this environment. The quality of these processes depends on the
combination of the sensors and the software used. High-quality sensors provide
better quality of data that guarantees accuracy and robustness of the mapping
and navigation processes. However, high-quality sensors are also expensive, thus
increasing the budget to build and maintain robots and the difficulty of teams in
participating to robot competitions. Consequently, most applications involving
home service robots do not use a proper mapping, localization and navigation
system, significantly limiting their functionalities.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 238–250, 2019.
https://doi.org/10.1007/978-3-030-27544-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_20&domain=pdf
http://orcid.org/0000-0002-9275-7152
http://orcid.org/0000-0002-7742-2442
http://orcid.org/0000-0001-9057-8946
http://orcid.org/0000-0002-8038-9989
https://doi.org/10.1007/978-3-030-27544-0_20

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 239

Examples of high-quality sensors for robot mapping and navigation are 2D
laser-range finders (LRF). Several models exist with different technical specifi-
cations (e.g., Hokuyo UTM and URG family, SICK LMS and TIM family). 2D
LRFs provide for very precise and accurate measurements and have been exten-
sively used for mapping and navigation in many robotic applications. However,
they also have two drawbacks: (1) being planar sensors they are not able to deal
with obstacles that are not on the same plane of the laser, (2) they are more
expensive than camera-based solutions.

A second type of sensors are RGB-D cameras. Also in this case there is a
variety of models with different specifications (e.g., ASUS Xtion PRO LIVE,
Microsoft Kinect). RGB-D cameras provide for information about the environ-
ment that are not limited to a planar surface and are less expensive than LRFs,
but they have the following disadvantages: (1) lower resolution, precision and
accuracy of the acquired data, (2) limited field of view and range.

In this paper, we want to fill the gap between LRF and RGB-D technology,
by presenting an effective mapping system that is based on RGB-D cameras.
The proposed system provides results that are comparable with maps generated
by a LRF. With the proposed method, it is thus possible to map and navigate in
an environment with performance that is comparable with LRF technology at a
reduced cost and with the advantage of using a 3D sensor for obstacle avoidance.
This method can be useful on many kinds of robots and in many applications and
RoboCup competitions, since it enables the possibility of performing complex
tasks with a low-cost robot. For example, RoboCup@Home Education1 is an
initiative aiming at providing support to teams to set-up RoboCup@Home teams
with low-cost hardware. In this initiative, robots are equipped only with a single
RGB-D sensor. Another example is given by the SoftBank Pepper robot used in
RoboCup@Home Social Standard Platform League that is equipped with a laser
device providing only a few laser scans and, therefore, navigation tasks highly
depend on its RGB-D sensor.

More specifically, the contributions of this paper are: (1) a method to generate
2D laser measurements from the information gathered by an RGB-D sensor based
on a projection procedure that allows to extract a scan-line at an arbitrary
laser pose (in contrast to ROS2 tool depthimage to laserscan3 which generates
the laser measurement from a fixed pose), making it suitable also for tilted or
moving cameras, (2) the adoption of a robust SLAM system to deal with lower
performance – namely precision and field-of-view – of RGB-D sensors compared
to LRFs, and (3) the evaluation of navigation systems of low-cost robots when
mapping and navigation are performed with only an RGB-D sensor.

We validate our approach in two sets of experiments. In the first set, we
compare the quality of the maps produced with RGB-D sensors with respect to
those obtained with an expensive and high accurate LRF sensor, while in the
second set we evaluate navigation capabilities of a robot using an RGB-D sensor
and a motion model that are different from the ones used for mapping.

1 www.robocupathomeedu.org.
2 http://www.ros.org/.
3 wiki.ros.org/depthimage to laserscan.

www.robocupathomeedu.org
http://www.ros.org/
http://wiki.ros.org/depthimage_to_laserscan

240 F. Nardi et al.

2 Related Work

An efficient way to represent an indoor environment for navigation is to use
occupancy grids, first introduced in the work of Moravec and Elfes [12]. This
technique consists in integrating the range measurements acquired by the robot
into a common frame to represent the obstacles in the scene. The use of laser
scanners for building such a map allows to obtain high accuracy in the measure-
ments but implies, also, a significant economic expense. Since accurate digital
cameras became available at reasonable costs, there have been different contri-
butions in the effort of extracting range measurements from cameras in order to
avoid the expense of laser scanners.

Murray and Jennings [13] introduced the first occupancy-grid mapping sys-
tem that uses a visual sensor to collect dense depth information. They manage
to produce depth images with a trinocular camera, which yields accurate results
but, of course, requires a specialized rig and a meticulous calibration. Sim and
Little [15] use stereo-vision to perform RaoBlackwellised Particle Filter (RBPF)
visual SLAM. Although their method can be categorized as feature-based SLAM,
the authors describe how to infer the corresponding occupancy grids using a
maximum likelihood estimate.

Gastshore et al. [5] were the first to explore the possibility of building occu-
pancy grids with a single camera. In their work, each grid cell represents a
vertical line feature and a voting scheme is used to propose the occupancy of
each grid cell. The authors, however, don’t consider problem of localization with
this method. To really obtain range measurements from a monocamera Choi
and Oh [3] introduce the visual sonar technique, which consists of projecting
in space virtual rays and then detecting where these rays collide with obstacles
in 3D space. Asmar and Samir [1] extend the previous approach to deal with
variable lighting conditions by using g High Dynamic Range (HDR) images and
propose a different segmentation technique to have a better extraction of the
ground features.

Since the appearance of the first RGB-D cameras in 2010, robotic researchers
have been attracted by the potentialities of this type of sensors for mobile robots
navigation. This is because they provide depth information for each image pixel
and they are available at a reasonable price. In this context, one of the first
works to use this sensor for navigation has been made by Oliver et al. [14], in
which they simulate the presence of a laser by extracting a 2D scan from the
depth image. Our approach is similar to that of Oliver et al., in addition, we
use reliable calibration procedures on our system to obtain precise intrinsic and
extrinsic camera parameters. This allows us to obtain accurate maps, which can
be used later for navigation as we show in Sect. 4.

3 Our Approach

The 2D mapping procedure from RGB-D sensors proposed in this paper can be
summarized in the following steps. Firstly, a data acquisition phase is performed

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 241

while steering the robot in the environment to be mapped, in which the sequence
of RGB and Depth images acquired by an RGB-D camera together with the
robot odometry are recorded.

Next, each depth image is used to reconstruct the local 3D scene as a point
cloud from which a virtual scan is extracted to simulate the presence of a laser
device.

The RGB-D scans together with the robot odometry are used as input to
our robust laser-based graph SLAM approach to estimate the robot trajectory.
The result of this process provides the estimated global robot coordinates from
which each depth image (RGB-D scan) was acquired.

Finally, the map of the environment is obtained by fusing the generated scans
into an occupancy grid based on the pose-graph computed at the previous step.
In the remainder, we describe in detail each component of the system.

3.1 Extraction of Scans from Depth Images

The first step of our approach is to generate range measurements for build-
ing the 2D map. As mentioned in Sect. 1, ROS provides the package depthim-
age to laserscan to perform this operation, which is done by extracting the set
of pixels belonging to the middle row of the depth image and back-projecting
them in 3D.

It is relevant to notice that this approach is effective only under the assump-
tion of a camera parallel to the ground floor, see Fig. 1. Instead, our approach
works by first transforming the depth cloud in the virtual laser frame and conse-
quently extracting scan points. This allows a better flexibility, since the technique
can be applied also to a tilted camera, as it is that of the Pepper, and it is pos-
sible to extract points whose corresponding pixels fall outside the middle row of
the image (see below).

The proposed procedure to generate virtual laser scans is the following. Each
pixel u = (ui, uj) ∈ R

2 with depth value dij ∈ R of the current depth image is
back-projected into the corresponding 3D point p = (px, py, pz) ∈ R

3 using the
camera calibration matrix K [7]:

pc = K−1 · [ujdij uidij dij]T (1)

where superscript pc denotes the point is represented with respect to the camera
frame.

Let Pc = {pc
k} be the point cloud containing the collection of k transformed

points in the camera frame. Given Tr
c , the pose of the camera with respect to

the robot frame and using Tr
v as the pose of the virtual laser frame from which

we want to generate an RGB-D scan, it is possible to obtain the point cloud
Pv = {pv

k} in the laser frame by applying the following transformation to each
point:

Tv
c = (Tr

v)
−1 · Tr

c (2)
Pv = Tv

c · Pc. (3)

242 F. Nardi et al.

(a) ROS tool, parallel camera (b) ROS tool, tilted camera

(c) Ours, parallel camera (d) Ours, tilted camera

Fig. 1. Comparison of the extraction procedure with the ROS depthimage to laserscan
tool and our method. The RGB-D camera is represented by the black box on top of
the robot, the virtual laser is represented by the 3D model of an Hokuyo sensor.

Finally, we set the 2D scan to lie in the XY plane of the laser reference frame.
To this end, we generate the RGB-D scan sv by considering only the points of
Pv whose height is inside a pre-defined threshold ε:

sv = {pv ∈ Pvsuch that |pz| ≤ ε}, (4)

where ε is typically chosen to be close to zero in order to allow for some tolerance.

3.2 Estimation of the Robot Trajectory

In order to generate a consistent trajectory of the robot we use our novel graph-
based SLAM system [9]. Since describing mathematical details of our SLAM
system is out of the scope of this paper, we briefly describe the main pipeline
and specific features that make it suitable for mapping 2D environments using
scans extracted from RGB-D sensors. The input of the system consists of a
stream of laser scans and the robot odometry and the output is the estimation
of the trajectory followed by the robot.

In such system, the map of the environment is represented as a graph whose
vertices contains robot positions together with a measurement (laser scans in

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 243

this case) gathered from that position and the edges connecting a pair of ver-
tices represents spatial constraints between them. Then, the goal of the SLAM
system is to obtain a global configuration of the vertices that better explains
the constraints. This is done by formulating a least-squares minimization prob-
lem that can be solved by using optimization methods like Gauss-Newton or
Levenberg-Marquardt.

The pipeline of the SLAM system used in this work approaches the following
aspects:

laser tracking. Is the problem of tracking the position of the laser between con-
secutive timestamps. This is done by implementing an Iterative Closest Point
(ICP) algorithm, which provides the transform that minimizes the reprojec-
tion error of the points of the current scan with respect to the previous one.

local-map generation and management. Is the problem of generating a con-
sistent local view of the environment out of a small chunk of trajectory. To
this end, the scans registered during the laser tracking process are continu-
ously fused into a single 2D point cloud producing a refined representation
of the environment. Local map maintenance id done by removing points fur-
ther than a certain distance from the current tracked pose. When the robot
moves for a certain distance, the current local map is stored and associated
to a vertex in the graph. The use of local maps in contrast to the use of sin-
gle laser scans greatly improves the reconstruction of the local surroundings
of the robot specially in the case of the use of RGB-D sensors due to their
limited field of view.

relocalization or loop closing. Is the task of determining if the current local
map captures a portion of the environment already seen in the past. To this
end our SLAM approach first retrieves which local maps from those already
present in the graph are most similar to the current one by selecting the
vertices in covariance range with respect to the current one, then it validates
the potential matches by performing local map registration. This generates
a set of possible closures that are finally introduced in the graph as edges
connecting non-consecutive vertices after an inlier verification process using
a voting scheme described in [11].

global optimization. Relocalization events might introduce “jumps” in the
estimated trajectory. The global optimization module aims at distributing
the estimation error evenly between the vertices. This is done in the SLAM
system by solving a pose-graph [6] by means of the g2o optimizer [8]. The
core idea is to determine the positions of the nodes that better explain the
relative transformations arising from laser-tracking and relocalization.

At the end of a run, this mapping process returns an estimate of the robot
trajectory {xr

1:t} from which the laser scans were generated. The whole described
SLAM process accounts for the transformation Tr

l to represent the laser scans
into the robot reference frame.

244 F. Nardi et al.

(a) (b)

Fig. 2. Robots and sensors configuration used for the experiments. (a) MARRtino
robot. (b) SoftBank’s Robotics Pepper.

3.3 Occupancy Grid for Navigation

Once the trajectory is provided by the SLAM system, it is possible to recon-
struct the most likely map using the gathered measurements. If we want our
robot to navigate safely in the environment, i.e. without hitting obstacles, we
have to provide it with the information about free and occupied space. For this
purpose, we represent the environment with an occupancy grid [12], where each
cell contains the probability of being occupied by an obstacle, thus containing
values ranging from 0 (free) to 1 (occupied).

This method goes under the name of occupancy grid mapping [16], and in the
remainder of the paragraph we report a sketch of the procedure. The inputs are
the RGB-D scans {sv1:t} and the estimated robot poses {xr

1:t}. For each range of
the single laser scan, a ray is casted with a straight-line grid traversal algorithm
[2] to find the traversed cells. Each cell of the grid stores two values: the number
of hits and the number of misses. If a ray passes through a cell we increment its
misses count, while for the end-point of the ray we increment the hits count of
the cell where it falls.

Finally, the probability of each cell of being occupied is computed as
hits

hits+misses . The selection of the appropriate threshold value allows us to dis-
criminate between three types of cells:

– Unexplored: hits = 0, misses = 0
– Occupied: hits

hits+misses > threshold

– Free: hits
hits+misses ≤ threshold.

which is used to obtain a thresholded grid map compatible with the most com-
monly used localization and path planning algorithms for navigation purposes.

4 Experiments

The main goal of this work is to produce usable 2D navigation maps from RGB-
D data. Our key claim is that the proposed mapping system, using data from an

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 245

Table 1. Comparison of the technical specification of the two sensors.

Hokuyo UTM-30LX Microsoft Kinect V2

Field of view 270◦ 70◦

Min range 0.1 m 0.5 m

Max range 30m 4.5 m

Frames per second (FPS) 40Hz 30 Hz

Power consumption <8 W 2.25 W

Resolution at 2 m 1mm 5 mm

affordable RGB-D sensor, can provide comparable quantitative and qualitative
results to those that we could obtain with a more accurate and expensive laser
range finder. Therefore, in this section, we present real experiments in which
our approach is used to create maps of different indoor environments which can
later be used to perform common navigation tasks such as localization or path
planning, not necessarily with the same robot used to build the map.

The first set of experiments are intended to evaluate the quality of the
maps produced by our proposed system. To this end, we used a self-built robot
(Fig. 2a) based on the open source and open hardware robotic platform MAR-
Rtino Robot4, and equipped it with a Microsoft Kinect for Windows V2 RGB-D
sensor and an Hokuyo UTM-30LX laser range finder. The difference in hardware
specifications between both sensors is highlighted in Table 1. We implemented
the components of our system in C++ as ROS nodes, publicly available as open
source5,6.

As a prior step before performing the experiments, we calibrated the robot
to obtain the extrinsic sensor parameters Tr

c and Tr
l using the unsupervised

calibration procedure explained in [4].
We tested our approach in two different indoor environments: a domestic

environment of 60m2 and a corridor of our department at the Sapienza Univer-
sity of Rome, hereinafter denoted as Mhome and Muni respectively. The exper-
imentation and validation is performed in two steps. First, we record a dataset
containing the laser scans and the RGB-D data gathered by both on-board sen-
sors together with the odometry provided by the platform while manually driving
the robot around the test environments. This dataset is used to produce a map
of the environment using our system. Then, once each map is constructed, we
record a second dataset where the robot follows a different trajectory than the
one used for mapping. We use this second dataset to validate localization with
respect to the previously created maps using both sensors.

In order to validate our approach, we compare the map Mour, built with
virtual scans {sv1:t}, with respect to the map Mref , built with the real scans,

4 http://www.dis.uniroma1.it/∼spqr/MARRtino/.
5 https://gitlab.com/srrg-software/srrg depth2laser ros.
6 https://gitlab.com/srrg-software/srrg mapper2d ros.

http://www.dis.uniroma1.it/~spqr/MARRtino/
https://gitlab.com/srrg-software/srrg_depth2laser_ros
https://gitlab.com/srrg-software/srrg_mapper2d_ros

246 F. Nardi et al.

Table 2. Translational and rotational localization errors with respect to the robot
positions given by a localization system using the Hokuyo data (sreal + Mref)

Home University

Translational error (m) Mean 0.034 0.075

Max 0.123 0.115

Median 0.025 0.085

Rotational error (rad) Mean 0.017 0.010

Max 0.218 0.036

Median 0.013 0.009

denoted as {sr1:t} and collected from the Hokuyo laser. Results are shown in
Fig. 3. We also show that using available ROS tools, i.e. depthimage to laserscan
+ gmapping, in these scenarios does not provide a robust solution, since the
output maps cannot be used for navigation tasks.

To obtain a quantitative comparison, we compute the percentage difference
between the two corresponding images with the following formula:

Δ = 100
K∑

k=1

|uourk − urefk

K
| (5)

where urefk and uourk are the kth pixel values of Mref and Mour respectively.
From the experiments we obtain that the difference of Mref is 1.86% with
Mhome and 1.27% with Muni. This shows that if the system is properly cali-
brated then the RGB-D sensor can return a map that is almost undistinguishable
from the one provided by the laser. The main difference between these sensors
is in the angular extension of the measurement since the depth camera has a
field of view that is less than one third of the laser scanner one. As a direct
consequence, the map generated by the laser has some details that could not be
detected by the Kinect due to its restricted angle of view, as shown in detail in
Fig. 4.

The second set of experiments aim at evaluating the usability of the maps
generated from the previous experiments for navigation tasks by robots with
different features (Fig. 2). Thus, we choose to test the particle filter based local-
ization system in [10] to estimate the robot motion in different scenarios. To
support our claim, we try to localize the MARRtino robot on Mour by using
the scans generated from the RGB-D sensor and we compare the resulting tra-
jectories with the ones estimated by the localizer on Mref using the laser scans,
Fig. 5. That is, we measure the translational and rotational error for each robot
pose between the reference trajectory and the one obtained with the RGB-D
scans. As it is shown in Fig. 6, in some points of the trajectory the localization
with the depth camera is less precise than the reference one. To reduce this
difference we have accurately calibrated the odometry parameters of the mobile
platform, as explained in [4], in order to have a better initial guess of the robot

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 247

(a) Home, ROS tools (b) University, ROS tools

(c) Home,Mour (d) University,Mour

(e) Home,Mref (f) University,Mref

(g)Mour −Mref (h) Mour −Mref

Fig. 3. Results of the first set of experiments. First row: maps built using available ROS
tools. Second row: maps generated with RGB-D scans. Third row: maps generated with
laser scans. Last row: superposition of Mref on Mour, for a qualitative comparison
we show in green the reference map on the map generated with our approach. (Color
figure online)

248 F. Nardi et al.

(a) (b)

Fig. 4. (a) Corridor map. (b) Detail. The figure shows the Mref (in green) superim-
posed to Mour. (Color figure online)

(a) Home, Mour (b) Home, Mref (c)Mour −Mref

(d) University,Mour (e) University,Mref (f)Mour −Mref

Fig. 5. Trajectories estimated by the localizer. Left column: svirtual + Mour. Center
column: sreal + Mref . Right column: superposition of both trajectories.

(a) (b) (c)

Fig. 6. (a - b) Estimated trajectories and zoomed area for the corridor map. (c) Tra-
jectory followed by the Pepper robot during a navigation task at University in map
Mour.

Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors 249

motion. Results are reported in Table 2, showing overall localization errors of
∼5 cm (translational) and ∼0.02 rad (rotational).

Furthermore, we test University Mour map during a navigation task with the
Pepper robot. Pepper’s original laser consists of 45 points with a usable range of
∼3 m. As it’s shown in Fig. 6c, the trajectory reported by the localization system
is comparable with the ones executed by robots with more accurate sensors.

5 Conclusions

In this paper, we presented a novel approach to generate accurate 2D maps by
using RGB-D cameras. We implemented and evaluated our approach on different
datasets acquired in different application scenarios where the use of available
packages would not give the same quality of the results. Quantitative experi-
mental results show the effectiveness of the proposed approach, that is able to
generate maps whose quality is comparable with the ones generated by laser
sensors.

More specifically, we showed that self-localization performance of a robot in
different environments are substantially the same when using an RGB-D camera
or a laser range-finder. Therefore, this method enables the replacement of laser-
based navigation with RGB-D navigation in many applications, yielding a lower
cost and improved 3D information for obstacle avoidance.

Despite the results show high effectiveness of the proposed method in the
considered situations, we would like to investigate other interesting situations of
mapping and navigation for robots equipped with low-cost sensors. Moreover,
we want to carry out additional experiments to evaluate in a quantitative way
if the performance of depth sensors on typical navigation tasks (e.g., entering a
small passages, navigation speed, etc.) are comparable with those of laser-based
solutions.

References

1. Asmar, D., Shaker, S.: 2D occupancy-grid SLAM of structured indoor environments
using a single camera. Int. J. Mechatron. Autom. 2(2), 112–124 (2012)

2. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J.
4(1), 25–30 (1965)

3. Choi, Y.H., Oh, S.Y.: Map building through pseudo dense scan matching using
visual sonar data. Auton. Robots 23(4), 293–304 (2007)

4. Cicco, M.D., Corte, B.D., Grisetti, G.: Unsupervised calibration of wheeled mobile
platforms. In: Proceedings of the IEEE International Conference on Robotics &
Automation (ICRA), pp. 4328–4334, May 2016. https://doi.org/10.1109/ICRA.
2016.7487631, https://gitlab.com/srrg-software/srrg nw calibration ros

5. Gartshore, R., Aguado, A., Galambos, C.: Incremental map building using an occu-
pancy grid for an autonomous monocular robot. In: 7th International Conference
on Control, Automation, Robotics and Vision, ICARCV 2002, vol. 2, pp. 613–618.
IEEE (2002)

https://doi.org/10.1109/ICRA.2016.7487631
https://doi.org/10.1109/ICRA.2016.7487631
https://gitlab.com/srrg-software/srrg_nw_calibration_ros

250 F. Nardi et al.

6. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based
SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010). https://doi.org/10.
1109/MITS.2010.939925

7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2003)

8. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general
framework for graph optimization. In: Proceedings of the IEEE International Con-
ference on Robotics & Automation (ICRA), pp. 3607–3613, May 2011. https://
doi.org/10.1109/ICRA.2011.5979949

9. Lázaro, M.T., Capobianco, R., Grisetti, G.: Efficient long-term mapping in
dynamic environments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, Madrid, Spain, 1–5 October 2018

10. Lázaro, M.T., Grisetti, G., Iocchi, L., Fentanes, J.P., Hanheide, M.: A lightweight
navigation system for mobile robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau,
N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 694, pp. 295–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70836-2 25

11. Lázaro, M.T., Paz, L.M., Piniés, P., Castellanos, J.A., Grisetti, G.: Multi-robot
SLAM using condensed measurements. In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Tokyo Big Sight,
Japan, 3–8 November 2013. https://doi.org/10.1109/IROS.2013.6696483

12. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings
of the IEEE International Conference on Robotics & Automation (ICRA), vol. 2,
pp. 116–121. IEEE (1985)

13. Murray, D., Jennings, C.: Stereo vision based mapping and navigation for mobile
robots. In: Proceedings of the IEEE International Conference on Robotics &
Automation (ICRA) (1997)

14. Oliver, A., Kang, S., Wünsche, B.C., MacDonald, B.: Using the Kinect as a navi-
gation sensor for mobile robotics. In: Proceedings of the 27th Conference on Image
and Vision Computing New Zealand, IVCNZ 2012, pp. 509–514. ACM, New York
(2012)

15. Sim, R., Little, J.J.: Autonomous vision-based exploration and mapping using
hybrid maps and Rao-Blackwellised particle filters. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2082–2089. IEEE (2006)

16. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge
(2005)

https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1007/978-3-319-70836-2_25
https://doi.org/10.1109/IROS.2013.6696483

Towards Long-Term Memory for Social
Robots: Proposing a New Challenge
for the RoboCup@Home League

Mat́ıas Pavez1(B), Javier Ruiz del Solar1(B), Victoria Amo2,
and Felix Meyer zu Driehausen2

1 Advanced Mining Technology Center & Department of E.E.,
Universidad de Chile, Santiago, Chile

{matias.pavez,jruizd}@ing.uchile.cl
2 Institute of Cognitive Science,

Universität Osnabrück, Osnabrück, Germany
{vamo,fmeyerzudrie}@uos.de

Abstract. Long-term memory is essential to feel like a continuous being,
and to be able to interact/communicate coherently. Social robots need
long-term memories in order to establish long-term relationships with
humans and other robots, and do not act just for the moment. In this
paper this challenge is highlighted, open questions are identified, the
need of addressing this challenge in the RoboCup@Home League with
new tests is motivated, and a new test is proposed.

Keywords: Long-term-memory · Service robot · Social robot ·
RoboCup@Home

1 Introduction

Long-term memory allows humans to feel continuous and coherent in his/her
thoughts, i.e., to be a continuous person with a continuous life. Hence, long-
term memory is an essential component of social interaction between people in
daily life, it allows remembering names, events, duties, relationships, etc. In fact,
when long-term memory does not work properly due to illness (e.g., Alzheimer
disease), the ability to interact with other human beings is severely damaged.

Therefore, it seems evident that a key aspect in achieving long-term interac-
tion and social relationship between humans and social robots is the requirement
of a long-term memory system for the latter. Memory constitutes an important
part of a cognitive system implementation; in fact, it is the link of prior expe-
riences with ongoing and future behavior. As stated by [24], a nontrivial level
of social interaction requires that the robot should be able to use both seman-
tic and episodic information. Both, semantic and episodic memories constitute
the declarative long-term memory. While semantic memory is a repository for
facts, such as knowing that the capital of Chile is Santiago, episodic memory is
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 251–261, 2019.
https://doi.org/10.1007/978-3-030-27544-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_21

252 M. Pavez et al.

the memory of past experiences, i.e., remembering events and their associated
context (places, persons, emotions, etc.). Both kinds of memories work together,
and both need to be implemented for providing appropriate social skills for social
robots. However, in contrast to implementing semantic memories, the implemen-
tation of episodic memories for social robots is much less developed, and therefore
we focus our work on the latter.

The amount of information to be processed in a lifetime is vast; therefore,
efficient methods are required for acquiring, filtering, encoding, storing, delet-
ing and updating a robot’s episodic knowledge of its working environment. This
information can be encoded in symbolic form and held in a storage module
invoking the functionality of an episodic memory system. So far, this challenge
has not been addressed appropriately, and the construction of long-term mem-
ories for social robots, which include both episodic and semantic components,
has not been achieved. In this context, the main goals of this paper are: (i) to
highlight the need of building appropriate long-term memory for social robots,
(ii) to identify open questions that need to be answered in order to fulfill this
first goal, and (iii) to provide basic concepts to address this challenge in the
RoboCup@Home League with new tests. We propose the structure of such kind
of tests, and give an example of a concrete test. This paper is organized as fol-
lows: The basic aspects of human memory are summarized in Sect. 2. Relevant
open questions are identified in Sect. 3. The structure of the proposed tests for
the RoboCup@Home League is presented in Sect. 4. Finally, some conclusions of
this work are outlined in Sect. 5.

2 Human Memory

According to [8], memory is “the record of experience presented in the brain”.
There are multiple memory systems that work in a complementary way. These
systems have different functions, and they are characterized by different operat-
ing characteristics and brain structures in which they are embodied.

A first categorization is related to the persistency of the stored information.
The Sensory Memory is able to store information acquired by our sensory sys-
tems just for the fraction of a second. This information then enters the so-called
Short-Term Memory, which support “brief storage and immediate recall of sub-
stantial detail” [8]. Part of the stored information is then consolidated into the
Long-Term Memory. The term Working Memory is sometimes used instead of
Short-Term Memory, although the working memory concept includes processes
and structures used for the temporal storage and manipulation of information
[22].

The Long-Term Memory is composed by a Declarative or Explicit Mem-
ory, which refers to information that is remembered consciously, and a non-
Declarative or Implicit Memory, which refers to skills, abilities and tasks that
can remembered implicitly (e.g., how to ride a bicycle). The Implicit Memory is
further divided in Procedural Memory, in charge of storing procedures or ways
of doing tasks, and Priming, which refers to the fact that some experiences are

Towards Long-Term Memory for Social Robots 253

primed or recalled when a given stimuli is received. The Declarative Memory
is divided into two complementary memories, the Episodic Memory and the
Semantic Memory. Episodic memory, first defined by Tulving [21], refers to the
memory of specific events occurring at a specific place and time and enables
human beings to remember past experiences. Semantic memory is basically a
repository for facts. Emotional experiences are also stored in the brain and they
have influence on how other information is stored. The memory about emotions
is stored in the declarative memory, while the emotional memory belongs to
the implicit memory. Detailed explanations about the episodic, semantic and
emotional memories can be found in [4,7].

The main functionalities provided by the declarative long-term memory are:
(i) the capability of remembering facts, concepts, events, experiences, skills,
tasks, emotions, (ii) the ability to feel like a continuous person, (iii) a way of
linking prior experiences with ongoing and future behavior, and (iv) the ability
to interact with other human beings, i.e. be able to communicate coherently, and
to build long-term relationships.

In this article our analysis will focus in the episodic memory, which as already
mentioned, is related to the conscious remembrance of context-dependent events
that are personally experienced. By context-dependent is it meant the cognitive
state—the temporal, spatial and emotional/affective context—, as well as the
embodied nature of the experience, i.e. the sensory-perceptual processing of a
given experience [1]. For instance, the experience/event of visiting your mother’s
house for having dinner last night includes a temporal context (last night), a spa-
tial context (your mother’s house), an emotional context (spending time nicely
with your mother), and sensory-perceptual experiences (how the dinner tasted).

3 Open Questions for Implementing Long-Term Memory
for Social Robots

During the past decade there have been several approaches that implemented
episodic and semantic long-term memory in artificial systems (e.g., [5,6,10,13–
16,18,22]). We believe that these works addressed only partially some of the
main challenges that poses the implementation of long-term memory for social
robots, and that still some of the questions described in the next paragraphs
need to be answered.

How to store events and experiences in the form of episodes in the episodic
memory? It is still not clear how the cognitive state—temporal, spatial and emo-
tional/affective context—associated to events, as well as the embodied nature of
them, can be stored by a social robot. Naturally, the temporal context can be
easily stored (e.g., using time stamps). The ability to determine and store spatial
context has advanced largely in the last few years thanks to the deep learning
revolution that allows the recognition of places, objects, and persons more easily.
Yet, this has so far not been implemented in social robots that interact continu-
ously with the changing world. Very few works have addressed the task of storing
the emotional context and the embodied nature of the experience.

254 M. Pavez et al.

How to give different levels of relevance to the different episodes in terms of
its novelty or the associate emotional state? As in the case of human beings,
the stored episodes have different levels of relevance, which depends in the asso-
ciate emotional state, among many other factors. Mechanisms for determining
autonomously this level of relevance need to be developed.

How to store emotional states? In the human brain emotional situations
are stored in the explicit and implicit memory systems, and experiences with a
strong emotive content produce powerful and vivid memories. Mechanisms for
implementing these functionalities need to be developed.

How to consolidate short-term memory into the long-term memory? The
update of the long-term memory is a complex and time-consuming process that
involves the consolidation of short-term memories into long-term ones [2]. In the
case of humans this is carried out during the sleep process, and consumes a large
amount of brain resources [23]. Therefore, the update of episodic information
must be carefully designed and implemented in the robot case. No work has
addressed the challenge of long-term memory consolidation for a social robot
operating continuously in the real-word.

Which mechanisms to use for forgetting and repression? Given that the mem-
ory capacity is limited, forgetting mechanisms need to be implemented on basis
of the relevance of the stored information. In addition, it must be analyzed if,
as in the case of human beings, it is required to implement repression mecha-
nisms that unconsciously block memories in order to protect the self from situ-
ations/emotions that she/he cannot cope with [9].

How to address the ethical issues related to the management of personal infor-
mation of human beings acquired by social robots? A social robot with long-term
memory will store information related with his/her human mates. It must be
analyzed how this personal information will be protected, managed, and even-
tually, deleted.

4 Long-Term Memory in the RoboCup@Home League

In this Section we propose a new test for the RoboCup@Home league. First, we
will describe the minimum requirements for an EpLTM (Episodic Long-Term
Memory) implementation, how to validate them, and which sources of informa-
tion are valid when generating memories. Finally, we present a test proposal
for the competition, focused on EpLTM, Human-Robot Interaction (HRI) and
perception.

4.1 Requirements

At present, there is no consensus on the way an EpLTM should be implemented
for service robots, but many approaches can be found [9–12,19,20,22]. As the
RoboCups goal is to boost research, we propose to evaluate only the core require-
ments an EpLTM must fulfill, avoiding to force an specific implementation on the

Towards Long-Term Memory for Social Robots 255

teams. The proposed requirements can be separated into 2 categories: I. exclu-
sively episodic, and II. requirements related to historical and emotional rele-
vances.

Category I is build from the 11 design requirements {R1, . . . , R11} pre-
sented by Stachowicz [20]. These were created to match the characteristics every
EpLTM system must satisfy and are the minimum points for validation. The
requirements (R1, R2, R4) declare that every episode must be recollected and
stored by its spatio-temporal context: what, when, and where it happened. More-
over, there are no restrictions on which information the what field can contain;
For the competition there are useful pieces of data to remember, for exam-
ple, static information about known people or objects (name, age), and their
dynamic state (last location, clothes, emotions). On the other hand, (R3, R6)
state how the what field can be accessed and modified, while (R5, R7, R8) give
some rules about the episode system structure (children episodes, anidation and
transposition). In this work, R9 (non intrusiveness), R10 (efficiency), and R11
(scalability) are left out, because they relate to desirable design requirements
and are not considered as candidates for validation during a test.

Category II adds the concept of relevance to each episode in memory, which
is not covered by category I. Episodic relevance is essential when remembering
interesting events, allowing access to episodes by their importance. On the one
hand, we propose the historic relevance, which is directly related to the age of
an episode; the lower its antiquity is, the higher its importance, which means
a high probability to remember recent events. On the other hand, we propose
the emotional relevance by assigning an emotion and its related magnitude to
each episode; this allows to retrieve older but important events. It is impor-
tant to stress that knowing why the episode is relevant and how the emotion
relates to the episode is not required, as this depends on the emotion engine
implementation.

4.2 Required Information for Validation

Next we present a proposal for the minimum data required to be stored for the
competition, and the level of detail needed when validating the requirements
(categories I and II). The concepts to be delimited are the episode definition, its
contents (What, Where, When), and the associated emotions.

Although Stachowicz’s requirements do not impose the exact data to be
gathered for (What, Where, When) fields, a set of verifiable entities should be
defined for the competition. This serves as a way to normalize the validation
process, by clarifying which data and format will be required for validation. It
is important to highlight that by the following constraints we expect not to
impose an implementation to the teams, but just to formalize the minimum
required capabilities to any robot in competition.

Episodes: In order to provide context to any episodic query or to enable a
precise memory description by the robot, we propose at least the following nested
episodic levels:

256 M. Pavez et al.

1. Context: RoboCup, Stage X, Test Y, Subtest Z. This let us identify generally
the spatio-temporal context of an episode. Subtest Z only applies to tests
where sub stages are clearly defined, as in: “Stage 1, Test: SPR, Subtest: The
Riddle Game”.

2. Tasks: There must exist an episode related to each task or order executed by
the robot. Tasks are defined inside a Context or inside other Task.

3. Capabilities: There must exist an episode related to each high-level robot
capability: navigation, manipulation, perception, HRI. Capabilities are
defined inside a Task.

When: Just knowing the sequence of episodes is not enough for validation. On
the one hand, transposed episodes, i.e. episodes that are simultaneous, cannot
be sequenced; on the other hand, the referees need a way to verify that the
given episode description relates to the recorded time. Consequently, at least, the
temporal information of an episode must consider initial and final timestamps.
These can be described in terms of minutes, hours, days, weeks, months or years.

Where: Location must be described in a simple way. Using coordinates like
(x,y,z) is not allowed. What is allowed:

– The robot can show a map of the arena with drawings marking the interesting
locations.

– The robot can describe locations using semantic information, with room
names and elements of the arena. Some examples: Inside/Outside the arena,
rooms (kitchen, bedroom), furniture (desk, fridge), or by using relative posi-
tions (at the left of, over the). For tests which require Simultaneous Localiza-
tion and Mapping (SLAM) the description can be in terms of known areas,
as the “bar” in the Restaurant test.

What: As the information to store is not clearly defined, this highly depends
on the team implementation. However, at least some entities and fields should
be defined by the referees/technical committee, in order to give a normalized
base for all queries and validations during a test. Proposed entities to be stored
are: people, objects and locations. Fields for each of these can be obtained from
capabilities required on previous tests (e.g., age/emotion recognition, last seen
location, and face images). Event description can be made verbally or by dis-
playing a graph with the related sub-episodes.

– The verbal description is preferred. This should be related as a story, by
saying the associated episode sequence.

– The description should be as specific as possible. E.g.: “I moved” vs. “I moved
towards the door”.

– Transposed episodes should only be considered if they are in context. These
might require more complex verbal explanations to emphasize the concurrence
of the actions.

Towards Long-Term Memory for Social Robots 257

Emotions: How emotions are generated for a given robot and how they are asso-
ciated to any given episode strongly depends on the emotional system used by the
team. Therefore, no matter what emotional model is used, we propose to restrict
the emotions to just 4 groups: Joy/Trust, Sadness/Fear, Surprise/Anticipation,
Anger/Disgust. These are obtained from Plutchik’s theory of emotions [17]. This
selection is made to have a simple and verifiable set of emotions for the compe-
tition. Each episode must be related to at least one emotion and its intensity.
Emotion intensity must have at least a resolution of 4 levels: “normal”, “a little
<happy>”, “<happy>”, “very <happy>”.

Other Limitations: There are no proposed rules on how the memories are
stored into semantic memory, as it depends on the implementation. There are
no rules associated to other concepts.

4.3 Episode Generation

There are many sources from where the robot can generate episodes for the
EpLTM: preparation for the competition, the travel, setup days, time between
tests, non-RoboCup related episodes and the tests in which the robot partici-
pated. However, only the last one is a verifiable source of information. Then, we
propose to limit the episodes to only the ones related to the tests of the current
competition. On the first hand, this lets us simplify the evaluation and veracity
of the memories. On the second hand, by only considering these episodes, new
participants will compete in the same terms as older teams, this also serves as a
regulation between the amount of memories gathered by teams which compete
many times in a year.

As the competition lasts only a few days, the number of learning instances to
gather episodes is small. In order to increase the amount of episodes, we propose
two approaches. First and most important, the EpLTM test must be postponed
as much as possible, ideally as the last test of Stage 2. The second proposal is
to add a “Memory Setup” stage at the end of the “Setup Days” period, where
each robot can generate interesting memories for the queries of the test. E.g.:
By maintaining an informal conversation with someone of the committee or by
an introduction to the people that it will find through the tests.

Depending on the queries the robot will encounter on the competition, the
organizing committee can find new requirements. For instance for queries about
people participating in 2 or more tests, the same name should be assigned to
them, and they should wear similar but not identical clothes.

Finally, we have proposed to only consider episodes related to the current
RoboCup competition, but it is important to mention that adding other events
and older RoboCup competitions has some advantages. This directly affects
the amount of episodes the robot will recollect. Moreover, this enables us to
consider queries based on episodic inference, so the robot can be confronted
to tasks requiring extrapolation from similar situations (e.g., Joe usually wants
me to clean up the table after a meal). This capability can be added in later
competitions, when the EpLTM test is considered solved.

258 M. Pavez et al.

4.4 Validation

The introduction of the memory concept is susceptible to cheating, for example,
with manually written episodes during the competition or through a random
episode generator. To attack this problem, first we consider the Fair Play concept.
On the other hand, a strategy to hinder hardcoding is to increase the number
of episodes and increase the number of available queries. However, the simple
solution is to require evidence of each described episode.

Evidences fulfill two purposes, they hinder the cheating and also simplify
the score assignation by the referees. When describing an episode it is desirable
that the robot displays related evidence. As an example, the robot can provide
a visualization as the one shown on Fig. 1, where location, time, and context are
given. Moreover, this can be displayed through the Vizbox [3] application, so
that referees and audience can see it.

– Task is validated by displaying the requirement as text.
– Location is validated by displaying a colored map and images.
– Sub-Episodes are validated with images or video.

Fig. 1. Example of episodic visualization for the competition with fields showing all
verifiable information by the referees. In the upper-left panel, the context and date-time
are shown (e.g., “EpLTM Test” - “Wed, July 17, 2019 15:40:15”), followed by a graph
with the emotion intensities. In the lower-left panel, location information is displayed
using a map of the environment and the location name (e.g., “kitchen”). In the right
panel, the images and text fields are meant to display images recorded by the robot,
interaction subtitles, and other useful information as proof for validation.

Towards Long-Term Memory for Social Robots 259

4.5 Test Proposal: Sick and Elderly Care

Next we present an example of an @Home like test with EpLTM requirements.
The test is based on the methodology proposed in this Section. Particularly, it
is important to postpone the test as part of Stage 2, so that the robots can
collect as much interesting episodes as possible beforehand. We expect that this
proposal can be adjusted as needed for the competition.

Focus: The robot must help a sick or elderly person with reduced mobility (in
bed/wheelchair), by answering questions about the home and recent events at
which he cannot attend. The test is focused on EpLTM, perception and HRI.

Setup: The test takes place on the @Home arena. The operator is waiting in
the bedroom, lying on the bed or sitting on a chair. The arena keeps the same
structure and items as in other tests, but with some small changes. Other people
are located in the house with which the robot can interact as needed.

Task: The robot starts by entering the arena, it moves to the bedroom,
approaches the operator and asks if any assistance is needed. The operator
explains he is sick/tired and cannot move, so it will make some questions to
the robot. After 4 queries, the operator tells the robot to leave the bedroom.

Considerations: Queries can be separated into 3 categories, depending on their
requirements. The robot should answer at least one question of each category.

– Cat 1: Queries about memories and emotions.
– Cat 2: Queries which require investigating objects in the arena.
– Cat 3: Queries which require interacting with people in the arena.
– We recommend the use of an episodic queries generator, built to match

requirements of categories I and II.
– The robot must show evidences when answering, e.g., in a screen or using

Vizbox [3], as shown on the official Rulebook.
– Referees must validate the coherence between answers and provided evidence.
– Rooms, people and objects must be set up according to the possible queries.

5 Conclusions

The development of EpLTM for social robots is an important challenge for
improving human-robot interaction, and @Home has the means to boost the
progress. For that reason, we have presented a test proposal focused on EpLTM,
its requirements and validation strategies. The proposal is focused on the min-
imum requirements any social robot implementing EpLTM should fulfill, but
trying not to impose an specific implementation to the teams.

260 M. Pavez et al.

References

1. Allen, P.A., Kaut, K.P., Lord, R.R.: Chapter 1.8 emotion and episodic memory. In:
Dere, E., Easton, A., Nadel, L., Huston, J.P. (eds.) Handbook of Episodic Memory,
Handbook of Behavioral Neuroscience, vol. 18, pp. 115–132. Elsevier, Amsterdam
(2008)

2. Bailey, C.H., Bartsch, D., Kandel, E.R.: Toward a molecular definition of long-term
memory storage. Proc. Natl. Acad. Sci. U.S.A. 93(24), 13445–13452 (1996)

3. van Beek, L., et al.: RoboCup@Home 2017: rules and regulations (2017). http://
www.robocupathome.org/rules/2017 rulebook.pdf

4. Dere, E., Easton, A., Nadel, L., Huston, J.P.: Handbook of behavioral neuroscience.
In: Handbook of Episodic Memory, Handbook of Behavioral Neuroscience, vol. 18,
p. iii. Elsevier (2008)

5. Deutsch, T., Gruber, A., Lang, R., Velik, R.: Episodic memory for autonomous
agents. In: 2008 Conference on Human System Interactions, pp. 621–626, May
2008

6. Dodd, W., Gutierrez, R.: The role of episodic memory and emotion in a cogni-
tive robot. In: Proceedings - IEEE International Workshop on Robot and Human
Interactive Communication, 2005, pp. 692–697 (2005)

7. Eichenbaum, H.: Learning & Memory. W. W. Norton & Company, New York (2008)
8. Eichenbaum, H.: Memory. Scholarpedia 3(3), 1747 (2008)
9. Ho, W.C., Dautenhahn, K., Lim, M.Y., Vargas, P.A., Aylett, R., Enz, S.: An initial

memory model for virtual and robot companions supporting migration and long-
term interaction. In: RO-MAN 2009 - The 18th IEEE International Symposium
on Robot and Human Interactive Communication, pp. 277–284, September 2009

10. Jockel, S., Weser, M.: Towards an episodic memory for cognitive robots. In: Euro-
pean Conference on Artificial Intelligence, pp. 68–74 (2008)

11. Kelley, T.D.: Robotic dreams: a computational justification for the post-hoc pro-
cessing of episodic memories. Int. J. Mach. Conscious. 06(02), 109–123 (2014)

12. Kim, M.J., Baek, S.H., Cho, S.H., Kim, J.H.: Approach to integrate episodic mem-
ory into cogency-based behavior planner for robots. In: 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 4188–4193, October
2016

13. Kuppuswamy, N.S., Cho, S.H., Kim, J.H.: A cognitive control architecture for an
artificial creature using episodic memory. In: 2006 SICE-ICASE International Joint
Conference, pp. 3104–3110 (2006)

14. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intel-
ligence. Artif. Intell. 33(1), 1–64 (1987)

15. Leconte, F., Ferland, F., Michaud, F.: Design and integration of a spatio-temporal
memory with emotional influences to categorize and recall the experiences of an
autonomous mobile robot. Auton. Robots 40(5), 831–848 (2016). https://doi.org/
10.1007/s10514-015-9496-2

16. Nuxoll, A., Laird, J.E.: A cognitive model of episodic memory integrated with a
general cognitive architecture. In: ICCM (2004)

17. Plutchik, R., Kellerman, H.: Emotion: theory, research, and experience. In: Theo-
ries of Emotion, p. ii. Academic Press (1980)

18. Ratanaswasd, P., Gordon, S., Dodd, W.: Cognitive control for robot task execution.
In: IEEE International Workshop on Robot and Human Interactive Communica-
tion ROMAN 2005, pp. 440–445, August 2005

http://www.robocupathome.org/rules/2017_rulebook.pdf
http://www.robocupathome.org/rules/2017_rulebook.pdf
https://doi.org/10.1007/s10514-015-9496-2
https://doi.org/10.1007/s10514-015-9496-2

Towards Long-Term Memory for Social Robots 261

19. Spexard, T.P., Siepmann, F., Sagerer, G.: A Memory-based software integration for
development in autonomous robotics. In: International Conference on Intelligent
Autonomous Systems, pp. 49–53 (2008)

20. Stachowicz, D., Kruijff, G.J.M.: Episodic-like memory for cognitive robots. IEEE
Trans. Auton. Mental Dev. 4, 1–16 (2012)

21. Tulving, E.: Episodic and semantic memory. In: Tulving, E., Donaldson, W. (eds.)
Organization of Memory, pp. 381–403. Academic Press, New York. (1972)

22. Vijayakumar, S.: Long-term memory in cognitive robots. Ph.D. thesis, Universitaet
des Saarlandes (2014)

23. Walker, M.P., Stickgold, R.: Sleep-dependent learning and memory consolidation.
Neuron 44(1), 121–133 (2004)

24. Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and
synthetic systems. Adapt. Behav. 20(2), 81–103 (2012)

eEVA as a Real-Time Multimodal Agent
Human-Robot Interface

P. Peña1(B), M. Polceanu3, C. Lisetti2, and U. Visser1

1 University of Miami, Coral Gables, FL 33146, USA
pedro@cs.miami.edu

2 ENIB Brest, UMR 6285, Lab-STICC, 29200 Brest, France
3 Florida International University, Miami, FL 33199, USA

Abstract. We posit that human-robot interfaces that integrate multi-
modal communication features of a 3-dimensional graphical social vir-
tual agent with a high degree of freedom robot are highly promising.
We discuss the modular agent architecture of an interactive system that
integrates two frameworks (our in-house virtual social agent and robot
agent framework) that enables social multimodal human-robot interac-
tion with the Toyota’s Human Support Robot (HSR). We demonstrate
HSR greeting gestures using culturally diverse inspired motions, com-
bined with our virtual social agent interface, and we provide the results
of a pilot study designed to assess the effects of our multimodal virtual
agent/robot system on users’ experience. We discuss future directions for
social interaction with a virtual agent/robot system.

Keywords: Human-robot interaction · Service and social robots ·
Intelligent virtual agents · Culturally-aware robotics ·
Culturally-aware virtual agents

1 Introduction

Twenty years ago, research has shown that humans respond positively to social
cues when provided by computer artefacts [21]. With the emerging introduction
of robots in social spaces where humans and robots co-exist, the design of socially
competent robots could be pivotal for human acceptance of such robots. Humans
are very skilled at innately reading non-verbal cues (e.g., emotional signals) and
extrapolating pertinent information from body language of other humans and
animals [24]. Although some robots are currently capable to portray a small
collection of emotional signals [12], robots social abilities are currently very lim-
ited. Recently, the use of virtual interactive social agents as main user interface
(UI) has been shown to enhance users’ experience during human-computer inter-
actions in contexts involving social interactions (e.g., health assistants, tutors,
games) [7,14]. Yet robots intended to engage in social dialogs and physically
collaborate with humans do not have virtual social agents as user interface.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 262–274, 2019.
https://doi.org/10.1007/978-3-030-27544-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_22

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 263

We posit that human-robot interfaces that integrate multimodal commu-
nication features of a social virtual agent with a high degree of freedom robot
might enhance users’ experience with, and acceptance of, robots in their personal
spaces, are highly promising, and need to be investigated. However, according
to Matarić et al. [15], in order to avoid a mismatch between the expectations of
the human and the behavior of the robot during human-robot interaction (HRI,
henceforth), the natural integration of all the modules of the robot responsible
for social, physical, and cognitive abilities is of utmost importance.

We have started to address this social HRI challenge by developing a mul-
timodal human-robot interface for the Toyota’s Human Support Robot (HSR,
designed to help people in homes or offices) which integrates the RoboCanes
agent and the Embodied Empathetic Virtual Agent (eEVA) developed by FIU’s
VISAGE lab. The RoboCanes agent is responsible for managing and control-
ling navigation, object manipulation, grasping, among other physical actions,
while the VISAGE agent is responsible for recognizing and displaying social
cues involving recognizing the user’s facial expression and speech, synthesizing
speech with lip-synchronization, and portraying appropriate facial expressions
and gestures.

We created a greeting context for the pilot study of our first social human-
HSR interactions with our RoboCanes-VISAGE interface (described in Sect. 4)
by designing a small set of greeting gestures to personalize Toyota HSR with
its users greeting preferences (and to establish some initial rapport in future
more advanced studies): the Toyota HSR generates greeting gestures from four
different cultures such as waving-hand (Western), fist-bump (informal Western),
Shaka (Hawaii), and bowing (Japan) greeting gestures (for details see Sect. 4).
The HSR’s gesture greetings are performed based on the user’s spoken selection
of one of the four greetings and our pilot questionnaire aims to assess the impact
of combining the virtual agent interface on the user’s experience (e.g., feelings
of enjoyment, boredom, annoyance, user’s perception of the robot’s friendli-
ness or of competence). Future directions for social interaction with a virtual
agent/robot system are discussed in Sect. 5.

2 Related Work and Motivation

Human-Robot Interfaces: Human-robot interfaces that utilize multimodal
features (e.g., nonverbal and verbal channels) to communicate with humans has
been a current trend in HRI [1,2,9,22], but has demonstrated to be very chal-
lenging due to the high-dimensional space of these channels. Therefore, theories
and ideas from plethora of fields (e.g., Neuroscience, psychology, and linguistics)
have come together to develop new algorithms to create a more natural inter-
face to communicate with humans. However due to hardware constraints and
current A.I. technologies, developing an agent and robot that can communicate
with humans at the level of human-human interaction has not been possible.
Consequently, human-robot interfaces that are simple yet intuitive have been
developed to help with tasks that require assistance for humans. An example of

264 P. Peña et al.

these interfaces is the graphical user interface. Depending on the task, it is easier
for the user to interact with a robot using a graphical user interface with 3D
graphic rendering of the world to select objects or tasks for the robot to perform
[4], than with speech recognition and synthesis as proposed with our approach.

Nagahama et al. [16] developed an interactive graphical interface for users
that are not able to grab an object by themselves. The interface allows the user
to specify the object the user wants the robot to fetch by clicking on the object on
the screen. Hashimoto et al. [8] created a simple interface that has four different
modes or windows to give Toyota HSR tasks or monitor the robot.

Nonverbal gestures (e.g., arm gestures) to communicate with the robot and
assist with tasks have also been used. Kofman et al. developed a human-robot
interface that allows a user to teleoperate a robotic arm with vision [13]. There
are also human-robot assistive interfaces developed with haptic and visual feed-
back [6,23]. Human-robot interfaces that are connected to the human brain have
also been developed [20]. Qiu et al. developed a brain-machine interface that is
able to control an exoskeleton robot through neural activity. There is also a recent
trend of Augmented Reality (AR) human-robot interfaces to help users visualize
an environment from another location in their physical environment [25].

Although there has been recurring research in human-robot interfaces, the
communication between humans and robots through graphical interfaces is lim-
ited because the interaction between the human and the robot is constrained
by the screen where the interface resides in, and it does not offer nonverbal and
verbal communication as a medium of communication. Augmented and virtual
reality is a promising interface but it is also limited by the hardware, equipment,
and the lack of physical realism, i.e., virtual characters cannot interact with the
physical world. A promising yet an immature technology is the integration of
virtual agents which offers the social realism that robots require and integration
of robotics which offers the physical realism that virtual agents require.

Social Virtual Agents with Robots: Because virtual characters can use
their sophisticated multimodal communication abilities (e.g. facial expressions,
gaze, gesture) [17], to coach users in interactive stories [10], establish rapport
(with back channeling cues such as head nods, smiles, shift of gaze or posture,
or mimicry of head gestures) [18], communicate empathically [19], and engage in
social talk [11], they have the potential of becoming as engaging as humans [7].
The integration of a virtual agent with social robots has been very limited and
only given small attention. On example of a robot with a social virtual agent
as a human-robot interface is GRACE (Graduate Robot Attending ConferencE)
which was built by Simmons et al. [22] to compete in the AAAI Robot Challenge
that required GRACE to socially interact with humans in a conference.

The Thinking Head research [9] was performed in conjunction with artist
Stelarc where the facial characteristics of Stelarc were used for the animated
head. Cavedon et al. developed an attention model for the Thinking Head that
used backchanneling cues and eye gaze [5]. The Thinking Head resides in various
robots such as a robot arm’s end-effector and in a mobile robot.

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 265

Other human-robot interfaces include head-projection systems where a pro-
jector projects an animated face onto a mask [1,2]. These systems allow an ani-
mated avatar to display complex facial expressions not yet possible with robotic
hardware.

However, none of these previous approaches studied robots with manipulative
capabilities that are able to produce gestures, appropriately combined with the
social verbal and non-verbal cues of a virtual agent. Yet, many of the emerging
and future human-robot interactions are or will require socially and culturally
appropriate robots. Therefore rather than utilize a robot as a platform for a vir-
tual character to enable movement in the physical world such as the literature
discussed in this section, we developed an agent that takes advantage of the social-
emotional capabilities of social virtual agents (e.g., anthropomorphic agent, nat-
ural language, and nonverbal gestures) with the physical capabilities of the robot
(high degree of freedom arm and mobile base of the HSR robot) that can work as
a synchronized system which exhibits features from human-human interactions
such as simple greetings (e.g., robot greets user saying “hello” and waving arm
based on the users’ spoken utterance, discussed in Sect. 4) to enhance the social
interaction with the user. In the following section, we will explain the architecture
of the virtual agent and robot to understand how these two systems interact with
each other while it is providing a synchronized interface for the user.

3 Modular Architecture for Real-Time Multimodal
User-Interface Agents

3.1 RoboCanes-VISAGE: Integration of Two Agent-Based
Frameworks

The system architecture of the RoboCanes-VISAGE affective robot agent consists
of two separate frameworks: one developed by FIU’s VISAGE lab (eEVA frame-
work) and the other developed by UM’s RoboCanes lab (RoboCanes framework).
As described earlier, the RoboCanes agent is responsible for physical actions,
such as managing and controlling navigation, object manipulation, grasping. The
VISAGE agent is responsible for recognizing and displaying social cues involving
recognition of the user’s facial expression and speech, speech synthesis with lip-
synchrony, and portray of appropriate facial expressions and gestures.

Since our goal is to integrate two existing agent-based systems (namely
the eEVA and RoboCanes agents), in order for the integration of eEVA and
RoboCanes modules to cooperate seamlessly, a higher-level framework has been
designed and implemented to manage both systems accordingly. This was accom-
plished by integrating the inputs of eEVA and of the RoboCanes agent under
one decision making process rather than treating both systems separately. By
doing this, eEVA and RoboCanes agent act as one agent and their behavior is
synchronized.

More specifically, in order to integrate both systems together, the frame-
works communicate through the Standard ROS Javascript Library, roslibjs1.
1 http://wiki.ros.org/roslibjs.

http://wiki.ros.org/roslibjs

266 P. Peña et al.

This library facilitates both frameworks to communicate through web-sockets.
Therefore the user input in eEVA is transported from these web-sockets to the
RoboCanes framework, and the robot generates motions based on the requests
from the user.

3.2 eEVA: A Framework for Building Empathic Embodied Virtual
Agents

The default HSR user interface (UI) is shown in Fig. 1(a), and it is our aim to
use our empathic embodied virtual agent (eEVA) shown in Fig. 1(b) to enhance
user experience while interacting with HSR. While eEVA’s UI is a 3D animated
agent, it is driven by a fully integrated web-based multimodal modal system that
perceives the user’s facial expressions and verbal utterances in real time which
controls the displays of socially appropriate facial expressions on its 3D-graphics
characters, along with verbal utterances related to the context of the dialog-based
interaction. eEVA’s facial expressions are currently generated from the HapFACS2

open source software developed by the VISAGE lab for the creation of physiologi-
cally realistic facial expressions on socially believable speaking virtual agents [3].

Fig. 1. Human-robot interfaces

eEVA Components: The two basic components of the eEVA architecture
consist of modules and resource generic types. The principle of a module is
to robustly implement a single concrete functionality of the overall system. A
module is defined by the task that it solves, the resources it requires for solving
the given task, and the resources it provides (which may be further used for other
purposes within the system). In other words, a module receives an input which
is the resource it requires and it has an output which is the resource it provides.
Modules are further categorized by their resource handling: sensors (i.e., modules
which only provide resources), processors (i.e., with both required and provided
2 http://ascl.cis.fiu.edu/hapfacs-open-source-softwareapi-download.html.

http://ascl.cis.fiu.edu/hapfacs-open-source-softwareapi- download.html

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 267

Table 1. List of eEVA current modules.

Ref. No. Type Short name Function description

1 Sensor ChromeSpeech Speech recognition using Google Chrome API

2 Processor HapCharacter Virtual character controller (body and face)

3 Processor UserChoice User interface for interacting with eEVA

4 Processor WinSAPISynth Speech synthesis using Windows SAPI

5 Effector WebGLScene Default 3D scene rendering

6 Effector ROSHandler ROS Communication through roslibjs

resources), and effectors (i.e., modules which require resources but produce no
further data for system use). The list of eEVA modules and third-party libraries
is shown in Table 1.

Sensors: Sensors are modules that provide an output but do not have a processed
input. An example of a sensor in the eEVA framework is the ChromeSpeech mod-
ule which uses Google Speech API to recognize speech from the user by using the
head microphone of HSR as shown in Table 2. The final speech text from the user
is processed by this module and provides a UserText and UserCommand resource
that can then be required by another module such as an effector or processor.
Hence, sensors are modules that receive input from the environment.

Processors: Processors are modules that require and provide resources. The
modules process inputs from the sensors and then request the effectors to do an
action. Hence, these modules extract information and make a decision. Since the
interaction in the pilot study is turn-taking, the UserChoice module displays the
choices the user can say (i.e., the greetings discussed in Sect. 4). The virtual agent
uses Windows SAPI to generate speech. It is important to note that majority
of modules fall into the processor category and the collection of these modules
define the behavior of the agent.

Effectors: The effectors are modules that require resources but do not further
process other resources. Effectors are the modules that perform an action on
the environment and are responsible for displaying system data such as the 3D
virtual scene, the agent’s behavior, text, and other information to the user. The
effectors are the modules that are visible to the user and affect the perception of
the sensors. The communication between eEVA and RoboCanes is done through
an effector, ROSHandler. ROSHandler requires UserText resource from a sensor,
ChromeSpeech module, and sends this resource through roslibjs (roslibjs deals
with wrapping this resource in a format that ROS understands).

3.3 RoboCanes Components

On the robotic side, we use Toyota HSR which is an exemplary platform to
embody the integration of the University of Miami (UM) RoboCanes agent with

268 P. Peña et al.

the FIU VIrtual Social AGEnt (VISAGE). Our RoboCanes framework is an
extension of the ROS3 architecture that runs on the HSR.

The RoboCanes framework is developed in the ROS environment and it is also
modular. In pursuance of gesture synthesis, the RoboCanes framework consists
of a motion library node that uses MoveIt!4 and Toyota Motor Corporation
(TMC) action servers. The relevant node for this research is the manipulation
node.

Fig. 2. eEVA running on
Toyota HSR

Motion Planner: The motion planner node
uses the MoveIt! library and the OMPL5 library
through MoveIt! to generate motions. The motions
are requested by the eEVAHandler which handles
the communication between both frameworks. The
eEVAHandler processes the request from eEVA and
decides which gesture to generate based on the input
of eEVA. This results in the robot generating motions
of the physical robot through ROS. In Fig. 2, eEVA
is running on HSR, and Fig. 1(b) shows how eEVA is
presented on Toyota HSR. All the relevant HSR com-
ponents are listed in Table 2. The actuators shown in
Table 2 are used in parallel to generate the motions
discussed in Sect. 4.

Table 2. Listing of most significant Toyota HSR hardware components. The high-
lighted components are used for the pilot study.

3 http://www.ros.org/.
4 http://moveit.ros.org/.
5 https://ompl.kavrakilab.org/.

http://www.ros.org/
http://moveit.ros.org/
https://ompl.kavrakilab.org/

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 269

4 Pilot Study: Culturally-Sensitive Greetings on HSR
with RoboCanes-VISAGE

We investigated what the effects of a multimodal virtual agent as a UI are, and
whether we can develop a multimodal virtual agent UI that is more enjoyable
than a robot without such a UI.

We aimed at testing the following hypotheses:

– H1: Users find eEVA’s 3D character with speech recognition as the HSR UI
more enjoyable and competent over an HSR robot UI with speech recognition
without eEVA’s 3D character.

– H2: eEVA’s 3D character as UI with speech recognition does not make the
HSR UI with speech recognition more eerie, annoying, or boring compared to
the HSR robot default UI with speech recognition.

In our pilot study, the user stood about one meter away from the robot in
the lab, and the interaction exhibited turn-taking behavior. Each interaction
was initiated by eEVA greeting the user: “Hi, I am Amy. How is it going?
How do you greet?”. eEVA uses Google Chrome API for speech recognition
and Windows SAPI for speech synthesis (see Table 1 and Sect. 3.2). After eEVA
received the user’s greeting preference, the user greeted the robot from four
greetings (see below), and the robot portrayed the corresponding pre-greeting
gesture. The interaction is concluded when the robot performs the greeting ges-
ture chosen by the user. When the robot finishes greeting the user, the user is
allowed to get greeted by the robot again (study setup is shown in Fig. 3).

We established four short social interactions with the RoboCanes-VISAGE
framework. The four greetings identified below represent diverse forms of greet-
ing, which vary to reflect cultural influences via the HSR’s robot specific motions,
coupled with the eEVA human-robot interface: 1. Japanese greeting (Bow) as
shown in Fig. 3(a). When the user says, “hello” in Japanese, “Konnichiwa”, the
robot lifts its torso and bows by tilting its head forward. 2. Fist bump as
shown in Fig. 3(b). When the user says, “Hey, bro!”, the robot lifts its torso and
moves its arm forward while closing its fist. The user is able to pound the fist
of the robot. (this is the only interaction that involves physical contact with the
user). 3. Shaka, the Hawaiian greeting as shown in Fig. 3(c). When the user
says, “Shaka”, the robot performs a Shaka gesture. The Shaka gesture involves
the robot lifting its hand and moving it side to side. 4. Hand Waving greet-
ing. When the user says, “hello”, the robot moves its hand up and down, i.e.,
simulating a wave arm motion.

4.1 Participants

There were a total of 32 participants from the University of Miami Computer
Science department that took part in the pilot study (age M = 41, SD= 13).
There was a total of 17 females and 15 males that completed the experiment.
Data from one participant was excluded because the participant did not complete
the whole questionnaire.

270 P. Peña et al.

Fig. 3. Gestures used for pilot study

4.2 Experiment Design and Procedure

A small number of participants interacted with Toyota HSR with eEVA’s voice,
and the screen of the robot had the visual default HSR splash screen as shown
in Fig. 1(a). We compared their interaction experience with users who interacted
with Toyota HSR with eEVA’s 3D character as the visual interface element and
eEVA’s voice as shown in Fig. 2.

We split the participants into two groups: one group of 19 participants (age
M = 40, SD= 12) who interacted with Toyota HSR with eEVA (face and voice
Fig. 1(b)) and another group of 13 participants (age M = 41, SD = 13) who
interacted with Toyota HSR with eEVA’s voice and HSR default screen (see
Fig. 1(a)). At the end of the interaction, we asked the participants to fill out a
questionnaire with 7-point Likert scales about how they felt about the interac-
tion of the robot and their feelings toward the robot itself, and conducted an
unstructured interview for qualitative data.

4.3 Results

The data was analyzed using the Mann-Whitney test. For this experiment, n1 =
19 and n2 = 13 with a critical U = 72. An alpha level of 0.05 was used to analyze
the data. There was no significant difference reported for each Likert scale. The
competent category was very close to the critical U -value but was not significant
enough. No significant differences were found between both groups with regards

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 271

Table 3. Overall impression of eEVA as a human-robot interface

Category eEVA eEVA’s voice only Mann-Whitney test

Q1 Median Q3 Q1 Median Q3 U (Critical U = 72) p

Enjoyable 6 6 7 5 7 7 108.5 0.56

Boring 1 2 3 1 1 2 101 0.39

Natural 2 4 5 2 3 4 108 0.55

Friendly 5.5 6 7 4 6 6 107.5 0.54

Competent 5 6 7 4 4 6 92 0.22

Scary 1 1 2.5 1 1 1 111 0.63

Annoying 1 1 1 1 1 1 105.5 0.49
*Significant p < 0.05 (Likert scales are 7-point scales)

to age (p= 0.79) and experience interacting with robots (p= 0.42). Details can
be seen in Table 3.

4.4 Discussion

Although no significant differences were found in all categories, interesting con-
clusions can be made from this pilot study. First, it is important to note that
no significant difference was found in the scary, annoying, nor boring category.
Therefore our second hypothesis H2, eEVA does not make the human-robot
interaction more eerie, annoying, or boring is supported by our results. We con-
cluded that eEVA as an virtual agent human-robot interface might be acceptable
to users.

The first hypothesis, H1, is not supported by our quantitative results. How-
ever the qualitative data we acquired in the study revealed interesting observa-
tions that we will investigate in future research. For example, participants in the
study requested to interact with HSR for a longer period. One user asked “Will
the robot say something else?”, and another user asked “Can it do something
else?” These observations indicate that a longer interaction might be needed to
allow the user to interact with eEVA for a longer period of time to generate an
accurate evaluation. This also indicates that users enjoyed the HSR interaction
enough to want longer interactions with it, which is a measure of engagement;
many users asked, “Can I try all four greetings?” (in fact, 100% of all users used
all four greetings). We also noticed that users who interacted with eEVA were
trying to get closer to the screen suggesting that the size of HSR’s screen might
also have an effect on the interaction (i.e., in this case, the HSR screen might
be too small to generate an effect in the experience of the interaction).

Another factor in the interaction that might deter our results to be statisti-
cally significant is the current hardware of Toyota HSR which evokes aspects of
a human face: the two stereo cameras and the wide angle camera on the Toy-
ota HSR resemble two eyes and a nose. During the interaction, users were seen
gazing at HSR’s stereo cameras rather than the screen. One user mentioned the
stereo cameras were distracting when interacting with eEVA.

272 P. Peña et al.

Henceforth, in future formal studies we plan to investigate the following ques-
tions, among others: Does eEVA on different screen sizes on the HSR affect the
user’s experience such as user’s feelings or user’s perception of the robot’s char-
acteristics? Does HSR’s anthropomorphic features (two stereo cameras as eyes
and wide angle camera as nose) affect the user’s experience such as user’s feelings
or user’s perception of the robot’s characteristics? If the answer to the previous
question is yes, do users prefer eEVA as a human-robot interface for Toyota HSR
without an anthropomorphic face, Toyota HSR with an anthropomorphic face
but without eEVA, or both, eEVA and anthropomorphic face?

5 Conclusions and Future Work

In this article, we described a system that integrates both frameworks (eEVA
and RoboCanes) under one synchronized system that takes human input such
as eye gaze and user speech, and outputs a personalized human-robot interface
with greeting gestures.

Our pilot study to assess the effects of eEVA as a human-robot interface
for Toyota HSR revealed no significant differences in enjoyment, friendliness,
competence, uncanniness, and other categories when comparing Toyota HSR
with and without eEVA. We concluded that eEVA’s character does not make
Toyota HSR more uncanny, boring, or annoying.

In our future research, we will make a formal experiment to study further
effects of eEVA on Toyota HSR. This will include making the interaction with
Toyota HSR for a longer period of time to answer users’ wish to interact longer
with the robot (with or without eEVA).

Acknowledgements. Part of this research was funded by the National Science Foun-
dation grant award No. IIS-1423260 to Florida International University.

References

1. Abdollahi, H., Mollahosseini, A., Lane, J.T., Mahoor, M.H.: A pilot study on using
an intelligent life-like robot as a companion for elderly individuals with dementia
and depression. arXiv preprint arXiv:1712.02881 (2017)

2. Al Moubayed, S., Beskow, J., Skantze, G., Granström, B.: Furhat: a back-projected
human-like robot head for multiparty human-machine interaction. In: Esposito,
A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive
Behavioural Systems. LNCS, vol. 7403, pp. 114–130. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34584-5 9

3. Amini, R., Lisetti, C., Ruiz, G.: HapFACS 3.0: FACS-based facial expression gener-
ator for 3D speaking virtual characters. IEEE Trans. Affect. Comput. 6(4), 348–360
(2015)

4. van der Burgh, M., et al.: Tech united eindhoven@ home 2017 team description
paper. University of Technology Eindhoven (2017)

5. Cavedon, L., et al.: “C’ Mon dude!”: users adapt their behaviour to a robotic agent
with an attention model. Int. J. Hum Comput Stud. 80, 14–23 (2015)

http://arxiv.org/abs/1712.02881
https://doi.org/10.1007/978-3-642-34584-5_9

eEVA as a Real-Time Multimodal Agent Human-Robot Interface 273

6. Cowan, R.E., Fregly, B.J., Boninger, M.L., Chan, L., Rodgers, M.M., Reinkens-
meyer, D.J.: Recent trends in assistive technology for mobility. J. Neuroeng. Reha-
bil. 9(1), 20 (2012)

7. Gratch, J., et al.: Can virtual humans be more engaging than real
ones? In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4552, pp. 286–
297. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73110-8 30.
http://dl.acm.org/citation.cfm?id=1769622

8. Hashimoto, K., Saito, F., Yamamoto, T., Ikeda, K.: A field study of the human
support robot in the home environment. In: 2013 IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO), pp. 143–150. IEEE (2013)

9. Herath, D.C., Kroos, C., Stevens, C.J., Cavedon, L., Premaratne, P.: Thinking
head: towards human centred robotics. In: 2010 11th International Conference on
Control Automation Robotics & Vision (ICARCV), pp. 2042–2047. IEEE (2010)

10. Hill, R.W., Gratch, J., Marsella, S., Rickel, J., Swartout, W., Traum, D.: Virtual
humans in the mission rehearsal exercise system. Kunstliche Intelligenz (KI J.)
17(4), 5–10 (2003). Special issue on Embodied Conversational Agents

11. Klüwer, T.: “I Like Your Shirt” - dialogue acts for enabling social talk in conver-
sational agents. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R.
(eds.) IVA 2011. LNCS (LNAI), vol. 6895, pp. 14–27. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23974-8 2

12. Knight, H., Simmons, R.: Expressive motion with x, y and theta: Laban effort fea-
tures for mobile robots. In: 2014 RO-MAN: The 23rd IEEE International Sympo-
sium on Robot and Human Interactive Communication, pp. 267–273. IEEE (2014)

13. Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator
using a vision-based human-robot interface. IEEE Trans. Industr. Electron. 52(5),
1206–1219 (2005)

14. Lisetti, C., Amini, R., Yasavur, U.: Now all together: overview of virtual health
assistants emulating face-to-face health interview experience. KI - Künstliche Intel-
ligenz 29(2), 161–172 (2015). https://doi.org/10.1007/s13218-015-0357-0

15. Matarić, M.J.: Socially assistive robotics: Human augmentation versus automation.
Sci. Robot. 2(4) (2017). eaam5410

16. Nagahama, K., Yaguchi, H., Hattori, H., Sogen, K., Yamamoto, T., Inaba, M.:
Learning-based object abstraction method from simple instructions for human sup-
port robot HSR. In: 2016 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), pp. 468–475. IEEE (2016)

17. Pelachaud, C., Bilvi, M.: Computational model of believable conversational agents.
In: Huget, M.-P. (ed.) Communication in Multiagent Systems. LNCS (LNAI), vol.
2650, pp. 300–317. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-44972-0 17

18. Pelachaud, C.: Modelling multimodal expression of emotion in a virtual agent.
Philos. Trans. Roy. Soc. London. Ser. B Biol. Sci. 364(1535), 3539–3548 (2009).
http://www.ncbi.nlm.nih.gov/pubmed/19884148

19. Predinger, H., Ishizuka, M.: The empathic companion: a character-based interface
that addresses user’s affective states. Appl. Artif. Intell. 19, 267–285 (2005)

20. Qiu, S., Li, Z., He, W., Zhang, L., Yang, C., Su, C.Y.: Brain-machine interface and
visual compressive sensing-based teleoperation control of an exoskeleton robot.
IEEE Trans. Fuzzy Syst. 25(1), 58–69 (2017)

21. Reeves, B., Nass, C.I.: The Media Equation: How People Treat Computers, Tele-
vision, and New Media Like Real People and Places. Cambridge University Press,
Cambridge (1996)

https://doi.org/10.1007/978-3-540-73110-8_30
http://dl.acm.org/citation.cfm?id=1769622
https://doi.org/10.1007/978-3-642-23974-8_2
https://doi.org/10.1007/s13218-015-0357-0
https://doi.org/10.1007/978-3-540-44972-0_17
https://doi.org/10.1007/978-3-540-44972-0_17
http://www.ncbi.nlm.nih.gov/pubmed/19884148

274 P. Peña et al.

22. Simmons, R., et al.: Grace: an autonomous robot for the AAAI robot challenge.
Technical report, Carnegie Mellon University (2003)

23. Suero, E.M., et al.: Improving the human-robot interface for telemanipulated
robotic long bone fracture reduction: Joystick device vs. haptic manipulator. Int.
J. Med. Robot. Comput. Assist. Surg. 14(1) (2018)

24. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework
for motor control and social interaction. Philos. Trans. Roy. Soc. B: Biol. Sci.
358(1431), 593–602 (2003)

25. Yew, A., Ong, S., Nee, A.: Immersive augmented reality environment for the tele-
operation of maintenance robots. Procedia CIRP 61, 305–310 (2017)

Evaluation of Situations in RoboCup 2D
Simulations Using Soccer Field Images

Tanguy Pomas and Tomoharu Nakashima(B)

Department of Computer Science and Intelligent Systems,
Osaka Prefecture University, Sakai, Japan

mb104079@edu.osakafu-u.ac.jp, tomoharu.nakashima@kis.osakafu-u.ac.jp

Abstract. This paper proposes a convolutional neural network (CNN)
that assesses the situation at one point of a RoboCup 2D soccer game,
predicting which team will score next and when, by only taking soccer
field images as input. To train this model, we define a metric, called Sit-
uationScore that estimates, for a frame, the remaining number of frames
before next goal. A dataset containing more than one million RoboCup
2D soccer field images labeled with their SituationScore, from more than
5,000 games has been built to train our CNN. Our CNN-based model
manages to predict the SituationScore of a frame with an average error
lower than the other methods tested in this paper that use raw numerical
data from log files.

1 Introduction

Since games in RoboCup 2D Soccer Simulation League, or simply RoboCup
2D, are simulated on computer, every piece of information regarding them is
stored, and can be easily extracted for analysis purposes. Such logs contain, for
example, the coordinates of every player, for every cycle of a game, as well as
their velocity and their orientation. Therefore, it is not surprising that log files
play an important role when analyzing games and designing strategies.

RoboCup 2D games can be visualized on computers thanks to tools such as
soccerwindow2 that displays the position of all players and the ball for every cycle
of the game, with one computational cycle corresponding to one frame on it. This
tool not only allows audience to visualize games, but also researchers to replay
the same game, the same actions, in order to easily analyze them. However,
even when working with soccerwindow2, field images are only considered as a
representation of numerical data stored in log files, not as data itself.

This paper proposes a model that uses such images as input data in order
to assess how good or bad is the situation for both teams playing, without
considering numerical data available in log files. A metric, called SituationScore,
is proposed and used to evaluate the state of the field, estimating the number of
remaining frames before the next goal. We decided to build our model by using
a Convolutional Neural Network (CNN), given their efficiency for a large range
of tasks related to image analysis. To allow comparison with our CNN-based
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 275–286, 2019.
https://doi.org/10.1007/978-3-030-27544-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_23

276 T. Pomas and T. Nakashima

model, other models using raw numerical data from log files have been built and
evaluated, such as fully-connected neural networks and decision trees.

In order to evaluate these models, we built datasets containing more than
one million soccer field images and their corresponding raw numerical data from
more than 5,000 games. Our CNN leads to slightly better results than the other
tested methods. This may indicate that spatial features extracted by our CNN
can provide better information than raw numerical data.

The remainder of this paper is organized as follows. Section 2 presents
research that shares common points with this paper. In Sect. 3, we detail what
is the main objective of our work. Section 4 describes the procedure used to
build our datasets and provides the reasons why several datasets are required.
In Sect. 5, experiments relying on raw numerical data, as well as our model
only training with soccer field images and their respective results are described.
Finally, Sect. 6 summarizes our work, its results and limits, and provides an idea
to improve it.

2 Related Work

CNNs are known to be really efficient for a wide variety of tasks, especially tasks
related to computer vision, such as object classification, segmentation, or face
recognition. We can mention the work of Krizhevsky et al. [1] who first used
CNN in 2012 on the Imagenet dataset [2] and significantly outperformed every
other method employed at that time to perform image classification. Their work
is particularly appropriate to illustrate the learning power of CNNs, as Imagenet
dataset contains millions of images corresponding to 1000 different classes.

More closely related to our work, Stanescu et al. [3] used CNNs to evaluate
the state of a Real-Time Strategy (RTS) game, µRTS. Their CNN has been
trained to predict which of the two players is the most likely to win. To do this, it
analyzes the state of the game at three different moments. Each of these moments
is represented by a 8 × 8 × 25 image stack corresponding to the 25 features that
can be found on the 8 × 8 map, such as resources, units and buildings of each
player. Despite accurately predicting the winner of an RTS game, this prediction
only concerns µRTS, which is a very simple RTS game designed for testing AI
techniques.

Other more complex and popular RTS games have also been subjects of
research. That is the case of StarCraft on which some researchers applied
machine learning methods to estimate the global state of a game. For exam-
ple, Erickson et al. [4] proposed a logistic regression method to predict which
player will win a game by taking the global state of the game into account. To do
so, many aspects of the game have been identified and converted into features
such as number of units, map coverage and skill of each player. These game
states have been taken every 10 s for each of their 400 replays, providing them
enough data to evaluate their model on states from particular time intervals.
Rivari et al. [5] further improve their results by computing new features and
applying gradient boosting regression trees and random forests to estimate the
winner of the game.

Evaluation of Situations in RoboCup 2D Simulations 277

Another completely different way to predict the winner of a StarCraft game
is proposed by Sánchez-Ruiz et al. [6] who use influence maps in order evaluate
the state of the game. Influence maps are matrices representing the situation for
each player on the StarCraft map. For each unit owned by a player, a numerical
influence value is added to its corresponding position on the influence map and
its surroundings. In their work, influence maps are then reduced from 128 × 128
to 4 × 4 matrices. Therefore, the global state of a game is represented by 16
numerical values per player. Several machine learning methods are then used to
predict the winner of a game based on these influence maps that are computed
every 30 s.

While [4] and [5] extracted numerical values to evaluate the state of a game,
other work transform their initial raw numerical data into images. That is the
case of Souza et al. [7], who convert time-series into Recurrence Plots (RP),
considered as gray images. Several features are then extracted from these images
and used as input of a Support Vector Machine (SVM) algorithm that will use
this data to classify the time-series. Hatami et al. [8] propose a very similar
method that converts time-series into RP images, which are then used as input
images of a CNN that will perform a classification of the initial time-series. The
main difference between these last two papers is that the latter uses a CNN
directly working with RP, without extracting hand-crafted features first.

The work presented in this paper shares a few similarities with some of these
researches, as it involves the use of a CNN training on soccer field images that
are visual representation of available raw numerical data. However, it is still one
of a kind as it aims to evaluate the immediate state of a RoboCup 2D game with
only one image.

3 Task Definition

In RoboCup 2D soccer games, many different metrics could be defined to tell
which of the two playing teams currently has the upper hand, for example con-
sidering how many players of each team are on which part of the field, as well
as where is and who possesses the ball. However, such analysis, while easily con-
ducted using numerical data from log files, would be much more complicated to
conduct working only with field images. Therefore, another metric, independent
from players’ coordinates, has to be defined to assess the situation of a game.

To this end, we introduce the SituationScore of a frame f that is defined by

SituationScore(f) = ±(100 − n), (1)

where n is the number of frames between f and the frame corresponding to the
next goal. It is assumed in this paper that the considered frames are at most 100
cycles away from the next goal. Therefore, in this formula, n is necessary lower
than 100. The SituationScore’s sign is determined by the team that will score
this goal. We chose to consider a positive score when left team will score next
goal and vice versa. An example of a soccer field image and its corresponding
score is provided in Fig. 1.

278 T. Pomas and T. Nakashima

Fig. 1. Image taken 35 frames before the left team scores. The corresponding
SituationScore is +65.

Such definition presents two main assets, the first one being the easiness to
assign the correct score to newly produced images, as it does not require any
complex computation. The second asset is inherent to our objective to work only
with images. This metric does not take into account the state of the field itself at
all, only the remaining time, the number of frames, before next goal. Therefore,
many situations or formations can automatically be covered by this model.

On the other hand, this score is only defined for the last 100 frames before a
goal, meaning that, for most frames of a game, this score is not defined. However,
our model estimating such score is built only on valid frames, within 100 frames
before a goal. Therefore this problem does not affect the training phase. Then, a
solution to bypass this problem is to think of evaluated situations that are more
than 100 frames away from a goal as similar to situations with identical scores.

Having defined the SituationScore, our goal is to build a model that esti-
mates its value for any given frame. To this end, a dataset containing images
associated with their score has first to be created. In this paper, we built a
dataset containing more than one million images from more than 5,200 games,
as well as other datasets containing their corresponding raw numerical data.
Using these datasets, we built several models to estimate the SituationScore,
in particular a CNN only working on the image dataset.

4 Datasets Construction

4.1 Procedure

In order for our dataset to cover as many situations and formations as possible,
games between several 16 different teams have been simulated.

Dataset creation has been decomposed into several steps:

1. Games between each possible pair of teams are simulated and their log files
saved

2. Log files of games where no goal have been scored are deleted
3. For each game, every frame is saved using soccerwindow2
4. A python script is used to analyze their corresponding log files to determine

at which cycles goals have been scored

Evaluation of Situations in RoboCup 2D Simulations 279

5. Every 100 frames before each of these goals are kept, and their
SituationScores are computed. These frames are renamed to include their
SituationScore while the other are deleted.

When using soccerwindow2 in this procedure, some graphic options have been
precised, mainly to enhance the frames’ quality, removing superfluous informa-
tion and enlarging the players and the ball. These options include hiding score
board, player numbers, view area, stamina and potential yellow card, as well as
setting player size to 2, and ball size to 1.3. Size of saved images has also been
precised in these options, but minimum size from soccerwindow2 being 280×167,
kept frames have then been cropped to be of size 256 × 160. Soccer field images
visible in this paper, such as in Fig. 1 offers a good insight of frames contained
in our dataset.

A dataset containing about 1.02 million soccer field images taken from 5215
games has been constructed. This dataset has then been split into three parts:
a training set containing ∼720,000 images, a validation set containing ∼156,000
images and a test set containing ∼135,000 images. Images from a specific game
are all included in only one of these sets. In other words, each of these sets
contains images from different games.

4.2 Play-On Only Dataset

During a soccer game, there are several phases during which players have some
time to replace themselves on the field, while a player is about to make a kick.
These phases are typically kick-in, free kicks or corner kicks, and they are imple-
mented in RoboCup 2D Soccer Simulation League. We will refer to them as
“Non Play-On” (NPO) phases or events.

These events are quite common and also happen regularly within the last 100
frames before a goal. Therefore, NPO events concern a significant proportion of
images of the previously built dataset that systematically gathered the last 100
frames before a goal. However, it is not uncommon that players barely move
during these NPO phases, leading to almost identical successive frames, with
different SituationScores. Figure 2 illustrates this phenomenon, by showing two
images that are taken 28 frames apart. Players have barely moved during these 28
frames, thus images are almost identical, but the SituationScore is completely
different.

Regarding this issue, we decided to build another dataset using the same
procedure as for the first one. We decided to call this second dataset “Play-On
Only” (POO) dataset, in reference to the play-on phase, which is simply the
standard game phase. The only difference with the first dataset that we may
refer to as “All Frames” (AF) dataset, is that NPO phases frames, like kick-in
and corner kicks frames, are not counted within the last 100 frames before a
goal. Basically, this dataset contains the last 100 play-on frames before each
goal, which often include frames that are more than 100 frames before a goal.

The POO dataset has been built using the same log files as the all frames
dataset, it has also been split in the exact same way into training, validation

280 T. Pomas and T. Nakashima

(a) SituationScore -1 (b) SituationScore -29

Fig. 2. Lack of players’ movements during a kick-in.

and test sets. Therefore, each of these contains approximately the same number
of images as its all frames counterpart.

4.3 Raw Numerical Dataset

To allow comparison with our CNN-based model, models using raw numerical
data, such as coordinates, also have to evaluated. Consequently, a dataset con-
taining numerical data from the same log files has first to be built.

In order to allow fair comparison with our CNN model, two different numer-
ical datasets have been built. The first one that we will refer to as “coordinates
dataset” only contains numerical data that could be retrieved by analyzing just
one image. In other words, it contains for one frame, the ball and the players’
coordinates along with their body angle, which can be obtained by paying atten-
tion to the orientation of their back, the black part of their circle visible on every
frame, such as in Fig. 1. The second one that we may call “all numerical dataset”
contains the same data as the first one, on top of ball and players’ velocities,
their absolute neck angle and their view angle range.

The problem of non play-on cycles being exactly the same whether field
images or their corresponding coordinates are considered, numerical datasets
have also been split into Play-On Only datasets and All Frames datasets. There-
fore, four numerical datasets have been built: All Frames Coordinates (AFC),
All Frames All Numerical (AFN), POO Coordinates (POOC) and POO All
Numerical datasets (POON).

These numerical datasets have been built using the same log files as for the
previous images datasets. Splitting into training, validation and test sets has
also been done the same way, leading to sets of the same size, corresponding to
the same games.

5 Experiments and Results

5.1 Experiments on Raw Numerical Data

While the main aspect of our work is to use CNN to build a model that accu-
rately estimates the SituationScore, most, if not all, work on RoboCup 2D

Evaluation of Situations in RoboCup 2D Simulations 281

exploits numerical data from log files. Therefore, to allow comparison with our
CNN model and to determine if working directly with soccer field images has an
interest, models using numerical data have first to be built and evaluated.

Two kinds of experiments using numerical data have been conducted. The
first one was experiments using Fully-Connected Neural Networks (FCNN), build
with the TensorFlow library. These experiments are similar to our CNN experi-
ments, but with much simpler neural networks, containing only fully-connected
layers, up to thirty of them. The only hyper-parameters that were tested during
these tests were batch size, learning rate, number of fully-connected layers and
number of units within them. These experiments were run on the four numerical
datasets presented earlier.

Table 1 includes the best results of these experiments for each numer-
ical dataset, based on the Mean Absolute Error (MAE) between their
SituationScore predictions and true scores. As expected, using all numerical
data available leads to better results than only using data visible on one frame.
Moreover, these first results tend to prove the importance of distinguishing NPO
phases from standard game phases, as results on POO datasets are significantly
better than those on AF datasets.

For the second series of experiments, several models built on these datasets
have been tested using various machine learning methods. Experiments were
conducted using Scikit-learn Python machine learning library [9]. Tested meth-
ods were bagging of decision trees, random forest, extra trees regressor, linear
regression, linear SVR and k-Nearest Neighbors. The latter three gave results
much worse than the other methods, not being really efficient with huge datasets.
In particular, without transformation of the training set, the kNN method need
to compute a distance between a situation and every other 720,000 training sit-
uations to estimate the score of this situation, making it completely unusable
for our task. Random forest, bagging of decision trees and extra trees regressor
methods gave similarly good results.

Table 1 presents the best results obtained with all methods implemented and
tested with Scikit-learn Python library. The extra trees regressor model gives
slightly better results than the other on all datasets, except on the All Frames, all
Numerical (AFN) dataset, for which best results are obtained with a Bagging of
Decision Trees model. Interestingly enough, this time better results are achieved
on AF rather than on POO datasets.

5.2 Experiments Using Images as Input Data

Regarding our CNN implementation, we decided to use the TensorFlow library
in Python. A CNN architecture similar to the VGG architecture [10], along with
appropriate hyper-parameter values leading to satisfactory results have been
determined by preliminary experiments. Our architecture is illustrated in Fig. 3.
Our CNN was trained with an initial learning rate of 0.0001, decreasing by 5%
every 1500 steps, corresponding to batches of size 16. It should also be noted
that our CNN takes 160×256 images as input and contains a 15% dropout term
at the end of each convolutional block, as well as after each fully-connected layer.

282 T. Pomas and T. Nakashima

Table 1. Lowest MAE obtained during numerical experiments on every dataset

Method AFC POOC AFN POON

Fully-connected neural network 14.91 14.39 14.07 13.79

Linear SVR 19.89 18.79 18.52 17.59

Linear regression 20.30 19.18 18.81 17.95

Decision tree bagging 14.66 14.69 13.96 14.23

Random forest 14.65 14.69 13.97 14.25

Extra trees regressor 14.60 14.58 14.14 14.21

k nearest neighbors 18.56 - - -

160x256x32

80x128x64

40x64x128
20x32x256 10x16x256 4096 4096 1

Convolutional layer + ReLU activation

Max pooling

Fully connected + ReLU activation

4096

5x8x256

Fig. 3. Final architecture of our CNN, composed of the same four convolutional blocks
as VGG, but with one more fully-connected layer

From lack of being truly optimal, our final architecture, along with presented
hyper-parameter values quickly and consistently leads to a MAE usually between
13.3 and 13.6 that do not rise afterwards.

Table 2 shows the lowest MAE obtained using the presented architecture
with its hyper-parameters values along with. Further hyper-parameters adjusting
may lead to slightly better results, such as a MAE consistently around 13.3,
but systematically getting below this value may be extremely difficult without
changing this architecture.

A remark that has to be done regarding these results is that bagging of
decision trees, extra trees and random forest can provide lower MAE if trained
longer, with more trees. However, their MAE has only decreased by about 0.02
when going from 100 to 200 trees. Therefore an improvement of more than 0.1
is probably not to be expected. Extensive hyper-parameters adjusting, on the
other hand, could possibly lead to better results, but that is also the case for
FCNN and our CNN-based model.

Besides this issue that may have a slight impact on results, we can also
consider the prediction time issue. Indeed, if we want to be able to compute
the SituationScore in real time, our models have to be fast enough to do it
before the next frame is displayed, which is within 100 ms. Even more, if we
want the SituationScore to be a parameter that a team considers when making
choices, prediction time has to be much shorter than 100 ms so that strategic
choices can be made in the remaining time. Table 2 includes prediction time of

Evaluation of Situations in RoboCup 2D Simulations 283

Table 2. Best MAE obtained using our CNN and most efficient methods

Method AF POO Prediction time

Proposed CNN 13.31 13.27 ∼4.1 ms

Fully-connected neural network 14.07 13.79 ∼0.8 ms

Bagging of decision trees 13.93 14.23 ∼6.0 ms

Random forest 13.97 14.25 ∼5.1 ms

Extra trees 14.14 14.21 ∼9.1 ms

the most efficient methods tested. All of them compute a SituationScore in less
than 10 ms, which shows that their predictions are fast enough to be used in a
team strategy. However, it should be precised that our CNN and FCNN models
required a GeForce GTX 1080 GPU to be that fast, while the other methods
used a simple Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz.

5.3 Additional Remarks

AF and POO Datasets. In some experiments, models built on AF datasets
perform better than models built on POO datasets. In particular that is the case
in decision tree bagging and random forest experiments. However, the contrary
is observed in FCNN experiments. Our CNN-based model, as for itself, gives
approximately the same results whether trained on AF or POO dataset. This
proves that, contrary to what we could have thought, the POO datasets are
not “better” datasets than AF datasets. In fact, it may be possible that ignor-
ing movements of players during NPO phases when some of them move a lot
compensates the improvement got by ignoring NPO frames when players barely
move.

Indeed, in some NPO phases players barely move leading to many similar
frames with different scores. However, in other NPO phases some players move a
lot, meaning that ignoring them will bring a discontinuity in the SituationScore
distribution. There will be frames corresponding to the same goal, with scores
different by 1, but some players will seem to jump from one position to a com-
pletely another one between those frames, as shown in Fig. 4.

Therefore, both AF and POO datasets have a defect related to these NPO
phases. As a consequence, it may be better to only focus on the AF dataset, as
it represents everything that happens in the game.

Distribution of Prediction Error. Intuitively, the SituationScore is more
easily estimated on some frames than other. For example, the closer the ball is to
the goal, the sooner the goal is likely to be scored and the higher should be the
SituationScore. Therefore, high SituationScore situations, regardless of their
sign, are relatively easy to identify. On the other hand, when the ball is far from
the goal, position of every player on the field has to be considered to assess the

284 T. Pomas and T. Nakashima

(a) SituationScore +32 (b) SituationScore +33

Fig. 4. Players’ position jumping between two consecutive POO images.

Fig. 5. Average error for each computed SituationScore.

situation, which makes it considerably more difficult to accurately estimate the
SituationScore.

By computing the average difference between estimations and true scores for
each possible value, this intuition can be confirmed. In fact, when true score
is between −10 and +10, average error of our model is above 20 points while
it drops below 5 points when true score is either above +90 or below −90, as
visible in Fig. 5.

Situation Score Predictions on Other Frames. Another problem remains
as the SituationScore is only defined for the last 100 frames before a goal but
games used in our experiments contains more than 3,000 frames for only two
goals on average. That means the SituationScore is not really defined for more
than 90% of frames. This may not be a problem to train our model, as datasets
have been built for this purpose, but make our model’s predictions harder to
interpret for frames that have no true SituationScore. A simple solution, when
using our CNN on every frame of a game, would be to consider that the situation
in the frame is similar to a situation with predicted score, whether or not a
goal will be scored soon. However, it is still interesting to have an idea of the
probability that a goal will be scored knowing a SituationScore estimation.

Evaluation of Situations in RoboCup 2D Simulations 285

Fig. 6. Probability that a goal is scored within next 100 frames for each computed
SituationScore.

In order to have the beginning of an answer to this question, another
dataset, containing all frames from 120 games, totalling 360,612 images where
SituationScore is not defined and 23,098 images where it is has been built. These
first figures confirm that SituationScore is properly defined in only about 6% of
all frames. After training on the All Frames dataset, our CNN estimated the score
of all these frames. Without surprise, the higher the predicted SituationScore
regardless of its sign, the more likely a goal will be scored soon, and vice-versa.
While predicting a score between −10 and +10 has less than 2% chance to cor-
responds to an actual frame within 100 frames before a goal, chances that a goal
will be scored soon increase with SituationScore prediction value. For example,
this probability gets higher than 50% if predicted score is below -94 or above 92,
as shown in Fig. 6.

Considering a new model, estimating whether or not a goal will be scored in
the next X frames could be an interesting extension of this work.

6 Conclusion

In this paper, we have introduced the SituationScore, a metric that assesses the
field situation at one point of a RoboCup 2D game by estimating the remaining
number of frames before next goal. Datasets containing frames or numerical data
from more than 5,000 games, along with their corresponding SituationScore
have been built in order to train models estimating this score.

Several models that predict this score have been built. Most of them were
trained using raw numerical data and, among them, the decision tree bagging,
random forest, extra trees and FCNN performed the best. However, we also
focused on the construction of a CNN-based model that outperformed these
models by training only on soccer field frames, disregarding numerical data.
However, most tested methods could provide slightly better results if trained
longer, with extensive hyper-parameter adjusting.

If results using our CNN are satisfactory and able to predict the num-
ber of remaining frames before next goal with an average error around 13.5,

286 T. Pomas and T. Nakashima

another problem inherent to the SituationScore definition subsists. In fact, the
SituationScore definition assumes that a goal will be scored within 100 frames.
Therefore, our model is not trained to estimate if a goal will be scored soon, but
instead assumes that it will. In other words, when considering truly any frame
of a RoboCup 2D game, our CNN estimates a possible number of frames before
next goal is scored regardless of the probability that it happens.

Thus, this work could be extended by considering a new model that predicts
whether or not a goal will be scored in the next X frames. Combining this
new model with the model presented in this paper would be a way to complete
it, to make it fully usable. Another way to do this would be to update the
SituationScore definition so that it is defined on all frames of a RoboCup 2D
game, for example considering a score of 0 when no goal is scored within the
next 100 frames. It would be also useful to investigate the performance of various
CNNs that are trained by using games from different years. This would lead some
insight into the trend of teams by years. This is also left as a future task.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

2. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

3. Stanescu, M., Barriga, N.A., Hess, A., Buro, M.: Evaluating real-time strategy
game states using convolutional neural networks. In: Proceedings of the IEEE
Conference on Computational Intelligence and Games, pp. 1–7 (2016)

4. Erickson, G.K.S., Buro, M.: Global state evaluation in StarCraft. In: Proceedings of
the Tenth Artificial Intelligence and Interactive Digital Entertainment Conference,
pp. 112–118 (2014)

5. Ravari, Y.N., Sander, B., Spronck, P.: StarCraft winner prediction. In: Proceed-
ings of the Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 2–8 (2016)

6. Sánchez-Ruiz, A.A., Miranda, M.: A machine learning approach to predict the
winner in StarCraft based on influence maps. Entertain. Comput. 19, 29–41 (2017)

7. Souza, V.M.A., Silva, D.F., Batista, G.E.A.P.A.: Extracting texture features for
time series classification. In: Proceedings of the Twenty-Second International Con-
ference on Pattern Recognition, pp. 1425–1430 (2014)

8. Hatami, N., Gavet, Y., Debayle, J.: Classification of time-series images using deep
convolutional neural networks. In: Tenth International Conference on Machine
Vision (ICMV): Image Analysis and Imaging System, Vienna (2017)

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct),
2825–2830 (2011)

10. Simonyan, K., Andrew, Z.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2015)

http://arxiv.org/abs/1409.1556

Near Real-Time Object Recognition
for Pepper Based on Deep Neural
Networks Running on a Backpack

Esteban Reyes1(B), Cristopher Gómez1, Esteban Norambuena1,
and Javier Ruiz-del-Solar1,2

1 Department of Electrical Engineering, Universidad de Chile, Santiago, Chile
{esteban.reyes,cristopher.gomez,esteban.norambuena}@ug.uchile.cl

2 Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
jruizd@ing.uchile.cl

Abstract. The main goal of this work is to provide Pepper with a near
real-time object recognition system based on deep neural networks. The
proposed system is based on YOLO (You Only Look Once), a deep neu-
ral network that is able to detect and recognize objects robustly and
at a high speed. In addition, considering that YOLO cannot be run in
the Pepper’s internal computer in near real-time, we propose to use a
Backpack for Pepper, which holds a Jetson TK1 card and a battery. By
using this card, Pepper is able to robustly detect and recognize objects
in images of 320 × 320 pixels at about 5 frames per second.

Keywords: Pepper robot · YOLO · Jetson TK1 · ROS

1 Introduction

Environments where service and social robots operate/live are highly dynamic,
in part because of the people living in those environments constantly interact
with each other and carry out daily life activities. Therefore, service and social
robots require perception systems that are highly robust, but at the same time
are able to operate in real-time1. Object detection and recognition are some of
the vision tasks that require at least near real-time operation.

The commercial Pepper robot [1] is a social robot used to research on human-
robot interaction in real-world human environments (e.g. it is the official plat-
form of the RoboCup@Home Standard Platform League), but its operation is
constrained to the fact that it lacks the computational power necessary to run
state-of-the-art vision algorithms.

On the other hand, the uprising of Deep Neural Networks (DNNs) has lead
researchers to use them in the development of models that can quickly recognize

1 In the service robot domain, we understand as real-time tasks that have a reaction
span that looks natural to people, i.e. ∼5 Hz.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 287–298, 2019.
https://doi.org/10.1007/978-3-030-27544-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_24

288 E. Reyes et al.

objects and persons in a robust manner. However, they are very expensive in
terms of computational power, so they cannot be run directly on typical service
robots. In particular, most of state-of-the-art DNN models cannot run on Pep-
per’s internal computer, a situation that stands as the problem we address in
this paper. Therefore, the main goal of this paper is to propose a solution to
this problem that considers two components: First, the selection of YOLO (You
only look Once) [2], a DNN with real-time detection and recognition of objects
and persons, as the most suitable DNN to this task; and second, the develop-
ment and implementation of an add-on for Pepper, a backpack that permit the
attachment of a single board computer onto Pepper, particularly a Nvidia Jetson
TK1, which can run YOLO at about 5 FPS when processing images of 320×320
pixels. The use of an external enhancing device, attached to the robot without
modifying its structure, comes as an inspiration from similar projects developed
for the NAO robot [3], where a fully replicable backpack was built.

In this work we provide details on how to reproduce the backpack for Pepper,
and on how to install and implement YOLO on it, making the backpack CAD
model, hardware, software specifications and an installation guide available for
replication.

The remainder of this paper is structured as follows. In Sect. 2, we present an
overview of the YOLO network. Subsequently, in Sect. 3 we present the process
done to adapt and use YOLO on the Pepper’s internal computer and in the
Jetson TK1 card. Then, in Sect. 4 we address the mechanical design of the Pepper
Backpack. Finally, in Sect. 5 we draw some conclusions of this work.

2 Robust and Fast Object Recognition Using YOLO

You Only Look Once (YOLO) [2], is a computer vision system capable of detect-
ing a wide variety of objects in a single image, with an accuracy similar to
RetinaNet [4], but with a superior speed of inference when compared to others
state of the art systems such as SSD [5], R-FCN [6] and FPN FRCN [7]. Its speed
makes it one of the best-suited systems for real-time object detection needed in
systems such as service robots.

One of the main features of YOLO is to treat the detection of objects as a
regression problem, where the model is trained to identify bounding boxes (BB),
along with probabilities of certainty, in areas that might contain an object. Unlike
other systems, where proposals or regions of interest are generated explicitly as
object candidate windows, on which a class inference is executed. This difference
gives YOLO advantages in terms of speed, having to process each image only
once to perform multiple detections, instead of processing proposals individually.
Also, the system processes the complete image and not just a region of it, which
makes its inferences contemplate the global context of the image, making it less
likely to detect background content as an object, which translates into a lower
number of false positives in comparison to other systems.

Object Recognition for Pepper Robot on a Backpack 289

Another distinctive feature of this model is its end-to-end training process,
meaning that it has a unique pipeline that is trained jointly. Unlike other systems
that have different components and need to be trained separately, such as Faster-
RCNN [8].

Since the first release of YOLO, there have been 3 major versions of the algo-
rithm, each one aiming to improve accuracy with respect to previous versions.
The first version, YOLOv1 [2], achieved 63.4% mean average precision (mAP)
over PASCAL VOC 2007 [9], with an inference speed of 45 FPS. Introduction
of a fully-convolutional model [5], multi-scale training [10], batch normalization
[11], BB dimensions priors [10], among other techniques, raised YOLOv2 [10],
which gets an mAP of 48.1% on COCO [12] dataset and 78.6% mAP on PAS-
CAL VOC 2007, while working at 40 FPS. The latest version of YOLO, YOLOv3
[13], includes a larger model with 75 convolutional layers that use residual blocks
[14], prediction of BB across 3 different scales by using a procedure similar to
feature pyramid networks [7], among other improvements that result in an mAP
of 57.9% on COCO, at 20 FPS on the same TitanX GPU that all models where
tested. Differences among YOLO versions clearly depicts that performance can
be sacrificed to gain processing speed, allowing to choose the best-suited version
for a given application. Moreover, there are reduced versions of YOLOv1 and
YOLOv2 which are even faster. A review of most versions of YOLO is shown in
Table 1.

Table 1. Performance of different YOLO versions. Inference speed results (FPS) where
obtained when running on a Titan X GPU. Fastest YOLO version is tiny-YOLO v2 at
207 FPS, and most accurate version is YOLOv3 with a 57.9% mAP on COCO dataset.

Model Input size Train set Test set mAP FPS

YOLOv1 448 × 448 VOC 2007+2012 VOC 2007 63.4% 45

Fast YOLOv1 448 × 448 VOC 2007+2012 VOC 2007 52.7% 155

YOLOv2 416 × 416 VOC 2007+2012 VOC 2007 76.8% 67

tiny-YOLOv2 416 × 416 VOC 2007+2012 VOC 2007 57.1% 207

YOLOv2 608 × 608 COCO COCO 48.1% 40

YOLOv3 608 × 608 COCO COCO 57.9% 20

3 Adapting YOLO to Be Used with Pepper Robots

In spite of YOLO’s exceptional performance and speed, it is necessary to take
into account that the reported speeds were measured using a platform with
a powerful GPU. When running YOLO on a CPU-only system, such as the
Pepper’s internal computer, the speed of operation decreases considerably. To
deal with this situation is that we base our work on the fastest versions of the
model (tiny-YOLO), which has only 15 convolutional layers.

290 E. Reyes et al.

3.1 YOLO for Pepper

To run YOLO on the Pepper’s on-board computer, the Darknet framework [15]
must be first installed. Darknet is written in C, a low-level language, so it is
easy to port to different platforms. Thus, compilation for Pepper’s computer is
straightforward.

To easily integrate YOLO with other modules of Pepper, the darknet ros
package from ETH Autonomous System Lab [16] is used. This package operates
with an older version of Darknet, however, it is compatible with the most recent
versions of Darknet. The YOLO ROS package implements all the tools needed to
feed the system with a standard ROS stream of images through a defined topic.
Moreover, the information of the detected objects is also published through a
ROS topic.

To compile the YOLO ROS package for the Pepper’s computer, mild modi-
fications are needed to source and compilation files. A guide to the process can
be found in the Supplementary Material Section.

3.2 YOLO for Jetson TK1

As an alternative strategy to the Pepper’s on-board processing of tiny-YOLO,
an external processing unit is used, where the only task that directly involves
Pepper is to publish on a ROS topic the images from his camera at a rate
that depends on the resolution of the images. The maximum resolution that
enables a rate of ∼30 Hz is 640 × 480. Jetson TK1 development card is used for
the external processing. We select this unit because it has an integrated 2 GB
Nvidia GPU, which allows the use of parallel computing platform CUDA [17],
accelerating the calculation of certain Darknet operations written exclusively for
parallel processing in CUDA.

As a first approach, the original version of Darknet is compiled, it is important
to note that its compilation with GPU is immediate, but not the use of the
cuDNN library [18] of efficient computing for deep learning. This incompatibility
raises because of the CUDA version available for the Jetson TK1 is CUDA 6.5,
and the library cuDNN from Darknet uses the CUDA 7.0 version, thus processing
speeds will be lower.

Afterwards, YOLO ROS is compiled on the Jetson card, for which ROS
Indigo was previously installed by following the ROS Jetson guide [19]. The
YOLO ROS compilation without GPU is straightforward, but to enable its use
some modifications need to take place. The changes made to YOLO ROS focuses
on the file CMakeList.txt, the scripts in C++, the configuration of the CUDA
paths and extensions of some ROS Indigo files. Due to the extensive and tedious
modifications made to the code, they will be omitted, but these and the entire
installation process in the Jetson TK1 are reviewed in detail in the Supplemen-
tary Material Section.

Finally, a ROS Network is configured to connect Pepper to the Jetson through
an Ethernet cable. Configuring Pepper as MASTER and Jetson as a HOST. This
enables the access of Jetson TK1 card to the topic where images from Pepper’s

Object Recognition for Pepper Robot on a Backpack 291

camera are published, then process them with tiny-YOLO to finally publish
detection information on another topic that Pepper can subscribe to and use as
desired. A diagram that depicts the connections made is shown in Fig. 1.

Fig. 1. Pepper to Jetson TK1 communication diagram. Through the ROS/NaoQi
driver, Pepper publishes images from his camera. The Darknet ROS node runs the
YOLO network that feeds from the images. The detected objects and their classes are
published in a custom ROS message, which can be easily accessed by software modules
running in Pepper’s internal computer.

3.3 Results

The training process of tiny-YOLO considers input images that vary in reso-
lution. In the process, the images are resized every ten training iterations, to
resolutions equal to 320 + 32n, where n ∈ {0, 1, ..., 9} is chosen randomly. By
doing this, images from 320× 320 pixels up to 608× 608 pixels are considered in
the training process. This multi-scale property allows to choose the input image
resolution at runtime; so the input image size is used as a system parameter
to manage the trade-off between inference speed and detection accuracy. The
original tiny-YOLO configuration, that considers 416 × 416 pixel input images,
is first tested on a notebook with a quadcore i5-4210U 1.70GHz CPU, and the
inferences speed reached roughly 1 FPS. Then, input images are reduced to
160 × 160 pixels, allowing detection of big objects at ∼6 FPS, while small ones
were not detected. Afterwards, we compared tiny-YOLO and tiny-YOLO ROS
in the notebook, Pepper, and Jetson at a fixed input size of 160 × 160, these
results are summarized in Table 2.

To consider the object detection method as a near real-time system, it must
have an inference speed of at least 5 FPS. Table 2 makes clear that the Pep-
per’s on-board computer cannot be used to run the tiny-YOLO ROS system,

292 E. Reyes et al.

Table 2. Comparison between different tiny-YOLO systems and platforms. The infer-
ence speed and image size are evaluated.

Model Computer Input image size Inference speed [FPS]

tiny-YOLO Notebook CPU
quadcore i5-4210U
1.70GHz

160 × 160 ∼6

tiny-YOLO ROS Notebook CPU
quadcore i5-4210U
1.70GHz

160 × 160 ∼3

tiny-YOLO Pepper 160 × 160 ∼0.6

tiny-YOLO ROS Pepper 160 × 160 ∼0.3

tiny-YOLO ROS ROS Network
Pepper-Jetson

160 × 160 ∼16

so incorporation of the Jetson TK1 unit is needed. In Table 2 is shown that
tiny-YOLO ROS running on Jetson TK1 jointly with Pepper reaches 16 FPS,
which gives a margin to enlarge input image size and improve detections accu-
racy at cost of decreasing inference speed. Experiments on how inference speed
decreases when making input image size bigger, are shown in Table 3, where
mAP over VOC 2007 test set is calculated to depict that a greater image size
means better detection, specifically of small objects. The highest resolution that
could be tested was 384 × 384 because a greater one leaves Jetson TK1 without
computational resources.

Table 3. Speed of tiny-YOLO ROS for
Pepper-Jetson TK1 at different input image
size. Inference speed decreases as input size
increases, but larger images get higher mAP
on VOC 2007 test set.

Input image size Inference mAP

speed [FPS]

160 × 160 ∼15.5 24.60%

224 × 224 ∼5.9 37.10%

288 × 288 ∼5.8 44.72%

320 × 320 ∼4.8 47.69%

352 × 352 ∼4.5 50.32%

384 × 384 ∼3.6 52.62%

Table 4. Class-wise mean average
precision (mAP) on VOC 2007 test
set for tiny-YOLO ROS in Pepper-
Jetson TK1, with an input image
size of 320 × 320.

aero bike bird boat bottle

47 60.1 39.5 30.6 15.8

bus car cat chair cow

61.2 57.8 65.6 23.9 43.1

table dog horse m bike person

49 59.2 66.3 63.5 52.3

plant sheep sofa train tv

21.9 42.2 48.1 59.8 47.1

Table 3 clearly show that tiny-YOLO ROS for Pepper-Jetson TK1 achieves
a near real-time inference speed of ∼4.8 FPS at an input image size of 320×320

Object Recognition for Pepper Robot on a Backpack 293

while getting 47.69% mAP on VOC 2007 test set. Using this same data, class-wise
mAP is calculated on Table 4. This gives a detailed insight on the performance
of the system at 320 × 320 resolution, where it is clear that correct detection of
small objects like bottles or potted plants is a challenge for the system.

After evaluating the system on classic data sets, we jumped to try it in an
indoor environment, a place closer to the reality of what a service robot has
to deal with. We analyzed different sizes of the input images, in order to select
the one that allows obtaining an acceptable detection rate as well as processing
speed. Figure 2a shows how for an image size of 160 × 160, the YOLO based
detection system is unable to detect a bottle and it also throws false positives
by detecting a non-existing car. On the other hand, when using a resolution of
384 × 384 pixels (Fig. 2b) the YOLO based detection system is able to correctly
detect the bottle and also better fits the BB for a person.

Fig. 2. Detection examples of tiny-YOLO ROS for Pepper-Jetson TK1, at different
resolution inputs. Color BB with labels shows detected objects. (a) Input image size of
160 × 160 pixels, where the model is unable to detect small objects like the bottle and
mistakenly detect a car. (b) Input image size of 384 × 384 accurately detects multiple
small to medium size objects. (Color figure online)

When testing the detection system with input image of 320 × 320 pixels,
it achieved near real-time inference speed, and it showed robust object detec-
tion of people and infrequent false positives. These results are shown in Fig. 3,
where multiple sights of the indoor environment where shown to the system.
Numerous object detection can be seen in Fig. 3a where 2 people and a chair are
correctly detected. On the other hand, false positives that momentarily happen
are depicted in Fig. 3b, by detection of a non-existing car. Small object detection
difficulties can be seen in Fig. 3c and d, where the bottle is not detected at first,
but its recognized after moving it around, straighten it up and putting it closer
to the camera of the Pepper robot.

294 E. Reyes et al.

Therefore, we conclude that is very relevant to select an appropriate image
size, and that an image size of 320×320 pixels allows obtaining a good trade-off
between detection accuracy and processing speed.

Fig. 3. Detection examples of tiny-YOLO ROS for Pepper-Jetson TK1, at ∼4.8 FPS
and input image size of 320 × 320. This resolution allows detection of people and
medium to large size objects, while struggles with small ones (a) Correct detection of
multiple objects. (b) Example of an incorrect car detection, false positives are infre-
quent. (c) Correct detection of a person and a chair, but the bottle is ignored. (d)
Correct detection of a small object when moving bottle from (c) closer to the camera.

4 Pepper Backpack

Considering that using an external processing card (Jetson TK1) is the best
alternative for implementing a YOLO based object detection system, we decided
to design and built a backpack for Pepper, which can hold the card as well as
its battery.

Object Recognition for Pepper Robot on a Backpack 295

(a) (b) (c)

Fig. 4. 3D Renders of the Pepper Backpack. The main enclosure (white) is 3D printed.
A commercial suction cup (black) is used to attach the backpack to Pepper. (a) Front
view. (b) Lateral View. (c) Back view.

4.1 Mechanical Design

The most important restriction to design the Pepper Backpack was to not modify
the robot structure. For this reason, the attachment of the backpack to the robot
should be non-invasive, therefore, an attachment using a suction cup is proposed.

The main enclosure of the Jetson computer corresponds to one acrylic plate
in the base and a 3D printed case with a battery compartment mounted on the
front of the board. A custom joint was 3D printed to connect the enclosure of
the Jetson and the suction cup structure. Whole backpack renders can be seen
in Fig. 4, while perspectives of the backpack attached to Pepper robot through
a 5.8 mm of diameter commercial suction cup can be seen in Fig. 5.

The CAD models, list of components and materials required to build the
backpack can be found in the Supplementary Material section.

4.2 Hardware

Nvidia Jetson TK1. The Nvidia Jetson TK1 main processor is a Nvidia Tegra
K1 which is a CPU+GPU+ISP single chip. The existence of a GPU in the Jetson
allows it to run state-of-the-art Deep Learning algorithms.

The Nvidia Jetson TK1 comes with a power supply that can provide 12 V
and 5 A maximum. These requirements are fulfilled by a 3-Cell LiPo battery. The
battery is connected to the Jetson through a standard 2.1 × 5.5 mm barrel jack.
The typical power-draw of the Jetson does not surpass 10 W [20]. It is important
to note that Pepper does not provide a power output, thus using it as a source
of power for the Jetson card is not possible without structural modifications of
Pepper.

To connect the Jetson computer to Pepper, and enable data stream between
platforms, the Ethernet Gigabit port of both is used.

296 E. Reyes et al.

(a) (b)

Fig. 5. Pepper robot with the Jetson TK1 backpack attached to its lower back. (a)
Perspective view. (b) Lateral close-up tho backpack.

5 Conclusions and Future Work

In this work, we studied the use of YOLO on the Pepper’s computer, by testing
different versions of the model and variation of their parameters. We concluded
that it is not possible to surpass the 1 FPS minimum limit in order to achieve
near real-time object detection. As an alternative, we introduced external image
processing, choosing the Jetson TK1 computer as the device to run tiny-YOLO
at an input image resolution of 320 × 320, which demonstrated to be the best-
suited model to reach high-speed processing of ∼4.8 FPS. By using a smaller
input image size we gained speed, at cost of performance, this was reflected on
an mAP of 47.69% over VOC 2007 test set, and a low capacity of detection for
small objects on real-world indoor environments.

To enable high-speed communication between Pepper and the Jetson TK1
computer we use an Ethernet Gigabit connection. More important is the fact that
we directly attached the board onto Pepper through a custom made backpack,
which does not affect the movement of the robot.

As a future work task, we propose usage of another external computer besides
Jetson TK1, because it may not be the most suitable platform to best exploit
inference speed of tiny-YOLO. This statement lies in the fact that the Jetson
TK1 is a 32-bit system that supports up to CUDA 6.5 version, which does not
allow usage of the deep neural networks dedicated library cuDNN. Platforms
such as Jetson TX1 or Jetson TX2 which allow higher versions of CUDA and
thus cuDNN usage may outperform results presented in this work.

Finally, all the necessary files to replicate the project will be publicly avail-
able.

Supplementary Material

All the necessary to replicate the project resides in two GitHub repositories. One
repository provides the CAD models and list of components to build the Pep-
per Backpack: https://github.com/uchile-robotics/pepper-backpack. The other

https://github.com/uchile-robotics/pepper-backpack

Object Recognition for Pepper Robot on a Backpack 297

repository corresponds to a fork of darknet ros with instructions to run tiny-
YOLO ROS on the Pepper-Jetson TK1: https://github.com/uchile-robotics-
forks/darknet ros

Acknowledgements. This research was partially funded by FONDECYT Project
1161500.

References

1. SoftBank Robotics. Pepper. www.ald.softbankrobotics.com/en/robots/pepper.
Accessed 20 2017

2. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

3. Mattamala, M., Olave, G., González, C., Hasbún, N., Ruiz-del-Solar, J.: The NAO
backpack: an open-hardware add-on for fast software development with the NAO
robot. arXiv preprint arXiv:1706.06696 (2017)

4. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. arXiv preprint arXiv:1708.02002 (2017)

5. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing Systems,
pp. 379–387 (2016)

7. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR, vol. 1, p. 4 (2017)

8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results. http://www.
pascal-network.org/challenges/VOC/voc2007/workshop/index.html

10. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint (2017)
11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
12. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,

Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

13. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv (2018)
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet

16. ETH Autonomous System Lab. Darknet ROS. https://github.com/leggedrobotics/
darknet ros. Accessed 30 Mar 2018

17. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, Boston (2010)

https://github.com/uchile-robotics-forks/darknet_ros
https://github.com/uchile-robotics-forks/darknet_ros
www.ald.softbankrobotics.com/en/robots/pepper
http://arxiv.org/abs/1706.06696
http://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-46448-0_2
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-319-10602-1_48
http://pjreddie.com/darknet
http://pjreddie.com/darknet
https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros

298 E. Reyes et al.

18. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

19. ROS Wiki. Jetson ROS. http://wiki.ros.org/NvidiaJetsonTK1. Accessed 30 Mar
2018

20. eLinux.org. Jetson TK1 powerdraw. https://elinux.org/Jetson/Computer Vision
Performance#Power draw during computer vision tasks. Accessed 30 Mar 2018

http://arxiv.org/abs/1410.0759
http://wiki.ros.org/NvidiaJetsonTK1
https://elinux.org/Jetson/Computer_Vision_Performance#Power_draw_during_computer_vision_tasks
https://elinux.org/Jetson/Computer_Vision_Performance#Power_draw_during_computer_vision_tasks

Multimodal Movement Activity
Recognition Using a Robot’s

Proprioceptive Sensors

Robin Schmucker1(B), Chenghui Zhou2, and Manuela Veloso2

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
robin.schmucker@online.de

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
{chenghuz,mmv}@cs.cmu.edu

Abstract. By recognizing patterns in streams of sensor readings, a
robot can gain insight into the activities that are performed by its phys-
ical body. Research in Human Activity Recognition (HAR) has been
thriving in recent years mainly because of the widespread use of wearable
sensors such as smartphones and activity trackers. By introducing HAR
approaches to the robotics domain, this work aims at creating agents
that are capable of detecting their own body’s activities. An activity
recognition pipeline is proposed that allows a robot to classify its actions
by analyzing heterogeneous, asynchronous data streams provided by its
inbuilt sensors. The approach is evaluated in two experiments featuring
the service robot Pepper. In the first experiment, a set of base movements
is recognized by analyzing data from various proprioceptive sensors. The
findings indicate that a multimodal activity recognition approach can
achieve more accurate classifications than single-sensor approaches. In
the second experiment, a person interferes with the forward movement
of the robot by pulling its base backward. This happens in a way that
is not detected by Pepper’s inbuilt systems. The approach can detect
the unexpected behavior and could be used to extend Pepper’s inbuilt
capabilities. Through its generality, this work can be used to recognize
activities of other robots with comparable sensing capabilities.

Keywords: Learning from sensory data · Activity recognition ·
Behavior verification

1 Introduction

While the planning layer captures a robot’s intended activity execution, it makes
no statement about its actual state and activity. Assume a robot wants to move a
certain distance forward. During its movement, it might collide with an obstacle
and fall over. A robot that recognizes the unexpected behavior can try to recover
or call a human operator for help. In another scenario, a robot might be pushed
by a human. If the robot recognizes what is happening to its body, it can respond
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 299–310, 2019.
https://doi.org/10.1007/978-3-030-27544-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_25

300 R. Schmucker et al.

with a warning when it is being moved in a way that is overly demanding on
its mechanics. In case of remote control, the robot might even reject a user
command to prevent damage.

Sensor-based Human Activity Recognition (HAR) uses wearable sensors such
as accelerometers and gyroscopes to capture human activity and finds applica-
tion in areas including mobile computing [17], ambient-assisted living [5] and
health care [2]. HAR can detect activities of the human activities such as walk-
ing, running, riding escalator, eating, opening door, and lifting object [11] by
detecting patterns in streams of sensor data. While sensor-based HAR needs to
attach and calibrate sensors for each individual user, robots feature a variety of
inbuilt sensors that give insight into their physical states.

By combining HAR approaches with a robot’s rich sensor data, this work
aims at creating an agent that recognizes its own body’s activity. A recognition
pipeline is proposed that enables the robot to detect its own activities by ana-
lyzing asynchronous, heterogeneous streams of sensor data. A Long Short Term
Memory (LSTM) [8] based neural network is used for activity recognition. The
approach is evaluated in two experiments featuring the service robot Pepper.
In the first experiment, a set of 7 movement activities is recognized. Here, the
robot detects if it moves forward, backward, left or right, rotates clockwise or
counterclockwise or stands still (see Fig. 3). The pipeline combines information
from heterogeneous, propriocepetive sensors to achieve accurate classifications.
The multimodal sensor data comprises joint states, electrical current, orienta-
tion, angular velocity and acceleration data. In the second experiment a human
interferes with the forward movement of the robot by pulling its base backward
in a way that is not detected by Pepper’s inbuilt capabilities. Through its gen-
erality, the in this work presented approach can be used to recognize activities
of other robots with comparable sensing capabilities.

2 Related Work

This work uses a robot’s inbuilt sensors to allow it to detect the actions performed
by its own body. This is achieved by recognizing activity patterns in streams of
sensor data. In robotics, related work can be found in Collision Detection (CD)
and Execution Monitoring (EM).

The area of CD uses a robot’s sensors to handle intentional or accidental con-
tact of its body with its physical environment [7]. One of the central motivations
is to enable robots to share a common work space with humans by preventing
injuries caused by forceful impacts as well as preventing damage to the robot’s
body.

EM (also known as Fault Detection and Diagnosis) observes sensor readings
to detect and classify faults and their causes [1,9,15]. Examples are the detection
of mechanical jams and the loss of hydraulic fluid. Conventional EM approaches
analyze a robot’s activities and determine a set of features that indicates cor-
rect execution. These features are then monitored to detect anomalies by either
comparing them with the expected system behavior or by subjecting them to
pattern recognition methods.

Movement Activity Recognition 301

While the areas of CD and EM are interested in fault avoidance and fault
detection/recovery respectively, this work aims at allowing a robot to recognize
the activities executed by its own body. This goal and the used methods in this
work are closely related to the field of HAR which uses wearable sensors to gain
insight into human activities.

As part of Human Computer Interaction, HAR creates devices that can rec-
ognize their user’s physical activities. Wearable sensors are used to capture data
about a user’s body activity which is then subjected to pattern recognition meth-
ods. One example is fall detection in ambient-assisted living. Here, a person is
equipped with a wearable device that detects falls and calls help if required [19].
Multimodal HAR approaches use data from multiple sensors to capture activ-
ities in greater detail. The use of data from a variety of sensors can achieve a
higher classification accuracy than unimodal approaches [12–14,16]. Lara [11]
and Cornacchia [6] provide comprehensive surveys about HAR with wearable
sensors. Conventional sensor-based HAR approaches use sliding window based
techniques combined with manual feature engineering. While these approaches
achieve satisfying results on simple activities such as lying, standing and walking,
it is difficult to recognize more complex activities. This limitation mainly lies in
the manually engineered features that are restricted by human domain knowl-
edge [4]. Recent advances in HAR utilize deep learning techniques because of
their automatic feature generation and selection. Deep learning approaches such
as LSTMs and Convolutional Neural Networks can come up with task specific
non-linear features and provide more accurate classification [18].

3 Robot Activity Recognition

Inspired by similar approaches in the field of HAR [18], this section formulates
the task of activity recognition in the context of robotics. Sensors act as a connec-
tion between the physical world and the computer and allow to observe a robot’s
physical state. During task execution, data streams generated by a robot’s sen-
sors can be analyzed to gain insight into the performed activities. Assume a
robot is executing a sequence of activities belonging to a predefined set A:

A = {ap}np=1 (1)

where n marks the number of activity types. The robot’s sensor readings are
observed over time. The observed sequence s contains m consecutive readings
ri, i ∈ {1, . . . , m}, that capture the state of the robot during a period of time at
equal intervals. The size of m depends on the sampling rate and the observation
duration. For example, the recorded sequences used in Sect. 5.2 each capture
10 readings per second over roughly 5 min. The number of readings that are
actually used for a prediction at a given time is dependent on the used model
and activity types. Each of the m readings features l attributes.

s = (r1, . . . , rm), ri ∈ R
l (2)

302 R. Schmucker et al.

The goal is to learn a model M that generates a sequence of predictions Â about
the performed activity at the time of each given reading ri

M(s) = Â = (âr1 , . . . , ârm), âri ∈ A (3)

where the actual performed activity sequence A∗ is:

A∗ = (a∗
r1 , . . . , a

∗
rm), a∗

ri ∈ A (4)

A suitable model M minimizes the discrepancy between predicted sequence Â
and ground truth sequence A∗. Here, A∗ can, for example, be determined by a
human observer or, as in our later experiments, by logging the commands given
by the robot’s controller. While this formulation assumes that the readings are
sampled synchronously at the same rate, a real robot’s sensors usually generate
readings asynchronously and at different, sometimes even varying, rates. The
following section responds to this by introducing a recognition pipeline that can
generate a steady data stream by combining and synchronizing readings from
multiple, asynchronous sensors.

S1 Data

S1 Preprocessing

Scaling

Recognition

Sk Data

Sk Preprocessing

Synchronisation

…

…

Activity Label

Fig. 1. The proposed activity recognition pipeline. It classifies the current activity
performed by the robot by analyzing data streams from multiple sensors.

4 Activity Recognition Pipeline

A general approach for robot activity recognition is proposed. The architecture
features a 4-step pipeline (shown in Fig. 1) that recognizes a robot’s activity by

Movement Activity Recognition 303

analyzing heterogeneous, asynchronous streams of sensor data during runtime.
The readings from the individual sensors (Sect. 4.1) are preprocessed separately
(Sect. 4.2) and then fused to a combined synchronous data stream (Sect. 4.3).
Afterwards, the combined readings are scaled (Sect. 4.4) and subsequently passed
to a recognition module (Sect. 4.5) which classifies the activity that is currently
performed by the robot. The used scaler and model are intended to be trained
offline with data from annotated activity sequences. In the following, the indi-
vidual pipeline steps are discussed in detail.

4.1 Sensor Data

Sensors can capture the state of a robot’s body over time. Heterogeneous sensors,
such as accelerometers and gyroscopes, provide data streams that can be used
to recognize the performed activities. Common variables include acceleration,
torque, electrical current, voltage, orientation, joint states and temperature. The
individual variables vary in significance based on the class of activity that is to
be predicted. For example, acceleration and torque capture information about
the forces that act on a robot’s body at a given time and are suitable for the
detection of motion activity. Meanwhile, temperature can be seen as an indicator
for long term engine activity by being dependent on the amount of heat that is
generated over time.

The pipeline assumes that a robot features k sensors Sj , j ∈ {1, . . . , k}. Each
sensor Sj samples signal pj with sampling rate fj over time. A reading of sensor
Sj at given time t provides a dj dimensional vector:

Sj(t) = (v1, . . . , vdj
) ∈ R

dj (5)

4.2 Preprocessing

The recognition pipeline receives one stream of sensor data from each of the k
sensors. It can be favorable to perform sensor specific transformations before
learning a model. This can reduce the number of required training samples by
adding expert knowledge to the model. Each sensor Sj is associated with a
preprocessing function Φj that is implemented in a separate module. Thereby,
the sensor readings are transformed to d′

j dimensional feature vectors.

Φj(Sj(t)) = (v′
1, . . . , v

′
d′
j
) ∈ R

d′
j (6)

For the evaluation, joint angles and electric current are scaled to unit space based
on the respective sensor specifications. A filter is applied to the raw acceleration
data generated by the inertial measurement unit (IMU) to separate low frequency
gravitational acceleration from high frequency activity acceleration [3].

4.3 Synchronization

In the general case, a robot samples its individual sensors at different rates and
provides asynchronous data streams. The recognition module assumes all sensors

304 R. Schmucker et al.

r1i+1W1

S

Wk

r

r

i

Q1

Qk

P1

Pk

S1

Sk

Fig. 2. Synchronization module.

to be sampled synchronously at a predefined rate f , which makes it necessary
to synchronize the individual streams of preprocessed sensor data.

The synchronization module fuses the separate streams to one combined data
stream. First, an initial start time t0 is being determined. Subsequently, for each
ti = t0+i∗T (T = 1/f , i ∈ N), one combined measurement is being interpolated.
The module observes all data streams in parallel. For each sensor Sj , one reading
rjm (the m-th reading of Sj) is kept in a buffer together with the timestamp of
its creation tjm . When a new reading rjm+1 arrives at time tjm+1 , the condition
tjm ≤ ti < tjm+1 is checked. If the condition is not met, the synchronization
module updates its buffer with rjm+1 and continues listening to the stream until
another reading matches the condition. If the condition is met, the buffer is
updated likewise and a linear interpolation between rjm and rjm+1 is performed
to determine

rji =
rjm ∗ (tjm+1 − ti) + rjm+1 ∗ (ti − tjm)

tjm+1 − tjm
(7)

where rji is the representative feature vector for sensor Sj at time ti which will
be used in the recognition process. Subsequently, the module buffers rji in a
queue and continues to determine rj(i+1) . After one vector rji for each Sensor
Sj has been determined for time ti, the synchronization module dequeues the
vectors, concatenates them and passes the combined reading to the next pipeline
step.

A scheme of the synchronization module is shown in Fig. 2. For each sensor
Sj , j ∈ {1, . . . , k}, a worker process Wj analyzes the stream of data published
by preprocessing node Pj . For time ti, worker Wj interpolates a representative
feature vector as described above and puts it into queue Qj . Subsequently it
continues to interpolate an entry for ti+1. After one feature vector for each
sensor has been determined, synchronizer S dequeues the individual vectors and
fuses them to one combined reading ri. This reading is then given to the scaling
module for further processing.

4.4 Scaling

The scaling module subtracts the mean from the individual features contained
in the synchronized readings and scales them to zero mean unit variance. This

Movement Activity Recognition 305

pipeline step reduces the numerical difficulties in the training process and pre-
vents the features in a greater numerical range to have a negative impact on
the model. In the experiments, the StandardScaler implementation of the scikit-
learn library was used and trained with data from multiple prerecorded activity
sequences.

4.5 Recognition

The recognition module receives a stream of synchronized and scaled sensor
readings from the previous pipeline step. The stream matches the requirements
for the activity recognition formulation described in Sect. 3. Each reading cap-
tures the physical state of the robot at a given point in time. Depending on
the activities that are intended to be recognized, a suitable model is selected
by the programmer. The chosen model analyzes the multimodal sensor data
and outputs an activity label that describes the activity the robot is currently
performing. The model is trained offline with annotated activity sequences.

In the evaluation, an LSTM based neural network receives a description
of the robot’s state as an input matrix containing multiple consecutive sensor
readings. This matrix is prepared by a small buffer that proceeds the network.
The network was trained on 5 readings containing 50 features each. This input
goes through two LSTM layers consisting of 32 neurons each. Afterwards, a
softmax layer associates each sequence with one of 7 classes (see Sect. 5.2). Each
LSTM layer is followed by a batch normalization layer and is regularized by
l1 and l2 regularizers each with coefficient 0.05. The categorical cross-entropy
function is used to calculate the loss and Adam [10] is the used optimizer. The
network is trained over 20 epochs with a batch size of 100.

5 Evaluation

An implementation of the activity recognition pipeline is evaluated in two exper-
iments featuring the service robot Pepper. In the first experiment, the pipeline
is used to recognize a set of 7 movement activities. The classification accuracy
achieved when using single and multimodal sensor data is analyzed. In the sec-
ond experiment, a human interferes with Pepper’s forward movement. It is shown
that the pipeline responds to the interference and could be used to verify activity
execution.

5.1 Pipeline Implementation

The pipeline was realized with the Robotic Operating System (ROS). The mod-
ules are implemented as individual ROS nodes which communicate over ROS
topics. The ROS community provides a NAOqi/ROS API to communicate with
Pepper’s NAOqi operating system. The API offers joint state (50 Hz) and IMU
(10 Hz) readings via designated topics. An additional wrapper node was imple-
mented which samples electrical current at 10 Hz and publishes the data to a
topic. Each reading is associated with the time of its creation.

306 R. Schmucker et al.

The recognition module uses an LSTM based neural network (Sect. 4.5). The
network is realized with Keras and trained with annotated activity sequence
data. TensorFlow serves as Keras backend. During the data collection process,
a training script lets Pepper perform an activity sequence and publishes anno-
tation information whenever it sends a command to the robot. The recognition
pipeline runs partially up to the synchronization module (Sect. 4.3) and pub-
lishes combined readings containing joint state (17 features), electrical current
(20 features) and IMU (13 features) data. Two logging nodes store annotation
information and synchronized sensor data in a SQLite database. For the training
of the model, the readings are annotated corresponding to their timestamps.

5.2 Recognizing Movement Activities

The activity recognition approach is evaluated on a set of 7 movement activities
executed by the Pepper robot. An activity sequence (shown in Fig. 3) is executed
by the robot. Sensor readings are captured, annotated and used to train and
evaluate scaling and recognition module. The pipeline uses joint state, electrical
current and IMU data for its classifications.

360°

360°

2m

2m

2m

2m

Fig. 3. The recorded activity sequence.

Recorded Data: A control script lets Pepper perform the movement sequence
shown in Fig. 3. The robot performs a full clockwise rotation, moves forward,
moves right, performs a full counterclockwise rotation, moves backward and
finally moves left to its initial position. Between the individual movements Pep-
per stands still for 2.5 s. The control allows the robot to perform 5 repetitions
of the activity sequence and sends corresponding commands and annotation
information. The synchronization module interpolates combined sensor readings

Movement Activity Recognition 307

at 10 Hz containing joint state, electrical current and IMU data. During the
experiments, 10 recordings containing combined sensor readings and annotation
information are collected, each capturing little above 5 min of Pepper’s move-
ment activity. For evaluation, a 10-fold cross-validation is performed. Each of
the 10 folds consists of 2450 annotated samples from one individual recording
(350 samples per class picked at random from the respective recording).

Fig. 4. The classification accuracy and standard deviations achieved on Pepper’s base
movements when using different sensor data for the recognition process.

Experimental Results: Multiple neural networks are trained to recognize Pep-
per’s movement activities by analyzing different sensor data. Three single-sensor
networks are trained with joint states, IMU and electrical current data respec-
tively. One multimodal model is trained to analyze combined readings. The mean
per-class and overall accuracies achieved by the different models and respective
standard deviations are visualized in Fig. 4. The combined model achieves an
mean overall accuracy of 97.47%, which outperforms the joint states (96.78%),
IMU (84.20%) and electrical current (96.05%) model. While the combined model
outperforms the others in terms of overall accuracy, there are differences in the
individual class accuracies. The IMU model achieves a lower overall accuracy
than the other models, but achieves the highest accuracy for the standing activ-
ity. Also, the IMU model achieves good results for the rotations while achieving
worse results on the directional movements. The joint and current model perform
similarly except when recognizing the rotating and right moving robot.

308 R. Schmucker et al.

5.3 Detecting Human Interference

In this experiment, a human interferes with Pepper’s forward movement by
pulling its base backward in a way that is not detected by the robot’s inbuilt
systems. The output of the recognition pipeline is analyzed. It is shown that
the approach can detect unexpected behavior that defers from the commands
given by the robot’s controller and could be used to extend Pepper’s inbuilt
capabilities.

Recorded Data: The Pepper robot is controlled by a simple script. It first
stands still for 5 s, then moves 3 m forward and concludes the sequence by
standing still for another 5 s. The control sends the corresponding commands
to the robot and publishes annotation information in parallel. The synchroniza-
tion module of the pipeline publishes combined sensor readings which contain
joint state, IMU and electrical current information at 10 Hz. Sensor and annota-
tion information are collected and stored in a database for later analysis. After
the robot has executed about half of its forward movement, the experimenter
grabs the base of the robot in a way that is not detected by its inbuilt systems
and pulls it backward.

Fig. 5. The robot’s activity over time as perceived by the robot’s controller and recog-
nition pipeline.

Experimental Results: For this experiment, pipeline scaler and model are
trained with the 10 recordings of the previous experiment (Sect. 5.2). Figure 5
compares the robot activity over time as perceived by control layer and recog-
nition pipeline. The pipeline recognizes the standing activity correctly. At the
transition between standing and forward movement, the model makes two wrong
predictions (200 ms) before recognizing the forward movement correctly. After
about 7 s, the experimenter starts pulling Pepper’s base backward. While the
control does not respond to the interference, the pipeline recognizes the change
in the robot’s movement and classifies it first as backward, then left and then

Movement Activity Recognition 309

backward again. Because the experimenter pulls the robot unevenly, the recog-
nized state then swings for a while between several states which are followed
by a long backward movement. After about 10 s, the control sends a standing
command and assumes Pepper came to a halt while in reality it is still being
pulled by the experimenter. After about 13 s, the interference stops.

To verify correct activity execution, the output of the recognition pipeline
can be compared to the robot’s commands. If control and pipeline do not agree
on the same activity for a certain amount of time (e.g. 0.5 s), an observation
system can detect the unexpected behavior of the robot. This can then be used
to allow the agent to communicate its problem to a remote supervisor.

6 Conclusion

This work introduced a activity recognition pipeline inspired by HAR methods
to the robotics domain. The approach analyzes multiple streams of asynchronous
sensor data to recognize the type of action a robot is performing and by doing
so allows it to detect its own activities in the physical world. The robot could
use this capability to verify its own activity execution or to narrate its actions
to a remote person.

The recognition pipeline was evaluated in two experiments. In the first exper-
iment, a set of 7 base movements executed by the service robot Pepper was rec-
ognized. It was shown how a model can achieve higher classification accuracy
by analyzing combined data from heterogeneous sensors. In the second exper-
iment, a person interfered with the forward movement of the robot by pulling
its base backward. While the robot’s inbuilt capabilities were not able to detect
the external interference, the pipeline successfully recognized the unexpected
state. This suggests that the approach could be used to extend Pepper’s inbuilt
capabilities with an additional verification system.

In future work, we want to recognize more complex activities that go beyond
simple base movements. In particular, the application of plan detection is of
interest to us. Here, we want to analyze how the recognized activities fit into
a meaningful context. This work used proprioceptive sensors because they are
more homogenous than external sensors and are closely relate to conventional
HAR methods. In further research, readings from external sensors such as rgb
cameras and depth sensors can be incorporated into the pipeline to enrich the
activity information. Another question is if a model that was trained on one
robot can provide accurate predictions when deployed on another robot of the
same type.

310 R. Schmucker et al.

References

1. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control
Using Sliding Modes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-
85729-650-4

2. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity
recognition using inertial sensing for healthcare, wellbeing and sports applications:
a survey. In: 2010 23rd International Conference on Architecture of Computing
Systems (ARCS), pp. 1–10. VDE (2010)

3. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition using
accelerometer data from smartphones. Procedia Comput. Sci. 34, 450–457 (2014)

4. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H.,
Mart́ın-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol.
7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39593-2 1

5. Chernbumroong, S., Cang, S., Atkins, A., Yu, H.: Elderly activities recognition and
classification for applications in assisted living. Expert Syst. Appl. 40(5), 1662–
1674 (2013)

6. Cornacchia, M., Ozcan, K., Zheng, Y., Velipasalar, S.: A survey on activity detec-
tion and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2017)

7. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detec-
tion, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Khalastchi, E., Kalech, M.: On fault detection and diagnosis in robotic systems.
ACM Comput. Surv. (CSUR) 51(1), 9 (2018)

10. Kinga, D., Adam, J.B.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

11. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wear-
able sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)

12. Liu, K., Chen, C., Jafari, R., Kehtarnavaz, N.: Fusion of inertial and depth sensor
data for robust hand gesture recognition. IEEE Sens. J. 14(6), 1898–1903 (2014)

13. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Berkeley MHAD: a com-
prehensive multimodal human action database. In: 2013 IEEE Workshop on Appli-
cations of Computer Vision (WACV), pp. 53–60. IEEE (2013)

14. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural net-
works for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

15. Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Auton. Syst.
53(2), 73–88 (2005)

16. Radu, V., Lane, N.D., Bhattacharya, S., Mascolo, C., Marina, M.K., Kawsar, F.:
Towards multimodal deep learning for activity recognition on mobile devices. In:
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct, pp. 185–188. ACM (2016)

17. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: A survey of online
activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

18. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based
activity recognition: a survey. arXiv preprint arXiv:1707.03502 (2017)

19. Zhang, T., Wang, J., Liu, P., Hou, J.: Fall detection by embedding an accelerometer
in cellphone and using KFD algorithm. Int. J. Comput. Sci. Netw. Secur. 6(10),
277–284 (2006)

https://doi.org/10.1007/978-0-85729-650-4
https://doi.org/10.1007/978-0-85729-650-4
https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1007/978-3-642-39593-2_1
http://arxiv.org/abs/1707.03502

Survey of Rescue Competitions
and Proposal of New Standard Task

from Ordinary Tasks

Masaru Shimizu1(B) and Tomoichi Takahashi2

1 Chukyo University, Nagoya, Japan
shimizu@sist.chukyo-u.ac.jp

2 Meijo University, Nagoya, Japan
ttaka@meijo-u.ac.jp

Abstract. This study surveys rescue robot competitions and tracks the
changes in the RoboCup Rescue League. The real robot league has been
changed because of requests from real disasters; however, the virtual
robot league competition basically remains the same as it was in the
beginning.

In terms of some elements, the virtual robot league competition has
capabilities of reproducing real situations for rescue robot evaluations
when compared to the real robot league.

We propose herein a new competition task to mimic actual situations.
We used a tank array model as the stage of the competition task after
the Fukushima nuclear power plant.

1 Introduction

Since the Great East Japan Earthquake of 2011, robots have been used to
explore the interior of the Fukushima Daiichi Nuclear Plant (FDNP). The situ-
ations encountered at the FDNP in 2011 and after the September 11 attack on
the World Trade Center (WTC) proved to be far more challenging than any-
thing anticipated before these disasters. In the tunnel ceiling collapse accident
at Sasago tunnel in 2012 in Japan, the disaster area consisted of certain long
and curved narrow spaces.

At the FDNP, robots are expected to be used for a variety of tasks for several
decades as the nuclear facilities are decommissioned [3]. These tasks include
clearing debris, monitoring and mapping the inside and outside of buildings,
setting up instruments, shielding and decontaminating, as well as transporting
materials, construction pipes, and equipment. The tasks require robot mobility,
perception ability, autonomous ability, multi-robot ability, networking ability,
maneuvering ability, and safe behavior ability. Therefore, it will be necessary to
design new mechanisms and develop sensing algorithms to satisfy the mid- and
long-term schedules for decommissioning the FDNP [29].

The use of robots in emergency, ordinary situations and during reconstruction
periods not only require mobility of the robot but also other abilities to complete
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 311–323, 2019.
https://doi.org/10.1007/978-3-030-27544-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_26

312 M. Shimizu and T. Takahashi

tasks. For example, these robots could be used to inspect water contaminated
with radioactive material, such as those stored in the tanks outside the FDNP
[27]. It is necessary to evaluate the abilities of robots to develop better robots.
Robot competitions play the role of leaders in developing evaluation methods
regarding the abilities of robots.

The RoboCup Rescue Real Robot League (RRRL) and the Rescue Virtual
Robot League (RVRL) both possess proper robot evaluation items. S. Carpin
et al. discussed the usage of a simulation platform in the urban search and rescue
task in 2006 [4,6,7]. In the case of the RVRL, using simulation technology, robotic
programs, algorithms, and robot behavior can be evaluated before physically
constructing the robot. Each league should use its optimum characteristics and
fulfill the role expected from disasters that occur.

The robotic tasks at the FDNP include ordinary investigation tasks, such
as checking the leak of contaminated water in the tank array area. The task
requires rescue robots with three-dimensional mobility, such as a multicopter,
an autonomy ability in an unstable Wi-Fi environment, and a multi-robot ability
as cooperative by themselves.

We survey the RVRL historical progress, current status, and problems and
propose a new competition task based on the scenario of the tank array check-
ing water leaking ordinary investigation task in the FDNP with the tank array,
multicopters, ground vehicle robots, and reproduced Wi-Fi behavior. Section 2
describes a survey of the RVRL and rescue competitions and various test meth-
ods for evaluating the abilities of response robots. Section 3 describes a proposal
for a new competition task based on a realistic ordinary investigation task at
the FDNP. Section 4 describes the proposed new competition field. Section 5 dis-
cusses the future competition task for the evaluation of robots and a summary
of the study.

2 Survey of Rescue Tasks

2.1 Competitions of Rescue Robots

New robots, devices, programs, and algorithms should be evaluated as soon as
possible. After developing a robot, the developers evaluate the ability of the robot
in terms of mobility, dexterity, sensing, mapping, and other functions required
as a response robot. Already various test methods exist that can be used for
evaluating the abilities of each individual robot. The tests comprise the following:
mobility tests, wireless communication tests, manipulation tests, human-system
interaction tests, and sensing tests. Mobility tests include flat surfaces as well
as pitching and rolling ramps, steps, inclines, gaps, stairs, and landings. Sensor
tests determine the quality of the video. A previous version of the Quince robot,
which participated in the RoboCup Japan Open Rescue Real Robot competition,
was actually applied at the FDNP; its use exploring the disaster zone allowed a
real-life demonstration of its capabilities [31].

Survey of Rescue Competitions and Proposal 313

Table 1. History of rescue robot competition and test field

Year Title of Target Evaluation Real Background
competition Operation Robot Type /Simulation case

1998 RoboSub rescue sea mobility real
2000 RoboCup rescue land/air mobility real Hanshin-Awaji

(Rescue) /mapping earthquake
/dexterity (1995)

2006 ELROB land/air mobility real
2008 Rowboat sea mobility real
2012 ICARUS rescue land/sea mobility real Earthquakes in

/air l’Aquila, Haiti
2013 DARPA rescue land mobility real Fukushima

(Robotics /mapping /simulation nuclear
Challenge) /dexterity disaster

2013 euRathlon rescue land/sea mobility real Fukushima
/air /mapping nuclear disaster

2014 ARGOS challenge survey land mobility real Future
/mapping plant
/dexterity disaster

2015 JVRC survey land mobility simulation Sasago falling
/rescue /mapping tunnel ceilings

/dexterity accident
2018 WRS survey land/air mobility simulation Sasago falling

(Tunnel) /rescue /mapping tunnel ceilings
/dexterity accident

2018 DARPA survey land/air mobility simulation
(Subterranean /rescue /mapping
Challenge) /dexterity

Table 1 shows a list of robot competitions [2,9–15,17–19,21–25]. Several com-
petitions were organized after certain large disasters. In these competitions, dedi-
cated competition fields were constructed to evaluate response robots. Thus, each
competition field incorporates certain real disaster situations. New competitions
have new metrical items owing to new disaster situations.

The investigation tasks consist of routine operations, which are simpler than
those undertaken by the Quince robot inside the FDNP in 2011 in a larger area.
Several tanks were constructed at the FDNP to store contaminated water for
the purpose of cooling nuclear fuel. The tanks were arranged systematically in a
100 m wide area, and each tank measures 10 m in height and 12 m in diameter.
The robots designed for these tasks require verification. When developing sensors
and robots for search and rescue operations in disaster zones, testing the robots
in such environments can aid in determining and improving their performance.

When using tele-operation type response robots, stable Wi-Fi connectivity is
essential, in addition to other capabilities such as mobility function. A response
robot that moves outside of a Wi-Fi connectable area is uncontrollable, and in
the worst case the operator loses it. A response robot with a recovery program,
which directs the lost response robot to a Wi-Fi connectable area, requires time

314 M. Shimizu and T. Takahashi

for the automatic recovery behavior. The system including the response robots
requires a simulator that can estimate the Wi-Fi connectable areas to determine
the effective locations of Wi-Fi base stations, which are limited in a disaster area
and/or a large destroyed facility such as the FDNP.

Thus, a simulator is an appropriate tool that can be used to observe problems
when using a response robot with unstable Wi-Fi connectivity. This approach
avoids the difficulties of testing in the real field. The RVRL should use more
realistic situations with the Wi-Fi networking.

2.2 Standard Test Methods in Robot Competitions

Table 2 shows the relationships between robot competitions and its metrical
items:

– Mob. (Mobility): the performance to move on the uneven surface or to climb
a ladder.

– Per. (Perception ability): the performance to recognize hazard tags, QR-
Codes, and texts in the environment around the robot.

– Aut. (Autonomous ability): the performance to work and produce 3D maps
in Wi-Fi blackout areas without human aid.

– Mul. (Multi-robot ability): the performance to work with multiple robots in
large size fields and separated fields.

– Net. (Networking ability): the performance to maintain and form the com-
munication link in unstable Wi-Fi areas and Wi-Fi blackout areas.

– Man. (Maneuvering ability): the performance to manipulate, manage, and
carry objects.

– Saf. (Safe behavior ability): the performance to move safely and maintain safe
behavior with respect to victims and objects in the environment.

Every metrical item is reproduced with a style of robot competitions. For exam-
ple, National Institute of Standards and Technology (NIST) released Standard
Test Methods (STM) for evaluating response robots [1,16]. STM is used as the

Table 2. Competitions and metrical items

Competitions Metrical items

Mob. Per. Aut. Mul. Net. Man. Saf.

RoboCup (RRRL) � � � � � � �
RoboCup (RVRL) � � � � �
DARPA � � � �
ARGOS challenge � � � � � � �
JVRC � � �
WRS � � � � � �
DARPA (SubT) � � � � �

Survey of Rescue Competitions and Proposal 315

field for evaluation of mobility in the RRRL. A competition that is closed to real
situations possesses considerable amount of metric items. Seven metrical items
are merged from robot competitions; every robot competition exhibits several
abilities such as autonomy ability, perception ability, networking ability, mobil-
ity, maneuvering ability, and multi-robot performance. The RRRL and ARGOS
challenges contain all metrical items.

2.3 Issues of RoboCup Rescue League

Table 3 shows the historical comparisons of the competition content of the RRRL
and the RVRL. In the RRRL, the number of metrical items is increasing grad-
ually, and the types of inspection items are also increasing. In the RVRL, the
number of metrical items is increasing, and the types of inspection items are
not increasing. The RRRL has been evolving at the core of evaluation of rescue
robots; the RVRL has been stopping evolution. The RVRL does not contain any
critical metrical items that the RRRL already contains. However, the RVRL can
prepare some of the metrical elements readily compared with the RRRL.

Table 3. Historical comparisons between rescue real robot league and virtual robot
league

Year Real Robot League Virtual Robot League
Size&Ability Photos Size&Ability Photos

2002 ˜ 10 m x 10 m
Mobility
Perception
Multi-robot
Autonomy
Safe behavior

(NOT STARTED) (NOT STARTED)

2008 ˜ 15 m x 15 m
Mobility
Perception
Multi-robot
Autonomy
Networking
Safe behavior

100 m x 100 m
Perception
Multi-robot
Autonomy

2012 ˜ 30 m x 30 m
Mobility
Perception
Multi-robot
Autonomy
Networking
Maneuvering
Safe behavior

200 m x 200 m
Perception
Multi-robot
Autonomy
Networking

316 M. Shimizu and T. Takahashi

The RVRL and the RRRL exhibit the same objective, however, they do not
share concepts and schemes with each other. For example, the RVRL should be
a tool that the RRRL participating team requires to use for robot development
with respect to new autonomous programs, perception algorithms, and mapping
systems. The RVRL should use metrical elements that are difficult to prepare
at the RRRL and are effective for robot development in the competition. For
example, large and realistic situation field models that came from the FDNP and
natural Wi-Fi behavior can be realized using already existing simulation items.

In 2009, the wireless communication server (WSS) was introduced to simulate
robot behaviors, where the robots receive the Wi-Fi [5]. The WSS was not used
at recent competitions in 2016 and 2017.

3 New Standard Task from Ordinary Tasks

3.1 Use of Wi-Fi in Networking Ability Evaluation

In Fukushima, robots were employed to perform emergency tasks immediately
after the 2011 earthquake. At present, robots continue to perform ordinary tasks
such as daily investigation jobs. To perform these ordinary tasks, the robots
should move freely within a large area. For robot evaluation in the context of
these ordinary tasks, the size of the evaluation field should be known, and a
controlled unstable Wi-Fi connection status is required.

Quince robots were used to inspect the inside of the FDNP. Because of the
Wi-Fi disability in the FDNP facilities, Quince robots were used in tandem [3].

In Table 2, the networking ability was indicated as an item of robot evalu-
ation. Robot behavior stability is evaluated with regard to disconnection of its
Wi-Fi connection. In the real response robot working field, the Wi-Fi status has
the capability of being unstable in connection [8,25,28]. To reproduce the nat-
ural Wi-Fi behavior, the real robot evaluation field should possess a large sized
field that has over 100 m in the radius from the Wi-Fi base station to disconnect
the Wi-Fi. Therefore, the condition of Wi-Fi disconnection has been managed
in an imaginary manner by defining it in the competition rules at a part of the
competition area.

The strength of a natural Wi-Fi radio wave exhibits band fluctuation, even
when the Wi-Fi base stations and robots do not move. Further, the movement
of humans and robots inside a Wi-Fi area increases the band fluctuation of the
Wi-Fi radio waves. Fluctuations of the Wi-Fi radio waves within the diffraction
area can induce Wi-Fi disconnection in the outer diffraction areas. Thus, to
maintain stable Wi-Fi connectivity throughout the Wi-Fi diffraction area, a
safety margin is required in the outer diffraction area.

3.2 Proposal of New Ordinary Investigation Task

Based on the reported robotic tasks performed at the FDNP, we propose an
ordinary investigation task in the large area with high and low places by con-
trolling of the Wi-Fi connection status along with an environmental model that

Survey of Rescue Competitions and Proposal 317

is close to the real scenario at the FDNP, the shape of which can affect the Wi-Fi
connection status.

Simulations can be used effectively to evaluate robot performance, as evident
from Table 1. In particular, certain real metrical elements that are difficult to pre-
pare and control can be reproduced in a simulation. In addition, a town-size field
can be prepared considerably readily in a simulator than in a real-world envi-
ronment. Controllable environmental phenomena are useful for robot evaluation.
Simulations such as that used in the Virtual Robot segment of the RoboCup Res-
cue competition provides platforms where response robots and algorithms can
be tested with respect to the disaster zones where they are intended to operate
[20]. Thus, a simulator is a useful tool for identifying problems with response
robots under conditions of unstable Wi-Fi connectivity. Therefore, in this study,
a new simulated standard task with Wi-Fi behavior similar to the natural case
is proposed.

The proposed simulation platform is designed considering multicopters,
which exhibit the following characteristics:

– Multicopters can move through a larger area in less time compared with
ground vehicles.

– Multicopters can move not only horizontally, but also vertically.
– The Wi-Fi-connectable area is invisible.
– The shape of the Wi-Fi-connectable area or Wi-Fi diablo area is difficult to

image.

The real sample situation at the FDNP involves arrays of large tanks storing
contaminated water. These tank arrays constitute an unstable Wi-Fi connectiv-
ity area. Daily investigative tasks using robots require a stable Wi-Fi connection,
and automatization of these daily investigations performed by robots requires a
lightweight estimation method to calculate the Wi-Fi connectable areas.

4 A New Ordinary Investigation Task Simulation Field

4.1 Background of Proposal

At FDNP, robots have been expected to perform ordinary daily investigation
tasks. In this proposal, we focus on the multicopter, which is regarded as a
standard robot in the RVRL. The multicopter is one of the most suitable robots
for ordinary investigation tasks. In an emergency, the multicopter is used as a
response robot under restricted conditions of Wi-Fi behavior is not reproduced,
these robots can explore the entire model test environment. In contrast, in our
proposed simulation platform that reproduces natural Wi-Fi behavior, robots
can explore only the Wi-Fi-connectable area.

In the proposed competitive field, a tank array field such as that encoun-
tered in the FDNP was used. The following conditions were implemented in the
proposed simulation platform:

318 M. Shimizu and T. Takahashi

(a) An overview of sample simulation
platform.

(b) A real tank array([30]).

(c) A side close-up view of sample sim-
ulation platform.

(d) A top overview of sample simula-
tion platform.

Fig. 1. An overview of sample simulation platform and original tank array scene

– A 5 × 5 tank array was considered as the test environment.
– Each tank possessed 12 m diameter and 11 m height, similar to those of the

real tank array.
– The distance between the tanks was 1 m, as in the real tank array.
– Two multicopters and two ground robots were considered as the test robots.
– Radio wave power attenuated via distance and shadowing via buildings was

used to model the Wi-Fi behavior.
– To incorporate the attenuation phenomena of the radio wave power, as

affected by distance, the distance was considered as 90 m from the center
of the tank array.

Figure 1 presents a sample simulation platform image and an actual tank
array image [30]. In detail, Fig. 1(a) shows an overview of the sample simulation
platform designed using the above conditions. A Wi-Fi base station is located
to the left of the image, two multicopters can be found at the center of the
image, and two ground robots are positioned to the right of the multicopters.
Figure 1(b) is an image of the actual tank array in the FDNP [30]. This array
spans an extremely large area, and an elevated position is required to perform
the daily investigation tasks. Thus, a multicopter is an appropriate robot for
positioning at the station. Note that the multicopter operator must have access
to operate the multicopter properly. Figure 1(c) and (d) show side and top views
of the sample simulation platform, respectively.

Figure 2 shows two images of the simulated received signal strengths (RSSs)
of the Wi-Fi, as received at the horizontal planes of different heights. In the

Survey of Rescue Competitions and Proposal 319

(a) At 0.3-m-high horizontal plane. (b) At 13-m-high horizontal plane.

Fig. 2. Images of simulated received signal strength of Wi-Fi received at different high
horizontal planes

simulation of the RSS-treated diffraction and fluctuation phenomenon of radio
waves [26], the former WSS did not treat it. The white color in the figure indicates
that the RSS value is high, whereas black means the RSS value is less than
−92 dB. The robot cannot connect to the Wi-Fi at a location with an RSS value
of less than −92 dB. A Wi-Fi base station is located in the center far left of
the image. The black areas in the right half of the image corresponding to the
Wi-Fi location shadows of the tanks. (a) shows an image of the simulated Wi-Fi
RSS at nearly the ground plane. The Wi-Fi base station can be observed on the
left of the image (the black dot in the center of the filled white circle), and a
ground robot is visible in the line of sight from the Wi-Fi base station. (b) shows
an image of the simulated Wi-Fi RSS at a 13 m-high horizontal plane over the
tank. Shadows are moving toward the right of the image in (a), and the upper
multicopter can be observed in this image.

From (a)–(b), the outline shape of the Wi-Fi shadowed volume is part of a
resting cone, which explains why it was exceedingly difficult to tele-operate the
multicopters over and between the tanks. Furthermore, this difficulty explains
the usefulness and effectiveness of our proposed Wi-Fi simulation platform for
evaluating a multicopter system involving a multicopter operator.

4.2 Sample Tasks for Networking Ability Evaluation

Figure 3 presents an example of the proposed new standard task incorporating
the Wi-Fi behavior. A standard task with a course similar to an ordinary investi-
gation task is illustrated. A multicopter robot should begin at the starting point,
from “P1” to “P16” in any order, and return to the destination. A list of sample
rules is provided below:

– Obtain a scoring point using the grade of accuracy of the generated 3D map.
– Obtain a scoring point by passing near each checkpoint.
– Obtain a scoring point by reporting changes from “P1” to “P16” for before

and after the disaster event.
Change examples: removal of tank surface paint, broken tank edge

320 M. Shimizu and T. Takahashi

Fig. 3. Image of proposed new standard test method

– Obtain a scoring point by returning to the goal in a relatively short time.
– Double the scoring points by developing and using an autonomous software.
– Lose a scoring point by losing the multicopter robot.

The variety and difficulty grades of the field can be established based on the
following weather conditions:

– Fine, rain, and snow.
– Day and night.
– Typhoon (strong wind).

The situations, rules, weather conditions, and environmental models for the
simulation platform are changeable. Because the proposed platform is imple-
mented on a simulator, it can be used by anyone and modified readily as required.

5 Summary and Discussion

Simulations are used to design robots and examine the robot’s functions before
manufacturing real ones. Rescue robots must be confirmed before being used
in disaster situations and reconstruction tasks in FDNP that will continue for
decades. This study indicates that the RVRL has been a part of the request
of the real world and distinctly mentions the points that should be checked in
virtual spaces.

We organized necessary tasks with respect to conducting inspections of
FDNP as an example of ordinary tasks and proposed new standard tasks with
regard to the RoboCup Rescue League. The tasks would be of interest to the
teams of the RRRL and the RVRL with regard to the viewpoint of applying
their robots in real fields.

Survey of Rescue Competitions and Proposal 321

References

1. Jacoff, A.: Guide for Evaluating, Purchasing, and Training with Response Robots
Using DHS-NIST-ASTM International Standard Test Methods (2012). https://
www.nist.gov/sites/default/files/documents/el/isd/ks/DHS NIST ASTM Robot
Test Methods-2.pdf. Accessed 06 Mar 2018

2. ARGOS Challenge (2016). http://www.argos-challenge.com/. Accessed 22 Feb
2016

3. Asama, H.: Robot & remote-controlled machine technology for response against
accident of nuclear power and toward their decommision. In: International Confer-
ence on Intelligent Robots and Systems (IROS 2012) (2012)

4. Balaguer, B., Balakirsky, S., Carpin, S., Visser, A.: Evaluating maps produced by
urban search and rescue robots: lessons learned from RoboCup. Auton. Robot.
27(4), 449–464 (2009)

5. Balakirsky, S., Carpin, S., Visser, A.: Evaluation of the RoboCup 2009 virtual robot
rescue competition. In: Proceedings of the 9th Performance Metrics for Intelligent
Systems (PERMIS 2009) Workshop, PerMIS 2009, pp. 109–114. ACM, New York,
September 2009

6. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap
between simulation and reality in urban search and rescue. In: Lakemeyer, G.,
Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol.
4434, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74024-7 1

7. Carpin, S., Wang, J., Lewis, M., Birk, A., Jacoff, A.: High fidelity tools for rescue
robotics: results and perspectives. In: Bredenfeld, A., Jacoff, A., Noda, I., Taka-
hashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 301–311. Springer,
Heidelberg (2006). https://doi.org/10.1007/11780519 27

8. Carver, L., Turoff, M.: Emergency response information systems: emerging trends
and technologies-human-computer interaction: the human and computer as a team
in emergency management information systems. Commun. ACM-Assoc. Comput.
Mach.-CACM 50(3), 33–38 (2007)

9. Cubber, G.D., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R., Ourevitch, S.:
The EU-ICARUS project: developing assistive robotic tools for search and rescue
operations. In: 2013 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pp. 1–4, October 2013

10. Darpa. Darpa robotics challenge (2012). https://www.darpa.mil/program/darpa-
robotics-challenge/. Accessed 31 Oct 2017

11. Defense Advanced Research Projects Agency. DARPA Subterranean Challenge
Aims to Revolutionize Underground Capabilities (2017). https://www.darpa.mil/
news-events/2017-12-21. Accessed 19 Mar 2018

12. Guizzo, E.: Rescue-robot show-down. IEEE Spectr. 51(1), 52–55 (2014)
13. International CBRNE Institute (ICI), Fraunhofer Institute for Communication,

Information Processing and Ergonomics FKIE. The European Land Robot Trial
(2006). http://www.elrob.org/. Accessed 6 Feb 2018

14. Kimura, T., et al.: Competition task development for response robot innovation in
world robot summit. In: 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), pp. 129–130. IEEE, October 2017

15. Kydd, K., Macrez, S., Pourcel, P.: Autonomous robot for gas and oil sites, Septem-
ber 2015

https://www.nist.gov/sites/default/files/documents/el/isd/ks/DHS_NIST_ASTM_Robot_Test_Methods-2.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ks/DHS_NIST_ASTM_Robot_Test_Methods-2.pdf
https://www.nist.gov/sites/default/files/documents/el/isd/ks/DHS_NIST_ASTM_Robot_Test_Methods-2.pdf
http://www.argos-challenge.com/
https://doi.org/10.1007/978-3-540-74024-7_1
https://doi.org/10.1007/978-3-540-74024-7_1
https://doi.org/10.1007/11780519_27
https://www.darpa.mil/program/darpa-robotics-challenge/
https://www.darpa.mil/program/darpa-robotics-challenge/
https://www.darpa.mil/news-events/2017-12-21
https://www.darpa.mil/news-events/2017-12-21
http://www.elrob.org/

322 M. Shimizu and T. Takahashi

16. NIST. Robotics Test Facility (2005). https://www.nist.gov/laboratories/tools-
instruments/robotics-test-facility. Accessed 6 Feb 2018

17. Okugawa, M., et al.: Proposal of inspection and rescue tasks for tunnel disasters -
task development of Japan virtual robotics challenge. In: 2015 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–2, October
2015

18. RoboCup Rescue Robot League. Rescue robot league (2004). http://wiki.robocup.
org/wiki/Robot League. Accessed 13 Feb 2018

19. RoboCup Rescue Simulation Virtual Robot League. Rescue simulation virtual
robot competition (2017). http://wiki.robocup.org/Rescue Simulation Virtual
Robot Competition. Accessed 13 Feb 2018

20. RoboCup Virtual Robot League. VR Competitions (2017). http://wiki.robocup.
org/Rescue Simulation Virtual Robot Competition. Accessed 13 Feb 2018

21. Robonation. RoboSub (1998). http://www.robonation.org/competition/robosub.
Accessed 6 Feb 2018

22. RoboNation. Roboboat (2008). http://www.auvsifoundation.org/competition/
roboboat. Accessed 6 Feb 2018

23. Schneider, F.E., Wildermuth, D., Wolf, H.L.: ELROB and EURATHLON: improv-
ing search & rescue robotics through real-world robot competitions. In: 2015 10th
International Workshop on Robot Motion and Control (RoMoCo), pp. 118–123,
July 2015

24. Serrano, D., Cubber, G.D., Leventakis, G., Chrobocinski, P., Govindaraj, S.:
ICARUS and DARIUS approaches towards interoperability two complementary
projects that cover the full spectrum of interoperability issues for the integration
of unmanned platforms in search and rescue operations (2015)

25. Shimizu, M., et al.: Standard rescue tasks based on the Japan virtual robotics
challenge. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016.
LNCS (LNAI), vol. 9776, pp. 440–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68792-6 37

26. Shimizu, M., Takahashi, T.: Databased fluctuating Wi-Fi signal simulation envi-
ronment for evaluating the control of robots. J. Jpn. Soc. Fuzzy Theory Intell.
Inform. 29(2), 567–573 (2017)

27. Strickland, E.: Dismantling Fukushima: The world’s toughest demolition project.
Technical report. IEEE Spectrum (2014). http://spectrum.ieee.org/energy/
nuclear/dismantling-fukushima-the-worlds-toughest-demolition-project

28. Takahashi, T., Shimizu, M.: How can the RoboCup rescue simulation contribute
to emergency preparedness in real-world disaster situations? In: Bianchi, R.A.C.,
Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI),
vol. 8992, pp. 295–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18615-3 24

29. Tokyo Electric Power Company. Mid-and-long-term roadmap towards the decom-
missioning of Fukushima Daiichi nuclear power units, pp. 1–4 (2011). http://
www.tepco.co.jp/en/nu/fukushima-np/roadmap/conference-e.html. Accessed 13
Feb 2018

https://www.nist.gov/laboratories/tools-instruments/robotics-test-facility
https://www.nist.gov/laboratories/tools-instruments/robotics-test-facility
http://wiki.robocup.org/wiki/Robot_League
http://wiki.robocup.org/wiki/Robot_League
http://wiki.robocup.org/Rescue_Simulation_Virtual_Robot_Competition
http://wiki.robocup.org/Rescue_Simulation_Virtual_Robot_Competition
http://wiki.robocup.org/Rescue_Simulation_Virtual_Robot_Competition
http://wiki.robocup.org/Rescue_Simulation_Virtual_Robot_Competition
http://www.robonation.org/competition/robosub
http://www.auvsifoundation.org/competition/roboboat
http://www.auvsifoundation.org/competition/roboboat
https://doi.org/10.1007/978-3-319-68792-6_37
https://doi.org/10.1007/978-3-319-68792-6_37
http://spectrum.ieee.org/energy/nuclear/dismantling-fukushima-the-worlds-toughest-demolition-project
http://spectrum.ieee.org/energy/nuclear/dismantling-fukushima-the-worlds-toughest-demolition-project
https://doi.org/10.1007/978-3-319-18615-3_24
https://doi.org/10.1007/978-3-319-18615-3_24
http://www.tepco.co.jp/en/nu/fukushima-np/roadmap/conference-e.html
http://www.tepco.co.jp/en/nu/fukushima-np/roadmap/conference-e.html

Survey of Rescue Competitions and Proposal 323

30. Tokyo Electric Power Company. Water leak at a tank in the H4 area in Fukushima
Daiichi nuclear power station (follow-up information) (2013). http://www.tepco.
co.jp/en/nu/fukushima-np/handouts/2013/images/handouts 130820 03-e.pdf.
Accessed 13 Feb 2018

31. Yoshida, T., Nagatani, K., Tadokoro, S., Nishimura, T., Koyanagi, E.: Improve-
ments to the rescue robot quince toward future indoor surveillance missions in
the Fukushima Daiichi nuclear power plant. In: Yoshida, K., Tadokoro, S. (eds.)
Field and Service Robotics. STAR, vol. 92, pp. 19–32. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-40686-7 2

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/2013/images/handouts_130820_03-e.pdf
http://www.tepco.co.jp/en/nu/fukushima-np/handouts/2013/images/handouts_130820_03-e.pdf
https://doi.org/10.1007/978-3-642-40686-7_2

Adjusted Bounded Weighted Policy
Learner

David Simões1,2,3(B), Nuno Lau1,3, and Lúıs Paulo Reis1,2,4

1 IEETA - Institute of Electronics and Informatics Engineering of Aveiro,
University of Aveiro, Aveiro, Portugal

{david.simoes,nunolau}@ua.pt
2 LIACC - Artificial Intelligence and Computer Science Lab, Porto, Portugal
3 DETI/UA - Electronics, Telecommunications and Informatics Department,

University of Aveiro, Aveiro, Portugal
4 DEI/FEUP - Informatics Engineering Department,

Faculty of Engineering of the University of Porto, Porto, Portugal
lpreis@fe.up.pt

Abstract. The Weighted Policy Learner (WPL) algorithm has been
shown to converge to Nash Equilibria (NE) in several challenging envi-
ronments with minimum knowledge. However, WPL has trouble converg-
ing to deterministic strategies, since the policy update rate approaches
zero. We propose a new update rule that bounds this update rate such
that, in pure NE games, the algorithm’s speed is not slowed down, while
its behavior in stochastic NE games remains unchanged. We demon-
strate our proposal’s behavior in several common game-theoretic environ-
ments (with stochastic and deterministic equilibrium policies), in com-
plex maze-related games (where some actions dominate others in most
states), against the original WPL as well as other state of the art algo-
rithms. We draw conclusions over the benefits of our solution and its
advantages.

Keywords: Mixed policy · Multi-agent reinforcement learning ·
Game theory

1 Introduction

Reinforcement learning problems can be viewed as decision problems where an
agent has to select a particular action at a given state. The agent gets a reward
(or a penalty) for executing this action, and that along with the new state obser-
vation is the only available information it has from the environment. To learn a
policy, the agent samples the underlying reward distribution of each action, and
converges to a strategy that maximizes its own pay-off. Traditional reinforce-
ment learning algorithms (such as Q-learning [12]) guarantee convergence to the
optimal policy, by assuming that the reward distribution is stationary. However,
these theoretical guarantees are lost in multi-agent systems, since the received
rewards depend on the remaining agents’ actions. Because all agents can change
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 324–336, 2019.
https://doi.org/10.1007/978-3-030-27544-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_27

Adjusted Bounded WPL 325

their policies at any given time, the reward distribution for any given action is
not fixed.

In multi-agent systems, the objective is to reach the equilibrium that maxi-
mizes each agent’s pay-off. However, in non-cooperative environments, a globally
optimal equilibrium is not always attainable. A safer and more common alter-
native is to reach a Nash Equilibrium (NE), where no agent can do better by
changing his own strategy, and any static game has at least one Nash Equi-
librium [2]. Many multi-agent reinforcement learning (MARL) algorithms have
been recently proposed and studied. However, most have unrealistic assumptions,
such as knowing the underlying game structure and the game’s Nash Equilib-
rium [4,15], knowing the actions executed and rewards received by other agents
[8,10], using hand-tuned heuristics to each problem [5], being unable to achieve
mixed strategies [11], or being focused solely on cooperative games [16].

Often, the only information agents have access to is their own actions and
rewards, and algorithms that achieve Nash equilibria with only such information
have been proposed. State of the art solutions include WoLF-PHC [7], GIGA-
WoLF [6], Weighted Policy Learners (WPL) [1], and EMA-QL [3]. WoLF-PHC
introduced the Win or Learn Fast principle, where different learning rates are
used when the agent is winning or losing, a principle also used by GIGA-WoLF
and other more recent proposals [14]. However, both algorithms have failed to
converge in more complex games, such as the Tricky Game shown in Fig. 3.
WPL and EMA-QL have been shown to achieve convergence in such games, but
with some setbacks. WPL has no formal analysis and proof of convergence, and
EMA-QL features some difficulties learning simpler games with many actions
and asymmetric probabilities. These algorithms keep track of action values (as
they derive from Q-learning) and of a probability distribution of possible actions.
They have distinct update rules and requirements, with WPL being the algo-
rithm that showed best results when adapted to the deep learning paradigm and
compared with the remaining algorithms deep learning implementations [13].
However, WPL is biased against pure strategies, and it only converges in the
limit, since the policy update rate approaches zero in these cases. We then pro-
pose to extend the WPL algorithm with a new update rule that will allow the
algorithm to converge to these policies, where some actions are dominated by
others, and also to stochastic policies, as before.

The remainder of this paper is structured as follows. Section 2 formally
describes the Weighted Policy Learner algorithm and its numerical analysis.
Section 3 describes our proposal, implementation, and analysis of two variants
for WPL. Section 4 shows the results we obtained, and Sect. 5 draws conclusions
and lists future work directions.

2 Weighted Policy Learner

The Weighted Policy Learner (WPL) [1] algorithm keeps track of both action Q-
values and of an action-probability distribution for each state. This probability
may tend to a pure strategy, where the algorithms become the original greedy

326 D. Simões et al.

Q-learning. WPL has a variable learning rate, and allows the agent to move
towards the equilibrium strategy faster than moving away from it. Despite not
having a formal proof of convergence due to the non-linear nature of WPL’s
dynamics, the authors numerically solve WPL’s dynamics differential equations
and show that it features continuous non-linear dynamics, while experimentally
demonstrating it converges in several more complex games.

We denote Qt(s, a) as the Q-values for action a in state s at time-step t, and
πt(s) as the policy at time-step t for state s, representing a vector of probabilities
of picking each action. Each action’s probability is represented by πt(s, a). The
learning rate and policy learning rate at time-step t are denoted by ηt and ηπ

t ,
respectively. A projection function P (π, ε) is used to project a policy π into the
valid probability space, where each probability must have at least a probability
of ε over the total amount of actions.

Given a transition at time-step t from state s with action a to state s′, which
achieved a reward r, WPL starts by updating the Q-values using a discount
factor γ for future expected rewards, with

Qt+1(s, a) = (1 − ηt)Qt(s, a) + ηt(r + γ max
a′

Qt(s′, a′)). (1)

WPL then calculates an increment vector Δ(s) from the gradients of the
value function Vt(s), containing each action’s individual increment Δ(s, a), and
uses the vector to compute the new policy πt+1(s), with

Vt(s) =
∑

a∈A

πt(s, a)Qt(s, a), (2)

∀a ∈ A Δt(s, a) = ηπ
t

∂Vt(s)
∂πt(s, a)

∗
{

πt(s, a) if ∂Vt(s)
∂πt(s,a) < 0

1 − πt(s, a) otherwise
, (3)

πt+1(s) = P

(
πt(s) + Δt(s), ε

)
, (4)

where P (π, ε) is a function that projects a probability π into a valid probability
space, with a minimum probability value of any action equal to ε. The new policy
is iteratively computed until convergence has been achieved.

2.1 Numerical Analysis

WPL has non-linear dynamics which cannot be solved in closed form. The
authors instead perform a numerical analysis to demonstrate the convergence
of the algorithm in a set of 2-person 2-action games. The authors solve the gen-
eral case where Player 2 starts on the equilibrium strategy and, across a time
period, the strategy of Player 1 gets closer to his equilibrium strategy while
Player 2 ends again on his own equilibrium strategy.

However, the authors are unable to show a solution in closed form. They
instead demonstrate an example where Player 1’s first action probability equals

Adjusted Bounded WPL 327

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

0.2

0.4

0.6

0.8

1

Iterations

P
ol
ic
ie
s

Fig. 1. The evolution of the policies of the row player (solid) and the column player
(dashed) in a Matching Pennies game (shown in Fig. 3(a)), using the original WPL
algorithm. The squared marks represent the maximum probability values, while trian-
gular marks represent the minimum probability values.

0.1, as can be seen in Fig. 1. The plots use the actual algorithm and the marks
are predicted by the theoretical model, with an adjusted scale to match the
practical values.

3 Bounded Weighted Policy Learner

As previously stated, WPL is biased against pure strategies, where the algorithm
only converges in the limit. We can easily observe a noticeable delay many trivial
learning tasks where some actions are dominated by other actions. This happens
since the policy update rate approaches zero in these cases, due to the use of
πt(s, a) to adjust the rate.

This has a highly undesirable effect in many scenarios where pure strate-
gies are, in fact, optimal. We propose to modify the update rule, such that the
πt(s, a) factor does not approach 0 in such cases, thus removing the asymptotic
convergence properties of WPL. We can do so by bounding this factor to an inter-
val different from the original [0, 1], adjusting it while either keeping its mean
around 0.5 (changing both the interval’s lower and upper bounds) or keeping its
upper bound on 1 (and changing only its lower bound). We call these variants,
respectively, by Bounded WPL and High WPL. We adjust the interval in such a
way that the original convergence properties of WPL are maintained.

3.1 Bounded and High WPL

We can show how the Bounded WPL variant compares against High WPL,
by adjusting the πt(s, a) factor to be within example intervals [0.25, 0.75] and
[0.5, 1.0], respectively, both of which equal half the original interval’s size. From
Eq. 3, the new policy update rules for Bounded WPL is

∀a ∈ A Δt(s, a) = ηπ
t

∂Vt(s)
∂πt(s, a)

∗
{

πt(s,a)
2 + 0.25 if ∂Vt(s)

∂πt(s,a) < 0

0.75 − πt(s,a)
2 otherwise

, (5)

328 D. Simões et al.

and, analogously, for High WPL

∀a ∈ A Δt(s, a) = ηπ
t

∂Vt(s)
∂πt(s, a)

∗
{

πt(s,a)
2 + 0.5 if ∂Vt(s)

∂πt(s,a) < 0

1 − πt(s,a)
2 otherwise

. (6)

These adjustments do not invalidate the convergence properties of the algo-
rithm, since we have kept the fundamental property of WPL where the prob-
ability of choosing an action increases or decreases by a rate that decreases as
the probability approaches the boundary of the simplex. In other words, agents
move towards their Nash Equilibrium strategy (away from the simplex bound-
ary) faster than they move away from it. We can perform a numerical analysis
similar to the one conducted by the authors, by solving these equations for both
Bounded and High WPL.

Using the same general example used by the authors, we can see in Fig. 2 the
results of the numerical analysis for the above equations, which also demonstrates
the convergence properties of our new variants. We can see that Bounded WPL
has a slightly slower convergence speed than the original algorithm (which is to be
expected, as the convergence speed has now been bounded to a smaller interval),
but it maintains a very similar pattern to the original algorithm. However, the
High WPL variant overcompensates and thus causes the policies to oscillate a
lot more than the original algorithm, since we increased and off-set the average
policy update rate. This is a highly undesirable effect, as it may lead to policy
divergence in the learning stage, thus requiring adjustments to learning rates,
which defeats the purpose of the algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

0.2

0.4

0.6

0.8

1

Iterations

P
ol
ic
ie
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

0.2

0.4

0.6

0.8

1

Iterations

P
ol
ic
ie
s

Fig. 2. The evolution of the policies of the row player (solid) and the column player
(dashed) in a Matching Pennies game (shown in Fig. 3(a)), using the Bounded WPL
(left) and High WPL (right) variants. The squared marks represent the maximum
probability values, while triangular marks represent the minimum probability values.
Simultaneously, solid marks represent the row player and clear marks represent the
column player values.

3.2 Adjusted Bounded WPL

In order to automatically adjust the interval, such that scenarios with pure
equilibria converge faster, and stochastic policy scenarios are not disturbed, we

Adjusted Bounded WPL 329

propose an update rule that is based on the Q-values of the actions. Because
a pure equilibrium means that one action out-values all others, then Q-values
converge such that the dominant action always has a higher Q-value than the
remaining actions. In games with mixed policies, the Q-values of actions that
belong to the equilibrium oscillate around the same value.

We measure how often those values oscillate, and adjust our policy update
based on that. To do so, we average the amount of steps taken for the maximum
Q-value’s action to change, and start bounding the πt(s, a) factor when an action
has remained dominant for more than those steps. The intuition behind this is
that the Q-values usually oscillate with a decreasing period p as policies adjust
(due to learning rates and action randomicity), and when they are oscillating,
the algorithm is converging to a stochastic policy. We do not interfere with the
update rule as long as we are within this interval, since we expect the dominant
action to change.

If at some point, an action reveals itself as dominant for longer than p, the
πt(s, a) factor is narrowed until it is a [0.5−n, 0.5+n] factor for all actions, where
n is an arbitrarily small non-zero positive value. At that point, WPL adjusts
probabilities at nearly the same speed for both pure and stochastic policies
(which keeps its convergence properties), and no longer asymptotically converges
to pure equilibrium solutions. Whenever an action is no longer dominant, the
πt(s, a) factor is reset to its original [0, 1], as the solution is once more expected
to be a stochastic policy.

Formally, given the dominant action with highest Q-value ar
s,t, at time-step

t, with tr time-steps elapsed since the last reset (where the dominant action
ar

s,t changed), and an expected total p time-steps for the dominant action to be
replaced, we can calculate a new bounded πb

t (s, a) factor to be within a [ft, 1−ft]
interval by

ft =

{
ft−1 + 0.5/p if ar

s,t = ar
s,t−1 and tr > p

0 otherwise
, (7)

πb
t (s, a) = πt(s, a) ∗ (1 − 2ft) + ft, (8)

where the constraint ft = [0, 0.5[is enforced outside the equation. We then
replace Eq. 3 with

∀a ∈ A Δt(s, a) = ηπ
t

∂Vt(s)
∂πt(s, a)

∗
{

πb
t (s, a) if ∂Vt(s)

∂πt(s,a) < 0

1 − (πb
t (s, a)) otherwise

. (9)

To calculate p, in order to avoid noise and keep a stable and gradual evolution,
we found that a moving average filter with 2 windows and ignoring intervals
with tQ < p

2 represented a robust approximation. Noise happens when actions
have very similar Q-values, and so oscillate very quickly. This would cause p to
decrease to a very small value, when in fact the actions were only oscillating due
to randomness in the policies. So, when the time taken for a dominant action to
change is too small, in our case, smaller than half of the current p, we assume it

330 D. Simões et al.

1,-1 -1,1
-1,1 1,-1

(a) Matching
Pennies

0,3 3,2
1,0 2,1

(b) Tricky

1,1.75 1.75,1
1.25,1 1,1.25

(c) Biased

0,0 1,-1 -1,1
-1,1 0,0 1,-1
1,-1 -1,1 0,0

(d) Rock Paper
Scissors

1,1 0,0 0,0 -1,-1
0,0 1,-1 -1,1 -1,-1
0,0 -1,1 1,-1 -1,-1
-1,-1 -1,-1 -1,-1 -1,-1

(e) Coop 4-Action

-1,-1 -1,-1 -1,-1 -1,-1
-1,-1 2,2 3,1 1,3
-1,-1 1,3 2,2 3,1
-1,-1 3,1 1,3 2,2

(f) Null Rock
Paper Scissors

1,1 -1,-1
-1,-1 1,1

(g) Coop
Matching
Pennies

-1,-1 -3,0
-3,1 -2,-2

(h) Prisoner’s
Dilemma

2,2 0,1
1,0 1,1

(i) Stag Hunt

3,2 0,0
0,0 2,3

(j) Battle of
the Sexes

Fig. 3. The pay-off matrices of popular Game Theoretic 2-player games. Rows represent
the actions of the first player, columns the actions of the second player, and each cell
the pay-off p0 of the first player and the pay-off p1 of the second player in the format
p0, p1.

as noise. To make p change gradually, we average the previous and the new value,
an approach followed in other algorithms (like CMA-ES [9]) to bind the update
step. However, we don’t assume this approximation to be the only solution, and
many other methods (possibly problem dependent) are expected to work. The
algorithm is robust to different initial values for p. We used the minimum value
1 in our tests, and larger values simply cause the constraint ft to change slower,
leading to a more conservative initial adjustment of the update rate.

If ft = 0, the algorithm is the original WPL, and this situation occurs when
there is no single dominant action. In other words, when the policy should con-
verge to a stochastic policy, WPL’s behavior is kept. On the other hand, with
a pure Nash equilibrium, the πt(s, a) factor ensures that the policy updates do
not decrease as the policy approximates the limit.

Our proposal has increased the state-wise memory consumption of the origi-
nal algorithm, due to keeping track of several new values per state. However, we
believe that the benefits of Adjusted Bounded WPL compensate for its draw-
backs, as can be seen in the following section. We published our algorithm’s
source code at https://github.com/bluemoon93/ABWPL.

4 Results

We start by comparing Adjusted Bounded WPL with the original WPL in a set
of game-theoretic scenarios, and in a multi-state maze game. Then, we compare
our proposal against other mixed-policy algorithms. Unless stated otherwise,
plots are shown across epochs of 1000 iterations (x-axis), with an exploration
rate ε = 0.05, a learning rate η = 0.01, a policy learning rate ηπ = η/100 and a
discount factor γ = 0.9.

https://github.com/bluemoon93/ABWPL

Adjusted Bounded WPL 331

0 200 400
Matching Pennies

0 200 400
Tricky

0 500 1,000 1,500 2,000
Biased

0 200 400
RPS

0 200 400

Coop 4-action

0 20 40
Coop Matching Pennies

0 20 40

Prisoner’s Dilemma

0 20 40 60 80
Stag Hunt

0 20 40
Battle of the Sexes

Fig. 4. The evolution of the probability of playing the first action (y-axis) by 2 players
in several 2-player games. For games with more than 2 actions, the probabilities of all
actions are shown. The row player (solid) starts with an initial probability p0 = 0.1
or p0 = 0.5, and the column player with an initial probability q0 = 0.8 or q0 = 0.5,
depending on the game. The graphs represent the original WPL algorithm (red) and
Adjusted Bounded Bounded WPL (blue). (Color figure online)

Figure 3 shows the pay-off matrices of several of these test environments, all
of which are known and common benchmarks. They all have unique aspects
and represent a well-rounded test suite for any MARL algorithm. Competitive
Matching Pennies is a standard 2-action competitive game with balanced strate-
gies (actions should be played with the same probabilities). The Tricky Game
has the same NE, but is much harder for algorithms to achieve the it, accord-
ing to the literature [7]. The Biased Game has unbalanced actions, and Rock
Paper Scissors is a balanced 3-action game. The Cooperative 4-action Game is
a 4-action game with a dominant action, and Null Rock Paper Scissors is a 4-
action game with a dominated action (an action that should never be played,
while others should have equal probabilities). Cooperative Matching Pennies is
a cooperative game with 2 equilibria where agents have the same expected pay-
off, Prisoner’s Dilemma has a suboptimal equilibrium (not the Paretto-optimal
strategy for players), Stag Hunt has a single optimal equilibrium, and Battle

332 D. Simões et al.

0.2 0.4 0.6 0.8 1 1.2 1.4

·104

50

100

150

200

Epochs

G
am

e
L
en

gt
h

(a) The time-steps (y-axis) taken by two
agents to play a complete match of Maz-
eRPS. The plots represent the original WPL
(red), and Adjusted Bounded WPL (blue).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·105

20

40

60

80

100

Epochs

G
am

e
L
en

gt
h

(b) The time-steps (y-axis) taken by two
agents to play a complete a soccer match.
The plots represent the original WPL (red),
and the Adjusted Bounded WPL (blue).

Fig. 5. The MazeRPS and Soccer Kick environments results. (Color figure online)

of the Sexes has 2 equilibria, but players will have different expected pay-offs.
Figures 3(a), (b), (c), (d) and (f) have stochastic equilibrium strategies, while
the remaining games have deterministic ones. Robust algorithms should be able
to converge in such a wide array of scenarios.

4.1 Adjusted Bounded WPL and WPL

Given the previous results, we now show how Adjusted Bounded WPL behaves
in comparison with the original WPL in both stochastic and pure equilibrium
games. We repeat the stochastic games shown in Fig. 4, and also include several
widely known environments with pure Nash Equilibria, all of which are described
in Fig. 3.

We can see that Adjusted Bounded WPL matches the performance of the
original WPL in all stochastic equilibrium games, and outperforms it in all pure
equilibrium games. This is the expected behavior of our policy update rule,
where we speed up the convergence when an action dominates others, and do

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

2,000

4,000

Training Steps

G
am

e
L
en

gt
h

(a) The length in time-steps (y-axis) of a
3v2 Keep-Away match, over training steps
(x-axis), for multiple runs. Agents cannot
move in this environment, only pass the
ball. The plots represent the original WPL
(red), and Adjusted Bounded WPL (blue).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·106
100

101

102

103

Epochs

G
am

e
L
en
gt
h

(b) The length in time-steps (y-axis, loga-
rithmic scale) of a 3v2 Keep-Away match,
over training steps (x-axis). The plots rep-
resent the original WPL (red), and Adjusted
Bounded WPL (blue).

Fig. 6. The 3v2 Keep-Away environment results. (Color figure online)

Adjusted Bounded WPL 333

not disrupt the learning process when a stochastic equilibrium causes actions to
continuously oscillate.

We now show our proposal compares against WPL in MazeRPS, a repeated
game where a complete match consists on two players having to cross a labyrinth,
and playing a single round of Null Rock Paper Scissors, shown in Fig. 3(e). Null
Rock Paper Scissors has a positive average reward, which makes it a desir-
able state to reach. We also showcase a 1v1 Soccer Kick environment, where
an attacker carries the ball and must feint the defender in order to score. The
defender’s goal is to reach the attacker and predict the feint. Players lose points
as time passes, so they try to reach each other as fast as possible. When they are
together, the attacker can hesitate, or shoot straight, left or right. The defender
can hesitate or defend straight, left or right. A defense to the side also defends
straight shots. If the attacker hesitates and the defender does not, the defender
steals the ball and wins the game. As we can see in Fig. 5, Adjusted Bounded
WPL outperforms the original WPL algorithm, which prematurely converges
and takes much longer to complete its matches. At the end of the game, both
algorithms achieve the Nash Equilibrium strategy: avoiding the first action and
playing remaining actions with an equal probability for Null Rock Paper Scis-
sors; and feinting/defending to the side, ignoring remaining actions, in the kick
environment.

We also show a 3v2 keep-away soccer environment, where 3 defenders with
the ball need to cooperate to keep 2 attackers from reaching it. The defenders
cannot move outside specific boundaries and lose the game if attackers are close
enough to steal the ball. The attackers’ strategy is to have one attacker tagging
one of the defenders and the other chasing the defender currently with the ball.
Defenders are able to move (dribbling the ball with them) or pass the ball.
Figure 6 shows the time taken for the attacking team to capture the ball in
two scenarios: (a) one where agents cannot move (just pass the ball) and (b)
one where movement is allowed. We can once again see how Adjusted Bounded
WPL outperforms the original WPL algorithm, achieving the optimal strategy
in a fraction of the training steps. The maximum game length was limited to
5000 steps.

4.2 Comparing Mixed-Policy Algorithms

Finally, we compare the performance of Adjusted Bounded WPL against WoLF-
PHC, EMA-QL, and GIGA-WoLF, other state-of-the-art stochastic search algo-
rithms. Because all algorithms are based in Q-learning and share similar hyper-
parameters, we compare all four using the same set of hyper-parameters, where
both the original WPL and these algorithms converged to the equilibrium solu-
tions in the games shown in Fig. 7. Since the algorithms keep their own action
probabilities, we simply set the minimum probability of each action to be equal
to the exploration rate ε divided by the number of available actions. The learning
rate η affects all algorithms’ Q-values in the same way, and the discount factor
γ represents how important future rewards are. For algorithms that require two
policy learning rates (for both winning and losing situations), we set the losing

334 D. Simões et al.

rate ηπ
l = ηπ, and the winning rate to ηπ

w = ηπ
l /2. In conclusion, the only hyper-

parameter that affects the learning process differently for each algorithm is the
policy learning rate ηπ. Therefore, we evaluate all four algorithms on several
magnitudes of the policy learning rate ηπ in Fig. 7. We let policies converge for
a number of epochs, and measure the average error of each player’s policy in
the final quarter of epochs, against their equilibrium policies. We can see that
Adjusted Bounded WPL can still match the performance of other state-of-the-
art algorithms, for a set of mixed policy games. On all games except Matching
Pennies, there is a learning rate for which Adusted Bounded WPL outperforms
all other algorithms.

1e-4 1e-5 1e-6

−2

0

2

·10−3

(a) Matching Pennies, over 5e7 epochs.

1e-4 1e-5 1e-6
−2

−1

0

1

2 ·10−1

(b) Tricky Game, over 5e7 epochs.

1e-4 1e-5 1e-6
−2

−1

0

1

2 ·10−2

(c) Biased Game, over 2e8 epochs.

1e-4 1e-5 1e-6

−5

0

5
·10−3

(d) Rock Paper Scissors, over 5e7 epochs.

Fig. 7. Average error (y-axis) of the average reward of WoLF-PHC (red), AB-WPL
(blue), EMA-QL (green), and GIGA-WoLF (yellow) against the expected returns of
the Nash Equilibria. The error of player 1 is shown above the 0-line, and of player 2
below, and plots are shown over different policy learning rates (x-axis). (Color figure
online)

Figure 8 shows the time taken for the same algorithms to converge in pure
policy games. Adjusted Bounded WPL is outperformed by WoLF-PHC in most
scenarios, but with very small learning rates, WoLF-PHC did not converge to
a policy in a Cooperative Matching Pennies game, since it could not decide
which equilibrium strategy to converge to. However, our proposal can match the
remaining algorithms’ performance, and is the only out of all four that converged
to a correct strategy in all tested magnitudes of the policy learning rate ηπ.

Adjusted Bounded WPL 335

1e-4 1e-5 1e-6
100
101
102
103

(a) Cooperative 4-Action

1e-4 1e-5 1e-6
100
101
102
103

(b) Coop Matching Pennies

1e-4 1e-5 1e-6
100
101
102
103

(c) Prisoner’s Dilemma

1e-4 1e-5 1e-6
100
101
102
103

(d) Stag Hunt

Fig. 8. Average time-steps taken (y-axis, logarithmic scale) to converge to a pure strat-
egy, for the policies of WoLF-PHC (red), AB-WPL (blue), EMA-QL (green), GIGA-
WoLF (yellow), over different policy learning rates (x-axis). (Color figure online)

5 Conclusion

Reinforcement learning problems are decision problems where agents have to
learn to maximize their own pay-off based solely on rewards sampled from the
environment. WPL has been shown to achieve convergence in complex 2-player
games, in games with up to 100 players, and in deep learning implementations,
despite having no formal analysis and proof of convergence. However, it is biased
against deterministic strategies, and the policy update rate tends to zero in pure
policy games. We extended WPL with a new update rule that allowed the algo-
rithm to converge to both deterministic policies (where some actions dominate
others) and stochastic policies, by regulating the policy update rate based on the
expected rewards for each action. Despite the increased memory consumption,
we show great improvements in the convergence speed of our new variant, and
also how it fares against other state of the art algorithms. Adjusted Bounded
WPL is robust to hyper-parameter changes, maintains all the convergence prop-
erties and speed of WPL in mixed policy games, and is faster in pure policy
games.

An interesting work direction for the future is to research how Adjusted
Bounded WPL can be extended to the deep learning paradigm, like the original
WPL. Examining its behavior in scenarios with more players or other as-of-yet
unreported environments may also provide further insights on ways to improve
the algorithm’s speed even further.

336 D. Simões et al.

Acknowledgments. This work is supported by: Portuguese Foundation for
Science and Technology (FCT) under grant PD/BD/113963/2015; IEETA
(UID/CEC/00127/2013); LIACC (PEst-UID/CEC/00027/2013); and project EuRoC,
reference 608849 from call FP7-2013-NMP-ICT-FOF.

References

1. Abdallah, S., Lesser, V.: A multiagent reinforcement learning algorithm with non-
linear dynamics. J. Artif. Intell. Res. 33, 521–549 (2008)

2. Aumann, R.J.: Game Theory. The New Palgrave Dictionary of Economics, pp.
1–40 (2017)

3. Awheda, M.D., Schwartz, H.M.: Exponential moving average q-learning algorithm.
In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pp. 31–38, April 2013

4. Banerjee, B., Peng, J.: Generalized multiagent learning with performance bound.
Auton. Agent. Multi-Agent Syst. 15(3), 281–312 (2007)

5. Bianchi, R.A., Martins, M.F., Ribeiro, C.H., Costa, A.H.: Heuristically-accelerated
multiagent reinforcement learning. IEEE Trans. Cybern. 44(2), 252–265 (2014)

6. Bowling, M.: Convergence and no-regret in multiagent learning. In: Proceedings
of the 17th International Conference on Neural Information Processing Systems,
NIPS 2004, pp. 209–216. MIT Press, Cambridge (2004)

7. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artif.
Intell. 136(2), 215–250 (2002)

8. Conitzer, V., Sandholm, T.: Awesome: a general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents.
Mach. Learn. 67(1–2), 23–43 (2007)

9. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 871–
898. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2 44

10. Hu, J., Wellman, M.P.: Nash q-learning for general-sum stochastic games. J. Mach.
Learn. Res. 4(Nov), 1039–1069 (2003)

11. Kaisers, M., Tuyls, K.: Frequency adjusted multi-agent q-learning. In: Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Sys-
tems, vol. 1, pp. 309–316. International Foundation for Autonomous Agents and
Multiagent Systems (2010)

12. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-
cation Limited, Malaysia (2016)

13. Simões, D., Lau, N., Reis, L.P.: Mixed-policy asynchronous deep q-learning. In:
Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017.
AISC, vol. 694, pp. 129–140. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-70836-2 11

14. Xi, L., Yu, T., Yang, B., Zhang, X.: A novel multi-agent decentralized win or learn
fast policy hill-climbing with eligibility trace algorithm for smart generation control
of interconnected complex power grids. Energy Convers. Manag. 103, 82–93 (2015)

15. Zhang, C., Lesser, V.: Multi-agent learning with policy prediction. In: Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp.
927–934. AAAI Press (2010)

16. Zhang, Z., Zhao, D., Gao, J., Wang, D., Dai, Y.: FMRQ–a multiagent reinforcement
learning algorithm for fully cooperative tasks. IEEE Trans. Cybern. 47(6), 1367–
1379 (2017)

https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-319-70836-2_11
https://doi.org/10.1007/978-3-319-70836-2_11

Towards Real-Time Ball Localization
Using CNNs

Daniel Speck(B), Marc Bestmann, and Pablo Barros

Department of Informatics, University of Hamburg, Vogt-Koelln-Strasse 30,
22527 Hamburg, Germany

{2speck,bestmann,barros}@informatik.uni-hamburg.de

Abstract. Convolutional Neural Networks (CNNs) have shown promis-
ing results for various computer vision tasks. Despite their success, local-
izing the ball in real-world RoboCup Soccer scenes is still challenging.
Especially considering real-time requirements and the limited comput-
ing power of humanoid robots. Another important reason is the lack of
training and test data as well as baseline models to start with or compare
to. In this paper, we propose a state-of-the-art ball detection model and
make our training (over 35k images) and test (over 2k images) data sets
publicly available.

Keywords: RoboCup · Deep learning · Dataset · Ball detection ·
Ball localization · Fully convolutional neural network · TensorFlow

1 Introduction

Ball localization is one of the essential skills in RoboCup Soccer. It has to be
precise for close balls to allow the robot to position itself for example to shoot the
ball, but it also has to be able to detect balls that are several meters away. The
latter will become more difficult in 2020 when the playfield size will be doubled
[6]. Additionally, it has to perform on the limited hardware of a humanoid robot
in real-time, while still leaving resources for the other tasks of the robot.

Many approaches using neural networks were made since a change in the rules
introduced multi-colored balls. Often classifiers are used to detect if a region of
interest (ROI) contains a ball [8,10]. To the best of our knowledge, one of the first
approaches working on full-scale raw images in RoboCup was proposed by us in
RoboCup 2016, Leipzig [13]. It was trained on 1,080 training and 80 test images.
The network’s output consists of probability distributions that get combined to
form a heatmap showing the likelihood of a pixel being part of a ball. While this
showed promising results, the runtime performance of the network was too slow
to be used on non-GPU ARM hardware robots during a game.

Schnekenburger et al. followed the same approach of taking the full image
as input but used an FCCN [12]. This network was only trained on the center
points of objects using 2,150 training and 250 test images. It was able to run in

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 337–348, 2019.
https://doi.org/10.1007/978-3-030-27544-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_28

338 D. Speck et al.

real-time, but the used robot has significantly more computational power. We
present a model that is able to run on an NVIDIA Jetson TX2, a hardware that
is commonly used in the Humanoid Kid- and Teen-Size League. We train this
architecture on 35,327 images and have 2,177 test images for evaluation.

We would like to contribute to the community and support the development
of deep learning ball detection architectures. Therefore, we make our training
and test datasets publicly available and also share our baseline architectures.
This allows benchmarking and comparison of different approaches as well as an
easy access to high-quality training data which is especially difficult for new
teams.

The remainder of this paper is structured as follows: First, the data sets, as
well as the metrics for measuring the detection quality are presented in Sect. 2.
Two models for locating balls are then presented in Sect. 3. The results are
afterward presented in Sect. 4 and discussed in Sect. 5.

2 Hamburg Bit-Bots Ball Dataset 2018

We propose the Hamburg Bit-Bots Ball Dataset 2018. All images and our mod-
els have been made public by us to encourage further scientific advances. The
data can be accessed via our website1. The image sets can also be downloaded
separately from our teams profile page on our Imagetagger2 and the models are
accessible at the corresponding GitHub repository3. We hope this supports the
development and comparability of deep learning based models in RoboCup.

2.1 Data

The training dataset consists of 35,327 images (see Fig. 1) and the test dataset
of 2,177 images. Moreover, we supply an additional dataset with images only
recorded on our robot for testing purposes that consists of another 764 images.
We labeled these images with bounding boxes using the Hamburg Bit-Bots
Imagetagger4, an online tool we developed for making image annotation pro-
cesses easier [3]. The training dataset is split into different so-called image sets.
Over 14,000 images are from RoboCup 2016, Leipzig, Germany and nearly 8,000
from RoboCup 2017, Nagoya, Japan, over 6,000 images from our new lab, over
5,000 images from Iran Open 2018, and around 1,000 images from our old lab
(without artificial turf) in Hamburg. Hence, the training images were recorded
at six different locations. To boost the diversity we recorded different types of
image sets: two different games from RoboCup 2017, many different sequences
(us kicking or rolling the ball), non-moving balls at different angles and positions
on the playfield as well as shots taken during preparation phases. Additionally,
1 https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-

2018/.
2 https://imagetagger.bit-bots.de/users/team/1/.
3 https://github.com/Daniel451/Towards-Real-Time-Ball-Localization-using-CNNs.
4 https://imagetagger.bit-bots.de/.

https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-2018/
https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-2018/
https://imagetagger.bit-bots.de/users/team/1/
https://github.com/Daniel451/Towards-Real-Time-Ball-Localization-using-CNNs
https://imagetagger.bit-bots.de/

Towards Real-Time Ball Localization Using CNNs 339

Fig. 1. Images taken from training dataset including their bounding boxes (red rect-
angles). There are 4 different types of balls in total. Most commonly recorded ball type
is the Euro 2016 ball, which was the official one in Humanoid Kid-Size League at
RoboCup 2017, Nagoya, Japan. (Color figure online)

Fig. 2. Images taken from test dataset. This dataset mostly covers the Euro 2016 ball
and footage recorded from an actual game of the competition in RoboCup Humanoid
Kid-Size League at RoboCup 2017, Nagoya, Japan. The whole encounter’s footage is
just included in the test dataset. The training dataset does not include any of the
images of this game. Besides, the test dataset includes another 351 images recorded by
the WF Wolves team from a location that is not covered at all in the training dataset.

we have included another 14,886 negative samples, i.e. images covering the play-
field, goals, a few robots, . . . , but no ball, from RoboCup 2016, Leipzig, Germany,
for evaluating models against false positives (Fig. 2).

2.2 Metrics

There are several approaches to evaluate object detection frameworks. We supply
four different metrics: Intersection over Union (IoU; also called Jaccard index 5),
precision, recall, and radius accuracy.

5 https://en.wikipedia.org/wiki/Jaccard index.

https://en.wikipedia.org/wiki/Jaccard_index

340 D. Speck et al.

For IoU we give the average over the whole test dataset and also the 90th and
99th percentile since the intersection for false positives or false negatives is an
empty set, thus heavily affecting the total IoU over the whole dataset. Providing
the 90th and 99th percentile is a better measure for the accuracy of pixel-level
detection for true positives.

For precision and recall we measure true positives (TP), false positives (FP),
and false negatives (FN) with strong restrictions: if the models output contains
multiple balls, we only extract the prediction with the highest activation. The
center of this predicted ball cluster has to be within the ground truth, i.e. within
the original label (ball pixels), to be counted as a TP. Effectively this means that
at least 50% of such a predicted ball’s pixels have to intersect with the ground
truth ball label, otherwise it is counted as FP. If no significant cluster can be
found in the model’s output, then it is counted as a FN.

The fourth metric we use is radius accuracy. We propose this metric to allow
to compare other models to ours that, for example, work on absolute coordinates
and cannot produce pixel-level predictions to allow for IoU or other metrics. We
hope this allows for comparability with as many models as possible. The radius
accuracy is a radial error function. We compute the ball’s predicted center and
measure whether this point lies within a certain radius r around the ground
truth (label). Formally, the accuracy with respect to a certain radius r is the
sum (see Eq. 1) over a scoring function fr (see Eq. 2) that measures if the squared
difference between a prediction p and a label (ground truth) l is lower than the
square of the radius for every image.

accuracyr =
1
n

∗
∑

i∈I

fr

(
(pxi − lxi)2 + (pyi − lyi)

2
)
. (1)

fr(x) =

{
1 x < r2

0 x ≥ r2
(2)

3 Proposed Architecture

Two architectures for neural networks and their implementation in Tensorflow
are provided and evaluated against our dataset. Other teams are welcome to use
these to compare their own results or improve our proposed architectures.

3.1 Model 1 (CNN)

This architecture is an updated version (see Fig. 3) of the ball detection CNN
model proposed by us at the 20th RoboCup International Symposium, 2016 in
Leipzig [13]. Instead of soft-sign activation, we used leaky ReLU (rectified-linear
units) activation, which showed reasonable results for our architecture [9]. The
training procedure (teaching signal) stays the same as in the original paper.

Towards Real-Time Ball Localization Using CNNs 341

co
nv

 9
x9

x1
6

 /2

fla
tte

n

co
nv

 7
x7

x1
6

 /2

co
nv

 3
x3

x3
2

co
nv

 5
x5

x3
2

 /2

x
fu

lly
-c

on
ne

ct
ed

 1
00

y

fu
lly

-c
on

ne
ct

ed
 1

00

ou
tp

ut
 x

fu

lly
-c

on
ne

ct
ed

 2
00

ou
tp

ut
 y

fu

lly
-c

on
ne

ct
ed

 1
50

raw RGB image

150x200x3

Fig. 3. Illustration of our proposed Model 1 (CNN). 7 × 7 and 9 × 9 convolutions
are applied in parallel to the raw RGB input image. The second and third layer use
5×5 and 3×3 convolutional kernels respectively, before the information gets flattened
and propagated to the fully-connected output channels to build probability distribu-
tions for x- and y-dimension. Strides of 2 are applied in the first two layers to reduce
dimensionality.

co
nv

 3
x3

x1
6

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

m
ax

 p
oo

l 2
x2

ba
tc

h
no

rm

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

co
nc

at

m
ax

 p
oo

l 2
x2

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nc

at

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nc

at
up

sa
m

pl
in

g

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

up
sa

m
pl

in
g

co
nc

at

co
nv

 3
x3

x1
6

ba
tc

h
no

rm

co
nv

 3
x3

x1
6

ba
tc

h
no

rm

co
nv

 3
x3

x1

heatmap
(150x200x1)

raw RGB image

150x200x3

Fig. 4. Illustration of our proposed Model 2 (FCNN). Convolutional layers (purple),
batch normalization (yellow), concatenation (so-called “skip connections”; blue), 2D
upsampling (green), 2D max-pooling (red). (Color figure online)

Evaluation. This architecture outputs two different probability distributions
that should model a normal distribution where mean µ is expected to be at
the ball’s center in x- (first distribution) respectively y-dimension (second dis-
tribution). We did not fully utilize the power of the probability distribution

342 D. Speck et al.

(expensive post-processing) in this paper, because this model is already similar
when it comes to computational complexity compared to Model 2 (FCNN). We
simply used an argmax on the output to find the single neuron with the highest
activation and take this as a prediction for the ball’s center in x- & y-dimension.
Further post-processing of the model’s output, i.e. analyzing the probability dis-
tributions, would cover better results, but also would be done mostly on CPU
and use up more computation time. We tried to streamline the model to also
run near real-time on a NVIDIA Jetson TX2.

3.2 Model 2 (FCNN)

We developed a fully-convolutional neural network (FCNN) using TensorFlow6

inspired by the model Schnekenburger et al. proposed in their paper on object
detection with the Sweaty robot [12]. Due to the limited computational power
of RoboCup Humanoid Kid-Size robots, we propose a model with smaller input
(150×200 for height and width; original paper uses 512×640) to allow near real-
time execution on our NVIDIA Jetson TX2 hardware. We also feed raw camera
input instead of normalized images. An illustration of our model can be seen
in Fig. 4. We use 2D max-pooling for dimensionality reduction and 2D bilinear
up-sampling in our architecture to get a smoother heatmap as output because
strided transposed convolutional layers for up-sampling led to “checkerboard
artifacts” in our heatmap for some input images [2]. Xu et al. showed a thorough
evaluation of activation functions, which we used as a basis and found Leaky
ReLU (rectified linear units) to cover the best results for us [14]. This kind of
activation function was proposed by Maas et al. [7].

We experimented with different initialization techniques for the model. The
most stable results (test accuracies after finished training varied by only 0.1%)
were achieved with Glorot random normal initialization for the convolutional
weights and an all-zero initialization for the biases [4]. A dropout rate of 0.5
is applied to all layers but the first and last layer [5]. Padding is always set to
“same”, i.e. one of the padding options in TensorFlow, in order to keep dimen-
sionality between convolutional layers.

For training the network we compute ellipses out of our bounding box labels
in order to get near pixel-precise labels as training feedback for Model 2.

Evaluation. To extract the ball’s center we apply several steps onto the
heatmap output of Model 2. At first, we apply Otsu’s method to binarize and
threshold the image [11]. Afterward, OpenCV’s contour-finding algorithm is
applied to the binary image, which will return clusters for each “hotspot” in
the original heatmap. To extrapolate the most significant cluster, i.e. highest
activation of the network in the heatmap, we sum up the network’s original
output over the indices of each cluster. This procedure extracts the “strongest”

6 https://www.tensorflow.org/.

https://www.tensorflow.org/

Towards Real-Time Ball Localization Using CNNs 343

Fig. 5. Input images (test set images; top), FCNN output (heatmaps; bottom)
and combined plot (center) for Model 2. The interval [0.0, 1.0] is the possible range
for the network’s activation, hence this Figure shows that the network’s neurons fire
strongly for ball pixels and nearly homogeneously flat out to 0.0 otherwise.

activation in the heatmap, returning the most significant cluster of “ball pix-
els”. Afterward, we extrapolate the center point for a cluster using OpenCV’s
moments function.

4 Experimental Results

4.1 Ball Localization

Table 1 shows that the fully-convolutional neural network (Model 2) has a very
good ball localization quality throughout the test set, while the older model falls
behind. Model 2 also delivers a reasonable performance on the robot test data
set, which consists of 764 images recorded only on our robot at IRAN Open
2018. Our robot also walks and moves its camera leading to motion blur in the
images.

4.2 False Positives

Additionally, we tested our models on a negative dataset from Leipzig, i.e. a
dataset covering no ball at all. The dataset has 14,886 images covering different

344 D. Speck et al.

Table 1. Results for full training (20 epochs).

Metric type Test dataset Robot test data

Model 1 Model 2 Model 2

Radius 3 accuracy 30% 93.3% 39.9%

Radius 5 accuracy 47% 95.1% 46.6%

Radius 10 accuracy 55% 96.3% 63.9%

IoU (Jaccard index) - 74.3% 43.9%

IoU 90th percentile - 90.6% 88.1%

IoU 99th percentile - 95.7% 93.7%

Precision - 97.9% 90.4%

Recall - 98.3% 86.6%

playfields from RoboCup 2016, Leipzig, recorded at different angles, heights,
orientations, and so forth. Considering the size and complexity of the dataset
it is a significant challenge to prove a model’s robustness against false positives
since any detection on this dataset can be considered a false positive. For Model 1
the 99th percentile of output activation showed values of 0.6 with a standard
deviation of 0.2, leading to some false positives, even with post-processing applied
to the output. Model 2’s 99th percentile activation was at 0.003 with a standard
deviation of 0.03. Actual balls in an image produce a mean activation of 0.7
(rounded) for Model 2, hence we apply a threshold at 0.5. In our negative dataset,
only 1.04% of all images produce an output >0.5. This results in 155 of 14,886
to falsely produce a positive output.

4.3 Hardware Benchmarks

The results for inference timings for a CPU and three different GPU types can
be seen in Table 2. The NVIDIA Jetson TX2 was chosen since it is used by 7
teams [1] in HL and therefore the most used dedicated GPU. The Intel CPU is
comparable to the performance of an Intel NUC which is used by 18 teams in the
HL [1]. It shows that CPU inference timings per batch increase somewhat linear
with batch size. Additionally, the CPU is considerably slow for many convolu-
tional layers (which is expected, since a CPU has no specific hardware capability
of speeding up these computations), rendering Model 2 more computationally
expansive than Model 1 without a GPU. The GPU inference timings reveal that
for larger GPUs (GTX 1080, Titan X) a mini-batch size of 1, 4 or 8 samples
at once is too small to fully utilize the whole GPU. Thus, mean batch time
does not increase linearly for these GPU models. Additionally, the Titan X is
slightly slower than the GTX 1080 due to the 1080’s higher GPU clock speeds.
At training time with larger mini-batch sizes the Titan X is of course faster.
The Jetson TX2 also performs noticeably well for both models. Model 1 has
fewer layers (especially convolutional layers), hence it’s computational complex-
ity comes mainly through the fully-connected layers, which can be parallelized

Towards Real-Time Ball Localization Using CNNs 345

Table 2. Inference timings (mean values per batch through 1,000 runs)

Models Hardware GPU Batch= 1 Batch= 4 Batch = 8

Total Per image Total Per image Total

Model 1 NVIDIA
Jetson TX2

Yes 0.041 s 0.014 s 0.057 s 0.011 s 0.089 s

Model 2 NVIDIA
Jetson TX2

Yes 0.049 s 0.028 s 0.112 s 0.023 s 0.181 s

Model 1 NVIDIA
Titan X

Yes 0.014 s 0.004 s 0.016 s 0.002 s 0.016 s

Model 2 NVIDIA
Titan X

Yes 0.015 s 0.005 s 0.021 s 0.004 s 0.029 s

Model 1 NVIDIA GTX
1080

Yes 0.010 s 0.003 s 0.011 s 0.002 s 0.012 s

Model 2 NVIDIA GTX
1080

Yes 0.012 s 0.005 s 0.019 s 0.003 s 0.026 s

Model 1 Intel Core i5
2500K

No 0.049 s 0.025 s 0.098 s 0.026 s 0.204 s

Model 2 Intel Core i5
2500K

No 0.124 s 0.130 s 0.518 s 0.136 s 1.085 s

on the GPU for small batch sizes. This way the mean mini-batch timings for
Model 1 do not increase heavily before mini-batch sizes of 8.

5 Discussion

Model 1 (CNN) was mainly selected to present a comparison to recent (2016)
state-of-the-art models [13] challenged with new, more complex datasets. In com-
parison to most publications we mainly use footage from actual competitions and
not just lab environments and in contrast to Model 1’s original test data we now
wanted to keep in mind the pending change of the rules that will double playfield
sizes. To the best of our knowledge, our training and test dataset is the largest
one publicly available for RoboCup. Due to the fact that we did not randomly
split train/test data, but hand-picked playfields & games, or even locations in
case of German Open footage, the test data is completely novel to the network.
This, including our robot test dataset from Iran Open featuring only footage
recorded on the robot, is more challenging than other test datasets, like the one
used in [13]. Hence, it was expected that Model 1 (CNN) shows a considerably
lower accuracy. The model performed well on older datasets, but struggles at
ball localization on full-size playfields at very high distances with completely
new environments, audiences, and so forth. However, despite the increased com-
plexity of test data, this is partly also explainable with us not utilizing the
probability distribution output for x- and y-dimension, but just taking the max-
imum value’s index of each distribution respectively. Further post-processing

346 D. Speck et al.

would definitely help to enhance Model 1’s accuracy, but also greatly increase
runtime performance. On the other hand, Model 1 performs better on CPUs due
to its considerably lower amount of convolutional layers, which are only cheap to
compute on GPUs. This emphasizes the usage of Model 1 or similar architectures
for CPU-based robots, especially since post-processing of mentioned probabil-
ity distributions is only greatly increasing runtime performance on comparably
slow ARM-CPUs like the NVIDIA Jetson TX2. Intel NUC based robots, which
are the standard for CPU-based robots, are much faster for the post-processing.
Moreover, the lowest detection rates occur for distant balls (more than approx.
5 m). Hence, at least for a goalkeeper (who does not need information about
balls on the enemy half of the playfield) Model 1 might be a reasonable choice
for fast detection of approaching balls on CPU-based architectures.

Model 2 (FCNN) covers a very high quality in ball localization overall. We
wanted to push pixel-level accuracy with this model and supplied reasonable
results considering the IoU results presented in Table 1. Model 2 scored 74.3%
IoU on the whole test dataset. If we factor out some false positives for which
the intersection is zero, hence greatly decreasing the total IoU, we get very high
values of 90.6% IoU for the 90th percentile or 95.7% for the 99th percentile.
Figure 5 illustrates this pixel-level ball localization. With a precision and recall
of 97.9% and 98.3% respectively the results also show that Model 2 has a very
low rate of false positives and false negatives. To further present the robustness of
Model 2 we additionally benchmarked the model on another 14,886 images from
RoboCup 2016, Leipzig, which do not contain any ball, thus any ball detection
can be considered a false positive on this dataset. Even on this dataset, the false
positive rate is just above 1% in total.

However, one might argue that the test dataset is not complex enough to
challenge Model 2 since it does only over three different balls and does not
include many very dark images. We included a robot test dataset recorded only
on a robot walking over the playfield at Iran Open 2018 (see Table 1). Although
the localization quality drops Model 2 delivers a reasonable performance, suffi-
cient for ball localization with a precision of 90.4% and a recall of 86.6%. The
drop mainly occurs due to the robot’s walking: this introduces motion blur that
heavily affects input image quality.

Considering runtime performance on GPUs it is also worth to think about
batch processing since it is easier to parallelize batches on a GPU and thus
achieve a higher overall utilization of the GPU’s computing power. As shown in
Table 2 the efficiency per image regarding runtime performance increases with
higher batch numbers. Of course, we can not infinitely increase the batch size,
because of (1) VRAM limitations, (2) reaching the maximum parallelization
performance of the GPU, and (3) latency. On the contrary, it has to be considered
that for distant balls at least latencies do not matter, but accuracy does. If the
robot always processes batches of 8 images then even if the robot is walking the
ball information will be more stable due to the post-processing of the batch. The
probability of 8 images being motion-blurred or covering other problems is lower
than for single images.

Towards Real-Time Ball Localization Using CNNs 347

6 Conclusion

We proposed a state-of-the-art deep learning architecture to detect & localize
balls in complex RoboCup Humanoid Soccer scenes that is able to run in near
real-time on NUC- or GPU-based robots, such as the NVIDIA Jetson TX2 based
robots we use. We also offer the full training and test dataset, the robot test
dataset and the additional negative dataset to test against false positives since
we want to emphasize the development and comparison of deep learning archi-
tectures in RoboCup. To the best of our knowledge, our datasets are by far the
largest and most complex ones publicly available in RoboCup. The results were
achieved keeping the limited computational resources of robots of the Humanoid
Kid-Size League in mind, thus more complex architectures might very well score
even better results. However, we also wanted to push ball detection to a pixel-
level localization with Model 2, which comes at the cost of needing a GPU or
fast CPU. The models can train 20 full epochs (20× 35,327 images) in less than
4 h on an NVIDIA TITAN X GPU when combined with a parallel data pre-
loading algorithm, while also evaluating the test dataset after each epoch. We
use a PCI-E SSD card for storing the images to ensure fast loading speeds, but
we will also supply HDF5 files that speed up loading from hard disks with the
only disadvantage of a larger total file size.

7 Future Work

We will release new versions of the dataset each year, to include new environ-
ments from each years RoboCup competitions and to increase the difficulty of
the test dataset. A large dataset with complex test data eases the transition
and prevents a drop of game quality similar to the year when the multi-colored
ball was introduced. The datasets also include some, although not many, blurry
images. Since a game of RoboCup soccer has to be dynamic recorded images
often involve motion blur from the camera itself or simply due to the robot cur-
rently walking. Another problem is that different backgrounds, especially light
sources, lead to vastly different color spaces. These distortions can heavily affect
detection rates of deep learning architectures because the system will focus on
learning significant features for ball detection, not de-blurring kernels. We are
currently working on neural network based de-noising frameworks to reduce this
kind of problems.

For fast moving balls, which will become more common in the future, we will
also try to combine neural architectures like the FCNN for detection in combina-
tion with fast object tracking architectures. A correlation tracker, for example,
is computationally cheap and might produce reasonable results if supplied with
accurate regions of interest from an FCNN.

Acknowledgement. We would like to thank everyone from our local RoboCup Team,
the Hamburg Bit-Bots, who helped with tagging the training data. We are grateful to
the NVIDIA corporation for supporting our research7. We used the donated NVIDIA

7 https://developer.nvidia.com/academic gpu seeding.

https://developer.nvidia.com/academic_gpu_seeding

348 D. Speck et al.

Titan X (Pascal) to train our models. This research was funded by the German Research
Foundation (DFG) and the National Science Foundation of China (NSFC) in project
Crossmodal Learning, TRR-169.

References

1. Humanoid league team description papers (2018). https://www.robocuphumanoid.
org/hl-2018/teams/. Accessed 09 Mar 2018

2. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard
artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolu-
tion and convolution resize, July 2017. http://arxiv.org/abs/1707.02937

3. Fiedler, N., Bestmann, M., Hendrich, N.: Imagetagger: an open source online plat-
form for collaborative image labeling. Private Communication (submitted)

4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010). 10.1.1.207.2059

5. Hinton, G.: Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)

6. Humanoid Leauge Technical Committe: Humanoid league proposed
roadmap (2014). https://www.robocuphumanoid.org/wp-content/uploads/
HumanoidLeagueProposedRoadmap.pdf. Acessed 10 Apr 2018

7. Maas, A., Hannun, A., Ng, A.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML 2013. https://pdfs.semanticscholar.org/367f/
2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf

8. Menashe, J., et al.: Fast and precise black and white ball detection for robocup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

9. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of CNN advances
on the ImageNet, June 2016. arXiv:1606.02228

10. O’Keeffe, S., Villing, R.: A benchmark data set and evaluation of deep learning
architectures for ball detection in the robocup SPL. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp.
398–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 33

11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.
4310076. http://ieeexplore.ieee.org/document/4310076/

12. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.:
Detection and localization of features on a soccer field with feedforward fully con-
volutional neural networks (FCNN) for the adult-size humanoid robot sweaty. In:
Proceedings of the 12th Workshop on Humanoid Soccer Robots, 17th IEEE-RAS
International Conference on Humanoid Robots, pp. 1–6 (2017)

13. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

14. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network, May 2015. arXiv:1505.00853

https://www.robocuphumanoid.org/hl-2018/teams/
https://www.robocuphumanoid.org/hl-2018/teams/
http://arxiv.org/abs/1707.02937
https://www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
https://www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
http://arxiv.org/abs/1606.02228
https://doi.org/10.1007/978-3-030-00308-1_33
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
http://ieeexplore.ieee.org/document/4310076/
https://doi.org/10.1007/978-3-319-68792-6_2
http://arxiv.org/abs/1505.00853

Deep Learning for Semantic
Segmentation on Minimal Hardware

Sander G. van Dijk(B) and Marcus M. Scheunemann

University of Hertfordshire, Hertfordshire AL10 9AB, UK
sgvandijk@gmail.com

Abstract. Deep learning has revolutionised many fields, but it is still
challenging to transfer its success to small mobile robots with minimal
hardware. Specifically, some work has been done to this effect in the
RoboCup humanoid football domain, but results that are performant
and efficient and still generally applicable outside of this domain are
lacking. We propose an approach conceptually different from those taken
previously. It is based on semantic segmentation and does achieve these
desired properties. In detail, it is being able to process full VGA images in
real-time on a low-power mobile processor. It can further handle multiple
image dimensions without retraining, it does not require specific domain
knowledge to achieve a high frame rate and it is applicable on a minimal
mobile hardware.

Keywords: Deep learning · Semantic segmentation · Mobile robotics ·
Computer vision · Minimal hardware

1 Introduction

Deep learning (DL) has greatly accelerated progress in many areas of artificial
intelligence (AI) and machine learning. Several breakthrough ideas and meth-
ods, combined with the availability of large amounts of data and computation
power, have lifted classical artificial neural networks (ANNs) to new heights
in natural language processing, time series modelling and advanced computer
vision problems [11]. For computer vision in particular, networks using convo-
lution operations, i.e., Convolutional Neural Networks (CNNs), have had great
success.

Many of these successful applications of DL rely on cutting edge computation
hardware, specifically high-end GPU processors, sometimes in clusters of dozens
to hundreds of machines [15]. Low-power robots, such as the robotic footballers
participating in RoboCup, are not able to carry such hardware. It is not a surprise
that the uptake of DL in the domain of humanoid robotic football has lagged
behind. Some demonstrations of its use became available recently [1,5,8,14,16].
However, as we will discuss in the next section, these applications are so far rather
limited; either in terms of performance or in terms of their generalisability for
areas other than RoboCup.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 349–361, 2019.
https://doi.org/10.1007/978-3-030-27544-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_29&domain=pdf
http://orcid.org/0000-0002-3785-5075
http://orcid.org/0000-0002-0815-7024
https://doi.org/10.1007/978-3-030-27544-0_29

350 S. G. van Dijk and M. M. Scheunemann

In this paper, we will address these issues and present a DL framework that
achieves high accuracy, is more generally applicable and still runs at a usable
frame rate on minimal hardware.

The necessary conceptual switch and main driver behind these results is to
apply DL to the direct semantic segmentation of camera images, in contrast to
most previous work in the humanoid robotic football domain that has applied it
to the final object detection or recognition problem. Semantic segmentation is
the task of assigning a class label to each separate pixel in an image, in contrast
to predicting a single output for an image as a whole, or some sub-region of
interest. There are three primary reasons why this approach is attractive.

Firstly, semantic segmentation networks can be significantly smaller in terms
of learnable weights than other network types. The number of weights in a con-
volution layer is reduced significantly compared to the fully connected layers of
classical ANNs, by ‘reusing’ filter weights as they slide over an image. However,
most image classification or object detection networks still need to convert a 2D
representation into a single output, for which they do use fully connected layers
on top of the efficient convolution layers. The number of weights of fully con-
nected layers is quadratic in their size, which means they can be responsible for
a major part of the computational complexity of the network. Semantic segmen-
tation networks on the other hand typically only have convolution layers—they
are Fully Convolutional Networks (FCNs)—and so do away with fully connected
ones, and the number of their weights only grows linearly with the number of
layers used.

Secondly, the fully convolutional nature also ensures that the network is
independent of image resolution. The input resolution of a network with a fully
connected output layer is fixed by the number of weights in that layer. Such a
network, trained on data of those dimensions, cannot readily be reused on data
of differing sizes; the user will have to crop or rescale the input data, or retrain
new fully connected layers of the appropriate size. Convolution operations on the
other hand are agnostic of input dimensions, so a fully convolutional network
can be used at any input resolution1. This provides very useful opportunities.
For example, if a known object is tracked, or an object is known to be close
to the camera, the algorithm allows for an on-demand up and down scaling of
vision effort. Instead of processing a complete camera frame when searching for
such an aforementioned object, only an image subset or a downscaled version of
a camera frame is processed.

Finally, semantic segmentation fits in directly with many popular vision
pipelines used currently in the RoboCup football domain. Historically, the
domain consisted of clearly colour coded concepts: green field, orange ball, yel-
low/blue goalposts. Commonly a lookup-table based approach is used to label
each pixel separately, after which fast specialised connected component, scan-
ning, or integral image methods are applied to detect and localise all relevant
objects. Over the years the scenario has developed to be more challenging (e.g.,

1 Given that the input dimensions are not so small that any down-sampling operations,
e.g. max pooling, would reduce the resolution to nil.

Deep Learning for Semantic Segmentation on Minimal Hardware 351

natural light, limited colours) and unstructured, making the lookup-table meth-
ods less feasible. Using a semantic segmentation CNN that can learn to use more
complex features would allow the simple replacement of these methods and still
reuse all highly optimised algorithms of the existing vision pipeline.

2 Related Work

The RoboCup domain offers a long history in research on efficient, practical com-
puter vision methods; already the very first RoboCup symposium in 1997 dealt
with “Real-Time Vision Processing for a Soccer Playing Mobile Robot” [4], and
the 2016 Kid-Size champions still heavily relied on optimisations, e.g., regions
of interest and downscaled images, to make vision viable [2]. To ensure keep-
ing track of and participating in a dynamic game of football, the robots ideally
should process at least 20 to 30 fps. However, they only have very limited energy
resources yielding minimal computational power for achieving that.

Recent developments in low-power, mobile computational platforms, as well
as in efficient deep learning, have now made it possible to adopt DL in small
mobile robots. One of the first works on DL in the RoboCup domain presented a
CNN trained to separately predict the x and y coordinates of a ball in a camera
image [16]. Although this network performed relatively well, it could only process
a few images per second and operated on heavily downscaled images. At the same
time other authors were able to create a CNN-based system that could recognise
Nao robots within milliseconds [1]. However, this method relied on a region
proposal preprocessing method very specific to RoboCup. This work was later
generalised to a different RoboCup league [10], but still relies on the specifically
colour-coded nature of the robot football pitch. Instead, the approach taken
in this paper is to use CNNs as the very first processing step, and only after
that step apply domain specific algorithms. This same approach was taken in a
recent work very much related to ours [14], but for large humanoid robots with
powerful hardware that cannot feasibly be used by smaller size mobile robots,
such as Kid-Size humanoids or perhaps drones.

In recent years there has been a growing body of work on creating small,
but capable networks, for enabling their use on more restricted hardware. One
approach is to try to minimise the complexity of convolutions by first applying
a ‘bottleneck’ 1 × 1 convolution layer that reduces the number of features used
in the actual N × N convolution. This idea originated with ResNet [7] to help
make training of very deep networks feasible, but at the same time can also
reduce run time costs. For networks of the sizes used in this paper however, the
computational cost of a bottleneck layer outweighed the benefit of a reduced
number of features in the subsequent layer. A different idea is to discretise quan-
tities used in the networks, with the idea that integer operations can be much
more efficient in low-end computation devices. The culmination of this idea is
in network designs such as XNOR-nets [12] that use very basic and fast bitwise
operations during prediction, and DoReFa-nets [17] that further extend this idea
to training. We do not study such binary nets here, as at the moment there is

352 S. G. van Dijk and M. M. Scheunemann

E1 E2 E3 E4 D1 D2 D3 D4 O

SepConv + ReLU

MaxPool
BatchNorm
UpSample

SoftMax

Fig. 1. The architecture of the networks used consists of a series of fully convolutonal
encoding (E1–E4) and decoding (D1–D4) steps. A pixelwise softmax output layer pro-
vides the final classifications. Network variations differ in the actual number of encoding
and decoding steps used, filter size and initial depth, filter depth multiplication factor
and convolution stride.

no implementation available of the operators required by such networks for the
most popular deep learning libraries, and we are interested in systems that can
be easily adapted and implemented by the reader using such libraries.

Instead, the optimisations applied to our networks are very much motivated
by MobileNets [9]. Most notably, we utilise depthwise separable convolutions to
significantly reduce the computational complexity of our segmentation networks.
Such convolutions split a regular convolution into a filter and a combination step:
first a separate 2D filter is applied to each input channel, after which a 1 × 1
convolution is applied to combine the results of these features. This can be seen
as a factorisation of a full convolution that reduces the computational cost by a
factor of 1

N + 1
K2 , where N is the number of output features and K the kernel

size. Not all convolutions can be factorised like this, so separable convolutions
have less expressive power, but the results of the original MobileNets and those
reported here show they can still perform at high accuracy.

3 Network Architecture

As mentioned before, our approach is based on fully convolutional semantic
segmentation networks. The main structure of our networks is similar to popular
encoder-decoder networks, such as U-Net [13] and SegNet [3], mainly following
the latter. In such networks, a first series of convolution layers encode the input
into successively lower resolution but higher dimensional feature maps, after
which a second series of layers decode these maps into a full-resolution pixelwise
classification. This architecture is shown in Fig. 1.

SegNet and U-Net both have the property that some information from the
encoder layers are fed into the respective decoder layers of the same size, either
in terms of maxpooling indices, or full feature maps. This helps overcoming the
loss of fine detail caused by the resolution reduction along the way. As good
performance is still possible without these connections, we do not use those
here. They in fact introduce a significant increase in computation load on our

Deep Learning for Semantic Segmentation on Minimal Hardware 353

hardware, due to having to combine tensors in possibly significantly different
memory locations.

Another modification is to use depthwise separable convolution, as introduced
by MobileNets [9], as a much more efficient alternative to full 3D convolution.
This is one of the major contributions to efficiency of our networks, without
significantly decreasing their performance.

To study the trade-off between network minimalism, efficiency and perfor-
mance, we create, train and evaluate a number of varieties of the above network,
with different combinations of the following parameter values:

1. Number of Layers (L)—L ∈ {3, 4}, the number of encoding and decoding
layers. We always use the same number of encoding and decoding layers.

2. Number of Filters (F)—F ∈ {3, 4, 5}, the number of filters used in the
first encoding layer.

3. Filter Multiplier (M)—M ∈ {1.25, 1.5, 2}, the factor by which the number
of filters increases for each subsequent encoding layer, and decreases for each
subsequent decoding layer.

4. Convolution Stride (S)—S ∈ {1, 2}, the stride used in each convolution
layer.

Larger and smaller values for these parameters have been tried out, but we only
report those here that resulted in networks that were able to learn the provided
task to some degree, but were light enough to be run on the minimal test hard-
ware. Specific instantiations will be denoted with LxFyMzSw with parameter
values filled into the place holders. For instance, L3F4M1.25S2 is the network
with 3 encoding and decoding layers, 4 features in the first feature map, a mul-
tiplier of 1.25 (resulting in 4, 5 and 6 features in each subsequent layer) and a
stride of 1. Not all combinations are valid: a combination of L = 4 and S = 2
would result in invalid feature map sizes given our input of 640 × 480 images.
The total number of network types then is 27. Finally, all convolution layers use
3 × 3 filters, padding to have output size the same as input size and no bias.

4 Experiments

The networks described in the previous section are trained to segment ball pixels
in images taken by a Kid-Size RoboCup robot on a competition pitch. Specif-
ically, the image set bitbots-set00-04 from the Bit-Bots’ Imagetagger2 was
used. It contains 1000 images3 with 1003 bounding box ball annotations. To
derive the target pixel label masks for training the networks, the rectangular
annotations are converted to filled ellipsoids. Figure 2 shows an example of the
input images and targets.

We use the TensorFlow library to construct, train and run the networks.
The networks are trained on an NVIDIA GeForce GTX 1080-ti GPU, with a

2 https://imagetagger.bit-bots.de/images/imageset/12/.
3 Images taken at the 2016 world championship in Leipzig, Germany.

https://imagetagger.bit-bots.de/images/imageset/12/

354 S. G. van Dijk and M. M. Scheunemann

RGB Target L4F5M2S1 L3F5M2S2 L3F4M1.5S2

Fig. 2. Examples of input, target and segmentation outputs. The outputs are respec-
tively of the best stride 1 network, the best stride 2 network, and the second best
stride 2 network that achieves 20 frames per second on QVGA images.

categorical cross-entropy loss function using stochastic gradient decent with a
starting learning rate of 0.1, a decay factor of 0.004 and a momentum of 0.9.
The dataset is split in a training set of 750 images, a validation set of 150 and a
test set of 100 images. The sets are augmented to double their size by including
all horizontally mirrored images. During training, a batch size of 10 images is
used. Networks are trained for 25 epochs.

For testing the performance of the networks we map the class probabilities
from the softmax output to discrete class labels and use this to calculate the
commonly used Intersection over Union (IoU) score as TP

TP+FP+FN , where TP
is the number of true positive ball pixels, FP the number of false positives
and FN the number of false negatives. Due to the extreme class imbalance,
the networks hardly ever predict the probability of a pixel being part of a ball,
P (B), to be above 0.5. This means that if we use the most probable class as final
output, the IoU score often is 0, even though the networks do learn to assign
relatively higher probability at the right pixels. Instead we find the threshold θ∗

for P (B) that results in the best IoU score for each trained network.
Finally, since the original goal is to develop networks that can run on minimal

hardware, the networks are run and timed on such hardware, belonging to a
Kid-Size humanoid football robot, namely an Odroid-XU4. This device is based
on a Samsung Exynos 5422 Cortex-A15 with 2 GHz and a Cortex-A7 Octa core
CPU, which is the same as used in some 2015 model flagship smartphones. Before
running the networks, they are optimised using TensorFlow’s Graph Transform
tool, which is able to merge several operations, such as batch normalisation,
into more efficient ones. The test program and TensorFlow library are compiled
with all standard optimisation flags for the ARM Neon platform. We time the
networks both on full 640 × 480 images and on 320 × 256 images.

Deep Learning for Semantic Segmentation on Minimal Hardware 355

5 Results

We firstly evaluate the performance of semantic segmentation networks trained
for the official RoboCup ball. We compare the performance and runtime of the
different network instantiations with each other, as well as to a baseline seg-
mentation method. This method is based on a popular fast lookup table (LUT)
method, where the table directly maps pixel values to object classes. To create
the table, we train a Support Vector Machine (SVM) on the same set as the
CNNs to classify pixels. More complex and performant methods may be cho-
sen, perhaps specifically for the robot football scenario, however we selected this
method to reflect the same workflow of training a single model on simple pixel
data, without injecting domain specific knowledge. We did improve performance
by using input in HSV colour space and applying grid search to optimise its
hyper parameters.

Secondly, we extend the binary case and train the networks for balls and goal
posts, and compare the network performance with the binary segmentation.

5.1 Binary Segmentation

We first analyse the segmentation quality of the set of networks and the influence
of their parameters on their performance. The best network is L4F5M2S1 with a
best IoU of 0.804. As may be expected, this is the one with the most layers, most
filters, highest multiplication factor and densest stride. The least performant
network is one of the simplest in terms of layers and features: L3F3M1.25S1 with
a best IoU of 0.085. Perhaps surprisingly the version of that network with stride 2
manages to perform better, with a score of 0.39. Figure 3 shows the distributions
of performance over networks with the same values for each parameter. One
can see that overall more complex networks score higher, but that the median
network with stride 2 performs better than the median with stride 1.

Figure 4 compares the runtime and IoU scores for all networks. The data
points are grouped by stride, resulting in clearly distinct clusters: as expected
the networks with stride 2 have a significantly lower runtime requirement. The
timings run from 121 to 397 ms per full 640 × 480 resolution frame, which is
equivalent to approximately 8 and 2.5 frames per second, respectively.

The best performing network in terms of IoU is also the least efficient one,
but the second best is a full 74 ms faster with a drop in IoU of only 0.003.
The linear fits show that there is indeed a trend within each cluster of better
performance given the runtime, but it is clear that this is not generally the case:
networks with similar runtimes can vary greatly in achieved performance.

The SVM-based LUT method, though being significantly faster, scores well
below most networks, with an IoU of 0.085. This is because such a pixel-by-pixel
method does not consider the surrounding area and thus has no way to discern
pixels with similar colours, resulting in many false positives for pixels that have
colours that are also found in the ball. In contrast, the CNNs can perform much
more informed classification by utilising the receptive field around each pixel.

356 S. G. van Dijk and M. M. Scheunemann

Fig. 3. Performance distributions for each network parameter. Horizontal bars show
the minimum, median and maximum scores. The lighter area indicates the distribution
over the scores through a kernel-density estimation.

Fig. 4. IoU against runtime per image. The mean of the runtime is taken over 100
iterations. Results for networks with stride 1 and stride 2 are split and plotted with
blue crosses and orange circles respectively. Additionally, for each group the linear fit
to the data is shown. The baseline score of the SVM is marked as a green square. Left:
Full VGA (640 × 480), right: QVGA (320 × 256); note the different timescales. (Color
figure online)

From this figure we can conclude the same as from Fig. 3, that introducing
a stride of 2 does not significantly reduce performance, but with the addition
that it does make the network run significantly faster. The best network with
stride 2, L3F5M2S2, has an IoU of only 0.066 less than the best network (a drop
of just 8%), but runs over twice as fast, at more than 5 frames per second. On
the lower resolution of 320 × 256 the best stride 2 networks achieve frame rates
of 15 to 20 frames per second. Table 1 lists the results for all networks.

Deep Learning for Semantic Segmentation on Minimal Hardware 357

Table 1. Segmentation scores and runtimes obtained by networks

Layers Filters Mult Stride θ∗ IoU Time (ms)

640 × 480 320 × 256

3 3 1.25 1 0.07 0.086 250 78

3 3 1.25 2 0.07 0.356 121 40

3 3 1.5 1 0.30 0.366 261 79

3 3 1.5 2 0.25 0.529 121 40

3 3 2 1 0.33 0.456 295 97

3 3 2 2 0.31 0.478 156 52

3 4 1.25 1 0.23 0.343 273 84

3 4 1.25 2 0.31 0.487 149 48

3 4 1.5 1 0.16 0.313 285 92

3 4 1.5 2 0.28 0.682 155 51

3 4 2 1 0.31 0.413 297 93

3 4 2 2 0.26 0.660 154 49

3 5 1.25 1 0.22 0.365 296 90

3 5 1.25 2 0.25 0.671 155 53

3 5 1.5 1 0.49 0.233 312 93

3 5 1.5 2 0.25 0.590 156 49

3 5 2 1 0.42 0.538 370 106

3 5 2 2 0.24 0.738 188 64

4 3 1.25 1 0.43 0.531 262 80

4 3 1.5 1 0.39 0.620 274 84

4 3 2 1 0.49 0.754 316 96

4 4 1.25 1 0.50 0.666 285 87

4 4 1.5 1 0.23 0.678 299 97

4 4 2 1 0.36 0.801 323 98

4 5 1.25 1 0.74 0.632 313 92

4 5 1.5 1 0.41 0.794 329 96

4 5 2 1 0.46 0.804 397 117

SVM 0.085 10 3

5.2 Multi-class Segmentation

Binary classification is too limited for robotic football, or other real world sce-
narios. To study the more general usability of our method, we extend the binary-
class segmentation case from Sect. 5.1. The same dataset as before is used, but
with additionally goalposts annotated as a third class. We selected the best
stride 1 and best stride 2 networks to train. These two networks are kept the
same, except for an additional channel added to the last decoding layer and to
the softmax layer.

358 S. G. van Dijk and M. M. Scheunemann

RGB Target L4F5M2S1 L3F5M2S2

Fig. 5. Examples of input, target and segmentation outputs for goalposts for the two
trained networks.

We found it to be difficult for the networks to successfully learn to segment
the full goalpost, not being able to discern higher sections above the field edge
from parts of the background. Combined with the fact that the robots typically
use points on the ground, as they are able to better judge their distance, we
select the bottom of the goalposts by labelling a circle with a radius of 20 pixels
in the target output where the goalposts touch the field in the images.

Because of the additional difficulty of learning features for an extra class,
the IoU score for the ball class dropped slightly for both networks: to 0.754
for L4F5M2S1 and to 0.708 for L3F5M2S2, compared to 0.804 and 0.738 in
the binary task. The scores reached for the goalpost class were 0.273 and 0.102
respectively. Although this does not reach the same level as for the ball class, the
networks are still able to mark out the bottom of the goal posts in the examples
shown in Fig. 5. Because only some additional operations in the last layers, the
run times are comparable to the binary equivalents: 414 and 196 ms.

The worse scores on the goalposts are mostly due to false positives, either
marking too large an area or mislabelling other objects, especially in the case of
the stride 2 network. Several reasons contribute to this. Firstly, the data used is
typical for an image sequence of a robot playing a game of football, where it most
of the time is focused on the ball. This results in goals being less often visible, and
thus in the data being unbalanced: at least one ball is visible in all 1000 images,
whereas at least one goal post is visible in only 408 images. Secondly, goal posts
are less feature-rich, so more difficult to discern from other objects. Finally, our
annotation method does not mark a well-distinguished area, making it harder for
the networks to predict its exact shape. Further research is required to alleviate
these issues and improve performance, however the results obtained here provide
evidence that our approach can handle multi-class segmentation with only little
performance reduction.

Deep Learning for Semantic Segmentation on Minimal Hardware 359

6 Conclusions

We have developed a minimal deep learning semantic segmentation architec-
ture to be run on minimal hardware. We have shown that such a network can
achieve good performance in segmenting the ball, and show promising results
for additionally detecting goalposts, in a RoboCup environment with a useful
frame rate. Table 2 lists the resolutions and frame rates reported by other authors
alongside ours. It must be noted that a direct comparison is difficult, because of
the different outputs of the used CNNs and the different robot platforms, but
our approach is the only one that has all of the following properties:

– Processes full VGA images at 5 fps and QVGA at 15 to 20 fps4

– Can handle multiple image dimensions without retraining
– Does not require task specific knowledge to achieve high frame rate
– Achieves all this on minimal mobile hardware

For achieving full object localisation as given by the other solutions, addi-
tional steps are still required. However, because the output of the semantic seg-
mentation is in the same form as a lookup table based labelling approach, any
already existing methods built on top of such a method can directly be reused.
For instance, an efficient—and still task agnostic—connected component based
method previously developed by us readily fits onto the architecture outlined
here and performs the final object detection step within only 1 to 2 ms.

Table 2. Reported resolutions and frame rate of DL application in RoboCup domain

Resolution FPS Notes

Speck et al. [16] 200× 150 3 Predict separate ball x and y

Albani et al. [1] N/A 11–22 Task dependent region proposal

Cruz et al. [5] 24× 24 440 Task dependent region proposal

Javadi et al. [10] N/A 240 No loss: 6 fps; task dependent

Da Silva et al. [6] 110× 110 8 Predict end-to-end desired action

Hess et al. [8] 32× 32 50 Focus on generation of training data

Schnekenburger et al. [14] 640× 512 111 GTX-760 GPU; 19 fps on i7 CPU

Ours 640× 480 5 L3F5M2S2

320× 256 15 L3F5M2S2; L3F4M1.5S2: 20 fps

By delaying the use of task dependent methods, one actually has an oppor-
tunity to optimise the segmentation output for such methods, by varying the
threshold used to determine the final class pixels. For specific use cases it may
be desirable to choose a threshold that represents a preference for either high
true positive rate (recall), e.g. when a robot’s vision system requires complete

4 Actually a resolution slightly larger than QVGA is used, as the stride 2 networks
require dimensions that are multiples of 32.

360 S. G. van Dijk and M. M. Scheunemann

segmentation of the ball and/or it has good false-positive filtering algorithms, or
for low false positive rate (fall-out), e.g., when it can work well with only partly
segmented balls, but struggles with too many false positives.

References

1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

2. Allali, J., et al.: Rhoban football club: RoboCup humanoid kid-size 2016 champion
team paper. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016.
LNCS (LNAI), vol. 9776, pp. 491–502. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68792-6 41

3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

4. Cheng, G., Zelinsky, A.: Real-time vision processing for a soccer playing mobile
robot. In: Kitano, H. (ed.) RoboCup 1997. LNCS, vol. 1395, pp. 144–155. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64473-3 56

5. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J.: Using convolutional neural net-
works in robots with limited computational resources: detecting NAO robots while
playing soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 19–30. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00308-1 2

6. Da Silva, I.J., Vilao, C.O., Costa, A.H., Bianchi, R.A.: Towards robotic cognition
using deep neural network applied in a goalkeeper robot. In: 2017 Latin American
Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR),
pp. 1–6. IEEE (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Hess, T., Mundt, M., Weis, T., Ramesh, V.: Large-scale stochastic scene generation
and semantic annotation for deep convolutional neural network training in the
RoboCup SPL. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 33–44. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00308-1 3

9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

10. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS
(LNAI), vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00308-1 28

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
12. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classi-

fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-319-68792-6_41
https://doi.org/10.1007/978-3-319-68792-6_41
https://doi.org/10.1007/3-540-64473-3_56
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/978-3-030-00308-1_3
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-319-46493-0_32

Deep Learning for Semantic Segmentation on Minimal Hardware 361

13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

14. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.:
Detection and localization of features on a soccer field with feedforward fully con-
volutional neural networks (FCNN) for the adult-size humanoid robot sweaty. In:
Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS Inter-
national Conference on Humanoid Robots, Birmingham (2017)

15. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

16. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

17. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-68792-6_2
http://arxiv.org/abs/1606.06160

RoboCup Junior in the Hunter Region:
Driving the Future of Robotic

STEM Education

Aaron S. W. Wong1,2,3(B), Ryan Jeffery2, Peter Turner1,2,4, Scott Sleap5,
and Stephan K. Chalup1,2

1 Newcastle Robotics Laboratory, The University of Newcastle, Callaghan, Australia
aaron.wong@newcastle.edu.au

2 Faculty of Engineering and Built Environment, The University of Newcastle,
Callaghan, Australia

3 Faculty of Science, The University of Newcastle, Callaghan, Australia
4 Tribotix Pty. Ltd., Callaghan, Australia

5 Regional Development Australia - Hunter, Tighes Hill, Australia

Abstract. RoboCup Junior is a project-oriented educational initiative
that sponsors regional, national and international robotic events for
young students in primary and secondary school. It leads children to
the fundamentals of teamwork and complex problem solving through
step-by-step logical thinking using computers and robots. The Faculty
of Engineering and Built Environment at the University of Newcastle in
Australia has hosted and organized the Hunter regional tournament since
2012. This paper presents an analysis of data collected from RoboCup
Junior in the Hunter Region, New South Wales, Australia, for a period of
six years 2012–2017 inclusive. Our study evaluates the effectiveness of the
competition in terms of geographical spread, participation numbers, and
gender balance. We also present a case study about current university
students who have previously participated in RoboCup Junior.

Keywords: STEM education · RoboCup Junior · Engagement ·
NUbots · Robotics

1 Introduction

The National Innovation and Science Agenda [5] is the Australian government’s
initiative to improve and promote technologically related fields of commercial,
industrial, and technical skill development for Australian citizens with a compo-
nent focusing on the preparation of young school-aged students for studies related
to the fields of Science, Technology, Engineering, and Mathematics (STEM).
This component has been recognised as the next step in the evolution of the
Australian education system. It is understood that the next generation of grad-
uating students will have to be “STEM-ready” to cope with the challenges of a
future technologically advanced and internationally competitive workforce.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 362–373, 2019.
https://doi.org/10.1007/978-3-030-27544-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_30&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_30

RoboCup Junior, Hunter Region, Australia 363

Educating a STEM-ready workforce is not a trivial task as there are several
behavioural factors inherent to modern Australian culture which impede this
goal. These include fear of failure [9] (of both students and their teachers), and
mathematics anxiety [13]. Students in general should be encouraged at an early
stage to take intellectual risk in order to gain life-skills that could be of value
for a STEM-related career path [2]. For students, pathways into a STEM related
field can be increased by diversifying opportunities and options, so that there is
a higher probability of attracting their attention. They could start, for example,
with programming websites or building electronic components. In order to help
students to access STEM, it is important to explain practical applications and
give STEM a purpose. It also should be made clear that mathematics consists
of many different disciplines and that they may require very different ways of
thinking. There are different options within STEM and similarly within the
general area of mathematics, e.g., not everyone who is talented in geometry and
visualisations may also be good at memory and number tasks. With these critical
thoughts in mind, a STEM-ready workforce has the potential to advance many
different aspects of technology.

One aspect of an advanced technology can be found in the field of robotics.
Many STEM-related fields and skills are required to develop an autonomous
robot. These include sound knowledge of the fundamental concepts of science
and mathematics as taught at school. These are also the basis to a successful
development of the practical skills required by professional engineers.

Similarly as the Personal Computer (PC) and the Internet had revolutionary
impact on our culture, now mobile devices and robots are predicted to be basis
of the next technological explosion. Hence, it is important to encourage young
students to consider gaining skills in professions related to robotics or to pursue
a other career paths that also can lead to a technologically skilled future, i.e., a
“STEM-ready” future. For the Hunter region in New South Wales (NSW), Aus-
tralia, RoboCup Junior [10] is the only annual robotics event that targets young
students to actively compete and perform as a team. RoboCup Junior is a project-
oriented educational initiative that sponsors regional, state, national and inter-
national robotic events for young students, with the goal to encourage the next
generation to pursue and take an interest in scientific and technological fields.

In this paper we will investigate the following question: How can the current
society be prepared for a sustainable STEM-minded future? How can a commu-
nity engagement project such as RoboCup Junior Hunter contribute and how
can its success be measured?

The subsequent sections show how RoboCup Junior served as a platform
for community engagement and for promoting STEM in the Hunter region. By
detailing demographic information about the Hunter region it highlights the
importance and impact of RoboCup Junior. The results section provides quanti-
tative measures derived from data collected from RoboCup Junior events over the
past 6 years. Then a case study of current University of Newcastle students who
have previously participated in the competition is presented. The penultimate
section discusses the importance and roles of several stakeholders that collab-
oratively supported RoboCup Junior in the Hunter region and how this led to
one of the most successful regional initiatives of its kind in Australia.

364 A. S. W. Wong et al.

2 RoboCup Junior in the Hunter Region

RoboCup (est. 1997) is an international competition that fosters research in
robotics [8], and the advancement of artificial intelligence within a competitive
environment. RoboCup has seen a globally increasing trend in the past decade,
see Fig. 1. The goal of RoboCup, in the near future, is to have designed and pro-
grammed a team of bipedal humanoid autonomous soccer playing robots, to win
against the human world champion soccer team [12]. This goal is yet to mature,
and may require some generations of research to achieve, and hence we have
RoboCup Junior; the establishment of the next generation of “technologists”,
with a focus on robotics.

Fig. 1. The number of participants who have attended the RoboCup International
tournament since its inception [12]: There is a strong linearly increasing trend (R2 >
0.90) over time with the number of people globally participating in this tournament.

RoboCup Junior is designed to introduce primary and secondary school-
aged children to the fundamentals of teamwork and complex problem solving
by employing step-by-step logical, rational processes using computers (robots)
as a tool to complete a set task. The main objective of RoboCup Junior is to
encourage the next generation to pursue and take an interest in scientific and
technological fields; to cultivate their interests through a hands-on approach in
robot design and creation using platforms including, but not limited to, Lego
Mindstorm educational kits. Students are invited to compete in three distinct
disciplines; soccer, dance, and rescue.

RoboCup Junior, Hunter Region, Australia 365

With the RoboCup Junior initiative, it is possible to create an environment of
light-mindedness, experimentation, fun and teamwork that inspires and educates
students to expand their horizon through STEM experiences. In this context,
there are countless opportunities to establish links to other associated STEM
disciplines. It is important that students feel respected as individuals and that
they have, at an early stage, access to demonstrations and practical hands-on
aspects of STEM careers in a broad manner where they can explore their own
career goals. This is one of the key and defining ideals of RoboCup Junior in the
Hunter region, NSW.

The Hunter region, NSW, resides approximately two hours north of Sydney
and has a substantial rural demography as well as large urban population cen-
tres in Newcastle and Lake Macquarie. Although, the Hunter region has been
noted to be an innovation hub, e.g. Newcastle as “Smart City” [7], where new
smart technologies are being developed as applied solutions to the problems of
the world today, the general population includes negatively skewed low social
economic status (SES) indicators, when compared to the state’s capital, Sydney.
For example, Higher School Certificate (HSC) completion rates in the Cess-
nock Area, within the Hunter region, are with 44% substantially lower than the
NSW average of 75% [4]. These low-SES indicators have led the organisers of
RoboCup Junior in the Hunter to follow an approach that maintains the core
rules of the competition while incorporating additional coaching to promote par-
ticipation. This allows children to have an attitude of “having-a-go”, to have fun,
and to enjoy themselves while avoiding anxieties associated with STEM subjects
and while subconsciously having a positive experience with STEM and gaining
important skills required for a potential career path in STEM.

A career path in STEM does not require direct entry into a university degree,
as there are many different pathways into a STEM-related career. However, tradi-
tional entry into a university STEM-related degree has generally been perceived
to be the fastest arrangement to refine skills, achieve, advance and progress
in a competitive STEM workforce. For this reason, the following results section
presents information obtained in a case study of currently enrolled students (with
their permission) who were past participants of RoboCup Junior, Hunter. This
case study together with quantitative results recorded over the past six years cor-
roborates the view that the Hunter RoboCup Junior initiative had substantial
positive impact on driving STEM education in the Hunter Region.

3 Results

3.1 Quantitative Analysis

Over the past six years, 2012 to 2017 (see Fig. 2) there has been a general growth
in the number of students, teams, as well as schools, with a total of 1443 student
participants in the Hunter Region RoboCup Junior competition. In 2015 the ME
program (Sect. 4.2) was not able to support the competition as usual. While in
2017, the date of the competition was significantly earlier then previous years.
These factors caused a temporary decline in participation.

366 A. S. W. Wong et al.

Fig. 2. Development of RoboCup Junior in the Hunter Region over the past six years
(2012–2017 inclusive). There was a general increase in the number of students, teams,
and schools. The spatial coverage of the participating schools entering the competition
also increased.

Students were as young as 8 years of age in their 3rd school year, and the
oldest participating students were up to 18 years of age. The majority of the
participating students was aged 14 and 15 (in school years 8 and 9). About 22%
of the 1443 participating students were female (2012 = 43, 2013 = 18, 2014 = 46,
2015 = 32, 2016 = 106 and 2017 = 71). For an extra-curricular school activity this

RoboCup Junior, Hunter Region, Australia 367

fraction can be considered to be relatively high, given that only 13% of all engi-
neers are female [6]. As the geographical representation of participating schools
in Fig. 2 shows the geographical distribution of schools participating in the com-
petition increased as the initiative matured over time. Participating schools were
from the Central Coast in the South up to Camden Haven in the North. In addi-
tion some schools travelled up from the Sydney Region to attend the Hunter
tournament in 2014.

With respect to the disciplines offered at RoboCup Junior, the local Hunter
region competition comprises all available disciplines that are currently accessible
at both state and national tournaments. As a result, the discipline participation
distribution follows the identical ranking in proportion with the difficulty of
discipline. The ranking from easiest to hardest is as follows; rescue, dance, and
soccer. The data from our largest local competition, in 2016, is shown in Fig. 3.

Fig. 3. Distributions of registered participants for 2016, RoboCup Junior, Hunter
Region: Top Left, a histogram representing the number of teams registered per dis-
cipline. Top Middle, a histogram representing the number of participants by age. Top
Right, gender distribution for the competition. Bottom, a histogram representing teams
registered by school.

RoboCup Junior rescue consists of three sub-disciplines; primary, secondary,
and open. Simplest sub-category is primary rescue, predominantly for students
who are currently in primary school, while secondary rescue is for participants

368 A. S. W. Wong et al.

who are attending high school, or are between 13 and 18 years old. Advanced
participants who have participated in at least two tournaments of rescue in
previous years compete in open rescue. This hierarchy of sub-categories allows
not only for an increase in difficulty, but for different challenges for the different
categories of ages. The rescue discipline is very structured, and the task is set by
the rules of the competition. This structure was the motivating factor that drove
its popularity, with 80 (14 primary, 68 secondary) teams registered to participate
in this discipline in 2016.

Like rescue, RoboCup Junior dance also has three sub-categories; primary,
secondary and open, with similar age restrictions. This category leaves many
open-ended opportunities and flexibility that allow students to explore and
experiment with different implementations for their performance. This openness
makes it somewhat further challenging when compared to the rescue discipline.
Hence, the number of participants in RoboCup Junior dance is smaller than in
the rescue category. The number of teams participating in each sub-category is
fairly distributed, with approximately 20 teams for primary dance, and 14 teams
for secondary dance, with one team for open dance.

Lastly, in RoboCup Junior soccer, the students are required to build and
program a small robot team to autonomously play soccer. It is essential for the
robots to autonomously adapt to the environment while playing soccer by the
rules. This discipline is the utmost challenging of the disciplines offered at the
local Hunter regional tournament. However, it is also the most rewarding of all
disciplines, as it allows the students to program an autonomous agent, with a
requirement for multivariate control algorithm be used. The other disciplines
can be, but are not necessarily, much simpler. Due to its perceived difficulty,
participation in the soccer discipline has dwindled throughout the history of our
local tournament. RoboCup Junior soccer, like RoboCup Junior rescue, con-
sists of three sub-disciplines; GENII, lightweight, and open. The sub-category of
GENII only allows Lego Mindstorm NXT or EV3 Robots to compete, whereas
lightweight allows modified self-built robots to be used. This includes Arduino
based hardware under a certain weight and size limit. The open sub-discipline
allows any hardware to be used in the build of robots, which could be of any
weight, but within a size limitation. For 2016, we saw the largest cohort, with
18 teams in soccer discipline total (9 GENII, 7 Lightweight, and 2 Open).

3.2 A Case Study

A report released in 2015 by the Australian Industry Group, explains a set of
key recommendations that can be implemented in order to further encourage
school students to study and explore future careers in STEM [2]. A particular
key recommendation highlights the need for teachers and schools to be further
supported in harnessing students’ interest, which is the primary aim of RoboCup
Junior and the number of community partnerships involved. Burgher et al. [3]
suggest that a hands-on and practical approach to education, results in students
becoming more aware of the conceptual theory rather than students being tra-
ditionally educated in the format of lectures and traditional classroom exercises.

RoboCup Junior, Hunter Region, Australia 369

Exploring this suggestion this study has taken the shape of a questionnaire to
current university students (n = 3), who have competed in the tournament in
the past. The purpose of investigating this qualitatively was to understand what
key factors associated with their participation in RoboCup Junior led the stu-
dents to develop a deeper appreciation of STEM and finally resulted in their
decision to pursue a career in STEM. To begin, all participants had indicated
in the questionnaire that they had been encouraged to participate in RoboCup
Junior by their schools and teachers. This exemplifies how critical and significant
partnerships formed between the organising committee and schools are. Three
prevalent themes in the responses consisted of the following areas; Problem solv-
ing, Conceptual thinking and Rewarding.

Problem Solving: Responses indicated that students had found the nature of
the problems presented in RoboCup Junior to be of a “broad nature”, which
provided further incentive to aid the design of a solution they were presented
with during the competition. A critical skill that has been cited is that students
had to assess the abstract problem independently which leads into the second
theme.

Conceptual Thinking: In alignment with Burgher et al. [3] RoboCup Junior being
a practical activity, allowed students to gain an additional direct approach to
conceptual learning. Results from the questionnaire indicated that the critical
skills gained were of a separate nature to a school curriculum. Students also indi-
cated that open-ended problems allowed them to focus on concepts rather than
on textbook knowledge. Students also suggested that as a result of it being sep-
arate from a school curriculum it allowed focus to bridge gaps between abstract
and practical nature.

Rewards: Within RoboCup Junior, students are encouraged to use technology
to solve a given problem. The nature of responses to the questionnaires indicates
that participants find the solutions to be the most rewarding and therefore one
of the most encouraging aspects. As STEM is centrally focused around problem
solving, students who experienced this during the competition found it further
encouraging to seek employment within a career that offers that same sense of
reward for solving a broad problem.

4 Discussion: Partnerships

The future of STEM in the Hunter region is deemed important by many STEM-
related stakeholders of the local region. Several factors that have contributed to
the success of the tournament are associated with the partnerships that have
been developed with key stakeholders in the period 2012–2017. Some of these
key relationships and their impact will be discussed in the following sub-sections.

370 A. S. W. Wong et al.

4.1 The University of Newcastle, Faculty of Engineering and Built
Environment

The Faculty of Engineering and Built Environment of the University of Newcastle
has continuously been the main stakeholder of RoboCup Junior in the Hunter
Region since the project’s re-inception in 2012. With the university acting as
the host, the competition is held on campus at the university’s gymnasium, The
Forum. The university is also the key supplier of human resources to organise
and manage the competition. The faculty has supported the competition with
expertise in management, in the form of faculty administrative staff. The faculty
manages aspects such as registrations, budget, and covered the majority of costs
to run the competition.

Technical aspects of the tournament were administered by members affili-
ated with the NUbots, the Newcastle University RoboCup team. The NUbots
are a senior RoboCup team and comprise several university students and aca-
demics [1]. They competed in the Kidsize Humanoid League, and now in 2018,
the TeenSize Humanoid League at RoboCup. They are part of the Newcastle
Robotics Laboratory, situated in the Faculty of Engineering and Built Environ-
ment. The NUbots have participated in RoboCup since 2002. They became world
champions in the Standard Platform League using the Aldebaran NAO Robots,
in 2008, and were world champions in the 4-Four-Legged League in 2006 using
the Sony AIBO robots. This internationally well-recognised team brings over a
decade of robotics experience to the local RoboCup Junior Hunter region com-
petition. NUbot members are members of the committee, deliver workshops,
and play a crucial role on the Hunter Region competition day in roles such
as technical refereeing and judging. Over the past decade, the faculty has had
a strong interest in community engagement. With a particular interest in low
social-economical-status areas, the faculty has deployed intensive training pro-
grams and funding for robotic kits at schools in areas such as, Raymond Terrace
in Port Stephens, NSW.

4.2 Regional Development Australia (RDA)
Hunter – Manufacturing Engineering (ME) Program

RDA – Hunter’s ME Program has been a highly successful STEM outreach
program that has delivered tangible outcomes in terms of student uptake of
STEM-based subjects in upper secondary schools [11]. The ME Program in the
Hunter region has supported running of the RoboCup competition whenever
possible during 2012–2014 and 2016.

In addition to supporting RoboCup Junior, the ME Program actively sup-
ports all aspects of STEM in the Hunter and has produced an innovative school
curriculum which integrates the silos of STEM into a Year 9 and 10 elective sub-
ject (iSTEM), which was endorsed by BOSTES NSW in 2012. In 2017, there were
over 100 schools across NSW teaching iSTEM, which includes robotics programs
in a standard curriculum, which also includes RoboCup Junior preparation. As
a result of the broader ME Program funding for local schools, it has delivered a

RoboCup Junior, Hunter Region, Australia 371

substantial quantity of STEM equipment and training (e.g. professional learning
for teachers and through the support of Robogals for schools). The hardware
provided includes 3D printers, and of course, robotic kits that could be used as
part of the RoboCup Junior competition. The 2016 ME Program has included a
caveat for any school receiving Lego EV3 robots that they must compete in the
RoboCup Junior, Hunter region competition. During 2016, there was a signifi-
cant increase in the number of schools that received robotic kits as part of the
ME program. During 2015–2016, over one hundred EV3 robots were provided to
22 local schools. As a consequence, there was a significant increase in registered
participants for the local tournament in 2016.

4.3 Robogals Newcastle Initiative

Robogals is an international initiative aimed at promoting gender equality in the
fields of STEM through the use of robots and robotic education. Volunteers of
the initiative consistently visit different schools and perform their robots at local
public events. In addition, they offer free short beginner classes in robotics in
using the Lego NXT and EV3 Robots in many school classes. The local chapter
of Robogals in the Hunter region is no exception. It consists of many enthu-
siastic individuals, who are always ready to assist and share when required.
The local chapter of Robogals initiative has worked closely with the RoboCup
Junior Hunter Region Competition, since the inception of the local chapter in
2013. Robogals have recently signed a Memorandum of Understanding with the
ME Program and BAE Systems Williamtown and have been working with ME
Program high school and their feeder primary schools. The ME Program also
provided 10 EV3 Robots to complement their fleet of NXT units. Volunteers
of Robogals have sat on the organising committee for RoboCup Junior, Hunter
region, and have also assisted at the events with judging, and holding work-
shops on the competitions behalf while the competition was running. In addition,
training material used to teach classes was shared between RoboCup Junior and
Robogals, so that Robogals could concentrate on their goal to achieve gender
equality in the fields of STEM. The Robogals initiative in the Hunter region is
growing successfully. They have repeatedly reported that there are more schools
on their waiting list then they can handle. The result of this partnership, and
its growing success, can be seen in the increased female to male ratios (approx-
imately 24% in Fig. 3). It shows the number of females is relatively higher at
RoboCup Junior when compared to the number of females enrolled in an engi-
neering course at a later stage, e.g., at university level.

4.4 Tribotix

Tribotix is a local robotics company in the Hunter region that sells and builds
various robots, mostly for educational purposes. It has a strong interest in the
success of RoboCup Junior. The director of Tribotix has personally been involved
with the RoboCup Junior since its inception and has also mentored teams in
local schools, using a different style of robots than the standard Lego platform.

372 A. S. W. Wong et al.

Tribotix also partners with the national RoboCup Junior Australia committee
in the development of state-of-the-art robotic educational kits. This includes,
e.g., the DARwIn-MINI, for future use in a possible new Rescue league and a
small humanoid league for RoboCup Junior. As more students start earlier with
the competition, it would not be too long before these advancing students seek
knowledge, information, and new hardware to fulfil their requirements. Tribotix
has been a competent partner and helpful supplier throughout all years of the
competition.

4.5 Community Sponsorship and Membership

Community support was vital for running the event. Support was supplied in
terms of funding obtained from community grants, such as Orica (2014), AGL
(2015), Newcastle Coal Infrastructure Group (NCIG) (2015), Newcastle City
Council (2016), and the Kirby Foundation (2017). Without this funding, the
competition itself could not have happened, and therefore no success could have
been achieved. Members of the general community represented by teachers and
parents of the participants were involved in all aspects of organising the com-
petition. The success of the students comes directly from interacting with their
mentors, some of which advise and attend monthly organising meetings which
allow us to hear feedback and to incorporate and implement suggestions to make
the competition run smoothly. Members of the community are an important part
of the Hunter Region RoboCup Junior organising committee and have steered
the competition to its current successful state. We acknowledge Mr. Jason Flood,
Chair of Local Committee (all years, excluding 2014), for his commitment and
extraordinary effort that added to the project’s success.

5 Conclusion

With decreasing levels of participation in mathematics and science within Aus-
tralian schools, winning students’ interest in the fields of STEM has become
an uphill battle. Nonetheless, for the local region of the Hunter, the RoboCup
Junior competition gained outstanding success. The partnership of RoboCup
Junior Hunter Region with the University of Newcastle, and other key stake-
holders such as the RDA Hunter’s ME program, stands as a project that will
transform the landscape for STEM education in the future. Success of the project
to this point is reflected by the increasing number of student participants, a
growing geographical distribution, and an improvement of gender balance. In
addition, qualitative evidence of the positive influence on students participating
in RoboCup Junior explains what impact the competition can play on students’
path to a STEM career.

RoboCup Junior, Hunter Region, Australia 373

References

1. Amos, M., et al.: The NuBots team description paper 2018, February
2018. https://www.robocuphumanoid.org/qualification/2018/TeenSize/NUbots/
tdp.pdf. Accessed 23 Mar 2018

2. Australian Industry Group: Progressing the skills of stem education (2015).
http://cdn.aigroup.com.au/Reports/2015/14571 STEM Skills Report Final -.
pdf. Accessed 23 Mar 2018

3. Burgher, J.K., Finkel, D., Adesope, O., Van Wie, B.: Implementation of a mod-
ular hands-on learning pedagogy: student attitudes in a fluid mechanics and heat
transfer course. J. STEM Educ.: Innov. Res. 16(4), 44 (2015)

4. Cessnock City Council: Youth unemployment symposium discussion paper. In: The
Hunter Valley Youth Unemployment Symposium, pp. 1–16. Cessnock City Council,
Kurri Kurri (2015)

5. Commonwealth of Australia: The Agenda: National Innovation and Science Agenda
(2016). http://www.innovation.gov.au/page/agenda. Accessed 23 Mar 2018

6. Engineers Australia: UNSW aims to boost female participation in engineer-
ing (2018). https://www.engineersaustralia.org.au/portal/news/unsw-aims-boost-
female-participation-engineering-0. Accessed 23 Mar 2018

7. Hunter Business Review: Newcastle smart city initiative on track. Newcastle Smart
City Initiative on track—Hunter Business Review, May 2016. http://www.hbrmag.
com.au/article/read/newcastle-smart-city-initiative-on-track-1974

8. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
RoboCup: a challenge problem for AI. AI Mag. 18(1), 73–85 (1997). https://doi.
org/10.1609/aimag.v18i1.1276

9. Michou, A., Vansteenkiste, M., Mouratidis, A., Lens, W.: Enriching the hierarchical
model of achievement motivation: autonomous and controlling reasons underlying
achievement goals. Br. J. Educ. Psychol. 84(4), 650–666 (2014). https://doi.org/
10.1111/bjep.12055

10. RoboCup Junior, Australia: Home: RoboCup Junior Australia (2018). http://
www.robocupjunior.org.au/. Accessed 23 Mar 2018

11. Sleap, S.: Advanced manufacturing schools pathways program hunter region new
south wales. In: 8th Biennial International Conference on Technology Education
Research, vol. 2, Sydney, Australia (2014)

12. Veloso, M., Stone, P.: Video: RoboCup robot soccer history 1997–2011. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
October 2012. https://doi.org/10.1109/iros.2012.6386302

13. Wigfield, A., Meece, J.L.: Math anxiety in elementary and secondary school stu-
dents. J. Educ. Psychol. 80(2), 210 (1988)

https://www.robocuphumanoid.org/qualification/2018/TeenSize/NUbots/tdp.pdf
https://www.robocuphumanoid.org/qualification/2018/TeenSize/NUbots/tdp.pdf
http://cdn.aigroup.com.au/Reports/2015/14571_STEM_Skills_Report_Final_-.pdf
http://cdn.aigroup.com.au/Reports/2015/14571_STEM_Skills_Report_Final_-.pdf
http://www.innovation.gov.au/page/agenda
https://www.engineersaustralia.org.au/portal/news/unsw-aims-boost-female-participation-engineering-0
https://www.engineersaustralia.org.au/portal/news/unsw-aims-boost-female-participation-engineering-0
http://www.hbrmag.com.au/article/read/newcastle-smart-city-initiative-on-track-1974
http://www.hbrmag.com.au/article/read/newcastle-smart-city-initiative-on-track-1974
https://doi.org/10.1609/aimag.v18i1.1276
https://doi.org/10.1609/aimag.v18i1.1276
https://doi.org/10.1111/bjep.12055
https://doi.org/10.1111/bjep.12055
http://www.robocupjunior.org.au/
http://www.robocupjunior.org.au/
https://doi.org/10.1109/iros.2012.6386302

Distributed Circumnavigation Control
with Dynamic Spacing

for a Heterogeneous Multi-robot System

Weijia Yao(B), Sha Luo, Huimin Lu, and Junhao Xiao

Department of Automation, National University of Defense Technology,
Changsha, China

weijia.yao.nudt@gmail.com, lhmnew@nudt.edu.cn

Abstract. Circumnavigation control is useful in real-world applications
such as entrapping a hostile target. In this paper, we consider a heteroge-
neous multi-robot system where robots have different physical properties,
such as maximum movement speeds. Instead of equal-spacing which is
assumed in many existing studies, dynamic spacing according to robots’
properties is proposed in this paper. For this purpose, two new concepts
- utility and formation guideline - are presented. Then a distributed cir-
cumnavigation control algorithm based on utilities and formation guide-
lines is designed for any number of mobile robots from random 3D posi-
tions to circumnavigate a target. Theoretical analysis and experimental
results are provided to prove the stability and effectiveness of the pro-
posed control algorithm.

1 Introduction

One of the most prominent research topics on distributed multi-robot system is
the formation control problem. Significant efforts have been made on the circular
formation control and circumnavigation control problems. In circular formation
control problem, robots remain in their positions after the formation is generated,
while in circumnavigation control problem, they still encircle around the target.
In this sense, circular formation control could be regarded as a special case of
circumnavigation control when the circumnavigation speed equals to zero.

There are already many studies on circumnavigation control (or circular for-
mation control) problems. Most of the existing studies only consider the case
where robots are distributed evenly on the formation (i.e., equal spacing), such
as [3,7,14]. In addition, the control algorithms proposed in these studies are
only applicable on the 2D plane. Nevertheless, [1] proposes algorithms which are
still effective in 3D space. The formation spacing, however, is fixed and equal.
Although this is effective for a homogeneous multi-robot system, it may not be
sufficient for a heterogeneous one where robots have different properties, such as
maximum movement speeds. [9] and [10] propose a distributed control law for a
multi-robot system to form a circular formation with any desired spacing among
robots. However, it assumes that the robots are placed initially on a prescribed
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 374–386, 2019.
https://doi.org/10.1007/978-3-030-27544-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_31

Distributed Circumnavigation Control with Dynamic Spacing 375

circle and the control algorithm is not applicable in the 3D space. Another major
disadvantage is that the desired spacing, which is a global quantity, should be
specified for each robot beforehand. If the specified spacing does not sum up to
2π, or if robots are informed of inconsistent specified spacing, they will form
an erroneous formation. Moreover, to the best of our knowledge, there are no
studies concerning dynamic spacing for a heterogeneous multi-robot system.

In this study, we suppose that mobile robots are heterogeneous in terms of
their kinematics abilities, such as maximum locomotion speeds, etc. In a scenario
where these mobile robots need to entrap a hostile target, their inter-robot spac-
ing should be different for better performance; those robots with lower mobility
are supposed to gather together with smaller spacing than those with higher
mobility, so the probability for the target to flee away from the formation is
lower. We also consider the deterioration of individual performance due to phys-
ical worn-out or damage. Therefore, their spacing should be varied in a dynamic
way during the circumnavigation process. Based on this, the goal of this paper
is to propose a new distributed circumnavigation control algorithm which is able
to control a group of heterogeneous mobile robots from any initial positions to
circumnavigate a target with dynamic spacing in the 3D space.

The main contribution of this work is twofold. First, this paper proposes the
concept of utility and formation guideline. Based on these two new concepts, we
design a distributed circumnavigation control algorithm which enables robots
to adjust their spacing dynamically according to the local variations of their
utilities; a pre-specified desired spacing is not necessary (but it is necessary for
studies such as [1,9,10]). The control algorithm is distributed and applicable for
a heterogeneous multi-robot system of arbitrary size. Second, the distributed
control algorithm does not require robots to be placed initially on a prescribed
circular trajectory (but it is required in [9,10]). Their initial positions can be
arbitrarily chosen in the 3D space rather than being restricted on a 2D plane
(which is the case in [9,10]). In addition, the control algorithm can respond
effectively to the situation where robots quit or join the circumnavigation process
(but it is not studied in much literature such as [3,8–10]).

The remainder of this paper is organized as follows. Section 2 introduces the
circumnavigation control problem based on utilities and derives its correspond-
ing mathematical formulation. Section 3 proposes the circumnavigation control
algorithm. In Sect. 4, simulation and real-robot experiments are performed and
results are analysed. Finally, Sect. 5 concludes the paper and summarizes the
future work.

2 Problem Formulation

The research question is that a group of n (n ≥ 2) mobile robots, denoted by
ri, i = 1, ... , n, encircle a target in 3D space with dynamic spacing on a circular
formation. Note that ri is only used to represent the ith robot for convenience
of narration; it does not correspond to any physical quantities. Suppose each
mobile robot is modelled by a 3D kinematic point:

376 W. Yao et al.

Fig. 1. The body reference
frame with the target S as the
origin.

Fig. 2. Robots’ projec-
tions and the target S
on the XSY plane.

Fig. 3. The interpretation
of the formation guideline.

ṗi(t) = ui(t), i = 1, ... , n, (1)

where ui(t) is the control input to the robot ri and pi(t) ∈ R
3 is its position

in the world reference frame W. In this problem, robots are required to main-
tain on the same plane with the encircled target which is modelled by another
kinematic point. Therefore, a (target) body reference frame B centred at the
target S is introduced (see Fig. 1). In addition, the cylindrical coordinate sys-
tem is preferred to the commonly used Cartesian coordinate system since the
former itself embodies three elements of interest: the distance between the pro-
jection of the robot on the XSY plane to the target (ρ), the height relative to
the XSY plane (z) and the angle between the X-axis and the line joining the
projection of the robot on the XSY plane with the target (ϕ). The cylindrical
coordinates for ri is denoted by qi = (ρi, ϕi, zi)T (see Fig. 1). To relate the cylin-
drical coordinates with the Cartesian coordinates, a vector function is defined
as q(p) = (ρ(p), ϕ(p), z(p))T , where p ∈ R

3 is a generic vector with components
px, py, pz. ρ(p) =

√
p2x + p2y, ϕ(p) = tan−1(py/px) and z(p) = pz. Note that

ϕ ∈ [0, 2π). The Jacobian matrix of the vector function will be used later, which

is J = ∂q
∂pT =

⎡
⎢⎣

px√
p2
x+p2

y

py√
p2
x+p2

y

0
−py

p2
x+p2

y

px

p2
x+p2

y
0

0 0 1

⎤
⎥⎦ . For better analysis, we label the robots in

the counter-clockwise direction according to their initial (angular) positions (ϕi)
in B as shown in Fig. 2. Note that the subscript i− and i+ represent the indices
of the neighboring robots of ri in the clockwise and counter-clockwise direction
respectively. Especially, if i = n, i+ = 1, and if i = 1, i− = n. Δi > 0 represents
the difference between the angular positions of ri+ and that of ri. In particular,

Δi =

{
ϕi+ − ϕi, i = 1, . . . , n − 1,

ϕ1 − ϕn + 2π, i = n.
(2)

Also note that
∑n

i=1 Δi = 2π,

Distributed Circumnavigation Control with Dynamic Spacing 377

Before giving the definition of the circumnavigation problem with dynamic
spacing, we propose the concept of utility.

Definition 1 (Utility). In a heterogeneous multi-robot system, given different
kinds of robots, a robot’s utility μ(t) ≥ 0 is determined by a given criterion (such
as its maximum movement speed). The utility reflects the weight of the robot in
the circumnavigation process at time t.

For example, suppose a robot’s maximum movement speed is the criterion.
Let μi(t) = vmi(t)

vM
, i = 1, . . . , n, where vmi(t) is the maximum movement speed

of ri and vM is the possible greatest movement speed in the heterogeneous
multi-robot system. Then μi(t) ∈ [0, 1], i = 1, . . . , n. When μi(t) = 0, the
robot ri cannot continue the circumnavigation process with other robots. In this
case, its neighboring robots will neglect its role in the circumnavigation process.
μi(t) will increase or decrease due to the enhancement or damage of the robot’s
locomotion capabilities. To explain directly how utilities are utilized to enable
dynamic spacing among robots, we simply regard the utility of a robot to be
proportional to its maximum movement speed. For simplicity of writing, the
symbol t is neglected from μ unless it causes confusion. The circumnavigation
control problem based on utilities is defined as follows:

Definition 2 (Circumnavigation Control Problem Based on Utilities).
In a heterogeneous multi-robot system composed of n (n ≥ 2) mobile robots, each
of the robot’s dynamics are modelled by (1). Suppose fi : Rn+1 → (0, 2π), i =
1, . . . , n, is a smooth function of time and the utilities of robots, which maps util-
ities to the final holistic formation spacing. Assume lim

t→∞ fi(t, μ1, . . . , μn) exists,
the circumnavigation control problem based on utilities is to seek control laws
satisfying the following asymptotic conditions:

lim
t→∞ ρi(t) = ρ∗ (3)

lim
t→∞ Δi(t) = lim

t→∞ fi (4)

lim
t→∞ ϕ̇i(t) = ω∗ (5)

lim
t→∞ zi(t) = z∗ (6)

Here, μi > 0, ρ∗ > 0, ω∗ ∈ R and z∗ ∈ R. ρ∗, ω∗ and z∗ denote the circumnav-
igation radius, the angular speed and the circumnavigation height respectively.

In this paper, it is required that all robots and the target remain in the same
plane in the end. Therefore, the default value of z∗ is 0. However, z∗ can be differ-
ent for different robots. Equation (4) manifests that the final formation spacing
is not specified manually as proposed in [9] or [13], but instead, it is determined
by the fi function, which will be referred to as f function for simplicity. Note
that fi function depends on the utilities of other robots instead of calculating by
each robot alone. The advantage of eliciting the f function is that the spacing

378 W. Yao et al.

among robots can be dynamically adjusted corresponding to the variations of
robots’ utilities.

The expression of the f function is determined by a formation guideline.
It is proposed under specific physics background representing the relationship
between the utilities of robots and the final formation spacing. In this paper, we
suppose that multiple heterogeneous robots circumnavigate a target and try to
prevent it from fleeing. In Fig. 3, four robots r1, . . . , r4 rotate around a target
denoted by O. Suppose that the target is intelligent enough to determine the
best fleeing points denoted by A, B, C and D in the figure. Obviously, the best
fleeing points are related to the utility (i.e., the maximum movement speeds) of
robots. The position of A, for instance, is calculated by ∠AOr2 = μ2

μ1+μ2
. We

also suppose that the probability of capturing the target by a robot is inversely
proportional to the time spent on moving from its initial position along the
circular trajectory at its maximum speed to the best fleeing point. Therefore,
the formation guideline can be defined as

Formation Guideline 1. In the final circumnavigation formation formed by
robots, when the target tries to escape via any of the best fleeing point, the two
robots adjacent to the best fleeing point have the same probability of capturing
the target.

To understand the above formation guideline, taking Fig. 3 for example, it
means the travelling time for r1 and r2 to arrive at the best fleeing point A
along the circular trajectory at their maximum speeds (i.e., μ1 and μ2 resp.)
is the same, or the travelling time for r2 to arrive at A or B along the circular
trajectory at its maximum speed (i.e., μ2) is identical, and hence, the probability
of capturing the target is equal. Following this, it can be derived that μi

μi+μi+
Δi =

μi

μi+μi−
Δi−. According to this equation, the relationship between the final desired

formation spacing and the utilities is Δ1 : Δ2 : · · · : Δn = (μ1 + μ2) : (μ2 +
μ3) : · · · : (μn + μ1). Therefore, given μ1, . . . , μn, the formation spacing can be
determined, and the f function is expressed as follows:

fi(t, μ1, . . . , μn) =
μi + μi+∑n

k=1 μk
π. (7)

Other formation guidelines can be similarly defined1.

Remark 1. Note that formation guidelines only reflect the relationship between
the utilities of robots and the final formation spacing; it does not determine the
utilities of robots.

3 Utility-Based Circumnavigation Control Algorithm

First we define a rotational matrix Rb, which is the representation of the body
reference frame B with respect to the world reference frame W. Therefore, the
1 Another example of the formation guideline can be found in the full version http://

arxiv.org/abs/1805.05395.

http://arxiv.org/abs/1805.05395
http://arxiv.org/abs/1805.05395

Distributed Circumnavigation Control with Dynamic Spacing 379

following equation calculates the cylindrical coordinates of ri in the frame B: qi =
q(RT

b (pi−pb)), where pi and pb are the Cartesian coordinates of ri and the target
in the frame W respectively. Then the derivative of qi is the dynamics of robots
in the cylindrical coordinates, which is q̇i = Ji[ṘT

b (pi −pb)+RT
b (ṗi − ṗb)], where

Ji is the Jacobian matrix as shown in Sect. 2, i.e., Ji = ∂q
∂pT

∣∣∣∣p = RT
b (pi − pb)

.

Note that det(J) = 1√
p2
x+p2

y

as long as p2x + p2y �= 0. This means Ji is invertible

as long as the distance between ri and the target is non-zero. This condition can
always be guaranteed since the initial positions of the robots and the target do
not coincide, and by designing appropriate control algorithms, the distance can
be guaranteed to be non-zero all the time. By letting

ui = ṗi = ṗb + Rb(J−1
i vi − ṘT

b (pi − pb)), (8)

we can switch our focus to the new control input in the cylindrical coordinates
vi = q̇i = (ρ̇i, ϕ̇i, żi)T [1]. The advantage of transforming to this control input is
that we can control ρi, ϕi and zi separately, which are the three main variables
in the circumnavigation problem.
Notations. For positive integers m and n, Mn and Mm×n are a set of all n × n
and m×n real matrices. If all the entries in a matrix is nonnegative, this matrix is
called nonnegative. We denote Id as the d×d identity matrix. 1 and 0 are vectors
of all 1’s or 0’s of suitable dimensions respectively. The underlying directed graph
(or digraph) of a nonnegative matrix M ∈ Mn, denoted by G(M), is the directed
graph with the vertex set {vi}, i ∈ {1, ..., n}, such that there is a directed edge
in G(M) from vj to vi if and only if mij �= 0. A directed graph is called strongly
connected if for every pair of vertices, there is a directed path between them [4].
The following is a preliminary result related to any strongly connected digraph.

Lemma 1 (Theorem 3 of [6]). Assume G is a strongly connected digraph
with Laplacian L satisfying Lwr = 0, wT

l L = 0 and wT
l wr = 1. Then R =

lim
t→∞ exp(−Lt) = wrw

T
l ∈ Mn.

Theorem 1. Consider a multi-robot system with robot dynamics described by
(1) and (8), by introducing the control input vi = q̇i = (ρ̇i, ϕ̇i, żi)T into (8),
where

ρ̇i = kρ(ρ∗ − ρi), (9)
żi = −kzzi, (10)
ϕ̇i = ω∗ + kϕ(ϕ̄i − ϕi). (11)

Note that kρ, kz and kϕ are positive gains, and

ϕ̄i =

{
ϕi− + μi−+μi

μi++2μi+μi−
(Δi + Δi−), i = 2, 3, . . . , n,

ϕi− + μi−+μi

μi++2μi+μi−
(Δi + Δi−) − 2π, i = 1,

(12)

380 W. Yao et al.

where μi is the utility of the robot ri and it is piecewise constant. If the f function
is shown as (7) (Formation Guideline 1), the circumnavigation control problem
based on utilities encoded by (3), (4), (5) and (6) can be solved with exponential
convergence speed.

Proof. It is obvious that (9) and (10) do not rely on the states of other robots,
and they are basically P control laws with reference input ρ∗ and 0 respectively.
So according to the classical control theory, ρi and zi will converge exponentially
to ρ∗ and 0 respectively.

Since μi, i = 1, . . . , n, is piecewise constant, it is obvious that lim
t→∞ fi exists.

We define ϕ̄ = [ϕ̄1 ... ϕ̄n]T and ϕ = [ϕ1 ... ϕn]T , so (11) and (12) can be written
into compact forms respectively as follows:

ϕ̇ = ω∗1 + kϕ(ϕ̄ − ϕ), (13)

ϕ̄ = Aϕ + b, (14)

A =

⎡
⎢⎢⎢⎢⎣

0 μn+μ1
μ2+2μ1+μn

0 . . . 0 0 μ1+μ2
μ2+2μ1+μn

μ2+μ3
μ3+2μ2+μ1

0 μ1+μ2
μ3+2μ2+μ1

. . . 0 0 0
...

...
...

...
...

...
...

μn−1+μn

μ1+2μn+μn−1
0 0 . . . 0 μn+μ1

μ1+2μn+μn−1
0

⎤
⎥⎥⎥⎥⎦

(15)

where A ∈ Mn is shown as (15), and b = 2π
[

−(μ1+μ2)
μ2+2μ1+μn

0 . . . 0 μn−1+μn

μ1+2μn+μn−1

]T

.

During each time period where μi is constant, A and b are constant matrix
and vector respectively. Note that matrix A is a row stochastic matrix and
furthermore, it could be considered as the adjacency matrix [4] corresponding to
a weighted directed ring denoted by G(A). It can be readily verified that G(A)
is strongly connected. Next we define the error signal as

eϕ = ϕ̄ − ϕ = (A − In)ϕ + b = −Lpϕ + b, (16)

where Lp = In − A, which is the Laplacian matrix of G(A). Since Lp is constant
at each time period, the derivative of eϕ is ėϕ = −Lpϕ̇. By substituting (13) and
(16) into this equation, we further obtain the error dynamics as

ėϕ = −ω∗Lp1 − kϕLpeϕ = −kϕLpeϕ. (17)

Note that 1 is the right eigenvector associated with the zero eigenvalue of Lp,
so −ω∗Lp1 = 0. The solution to (17) is eϕ(t) = exp(−kϕLpt)eϕ(0). According
to Lemma 1 and also note that kϕ > 0 only affects the convergence speed but
not the convergence value, we have lim

t→∞ eϕ(t) = wrw
T
l eϕ(0), where Lpwr =

0, wT
l Lp = 0 and wT

l wr = 1. By substituting (16) into this equation, we obtain
the following:

lim
t→∞ eϕ(t) = wr(−wT

l Lpϕ + wT
l b) = wT

l bwr. (18)

Distributed Circumnavigation Control with Dynamic Spacing 381

Let wr = 1 and wl = wL∑
wL

, where the ith entry of wL is

⎡
⎣wLi

= (μi+ + 2μi + μi−)
n∏

j=1,j �=i,i−
(μj + μj+)

⎤
⎦ ,

and
∑

wL
=

∑n
i=1 wLi

. It can be easily verified that wT
l and wr are the left and

right eigenvector of the Laplacian matrix Lp associated with the zero eigen-
value respectively, and wT

l wr = 1. Therefore, (18) becomes lim
t→∞ eϕ(t) = 0, or

lim
t→∞ ϕ(t) = lim

t→∞ ϕ̄(t). According to (13), the circumnavigation speed of each
robot converges to the desired angular speed ω∗. In addition, under this condi-
tion, ϕ̄i is replaced by ϕi in (12) and therefore, for robots with indices i = 2, ..., n,
the equation ϕi = ϕi− + μi−+μi

μi++2μi+μi−
(Δi +Δi−) further becomes Δi

Δi−
= μi+μi+

μi+μi−
.

This means a sequence of equations Δn

Δn−1
= μn+μ1

μn−1+μn
, ..., Δ2

Δ1
= μ2+μ3

μ1+μ2
. Assuming

Δ1 = k(μ1 + μ2), k �= 0, we have Δi = k(μi + μi+), i = 2, ..., n. According
to

∑n
i=1 Δi = 2π,, it follows that 2k

∑n
i=1 μi = 2π, and hence k = π/

∑n
i=1 μi.

Therefore, Δi = (μi +μi+)π/
∑n

i=1 μi = fi(t, μ1, . . . , μn). So the formation spac-
ing expressed by (4) and (7) can be achieved.

Remark 2. Since (9), (10), (11) and (17) typically admit a linear system, the
convergence is global and exponential. In fact, for the convergence of eϕ, a Lya-
punov function can be defined as V (eϕ) = eT

ϕPeϕ, where P = diag{wl}, so
the global and exponential convergence can also be proved using the Lyapunov
theorem.

Remark 3. In the definition of circumnavigation control problem based on util-
ities, (4) contains the utilities of all robots. However, it can be seen from (12)
that each robot only needs to obtain the utilities of its two neighboring robots.
Moreover, it should be noted that robots do not know what the holistic expected
formation is; the actual formation (or spacing) among robots adapt dynamically
to the variations of the local utilities of neighboring robots. In addition, when
a robot joins or leaves the formation, according to (11) and (12), the spacing
among robots will adjust dynamically through local update of the utilities of
neighboring robots. To sum up, the utility-based circumnavigation control algo-
rithm does not rely on the number of robots, and it is able to dynamically adjust
the formation spacing dependent on the change of utilities.

Remark 4. When μθ = 0, the robot rθ has quitted from the circumnavigation
process, and therefore the communication topology has changed. The change
of communication topology means the indices of the neighboring robots alter
accordingly. When μ2 = 0, for example, the neighboring robots of r3 change
from r2 and r4 to r1 and r4. In this way, the circumnavigation control algorithm
based on utilities can well adapt to the cases where there are local variations on
utilities or where robots join or quit from the formation. The formation spacing
can adjust dynamically based on the selected formation guideline, achieving
distributed formation reconfiguration.

382 W. Yao et al.

Another problem that is worth considering is whether robots preserve their
initial orders during the whole circumnavigation process. For the next theorem,
the definition of a Metzler matrix [5] is given. For a real matrix M = [mij] ∈ Mn,
if all its off-diagonal elements are non-negative, i.e., mij ≥ 0, i �= j, M is a
Metzler matrix.

Theorem 2. During the circumnavigation process, robots always keep their ini-
tial orders in the formation. In other words, Δi(t) > 0, i = 1, . . . , n, for t ≥ 0.

Proof. According to (2), (11) and (12), for i = 1, . . . , n, it follows that

Δ̇i = kϕ

[
μi + μi+

μi∗ + 2μi+ + μi
Δi+ −

(
μi+ + μi∗

μi∗ + 2μi+ + μi

+
μi− + μi

μi+ + 2μi + μi−

)
Δi +

μi + μi+

μi+ + 2μi + μi−
Δi−

]
,

(19)

where i∗ represents (i+)+, which is the index of the second adjacent robot for
the robot ri in the counter-clockwise direction. Let Δ = [Δ1 . . . Δn]T , then (19)
can be rewritten as Δ̇ = kϕMΔΔ, where MΔ is shown in (20).
MΔ =
⎡
⎢⎢⎢⎢⎣

−(μ2+μ3)
μ3+2μ2+μ1

+ −(μn+μ1)
μ2+2μ1+μn

μ1+μ2
μ3+2μ2+μ1

. . . μ1+μ2
μ2+2μ1+μn

μ2+μ3
μ3+2μ2+μ1

−(μ3+μ4)
μ4+2μ3+μ2

+ −(μ1+μ2)
μ3+2μ2+μ1

. . . 0
...

...
...

...
μn+μ1

μ2+2μ1+μn
0 . . . −(μ1+μ2)

μ2+2μ1+μn
+

−(μn−1+μn)

μ1+2μn+μn−1

⎤
⎥⎥⎥⎥⎦
.

(20)
Therefore, the solution of Δ(t) is Δ(t) = exp(kϕMΔt)Δ(0). Since MΔ is a
Metlzer matrix, it has been proved that exp(kϕMΔt) is a non-negative matrix.
In addition, due to Δ(0) > 0, it follows that Δ(t) > 0, t ≥ 0, which means that
robots always keep their initial orders in the formation.

Remark 5. The significance of this theorem is that it provides a preliminary
result for collision avoidance. In other words, if robots are treated as mass points,
then collision will not happen since they always keep their initial orders. For real
robots with geometric shape, given sufficiently large spacing, the collision will
not happen, but this will need further investigation.

4 Experimental Results and Analysis

Although it is claimed that formation guidelines correspond to specific physics
backgrounds, in the experiment, we do not try to reproduce the specific scenar-
ios. This is because the emphasis here is the stability of the circumnavigation
control algorithm based on utilities, and how the global formation spacing reacts
dynamically to the variation of the utilities. In the experiments, robots’ utili-
ties are supposed to be proportional to its maximum movement speed. However,
how the utilities are calculated from the maximum movement speeds is not the

Distributed Circumnavigation Control with Dynamic Spacing 383

interest of the study. Instead, the variation of the utilities are manually specified.
Readers can think of an increase in the utilities as an update of robots’ locomo-
tion capabilities, while the decrease means the deterioration of performance due
to worn-out or damage of robots2.

4.1 Experiment with Soccer Robots

In this experiment, four soccer-playing robots [11,12] are used and Formation
Guideline 1 is adopted. Since the soccer-playing robots have omnidirectional
movement abilities and they can reach any given velocity instantly, their dynam-
ics can be regarded as the first-integrator model given in (1). In addition, an
omnidirectional vision system is equipped on each robot with algorithms for
self-localization and the recognition of a yellow football [2]. The position and
velocity of the robot itself and the position and velocity of the football are
obtained by its own omnidirectional vision system. Moreover, robots are only
allowed to receive information from its neighboring robots and the information
is transmitted using wireless communication.

Fig. 4. The real robot experiment. (a)–(d) illustrate the positions of robots at 4 s
(Stage 1), 19 s (Stage 2), 39 s (Stage 3) and 61 s (Stage 4) respectively. (Color figure
online)

The utilities of robots r1, r3 and r4 remain 20 throughout the whole cir-
cumnavigation process, while the utility of the robot r2 varies according to a
piecewise constant function. That is, μ2 = 1, (0 ≤ t < 15); μ2 = 20, (15 ≤
t < 30); μ2 = 50, (30 ≤ t < 45); μ2 = 0, (t ≥ 45). For convenience, the four
time ranges are denoted by Stage 1, 2, 3 and 4 respectively. Following Formation
Guideline 1, it can be calculated the final expected spacing for the four stages
is [62 62 118 118]T , [90 90 90 90]T , [114 114 66 66]T and [120 120 120]T

(unit: degree) correspondingly. Note that at Stage 4, the robot r2 quits from the
circumnavigation process as its utility becomes zero. In this experiment, robots’
initial positions are randomly chosen. The experiment parameters are ρ∗ = 2 m,
w∗ = 0.5 rad/s, kϕ = 2.5 and kρ = 2.

The circumnavigation process is shown in Fig. 4. It demonstrates the posi-
tions of robots at different stages. The yellow lines connecting each robot’s center

2 The simulation results are illustrated in the full version http://arxiv.org/abs/1805.
05395.

http://arxiv.org/abs/1805.05395
http://arxiv.org/abs/1805.05395

384 W. Yao et al.

Fig. 5. The data plots of the real robot experiment. (Color figure online)

indicate the formation shape. The ball in the middle of the field is the target
to be encircled, which is marked by a red circle. The corresponding data plots
are shown in Fig. 5. Since robots move on the ground, the error plot of −z is
omitted. In Fig. 5d, the red, green, blue and black solid lines connecting the cen-
tres of robots represent the formation shapes at Stage 1, 2, 3 and 4 respectively.
The dashed lines originated from robots are their trajectories. Note that since r2
quits from the formation at Stage 4 (μ2 = 0), the data related to r2 is not plot-
ted after 45 s. The circumnavigation radii, angular speeds and formation spacing
converge to but fluctuate around the desired values at each stage (see Fig. 5a, b
and c respectively). Noticeably, at the last intersection (45 s), the circumnavi-
gation radius and spacing for the robot r1 deviate significantly from the desired
values due to the absence of the robot r2 in the formation, but the variations
diminish rapidly subsequently (see Fig. 5a and c). The robot r4 is hardly affected
as it is not a neighboring robot of r2. In Fig. 5d, the black dot at the center is
the real position of the target and the cluster of pink dots are the perceived
positions of the target by r1. This manifests that information noise increases the
uncertainty of the perceived information. Although there are fluctuations due
to the information noise, the real spacing converges to the expected spacing at
each stage (see Fig. 5c).

Distributed Circumnavigation Control with Dynamic Spacing 385

5 Concluding Remarks and Future Work

This paper proposes a distributed control law for a multi-robot system to realize
circumnavigation process with dynamic spacing based on utilities. Unlike most
of the existing study, in this paper, the spacing is not fixed and equal but they
are dynamic, which is useful if robots are heterogeneous (e.g. with different
kinematics capabilities). The theoretical analysis using graph theory along with
the experiments prove the effectiveness of the proposed circumnavigation control
algorithm based on utilities.

Although Theorem 2 implies that robots will not collide with each other since
their orders are unchanged during the circumnavigation process, this claim is
based on the assumption that robots are considered as mass points. The collision
avoidance problem taking into account the physical dimensions of robots will be
studied in the future.

Acknowledgements. Our work is supported by National Science Foundation of
China (NO. 61503401 and NO. 61773393), and graduate school of National Univer-
sity of Defense Technology.

References

1. Franchi, A., Stegagno, P., Oriolo, G.: Decentralized multi-robot encirclement of
a 3D target with guaranteed collision avoidance. Auton. Robots 40(2), 245–265
(2016)

2. Lu, H., Yang, S., Zhang, H., Zheng, Z.: A robust omnidirectional vision sensor for
soccer robots. Mechatronics 21(2), 373–389 (2011)

3. Marshall, B.J.A., Broucke, M.E., Francis, B.A.: Formation of vehicles in cyclic
pursuit. IEEE Trans. Autom. Control 49(11), 1963–1974 (2015)

4. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, Princeton (2010)

5. Minc, H.: Nonnegative Matrices. Wiley, Hoboken (1988)
6. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with

switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–
1533 (2004)

7. Pavone, M., Frazzoli, E.: Decentralized policies for geometric pattern formation
and path coverage. J. Dyn. Syst. Meas. Control 129(5), 633–643 (2007)

8. Tang, S., Shinzaki, D., Lowe, C.G., Clark, C.M.: Multi-robot control for circumnav-
igation of particle distributions. In: Ani Hsieh, M., Chirikjian, G. (eds.) Distributed
Autonomous Robotic Systems. STAR, vol. 104, pp. 149–162. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55146-8 11

9. Wang, C., Xie, G., Cao, M.: Forming circle formations of anonymous mobile agents
with order preservation. IEEE Trans. Autom. Control 58(12), 3248–3254 (2013)

10. Wang, C., Xie, G., Cao, M.: Controlling anonymous mobile agents with unidirec-
tional locomotion to form formations on a circle. Automatica 50(4), 1100–1108
(2014)

11. Xiong, D., et al.: The design of an intelligent soccer-playing robot. Ind. Robot 43,
91–102 (2016)

https://doi.org/10.1007/978-3-642-55146-8_11

386 W. Yao et al.

12. Yao, W., Dai, W., Xiao, J., Lu, H., Zheng, Z.: A simulation system based on
ROS and Gazebo for RoboCup middle size league. In: 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 54–59. IEEE (2015)

13. Yao, W., Zeng, Z., Wang, X., Lu, H., Zheng, Z.: Distributed encirclement control
with arbitrary spacing for multiple anonymous mobile robots. In: 2017 Chinese
Control Conference (CCC), Dalian, China, July 2017

14. Yu, X., Liu, L.: Distributed circular formation control of ring-networked nonholo-
nomic vehicles. Automatica 68, 92–99 (2016)

Prediction of a Ball Trajectory
for the Humanoid Robots:
A Friction-Based Study

Behnam Yazdankhoo1, Mohammad Navid Shahsavari1,
Soroush Sadeghnejad1(B), and Jacky Baltes2

1 Bio-Inspired System Design Lab, Amirkabir University of Technology
(Tehran Polytechnic), No. 424, Hafez Avenue, P.O. Box 15875-4413 Tehran, Iran

s.sadeghnejad@aut.ac.ir
2 Department of Electrical Engineering, National Taiwan Normal University,

162 Heping E Road Sec. 1, Taipei 10610, Taiwan

Abstract. Recent advances in robotics have made it necessary for robots
to be able to predict actions like humans. This problem is well presented
in international RoboCup competition leagues, especially for humanoid
robots in challenges such as Goal-Kick from Moving Ball. In this paper, we
proposed double exponential smoothing (DES), autoregressive (AR) and
quadratic prediction (QP) as online methods and self-perturbing recur-
sive least squares (SPRLS) as an offline method for prediction of the ball
trajectory on ground. These prediction methods are compared in two
scenarios by applying LuGre friction model. We simulated our proposed
methods by Simmechanics library of MATLAB’s Simulink. By comparing
results using root-mean-square error and normalized root-mean-square
error, we could deduce that methods that were based on predefined mod-
els such as QP performed poorly when the friction deviated from the pre-
sumed model. Whereas numerical methods such as AR could adapt them-
selves to variation much better, depending on the friction force variation
with time. Also offline methods such as SPRLS are good replacements for
online ones when pre-training is possible.

Keywords: Humanoid robots · Ball trajectory prediction ·
LuGre model · Goal-Kick from Moving Ball · Autoregressive ·
Exponential smoothing

1 Introduction

The RoboCup competitions goal for 2050 was started in 1997: a team with fully
autonomous humanoid soccer player robots shall win against the winner of the
world cup [1]. In order to reach this objective, RoboCup competitions are held
every year with incremental steps toward this goal [2,3]. One of the technical
challenges in RoboCup competitions is Goal-Kick from Moving Ball. Figure 1

B. Yazdankhoo and M. N. Shahsavari—Contributed equally to this work.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 387–398, 2019.
https://doi.org/10.1007/978-3-030-27544-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_32&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_32

388 B. Yazdankhoo et al.

Fig. 1. Steps of the RoboCup Goal-Kick from Moving Ball challenge [4].

shows the steps of this challenge; a ball is thrown and the robot should place
itself in the appropriate position and kick the ball.

In order to reach this ability, the robot should be able to predict the ball
trajectory. Prediction is one of the primary abilities of the human. A psychology
study in 1998 showed that a 6-month-old human infant has the ability to predict
the trajectory of the objects [5]. This shows the necessity of the prediction in
humanoid robots in order to act and think like humans.

A research by Seekircher et al. [6] presented an accurate ball tracking using
Extended Kalman Filters in order to implement high level behavior in the
RoboCup 3D soccer simulation scenario. There is considerable number of works
carried out on tracking problem. However, it is different from trajectory predic-
tion. Wang et al. proposed an online intention inference algorithm to predict the
intention of the human before hitting the ball in a ping-pong match between
human and robot [7]. But no algorithm for prediction of ball trajectory is pre-
sented in this work. In [8], a method was presented for catching a thrown ball.
They focused on the trajectory of the robot to catch the ball by using a least
squares method for prediction of the ball trajectory.

Birbach et al. [9] presented a method for estimating position and velocity
of multiple flying balls for the purpose of robotic ball catching. To this end, a
multi-target recursive Bayes filter, the Gaussian Mixture Probability Hypoth-
esis Density filter (GMPHD), fed by a circle detector was used. Finally, they
focused on detections that are likely to lead to a catchable trajectory which
increases robustness. However, their work was an estimation of the ball position.
A predictor based on nearest neighbor regression was presented by Mironov and
Pongratz in [10], which does not require an exact physical model of the motion.
The challenge of such application consists of a high volume of calculations that
are needed to compare the current trajectory with examples from the database.

A research by Baum et al. [11] presented a visual tracking and Extended
Kalman Filter based prediction method for catching a flying ball with a Hand-
Arm-System. In [12], a method was proposed based on probability hypothesis
density (PHD) filtering for predicting the ball trajectory.

These studies were estimating the ball position, either predicting the ball
trajectory with methods that have a huge amount of calculation or not focus-
ing on rolling ball on ground with variant values of the friction. In this paper,

Prediction of a Ball Trajectory for the Humanoid Robots 389

we focused on predicting the soccer ball trajectory rolling on the ground with
different values of the friction compared with the constant value of the friction.
Also, we presented different possible scenarios for friction force and demonstrate
which method is the best solution for each scenario. We will apply all methods to
friction scenarios and demonstrate the best method by using root-mean-square
error (RMSE) and normalized root-mean-square error (NRMSE) as comparison
factors. The main aim of our work is to predict the trajectory of the rolling ball
in order to be kicked towards the goal; however, passing the ball to another robot
and using it for a goalkeeper can be other possible applications.

The rest of the paper consists of 4 sections: Sect. 2 presents our proposed
prediction methods and formulations of them in details. Section 3 contains infor-
mation about the friction model that is used in our research and formulation of
it. Assumptions and parameters of the simulation along with simulation results
are presented in Sect. 4. Finally, in Sect. 5, a summary of our work, conclusions
and directions for future works are presented.

2 Prediction Methods

Ball trajectory prediction could be carried out in two different schemes: online
and offline. We use three methods for online scheme and one method for offline
scheme, although other methods are also available in the literature, for instance
recurrent neural networks [13]. The presented methods are valid while the ball
is moving on the ground, in any direction; however, without loss of generality,
we denote the position by x assuming the ball is moving in X-direction.

2.1 Online Methods

In the online scheme, the trajectory is predicted while the ball is moving, without
any a priori knowledge about the environment, i.e. the physical condition of the
ground is unknown to the robot.

Double Exponential Smoothing Method (DES). In [14], Exponential
Smoothing methods are divided into 15 classes based on trend and seasonal-
ity. Ball position, in our case, has clearly no seasonality, but it does have an
increasing trend. Therefore, we adopt DES as our prediction method here. In
this method, we assume that x is the position of the ball at time t. The predicted
positions based on DES is obtained according to the following relations:

Si = αxi + (1 − α)(Si−1 + bi−1) (1)

bi = γ(Si − Si−1) + (1 − γ)bi−1 (2)

where 0 < α, γ ≤ 1, and x̂ represents predicted position. Also, i = 1, 2, ...,n. Si

and bi are calculated in n steps and are used to derive predicted position, as
follows:

x̂n+m = Sn + mbn (3)

390 B. Yazdankhoo et al.

Where, m = 1, 2, . . . is the number of steps ahead. When 0 ≤ t < T , Eqs. (1)
and (2) are used and the prediction for future positions is during t ≥ T using
Eq. (3), where T is determined based on the desired conditions.

There are different ways of calculating the coefficients α and γ, for instance
in [15] an adaptive approach is described. We used constant values for coeffi-
cients in this work, because the defined problem is rather simplified and thus
constant coefficients suffice. Nevertheless, adaptive prediction which takes pre-
diction updates into account will be one of the important future works we are
pursuing.

Autoregressive Method (AR). An autoregressive process of order p, or
AR(p), is one which estimates the future value of a parameter based on a linear
combination of p previous values of that parameter. An AR(p) process can be
represented according to the following relation,

x̂i+1 = φ1xi + φ2xi−1 + . . . + φpxi−p+1 (4)

where φj , j = 1, 2, . . . ,p, are the process coefficients and x̂i+1 represents the
one-step-ahead predicted position.

Some procedures exist in order to determine the appropriate order p; how-
ever, it has been shown that second derivative of position, i.e. acceleration, can
be represented by a first-order AR model [16]. Therefore, in terms of acceleration,
we can write:

âi+1 = ψai (5)

where a and â represent the actual and predicted accelerations, respectively.
Also, the relation between a and x in discrete space can be represented as:

ai =
xi − 2xi−1 + xi−2

(δt)2
(6)

where δt is the corresponding sample time. Combining (5) and (6), a third-order
AR model is obtained for position.

x̂i+1 = (2 + ψ)xi + (−1 − 2ψ)xi−1 + ψxi−2 (7)

Coefficients of an AR(p) model can be obtained through different methods. A
well-known and efficient method is the Yule-Walker equations [17]. Considering
the notation defined in (4), the Yule-Walker equations can be shown in matrix
form as follows ((8b) is the equivalent form of (8a)).

⎡
⎢⎢⎢⎣

r1
r2
...
rp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r0
r1

r1
r0

r2
r1

· · · rp−2 rp−1

rp−3 rp−2

...
. . .

...
rp−1 rp−2 rp−3 · · · r1 r0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1

φ2

...
φp

⎤
⎥⎥⎥⎦ (8a)

r = RΦ (8b)

Prediction of a Ball Trajectory for the Humanoid Robots 391

In (8a), rk, k = 0, 1, . . . ,p, are the autocorrelation functions which are defined
according to:

rk :=
ck

c0
(9)

where ck are the autocovariance functions which are defined as follows:

ck := E[xixi−k] (10)

where E[.] denotes mathematical expectation. Theoretically, E[xixi−k] should
be computed with infinite number of observations. However, since this is not
possible during an online prediction, the mathematical expectation could be
approximated by proper number of observations (based on the parameter T
explained in the previous section). Also note that for autocovariance function,
we have c−k = ck.

Using (9) and (10), the corresponding matrices r and R in (8a and 8b) can
be obtained and, thus, the matrix of coefficients φ is achieved.

Φ = R−1r (11)

For the acceleration model represented by (5), the single coefficient ψ can be
obtained by using Eqs. (8a and 8b) to (11). Then, substituting the resulted ψ
into (7), the third order model for one-step-ahead position is attained. To predict
position m steps ahead, one should repeat the Eq. (7) m times. For instance, for
xi+m we can write:

x̂i+m = (2 + ψ)x̂i+m−1 + (−1 − 2ψ)x̂i+m−2 + ψx̂i+m−3 (12)

where x̂i+m−1 is the predicted position for m-1 steps ahead, and x̂i+m−2 and
x̂i+m−3 are also defined in a similar manner.

Quadratic Prediction Method (QP). If we consider that the friction is the
only force acting on the ball and it follows Coulomb’s law, a simplified kinetic
model is attained utilizing Newton’s second law.

a =
∑

F

mb
=

−μmbg

mb
= −μg (13)

where a and mb are the acceleration and mass of the ball, respectively, μ is the
coefficient of kinetic friction, which is considered constant,

∑
F represents the

sum of the forces acting on the ball, and g is the gravitational acceleration.
The kinematic equation representing this motion is:

x =
1
2
at2 + v0t + x0 (14)

where v0 and x0 denote the initial velocity and position of the ball, respectively,
and t represents the time.

392 B. Yazdankhoo et al.

According to (13), the acceleration of the ball is constant and, thus, the
position of the ball, defined by (14), represents a quadratic model in terms of
time. Therefore, we can generally write:

x = A1t
2 + A2t + A3 (15)

where A1, A2 and A3 are constants. If we can record three different positions
at three different times at the beginning T seconds of the motion, coefficients
A1, A2 and A3 can be readily used in order to form the equation of motion of
the ball according to (15). Having the equation of motion, we can predict the
position of the ball at each time during the motion for t ≥ T .

2.2 Offline Methods

In offline scheme the ball movement is repeated several times and the robot
records the data received from the movements before the desired movement
begins and learns how to predict the ball trajectory next time that the ball
moves.

Self-Perturbing Recursive Least Squares (SPRLS). RLS is a recursive
algorithm for determining the parameters of the system. Because of high error
of RLS in low variance, we choose SPRLS [18] for predicting the ball position.

Li =
Pi−1Φi

1 + ΦT
i Pi−1Φi

(16)

Pi = Pi−1(I − LiΦ
T
i) + βNINT (λe2i−1)I (17)

θ̂i = θ̂i−1 + Li(yi − ΦT
i θ̂i−1) (18)

where e := y − ŷ is the estimation error with y := θT Φ and ŷ := θ̂T Φ denoting
real and estimated outputs, respectively. Also Φ is vector of input parameters, θ
is vector of estimated parameters, I is identity matrix, β is design coefficient, λ
is sensitivity coefficient, and NINT(.) function is defined as:

NINT (x) :=
{

x x ≥ 0.5
0 0 ≤ x < 0.5

(19)

If we consider that the acceleration is constant, by combination of (13) and
(14) we have:

x = −1
2
μgt2 + v0t + x0 (20)

Hence, we can write

− 2(x − v0t − x0) = μgt2 (21)

Comparison between (21) and y := θT Φ results in:

y = −2(x − v0t − x0) (22)

θT = μg (23)

φ = t2 (24)

Prediction of a Ball Trajectory for the Humanoid Robots 393

Fig. 2. First scenario friction force-
time diagram.

Fig. 3. Second scenario friction force-
time diagram.

3 Friction Model

There are several models of friction to use in simulation. Here we have used
LuGre model [19] because of simplicity and also good accuracy in many cases.
The formulation of this model is:

Ff = σ0z + σ1ż + σ2v

ż = v − σ0|v|
s(v)

z

s(v) = Fc + (Fs − Fc)exp(−(
v

vs
)δvs)

(25)

where Ff is the friction force, σ1 and σ2 are damping coefficients that are related
to the presliding and kinetic friction states, respectively, v is the velocity, the
parameter vs determines how quickly s(v) approaches Fc, Fs = μsmbg and
Fc = μkmbg are static friction force and coulomb friction force, respectively, μs

and μk denote friction coefficients and δvs is the shape factor of Stribeck curve.
We assumed two scenarios with different friction forces in order to investigate

the effect of friction on prediction quality, although many other possible scenarios
exist. As shown in Fig. 2, the friction in first scenario is almost constant over
time. Whereas Fig. 3 shows that it is variant over time in the second scenario.
The common coefficients between two scenarios are (the value for δvs is derived
from [20], while the others are chosen arbitrarily in order to obtain reasonable
friction forces. Also, the mass of the ball is the standard RoboCup ball mass):
mb = 0.425 kg, vs = 0.1 m

s , δvs = 1.
Scenario 1 coefficients are: μs = 0.25, μk = 0.1, σ0 = 30 N

m , σ1 = 2 N s
m , σ2 =

0 Ns
m and scenario 2 coefficients are: μs = 0.15, μk = 0.06, σ0 = 100 N

m , σ1 =
0.5 Ns

m , σ2 = 0.14 N s
m .

394 B. Yazdankhoo et al.

4 Simulation

4.1 Assumptions and Parameters

In our simulation, we assumed T = 0.5 s, initial velocity, v0 = 2 m
s and in order

to compare our prediction methods, we use RMSE and NRMSE which start from
t = T .

RMSE =

√√√√ 1
M

M∑
i=1

(xi − x̂i)2 (26)

NRMSE =
RMSE

xmax − xmin
(27)

x and x̂ are the actual and predicted positions, respectively, and M is the total
number of predicted steps. Also xmax = x(t = tend) where tend denotes the time
at which the ball stops, and xmin = x(t = 0) for offline method and xmin = x(t =
T) for online methods.

We assumed DES method parameters as: α = 0.9, γ = 0.5
For QP method, in order to derive A1, A2, A3 we need three equations. After

T seconds, using positions at t1 = 0, t2 = T
2 and t3 = T and (15) we have three

equations to derive A1, A2, A3 then we have:

A1 =
(t3x0 − t3x1 − t2x0 + t2x2)

t3t2(t3 − t2)

A2 =
−(t23x0 − t23x1 − t22x0 + t22x2)

t3t2(t3 − t2)
A3 = x0

(28)

In SPRLS method, we assumed v0 = 2.5 m
s for training phase and v0 = 2 m

s
for prediction phase. Also, RMSE and NRMSE are calculated from t = 0. Initial
values for SPRLS method are: θ̂0 = 1.962, P0 = 1, e0 = 1 and the parameters
are: λ = 100, β = 30000.

4.2 Simulation Results

We simulated our methods by means of Simmechanics library (second genera-
tion) of MATLAB’s Simulink. Our vision system frequency is 20 Hz and in order
to achieve more real results, we chose this frequency for running the simulation
in MATLAB.

As can be seen in Figs. 4 and 5, the QP method has yielded by far the best
result for scenario 1, where the friction force is almost constant over time. This
fact can be further proved quantitatively by Tables 1 and 2, where the RMSE and
NRMSE are obtained to be 0.0036 m and 0.0034, respectively, for this method.
This is, however, not surprising since the predefined model in QP method is
in great accordance with the friction force which is applied to the ball during
the whole motion in this scenario. Apart from this, the offline SPRLS method

Prediction of a Ball Trajectory for the Humanoid Robots 395

has resulted in a good prediction with an acceptable NRMSE of 0.1913. The
other two online methods, namely AR and DES, showed poorer predictions with
NRMSE of 38.68% and 41.52%, respectively.

For scenario 2, Table 2 indicates that online QP and offline SPRLS still lead
to more accurate predictions. However, from another perspective, the 4239% rise
in the RMSE for QP method from scenario 1 to scenario 2 shows that when the
friction force does not comply with the predefined model in QP, the precision of
this method decreases drastically. Meanwhile, the 45.6% increase in the RMSE
of SPRLS method shows that such a remarkable change has not occurred for
this method. The interesting point in scenario 2 is, however, the 30% reduction
of the RMSE in AR method in comparison with scenario 1, which demonstrates
that this method has adapted itself better to scenario 2. But this is not the case
for DES since its performance has deteriorated in scenario 2.

Looking more closely at Figs. 5 and 7, one can obviously observe that both
AR and DES methods have predicted a linear trajectory for the ball, which
means that the ball will move infinitely and will never stop. The same con-
cept can be interpreted by investigating the relevant mathematical relations
presented in Sect. 2.1. This is, however, not compatible with the physical reality
of the problem. Therefore, it can be deduced that methods which merely rely
on numerical data for prediction often fail to take the physical concepts into
account, and are thus suitable for the situations where little data is available
about the actual circumstances beforehand. These methods can also be utilized
when the prediction is to be carried out not far into the future; linear predictions
can be a good approximation of the curved ball position graph (with respect to
time) dependent on the applied friction force. Of course, great care should be
taken in adopting numerical methods. As discussed in the previous paragraph,
AR method yielded a much better result in scenario 2 (the friction force of
which was depicted in Fig. 3) than DES method. However, for a different form
of friction, the same result is not guaranteed to be attained, which shows the
importance of the physical conditions governing the problem.

Ultimately, it can be concluded that when the physical conditions of the ball
and ground are known to a good extent beforehand, model-based methods such
as online QP are suitable choices for predicting the trajectory of the ball. If, on
the other hand, online predicting is not required and the opportunity for pre-
training exists, offline SPRLS method provides a good chance to estimate the
physical conditions governing the problem and thus to predict the trajectory by
an acceptable accuracy. Moreover, online model-free or numerical methods such
as AR or DES can also provide us with good predictions, but the precision of the
results greatly depend on the variation of the friction force with time (Fig. 6).

396 B. Yazdankhoo et al.

Table 1. Calculated RMSE for all
methods

Scenario1 (m) Scenario2 (m)

DES 0.4405 0.5669

AR 0.4104 0.3154

QP 0.0036 0.1562

SPRLS 0.3650 0.5316

Table 2. Calculated NRMSE for
all methods

Scenario 1 Scenario 2

DES 0.4152 0.5032

AR 0.386 0.2800

QP 0.0034 0.1386

SPRLS 0.1913 0.2688

Fig. 4. Trajectory predicted using
offline method comparing with actual
trajectory in first scenario.

Fig. 5. Trajectory predicted using
online methods comparing with actual
trajectory in first scenario.

Fig. 6. Trajectory predicted using
offline method comparing with actual
trajectory in second scenario.

Fig. 7. Trajectory predicted using
online methods comparing with actual
trajectory in second scenario.

5 Conclusion and Future Works

In this paper, we aimed at predicting the trajectory of the ball for humanoid
robots, which can be used for different goals such as the Goal-Kick from Moving
Ball challenge in Robocup. We simulated two different friction forces and com-
pared three online and one offline methods for this aim. The simulated scenarios
were presented in one direction; however, the equations are all valid while the
motion is completely on the ground.

Prediction of a Ball Trajectory for the Humanoid Robots 397

The results of the simulations indicated that the accuracy of the predic-
tion methods is highly dependent on the frictional condition which governs the
motion. However, we concluded that if the physical conditions are known before
the start of the motion, online model-based methods such QP are good can-
didates, while model-free AR and DES methods could be utilized online when
either little information about motion is available or the time interval of the
prediction is rather small. Offline SPRLS method is also useful when the robot
has the opportunity to be pre-trained.

There are many directions regarding future works. First, these methods
should be implemented on real humanoid robots to predict the ball trajectory in
order to kick, pass or intercept the ball in real-life scenarios, since the explored
friction force scenarios in this paper were only two examples of various possible
ones. Predicting the three-dimensional trajectory of the ball is also of great inter-
est. As another future direction, more realistic and human-like factors can be
taken into account. For instance, the prediction could be updated and improved
as the ball moves nearer to the robot by considering proper adaption laws for
the presented methods. Also other factors which lead to deviation from ideal
circumstances should be considered, such as small obstacles along the path of
the ball, lack of perfect roundness of the ball and air drag.

References

1. Gerndt, R., Seifert, D., Baltes, J.H., Sadeghnejad, S., Behnke, S.: Humanoid robots
in soccer: robots versus humans in RoboCup 2050. IEEE Robot. Autom. Mag. 22,
147–154 (2015). https://doi.org/10.1109/MRA.2015.2448811

2. Baltes, J., Sadeghnejad, S., Seifert, D., Behnke, S.: RoboCup humanoid league rule
developments 2002–2014 and future perspectives. In: Bianchi, R.A.C., Akin, H.L.,
Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp.
649–660. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3 53

3. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS
(LNAI), vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00308-1 28

4. RoboCup Soccer Humanoid League Laws of the Game (2017). Robocup
Humanoid League. http://www.robocuphumanoid.org/wp-content/uploads/
RCHL-2017-final-2.pdf

5. von Hofsten, C., Vishton, P., Spelke, E.S., Feng, Q., Rosander, K.: Predictive action
in infancy: tracking and reaching for moving objects. Cognition 67, 255–285 (1998).
https://doi.org/10.1016/S0010-0277(98)00029-8

6. Seekircher, A., Abeyruwan, S., Visser, U.: Accurate ball tracking with extended
kalman filters as a prerequisite for a high-level behavior with reinforcement learn-
ing. In: The 6th Workshop on Humanoid Soccer Robots at Humanoid Conference,
Bled, Slovenia (2011)

7. Wang, Z., et al.: Probabilistic movement modeling for intention inference in human-
robot interaction. Int. J. Robot. Res. 32, 841–858 (2013). https://doi.org/10.1177/
0278364913478447

https://doi.org/10.1109/MRA.2015.2448811
https://doi.org/10.1007/978-3-319-18615-3_53
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2017-final-2.pdf
http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2017-final-2.pdf
https://doi.org/10.1016/S0010-0277(98)00029-8
https://doi.org/10.1177/0278364913478447
https://doi.org/10.1177/0278364913478447

398 B. Yazdankhoo et al.

8. Nishiwaki, K., Ionno, A., Nagashima, K., Inaba, M., Inoue, H.: The humanoid
Saika that catches a thrown ball. In: 6th IEEE International Workshop on Robot
and Human Communication, Sendai, Japan, pp. 94–99. IEEE (1997). https://doi.
org/10.1109/ROMAN.1997.646959

9. Birbach, O., Frese, U.: Estimation and prediction of multiple flying balls using
probability hypothesis density filtering. In: 2011 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 3426–3433. IEEE (2011).
https://doi.org/10.1109/IROS.2011.6094622

10. Mironov, K., Pongratz, M.: Fast kNN-based prediction for the trajectory of a
thrown body. In: 24th Mediterranean Conference on Control and Automation
(MED), pp. 512–517. IEEE (2016). https://doi.org/10.1109/MED.2016.7536007

11. Bäuml, B., Wimböck, T., Hirzinger, G.: Kinematically optimal catching a fly-
ing ball with a hand-arm-system. In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 2592–2599. IEEE
(2010). https://doi.org/10.1109/IROS.2010.5651175

12. Birbach, O.: Tracking and calibration for a ball catching humanoid robot. Doctoral
thesis, Universität Bremen (2012)

13. Stolzenburg, F., Michael, O., Obst, O.: Predictive neural networks. arXiv preprint
arXiv:180203308 (2018)

14. Gardner Jr., E.S.: Exponential smoothing: the state of the art-part II. Int. J.
Forecast. 22, 637–666 (2006). https://doi.org/10.1016/j.ijforecast.2006.03.005

15. Stakem, F., AlRegib, G.: An adaptive approach to exponential smoothing for CVE
state prediction. In: 2nd International Conference on Immersive Telecommunica-
tions, Berkley, USA, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 141–146 (2009). https://doi.org/10.4108/
ICST.IMMERSCOM2009.6409

16. Sakr, N., Georganas, N.D., Zhao, J., Shen, X.: Motion and force prediction in
haptic media. In: 2007 IEEE International Conference on Multimedia and Expo,
Beijing, China, pp. 2242–2245. IEEE (2007). https://doi.org/10.1109/ICME.2007.
4285132

17. Cheng, B.: Yule-walker equations. Wiley StatsRef: Statistics Reference Online
(2014). https://doi.org/10.1002/9781118445112.stat05549

18. Park, D.-J., Jun, B.-E.: Selfperturbing recursive least squares algorithm with fast
tracking capability. Electron. Lett. 28, 558–559 (1992). https://doi.org/10.1049/
el:19920352

19. Piatkowski, T.: Dahl and LuGre dynamic friction models-the analysis of selected
properties. Mech. Mach. Theory 73, 91–100 (2014). https://doi.org/10.1016/j.
mechmachtheory.2013.10.009

20. Johanastrom, K., Canudas-De-Wit, C.: Revisiting the LuGre friction model. IEEE
Control Syst. 28, 101–114 (2008). https://doi.org/10.1109/MCS.2008.929425

https://doi.org/10.1109/ROMAN.1997.646959
https://doi.org/10.1109/ROMAN.1997.646959
https://doi.org/10.1109/IROS.2011.6094622
https://doi.org/10.1109/MED.2016.7536007
https://doi.org/10.1109/IROS.2010.5651175
http://arxiv.org/abs/180203308
https://doi.org/10.1016/j.ijforecast.2006.03.005
https://doi.org/10.4108/ICST.IMMERSCOM2009.6409
https://doi.org/10.4108/ICST.IMMERSCOM2009.6409
https://doi.org/10.1109/ICME.2007.4285132
https://doi.org/10.1109/ICME.2007.4285132
https://doi.org/10.1002/9781118445112.stat05549
https://doi.org/10.1049/el:19920352
https://doi.org/10.1049/el:19920352
https://doi.org/10.1016/j.mechmachtheory.2013.10.009
https://doi.org/10.1016/j.mechmachtheory.2013.10.009
https://doi.org/10.1109/MCS.2008.929425

Champion Papers

RoboCup SSL 2018 Champion
Team Paper

Zheyuan Huang, Lingyun Chen, Jiacheng Li, Yunkai Wang, Zexi Chen,
Licheng Wen, Jianyang Gu, Peng Hu, and Rong Xiong(B)

Zhejiang University, Zheda Road No.38,
Hangzhou, Zhejiang Province, People’s Republic of China

rxiong@zju.edu.cn

https://zjunlict.cn

Abstract. The Small Size League is one of the important events in
RoboCup Soccer. ZJUNlict got the first place in RoboCup 2018. In
this paper, we introduce the new innovations and development we have
made in the past year. These innovations include the mechanical part
which accounted for most of our incredible goals and software part which
enables us to play the game under a terrible vision situation. We also
purpose an interception prediction algorithm to achieve some skills and
improve our ball possession rate.

Keywords: RoboCup · Dribbler · Vision prediction ·
Interception prediction

1 Introduction

Small Size League (SSL) is an important part of the RoboCup event. It is the
fastest and most intense game in RoboCup’s soccer competitions. ZJUNlict from
Zhejiang University has participated in this League for over ten years since 2004.
In RoboCup competition, we have made great progress and won the champi-
onship place in 2013 and 2014. After getting third place in the following two
years, we won the championship again in RoboCup 2018 in Montreal. The devel-
opment of our hardware system during these years is shown in Table 1. The
FPGA handles both motor control and other tasks such as communication and
motion sensor fusion based on embedded Nios II processor. The micro-controller
STM32F407 was added to take over tasks other than motor control since late
2017. Since 2018, a single micro-controller STM32H743 capable of operation fre-
quency up to 400 MHz combined with five BLDC controller Allegro A3930 [4]
was able to handle all the tasks. This paper is organized as follows: First of all,
the major optimization of our mechanical architecture which accounted for most
of our incredible goals are described in Sect. 2. They are “Touching Point Opti-
mization”, “Damping System Optimization”, and “Dribbler Optimization”. Our
detailed improvements in vision module are described in Sect. 3, which enables
us to play the game under a terrible vision situation. The new interception pre-
diction algorithm to achieve some skills is explained in Sect. 4.
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 401–412, 2019.
https://doi.org/10.1007/978-3-030-27544-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_33&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_33

402 Z. Huang et al.

Table 1. ZJUNlict electrical system configurations

Configuration Since 2012 Since 2017 Since 2018

Microcontroller Cyclone III EP3C25 Cyclone III EP3C25 STM32H743

STM32F407

Driving motors Maxon EC-45 50W

Dribbling motor Maxon EC-16 30W

Encoder US Digital E4T, 500 CPR 1000 CPR

BLDC Driver IR2103S Allegro A3930

Motion sensors Gyroscope Gyroscope, accelerometer, compass

MOSFETs IRFR1205 IRF8313

Wireless IC nRF2401A 2 x nRF24L01+

Kick Charge IC UC3843

2 ZJUNlict New Dribbler Design

2.1 Typical Dribblers and Existing Problems

The small size league robots do not really have foot like human beings. Instead,
they have dribblers. A dribbler is a device that can help dribble and catch
the ball. As shown in Fig. 1, a typical dribbler has the following features. A
shelf connects 2 side plates and the dribbling motor is fixed on one side plate.
Between the 2 side plates is a cylindrical dribbling-bar driven by the dribbling
motor. The whole device has only one degree of freedom of rotation and the
joints are fixed on the robot flame. Usually there is a unidirectional spring-
damping system locates between the shelf and the robot frame to help improve
the stability of dribbling as well as absorbing the energy when catching the ball.
The dribbling-bar driven by the dribbling motor provides torque to make the
ball spin backward when the contact between the ball and dribbling-bar exits so
that the ball can be ‘locked’ by this device in ideal conditions. And the carpet
provides supporting force and frictional force and therefore there are 2 touch
points on the ball and in this paper we called it a 2-touch-point model (Fig. 2).
For the motor control, most teams try to keep the dribbling-bar at a constant
rotational speed when dribbling the ball and therefore it is actually an open
loop control mode for dribbling. Unfortunately, this 2-touch-point dribbler with
unidirectional spring-damping system and passive control mode does not provide
ideal dribbling performances. It is quite easy for the ball to bounce back and
forth when launching the dribbling motor. The device might also not absorb
enough kinetic energy of the moving ball when catching it so it will bounce back
and there occurs a catching failure. Actually it is also hard to greatly improve
its performance by simply changing the material of dribbling-bar, adjusting the
damping and stiffness of the spring-damping system or adjusting the rotational
speed of motor. This structure has natural defects with passive control mode.

RoboCup SSL 2018 Champion Team Paper 403

Fig. 1. Typical Dribbler (1. Unidirec-
tional damper 2. Dribble motor 3. Con-
nect shelf 4. Dribbling-bar 5. Side plate
6. Rotational joint)

Fig. 2. 2-touch-point model

Tigers [4] developed a dribbler with 2 degrees of freedom (Fig. 3). Except for
rotational degrees of freedom, the side plates can slide up and down along two
damped linear guides with screws covered by thick silicon ring, by doing this,
much more kinetic energy will be absorbed by the silicone ring and transferred to
the potential energy of the device when catching the ball. It was approved that
this device worked quite well with catching and dribbling in static conditions.
For example, when the robot stays stilly or just moves back and forth slowly,
catching a ball with coming speed up to 5 m/s is quite easy. But considering the
real competition environment, the condition will not be that idealistic and more
complex movements are needed, indeed. For example, when two robots scramble
for a ball, we want our robot able to turn around while dribbling so that it can
make space for passing. Also when all shot space is blocked by defenders we want
our robot able to do some actions like moving laterally while dribbling to create
space to score. In a word, a stronger dribbler is urgently in need.

Fig. 3. Energy absorbing by creating a dual freedom [4]

2.2 Dribbler Improvements

Considering the purpose above, we devoted ourselves on the dribbler. Firstly, we
adjust the geometry parameters of the device so that the ball can touch the chip

404 Z. Huang et al.

shovel in steady state, which means both carpet and chip shovel can provide
supporting force and frictional force to the ball so we called it a 3-touch-point
model (Fig. 4). Normally the dynamic friction coefficient between the ball-carpet
surface is greater than that of the ball-chip shove surface. Therefore, when the
ball driven by the dribbling-bar moves from the carpet on to the chip shove
surface, there will be a sudden drop of frictional force, and the ball will be
pushed back on the carpet. And once the ball touches the carpet, there will be
a sudden increase of frictional force, the ball will be driven onto the chip shove
again. In this kind of state, the amount of spring compression will not change
much so that the dribbling system will enter a periodical dynamic steady state.
In contrast, with a 2-touch-point system, the friction force will not change much
so the ball will enter much more into the dribbler and there will be a bigger
compression of the spring-damping system. Therefore the ball will also be pushed
back more and totally the bouncing amplitude will be much greater, or even the
ball will bounce off the dribbler. In addition, we found that there will be a hard
contact between the side plates and the baseplate when the dribbler hits the
baseplate. So besides the foam between the shelf and the robot frame, we stick
1.5 mm thick tape between the side plates and baseplate so there will be a soft
contact when the dribbler hits the baseplate. Actually this design makes up a
bidirectional spring-damping system (Fig. 5) and improves the dynamic behavior
of the dribbler. Hopefully it can reduce the bouncing amplitude of the ball when
dribbling as well as absorbing more kinetic energy when catching the ball. To
improve the dribbling performance when the robot rotates or moves laterally,
we also made a dribbling-bar with screw using 3D printing rubber so that it
can provide lateral force to the ball when dribbling as shown in Fig. 5. Another
key point to make this device better is to change the passive rotational speed
control mode to active torque control mode. Instead of keeping the rotational
speed with a constant value, we control the motor torque constant according to
the current feedback. With the innovations above, we create a quite good active
control dribbler.

Fig. 4. 3-touch-point model Fig. 5. New damper (1. Bidirectional
damper 2. Screw dribbling bar)

RoboCup SSL 2018 Champion Team Paper 405

2.3 Tests and Verifications

According to the catching ability tests, the typical 2-touch-point dribbler with
unidirectional spring-damping system could catch a ball with coming speed up to
3m/s and the new 3-touch-point dribbler with bidirectional spring-damping sys-
tem could catch a ball with coming speed up to 8.5m/s. The results were quite
clear that the new dribbler has better dribbling and catching ability. In addition,
we made simple tests to see the effect of screw added on the dribbling bar. The
dribbling motor was launched and after the dribbling entering the steady state,
we made the robot spin around. The rotational acceleration is 20 deg/s2 and the
rotation speed was recorded at the time the ball left the dribbler. This simple
test was carried out 10 times for both smooth dribbling-bar and screw dribbling-
bar, which were made by some same material. As show in Table 2, the average
escape speed of smooth dribbling-bar is 402 deg/s and for the screw dribbling-
bar is 622 deg/s. So it was proved that the design of screw could improve the
dynamic dribbling performance of dribbler.

Table 2. Dynamic dribbling ability comparison between smooth dribbling-bar and
screw dribbling-bar

Dribbling-bar type 1 2 3 4 5 6 7 8 9 10 Average

Smooth dribbling-bar (deg/s) 400 340 380 360 380 420 400 420 400 520 402

Screw dribbling-bar (deg/s) 600 580 580 580 620 680 620 680 640 640 622

3 SSL Vision Solution

3.1 Existing Problems

The existing image recognition system of SSL is shot by cameras (780 × 580
YUV422 60Hz) which suspended about 4 m above the field. After image acquisi-
tion, the vision software provided by SSL official performs color block recognition
progress on the ball (orange) and the color code on the top of each robot. The
software determines the robot’s information (team, id, position and orientation)
based on the color code combination at the top of robot, and recognizes the
position of the ball based on the orange color patch. Finally the robot and ball
information is transmitted to our program for processing in the form of UDP
packets.

As the picture (Fig. 6) shows the basic process of the whole SSL vision system.
This image system has been used in the SSL competition for around ten years.
As the size of the field continues to enlarge, the number of cameras on the field
has also increased from 2 to 8 (in this year’s competition). Using color block
recognition algorithm accordingly will cause the image processed by the graphic
processor to survive the following problems:

406 Z. Huang et al.

Fig. 6. Vision system introduction (Color figure online)

Noise in the Position Information. Taking ball as an example, the official
vision software recognizes a rectangular orange area as a ball. Therefore, even
if the ball itself does not move, the rectangular orange area determined by each
frame might still be different, resulting in a small range of jitter in the position
of the software recognition. Similarly, there is also jitter in the position of the
robot.

Take Fig. 7 as an example. Figure 7.1 is the original image captured by cam-
era. However, as Figs. 7.2 and 7.3 shows, the recognized color block varies from
frame to frame.

Light Interference. The threshold range of various colors in the vision software
needs to manually set, and the difference in light environment will directly affect
the performance of different colors recognition. As a result, the official software
only works properly in a relatively specific light environment (generally a field
lighting with stable brightness). Once the light changes beyond the limit, it needs
to manually set the color threshold again.

Object Missing. Although the camera is overlooking the scene, there will still
be cases where the object is lost in the vision. For example, when the ball is
moving at high speed, the color of the ball captured by the camera will become
lighter and will form a “fading” phenomenon, which causes the camera fails
to recognize the ball. Figure 8 clearly shows the vision output when the ball is
moving at a high speed.

In some cases, when the robot takes the ball or while two robots are com-
peting for the ball, the camera will not be able to capture the ball because the
robot’s body will block the ball, which account for image loss.

Image Recognition Error. In some cases within the game, the person’s skin
color is similar to orange. Therefore the software will recognize a human skin as
a ball, thus increasing the wrong information(Fig. 9). When the robot is located
at the edge of the camera’s coverage, there is a severe image distortion, and the
recognition accuracy of the color code is further reduced, and problems such as
unrecognizable robot or robot direction recognition errors might occur.

RoboCup SSL 2018 Champion Team Paper 407

Tracking from Multiple Overlapping Cameras. For up to eight cameras,
multiple cameras are visible in many areas of the site (maximum of 4). Due to
differences in camera parameters and distortion, the position of the same object
in different cameras is different.

Fig. 7. Ball recognition in two different frame

Fig. 8. Ball recogintion in high velocity Fig. 9. A non-ball object recognize as
a ball

In summary, since the official image recognition software of SSL does not
provide us with images of sufficient accuracy we need, we need to process these
location information. To this end, we have come up with a complete set of vision
solutions.

3.2 Solution Introduction

Our image solution provides a code framework that covers the various special
cases described above, allowing us to perform algorithmic processing for each
situation. After receiving the UDP packet sent by the Graphic Processor, the
program will automatically judge the current image quality and suspicious con-
ditions for subsequent algorithm processing.

Noise Cancellation. For raw data containing noise, we use a Kalman filter
considering noise cancellation.

In order to use the Kalman filter to estimate the internal state of a process
given only a sequence of noisy observations, one must model the process in
accordance with the framework of the Kalman filter. This means specifying the
following matrices:

408 Z. Huang et al.

– Fk, the state-transition model;
– and sometimes Bk, the control-input model, for each time-step, k, as described

below.

The Kalman filter model assumes the true state at time k is evolved from
the state at (k − 1) according to

xk = Fkxk−1 + Bkuk + wk (1)

where Fk is the state transition model which is applied to the previous state xk−1;
Bk is the control-input model which is applied to the control vector uk; wk is
the process noise which is assumed to be drawn from a zero mean multivariate
normal distribution, N , with covariance, Qk : wk ∼ N (0, Qk)

At the same time, because the data noise is effectively eliminated after
Kalman filtering, we can also rely on these data for velocity estimation and
position prediction.

Object Confidence. In order to solve the misjudgment and missed information
of the original image itself, we maintained the confidence of the ball and the robot
on the field.

Po,t = Po,t−1 + P (seen, t) − P (lost, t), 0 ≤ Po ≤ 1 (2)

The above is the mathematical expression of confidence, where:

– Po,t is the confidence of the object o at time t. We set 0 as the initial value
of Po,t

– P (seen, t) is the probability rise constant of the object o appearing in the
image at time t

– P (lost, t) is the probability reduction coefficient of the object disappearing
on the image at time t

According to the above formula, we set a confidence threshold of Pv, then

object =

{
valid, Po,t > Pv

invalid, Po,t ≤ Pv

(3)

This solution effectively eliminates the effects of loss of objects due to cameras,
light, and the like. At the same time, interference caused by similar objects such
as skin is not considered a valid object because its duration is short and its
confidence is lower than the confidence threshold.

Camera Parameter Identification. Due to the complexity of multiple camera
coverage areas on the site, we have adopted an algorithm that automatically
identifies camera parameters. While continuously receiving image information,
we continuously calculate and update the coverage area, parameters, etc. of the
camera.

RoboCup SSL 2018 Champion Team Paper 409

When an object appears in the field of view of multiple cameras at the same
time, we will calculate its actual position by the following formula: r̄real

r̄real =

∑k
i=1

r̄i − r̄cami

Rcami

ri

∑k
i=1

r̄i − r̄cami

Rcami

(4)

Among them

– r̄cami
is the projection coordinate of camera i

– Rcami
is the coverage distance of camera i

– k is the number of cameras that can see the current object

3.3 Results

We use the simulation software grSim to test the actual effect of our image
module. GrSim can adjust the noise (Gaussian noise) and packet loss rate of the
original output image to simulate the effect of real games.

We use the pass success rate to reflect the accuracy of our image module han-
dlers, and we will test the success rate of 100 passes in the current environment.

Fig. 10. Pass success rate with different
Gaussian noise in both X and Y Axis

Fig. 11. Pass success rate with differ-
ent Gaussian noise in robot direction

Fig. 12. Pass success rate with different packet loss rate

As we can see from the figures above, the pass success rate is above 90% when
there’s no gaussian noise in x and y axises. When the gaussian noise increases,

410 Z. Huang et al.

pass success rate decreases slowly at first. Even when the gaussian noise equals to
10 cm in both axises, which is already a terrible vision input and rarely appears
on the RoboCup competition. The pass success rate drops quickly when gaussian
noise continues increasing and drops to 0% at about 25 (cm) guassian noise.

When it comes to noise in robot direction, the overall tendency is similar to
the former one. However pass success rate drops faster as the noise increases.
That’s because robot direction determines direction of the passing ball. When
there’s 15◦ of gaussian noise in direction, the success rate drops below 70%,
which means our program can barely play the game under these situation.

4 Interception Prediction Algorithm and Application

4.1 Robot Arrival Time Prediction

In our system, we adopted the method used in [5]. First, we carried out RRT
global planner, and then the velocity planner based on the path points generated
by RRT. For the velocity planner, we use trapezoidal programming. Since it is
the omnidirectional wheel that we used, we decompose the translational speed
and rotational speed into a 2d planner and a 1d planner. Then, we decompose
the translational velocity into two directions with the orientation from the start-
ing location to the target location as the x-axis, which is beneficial for the robot
to achieve the maximum velocity in the x-direction, while the velocity in the
y-direction decreases to zero as soon as possible. This will reduce the coupling
between the two directions. Therefore, we’re basically doing three 1d planner,
and then combine them together. For each 1d planner, we will use the maximum
acceleration and maximum deceleration under ideal conditions to make a trape-
zoidal program. Therefore, it could reach the target location with the optimal
time, which we can accurately predict.

4.2 Search-Based Interception Prediction Algorithm

On the basis of realizing the algorithm of accurately predicting the robot’s arrival
time to a certain destination, we developed a search-based algorithm that pre-
dicts the shortest interception time and the best interception point for the robots.
In one actual game, according to the movement ability of both sides, we will
make an interception prediction for each robot on both sides of the field in each
frame. This is very important for the realization of our single robot skills and
the realization of multi-robot attack and defense conversion. In order to ensure
the feasibility and real-time of this process, we use the search-based strategy to
search the time at equal intervals with a fixed minimum interval of Δt (such
as 1/60 of a second). At a certain moment t, we obtain the location and speed
of both the robot and the ball, then calculate the location Pi that the ball can
reach at any time t + iΔt(i = 0, 1, 2, 3, ...) in the future under the action of the
frictional force of the field in a straight line motion with uniform deceleration
(the acceleration of the ball can be obtained according to the measured fric-
tion coefficient of the field). Then, starting from i = 0, it traversed the search

RoboCup SSL 2018 Champion Team Paper 411

points to predict the time Ti that would take a robot to reach the point Pi. If
Tk ≤ t + kΔt is satisfied after the k-th interval, point Pk is considered to be the
best interception point Pbest of the robot, and Tk is the shortest interception
time Tbest of the robot. Algorithm1 shows the specific algorithm pseudocode.

There are two extreme cases. One is that the ball has already stopped before
the robot intercepts the ball. At this time, the location where the ball stops
is the optimal interception location, and the time when the robot reaches the
location is the shortest interception time. Another is that the ball has been out
of bounds before the robot intercepted it. At this time, in order to ensure that
the algorithm can always get a solution, we take the out of bounds location as
the best interception location, and the time to the out of bounds location as
the shortest interception time. If the prediction of interception time is relatively
conservative, such as adding fixed adjustment time Tm to the predicted robot
arrival time Ti, to ensure a higher success rate of the robot to intercept the ball.
It will be found in the actual application that the robot will run more directly
to the boundary to intercept the ball.

Figures 13 and 14 shows the interception time of a stationary robot at differ-
ent positions under two different ball speeds. Darker areas represent shorter inter-
ception time, while lighter areas represent longer interception time. In Fig. 13,
the initial position of the ball is (400 cm, 450 cm), and ball speed is low (1m/s),
so at a certain time, the closer the robot gets to the ball, the less time it has to
intercept the ball. However, when ball speed is high, it has different conclusion.
In Fig. 14, the initial position of the ball is (0 cm, 450 cm), and ball speed is high
(4m/s). Robot cannot intercept the ball in most places on the left side, and
there is an obvious boundary. If the position of the robot is within the boundary
(i.e. the dark area), it can intercept the ball in a short time, but if not, it will
cost much, and may never intercept the ball before it out of the field. In the old
saying of China, it is called “A little error may lead to a large discrepancy”.

Algorithm 1. Search-Based Interception Prediction
Require: Δt, ball initial position P0 and velocity v0, robot initial position Pr and

velocity vr
k ← 0
repeat

Pk ← predictBallPosition(P0, v0, kΔt)
Tk ← predictRobotArrivalT ime(Pr, vr, Pk)
k ← k + 1

until Tk ≤ kΔt or Pk out of the field
Pbest ← Pk

Tbest ← Tk

In [2] we developed a “FSM-based Role Matching” mechanism, using the
square of the distance between the current positions of the robots and expected
roles’ target positions as the cost function. Considering the above situation, it
is actually wrong when math robots to intercept the ball if we choose the ball

412 Z. Huang et al.

Fig. 13. 1 m/s Ball speed interception
time heat map

Fig. 14. 4m/s Ball speed interception
time heat map

position as the target position. A better way is using the time that robots move
from the current positions to the target as a loss function, and if the target is
a ball, using Algorithm1 can match an optimal robot to get the ball, that will
improve our ball possession rate.

5 Conclusion

In this paper, we have introduced three main optimizations in both hardware
section and software section in the competition last year. Our future task is
to increase the intelligence and scalability of our system. We are working on
changing our microcontroller from FPGA to STM32. And deep reinforcement
learning (DRL) will also be used in our algorithm to improve the performance
of our robots.

Acknowledgement. This work is supported by the Fundamental Research Funds
for the Central Universities 2-2050205-19-361, and State Key Laboratory of Industrial
Control Technology ITC1904.

References

1. Li, C., Xiong, R., Ren, Z., Tang, W., Zhao, Y.: ZJUNlict: RoboCup 2014 small size
league champion. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K.
(eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 47–59. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18615-3 4

2. Zhao, Y., et al.: ZJUNlict Team Description Paper for RoboCup 2014. RoboCup
Wiki as team description of ZJUNlict, João Pessoa, Brazil (2019). Accessed 5 Feb
2014

3. Chen, L., et al.: ZJUNlict extended team description paper for RoboCup 2018.
RoboCup Wiki as extended team description of ZJUNlict, Montreal, Canada (2019).
Accessed 6 Mar 2018

4. Ryll, A., Geiger, M., Carstensen, C., Ommer, N.: TIGERs mannheim extended
team description for RoboCup 2018. RoboCup Wiki as extended team description
of TIGERs Mannheim team, Montreal, Canada (2019). Accessed 6 Mar 2018

5. Bruce, J.R.: Real-time motion planning and safe navigation in dynamic multi-robot
environments. No. CMU-CS-06-181. Carnegie-Mellon Univ Pittsburgh Pa School of
Computer Science (2006)

https://doi.org/10.1007/978-3-319-18615-3_4

Tech United Eindhoven Middle Size
League Winner 2018

Yanick Douven, Wouter Houtman, Ferry Schoenmakers, Koen Meessen,
Harrie van de Loo, Dennis Bruijnen, Wouter Aangenent, Jorrit Olthuis,

Cas de Groot, Marzieh Dolatabadi Farahani, Peter van Lith, Pim Scheers,
Ruben Sommer, Bob van Ninhuijs, Patrick van Brakel, Jordy Senden,

Marjon van ’t Klooster, Wouter Kuijpers(B), and René van de Molengraft

Eindhoven University of Technology,
De Rondom 70, P.O. Box 513, 5600 Eindhoven, MB, The Netherlands

{w.j.p.kuijpers,techunited}@tue.nl
https://www.techunited.nl

Abstract. The Tech United Eindhoven Middle Size League (MSL) team
achieved a first place at RoboCup 2018. This paper presents a short
evaluation of the tournament and describes the most notable develop-
ments made in preparation of the tournament. One development in the
robot’s hardware is presented: the realization of our eight-wheeled soccer
player. The following developments in software will be presented: a new
approach to ball state estimation and the human-alike dribble. Addition-
ally, research towards the application of artificial intelligence in opponent
action prediction and opponent recognition will be presented.

Keywords: RoboCup soccer · Middle size league · Multi-robot ·
Ball handling

1 Introduction

Tech United Eindhoven represents the Eindhoven University of Technology in
the RoboCup competitions. The team started participating in the Middle Size
League in 2006. In 2011 the service robot AMIGO was added to the team to par-
ticipate in the RoboCup@Home league. In the Middle Size League competitions,
the team has been playing the final for 11 years now, while achieving the first
place four times: 2012, 2014, 2016 and 2018. Before RoboCup 2018, the Middle
Size League team consists of 4 PhD’s, 1 PDEng, 8 MSc, 4 BSc, 5 former TU/e
students, 3 TU/e staff members and one member not related to TU/e.

This paper describes the major scientific improvements of our soccer robots
over the past year, and elaborates on some of the main improvements or develop-
ments in preparation of the RoboCup 2018 tournament. Additionally, in Sect. 3
some statistics concerning the past tournament will be presented. First in Sect. 2,
an introduction on the hardware and software of our fifth generation soccer robot
is given. The developments in design and control towards our sixth generation
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 413–424, 2019.
https://doi.org/10.1007/978-3-030-27544-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_34

414 Y. Douven et al.

soccer robot, the eight-wheeled robot, are presented in Sect. 4. Improvements to
the skills of our robots are presented in Sect. 5. Our progress on including con-
cepts from artificial intelligence into the robot software are presented in Sect. 6.
In Sect. 7, we give some insights into one of our main strengths: passing. Section 8
gives concluding remarks and presents our outlook on the coming years.

2 Robot Platform

Our robots have been named TURTLEs (acronym for Tech United RoboCup
Team: Limited Edition). Currently, we are using our fifth generation TURTLE
while we are developing the sixth generation, which is presented in Sect. 4. In this
section we will however treat the fifth generation, which makes up the biggest
part of our team. Subsect. 2.1 will treat the hardware of this platform, whereas
Subsect. 2.2 will treat the software.

2.1 Hardware

Development of the TURTLEs started in 2005. Through tournaments and
numerous demonstrations, these platforms have evolved into the fifth genera-
tion TURTLE, a very robust platform. For an outline of our robot design the
reader is referred to the schematic representation published in the second section
of our team description paper of 2014 [1]. In 2016, a redesign of the upper body
of the robot was made to integrate Kinect V2 cameras and create a more robust
frame for the omni-vision unit on top of the robot. This prevents the need for
recalibration of mirror parameters when the top of the robot is hit by a ball. A
detailed list of hardware specifications, along with CAD files of the base, upper-
body, ball handling and shooting mechanism, has been published on a ROP
wiki.1

2.2 Software

The software controlling the robots is divided into three main processes: Vision,
Worldmodel and Motion. These processes communicate with each other through
a real-time database (RTDB) designed by the CAMBADA team [2]. The vision
process is responsible for environment perception using omni-vision images and
provides the location of the ball, obstacles and the robot itself. The worldmodel
combines the ball, obstacle and robot position information provided by vision
with data acquired from other team members to get a unified representation of
the world. The motion process is based on a layered software model. The highest
level is strategy. Strategy defines actions which are executed by roles deployed
on the TURTLEs. These actions consist of a limited set of basic skills such as
shooting and dribbling, which require motion control of relevant actuators, the
lowest level of the software. More detailed information on the software can be
found in [3] or in the flow charts part of the qualification package.
1 http://www.roboticopenplatform.org/wiki/TURTLE.

http://www.roboticopenplatform.org/wiki/TURTLE

Tech United Eindhoven Middle Size League Winner 2018 415

Fig. 1. Fifth generation TURTLE robots, with on the left-handside the goalkeeper
robot. (Photo: Bart van Overbeeke)

3 RoboCup 2018 Statistics

Five teams participated in the Middle Size League tournament of RoboCup
2018, two teams from China, one team from Portugal and two teams from The
Netherlands. A total of 34 matches have been played, of which Tech United
played 14 matches. During those 14 matches, Tech United scored 88 goals, an
average of over 6 goals per match. The semi-final resulted in a 10-0 score, the
final match resulted in a 1-0 score.

By analysing the actions of the TURTLE’s, we found 240 attempts for a shot
on goal, resulting in a success rate of approximately 37%. During the tournament
15 goals were scored by other teams in our goal. Our goalkeeper, even though
always being positioned in the goal, drove 2008 m during all the matches, based
on odometry data. The field players on average drove 13 km, with TURTLE
2 driving almost 20 km during the tournament. While driving, the TURTLEs
managed to localize in almost 90% of the time, where TURTLE 4 managed to
localize 98% of the total time. These numbers are lower than previous tourna-
ments (usually 96%), this is due to the increase in field size. These statistics
differ per TURTLE, even though the TURTLEs are similar in hardware and
software, this can be due to role, calibration accuracy or total playing time.

4 Eight-Wheeled Platform

This section elaborates on the design of the eight-wheeled platform. Subsect. 4.1
will elaborate on some of the design features of the eight-wheeled platform.
The challenges faced during the low-level motion control design are presented in
Subsect. 4.2.

416 Y. Douven et al.

4.1 Design of the Eight-Wheeled Platform

The current platform is equipped with three omni-directional wheels rigidly con-
nected to the base, achieving holonomicity which makes our platform potentially
agile. In this configuration, however, not all the torque delivered by the motors
is used in the desired movement. Moreover, high forward acceleration causes the
front wheels to slip, removing the ability to apply torque from the motors to
the field. These drawbacks form the main motivation for the development of the
eight-wheeled platform, also presented in [3].

The challenge in designing a platform with four or more wheels is resolving
the over-actuated system. The eight-wheeled platform, presented in Figs. 2(a)
and (c), has three degrees-of-freedom and is five times over-actuated. To allow
five internal movements, each of the wheel combinations is suspended with the
rotation point below the ground and the back wheels are suspended over a hing-
ing axle. In this way, the wheels are always in contact with the ground to transfer
the torque from the motors to the ground.

4.2 Low-Level Control of the Eight-Wheeled Platform

The setup of the platform is graphically represented in Fig. 2(b). In this figure
it can be seen that this platform consists of four sets each having two hub-
drive wheels. Each pair of wheels can rotate around its suspension by actuating
the corresponding wheels in opposite direction. As a result, strictly speaking the
platform is non-holonomic, but due to the ability of each pair of wheels to rotate,
in a relatively short time-intervals compared to the motion of the platform, a
kind of semi-holonomicity is achieved.

In order to manipulate the position x, y and orientation φ of the center C
of the platform, the control strategy of Fig. 3 has been designed. Based on the
desired velocity of the platform, q̇r = [ẋ ẏ φ̇]T , both the reference velocity for
each of the eight wheels vw,r ∈ R

[8×1] and the desired pivot-angle δr ∈ R
[4×1]

can be determined in a feedforward fashion using the inverse kinematics of the
platform. As three degrees of freedom are controlled using eight actuators, the
system is over-actuated. Therefore, an error in the pivot δ of each wheelpair leads
to undesired internal forces and slip. As a result, if the pivot-error is not within
reasonable bounds, the pivot-controller is prioritized over the platform controller,
meaning that the wheels are re-oriented before the platform is actuated. In order
to correct for this pivot-error, via a feedback controller, a compensation is added
to the wheel velocities. The magnitude of this correction term is equal for both
wheels in each wheelpair, but they have opposite direction. Finally, by measuring
both the wheel velocities vw ∈ R

[8×1] and the pivot angle δ ∈ R
[4×1], the velocity

of the platform can be determined using the forward kinematics of the system.

4.3 Results During RoboCup 2018

Unfortunately, we did not manage to employ the eight-wheeled platform during
one of the games of RoboCup 2018. The low-level motion control did not meet the

Tech United Eindhoven Middle Size League Winner 2018 417

(a) Mechanical Design

X

Y

O

C
φ
x

y

δ
xw

yw

(b) Graphical Representation

(c) Realized Prototype

Fig. 2. The eight-wheeled platform with four suspended wheel combinations which are
able to rotate around its center hinge.

performance requirements for being able to play, resulting in a too low maximum
velocity of the platform being. Right after the tournament work reconvened and
promising results will ensure playing time for the eight-wheeled platform next
year.

418 Y. Douven et al.

Fig. 3. Low-level control architecture of the eight-wheeled platform.

5 TURTLE Skills

This section focuses on two developments regarding the skills of the TURTLEs.
Subsect. 5.1 focuses on improving ball state estimation (position and velocity).
The focus of Subsect. 5.2 is on the implementation of the “human-alike drib-
ble”, a dribble where the TURTLEs softly push the ball forward using the ball
handling.

5.1 Improved Ball State Estimate

A correct ball position and velocity estimate is crucial for the TURTLEs. The
performance of the present method is not satisfactory any longer in all situations.
The current estimator buffers detections of the ball and fits this with a state
trajectory in a least squares sense. In a highly dynamic environment, such as
a MSL soccer field, the filter needs to adapt quickly to changing situations. A
standard Extended Kalman filter would respond slow on a maneuvering ball
depending on the process and measurement noise covariance matrices. To make
sure the Kalman filter is able to adapt fast on a changing ball velocity, an
Extended Kalman Filter with Inflatable Noise Variance (EKF with InNoVa) [4]
is proposed.

Figure 4 presents a comparison between the response of the EKF and the
EKF with InNoVa for a disturbance. One can observe from this comparison that
the EKF with InNoVa converges to the actual velocity in x direction faster than
the EKF. As similar performance is observed in other test cases, the proposed
EKF with InNoVa will replace our present algorithm.

5.2 Human-Alike Dribble

Within the Middle Size League, robots have a confined dribble space defined as
a 3 m radius around the point where the robot intercepted the ball. Currently,
the TURTLEs shoot or pass to let go of the ball. However, significant strategical
advantages could be gained by softly pushing the ball forward and regaining it
again. Previously, our robots had to shoot or give a pass to let go of the ball,
therefore a controlled push was implemented.

Before giving a controlled push, the robot has to be aligned and the ball
handling levers need to be in a predefined position. In the 70m/s the wheels have
contact with the ball, the wheels ramp up the speed of the ball to about 0.5m/s

Tech United Eindhoven Middle Size League Winner 2018 419

Fig. 4. A comparison between the EKF and EKF with InNoVa for a wallbounce, the
ball (V0 = 1m/s) bounces off a wall at t = 2 s, the wall is not included in the model.

relative to the robot, to give a controlled push. Slip measurements are performed
to determine the maximum acceleration before the ball handling wheels lose grip
on the ball. Slip was found not to affect the velocity of the ball below 1.5m/s
which is thus large enough. The proposed control strategy consists of the existing
feedback controller combined with a feedforward controller. This control strategy
has been found to yield sufficient accuracy for executing the human-dribble.

5.3 Results During RoboCup 2018

The human-alike dribble has not been integrated in the software during RoboCup
2018, manpower was distributed to other, higher priority, tasks.

6 Artificial Intelligence

We are exploring the possibilities of Artificial Intelligence for this league in two
ways. Subsect. 6.1 will elaborate on using Artificial Intelligence (AI) for detailed
analysis of the omni-vision images. Another approach, where AI is used to predict
the next action of the opponent is presented in Subsect. 6.2.

6.1 Detailed Opponent Detection

In last years team description paper we reported on a detection method for
opponent label detection using neural networks. Due to the new rule allowing
robots to wear shirts, the presented approach was no longer practical. Therefore,
we adopted the procedure: first we take pictures of every robot with a normal
digital camera, the images are then distorted to resemble the images from the
omni-vision system. A normal digital camera will be used to speed up the pro-
cedure of taking pictures from opponent robots and prevent us from having to
use one of the TURTLEs for this time-consuming task. Every image undergoes
additional augmentations in the form of rotations, scaling, color variations and

420 Y. Douven et al.

distortions. Recognition of robots is now done on three levels. The first level
classifies the robot’s team. The second level classifies the robot’s orientation
in front, left, right or back. The third level is, then again, the number on the
number plate.

In last years team description paper [3] we reported on a method for oppo-
nent label detection using neural networks. Due to the new rule allowing robots
to wear shirts, the presented approach was no longer practical. Therefore, we
adopted the following procedure: four pictures are taken for each robot from
front, back, left and right with a standard camera and then distorted to resem-
ble the robot images in the omni-directional camera image. This is done using
an affine transform of the input picture of which the corner points are mapped
onto a corresponding image of the robot in the omni-directional camera. Using
rotations, color - and scale variations, the 16 input images per team for each
match are augmented to 32.000 28 × 28 color images. These form the input to a
three-layer fully convolutional neural network, which is trained to classify single
robots to team membership or orientation. The last convolutional layer is fed
into a Global Average Pooling Layer, which is used to generate a Class Activa-
tion Map. We achieve a 95% accuracy on single robot team classification, against
a validation set consisting of single robot images, lifted from omni-directional
camera images, shot during test matches. The orientation classification is less
reliable since it is depending on the color and shape of the shirts and the pro-
truding ball handling unit, which is not always clearly visible.

This single robot network is then used on the entire omni-directional image
by creating a class-activation map in which the highest activation points of each
class indicate the position of a robot in the image. We are still working on
solving the problem of recognizing our own robots in both classes as a result of
the bottom leds.

The entire process of making pictures, augmenting them and training the neu-
ral network is completed in 30 min. Using omni-directional images from a robot
directly would be better but involves getting both teams on the field, transferring
these images, selecting individual robots from them and then train the network.
This is not feasible during an actual competition, hence the described approach,
which simplifies getting the data in the time available between matches.

To understand the performance of the recognition, a visualization of the
feature kernels and activation layers, additionally allowing the fine tuning of the
network hyper-parameters. At the moment of writing the first level (team) has
a reliability better than 95%, the second level achieves a performance around
80%. Work on the third level did not yield any valuable results yet. Results of
the first level have been included here. An omni-vision image as in Fig. 5(a) is
input to the neural network, per team(color) a class activated map (CAM) is
compiled which shows where certain features are present in the input image, see
Figs. 5(b) and (c).

Tech United Eindhoven Middle Size League Winner 2018 421

(a) Omni-vision image (b) CAM features belong-
ing to cyan team

(c) CAM features belong-
ing to orange team

Fig. 5. Class activated maps for the detection of robot team, results for the cyan team
and orange team are presented. (Color figure online)

6.2 Opponent Action Prediction

Being able to predict the opponents action grants a strategical lead with respect
to the opponent. To train a network capable of this, the world state information
of previous tournaments will be used. The world state information is spatially
represented as three 8-bit occupancy grid maps of 28×40 pixels, the information
on opponents, peers and the ball is each stored in a different map. Temporal
information is included in the value of the pixel, the longer ago an e.g. opponent
arrived at a certain pixel, the lower the value. The three 8-bit occupancy grid
maps can be represented as a single RGB image, as in Fig. 6, the ball, opponents
and peers are represented by green, red and blue, respectively.

Currently, the achievable performance of an convolutional neural network
is determined with an indicative experiment, by recognizing the refbox tasks
from this occupancy map. The network was able to classify the correct refbox
tasks with an accuracy of 98.5%, a promising result. With this promising result,
research will proceed to predicting the opponents action. The neural network
operated offline and used data collected during the match as input.

6.3 Results During RoboCup 2018

The results presented in this section are proof of concepts, these methods have
not been integrated in the software before RoboCup 2018. After the tournament
the focus shifted to the actual integration of these algorithms into the current
software and into the current processing units.

7 Passing

Dynamic teamplay is one of the strengths of Tech United. When in possession
of the ball, there are always two robots without the ball (possible pass receivers)

422 Y. Douven et al.

Fig. 6. Occupancy grid maps for a specific time instant, from left to right: peer posi-
tions, opponent positions and ball position. (Color figure online)

trying to reach a position on the field that is optimal for receiving a pass, con-
tinuously trying to avoid opponents blocking any free line between them and the
robot with the ball (the pass giver). These passes do not have to be direct, i.e.
the ball can be shot into an open area in the field, where the pass receiver will
try to dynamically intercept it. This poses additional difficulty for the opponent
to block a pass. This section will explain how the robots decide where and who
to pass to, and how this pass is handled.

7.1 Where and Who to Pass To?

Every robot has a set of cost functions that are evaluated on a grid of positions
on the soccer field. For the possible pass receivers, these cost functions combine
penalties for being too close to or behind opponents, penalties for being at a
position that has a low scoring chance, penalties for being at a position that
has no free line for a next pass, penalties for being at a certain illegal position
on the field, and a driving cost. These penalties are weighted for two different
optimization problems, one for receiving a pass and shooting at goal, and one
for receiving a pass and passing to the next robot. E.g. the latter one has zero
cost on the penalties for being at a position that has a low scoring chance. The
point in the grid with the lowest combined cost, is the position on the field that
has the highest probability for receiving a successful pass with corresponding
consecutive action (shoot at goal or pass to the next robot). These positions
and the corresponding costs are communicated to the pass giver. The pass giver
then compares these costs and decides who to pass to. The pass target is the
corresponding position. The number of the robot that will receive the pass, and
the pass target are then communicated to the rest of the team. The receiving
robot will decide for itself what to do next. This way of deciding who and where
to pass to is new since RoboCup 2018. Before, the only reason to pass to a robot

Tech United Eindhoven Middle Size League Winner 2018 423

was that this pass receiving robot had a better chance at scoring. Using this
new method, more passes back occur with the intention of passing to the next
robot that has a good scoring position. Therefore, in general, more passes occur,
letting the ball do the work and making it harder for the opponent to defend.

7.2 Pass Handler

When the robots have determined where and who to pass to, the so-called “pass
handler” handles the execution of the pass. This is a synchronized state machine
between the pass giver and the pass receiver, that has been fully redesigned
for RoboCup 2018. The new pass handler has as little states as possible and
has a cleaner way to synchronize states, leading to less synchronization issues
and more successful passes. The pass giver calculates how long the pass receiver
takes to drive (treceiver) to the pass target (xpass) and adjusts the passing speed
(vpass) accordingly:

vpass =
||xpass − x0||2

treceiver + tmargin
(1)

Here, x0 is the current position of the pass giver and tmargin is some positive
time margin to allow for inaccuracies in positioning of the receiver and the actual
achieved shooting velocity of the pass giver. To avoid passing too hard and ensure
that the ball does not bounce of the ball handling of the pass receiver, the passing
speed is limited.

7.3 Result During RoboCup 2018

The new pass handler and improved decision making has resulted in dynamic
teamplay during RoboCup 2018. Compared to previous years, there were more
passes and a higher percentage of successful passes. By having multiple possible
pass receivers and giving passes with the intention to directly pass to the next
robot, the game became more dynamic and harder to defend for the opponent.
This ultimately resulted in the World Title.

8 Conclusions

In this paper we have described the major scientific improvements of our soccer
robots in preparation of the RoboCup 2018 tournament. Not all of the develop-
ments have actively contributed to the result, but the methods developed will
be integrated in preparation of future tournaments. The sixth generation TUR-
TLE is a robot with 8-wheels, designed for improved agility on the field. The
ball state estimation of the TURTLEs has been improved by means of and EKF
with InNoVa, achieving better performance for the different dynamic situations.
As our current focus is on integrating neural networks into our software, the
researches presented towards the application of AI in our software will soon be
put to the test. One of our main strengths is passing, which is based on a syn-
chronized state machine between pass giver and receiver. Altogether we hope our

424 Y. Douven et al.

progress contributes to an even higher level of dynamic and scientifically chal-
lenging robot soccer. The latter, of course, while maintaining the attractiveness
of our competition for a general audience. We are determined to create a new
generation of TURTLEs with improved agility and ball handling. Meanwhile,
our efforts in implementing a configurable strategy framework and applications
of artificial intelligence in software will continue. In this way we hope to go with
the top in Middle-size league for some more years and contribute to our goal in
2050!

References

1. Lopez Martinez, C., et al.: Tech United Eindhoven Team Description 2014. Springer,
Heidelberg (2014)

2. Almeida, L., Santos, F., Facchinetti, T., Pedreiras, P., Silva, V., Lopes, L.S.: Coor-
dinating distributed autonomous agents with a real-time database: the CAMBADA
project. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol.
3280, pp. 876–886. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30182-0 88

3. Schoenmakers, F., et al.: Tech United Eindhoven Team Description 2017. Springer,
Heidelberg (2017)

4. Zhang, J., Welch, G., Bishop, G., Huang, Z.: A two-stage kalman filter approach
for robust and real-time power system state estimation. IEEE Transact. Sustain.
Energ. 5(2), 629–636 (2014)

https://doi.org/10.1007/978-3-540-30182-0_88
https://doi.org/10.1007/978-3-540-30182-0_88

Ichiro Robots Winning RoboCup 2018
Humanoid TeenSize Soccer Competitions

Muhtadin1(&), Muhammad Reza Arrazi1, Sulaiman Ali1,
Tommy Pratama1, Dhany Satrio Wicaksono1,

Ahmad Hernando Pradanatta Putra1, I. Made Pande Ari1,
Alfi Maulana1, Oktaviansyah Purwo Bramastyo1,
Syifaul Qolby Asshakina1, Muhammad Attamimi1,

Muhammad Arifin2, Mauridhi Hery Purnomo1, and Djoko Purwanto1

1 Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
muhtadin@ee.its.ac.id, sulaimanali281@gmail.com

2 Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia

Abstract. This paper describes the Ichiro RoboCup Winner TeenSize Huma-
noid League from the Institut Teknologi Sepuluh Nopember Surabaya,
Indonesia. In this paper, the mechatronic design of Ichiro robots, algorithms and
robotic behavior will be discussed. At this year, for the first time we took part in
a competition on the TeenSize category, our algorithm and robot behavior were
simple, but we were able to maximize the algorithm and get the advantages of a
fast-computational process and ease of debugging. Therefore, we were able to
get four awards: First place Teensize Soccer Competition, Second place Teen-
Size Technical Challenge, Second place Drop-in Challenge, Third place Best
Humanoid Award.

1 Introduction

RoboCup Humanoid league has a vision to promote the champion of the league to
compete against the winner of FIFA world cup. To facilitate this vision, the rules are
getting closer to the rules implemented on FIFA World Cup. These facts motivated
many researchers to develop humanoid robots in many aspects, such as mechanical
design, robot’s perception especially in complex environments, robot’s behaviors in
soccer game, and so forth. Many challenging fields have attracted the researchers to
examine their robots in Humanoid league competitions both on National and Inter-
national levels.

Team Ichiro specifically develops research in the field of Humanoid Robotics.
Members of the team Ichiro were students in undergraduate and diploma programs
from the Institut Teknologi Sepuluh Nopember Surabaya, Indonesia. We have partic-
ipated in various competitions of Humanoid robots at the National level starting in
2013. We began participating in the International level in 2016. That year we received
10 awards with two world records at FIRA RoboWoldCup 2016 in Beijing, China. In
2017, we participated in the RoboCup Humanoid League competition in the KidSize

© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 425–435, 2019.
https://doi.org/10.1007/978-3-030-27544-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_35&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_35

category held in Nagoya Japan. Our participation in the competition opened many
insights for us about the development of humanoid robots. In 2018, we had problems
with limited funds to finance our team’s trip to Canada, therefore, we took part in the
RoboCup Humanoid League competition in the TeenSize category (see Fig. 1) which
can be done by only two robots with a small number of teams. The amazing results had
been achieved from the RoboCup competition in Canada, we won several awards: First
place in the TeenSize category, Runner-up at the TeenSize Technical Challenge,
Runner-up at the Drop-in Games, finally, we won the third place in Best Humanoid
Robot Soccer.

2 Mechanical Hardware Overview

Ichiro TeenSize robots was assembled based on a modification from Nimbro-OP [1]
(Fig. 2). This robot uses one Logitech camera C922 and two LiPo 4S batteries. There
are 20° of freedom using Dynamixel Servo. Twelve Dynamixel MX 106 for the robot’s
legs, six Dynamixel MX 64 for the robot’s arms and two Dynamixel MX 28 for the
head. Ichiro Teen Size robot has 85 cm of height. This robot is made by cutting and
bending with 3 mm thick type 5 Aluminum material.

We made modifications from the Nimbro-OP by reducing its size from 95 cm to
85 cm. With this size, we get many benefits because we can use our robot in many
competitions, i.e.: the KidSize category at the national level robot soccer competition
(45 cm–90 cm), the AdultSize category at the FIRA International RobotSport robot
competition (80 cm–180 cm), as well as the TeenSize category in the Robocup com-
petition (80 cm–140 cm).

Fig. 1. Left: ichiro robot TeenSize. Right: robot team member at Robocup 2018.

426 Muhtadin et al.

Ichiro Robot TeenSize uses an Intel NUC mini PC as its main controller. For the
visual sensor, we use a standard Logitech C922 camera that plugged on the USB port
on Intel NUC.

Since 2017 we have not used a compass because of the regulations that have been
applied. For the orientation sensor, we used MPU-6050 where this sensor was quite
accurate with a 16-bit analog to digital converse internal hardware facilities for each
channel. This sensor combines the 3-axis gyroscope and 3-axis accelerometer on the
same chip. To be able to interact with MPU-6050, a microcontroller such as Arduino is
needed as an interface for i2c-bus. In our robot, we used Arduino nano to access the
orientation sensor.

3 Visual Perception

3.1 Landmark Detection

For the purposes of localization, we did field extraction for the goalposts and the edge
of the field. We got the edge of the field by applying the convex hull to the green area
which was the area of artificial grass on the field. The goalposts were detected since the
goalposts were at the edge of the field. The goalposts feature was detected by using a
Hough line detector in HSV color space. Then we separate the Hough line into the left
goalpost and the right goalpost. This method has been discussed in [2] and [3].
Although this method is simple, we get an advantage of fast computing and a good
result when the robot is in the middle of the field.

We have difficulties in extracting the line features of the field because the camera
on the robot produced only moderate-quality video, video frames were often blurry
when the robot moves, so that the lines were often missing and incomplete. Therefore,
we did not use lines to estimate the position of robots in the field. The robot estimated

Fig. 2. Left: CAD design. Center and right: Ichiro TeenSize.

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions 427

its position in the field based on the robot’s initial position at the start of the match
(looking at the ball when the status of game controller in ‘SET’). Afterwards, we
employ dead reckoning to estimate position of the robot relative to the starting position.

3.2 Ball Detection

In RoboCup 2018, we made a more independent light detection method, high accuracy,
low computation and do not require a lot of tuning. For ball detection, we used a Local
Binary Pattern (LBP), which was a texture descriptor popularized by Ojala et al. [4].
Unlike the Haralick texture feature that calculates global texture representations based
on the gray level co-occurrence matrix, LBP calculates local texture representations.
This local representation was built by comparing each pixel with the surrounding
pixels.

For the classification process, we use the cascade classifier [5, 6]. Cascading
classifiers were trained with 16 � 16 pixels of 2832 positive images and 1452 negative
images. This method was very suitable to run on a low-power CPU because it has a fast
processing speed.

In comparison, as well as backup-plan in detecting the ball, we also use Histogram
Oriented Gradient (HOG) features that are popularized by Dalal on [7]. We use the
HOG feature extraction as a linear Support Vector Machine (SVM) input to discrim-
inate ball object from non-balls. We prepared these two ball detection methods on our
robot, during setup day, we conducted ball detection testing using both methods to
choose the most accurate one, then we used it during competition day. Based on our
testing at setup day, the accuracy of the LBP feature and HOG feature reaches 94% and
79% respectively. Finally, we used the LBP feature during the competition day.

To reduce noise outside the field, we first segmented the color of the field. From the
contour detected, the contour that had the largest area was selected and then Convex
Hull was performed. After that, we classify it using the LBP or HOG feature on the
object inside convex.

3.3 Localization on the Field

There were no more unique features in the field that could be used to discriminate our
own area and opponent’s area. Magnetometer sensor was also prohibited to be used.
This prohibition made it difficult for us to know the orientation of the robot. To
overcome this problem, our robots could know their initial position inside the field by
estimating their position based on several possible positions that we have defined
before.

Figure 3 shows some possible initial position of the robot when entering the field,
this method has also been carried out by the Nimbro team [8]. According to the fact that
robots always entering their own area when the game starts, our robot will calculate the
distance between the robot and the goalposts using the trilateration method as discussed
in [3]. Our robot will choose several initial positions that has been defined (Fig. 3)
based on the estimated distance of the robot to the goalposts.

428 Muhtadin et al.

After the robots know their initial position inside the field, the robot estimates its
position based using dead reckoning. The further position was obtained from the
estimation of the robot step, the estimation of the robot speed based on anterior step
parameters, and the directions of the robot. The method for estimating robot position
will be discussed in Sect. 4.2.

Error in estimating robot position often occurs when the robot plays for a long time
(about 2 min). However, we can solve this problem by re-estimating the initial position
when the game state was “SET”, which was usually happen when scoring a goal or a
drop ball occurs. Re-estimating the initial position was also done when the robot
coming to the field after they had been picked-up or serviced.

Fig. 3. Predefined initial positions of the robot

Fig. 4. Software for monitoring

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions 429

4 Robot Behavior and Strategy

4.1 Robot Monitoring System

Robot behaviors and strategies were determined in many states. The transfer of the
robots current state to the next state was determined by various information, such as the
number of teammates on the field, game status from the game controller, and the
individual teammates robot’s state. Because we have difficulty to monitor many robot
states based on information received, we created a system to monitor the robot state.
Graphical User Interface (GUI) of Ichiro’s robot monitoring system shown in Fig. 4.
We also make a “dummy” robot to send fake information when debugging robot
behavior. GUI of “dummy” robot shown on the right side of Fig. 4.

4.2 Walking Engine and Localization Method

We implemented the sinusoidal trajectory to our robot’s walking engine. This move-
ment did not use dynamic modeling of the robot so that this walking engine was open-
loop and did not use ZMP criterion as described in [9]. Based on the given points of
trajectory, all the joints were computed by the inverse kinematics of the legs of the
robot. Due to the imperfection of actual dynamics of the robot, we had to tune some
parameters in walking engine manually with trial and error. We also implemented the
Proportional-Derivative controller (PD) control strategy on both arms and hips of the
robot to maintain its pitch at the desired angle to prevent the robot from falling.

We use data from the gyroscope and accelerometer as PD Controller inputs to
control the knee, ankle pitch, hip roll, ankle roll on the robot. Validation was done by
observing it, then providing a disturbance of stability when the robot was walking. If
we felt the robot was less stable, and then we did manual tuning until we got a good
stability.

Sensors data and localization module information were needed to design more
complex robot behavior. First, we need to use motion capture camera to capture robot’s
displacement based on given gait command for implementing local localization of the
robot. We use Optitrack® Trio1. The data was collected by putting the markers on both
feet, then we track those markers using the motion capture system. The generated data
by motion capture was processed using machine learning with robot’s forward kine-
matic to get actual each displacement of leg while the robot was walking. Based on
these motion capture data, we could predict the robot step model based on the gait
parameters. This method has been discussed in more detail in [10] and [11]. The robot
step model that we have obtained, we tested to estimate the position of the robot.
Figure 5 shows the results of testing the position of the robot by using motion capture
data as ground truth.

Based on the predictions of the current step model that we have obtained, by fusing
this data and orientation data from robot’s sensor, robot could estimate a quite accurate
location which was used as information of localization module. This method, however,

1 https://optitrack.com/products/v120-trio/.

430 Muhtadin et al.

https://optitrack.com/products/v120-trio/

needs the initial position (discussed in Sect. 3.3) of the robot on the field which was
obtained by observing both locations of goal posts at the beginning of the game or
whether the robot starts to enter the field.

4.3 Teamwork Strategies

The finite state machine was used to design the robot behavior based on current game
state, teammates states or location and orientation information from localization
module. The communication between the robots was implemented using User Data-
gram Protocol (UDP) communication which contains information of robot’s states.
Then in general, the robots were considered as two roles as defender and striker robots.
The defender role was chosen by the robot when the striker was active on the field. To
reduce power consumption and prevent the absence of players in own field, the
defender will stay on his determined position and approaches the ball when the ball was
around it. The robot defender was able to give the information of the location of the

Raw Motion Capture data
Smoothed Motion Capture data
Robot perception

Infrared marker

Camera motion
capture

(a)

(b)

Fig. 5. (a) Robot equipped with optical motion capture marker to produce robot’s step model
data. (b) Comparison of robot position estimation data with motion capture data as ground truth

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions 431

visible ball to striker robot whenever striker robot could not see the ball and vice versa.
To improve the effectiveness of ball detection on the field, the striker robot would look
for the ball on the given point coordinates.

At the RoboCup 2018, we did not have any strategy for obstacle avoidance. We
tried applying obstacle avoidance by applying non-green color segmentation in the
field. However, we failed to apply this method because of the large amount of noise.

4.4 Kicking Strategy

One of the weaknesses of our robot was its movement that was slow in walking,
approaching the ball, and positioning to the ball. To cover up this weakness, our robot
has a long kick (5 m) that can roll the ball from the middle of the field to the oppo-
nent’s goal. Our robot can also perform short kick, the combination of the two types of
kicks was effective in scoring goals. Figure 6 shows the robot’s ability to kick the ball.
The long kick would be chosen when the robot sure they could make a score from a
single kick. If the robot was far from the opponent’s goal, the robot will not be able to
make a score from a single kick, therefore, the robot will choose the short kick and then
regained control the ball.

When the robot was kicking the ball, the robot will give information about his
position, kick direction, and types of the kick to the teammate’s robots. Based on that
information, the teammates would go to the estimation of the area where the ball will
stop.

Fig. 6. The distance of the ball rolls when kicked by a robot.

432 Muhtadin et al.

5 Performance in Soccer Tournament

At the RoboCup 2018, there were six teams participated in the TeenSize Humanoid
League. In Round Robin, Ichiro had five games against AMN United, NUbots,
EDROM, MRL-HSL, and WF Wolves & Hamburg Bit-Bots. On the first day of the set-
up day, one of our robots had a problem. The PC was broken due to the short circuit of
the power board. Therefore, in round robin we only had one robot. At the first day of
round robin, we had three matches against AMN United with a score of 2:0, against
NUbots with a score of 3:0, and against WF Wolves & Hamburg Bit-Bots with a score
of 1:0 and we won all the match. We used long-kick strategy because we only had one
robot. When our robot took control of the ball, our robot would just kick the ball to the
opponent’s goal according to the robot position. On the second day of the round robin,
we won the match against EDROM with a score of 5:0 but we lost a match against
MRL-HSL from Iran. They had fast-moving robots; hence we had a difficulty to take
control of the ball, and the match ended with score 1:3.

At semi-final round, we successfully repair our second robot and we qualified to the
final round after having a good match against WF Wolves & Hamburg Bit-Bots from
Germany with a score of 2:0.

At the beginning of the competition, we faced several problems but at the semi-final
and final round, our robot could run perfectly. With a good localization, our robot could
easily kick the ball to the opponent’s goal. At the final round, we had a match against
MRL-HSL from Iran for the second time. Finally, we won this match with score 3:0.

5.1 Technical Challenges

In Robocup 2018, team Ichiro also participated in the technical challenges. We want to
examine the ability of our robot to complete the specific tasks given in the technical
challenges. There were four kind of challenges: push recovery, dynamic kick (goal kick
from the moving ball), high jump, and high kick. In this year we perform three of the
technical challenges.

Push Recovery: In this kind of challenge, the objective was to withstand a strong
push. An impact was applied to the robot on the level of the Centre of Mass (CoM) by a
pendulum. To apply the push, a two kilograms weight of bottle will swing against the
robot’s body. The pendulum was released from an angle which was the ground pro-
jection distance for the pendulum, and the robot must be walking in place during the
attempt. The attempt will be a success if the robot returns to a stable standing or
walking posture after a push applied. During the attempt, we use the gait as the regular
games. Our robot can stand from the push until the distance of 45 cm.

Dynamic Kick: The objective of the challenge was to kick a moving ball into the goal.
The ball was placed randomly on one of the corners of the field. The pass of the ball
was performed by one of our team members to the robot. The robot must kick the ball
into the goal before the ball stopped. And here how we faced these challenges:

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions 433

1. Before the ball passed from the corner, the robot performing pre-kick motion. The
robot stands with a single support leg and the other leg folded into the position in
order to be ready for kicking the ball.

2. The camera tracking the ball and estimate the time of the ball arrived in the area
where the ball can be kicked by the folded leg.

3. Perform the kicking motion when the ball was in the area of the folded leg.

On this challenge, we failed to score. We ran out of time doing a trial on this
challenge. When we did a trial, the robot often lost the ball, sometimes the robot could
see the ball, but it was late in responding to the ball and too late to kick the ball towards
the goal.

High Kick: The objective of high kick challenge was to kick the ball into the goal at
maximum height. At each attempt, the team must decide how many wooden blocks
(related to how tall the obstacle) tries to achieve by the robot. The ball placed on the
penalty mark, and the robot placed freely but at least 30 cm away from the ball. Thanks
to the ability of our robot to do a powerful kick. At the first attempt, we try 10 cm as the
minimum height, and the robot did it very well. At the second attempt, we try 30 cm as
the minimum height, the robot also did it well. At the third attempt, we try 45 cm as the
minimum height, and the robot successfully finishes the challenge. In this challenge,
we reach the highest kick than the other team.

6 Conclusions

At Robocup 2018, for the first time Ichiro Robot Team participated in the TeenSize
category. Even though we have won first place in the TeenSize category, however,
there are many things that we need to improve performance of our robots. We prepare
robots in a very short time, so we use several simple algorithms, but we get the
advantage of fast computing process and easy debugging. Our mechanical design was
also still simple to imitate the design of other robots. As a result, the movement of our
robot was slow and less responsive. In the coming year, we will improve the speed of
the robot in control and kicking the ball so that our robots have better capabilities. We
will change our vision system by using a camera that can produce better images. We
will also improve the mechanical system by using stronger parts and more precise
metal cutting.

References

1. Schwarz, M., et al.: Humanoid TeenSize open platform NimbRo-OP. In: Behnke, S., Veloso,
M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 568–575.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9_51

2. Muntaha, M.A., Muhtadin, Purnomo, M.H: Self-localization for humanoid soccer robots
based on triangulation method. In: Indonesian Symposium on Robot Soccer Competition.
Semarang (2013)

434 Muhtadin et al.

http://dx.doi.org/10.1007/978-3-662-44468-9_51

3. Zannatha, J.M.I., et al.: Monocular visual self-localization for humanoid soccer robots. In:
21st International Conference on Electronics, Communications and Computers Proceedings
of CONIELECOMP 2011. pp. 100–107. Cholula, Puebla, México. (2011)

4. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transact. Pattern Anal. Mach. Intell.
24(7), 971–987 (2002)

5. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In:
IEEE Computer Vision and Pattern Recognition CVPR (2001)

6. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In:
IEEE ICIP 2002, vol. 1, pp. 900–903, September 2002

7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005,
San Diego, CA, USA, vol. 1, pp. 886–893 (2005)

8. Ficht, G., et al.: Grown-Up NimbRo robots winning RoboCup 2017 humanoid adultsize
soccer competitions. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 448–460. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00308-1_37

9. Allali, J., et al.: Rhoban football club: RoboCup humanoid kid-size 2016 champion team
paper, pp. 491–502 (2017)

10. Behnke, S.: Online trajectory generation for omnidirectional biped walking. In: 2006 IEEE
International Conference on Robotics and Automation, ICRA 2006, pp. 1597–1603. IEEE
(2006)

11. Schmitz, A., Missura, M., Behnke, S.: Learning footstep prediction from motion capture. In:
Ruiz-del-Solar, J., Chown, E., Plöger, Paul G. (eds.) RoboCup 2010. LNCS (LNAI), vol.
6556, pp. 97–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20217-9_
9

Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions 435

http://dx.doi.org/10.1007/978-3-030-00308-1_37
http://dx.doi.org/10.1007/978-3-030-00308-1_37
http://dx.doi.org/10.1007/978-3-642-20217-9_9
http://dx.doi.org/10.1007/978-3-642-20217-9_9

NimbRo Robots Winning RoboCup 2018
Humanoid AdultSize Soccer Competitions

Hafez Farazi(B), Grzegorz Ficht, Philipp Allgeuer, Dmytro Pavlichenko,
Diego Rodriguez, André Brandenburger, Mojtaba Hosseini, and Sven Behnke

Autonomous Intelligent Systems, Computer Science,
University of Bonn, Bonn, Germany

{farazi,ficht,allgeuer,pavlichenko,rodriguez,behnke}@ais.uni-bonn.de
http://ais.uni-bonn.de

Abstract. Over the past few years, the Humanoid League rules have
changed towards more realistic and challenging game environments,
which encourage teams to advance their robot soccer performances.
In this paper, we present the software and hardware designs that led
our team NimbRo to win the competitions in the AdultSize league—
including the soccer tournament, the drop-in games, and the technical
challenges at RoboCup 2018 in Montréal. Altogether, this resulted in
NimbRo winning the Best Humanoid Award. In particular, we describe
our deep-learning approaches for visual perception and our new fully 3D
printed robot NimbRo-OP2X.

1 Introduction

The goal of the RoboCup Humanoid League is to develop a team of humanoid
robots that can compete against the human World Soccer Champion in 2050.
In recent years, there were many rule changes introduced to the league in order
to bring the level of complexity closer to human soccer. In the RoboCup 2018

Fig. 1. Left: NimbRo AdultSize Robots: Copedo, NimbRo-OP2 and NimbRo-OP2X.
Right: The NimbRo team at RoboCup 2018 in Motnréal.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 436–449, 2019.
https://doi.org/10.1007/978-3-030-27544-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_36

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 437

competitions, drop-in games were introduced to the AdultSize class, in which
two teams consisting of two robots competed with each other, and several teams
performed very well.

For RoboCup 2018, we used two open-source 3D printed robots and an
upgraded version of one of our classic robots. Each of our 3D printed robots
is equipped with a fast onboard computer and a GPU to perform parallel com-
putations. We extended our open-source software with a deeplearning-based per-
ception system and gait parameter optimization. All of the AdultSize robots are
shown in Fig. 1, along with the human members of our team NimbRo.

2 Robot Hardware

One of the main contributions to our team’s performance at RoboCup 2018
was the hardware capabilities of our design. At the competition in Montréal,
we participated with three robots: Copedo, NimbRo-OP2, and NimbRo-OP2X
(See Fig. 1). Copedo [1] has a light weight of 10.1 kg, and spring-loaded legs with
parallel kinematics make it a dynamically capable robot, which we utilize in,
e.g., the jumping technical challenge.

In contrast to the aluminum and carbon-based build of Copedo, the struc-
ture of our newest NimbRo-OP2X [2] robot is completely 3D-printed and is a
substantial upgrade to the NimbRo-OP2 [3]. The core design principles that
made the NimbRo-OP2 a reliable and capable platform remained the same [3].
Both robots share the same kinematic structure, external gearing for increased
torque, multiple master-slave actuation pairs and minimal complexity in assem-
bly, diagnostics, and maintenance. Although their appearance may seem similar,
the NimbRo-OP2X is a complete redesign that introduces multiple upgrades over
the NimbRo-OP2. The main component of the redesign process was the use of a
new type of actuator—the Robotis Dynamixel XM-540—which has a heat dissi-
pating metal casing and outputs more torque than the previously used MX-106.
This design choice led to the implementation of other features. With a single
knee housing eight actuators, a substantial amount of heat is produced during
operation. To reduce the possibility of thermal malfunctioning and overheating,

a) b)

Fig. 2. Comparison of various hardware design features. (a) foot and back side of the
knee: OP2X(CAD), OP2X, OP2. (b) Finished hip joint along with the CAD model
showing the 3D-printed gears on the NimbRo-OP2X.

438 H. Farazi et al.

we have installed cooling fans, which helped to reduce the temperature in the
knee by approximately 20 ◦C. We have also reduced the weight of the 3D-printed
parts by making them slightly narrower, rounder and have added dedicated cable
pathways, all of which contributed to an increased rigidity. The external gearing
necessary to exert enough torque in the ankle and hip roll joints was a bot-
tleneck in the production process of the NimbRo-OP2. We have mitigated this
issue by designing low-friction and low-backlash double helical gears, which can
be quickly 3D-printed [2]. The SLS (Selective Laser Sintering) printing technol-
ogy was essential to the robustness of our robots, as no part ever broke, even
after several collisions with twice as heavy robots that had a metal exoskeleton
with sharp edges. The features mentioned above, along with their comparison
between the NimbRo-OP2 and NimbRo-OP2X can be observed in Fig. 2.

3 Software Design

Our open-source software based on the ROS middleware [4] has become a well-
established framework in the research and RoboCup community since the initial
release. Many soccer teams have used our code and ideas in RoboCup [5–7]. We
continue to further develop the repository, with the hope that other research
groups can benefit from it.

3.1 Visual Perception

Each of our robots perceives the environment using a Logitech C905 camera
which is equipped with a wide-angle lens. We supersede our previous approach
to vision [8] by utilizing a deep convolutional neural network followed by post-
processing. The presented perception system can work with different bright-
nesses, viewing angles, and even lens distortions. Using a recurrent deep neural
network, we also are able to track and identify our robots [9].

We developed an encoder-decoder architecture similar to recently proposed
pixel-wise segmentation models like SegNet [10], and U-Net [11]. Due to compu-
tational limitations, we utilized a shorter decoder than encoder part. Although
this design choice minimizes the number of parameters and helps us achieve
real-time perception, some fine-grained spatial information is lost. We allevi-
ate this spatial information loss by using a subpixel centroid-finding method in
the post-processing steps. To minimize the effort of data annotation, we used
transfer-learning in our encoder part, by utilizing a pre-trained ResNet-18 model.
Since our task is different from the classification task, we removed the GAP and
the fully connected layers in the ResNet-18 model. In the decoder part, we used
four transpose-convolutional layers. We followed the U-Net model and added
lateral connections between the encoder and decoder parts with the intention
to preserve spatial information in the decoder part. The proposed visual per-
ception architecture, which in total has 23 convolutional layers, is illustrated in
Fig. 3. The following object classes were detected using the network: goal posts,
ball, and robots. For our soccer behavior, we only need to perceive predefined

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 439

B
N

+
R

eL
U

+
M

ax
P

oo
l

3x
3

co
nv

B
lo

ck
, 6

4

3x
3

co
nv

B
lo

ck
, 6

4

3x
3

co
nv

B
lo

ck
, 6

4

3x
3

co
nv

B
lo

ck
, 6

4

3x
3

co
nv

B
lo

ck
, 1

28
, /

2

3x
3

co
nv

B
lo

ck
, 1

28

3x
3

co
nv

B
lo

ck
, 1

28

3x
3

co
nv

B
lo

ck
, 1

28

3x
3

co
nv

B
lo

ck
, 2

56
, /

2

3x
3

co
nv

B
lo

ck
, 2

56

3x
3

co
nv

B
lo

ck
, 2

56

3x
3

co
nv

B
lo

ck
, 2

56

3x
3

co
nv

B
lo

ck
, 5

12
, /

2

3x
3

co
nv

B
lo

ck
, 5

12

3x
3

co
nv

B
lo

ck
, 5

12

3x
3

co
nv

B
lo

ck
, 5

12

3x
3

co
nv

Tr
an

sp
os

e,
 1

28
, *

2

3x
3

co
nv

Tr
an

sp
os

e,
 3

Pretrained
ResNet-18

Width x Height

Width/4 x Height/4

Concat

1x1 conv, 128

R
eL

U

3x
3

co
nv

Tr
an

sp
os

e,
 1

28
, *

2

1x1 conv, 128

R
eL

U
 +

 B
N

3x
3

co
nv

Tr
an

sp
os

e,
 1

28
, *

2

1x1 conv, 128

R
eL

U
+

B
N

ConcatConcatR
eL

U
+

B
N

7x
7

co
nv

, 6
4,

 /2

Fig. 3. Visual perception architecture. Similar to original ResNet architecture, each
convBlock consists of two convolutional layers followed by batch-norm and ReLU acti-
vations. Note that for simplicity, residual connections in ResNet are not depicted.

Fig. 4. Object detection results. Left column: A captured image from one of our robots.
Middle column: The output of the network with balls (cyan), goal posts (magenta),
and robots (yellow) annotated. Right column: Ground truth. (Color figure online)

center locations of the interesting objects. Similar to SweatyNet [12], instead of
full segmentation loss, we used mean squared error. The desired output consists
of Gaussian blobs around the ball center and bottom-middle points of the goal
posts and robots.

Although we use Adam optimizer, which has an adaptable per-parameter
scale, finding a good learning rate is a challenging prerequisite to training. To
find an optimal learning rate, we followed the approach presented by Smith
et al. [13].

We used progressive image resizing that uses small images at the start of
training, and gradually increase the size as training progresses, a technique

440 H. Farazi et al.

inspired by Brock et al. [14] and by Yosinski et al. [15]. In early iterations,
the inaccurate randomly initialized model can make rapid progress by learning
from large batches of small images. In the first 50 epochs, we used downsampled
training images while freezing the weights on the encoder part. During the next
50 epochs, all parts of the models are jointly trained. In the last 50 epochs,
to learn fine-grained details, full-sized images are used. With the intuition that
the pre-trained model needs less training, a lower learning rate is used for the
encoder part. By using the aforementioned methods, the whole training pro-
cess with around 3000 samples takes less than 40 min on a single Titan Black
GPU with 6 GB memory. Two samples from the test set are depicted in Fig. 4.
Some portion of the used dataset were taken from the ImageTagger library [16],
which have annotated samples from different angles, cameras, and brightness.
We extract the object coordinates by post-processing the blob-shaped network
outputs. We apply morphological erosion and dilation to eliminate negligible
responses on the thresholded output channels. Finally, we compute the object
center coordinates. The output of the network is of lower resolution and has less
spatial information than the input image. To account for this effect, we calculate
sub-pixel level coordinates based on the center of mass of a detected contour.
To find the contours, we use connected component analysis [17] on each of the
output channels.

We filter detected objects and project each object location into egocentric
world coordinates. To minimize projection errors due to the differences between
the designed model and real hardware, we calibrate the camera extrinsic param-
eters, using the Nelder-Mead [18] Simplex method.

In the competition, the robots were able to perceive the AdultSize ball up to
a distance of 7 m with an accuracy of 99% and less than 1% of false detection
rates. White goal posts are detected up to 8 m with 98% accuracy and with 3%
false detections. Opponent robots are detected up to 7 m with a success rate
of 90% and a false detection rate of 8%. We are still using non-deep learning
approaches for field and line detections [8]. In the future, we will add two more
channels to the network output and use a single unified network for all detections.
The complete perception pipeline including a forward-pass of the network takes
approximately 20 ms on the robot hardware.

Localization and Breaking the Symmetry: Our localization method relies
on having a source of global yaw rotation of the robot [19]. Instead of a com-
pass, we use integrated gyroscope measurements as the source of yaw orientation.
Gyroscope integration is a reliable source of orientation tracking, but it needs a
global reference. In order to set the initial heading, we could either use manual
initialization or automatic initial orientation estimation. Manual heading ini-
tialization can fail during the match since sometimes restarting the operating
system of the robot is unavoidable, which will force a reinitialization of the head-
ing. Hence, we reformulated the global heading initialization as a classification
task [1]. There are four predefined distinct positions and orientations that the
robot can start in or enter the game from. In two of these spots, the robot should

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 441

start facing the opponent goal, which the location is either near the center cir-
cle or the goal area. The other two sets of locations are beside the sideline in
the robot’s respective half, while facing the field. To choose from these prede-
fined locations and orientations, we employ a multi-hypothesis version of our
localization module, which is initialized with four different hypotheses. In the
beginning, the robot attempts to discern the most likely hypothesis among all
running instances. This process terminates when either the method times out
or the robot finds the clearly most probable hypothesis. Ultimately, the vision
module keeps the valid instance and rejects the rest. To verify the decision, we
double check the result based on the recognized landmarks like the center circle
and the goalposts.

3.2 Soccer Behaviors

Over the past 2–3 years, we have refined our soccer behaviors to become more
robust, flexible, and easier to tune [1,20]. The behaviors are implemented as a
highly modularised multi-layer hierarchical state machine and packaged into a
ROS module that communicates with other parts of the software, like the vision
node and gait motion module, via ROS topics. In this paper, we describe the
current state of this architecture which was originally described in [21].

The flow of information and control starts with the ROS topics for which
the behavior node is the subscriber, covering predominantly the game state per-
ception, localization and game controller information coming from other nodes.
This is captured and read by a ROS interface layer, which abstracts away all
ROS-specific knowledge and code. The information is then distilled down into a
standardized SensorVars structure, that at the beginning of each cycle is updated
and recalculated with the latest direct and derived information about the state
of the robot and soccer game. The so-called sensor variables are then used by
the upper main layer of the state machine, referred to as the ‘Game FSM’. This
includes a range of behaviors that determine the soccer gameplay, including ball
handling, goalie and positioning skills, which are all required at different times
of the game. A standardized set of outputs are provided by the game behav-
iors that specify parameters like walking targets, ball targets (where to kick or
dribble to), whether kicking and/or dribbling should be allowed in the current
situation, and so on. These outputs are in turn the inputs to the lower main layer
of the state machine, referred to as the ‘Behavior FSM’. In this layer, low-level
skills are implemented, such as searching for the ball, walking to the ball, kicking
and/or dribbling it, and diving for the ball (enabled only for goalkeepers). The
Behavior FSM then, in turn, provides a standardized set of outputs that deter-
mine where the robot should look, whether the robot should walk or not, and if
so, with which velocity in what direction, as well as whether the robot should
dive or kick, and if so, which direction of dive or type of kick. This information is
then passed back to the ROS interface layer, which ensures that the other nodes
are notified of the required actions of the robot.

442 H. Farazi et al.

Ball Approach: Walking to the ball, or more specifically, behind the ball while
orienting to the correct direction for the ball target, is a Behavior FSM-level skill.
It is performed by calculating an orientation-specific halo around the ball and
constructing a path plan out of linear and circular arc segments that avoids
entering the halo. Further away from the ball, the priority is to turn and walk
directly in the direction that the robot needs to go, as forward walking is the
fastest and most reliable, but as the robot approaches the ball, it smoothly
transitions towards using more omnidirectional walking to approach the desired
final position, while also starting to turn to face the direction that the robot
wishes to kick or dribble the ball. The ball is aligned with the foot that is closest
to the required position for the required action.

Kicking and Dribbling: If during the ball approach the ball is detected to
be in a suitable region relative to the robot for a suitable amount of time,
the kicking and/or dribbling skill behavior is activated. Kicking can only be
activated when the robot is standing close to the ball in a suitable position and
orientation to kick, but dribbling can sometimes activate up to 2 m away from
the ball, so that the robot can follow a dribble approach trajectory and walk
right through the ball at speed, leading to smoother, faster and more effective
dribbling performance.

Obstacle Avoidance: It was a greatly simplifying design choice to implement
obstacle avoidance in a completely generic manner, independent of what behavior
skill is currently active. The output gait velocity of the Behavior FSM is a
combination of a 2D walking vector with a rotational velocity. In the presence
of an obstacle within a relevant distance of the robot, the walking vector of
the robot is rotated away from the obstacle in a way that limits the maximum
radial inwards walking velocity towards the obstacle. Further away from the
obstacle (for example 1 m) the limit radial velocity is high, so there is little
change to the robot’s walking intent, but when very close to the obstacle the
limit radial velocity even becomes negative to ensure that the robot will distance
itself from the obstacle. A turning component is also proportionally added to the
commanded rotational velocity to make the robot turn away from the obstacle,
helping it to for example walk past the obstacle if it is blocking the way.

Obstacle Ball Handling: The obstacle ball handling was similarly imple-
mented in a completely generic way, but one layer higher in the Game FSM.
Given the situation that there is a ball and a ball target, i.e. where the ball
should be kicked or dribbled to, then if there is an obstacle that is blocking this
possibility, the ball-target is rotated out to avoid the obstacle, more so for closer
and more relevant obstacles, and less so for further out obstacles. This enables
the robot to identify and kick past a goalkeeper to score a goal. If the obstacle is
too close to the robot, or the ball-target has to be rotated more than the amount
for example by which a goal can still be safely scored, then kicking is disabled

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 443

and dribbling is forced to try to take the ball off the opponent, which ideally
makes space to then kick the ball towards its intended target.

3.3 Bayesian Gait Optimization

The gait is based on an open-loop Central Pattern Generator which calculates
a nominal state for the joints using the gait phase angle. The phase angle is
proportional to the step frequency [22] and controls the movement of the arms
and legs. This approach has been improved by the use of fused angle feedback
mechanisms, which introduce corrective actions to counteract disturbances [23,
24]. These fused angle feedback controllers establish new parameters, which need
to be tuned. To ensure a high standard of performance, robot-specific parameters
have to be tuned for each robot. Moreover, since the robot wears off during
extensive use, parameters will become suboptimal, for instance over the course
of a RoboCup competition.

As walking is one of the most crucial skills of a humanoid robot, it
has to be robust and reliable at all times. To achieve this goal, we opti-
mize the parametrization of the aforementioned fused angle feedback controller
autonomously. Using Bayesian optimization, we rely not only on real-world
experiments but also on simulated experiments to gain useful information, with-
out wearing off the hardware of the robot. This approach has already been
successfully applied to the igus� Humanoid Open Platform [25] and the NimbRo-
OP2X [2].

Our approach is able to optimize the parameter set in a sample-efficient man-
ner, trading off exploration and exploitation efficiently. This trade-off depends
on a kernel function k and the parametrization of the underlying Gaussian Pro-
cess (GP). The latter encodes problem-specific values like signal noise and can
be measured by a series of initial experiments [25]. The proposed kernel, on the
other hand, is composed of two components, where the first term ksim encodes
simulation performance and the second term kε functions as an error-term resem-
bling the difference between simulation and the real-world performance:

k(ai,aj) = ksim(xi,xj) + kδ(δi, δj)kε(xi,xj), (1)

where ai = (xi, δi) is an augmented parameter vector and δ is a flag signalizing
whether an evaluation has been performed in the simulator or on the real system.
If, and only if both experiments have been performed in the real world, kδ is
defined to be 1, resulting in a high correlation. Due to the error term kε, it
is possible to model complex, non-linear mappings between the simulator and
real-world evaluations [26]. For both terms of the composite kernel, we chose
the Rational Quadratic kernel, since it has been proven to be appropriate in
previous work [25]. This composite kernel is then used to perform Gaussian
Process regression on the data points.

Since real-world experiments are expensive, we utilize Entropy as a mea-
sure of information content to sample data points efficiently. In this manner, the
next point of evaluation is chosen with respect to the maximal change of entropy,

444 H. Farazi et al.

weighted by a factor that trades off the cost of simulated and real-world evalu-
ations [27].

The cost function is a combination of aggregated fused angle feedback, as a
stability measure, and a logistic function ν which penalizes parameters of large
magnitude. Furthermore, we consider the sagittal (α) and lateral (β) planes
separately to reduce the complexity of the cost function. This results in the final
cost functions:

Jα(x) =
∫ T

0

‖ePα(x)‖1dt + ν(x), Jβ(x) =
∫ T

0

‖ePβ(x)‖1dt + ν(x) (2)

which depend on the parameters x of the fused angle feedback controller. To
reduce the impact of simulation noise, we average the cost of N = 4 evaluations.
Each evaluation is a predefined sequence of movements into forward, sideways
and backward directions. In the presented example, we optimize P and D gains
of the arm angle corrective actions in the sagittal direction, but the method can
be similarly applied on different controllers. We limit the number of real-world
evaluations to 15. This limit was reached after evaluating 146 simulations, thus
resulting in a total number of 161 iterations. The resulting optimized parameters
were validated by comparison with the performance of the old gait parameters
over five gait sequence evaluations each. The optimized parameters not only
reduce the fused angle feedback deviation by about 18%, but also lead to a
qualitatively more convincing gait [2].

The resulting Gaussian Process posterior is depicted in Fig. 5. Note that
simulations are important especially in early iterations, even though their impact
might not be directly visible in the final posterior [25]. This is proven by the fact
that the robot did not fall during optimization, thus confirming that the model
is able to utilize information of the simulator effectively.

Fig. 5. The Gaussian Process posterior of the arm angle optimization. The red dots
resemble real-world evaluations, whereas the blue dots indicate the results of simula-
tions. The green mesh shows the predicted cost and the black dot indicates its mini-
mum. The corresponding standard deviation is displayed as the grey mesh. The upper
standard deviation has been removed for visibility.

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 445

4 Performance

In RoboCup 2018, AdultSize robots autonomously competed in one vs. one
soccer games, two vs. two drop-in games, and four technical challenges that
tested different abilities. The soccer games were performed on a 6×9 m artificial
grass field, which made locomotion challenging. Due to the dynamic lighting
conditions, perceiving the environment and localization were also challenging.
Our robots performed outstandingly by winning all of the four possible awards,
including the Best Humanoid Award. In the main tournament, our robots played
a total of six games, including the quarter-finals, semi-finals, and finals. Addi-
tional five drop-in games were played, where two vs. two mixed teams were
formed and robots collaborated during the game. Our robots officially played
220 min with a total score of 66:5.

4.1 Technical Challenges

In the following sections, we discuss four technical challenges at RoboCup 2018:
Push Recovery, High Jump, High Kick, and Goal Kick from Moving Ball.

Push Recovery: The goal of this challenge is to withstand a strong push which
is applied to the robot on the level of the CoM by a pendulum. To define the
impulse, a 3 kg weight is retracted by a distance d from the point of contact with
the robot. The push is applied both from the front and from the back while the
robot is walking on the spot. NimbRo-OP2X was able to successfully withstand
a push from the front and the back with d = 90 cm.

High Jump: The goal of the high jump is to remain airborne as long as possible
during an upward jump. In order to successfully complete the challenge, the robot
has to reach a stable standing or sitting posture upon landing. The challenge
was performed using a predesigned jump motion, which was constructed with
our keyframe editor. Copedo has successfully completed the challenge, remaining
airborne for 0.147 s.

High Kick: This challenge poses the task of scoring a goal over an obstacle
positioned on the goal line. The ranking for this challenge is based on the height
of the kick. The ball starts at the penalty mark, and multiple kicks are allowed
during one trial. We utilized the following strategy: first move the ball closer to
the obstacle by a kick of reduced power and then perform a specially designed
kick to overcome the obstacle. The kick was manually designed in a way that
the foot hits the ball significantly lower on its COM and then moves upwards,
which allows to kick the ball into the air instead of rolling it on the ground. We
managed to perform a high kick over an obstacle of 21.5 cm. The whole trial
took 14.4 s. NimbRo-OP2 performing the challenge is shown in Fig. 6.

446 H. Farazi et al.

a) b) c) d)

Fig. 6. High Kick challenge. (a) Initial setup. The ball is positioned on the penalty
mark. (b) Ball was kicked to reach the goal area. (c) High kick motion is performed.
Note that the foot supports the ball in the air, adding more energy and directing it
upwards. (d) Ball passed the obstacle with a large margin. Goal is scored.

Goal Kick from Moving Ball: The task of this challenge is to score a goal
by kicking a moving ball into the goal. The robot is standing at the penalty
mark. At RoboCup 2017 a special ramp was used to direct the ball towards the
robot. In contrast, at RoboCup 2018 a human player was giving a pass to the
robot from a corner, symbolizing a situation from the real soccer game. Our
approach for solving this task was as follows: once positioned at the penalty
mark, the robot lifts its foot to be ready for kicking and is standing on the other
foot, human player kicks the ball towards the robot; using ball detection and its
pose estimation we estimate the velocity of the ball and its approximate time of
arrival to the area of a potentially successful kick; given this time, we execute
the kicking motion when necessary. Since the robot is initially standing on one
foot, with the other lifted upwards, the kick can be performed quickly, which
allows for higher speed of the pass and, hence, faster scoring of the goal, which
was the primary criterion in team rankings. Standing on one foot, which is also
performed by many other teams during this challenge, has two major drawbacks:
the robot is not stable in that posture, and it cannot adjust if the pass is not
accurate enough. In the future we will work on a more general approach to
perform this challenge. NimbRo-OP2X was able to score a goal in 2.78 s after a
human player touched the ball (see Fig. 7).

a) b) c) d)

Fig. 7. Goal Kick from Moving Ball challenge. (a) Initial setup. The human player
passes the ball to the robot. (b) Ball is approaching. Note that the right foot is already
moving towards ball’s predicted pose in order to kick it. (c) Ball is successfully kicked.
(d) Goal is scored, stable posture of the robot is recovered.

The recorded parameters describing our performance at technical challenges
are summarized in Table 1.

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 447

Table 1. Parameters recorded for the technical challenges

Parameter Value Challenge

Pendulum weight [kg] 3 Push Recovery

Pendulum swing [cm] 90

Obstacle height [cm] 21.5 High Kick

Time for completion [s] 14.4

Time airborne [s] 0.147 High Jump

Time for completion [s] 2.78 Kick from Moving Ball

5 Conclusions

In this paper, we presented hardware and software design that lead us to win all
possible competitions in the AdultSize class for the RoboCup 2018 Humanoid
League in Montréal: the soccer tournament, the drop-in games, the technical
challenges, and the Best Humanoid Award. We presented individual skills regard-
ing the perception, the bipedal gait tuning, and behavior as well as their appli-
cation in the technical challenges. A video showing the competition highlights is
available online1. The hardware of the NimbRo-OP2 generation2 as well as our
software3 were released open-source to GitHub with the hope that other teams
and research groups benefit from our work.

Acknowledgements. This work was partially funded by grant BE 2556/13 of the
German Research Foundation (DFG).

References

1. Ficht, G., et al.: Grown-up NimbRo robots winning RoboCup 2017 Humanoid
AdultSize soccer competitions. In: Akiyama, H., Obst, O., Sammut, C., Tonidan-
del, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 448–460. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 37

2. Ficht, G., et al.: NimbRo-OP2X: adult-sized Open-source 3D printed humanoid
robot. In: Humanoids (2018)

3. Ficht, G., Allgeuer, P., Farazi, H., Behnke, S.: NimbRo-OP2: grown-up 3D printed
open humanoid platform for research. In: Humanoids (2017)

4. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA (2009)
5. Razi, M.R.A., et al.: ICHIRO team description paper humanoid teensize league.

Technical report, Institut Teknologi Sepuluh Nopember (2018)
6. Dehkordi, M.R.R., Abdollahi, S., Rezayat, M.H., Sajadieh, S.M., Zamani, F.:

Unbounded designers teen & kid size team description paper. Technical report,
Azad University of Isfahan (2018)

1 RoboCup 2018 NimbRo AdultSize highlights: https://www.youtube.com/watch?
v=tPktQyFrMuw.

2 Hardware: https://github.com/NimbRo/nimbro-op2.
3 Software: https://github.com/AIS-Bonn/humanoid op ros.

https://doi.org/10.1007/978-3-030-00308-1_37
https://www.youtube.com/watch?v=tPktQyFrMuw
https://www.youtube.com/watch?v=tPktQyFrMuw
https://github.com/NimbRo/nimbro-op2
https://github.com/AIS-Bonn/humanoid_op_ros

448 H. Farazi et al.

7. Chen, X., et al.: RoboCup rescue team description paper NuBot. Technical report,
University of Newcastle (2017)

8. Farazi, H., Allgeuer, P., Behnke, S.: A monocular vision system for playing soccer
in low color information environments. In: 10th Workshop on Humanoid Soccer
Robots (Humanoids) (2015)

9. Farazi, H., Behnke, S.: Online visual robot tracking and identification using deep
LSTM networks. In: International Conference on Intelligent Robots and Systems
(IROS) (2017)

10. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. arXiv:1511.00561 (2015)

11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

12. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.:
Detection and localization of features on a soccer field with feedforward fully con-
volutional neural networks (FCNN) for the adult-size humanoid robot sweaty. In:
12th Workshop on Humanoid Soccer Robots (Humanoids) (2017)

13. Smith, L.N.: Cyclical learning rates for training neural networks. In: Applications
of Computer Vision (WACV) (2017)

14. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: FreezeOut: accelerate training by
progressively freezing layers. arXiv preprint arXiv:1706.04983 (2017)

15. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS (2014)

16. Fiedler, N., Bestmann, M., Hendrich, N.: ImageTagger: an open source online plat-
form for collaborative image labeling. In: Holz, D. et al. (eds.) RoboCup 2018.
LNAI, vol. 11374, pp. 162–169. Springer, Cham (2019)

17. Suzuki, S., et al.: Topological structural analysis of digitized binary images by
border following. Comput. Vis. Graph. Image Process. 30, 32–46 (1985)

18. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7, 308–313 (1965)

19. Farazi, H., et al.: RoboCup 2016 humanoid teensize winner NimbRo: robust visual
perception and soccer behaviors. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 478–490. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68792-6 40

20. Rodriguez, D., et al.: Advanced soccer skills and team play of RoboCup 2017
teensize winner NimbRo. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F.
(eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 435–447. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00308-1 36

21. Allgeuer, P., Behnke, S.: Hierarchical and state-based architectures for robot behav-
ior planning and control. In: 8th Workshop on Humanoid Soccer Robots, Interna-
tional Conference on Humanoid Robots (Humanoids) (2013)

22. Behnke, S.: Online trajectory generation for omnidirectional biped walking. In:
ICRA (2006)

23. Allgeuer, P., Behnke, S.: Fused angles: a representation of body orientation for
balance. In: IROS (2015)

24. Allgeuer, P., Behnke, S.: Omnidirectional bipedal walking with direct fused angle
feedback mechanisms. In: Humanoids (2016)

http://arxiv.org/abs/1511.00561
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1706.04983
https://doi.org/10.1007/978-3-319-68792-6_40
https://doi.org/10.1007/978-3-030-00308-1_36

NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize 449

25. Rodriguez, D., Brandenburger, A., Behnke, S.: Combining simulations and real-
robot experiments for Bayesian optimization of bipedal gait stabilization. In: Holz,
D. et al. (eds.) RoboCup 2018. LNAI, vol. 11374, pp. 70–82. Springer, Cham (2019)

26. Marco, A., et al.: Virtual vs. real: trading off simulations and physical experiments
in reinforcement learning with Bayesian optimization. In: ICRA (2017)

27. Hennig, P., Schuler, C.: Entropy search for information-efficient global optimiza-
tion. J. Mach. Learn. Res. 13, 1809–1837 (2012)

HELIOS2018: RoboCup 2018 Soccer
Simulation 2D League Champion

Hidehisa Akiyama1(B), Tomoharu Nakashima2, Takuya Fukushima2,
Jiarun Zhong2, Yudai Suzuki2, and An Ohori2

1 Fukuoka University, Fukuoka, Japan
akym@fukuoka-u.ac.jp

2 Osaka Prefecture University, Osaka, Japan
tomoharu.nakashima@kis.osakafu-u.ac.jp,

takuya.fukushima@edu.osakafu-u.ac.jp

Abstract. The RoboCup Soccer Simulation 2D League is the oldest of
the RoboCup competitions. The 2D soccer simulator enables to teams of
simulated autonomous agents to play a game of soccer with realistic rules
and sophisticated game play. This paper introduces the RoboCup 2018
Soccer Simulation 2D League champion team, HELIOS2018, a united
team from Fukuoka University and Osaka Prefecture University. The
overview of the team’s two recent research themes is also described. The
first one is the method of online search of cooperative behavior and
several approaches to acquire the appropriate evaluation functions. The
second one is an opponent analysis in order to adopt the team strategy
to the current opponent team online.

1 Introduction

This paper introduces the RoboCup 2018 Soccer Simulation 2D League cham-
pion team, HELIOS2018, a united team from Fukuoka University and Osaka
Prefecture University. The team has been participating in the RoboCup com-
petition since 2000, and won 2010, 2012 [1], 2017 and 2018 competitions. The
team released several open source software for developing simulated soccer team
using the RoboCup Soccer 2D simulator. A team base code, a visual debugger
and a formation editor are available now. The details can be found in [3].

The reminder of this paper is organized as follows. Section 2 introduces the
Soccer Simulation 2D League. Section 3 introduces our recent approach of online
search of cooperative behavior. Section 4 introduces our approach of opponent
analysis. Section 5 concludes.

2 Soccer Simulation 2D League

The RoboCup Soccer Simulation 2D League is the oldest of the RoboCup com-
petition [9]. The simulation system1 enables two teams of 11 autonomous player
1 Available at: https://github.com/rcsoccersim.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 450–461, 2019.
https://doi.org/10.1007/978-3-030-27544-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_37&domain=pdf
https://github.com/rcsoccersim
https://doi.org/10.1007/978-3-030-27544-0_37

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 451

agents and an autonomous coach agent to play a game of soccer with realistic
rules and game play. Figure 1 shows a screenshot of the 2D soccer simulator.
Player agents receive a visual sensor message, an aural sensor message and a
body sensor message from the simulation server, and can send few types of
abstract action command (kick, dash, turn, turn neck, and so on). In the game
of RoboCup Soccer Simulation 2D League, player agents make a decision at
each cycle in real time. A game consists of 6000 cycles, thus the decision making
process of each player is executed about 6000 times. The 2D soccer simulator
does not model the motion of any particular physical robot, but does capture
realistic team level strategic interactions. Therefore, the performance of a team
depends on the decision process of its agents. Due to its functions and stability,
the 2D soccer simulator is known as a good research and educational tool for
multiagent systems and artificial intelligence.

In 2018, up to 16 teams were allowed to pass the qualificaton process.
Finally, 13 teams participated in the competition. HELIOS2018 won the cham-
pionship with 18 wins and 1 loss and 1 draw, scoring 75 goals and conceding 9
goals. CYRUS2018 from Atomic Energy High School won the second place, and
MT2018 from Hefei University won the third place.

Fig. 1. A screenshot of the 2D soccer simulator. This game shows the RoboCup
2018 final between CYRUS2018 (Atomic Energy High School, Iran) and HELIOS2018
(Fukuoka University and Osaka Prefecture University, Japan).

452 H. Akiyama et al.

3 Online Search of Cooperative Behavior

This section shows an overview of online search of cooperative behavior imple-
mented in our team. First, the model of cooperative behavior and its planning
process are described. Then, our recent approaches for acquiring the evaluation
function are described.

3.1 Action Sequence Planning

In order to model the cooperative behavior among players as action sequence
planning, we employed a tree search method for generating and evaluating action
sequences performed by multiple players [2]. This method searches for the best
sequence of ball kicking actions among several teammate players using a tree-
structured candidate action generator and an evaluation function of the candi-
date actions. A lot of ball kicking action plans are generated during the search
process and the best action plan is selected based on the evaluation value. In
the current implementation, this planning process is only made by a ball kicker
(called a kicker hereafter). First, the candidate actions are generated from the
current situation of the soccer field. Each action is assigned an evaluation value
that represents the quality of the action. The selected action is then used as a
second kicking point to generate further candidate actions. This process expands
the sequence of candidate actions in a tree form. Best first search algorithm is
used to traverse a tree and to expand nodes. A path from the root node to
the branch represents a kick action sequence that defines a certain coopera-
tive behavior. We assume the considered actions are abstracted ones, such as
pass, dribble and shoot. Figure 2 shows an example of kick action sequence. The
example sequence starts with a pass from Player 10 to Player 7. Then Player
7 dribbles to a position where it passes the ball to Player 9, who finally makes
a shoot. Since we consider only ball kicking actions, move actions such as ball
interception are omitted in the figure. In our search process, the action plan is
generated by the first ball kicker. In Fig. 2, Player 10 generates this plan, and
other players cannot know the exact plan or can know it partially by using aural
communication.

An example of the planning process is depicted in Fig. 3. The kicker generates
three candidates for the first action (i.e., pass, pass, and dribble). Each of the
three actions has an evaluation value in the corresponding node. That is, the
evaluation value of the first pass is 30, the second pass is 20, and the dribble
is 15. In this case, the first pass with the highest evaluation value is employed
as the first action. Further candidate actions are generated from the selected
pass action. We call the level of the tree as depth of the action sequence. Two
actions (pass and dribble) in Depth 2 are added as the candidate action with
the corresponding evaluation values. The action sequence is updated as the one
with the highest evaluation value among the candidate. In this case, the pass
in Depth 2 is selected as it has the highest evaluation of 35. Thus the resultant
action sequence is “pass–pass”.

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 453

Fig. 2. An example of action sequence. This image shows the sequence of four actions:
(1) pass from Player 10 to Player 7, (2) dribbling by Player 7, (3) pass from Player 7
to Player 9, and (4) Player 9 shoots to the goal.

The decision of players highly depends on the evaluation function, that com-
putes the evaluation value of each action plan. We have to design an appropriate
evaluation function in order to select the action plan corresponding to the team
strategy and tactics. However, it is difficult to design an appropriate evaluation
function because we have to consider many feature values.

0

2030 15

35 25

passpass dribble

dribblepass

Depth 1

Depth 2

Fig. 3. An example search tree of action sequence planning.

3.2 Pruning in Action Sequence Planning

We use a pruning approach to restrict actions generated in tree search pro-
cess. This approach enables to control players’ action pattern without adjusting
the evaluation function. We propose a pruning method using Support Vector
Machine.

In order to clarify position transition of actions, two continuous variables, x
and y that represent the coordinate value in the soccer field, are discretized. We

454 H. Akiyama et al.

divide the soccer field into n×m grid. In the grid field, if the ball exists in a
grid, the grid takes the value 1, otherwise the grid takes the value 0. This grid
represents n×m dimensional vector.

In our approach, action sequences not intended by the team developer are
pruned during tree search process. The pruning is determined by a classifier of
Support Vector Machine. The labeling method to create a training data set is
described in Fig. 4. After pruning process, only action sequences representing the
tactics intended by the team developer remain. The input to SVM is a discretized
coordinate value of position where kicking action is performed.

Fig. 4. A screenshot of the developed GUI for pruning.

Since SVM is a supervised learning method, we need a training data set to
acquire classifier model. We extract action sequences from game log files. Then,
the team developers set a label to the extracted action sequences using GUI
if that is suitable for their intention. This labeled action sequence is used as
a training data. We propose to apply a clustering method in order to classify
similar action sequences. This approach reduces the human’s action selection
procedure. We use Gaussian mixture and EM algorithm with BIC as a clustering
method. Figure 4 shows our GUI application. Action sequences organized into
one cluster are displayed in the main window. Action sequences intended by the
team developer are labeled “1”, other action sequences are labeled “−1”.

We performed an experiment to evaluate clasification performance of our
SVM. Then, in order to evaluate the effectiveness of our pruning approach, we
compare the perfomance of two teams, HELIOS2016 with the proposed model
and the original HELIOS2016.

In order to evaluate our SVM classifier, we performed simulation games
against 8 teams from RoboCup2016. 100 games were performed for each team.
Then, extracted action sequences are classified by clustering algorithm. Classified
action sequences are labeled by the team developer using our GUI application.
Linear kernel and RBF kernel are used as the kernels of SVM. We applied 10-fold
cross validation to the obtained training data set. We compared the two types of
grid resolutions, 7× 7 and 23× 26. Table 1 shows the result of 7× 7 and Table 2

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 455

Table 1. Accurasy rate of SVM (7× 7)

Kernel Depth: 1 Depth: 2 Depth: 3 Depth: 4

Linear 80.31 81.98 83.65 84.60

RBF 67.93 67.93 67.93 67.93

Table 2. Accurasy rate of SVM (23× 26)

Kernel Depth: 1 Depth: 2 Depth: 3 Depth: 4

Linear 83.44 85.08 86.58 87.45

RBF 67.93 67.93 67.93 67.93

shows the result of 23×26. These results shows Linear kernel is better than RBF
kernel and the 23 × 26 grids is better than the 7 × 7 grids.

In order to evaluate our pruning approach, we performed simulation games
against 8 teams. We used the classifier model with Linear kernel and 23 × 26
grids field. As a result, we find that HELIOS2016 with the proposed method has
a stronger tendency to pass on one side compared with the original team, from
the analysis of pass distribution.

3.3 Knowledge Sharing in Action Sequence Planning

The problem here is that even though the generated action sequence is good,
its execution is not easy. Most of the times, the generated action sequence is
intervened during the course of its execution and it is necessary to plan the
next action sequence again. One reason for this is that non-ball-kicking players
(we call this non-kickers hereafter) do not know the plan of the kicker, which
leads the incomplete formation to perfectly execute the plan. In order to tackle
this problem, knowledge sharing is employed. Knowledge sharing is to have a
common knowledge among different players. In the context of the action sequence
planning in this paper, the knowledge sharing means that the action sequence
generated by non-kickers are made as close to the one planned by the kicker as
possible. To do so, non-kickers focus on obtaining the information around the
kicker as much as possible. Then they try to generate the same action sequence
as that by the kicker. The non-kicker selects the next action considering the
action sequence which will be executed from the current situation.

In order to examine the effectiveness of knowledge sharing, we have done a pre-
liminary experiments using Team opuSCOM, which is based on agent2d. Knowl-
edge sharing is implemented in the opuSCOM players so that all the players are
able to expect the action sequence of a kicker when they are non-kickers. In par-
ticular, we focus on a situation depicted in Fig. 5. As shown in the figure, action
sequences with the depth of less than or equal to two are only considered. Further-
more, it is assumed that all the actions in the plan are passes. This is because it is
easier to measure the effectiveness of the knowledge sharing without considering
the presence of dribbles, which are difficult to differentiate with self passes.

456 H. Akiyama et al.

nonKicker AnonKicker B

Kicker

Fig. 5. Experimental situation.

Using ten teams that participated in the previous domestic as well as inter-
national competitions, the execution rates of the planned action sequences are
measured when knowledge sharing is implemented in Team opuSCOM. First, we
show the success rates of the knowledge sharing in Table 3. The table shows the
average number of planned chain actions as well as successfully shared planned
chain actions in 300 games for each opponent team. From this table, we can see
that knowledge sharing is achieved with high precision.

Table 3. Success rates of the knowledge sharing.

Opponents #Planning Sharing rate (%)

agent2d 95 89.40

HillStone 89 89.64

Esperanza 84 90.16

Toyosu-Galaxy 30 92.20

WIT 51 89.49

Fifty-Storms 100 90.48

ITAndroids 84 89.81

PersianGulf2017 73 87.45

Ri-one2017 65 89.72

opuSCOM (Before) 114 90.29

Next, we investigate the execution of the planned action sequences. Table 4
shows the average number of planned action sequences (#Planning), the suc-
cessful execution rates of the planned action sequences for the depth of one
(D1) and two (D2), and the rate of successful execution of the depth-two action
sequences over the successful depth-one action sequences (D2 per D1). Table 4
also compares the performance of the two versions of opuSCOM, one without
the knowledge sharing (before) and the other with it (after). From this table, we
can see that the successful execution increased by the introduction of knowledge
sharing with the significance level of 5%.

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 457

Table 4. Successful execution rates of planned chain actions.

Opponents #Planning D1 (%) D2 (%) D2 per D1 (%)

agent2d Before 101 73.37 42.12 57.40

After 95 73.39 47.15 64.25

HillStone Before 94 71.92 39.21 54.52

After 89 70.20 45.79 65.23

Esperanza Before 89 72.49 43.53 60.05

After 84 73.34 48.92 66.70

Toyosu-Galaxy Before 29 74.46 30.50 40.96

After 30 75.41 37.12 49.22

WIT Before 51 74.06 44.36 59.90

After 51 73.57 47.56 64.65

FiftyStorms Before 104 67.80 37.52 55.34

After 100 68.73 43.01 62.58

ITAndroids Before 91 73.63 35.61 48.36

After 84 73.95 40.65 54.97

PersianGulf2017 Before 71 70.29 39.74 56.54

After 73 68.67 40.25 58.61

Ri-one2017 Before 67 73.71 36.00 48.84

After 65 73.06 37.03 50.68

opuSCOM (Before) Before 120 71.13 41.04 57.70

After 114 72.43 47.14 65.10

3.4 Learning Evaluation Functions by Supervised Learning Method

During the search process, all action sequences are scored by predefined evalua-
tion functions. Usually, human developers manually design the evaluation func-
tion for their team. However, manual adjustment does not necessarily produce
the optimal function and requires much trial-and error iterative operation. In
order to acquire an appropriate evaluation function, we are trying to apply sev-
eral supervised learning methods.

Learning to Rank algorithm is one of our approaches to acquire the evalua-
tion function that reflects human’s tactical intention. Learning to Rank is one
of the machine learning techniques which is widely used in information retrieval
domain. We applied a linear model of SVMRank [7,8] to acquire the evaluation
function for action sequence planning. SVMRank is one of the methods of Learn-
ing to Rank, that is classified to the pairwise method. In order to create training
data for SVMRank, human trainers are only required to choose preferred action
sequences from all generated ones. We developed a viewer application that can
visualize generated action sequences and enables us to choose them intuitively.
We can observe the list of generated action sequences and their overview on the
soccer field (Fig. 6). The details of this approach can be found in [4].

458 H. Akiyama et al.

Fig. 6. Viewer application to choose preferred action sequences.

In another approach, we employed a neural network to model an expert
team’s evaluation function [6]. The neural network is trained by using positive
and negative episodes of action sequences that are extracted from game logs.
We used two versions of input features. One is the position at the next kick
(xn, yn), which means that a two-dimensional input feature vector is used for
training data. And the other input features are the position at the current kick
and the ball position at the next kick ((xc, yc) and (xn, yn)). These features do
not contain player positions.

The extracted episodes from log files are converted to generate training data
for the learning of neural networks. For two-dimensional training data, the ball
positions in an episode are separated into individual ball positions. Each of such
ball positions is used as a training vector which consists of the ball position
(xn, yn) as well as a positive/negative target value. This process is shown in the
above side of Fig. 7. On the other hand, in the case of four-dimensional training
data, a pair of successive two ball positions are used as a training vector. The
former term of the pair is regarded as the current ball position and the latter is
the predicted ball position at the next kick. Each of the two ball positions in the
pair is concatenated to generate a four-dimensional input vector (xc, yc, xn, yn).
The target value for the generated vector is determined by the label (i.e., positive
or negative) that is associated with the episode that the four-dimensional vector
was generated from. The lower part of Fig. 7 shows this process.

This neural network approach tries to mimic other strong team’s strategy.
However, we often need to modify a part of obtained strategy in order to affect
team developer’s preference. We are planning to integrate the idea of first app-
roach to the second approach.

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 459

Fig. 7. Conversion of an episode into training data

4 Opponent Analysis

In this league, one of the essential tasks in the development of a team is to design
an effective strategy. The sooner the opponent team’s strategy is identified, the
sooner the team can adapt its strategy in order to increase its chance to win the
game. In this section, we introduce a method for identifying opponent teams’
strategies.

We define a team strategy as the player’s positioning during a game. To
use players’position as the inputs of the learning model requires to consider
their uniform numbers. Thus, the order of the players would be a problem in
the construction of the model. To cope with this issue, an opponent formation
is numerically expressed by discretizing the soccer field by a grid as shown in
Fig. 8. Then, the number of players present in each cell is counted. The value of
each cell is used as the input of the learning model. The value in each cell shows
the number of opponent players at a certain cycle, and the results are integrated.
Then, the average value is computed by dividing the integration obtained so far
by the number of observed cycles. This set of the average values is used as input
data of our identification model. For example, if the field is discretized by a grid
of size 6 × 4, opponent formation is expressed by a 24-dimensional vector.

The input vectors are used to train a supervised-learning-based classification
methods. SVM is employed as our identification model in order to classify the
type of opponents teams’ formations. The accuracy of the model is high even
for short amount of time spent to analyze the opponent formation. The detailed
results can be found in [5].

460 H. Akiyama et al.

Fig. 8. Discretization of the soccer field by a grid of size 6× 4.

5 Conclusion

This paper introduced the champion or RoboCup 2018 Soccer Simulation 2D
league. First, the overview of the competition is described. Then, we described
our current research topics, online search of cooperative behavior and opponent
analysis. The HELIOS team won 3 championships in the past RoboCup compe-
titions. Currently, our released software are widely used in the 2D community
not only for the competition but for the research.

References

1. Akiyama, H., Nakashima, T.: HELIOS2012: RoboCup 2012 soccer simulation 2D
league champion. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.)
RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 13–19. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39250-4 2

2. Akiyama, H., Aramaki, S., Nakashima, T.: Online cooperative behavior planning
using a tree search method in the RoboCup soccer simulation. In: Proceedings of
4th IEEE International Conference on Intelligent Networking and Collaborative
Systems (INCoS), pp. 170–177 (2012)

3. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the
RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 46

4. Akiyama, H., Fukuyado, M., Gochou, T., Aramaki, S.: Learning evaluation function
for RoboCup soccer simulation using humans’ choice. In: Proceedings of SCIS & ISIS
2018 (2018)

5. Fukushima, T., Nakashima, T., Akiyama, H.: Online opponent formation identi-
fication based on position information. In: Akiyama, H., Obst, O., Sammut, C.,
Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 241–251.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 20

6. Fukushima, T., Nakashima, T., Akiyama, H.: Mimicking an expert team through
the learning of evaluation functions from action sequences. In: Holz, D. et al. (eds.)
RoboCup 2018. LNAI, vol. 11374, pp. xx–yy. Springer, Cham (2019)

https://doi.org/10.1007/978-3-642-39250-4_2
https://doi.org/10.1007/978-3-662-44468-9_46
https://doi.org/10.1007/978-3-030-00308-1_20

HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion 461

7. Joachims, T.: Making large-scale support vector machine learning practical. In:
Advances in Kernel Methods, pp. 169–184. MIT Press (1999)

8. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD) (2006)

9. Noda, I., Matsubara, H.: Soccer server and researches on multi-agent systems. In:
Proceedings of IROS-96 Workshop on RoboCup, pp. 1–7 (1996)

UT Austin Villa: RoboCup 2018 3D
Simulation League Champions

Patrick MacAlpine1(B), Faraz Torabi2, Brahma Pavse2, John Sigmon2,
and Peter Stone2

1 Microsoft Research, Redmond, USA
patmac@microsoft.com

2 The University of Texas at Austin, Austin, USA
{faraztrb,brahmasp,johnsigmon}@utexas.edu, pstone@cs.utexas.edu

Abstract. The UT Austin Villa team, from the University of Texas at
Austin, won the 2018 RoboCup 3D Simulation League, winning all 23
games that the team played. During the course of the competition the
team scored 143 goals without conceding any. Additionally, the team
won the RoboCup 3D Simulation League goalie challenge. This paper
describes the changes and improvements made to the team between 2017
and 2018 that allowed it to win both the main competition and goalie
challenge.

1 Introduction

UT Austin Villa won the 2018 RoboCup 3D Simulation League for the seventh
time in the past eight years, having also won the competition in 2011 [1], 2012 [2],
2014 [3], 2015 [4], 2016 [5], and 2017 [6] while finishing second in 2013. During
the course of the competition the team scored 143 goals and conceded none along
the way to winning all 23 games the team played. Many of the components of
the 2018 UT Austin Villa agent were reused from the team’s successful previous
years’ entries in the competition. This paper is not an attempt at a complete
description of the 2018 UT Austin Villa agent, the base foundation of which is the
team’s 2011 championship agent fully described in a team technical report [7],
but instead focuses on changes made in 2018 that helped the team repeat as
champions.

In addition to winning the main RoboCup 3D Simulation League compe-
tition, UT Austin Villa also won the RoboCup 3D Simulation League goalie
challenge. This paper also serves to document the goalie challenge and the app-
roach used by UT Austin Villa when competing in the challenge.

The remainder of the paper is organized as follows. In Sect. 2 a description
of the 3D simulation domain is given. Section 3 details changes and improve-
ments to the 2018 UT Austin Villa team: variable distance fast walk kicks and

P. MacAlpine—The first author did the majority of the work for this publication while
a postdoc at the University of Texas at Austin.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 462–475, 2019.
https://doi.org/10.1007/978-3-030-27544-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_38&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_38

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 463

a passing strategy incorporating deep learning, while Sect. 4 analyzes the con-
tributions of these changes in addition to the overall performance of the team
at the competition. Section 5 describes and analyzes the goalie challenge, while
also documenting the overall league technical challenge consisting of both the
goalie challenge and a free/scientific challenge, while Sect. 6 concludes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark [8], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics Engine
(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing two 5 min halves of soccer on
a 30 × 20 m field. The robot agents in the simulation are modeled after the
Aldebaran Nao robot, which has a height of about 57 cm, and a mass of 4.5 kg.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20 ms), while joint
effectors allow the agent to specify the speed/direction in which to move a joint.

Visual information about the environment is given to an agent every third
simulation cycle (60 ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120◦). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40 ms) by sending 20 byte messages.

In addition to the standard Nao robot model, four additional variations of
the standard model, known as heterogeneous types, are available for use. These
variations from the standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Teams must use at least
three different robot types, no more than seven agents of any one robot type,
and no more than nine agents of any two robot types.

3 Changes for 2018

While many components developed prior to 2018 contributed to the success of
the UT Austin Villa team including dynamic role assignment [9], marking [10],
and an optimization framework used to learn low level behaviors for walking
and kicking via an overlapping layered learning approach [11], the following
subsections focus only on those that are new for 2018: variable distance fast
walk kicks and a passing strategy incorporating deep learning. A performance
analysis of these components is provided in Sect. 4.1.

464 P. MacAlpine et al.

3.1 Variable Distance Fast Walk Kicks

This section discusses an improvement to fast walk kicks which were first intro-
duced for the 2017 competition. A fast walk kick is the ability of an agent to
approach the ball and kick it without having to first stop and enter a stable
standing position. The amount of time it takes for agents to approach and kick
the ball is an important consideration as kick attempts that take longer to per-
form give opponents a better chance to stop them from being executed.

For the 2017 competition the UT Austin Villa team made large improve-
ments by incorporating fast walk kicks and reducing kicking times [6]. In 2017
two different fast walk kick distances were optimized: one for long distance and
a shorter distance lower height kick that would not accidentally travel over the
goal when taking a shot. New for the 2018 competition, fast walk kicks were opti-
mized for several distances in 1 m increments from 18 m down to 5 m. Kicks were
optimized in discrete distances in a similar manner to how the team previously
optimized slower variable distance kicks [4] as opposed to learning a kicking skill
that adjusts its distance [12]. Having a larger set of distances to kick the ball to
provides better passing options for team play.

The UT Austin Villa team specifies kicking motions through a periodic state
machine with multiple key frames, where each key frame is a parameterized
static pose of fixed joint positions. Figure 1 shows an example series of poses
for a kicking motion. The joint angles are optimized using the CMA-ES [13]
algorithm and overlapping layered learning [11] methodologies. Kicking motion
angle positions were learned for every joint—except for those controlling the
position of the robot’s head as we wanted to ensure it stayed looking at the
ball—over each of 12 contiguous simulation cycles resulting in ≈260 parameters
being optimized for each kick distance.

Fig. 1. Example of a fixed series of poses that make up a kicking motion.

During learning the robot runs through an optimization task where it per-
forms ten kick attempts beginning from different positions behind the ball, with
these kick attempt starting positions being at various offset angle positions one
meter from the ball. For each kick attempt the robot walks toward a specific
offset position behind the ball from which to execute the kicking motion—the X
and Y offset positions behind the ball from which to start the kick are param-
eters of a kick that are also learned. Once the offset position behind the ball

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 465

is reached, the robot kicks the ball toward a target position that is the desired
kick distance away from the starting position of the ball in the forward direction
(toward the opponent’s goal) of the field. At the conclusion of a kick attempt
a fitness value—how good the kick attempt was—is computed, and the overall
fitness for a kick is the average fitness of all kick attempts using that kick. The
fitness function for a kick attempt at a particular target distance is as follows:

fitnessdist =
{ −(targetDistance2) : Penalty

−(kickDistanceFromTarget2) : Otherwise

A penalty condition is one of the following: the agent fell over, the agent ran
into or missed the ball, or the kick attempt took too long (over 12 s to make
contact with the ball) and timed out. The fitness an agent receives when there
is a penalty is the same as if the ball did not move during a kick attempt. A
perfect kick’s fitness is 0. The relative difference in fitness between kicks does not
matter as CMA-ES only uses ordinal ranking of fitness values during learning.

Each variable distance fast walk kick was optimized with CMA-ES by running
300 generations with a population size of 300. The resulting fitness for most of
the different distance kicks was greater than −1, meaning the average squared
error of distance was less than a meter.

Longer distance kicks were learned first using initial parameter seed values
from our longest 2017 pre-existing fast walk kick which can travel close to 20 m.
Kicks were learned in descending order of distance, and as new shorter distance
kicks were learned they were then used as seeds for even shorter kicks.

3.2 Deep Learning Passing Strategy

Before the 2018 competition, we used the hand-tuned heuristic scoring function
shown in Eq. 1 to decide where to kick the ball for a pass. The equation rewards
kicks that move the ball towards the opponent’s goal, penalizes kicks that move
the ball near opponents, and rewards kicks that move the ball near a teammate.
All distances in Eq. 1 are measured in meters. A primary reason for Eq. 1’s
effectiveness is that it efficiently evaluates the value of different kicking locations.

score(target) =

−‖opponentGoal − target‖
∀opp ∈ Opponents,−.5 ∗ max(64 − ‖opp − target‖2, 0)
−.5 ∗ max(64 − ‖closestOpponentToTarget − target‖2, 0)
+ max(10 − ‖closestTeammateToTarget − target‖, 0)

(1)

While efficient and successful, Eq. 1 is potentially very limited. Firstly, it does
not capture the specific positions of players from the kick target. Secondly, the
heuristic’s restrictive nature forces us to use a different hand-tuned scoring func-
tion to handle set plays such as kick-offs. In an effort to tackle these limitations,
we used a deep learning based approach for RoboCup 2018.

466 P. MacAlpine et al.

In our approach, we determine the value of potential passing locations by
training a value network. While we evaluate the performance of our network
in regular gameplay scenarios, we have trained our network using a supervised
learning problem formulation with only indirect kick data against various teams
in the league.

Let the total data set S of size m be {(xi, yi)}mi=1. A single input, xi, to the
network is a 49 dimensional feature vector representing the state of the game ie:
the play mode, the coordinates of 22 player locations, ball location, and potential
pass location. The output, yi, of the network is a single scalar value between [0, 1]
that denotes the value of the potential pass location. During our data collection
process, we determine a single yi by repeatedly restoring the state according to
xi ten times. In each of these restorations, the team receives a reward of +1 if
it scores a goal within 20 s, else it receives a reward of 0. The average reward of
these ten runs is yi. Naturally, for each configuration of player and ball locations,
there are many valid passing locations; hence, there are many training examples
for a single configuration. Here, a valid location is one that is at most 20 m away
from the initial ball position and is within the field bounds.

Furthermore, the data was augmented in the following manner:

1. The input into the network is organized in a canonical representation. Specif-
ically, we sort players based on the x coordinates from the left to right of the
field.

2. We also pre-process the data to ensure symmetry, which augments our data.
Along the y axis, we ensure that inputs into the neural network are such that
the y coordinate of the ball is positive by flipping all the y coordinates of the
input if the y coordinate of the ball is negative. This allows us to reduce the
number of possible data examples by half, which allows us to converge faster.

Training. Given that a large network can overfit and be computationally expen-
sive, the best size neural network was based on two factors - its potential to overfit
and its compliance with the 20 ms cycle time constraint. Table 1 shows the var-
ious fully connected network capacities tested along with their computational
cost related metrics.

Table 1. The average range of time taken, max time taken, and max packets missed
during a single forward pass for different networks. Time units are in milliseconds. Bold
indicates selected network.

Neurons per layer Avg. range of time cost Max time cost Max missing packets

1 128 128 64 32 1 0.015–0.04 0.095 0

2 256 128 64 32 1 0.03–0.06 0.134 0

3 128 128 64 32 16 1 0.017–0.05 0.102 0

4 512 256 128 64 32 1 ∼0.15 ∼0.2 5

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 467

Ultimately, we employed network 3 (in bold) for RoboCup 2018, since its large
size would enhance the network’s ability to represent complicated functions as
well as not cause any agent to miss packets.

Below are the training specifics for network 3:

– Training was offline with the data collected by the method described earlier.
– Data set size: ∼4600 states. Nearly ∼772000 training examples after augmen-

tation. Network was explicitly trained to handle indirect kicks.
– Training/Test split: 90% and 10%.
– Update Algorithm: Backpropagation.
– Loss Function: Mean Squared Error of the predicted values and true values

for a given kick location.
– Optimizer: Adam Optimizer [14].
– Epochs: 10000.
– Architecture: 5 hidden layers with 128, 128, 64, 32, 16, 1 neurons respectively.
– Activation function: Leaky ReLU.
– Weight initialization: Xavier.
– Learning rate: 0.00001.
– Regularization parameter: 0.00025.
– Mini-batch gradient descent: 64 batch size.
– Deep Learning Framework: Tensorflow.

Once the network is trained, it performs online evaluation of potential passing
locations, and an agent kicks to the location with the highest value.

4 Main Competition Results and Analysis

In winning the 2018 RoboCup competition UT Austin Villa finished with a per-
fect record of 23 wins and no losses.1 During the competition the team scored
143 goals while conceding none. Despite finishing with a perfect record, the rela-
tively few number of games played at the competition, coupled with the complex
and stochastic environment of the RoboCup 3D simulator, make it difficult to
determine UT Austin Villa being better than other teams by a statistically sig-
nificant margin. At the end of the competition, however, all teams were required
to release their binaries used during the competition. Results of UT Austin Villa
playing 1000 games against each of the other six teams’ released binaries from
the competition are shown in Table 2.

UT Austin Villa finished with at least an average goal difference greater than
2.6 goals against every opponent. UT Austin Villa’s strong defense and use of
marking [10] limited opponent scoring opportunities, and half the opponents
were unable to score any goals against UT Austin Villa. The only team to score
more than 100 goals during the 1000 games played against UT Austin Villa was
FCPortugal with 499, and of those 452 (over 90%) were scored from a kickoff set

1 Full tournament results can be found at http://www.cs.utexas.edu/∼AustinVilla/?
p=competitions/RoboCup18#3D.

http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup18#3D
http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup18#3D

468 P. MacAlpine et al.

Table 2. UT Austin Villa’s released binary’s performance when playing 1000 games
against the released binaries of all other teams at RoboCup 2018. This includes place
(the rank a team achieved at the 2018 competition), average goal difference (values in
parentheses are the standard error), win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

magmaOffenburg 2 2.648 (0.047) 939-4-57 2708/60

FCPortugal 3 4.572 (0.055) 997-0-3 5071/499

BahiaRT 4 6.734 (0.057) 1000-0-0 6735/1

KgpKubs 5 6.586 (0.052) 1000-0-0 6586/0

Miracle3D 6 5.878 (0.048) 1000-0-0 5878/0

ITAndroids 7 9.104 (0.058) 1000-0-0 9104/0

play the FCPortugal team developed that allowed for an almost immediate and
unblockable shot on goal. Additionally, UT Austin Villa won all but 60 games
that ended in ties, and 4 games that ended in losses, out of the 6000 that were
played in Table 2 with a win percentage greater than 93% against all teams.
These results show that UT Austin Villa winning the 2018 competition was far
from a chance occurrence. The following subsection analyzes the contribution
of the new variable distance fast walk kicks and deep learning passing strategy
components (described in Sect. 3) to the team’s dominant performance.

4.1 Analysis of Components

To analyze the contribution of new components for 2018—variable distance fast
walk kicks and a deep learning passing strategy (Sect. 3)—to the UT Austin
Villa team’s performance, we played 1000 games between a version of the 2018
UT Austin Villa team with each of these components turned off—and no other
changes—against each of the RoboCup 2018 teams’ released binaries. Results
comparing the performance of the UT Austin Villa team with and without using
these components are shown in Table 3.

Results are mixed in terms of improved performance against the other teams’
released binaries when using variable distance walk kicks and our deep learn-
ing passing strategy. Both new components help against the top three teams
(UTAustinVilla, magmaOffenburg, and FCPortugal), however, which is good as
improved performance is more important against better teams. It might be the
case that a larger set of passing location options coupled with a better decision
on where to pass the ball is beneficial against more skilled teams, while against
less skilled teams the best strategy is just to kick the ball as far as possible down
the field and then run after it.

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 469

Table 3. Different versions of the UTAustinVilla team when playing 1000 games
against the released binaries of all teams at RoboCup 2018. Values shown are average
goal difference with values in parentheses being the difference in performance from the
team’s released binary.

Opponent Released Binary No Var. Dist. Walk Kicks No Deep Learn Pass Str.

UTAustinVilla 0a −0.073 (−0.073) −0.114 (−0.114)

magmaOffenburg 2.648 2.525 (−0.123) 2.441 (−0.207)

FCPortugal 4.572 4.478 (−0.094) 4.458 (−0.114)

Miracle3D 5.878 6.139 (+0.261) 6.133 (+0.255)

KgpKubs 6.586 6.371 (−0.215) 6.746 (+0.160)

BahiaRT 6.734 6.828 (+0.094) 6.655 (−0.079)

ITAndroids 9.104 8.982 (−0.122) 9.113 (+0.009)
aGames were not played, but assumed to be an average goal difference of 0 in expectation

with self play.

4.2 Additional Tournament Competition Analysis

To further analyze the tournament competition, Table 4 shows the average goal
difference for each team at RoboCup 2018 when playing 1000 games against all
other teams at RoboCup 2018.

Table 4. Average goal difference for each team at RoboCup 2018 (rows) when playing
1000 games against the released binaries of all other teams at RoboCup 2018 (columns).
Teams are ordered from most to least dominant in terms of winning (positive goal
difference) and losing (negative goal difference).

UTA mag FCP Bah Kgp Mir ITA

UTAustinVilla — 2.648 4.572 6.734 6.586 5.878 9.104

magmaOffenburg −2.648 — 0.376 2.710 2.567 4.853 4.171

FCPortugal −4.572 −0.376 — 1.804 2.298 4.598 2.826

BahiaRT −6.734 −2.710 −1.804 — 0.581 1.761 1.266

KgpKubs −6.586 −2.576 −2.298 −0.581 — 0.527 0.207

Miracle3D −5.878 −4.853 −4.598 −1.761 −0.527 — 0.022

ITAndroids −9.104 −4.171 −2.286 −1.266 −0.207 −0.022 —

It is interesting to note that the ordering of teams in terms of winning (pos-
itive goal difference) and losing (negative goal difference) is strictly dominant—
every opponent that a team wins against also loses to every opponent that defeats
that same team. Relative goal difference does not have this same property, how-
ever, as a team that does better against one opponent relative to another team
does not always do better against a second opponent relative to that same team.
UT Austin Villa is dominant in terms of relative goal difference, however, as UT
Austin Villa has a higher goal difference against each opponent than all other
teams against the same opponent.

470 P. MacAlpine et al.

Table 5. Overall ranking and points totals for each team participating in the RoboCup
2018 3D Simulation League technical challenge as well as ranks and points awarded for
each of the individual league challenges that make up the technical challenge.

Team Overall Free Goalie

Rank Points Rank Points Rank Points

magmaOffenburg 1 42 1 25 3–5 17a

FCPortugal 2 32 2 15 3–5 17a

UTAustinVilla 3 30 3 5 1 25

KgpKubs 4 21 — — 2 21

BahiaRT 5 17 — — 3–5 17a

ITAndroids 6 5 — — 6 5
aResults released from the competition awarded tied teams the
points total for the highest rank of the range they finished
within. As determining points totals for tied teams was not
explicitly specified in the rules, we contend the proper award
is instead the average points total across the range of tied for
places as is the case for the Standard Platform League technical
challenge rules (https://spl.robocup.org/wp-content/uploads/
downloads/Challenges2013.pdf) from which the 3D Simulation
League scoring system was derived. Teams receive 13 points
using the average points total for the range of positions they are
tied for, with resulting overall scores being magmaOffenburg 38,
FCPortugal 28, and BahiaRT 13.

5 Technical Challenges

During the competition there was an overall technical challenge consisting of two
different league challenges: free and goalie challenge. For each league challenge a
team participated in points were awarded toward the overall technical challenge
based on the following equation:

points(rank) = 25 − 20 ∗ (rank − 1)/(numberOfParticipants − 1)

Table 5 shows the ranking and cumulative team point totals for the technical
challenge as well as for each individual league challenge. UT Austin Villa won
the goalie challenge and finished third in the free challenge resulting in a third
place finish in the overall technical challenge. The following subsections detail
UT Austin Villa’s participation in each league challenge.

5.1 Free Challenge

During the free challenge, teams give a five minute presentation on a research
topic related to their team. Each team in the league then ranks the presentations
with the best receiving a score of 1 votes, second best a score of 2, etc. Addi-
tionally several respected research members of the RoboCup community outside

https://spl.robocup.org/wp-content/uploads/downloads/Challenges2013.pdf
https://spl.robocup.org/wp-content/uploads/downloads/Challenges2013.pdf

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 471

the league rank the presentations, with their scores being counted double. The
winner of the free challenge is the team that receives the lowest score. Table 6
shows the results of the free challenge in which UT Austin Villa was awarded
third place.

Table 6. Results of the free challenge.

Team Votes

magmaOffenburg 14

FCPortugal 16

UTAustinVilla 18

UT Austin Villa’s free challenge submission2 presented the team’s use of deep
learning to develop a passing strategy discussed in Sect. 3.2. The magmaOffen-
burg team talked about learning model-free behaviors [15], and the FCPortugal
team presented a hybrid ZMP-CPG based walk engine for biped robots [16].

5.2 Goalie Challenge

A goalie challenge3 was held where a goalie faces 12 shots from random starting
positions on the field, and then is given a score for the percentage of shots the
goalie is able to stop. Starting positions of shots range in one meter increments
from 3 to 15 m in the forward direction from the goal, and in one meter incre-
ments from 0 to 9 m toward each side of the goal. Target locations for shots are
either the center or toward either side of the goal. There are two different shot
speeds: slow and fast, and an initial Z velocity as an integer from 0–5 meters
per second is added to a shot to determine its height. Given the different shot
starting positions, target locations, and velocities, there are a total of 8892 pos-
sible shots. Some of the possible shots go over the goal and miss, however, and
so for the competition only the shots that will score on an empty goal (8316
possible different shots) are used. At the beginning of the challenge a random
seed is selected to determine which 12 shots will be used during the challenge.
If after the conclusion of the challenge more than one team has the same score,
those teams face a second set of different shots to serve as a tie breaker.

2 Free challenge entry description available at http://www.cs.utexas.edu/
∼AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2018/files/
UTAustinVillaFreeChallenge2018.pdf.

3 Framework for running the goalie challenge at https://github.com/
magmaOffenburg/magmaChallenge.

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2018/files/UTAustinVillaFreeChallenge2018.pdf
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2018/files/UTAustinVillaFreeChallenge2018.pdf
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2018/files/UTAustinVillaFreeChallenge2018.pdf
https://github.com/magmaOffenburg/magmaChallenge
https://github.com/magmaOffenburg/magmaChallenge

472 P. MacAlpine et al.

The UT Austin Villa team’s goalie positions itself to block shots and has
three separate goalie diving behaviors for if the ball is kicked straight at, a little
to the side, and further to the side of the goalie as described in [7]. Figure 2
shows screenshots of these dives. The diving behaviors consist of a series of fixed
poses parameterized by different joint angles. Prior to this year’s competition
the team’s diving behaviors were only hand-designed and hand-tuned. Once on-
site at the competition the team decided to optimize these goalie dives for the
goalie challenge. Using a training task consisting of a subset of 360 shots chosen
to be well distributed across the set of all possible challenge shots, 84 joint angle
parameters for the goalie dives were optimized across 200 generations of the
CMA-ES [13] algorithm with a population size of 150. After learning, the new
goalie dives were able to stop 46.6% of all 8000+ possible shots as compared to
being able to stop only 36.4% of shots before learning. These new goalie dives
were also added to and used by the goalie during the final rounds of the main
RoboCup competition.

(a) Central (b) Side split (c) Lateral lunge

(d) Central optimized (e) Side split optimized (f) Lateral lunge optimized

Fig. 2. Screenshots of the original hand-tuned (a–c) and optimized (d–f) goalie diving
behaviors.

Results of the goalie challenge are shown in Table 7. UT Austin Villa won
the challenge by saving 50% of the shots the goalie faced which is twice as many
as any of the other teams competing in the challenge.

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 473

Table 7. Scores for each of the teams competing in the goalie challenge.

Team Score Score Tie Breaker

UTAustinVilla 0.50 —

KgpKubs 0.25 0.08

BahiaRT 0.25 0.00

FCPortugal 0.25 0.00

magmaOffenburg 0.25 0.00

ITAndroids 0.08 —

6 Conclusion

UT Austin Villa won the 2018 RoboCup 3D Simulation League main competition
as well as the goalie challenge.4 Data taken using released binaries from the
competition show that UT Austin Villa winning the competition was statistically
significant. The 2018 UT Austin Villa team also improved from 2017 as it was
able to beat the team’s 2017 champion binary by an average of 0.171 (± 0.042)
goals across 1000 games.

In an effort to both make it easier for new teams to join the RoboCup 3D
Simulation League, and also provide a resource that can be beneficial to existing
teams, the UT Austin Villa team has released their base code [17].5 This code
release provides a fully functioning agent and good starting point for new teams
to the RoboCup 3D Simulation League (it was used by two other teams at
the 2018 competition: KgpKubs and Miracle3D). Additionally the code release
offers a foundational platform for conducting research in multiple areas including
robotics, multiagent systems, and machine learning.

Acknowledgments. This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in part by NSF
(IIS-1637736, IIS-1651089, IIS-1724157), ONR (N00014-18-2243), FLI (RFP2-000),
DARPA, Intel, Raytheon, and Lockheed Martin. Peter Stone serves on the Board
of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin in accordance with its policy on objec-
tivity in research.

4 More information about the UT Austin Villa team, as well as video from the compe-
tition, can be found at the team’s website: http://www.cs.utexas.edu/∼AustinVilla/
sim/3dsimulation/#2018.

5 Code release at https://github.com/LARG/utaustinvilla3d.

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2018
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2018
https://github.com/LARG/utaustinvilla3d

474 P. MacAlpine et al.

References

1. MacAlpine, P., et al.: UT Austin Villa 2011: a champion agent in the RoboCup 3D
soccer simulation competition. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012) (2012)

2. MacAlpine, P., Collins, N., Lopez-Mobilia, A., Stone, P.: UT Austin Villa:
RoboCup 2012 3D simulation league champion. In: Chen, X., Stone, P., Sucar,
L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 77–88.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39250-4 8

3. MacAlpine, P., Depinet, M., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2014
3D simulation league competition and technical challenge champions. In: Bianchi,
R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS
(LNAI), vol. 8992, pp. 33–46. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18615-3 3

4. MacAlpine, P., Hanna, J., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2015 3D
simulation league competition and technical challenges champions. In: Almeida, L.,
Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp.
118–131. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29339-4 10

5. MacAlpine, P., Stone, P.: UT Austin Villa: RoboCup 2016 3D simulation league
competition and technical challenges champions. In: Behnke, S., Sheh, R., Sarıel, S.,
Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 515–528. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 43

6. MacAlpine, P., Stone, P.: UT Austin Villa: RoboCup 2017 3D simulation league
competition and technical challenges champions. In: Akiyama, H., Obst, O., Sam-
mut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 473–
485. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 39

7. MacAlpine, P., et al.: UT Austin Villa 2011 3D simulation team report. Techni-
cal report AI11-10, The University of Texas at Austin, Department of Computer
Science, AI Laboratory (2011)

8. Xu, Y., Vatankhah, H.: SimSpark: an open source robot simulator developed by
the RoboCup community. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.)
RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 632–639. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44468-9 59

9. MacAlpine, P., Price, E., Stone, P.: SCRAM: scalable collision-avoiding role assign-
ment with minimal-makespan for formational positioning. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)

10. MacAlpine, P., Stone, P.: Prioritized role assignment for marking. In: Behnke, S.,
Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp.
306–318. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 25

11. MacAlpine, P., Stone, P.: Overlapping layered learning. Artif. Intell. 254, 21–43
(2018)

12. Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann, G.: Learning a
humanoid kick with controlled distance. In: Behnke, S., Sheh, R., Sarıel, S., Lee,
D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 45–57. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68792-6 4

13. Hansen, N.: The CMA evolution strategy: a tutorial (2009). http://www.lri.fr/
∼hansen/cmatutorial.pdf

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

https://doi.org/10.1007/978-3-642-39250-4_8
https://doi.org/10.1007/978-3-319-18615-3_3
https://doi.org/10.1007/978-3-319-18615-3_3
https://doi.org/10.1007/978-3-319-29339-4_10
https://doi.org/10.1007/978-3-319-68792-6_43
https://doi.org/10.1007/978-3-030-00308-1_39
https://doi.org/10.1007/978-3-662-44468-9_59
https://doi.org/10.1007/978-3-319-68792-6_25
https://doi.org/10.1007/978-3-319-68792-6_4
http://www.lri.fr/~hansen/cmatutorial.pdf
http://www.lri.fr/~hansen/cmatutorial.pdf

UT Austin Villa: RoboCup 2018 3D Simulation League Champions 475

15. Baur, M., et al.: The magmaOffenburg 2018 RoboCup 3D simulation team. In:
RoboCup 2018 Symposium and Competitions: Team Description Papers (2018)

16. Kasaei, S.M., Simões, D., Lau, N., Pereira, A.: A hybrid ZMP-CPG based walk
engine for biped robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira,
C. (eds.) ROBOT 2017. AISC, vol. 694, pp. 743–755. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-70836-2 61

17. MacAlpine, P., Stone, P.: UT Austin Villa RoboCup 3D simulation base code
release. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS
(LNAI), vol. 9776, pp. 135–143. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68792-6 11

https://doi.org/10.1007/978-3-319-70836-2_61
https://doi.org/10.1007/978-3-319-68792-6_11
https://doi.org/10.1007/978-3-319-68792-6_11

Integrating the Latest Artificial
Intelligence Algorithms into the RoboCup

Rescue Simulation Framework

Arnoud Visser1(B) , Luis G. Nardin2 , and Sebastian Castro3

1 Universiteit van Amsterdam, Amsterdam, The Netherlands
A.Visser@uva.nl

2 Brandenburg University of Technology, Cottbus, Germany
nardin@b-tu.de

3 MathWorks, Natick, MA, USA
Sebastian.Castro@mathworks.com

Abstract. The challenge of the Rescue Simulation League is for a
team of robots or agents to learn an optimal response to mitigate
the effects of natural disasters. To operate optimally, several prob-
lems have to be jointly solved like task allocation, path planning, and
coalition formation. Solve these difficult problems can be quite over-
whelming for newcomer teams. We created a tutorial that demon-
strates how these problems can be tackled using artificial intelligence
and machine learning algorithms available in the matlab® and the
Statistics and Machine Learning Toolbox™. Here we show (1) how to
analyze and model disaster scenario data for developing rescue decision-
making algorithms, and (2) how to incorporate state-of-the-art machine
learning algorithms into Rescue Agent Simulation competition code using
the matlab® Engine API for Java.

Keywords: Machine learning · matlab® · Rescue Agent Simulation

1 Introduction

Urban Search and Rescue (USAR) scenarios offer a great potential to inspire and
drive research in multi-agent and multi-robot systems. Since the circumstances
during real USAR missions are extraordinarily challenging [8], benchmarks based
on them, such as the RoboCup Rescue competitions, are ideal for assessing the
capabilities of these systems. Thus, one goal of the RoboCup Rescue competi-
tions is to compare the performance of algorithms that coordinate and control
teams of either robots or agents performing disaster mitigation tasks.

In particular, the Rescue Agent Simulation competition aims to simulate
large scale natural disasters, such as earthquakes, enabling the exploration of
new forms of autonomous coordination of heterogeneous rescue teams under
adverse conditions. This competition was first demonstrated in the RoboCup

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 476–487, 2019.
https://doi.org/10.1007/978-3-030-27544-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_39&domain=pdf
http://orcid.org/0000-0002-7525-7017
http://orcid.org/0000-0002-4506-2745
http://orcid.org/0000-0001-5754-9959
https://doi.org/10.1007/978-3-030-27544-0_39

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 477

Fig. 1. View of disaster scenario in the Kobe map after an earthquake.

2000 [12] and officially launched in the RoboCup 2001. Participating teams have
their background mainly from artificial intelligence and robotics.

The competition is based on a simulation platform and a set of complex
scenarios representing the conditions of cities after an earthquake (see Fig. 1).
In each scenario, fire brigade, police force and ambulance team agents extin-
guish fires, unblock roads, and rescue civilians trapped inside collapsed buildings,
respectively. The final score in the scenario is calculated based on the number
of rescued civilians and the number of remaining buildings taking into account
the damage caused by the fire. Scenarios typically contain up to 5000 buildings
and up to 1000 civilians, as well as agent teams of fire brigades, police forces
and ambulance teams composed of up to 50 agents each.

The complexity of these scenarios imposes several challenges to the develop-
ment of different aspects of multi-agent systems like task allocation with uncer-
tainty, coalition formation, cooperation, distributed control, and communica-
tion [1]. Artificial intelligence (AI), in particular machine learning (ML) algo-
rithms are very well suited to cope with some of these challenges. For instance,
fire brigades and ambulance teams can optimize their task allocation decisions
by estimating, respectively, the danger of fire ignition in different buildings (dis-
crete state—classification) and the chance of rescuing trapped civilians alive
(continues state—regression).

The implementation of state-of-the-art AI and ML algorithms, their training,
and their integration into the Rescue Agent Simulation competition code can
be quite overwhelming for newcomer teams. Hence we propose that competition
teams take advantage of existing and well-established AI and ML tools to develop
their competition code. Here, we demonstrate1

1. how to use matlab® and add-on packages, such as
the Statistics and Machine Learning Toolbox™, to analyze and model disas-

1 All data as well as Java and matlab® code used to generate the results presented in
this work are available at https://github.com/IntelligentRoboticsLab/Joint-Rescue-
Forces repository.

https://github.com/IntelligentRoboticsLab/Joint-Rescue-Forces
https://github.com/IntelligentRoboticsLab/Joint-Rescue-Forces

478 A. Visser et al.

ter scenario data using both interactive design tools (GUIs) and programming
code. The analysis and modeling provide support to the development of more
elaborate data-driven rescue decision-making algorithms (see Sect. 2).

2. how state-of-the-art ML algorithms can be directly incorporated into the
Agent Development Framework (ADF) [13] using the matlab® Engine API
for Java (see Sect. 3).

2 Interactive Approach

matlab® and the Statistics and Machine Learning Toolbox™ can be used in an
interactive mode to analyze disaster scenario data and create models that agents
can use to base their decisions during the unfolding of these disaster scenarios.

2.1 Unsupervised Methods

Unsupervised machine learning methods can be used to analyze and model dis-
aster scenario data. In the Rescue Agent Simulation competition, clustering
algorithms are interesting for agents to partition maps into sectors and evenly
distribute the search and rescue workload among them [9,10]. matlab® imple-
ments several clustering algorithms, such as k-means [6], k-medoids [4], hierar-
chical clustering [5], Gaussian mixture models [7], and hidden Markov models [2].

We can, for instance, use the matlab® interactive mode to assess which of
these clustering algorithms provides a more evenly distributed number of build-
ings per sector for a specific city map. This assessment first requires that all (x, y)
coordinates of buildings in the city map to be exported into a text file, which
can be accomplished including some Java code into precompute phase of the
agents code (see AbstractSimpleAgent.java lines 79–106). Next, these coor-
dinates are imported into a matrix in matlab® using the textscan command
and subsequently partitioned using one of the clustering algorithms available.

Fig. 2. Partitioning of the buildings in the Paris map using matlab® k-means clus-
tering algorithm. (Color figure online)

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 479

Figure 2 shows the buildings from the Paris map partitioned using the k-
means clustering algorithm. The different shapes and colors represent the asso-
ciation of each building to a specific sector. This partitioning were created with
the [indices,centroids] = kmeans([x,y], 5) command, and the plot gener-
ated with the gscatter(x,y,indices) command (see importBuildingsData.m
and building cluster.m scripts).

2.2 Supervised Methods

Supervised machine learning methods can be used to learn associations between
variables (part of a causal model of the world). Estimates of variables’ value of a
world model can be done with discrete states (classification) or continuous states
(regression). In the Rescue Agent Simulation, competition teams can use these
methods to assess their strategy and the most relevant predictors, for instance,
for ambulance teams to estimate the chance that trapped civilians have to survive
to a rescue operation by predicting their remaining health points (HP) at the
end of a scenario simulation.

To demonstrate the use of matlab® to evaluate the strategy of a simple
agent team, we collected several metrics from multiple runs in multiple scenarios
of this agent team and assessed them using available classification and regres-
sion supervised learning algorithms in matlab®. The metrics colleted were (see
matlab.generator.simple.agent.ambulance.SimpleAmbulanceTeam.java li-
nes 389–420): start and end time of the rescue operation (sTime and eTime),
initial and final Euclidean distance to the nearest refuge (sDist and eDist),
initial and final HP (sHP and eHP), initial and final damage level (sDamage and
eDamage), and initial buriedness (sBuriedness).

In Statistics and Machine Learning Toolbox™, data can be preprocessed with
dimensionality reduction methods like principal component analysis and singular
value decomposition followed by linear or non-linear regression methods. The
results can be visualized with ensembles like random forests, boosted and bagged
regression trees. To learn those ensembles several optimization algorithms like
AdaBoost and TotalBoost are available. We evaluated the accuracy of different
combinations of predictor metrics and concluded that only the metrics with
values of the beginning of the rescue operation were relevant to the prediction
accuracy (i.e., sTime, sDist, sHP, and sDamage).

To use classification, we discretized the eHP according to the ranges: 0 Dead,
1–3000 Critical, 3001–7000 Injured, and 7001–10000 Stable. Then we trained
different classification algorithms in matlab® using this data and the most
accurate classification was obtained using the Weighted K-nearest neighbors
(KNN).

Figure 3 shows the Weighted KNN classification used to predict if a civilian
would be dead, in a critical state, injured or in a stable state at the end of a
scenario simulation. This classification predicts correctly 78.9% of the civilians’
state. Notice, however, that most of the wrong detections (i.e., sum of the num-
bers in the red cells) are above the diagonal green cells in the right panel of Fig. 3
meaning that this trained classifier predicts a civilian in a less severe state than

480 A. Visser et al.

Fig. 3. Classification Learner matlab® app showing predictions of the injury class
of the civilians at the end of the scenario using Weighted K-Nearest Neighbors. Left
panel shows different assessed classifying algorithms and their respective accuracy.
Middle panel shows a scatter plot showing the relationship between the initial dis-
tance to refuge (sDist) and the time the rescue initiated (sTime) with the model pre-
dictions and their correctness. Right panel shows the number of predicted versus true
(or correct) classification of rescue civilians. The diagonal (green) shows the number of
correct classifications, while all other cells represent the number of misclassifications,
how they were classified versus the correct classification. (Color figure online)

the civilian really will be. For instance, there are 9 cases in which the civilian
will die and the classifier predicted it as injured.

We applied regression methods to the same data without discretazing the
eHP and trained different regression algorithms in matlab®. Figure 4 shows an
ensemble fit into a bagged tree model with the estimate of the remaining health
points (HP) at the end of the simulation scenario with a root mean square
error (RMSE) between the predicted and true HP values equals 1167.5 (and
normalized RMSE equals 0.1228).

Fig. 4. Regression Learner matlab® app showing predictions of the chance to survive
(remaining HP) of trapped civilians. Left panel shows different assessed regression
algorithms and their respective root mean square error. Right panel shows the pre-
diction versus true HP value of the trapped civilians at the end of a simulation.

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 481

2.3 Path Planning

If an agent wants to move to a specific location to perform a task, a path plan to
that location has to be defined. Two possible approaches to tackle this problem
are (1) to use path planning algorithms from the matlab® graph and network
algorithms2 or (2) to use graph-routines from Peter Corke’s Robotics Toolbox [3].

Fig. 5. The small Test map of the RoboCup Rescue Agent Simulation competition in
matlab® as topological (left) and metrical graph (right).

First, however, all the roads of a city map need to be converted to a graph
in matlab® format. The nodes of the graph are identified by the roads ID and
they also store the actual (x, y) location of the road to facilitate the visualization
of the results (see Fig. 5). The Java code to generate such a matlab® graph is
called during the precompute phase of the Rescue Agent Simulation simulation,
and its pseudo-code is:
For (Entity next : this . wor ldIn fo . g e tEn t i t i e s ()) {

l o c = this . wor ldIn fo . getLocat ion (next . getID ()) ;

matlab . eva l (”G=addnode (G, tab l e (next . getID () , l o c . f i r s t () , l o c . second ()) ; ”) ;

}
For (Entity next : this . wor ldIn fo . g e tEn t i t i e s ())

Co l l e c t i on areaNeighbours = next . getNeighbours () ;

for (ent i tyID neighbour : areaNeigbours) {
matlab . eva l (”G=addedge (G, f i nd (next . getID ()) , f i nd (neighbour . getID ()) ; ”) ;

}
}
matlab . eva l (” save (' graph .mat ' ,G) ; ”) ;

Once created, the graph in matlab® can be queried, for instance to get
the shortest path between two nodes. This can be done by calling a matlab®

script which contains the function short path = getPath(from,targets), that
loads the graph G, calls the matlab® method [TR,D]=shortestpathtree and
sorts the resulting paths TR based on the distance D. It is possible to specify in
matlab® the algorithm to use (Breadth-first or Dijkstra). It is also possible to
use A*, which is available in Peter Corke’s robotics toolbox [3]. The matlab®

2 https://www.mathworks.com/help/matlab/graph-and-network-algorithms.html.

https://www.mathworks.com/help/matlab/graph-and-network-algorithms.html

482 A. Visser et al.

code of this algorithm is open source and well documented making it possible
to modify the A* algorithm to Dijkstra’s algorithm (by removing the heuristics)
or breadth-first (by not sorting the frontier on distance so far). The only thing
needed is a script to translate from matlab® native graph-format to Peter
Corke’s Pgraph-format. For smaller competition maps like Kobe this can be done
in 13 s (measurement with a computer with a Intel Core i7-8550U processor),
for larger maps like Paris 22 s are needed for this conversion (see Fig. 6). Both
are fast enough for the precompute phase of the competition.

Fig. 6. Maps of Kobe (left) and Paris (right) in Peter Corke’s Pgraph-format.

An advantage of this approach compared to the path-planning methods typ-
ically applied by the Rescue Agent Simulation competition teams is that each
agent can load this a priori map and modify the edges based on the blockades
observed and/or communicated. This information can even be updated when
police force agents clear part of the road.

2.4 ROS Interface

A challenge in the Virtual Robot competition is that whenever an agent reaches
a building, it has to enter that building [11]. The matlab® Robotics System
Toolbox allows to directly control robots and realistic simulation via the Robotics
Operating System (ROS) interface, as demonstrated in the Future of RoboCup
Rescue workshop [14] and the RoboCup@Home Education workshop3.

Another challenge in this competition is the detection of buried victims from
camera images. In the same workshops, victims detection has been demonstrated
using the matlab® deep learning capabilities, a combination of the Neural Net-
work Toolbox, Parallel Computing Toolbox, GPU Coder, and Computer Vision
System Toolbox. Notice that these toolboxes run models deployed to GPU faster
than TensorFlow or Caffe, which is a highly desirable for robotic applications4.

3 http://www.robocupathomeedu.org/learn.
4 https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-

matlab-r2017b/.

http://www.robocupathomeedu.org/learn
https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/
https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 483

3 ADF Integration

In addition to using the matlab® models and algorithms in interactive mode,
they can also be integrated into the Agent Development Framework (ADF) [13]
to run during the simulation execution. ADF is the mandatory agent architec-
ture for all competition teams participating in the Rescue Agent Simulation
competition. This agent architecture is composed of several, highly specialized
modules responsible for different data processing and decision-making tasks, such
as clustering, path planning and task allocation.

The integration of matlab® models into the ADF is based on the matlab®

Engine API for Java®5, which enables Java programs via MatlabEngine class
to interact with matlab® synchronously (startMatlab method) or asyn-
chronously (startMatlabAsync method). In addition to start matlab®, there
is also a possibility to connect synchronously (connectMatlab method) or asyn-
chronously (connectMatlabAsync method) to an existing shared instance. To
share a matlab® instance, enter the command matlab.engine.shareEngine
in the matlab® command window. Once connected, it is possible to evalu-
ate a matlab® function with arguments (feval and fevalAsync functions) or
evaluate a matlab® expression as a string (eval and evalAsync functions).
Additionally, it is possible to interact with the matlab® workspace by getting
(getVariable and getVariableAsync functions) or setting (setVariable and
setVariableAsync functions) variables. Once finished the interaction, discon-
nect from the current session using disconnect, quit, or close functions.

In Sect. 3.1 we show how to integrate the k-means clustering into rescue
agents, and in Sect. 3.2 how ambulance team agents can use a trained classifier to
decide which trapped civilian has a better chance of surviving a rescue operation.

3.1 Clustering Integration

Currently, competition teams need to implement their own version of standard
artificial intelligence algorithms from scratch to solve common tasks, such as k-
means clustering. However, matlab® provides more diverse and robust imple-
mentations of these standard algorithms that teams may benefit of to prioritize
the development of high-level strategies.

Although diverse and robust, the time constraint imposed on rescue agents
demands a more elaborate assessment of the efficiency of the matlab® algo-
rithms integrated to the ADF. Here, we have assessed the performance of the
k-means clustering algorithm implemented in the Sample ADF using pure Java
and in matlab® measured in a computer with Intel Core i7 6700HQ 2.6 GHz
(8 cores) processor and 16 GB RAM using Arch Linux, Oracle Java JDK 8 and
matlab® R2017b.

Figure 7 shows the result of this assessment in which the matlab®

k-means clustering algorithm executes in less time than the Sample ADF Java

5 https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html.

https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html

484 A. Visser et al.

implementation for all 83 agents. There was significant difference on the exe-
cution average time for the matlab® (6, 095.87 ± 1, 178.51 ms) and the Java
(8, 783.36 ± 1, 188.22 ms) implementations; t(164) = 14.63, p< 0.05. Hence, we
can conclude that using matlab® k-means clustering reduces the effort and
maintenance, and increases the performance of the agent teams.

Fig. 7. Performance of the k-means implementation in Java and in matlab® per-
formed in sequence by 83 agents during the initialization stage of the execution phase
of the scenario simulation for the Kobe map.

The k-means clustering can be integrated into the ADF and executed in the
precompute phase or execution phase of the scenario simulation. Here, we show
how to integrate the k-means clustering algorithm in the agents’ initialization
stage of the execution phase. The Java code for such integration is

// Prepare data for Matlab k−means c l u s t e r i n g
double [] [] mlInput = new double [this . e n t i t i e s . s i z e ()] [2] ;
for (StandardEntity en t i t y : this . e n t i t i e s) {

Pair<Integer , Integer> l o c a t i o n = this . wor ldIn fo . getLocat ion (en t i t y) ;
mlInput [i] [0] = l o c a t i o n . f i r s t () ;
mlInput [i] [1] = l o c a t i o n . second () ;
i++;

}

// Run k−means c l u s t e r i n g
Object [] mlOutput = ml . f e v a l (2 , ”kmeans” , (Object) mlInput ,

this . c l u s t e r S i z e ,
DISTANCE, this . d i s tanceMetr i c ,
MAX ITER, this . maxIter) ;

double [] mlIndex = (double []) mlOutput [0] ;
double [] [] mlCenter = (double [] []) mlOutput [1] ;

This code connects the agents to matlab® and prepares entities data for
clustering (i.e., the x and y entity location). In the initialization, agents are
executed in sequence avoiding concurrent matlab® connections. Next, the
matlab® function kmeans is evaluated using the feval method with several
parameters: the dimension of the k-means output (set to 2), the number of
clusters (set to 10), the distance metric (set to cityblock), and the maximum
number of interaction (set to 100). Once executed, the feval method returns
an object array with the indices in the position 0 and the centers in the position
1 that are cast to their respective data types. Finally, the engine is closed, and

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 485

the indices and the centers can be used to assign agents to specific partitions of
the map.

The integration of the clustering algorithm requires only a single call per
agent to the matlab® engine as its results are stored and used in the remain-
der of the simulation run. Path planning algorithms, for example, are affected
by changes in the environment, and would require reprocessing to account for
changes. Because of this characteristic, the matlab® path planning algorithm
would need to be called every time the agent has to calculate a path in the
execution phase of the simulation run, even though the first execution can be
performed during the precompute phase. Please see Sect. 2.3 to further details
about the path planning.

3.2 Classifier Integration

Ambulance teams can also benefit of matlab® to optimize their rescue oper-
ations by predicting more accurately the chance of trapped civilians to survive
a rescue operation. First, however, it is necessary to train a classifier with data
collected from earlier runs. This training is performed using the Classification
Learner matlab® app as described in Sect. 2.2.

We have trained a classifier using the data from rescued civilians collected
from several simulation executions of the Paris map using a simple rescue team.
The data collected was the time (sTime), the distance to the nearest refuge
(sDist), the civilian HP (sHP) and the damage (sDamage) at the start of the
rescue operation and the HP of the civilian (eHP) at the end of the rescue oper-
ation. We discretized the final HP (eHP) according to the ranges: 0 Dead, 1–3000
Critical, 3001–7000 Injured, and 7001–10000 Stable using the code

// TData i s the t r a i n i n g data

hp bins = [0 1 3000 7000 10000] ;

bin names = { ’Dead ’ , ’ C r i t i c a l ’ , ’ In jured ’ , ’ Stable ’ } ;

TData . hp c l a s s = d i s c r e t i z e (TData . eHP, hp bins , ’ c a t e g o r i c a l ’ , bin names) ;

The trained classifier model (targetSelectorModel) is exported using the
Export Model - Export Compact Model feature and validated against a vali-
dation dataset with the code

// VData i s the va l i d a t i o n data
p r ed i c t i o n s = targe tSe l e c to rMode l . pred ictFcn (VData) ;
numCorrect = nnz (p r ed i c t i o n s == VData . hp c l a s s) ;
va l idat ionAccuracy = numCorrect/ s i z e (VData , 1) ;
f p r i n t f (’ Va l idat ion accuracy : %.2 f%%\n ’ , va l idat ionAccuracy ∗ 100) ;

The training and validation steps comprise an iterative process whose cycle
should be repeated until the validation accuracy is satisfactory. Then, the
exported model can be saved as a file (targetSelectorModel.mat) and invoked
in the function
f unc t i on p r ed i c t i o n s = s e l e c tTa r g e t s (time , d i s t , hp , damage)

p e r s i s t e n t ta rge tSe l e c to rMode l
i f isempty (ta rge tSe l e c to rMode l)

load ta rge tSe l e c to rMode l ta rge tSe l e c to rMode l
end

486 A. Visser et al.

p r ed i c t o r s = tab l e (time , d i s t , hp , damage , . . .
’ VariableNames ’ ,{ ’ sTime ’ , ’ sDist ’ , ’ sHP ’ , ’ sDamage ’ }) ;

p r e d i c t i o n s = int32 (ta rge tSe l e c to rMode l . pred ictFcn (p r ed i c t o r s)) ;
end

The predictions function can then be called inside the calc method of the
HumanDetector class for the ambulance team agents in the ADF using the code

// rescueTarget i s an ob j ec t containing vict im ’ s information
i f (MatlabEngine . f indMatlab () . l ength > 0) {

MatlabEngine ml = MatlabEngine . connectMatlab () ;
int sTime = rescueTarget . sTime ;
int sDi s t = rescueTarget . sD i s t ;
int sHP = rescueTarget . sHP ;
int sDamage = rescueTarget . sDamage ;

int value = ml . f e v a l (” s e l e c tTa r g e t s ” , sTime , sDist , sHP , sDamage) ;

ml . c l o s e () ;
}

This code executes the matlab® function selectTargets using data about a
specific victim and returns a prediction about the state of the victim at the end of
the rescue operation coded as 0 Dead, 1 Critical, 2 Injured, and 3 Stable. The
ambulance team can then combine this prediction with several other information
about other victims to determine which victim is worth rescuing first. Possible
strategies to use this classification includes (1) classify all known victims, (2)
discard the predicted dead, and (3)

a. select one randomly among them
b. select the closest one
c. select the closest one that is predicted Critical

Notice that we use MatlabEngine.findMatlab() and connectMatlab()
methods instead of MatlabEngine.startMatlab(). This requires that
a matlab® session is running and shared to the code to work.
To share a matlab® session, open matlab®, enter the command
matlab.engine.shareEngine in its command window, and leave it open during
the execution of the simulation.

4 Conclusion

This paper describes the possible uses of existing artificial intelligence (AI) and
machine learning (ML) tools to analyze and model disaster scenario data as
well as the integration of these tools to the competition code. The examples
provided tackle common challenges of the Rescue Agent Simulation competition
in which AI and ML tools suit. The approach, however, is extensible to any other
algorithm available in matlab® or any other tool that provides an interface in
Java. For instance, this approach can be extended to integrate deep learning,
state machines, and graph node refining algorithms, which may increase the
scientific outcomes of the Rescue Simulation League as

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 487

(1) teams may focus on high-level strategies to solve rescue challenges and
(2) matlab® will provide a performance benchmark against which teams can

show their improvements.

References

1. Akin, H.L., Ito, N., Jacoff, A., Kleiner, A., Pellenz, J., Visser, A.: RoboCup rescue
robot and simulation leagues. AI Mag. 34(1), 78–87 (2013). https://doi.org/10.
1609/aimag.v34i1.2458

2. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966). https://doi.org/
10.1214/aoms/1177699147

3. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms In MATLAB®
Second, Completely Revised. Springer Tracts in Advanced Robotics, vol. 118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-54413-7

4. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y.
(ed.) Statistical Data Analysis Based on the L1–Norm and Related Methods, pp.
405–416. North-Holland (1987)

5. Kaufman, L., Rousseeuw, P.J.: Divisive analysis (program DIANA). In: Find-
ing Groups in Data, pp. 253–279. Wiley (2008). https://doi.org/10.1002/
9780470316801.ch6

6. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28,
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

7. Marin, J.M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on
mixtures of distributions. In: Dey, D., Rao, C. (eds.) Bayesian Thinking Modeling
and Computation, Handbook of Statistics, vol. 25, pp. 459–507. Elsevier (2005).
https://doi.org/10.1016/S0169-7161(05)25016-2

8. Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster robotics. In: Siciliano, B., Khatib,
O. (eds.) Springer Handbook of Robotics, pp. 1577–1604. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32552-1 60

9. Parker, J., Nunes, E., Godoy, J., Gini, M.: Exploiting spatial locality and hetero-
geneity of agents for search and rescue teamwork. J. Field Robot. 33(7), 877–900
(2016). https://doi.org/10.1002/rob.21601

10. dos Santos, D.S., Bazzan, A.L.: Distributed clustering for group formation and
task allocation in multiagent systems: a swarm intelligence approach. Appl. Soft
Comput. 12(8), 2123–2131 (2012). https://doi.org/10.1016/j.asoc.2012.03.016

11. Sheh, R., Schwertfeger, S., Visser, A.: 16 years of robocup rescue. KI - Künstliche
Intelligenz 30(3), 267–277 (2016). https://doi.org/10.1007/s13218-016-0444-x

12. Tadokoro, S., et al.: The RoboCup-rescue project: a robotic approach to the disas-
ter mitigation problem. In: Proceedings of the IEEE International Conference on
Robotics and Automation (2000). https://doi.org/10.1109/ROBOT.2000.845369

13. Takami, S., Takayanagi, K., Jaishy, S., Ito, N., Iwata, K.: Design of agent develop-
ment framework for RoboCupRescue simulation. In: Lee, R. (ed.) CSII 2017. SCI,
vol. 726, pp. 185–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
63618-4 14

14. Visser, A., Amigoni, F., Shimizu, M.: The future of robot rescue simulation work-
shop - an initiative to increase the number of participants in the league. University
of Amsterdam, Politecnico di Milano & Chukyo University, January 2016

https://doi.org/10.1609/aimag.v34i1.2458
https://doi.org/10.1609/aimag.v34i1.2458
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1002/9780470316801.ch6
https://doi.org/10.1002/9780470316801.ch6
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/S0169-7161(05)25016-2
https://doi.org/10.1007/978-3-319-32552-1_60
https://doi.org/10.1002/rob.21601
https://doi.org/10.1016/j.asoc.2012.03.016
https://doi.org/10.1007/s13218-016-0444-x
https://doi.org/10.1109/ROBOT.2000.845369
https://doi.org/10.1007/978-3-319-63618-4_14
https://doi.org/10.1007/978-3-319-63618-4_14

A Robust and Flexible System
Architecture for Facing the RoboCup

Logistics League Challenge

Thomas Ulz1, Jakob Ludwiger2, and Gerald Steinbauer3(B)

1 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

2 Institute for Control and Automation,
Graz University of Technology, Graz, Austria

3 Institute for Software Technology,
Graz University of Technology, Graz, Austria

steinbauer@ist.tugraz.at

Abstract. In this paper we present the software architecture of the
GRIPS team for addressing the challenges of the RoboCup Logistics
League. The guiding principles for the development of the architecture
origin in the research focus of the involved institutes on dependable intel-
ligent systems. The architecture enables most flexible planning of the
tasks as well as a most reliable execution of the generated task list.

1 Introduction

Due to increasing demands on flexibility in terms of product configuration as
well as delivery time triggered by the trend in e-commerce (e.g. on-line con-
figurators, on-line shopping) production needs to become more flexible as well
as more digitized. This trend is well known under terms like flexible production
or Industry 4.0. Usually in order to facilitate reasonable prices for products as
well as to guarantee sustainable product quality and fast availability of goods
production is heavily automatized. Often, this automation is not very flexible,
and thus, in contradiction with the demands on flexibility in configuration (in
extreme cases lot size one) and availability. Fortunately, these demands on flex-
ibility and digitization in production require new concepts and open interesting
and challenging research questions ranging from Robotics over the Internet of
Things (IoT) and multi-agent systems to planning and scheduling. In order to
provide an interesting and appealing show case that allows research and teaching
in the area of flexible production within the RoboCup initiative [16] a competi-
tion called the RoboCup Logistics League (RCLL) was founded. It resembles the
setting of a flexible production plant. The RCLL competition posts a number of
challenges ranging from Robotics over IoT to Artificial Intelligence and can be
used to develop and evaluate new concepts in production.

In this paper we like to introduce the system architecture of the team Graz
Intelligent Robust Production System (GRIPS) which allowed GRIPS to win
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 488–499, 2019.
https://doi.org/10.1007/978-3-030-27544-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_40&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_40

A Robust and Flexible System Architecture 489

the international RCLL competition in 2018. The team comprises of students
and researchers of 3 different institutes of the Graz University of Technology
that share a common interest in safe and dependable intelligent systems [2,6,8].
The dynamic setting of the RCLL involving numerous items such as robot and
production machines interacting in a real world environment is a perfect testbed
for techniques to realize robust complex systems. Thus, in this paper we focus on
the aspects of the developed system architecture related to robustness, reactivity,
and liveness. We will describe how these properties are achieved on the different
system layers ranging from an abstract planning and scheduling module over a
robust executive layer to reactive behaviors.

2 Logistics League

The RCLL [1,10] is part of the RoboCup initiative and focuses on the stimulation
of the development of approaches in Robotics and Artificial Intelligence using
robotics competitions. In this league the goal is that a team of autonomous
robots in cooperation with a set of production machines produces individualized
products on demand. Two teams share a common factory floor of the size of
14 m × 8 m. Each team comprises of up to 3 autonomous robots and owns 7
machines. Machines are represented by Modular Production Systems (MPS)
provided by Festo. See Fig. 1 for an example setup.

Fig. 1. Physical setup of the
RoboCup Logistics League.

Fig. 2. Simulation setup of the
RoboCup Logistics League.

There are different types of machines that resemble different production steps
like fetching raw material, assembling parts, or delivering final products. The
task of the teams is to develop methods that coordinate the robots (which are
mobile) and machines (which are static) that allow producing and delivering
requested goods in time. All involved entities are allowed to communicate via
WiFi. Robots are cooperative in the sense that they need to interact physically
with the machines, e.g. fetching raw material from a dispenser machine or pro-
vide an intermediate product to a machine that refines it. Usually teams use
some coordination server that collects information from robots, machines, and

490 T. Ulz et al.

a central production management system that coordinates the necessary tasks.
The products are mimicked by stacks of bases, rings, and caps of different colors.
The configuration of the components is flexible and determines the complexity of
a product. In general, several refining steps of intermediate products by different
machines are required to produce a final product.

This setup for products was selected to have a physical interaction among
the robots, the machines, and the products. A central agent named referee box
randomly generates product orders with varying configurations and delivery time
windows. These orders are communicated to the teams that need to derive a
production schedule and distribute the tasks among the robots and machines.
Based on the complexity of the product and if the delivery windows was met
points are awarded to the teams. For the most complex products usually up to
10 different steps like fetching and delivering material to machines are needed.
The actual number depends on the planning representation. Some of them might
be parallelized or rescheduled in order to optimize the awarded points. In order
to simulate a real world production environment, machines go out of service on
a random basis which asks for flexibility in the production planning. The team
that collects the most points during 17 min of production time wins the game.

The referee box is able to run games and scoring automatically. Together
with a full-fledged simulation [19] (see Fig. 2 for an example setup), it forms an
advanced benchmarking system for flexible production approaches [10,11].

The interesting aspect of the RCLL setting is its resemblance to flexible
on-demand production sites while abstracting it to not involve any physically
changes of the product. Given that, this the RCLL posts challenges in the full
range from Robotics (e.g. navigation, precise manipulation) over communication
and multi-agent systems (e.g. reliable communication, reliable task execution) to
planning and scheduling (e.g. generate production plans, execution monitoring
and re-planning).

3 Software Architecture

The main aspects for realizing a multi-robot system as required in the RCLL are
(1) planning and scheduling, (2) plan refinement and execution, (3) behavior and
control, and (4) low-level functionality. In the following sections we are going to
present selected topics for all aspects, except low-level functionality such as nav-
igation. A general overview of the software architecture we apply in our system
can be seen in Fig. 3. As depicted there, the software architecture spans over
multiple physical systems. The planning and scheduling instance is deployed on
a so-called teamserver which has global knowledge of the current game compris-
ing information from the RCLL referee box such as requested orders and from
all active robots such as the status of task execution. The teamserver controls
all robots and interacts as a gateway between them and the referee box. The
modules running on the robots comprises an executive, a behavior and control
module, and low-level functionality.

A Robust and Flexible System Architecture 491

Fig. 3. Overview of distributed software architecture in our approach.

3.1 Planning and Scheduling

Planning and scheduling in our approach is based on splitting any order that is
received from the RCLL referee box into subtasks that cannot be split further.
The representation of the task on this level is rather abstract because we like
to limit the complexity in planning and there exists a task refinement in the
executive layer. This idea is inspired by the concept of hierarchical task network
planning [5]. In our system, we distinguish between two subtask categories where
we assume that one robot is only able to carry a single item:

BS RS 1 CS 1 DS

Fig. 4. Example production chain for an order of complexity C1, adapted from RCLL
rulebook [3]. This order requires 2 additional workpieces at the ringstation RS1 and a
cap loaded at capstation CS1.

1. GET: A GET task implies that the robot needs to navigate to a given MPS,
where a workpiece is fetched by the robot, usually after sending some instruc-
tion to the MPS to initiate for instance a material dispense.

2. DELIVER: A DELIVER task involves the robot navigating to a given MPS,
where the carried workpiece is then deposed. This is usually followed by the
robot sending some instruction to the MPS like mounting a ring.

492 T. Ulz et al.

GET
BS

DELIVER
RS 1

GET
BS

DELIVER
RS 1

GET
BS

DELIVER
RS 1

GET
RS 1

GET
CS 1 Shelf

DELIVER
CS 1

GET
CS 1

DELIVER
RS 1

DELIVER
CS 1

GET
CS 1

DELIVER
DS

Cri cal
Task

Resource
Task

Uncri cal
Task

Fig. 5. Dependency graph for tasks required to build and deliver a product for the
C1 order that is shown in Fig. 4. Failure of critical tasks lead to complete cancellation
of the respective product, while resource tasks can be reassigned. Failure of uncritical
tasks have no influence on the overall goal of delivering a complete C1.

Since getting and delivering a workpiece reasonably needs to be done by the
same robot, this specific choice of subtask types might seem counterintuitive.
However, by separating the pickup and deliver process, MPSs can be freed from
a workpiece that would otherwise block the MPS for other robots. The successful
execution of these subtasks is then arranged and monitored by the system that
will be discussed in Sect. 3.2. For simplicity, we assume here, that this system is
capable of providing information of successful or unsuccessful task execution.

Task Generation. Any order that is received from the RCLL referee box spec-
ifies the color required for each workpiece that is used in the production pro-
cess. Therefore, any order implicitly defines which MPSs need to be used during
the production process. An example production chain for an order of easy-to-
medium complexity C1 (meaning that one ring needs to be mounted before the
cap) is shown in Fig. 4. Based on this production chain, our scheduler creates the
required subtasks and the corresponding dependency graph for this tasks using
the ideas of HTN refinement. The resulting dependency graph for the production
chain shown in Fig. 4 is then depicted in Fig. 5. As can be seen there, subtasks
belong to one of the following three categories:

1. Critical Tasks represent the actual production flow where the requested
product is assembled by the MPSs using the workpieces already loaded into
the respective MPSs. If such a critical task fails, the product that currently
is assembled cannot be reasonably recovered, and thus, production of this
product is canceled. Depending on the current game’s context, assembly of
the same product might be started again.

2. Resource Tasks load the MPSs with workpieces that are required for the
assembly of products. If resource tasks fail, the actual assembly of the prod-
uct is not harmed and thus, these tasks can be reassigned until successfully
completed. However, assembly of a product might be severely delayed due to
resource tasks failing.

A Robust and Flexible System Architecture 493

3. Uncritical Tasks neither influence the successful completion of the currently
assembled product, nor do they (directly) influence assembly time of that
product. However, if successfully completed, these tasks might have a positive
effect by speeding up future assembly processes.

Task Scheduling. The assignment of tasks to respective robots in our system
is done based on a request-response approach. This means, robots that currently
do not own tasks request new tasks from the central planning and scheduling
instance. For task scheduling, three scenarios might occur that we are going to
discuss in the following paragraphs. To do so, we define the following symbols:

– τ : a given task.
– pred(τ): set of all predecessor tasks of τ based on the task dependency graph.
– τ.type: the task’s type which is one of {GET,DELIV ER}.
– τ.state: the task’s state which is one of {SUCCESS, FAIL,UNASSIG −

NED}.
– τ.robot: the robot to which the task τ was assigned.
– τ.machine: the machine which which the robot interacts in this task. The

machine is one of {BS,CS1, CS2, RS1, RS2, SS,DS}.
– ξ: a given product.
– ξ.τ : all tasks that are required to assembly product ξ.
– ξ.machines: all machines the robots need to interact with during assembly

of this product.
– T : the set containing all currently active tasks.
– ρ: the current robot that is requesting a task.

1. Task in active assembly. In the simpler of the two cases, a task in an
already active production process for a given product can be found for the robot
requesting a new task. That is, the set of tasks Φ that could be assigned to the
robot according to (1) is not empty. In our system, this is the preferred case, and
thus, scheduling of tasks is always greedy in a sense that the scheduler aims at
finishing products as quickly as possible. Any robot requesting a task is assigned
a randomly selected one τ ⊆ Φ.

Φ =

{
Ψ, if Ψ �= ∅
Θ, if Ψ = ∅

(1)

Where Ψ and Θ are defined as follows.

Ψ = {τ :τ.type = DELIV ER

∧ ∃ pred(τ).robot = ρ ∧ ∀ pred(τ).state = SUCCESS}
(2)

That is, the set Ψ contains all tasks of type DELIVER for which a successfully
finished predecessor task was already assigned to the same robot. In general, the
set will only contain one task.

Θ = {τ : ∀ pred(τ).state = SUCCESS} ∪ {τ : pred(τ) = ∅} (3)

494 T. Ulz et al.

That is, the set Θ contains all tasks for which all predecessor tasks have been
finished successfully. Of course, Ψ ⊆ Θ holds.

2. Start new assembly. If no task in the current assembly process needs to
be done, the planning and scheduling instance determines whether the assembly
of an additional product can be started. To do so, it is determined if a parallel
production chain can be found where no machine (besides BS and DS) overlap,
such that no deadlock can occur. This mechanism is formalized in (4).

Ω = {ξ : ξ.machines ∩ T .machines = ∅} (4)

If the set Ω contains an additional product for which assembly can be started.
Tasks are then selected according to the previous section for the newly to be
assembled product. However, considering that any production chain includes
mounting a cap to finish the currently assembled product, in our current archi-
tecture a maximum of two parallel production chains can be processed. Note
that each team has 1 base station, 2 ring stations, 2 cap stations, and 1 delivery
station in their MPS set. We did not use the 7th machine - the storage station -
in this implementation.

3. “Dummy” task. If no production relevant task can be found for a robot
requesting a new task, that is, if Φ = ∅ ∧ Ω = ∅, the robot is assigned so-called
dummy tasks such that it is not blocking any relevant MPS while having no task.
In our system, a dummy task consists of sending the robot to a random zone,
such that it is constantly moving while having no production relevant task.

3.2 Executive

The bridging between the abstract planning and scheduling and the practical
behavior layer is established by an executive layer that runs separately on each
robot. The two main functions of the executive are the refinement of the abstract
tasks to executable behaviors and the supervision of the entire task execution.
The separation of the two functions contributes to the robustness of the overall
architecture as the former allows the system to use a flexible abstracted planning
approach while the latter allows to reactive to uncertainties and unexpected
situations in the interaction between the physical robot and its environment.

We realized the executive layer following the well-known concept of belief-
desire-intention (BDI) [4] using the open-source implementation OpenPRS [7].
In order to allow robust and reactive control of robots the approach follows the
idea of practical reasoning where the tasks to be fulfilled are represented by
goals and goals are pursuit using scripted recipes called procedure. Procedures
are represented as directed graph with further sub-goals on the edges. Possi-
ble sub-goals are non-primitive goals (further goals), queries (simple queries
to a knowledge base), information updates (asserting and retracting facts to
the knowledge base), and primitive actions (representing executable behaviors).
Goals may also be combined using special modifiers such as maintain where one
goal is permanently active until another goal is achieved. The robustness and

A Robust and Flexible System Architecture 495

reactivity of a BDI system results from the execution semantics where the inter-
preter tries all applicable procedures and valid execution traces within recipes
to achieve a given goal and the fact that instead of expensive reasoning (e.g.
resolution) a simpler matching process between goals and procedures is used.
The response to a posted goal or sub-goal is either success (all sub-goals were
achieved) or fail (the interpreter were not able to achieve all sub-goals).

The interaction with the other parts of the architecture works as follows.
Any time the robot becomes idle it requests a new task from the planning and
scheduling component. The tasks assigned to a robot by this component are
mapped to configurable goals. Currently we have corresponding goals for the
get, delivery, and dummy task with corresponding hand-crafted procedures. The
executable basic behaviors like navigating to a given position, alignment at a
machine, or grasping an item are represented by primitive goals that lead directly
to a behavior execution. The physical execution is realized using the action-
server concept of the Robot Operating System (ROS) [14]. But each primitive
goal is wrapped by a safe version of the original goal to achieve dependable
execution. These goals comprise additional hand-crafted monitoring and fault-
recovery recipes. These safe goals are reused when structuring the recipes for
the top-level goals.

The communication between the planning and execution layer is based on
abstract positions like C-BS-Input representing the position for the conveyor
input of the cyan base station. In order to ground such positions or make con-
clusions such as that robot is close we use the transformation framework of ROS
(there is a proper transformation for each abstract position maintained by the
behavior layer) and the concept of evaluable predicates and functions provided
by OpenPRS (oracles for the evaluation of predicates and functions are imple-
mented in the behavior layer).

We like to point out the difference in planning and execution to previous
attempts reported in [12]. In contrast we use OpenPRS only as an executive to
execute tasks while task scheduling is done in the team server. Moreover, in con-
trast to the Clips-based approach we follow a clear separation of the abstract task
scheduling and the task execution rather than performing the overall reasoning
in an reactive manner using a rule-based system.

3.3 Behavior and Control

Several software components are implemented in the behavior and control layer
of the software architecture. These components comprise navigation, alignment
to machines, identification and localization of machines, and identifying and
manipulation of products. In this paper the control strategy which enables the
precise alignment of the robot in front of the machine during production will
be explained in detail. This behavior is the base for reliable manipulation of
products. In order to grasp or place products during production, the robot needs
the ability to align itself at very short distances and with very high precision in
front of machines. Achieving these criteria with the usual navigation approaches
[9] already implemented in ROS is not possible. However, this is a typical task for

496 T. Ulz et al.

classical feedback control. The two parts necessary for feedback control are the
error computation and the controller design. These two parts will be described
in detail in the following two subsections.

Error Computation. To perform closed loop control, the current positioning
error has to be computed. The robots are equipped with a laser scanner at
the front, which can be used to compute the position of the machine relative
to the robot. Given the fact that all machines in the logistics league have the
same rectangular base shape and assuming that the robot is roughly facing the
machine (this is achieved using the navigation methods mentioned above), the
relative position of the machine can be estimated using a very basic clustering
algorithm. As the robot faces the machine, the central laser scan measurement
is the root of the cluster. Starting from this root, every measurement value with
Euclidean distance to the cluster smaller than a predefined threshold is added
to the cluster. Applying classical least squares line fitting (see [13]) gives the
angular error and using the edge points of the cluster results in the positioning
error. Figure 6 shows a typical laser scan reading in gray rays with red tips
where the robot faces a machine. The clustered data is depicted in blue and the
estimated position of the machine as a green square. Based on the estimate of
the machine pose, the three errors for position ex and ey as well as the angular
error eϕ are computed and fed into the controller.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

0

0.5

1

1.5

2

2.5

3

y

 Machine

Fig. 6. Machine position estimation (Color figure online)

Control Algorithm. For each of the three component of the error (position ex,
ey and angular eϕ) a sliding mode controller is designed (see [18]). Sliding mode
control was chosen, because it is a very simple to implement, easy to tune but
also represents a robust control strategy. The basic concept of first order sliding
mode control will be explained by means of an example. Consider a continuous
integrator

dx

dt
= u + f (5)

A Robust and Flexible System Architecture 497

with state x ∈ R, input u ∈ R and the bounded perturbation sup |f | = f̄ .
Applying a first order sliding mode control law

u = −ρ sign (x) (6)

with parameter ρ > f̄ yields the closed loop system

dx

dt
= −ρ sign (x) + f. (7)

As the parameter ρ > f̄ , the controller always dominates the perturbation f .
The reader interested in the theoretical property of sliding mode control exactly
compensating perturbations is referred to [15,17,18] and getting familiar with
differential inclusions as well as with Filipov’s theory. The part −ρ sign (x) also
dominates the perturbation f which results in a movement towards the origin
from any initial condition. Typical trajectories for the unperturbed case (f =
0) using first order sliding mode control is shown in Fig. 7 for the two initial
conditions x

(1)
0 = 1.125 and x

(2)
0 = −2.125. One can see the typical finite time

convergence which is also a very good property of sliding mode control. However,
the main drawback of this control strategy is also visible in this figure because
the state converges to a vicinity around zero and performs a zig-zag motion
called chattering. This chattering appears in real world applications due to finite
switching frequencies.

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 7. Typical trajectories resulting with
first order sliding mode control for two ini-
tial conditions and perturbation.

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

=0.10
=4.00
=8.00

Fig. 8. Influence of parameter Φ
on sign function approximation.

In order to reduce this chattering phenomenon, several approximations of the
sign function are proposed (see [15]). In the remainder of this paper the sign (·)
function is approximated by the saturation function

sat (γ) =
{

γ −1 ≤ γ ≤ 1
sign (γ) else (8)

which results in the control law

u = −ρ sat
(x

Φ

)
(9)

498 T. Ulz et al.

with parameter Φ ∈ R
+ specifying the slope of the approximation as depicted

in Fig. 8.

Remark 1. The parameter Φ offers a possibility to find a tradeoff between accu-
racy and chattering alleviation. Please note that sat

(
x
Φ

)
= sign (x) for Φ → 0.

As the used holonomic robot takes velocity commands, the dynamics of the three
errors ex, ey and eϕ can be formulated as integrators (5). In the application the
control law (9) is then independently applied to these three systems.

4 Conclusions and Future Work

Following the common interest of the institutes involved in the GRIPS RoboCup
Logistics League team in a holistic approach to develop methods for dependable
intelligent systems we developed a software architecture that allows flexible and
robust execution of the demanded production tasks. The basic idea is to separate
different concerns such as abstract planning and scheduling, refinement of task
execution, and behavioral control and equip each layer with proper motioning
and fault-recovery capabilities. The flexible planning and task assignment paired
with robust task execution allowed us to realize more complex products reliably
and constantly than in the past competitions.

In future work we will aim for an optimization based selection of suitable
products to be build (using more context information such as travel time) as well
as a better parallelization (using an improved resource management). Moreover,
we like to better team up monitoring and recovery between different layers.
Often one layer lacks of sufficient knowledge about the actual situation to make
a consistent final conclusion about errors and recovery. Sharing and combining
information of different layers may help to address this issue.

Acknowledgement. The team members in 2018 are Sarah Haas, Vanessa Egger,
Stefan Krickl, Leo Fürbaß, Ivan Martin, Thomas Ulz, Jakob Ludwiger, and Gerald
Steinbauer.

We gratefully acknowledge the financial support of Graz University of Technology,
Knapp AG, IncubedIT GmbH, AccuPower GmbH, and pia automation. In particu-
lar, the team is grateful to Knapp AG for the mechanical and electrical design and
integration of the GRIPS robot platforms.

References

1. RoboCup Logistics League. http://www.robocup-logistics.org/
2. Boano, C., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Depend-

ability for the internet of things - from dependable networking in harsh environ-
ments to a holistic view on dependability. e & i Elektrotechnik & Information-
stechnik 133, 304–309 (2016)

3. Coelen, V., Deppe, C., Hoffmann, T., Karras, U., Niemueller, T., Rohr, A.: Rules
and Regulations - RoboCup Logistics League. http://www.robocup-logistics.org/
rules. Accessed 19 Dec 2018

http://www.robocup-logistics.org/
http://www.robocup-logistics.org/rules
http://www.robocup-logistics.org/rules

A Robust and Flexible System Architecture 499

4. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL
1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49057-4 1

5. Ghallab, M., Lau, D., Traverso, P.: Automated Planning - Theory and Practice.
Morgan Kaufmann (2004)

6. Gspandl, S., Pill, I., Reip, M., Steinbauer, G., Ferrein, A.: Belief management for
high-level robot programs. In: Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence, IJCAI 2011, Barcelona, Spain, pp. 900–905 (2011)

7. Ingrand, F.F., Chatila, R., Alami, R., Robert, F.: PRS: a high level supervision and
control language for autonomous mobile robots. In: Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 1, pp. 43–49 (1996)

8. Ludwiger, J., Steinberger, M., Horn, M., Kubin, G., Ferrara, A.: Discrete time
sliding mode control strategies for buffered networked systems. In: 2018 IEEE
57th Annual Conference on Decision and Control (CDC). IEEE (2018)

9. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office
marathon: robust navigation in an indoor office environment. In: International
Conference on Robotics and Automation (2010)

10. Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for
logistics robots in simulation. In: WS on Planning and Robotics (PlanRob) at
International Conference on Automated Planning and Scheduling (ICAPS), Lon-
don, UK (2016)

11. Niemueller, T., Zug, S., Schneider, S., Karras, U.: Knowledge-based instrumenta-
tion and control for competitive industry-inspired robotic domains. KI - Künstliche
Intelligenz 30(3–4), 289–299 (2016)

12. Niemueller, T., et al.: Cyber-physical system intelligence – knowledge-based mobile
robot autonomy in an industrial scenario. In: Jeschke, S., Brecher, C., Song, H.,
Rawat, D.B. (eds.) Industrial Internet of Things: Cybermanufacturing Systems.
SSWT, pp. 447–472. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
42559-7 17

13. Penrose, R.: On best approximate solutions of linear matrix equations. Math. Proc.
Camb. Philos. Soc. 52(1), 17–19 (1956)

14. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

15. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and
Observation. Springer, New York (2013). https://doi.org/10.1007/978-0-8176-
4893-0

16. Steinbauer, G., Ferrein, A.: 20 years of RoboCup. Künstliche Intelligenz 30(3–4),
221–224 (2016)

17. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Sys-
tems. CRC Press, Boca Raton (2009)

18. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg
(1992). https://doi.org/10.1007/978-3-642-84379-2

19. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup logistics
league with real-world environment agency and multi-level abstraction. In: Bianchi,
R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS
(LNAI), vol. 8992, pp. 220–232. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18615-3 18

https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/978-3-319-42559-7_17
https://doi.org/10.1007/978-3-319-42559-7_17
https://doi.org/10.1007/978-0-8176-4893-0
https://doi.org/10.1007/978-0-8176-4893-0
https://doi.org/10.1007/978-3-642-84379-2
https://doi.org/10.1007/978-3-319-18615-3_18
https://doi.org/10.1007/978-3-319-18615-3_18

RoboCup@Work 2018 Team AutonOHM

Jon Martin(B), Helmut Engelhardt, Marco Masannek, Tobias Scholz,
Kay Gillmann, and Benjamin Schadde

University of Applied Sciences Nuremberg Georg-Simon-Ohm,
Kesslerplatz 12, 90489 Nuremberg, Germany
{jon.martingarechana,engelhardthe57850,

masannekma61828,scholzto52032}@th-nuernberg.de
http://www.autonohm.de

Abstract. This work presents the team AutonOHM which won the
RoboCup@Work competition in Montreal 2018. The tests and main
changes of the 2018 world cup competition are presented and a detailed
description of the team’s hardware and software concepts are exposed.
Furthermore, improvements for future participations are discussed.

1 Introduction

The RoboCup@Work league, established in 2012, focuses on the use of mobile
manipulators and their integration with automation equipment for performing
industrial-relevant tasks [4]. This work presents our teams major improvements
and changes with regard to last years work [5]. This year, the team has focused
on further increasing the system stability by developing a new gripper, improving
the inventory slots, speeding up task executions and developing a new approach
for the rotating table test.

Section 4 shows the team’s hardware concept. In Sect. 5 the main software
modules such as the state machine, localization and perception are presented.
Finally, the conclusion provides a prospect to further work of team AutonOHM
(Sect. 7).

2 AutonOHM

The AutonOHM-@Work team at the University of Applied Sciences Nuremberg
Georg-Simon-Ohm was founded in September 2014. In 2018, having most of the
formal members yet taking part on the competition, the main goal was to defend
the German and the World Championship titles. The team is organized so that
each formal member takes care of a specific main task: Team coordination and
state machine, navigation, perception, manipulation and rotating table. Newer
students support the different tasks or develop new packages such as a faster
task planner this year.

In order to retain the titles, the robots hard- and software were improved
based on the knowledge summed during the past tournaments. This includes a
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 500–511, 2019.
https://doi.org/10.1007/978-3-030-27544-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_41&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_41

RoboCup@Work 2018 Team AutonOHM 501

Fig. 1. Team AutonOHM at the win-
ners ceremony in Magdeburg

Fig. 2. Team AutonOHM with the sec-
ond (b-it-bots) and third (mrl) placed
teams in Montreal

new 3D camera model with a more accurate point cloud. The inventory slots
are now more resistant against vibrations. The old gripper mechanism has been
replaced by a single motor solution, which enables the robot to grasp heavy
objects more reliably. Combined with high precision perception, the team was the
only one that never lost the heaviest and most difficult object in the competition.
In addition to the hardware improvements, the perception and manipulation
for moving objects has been adapted to the new challenges added in the 2018
rulebook.

Even though remarkable changes have been done since the last year, most
integration problems and bugs could be solved and the team was able to defend
both titles against the strong competitors (Figs. 1 and 2).

3 RoboCup@Work

In this section we introduce briefly the tests and most remarkable changes of the
2018 RoboCup@Work world championship. As a common change to uniform the
different tasks, the robots must now start in the starting position and end in
the finishing position for every run. The 2018 rulebook release [3] contains more
detailed information about the changes.

Arena: As in previous competitions, the arena has well defined start and finish
positions and is entirely shut either by a wall or by yellow-black barrier tape
(see Fig. 3). It contains workstations with heights of 0/5/10/15 cm as well as in
shelves. The 0 cm areas are marked by the blue-white barrier tape. The Fig. 4
displays the map used by the robot for navigation.

Basic Navigation Test Removed: The BNT test had the purpose of demon-
strating robots navigation and obstacle avoidance capabilities. However, these
abilities can also be proven during any other test and the league has thus decided
to remove the BNT test and distribute the points among the following runs.
Teams get now 25 points per station reached during the whole competition.

502 J. Martin et al.

Fig. 3. The @Work arena during the RoboCup
world cup in Montreal (Color figure online)

Fig. 4. Map used for navigation

Basic Manipulation Test: The purpose of the Basic Manipulation Test (BMT)
is to demonstrate basic manipulation capabilities by the robots. Here, five objects
must be grasped and delivered to a nearby workstation.

Basic Transportation Test: The purpose of the Basic Transportation Test
(BTT) is to assess the ability of the robots for combined navigation and manip-
ulation tasks. The robot receives the start and end positions of the objects to
be transported in the arena and autonomously create a plan to perform this
grasping and delivery tasks. This test is repeated three times with an increment
of the difficulty and penalties during the competition. Here, unknown dynamic
obstacles and yellow barrier tapes will limit the mobility of the robot.

Precision Placement Test: The purpose of the Precision Placement Test
(PPT) is to assess advance perception and manipulation abilities. The robot
needs to detect object-specific cavities and introduce the grasped objects into
them.

Rotating Table Test: The purpose of the Rotating Table Test (RTT) is to
assess the robot’s ability to detect and grasp moving objects which are placed
on a rotating turntable. This year, there are six objects laying on the turntable
including three objects to be grasped, such as in previous years, and three extra
decoy objects. Moreover, the objects position in the table is now defined by
referees. As a result each object has its own circular path, tangential speed and
position. The possibility to fix a grasping configuration for the robot in front
of the table is eliminated. As in previous years, the direction of rotation of the
table is fixed and the speed is set by the referees before just the test starts.

Final: The final round is a combination of all the above mentioned tests per-
formed in a single round.

4 Hardware Description

Table 1 shows our main hardware specifications. We use the KUKA omni direc-
tional mobile platform youBot (Fig. 5), as it provides a hardware setup almost

RoboCup@Work 2018 Team AutonOHM 503

Fig. 5. KUKA youBot platform of
the team AutonOHM.

Table 1. Hardware Specifications.

PC 1

CPU NUC7i7BNH

RAM 16 GB DDR4

OS Ubuntu 16.04

Gripper

Type 3D printed, parallel rail

Motor Dynamixel AX-12A

Sensors

Lidar front SICK TiM571

Lidar back SICK TiM571

3D-cam arm Intel RealSense D435

2D-cam gripper Endoscope Cam

3D-cam back Intel RealSense D435

ready to take part in the competition. Nevertheless, we made some modifications
for a better performance.

The platform comes with two PCs with hardware drivers installed, which we
replaced by a single Intel NUC i7, because the default processors were outdated
and caused performance issues. This main PC is used to control the base and
arm of the mobile platform, as well as for image processing and task planning.
The KUKA youbot also comes with a Hokuyu 2D-Lidar, which was replaced by
two SICK SICK TiM571, one at the front and one at the back of the robot. They
are used for mapping, localization, navigation and obstacle avoidance.

The standard endeffector of the Youbot was also replaced by a self devel-
oped parallel gripper. The gripper is based on a single Dynamixel servo motor
which is attached to a 3D printed rail. Simple mechanics allow an efficient power
transmission which enables the motor to grasp with its full torque rather than
it being reduced by the lever in the old gripper version. The fin-ray fingers are
custom printed out of rubber filament, making them soft and enabling them to
close around grasped objects. They are also wider than standard FESTO fin-
ray fingers, so they have an enlarged attack surface and therefore have more
tolerance for very small and/or moving objects.

Both sides of the gripper mount are also used to mount the cameras used for
perception. The main camera is an Intel RealSense D435 which has been chosen
due to its ability to provide a 3D point cloud in short distances. The point of
view can be changed with different arm positions, enabling different fields of view.
The secondary perception camera is an endoscope webcam used to increase the
precision while grasping moving objects. Its field of view points directly towards
the gripper and therefore enables better timing of gripper controls. For the World
Championship, an additional Intel RealSense D435 was mounted at the back of
the robot for improving the barrier tape detection.

504 J. Martin et al.

The robots inventory consists of three identical 3D printed slots mounted on
an adaptable rail system. They are equipped with anti-slip pads, which prevent
any movement of the objects, even with heavy robot vibrations.

5 Software Description

We use different open source software packages to compete in the contests. Image
processing is handled with OpenCV library (2D image processing and object
recognition) and PCL (3D image processing). For mapping and navigation we
use gmapping and navigation-stack ROS-packages1. Additionally, robot-pose-ekf
package is used for fusing the data from the IMU and the wheel encoders, to
provide more accurate data to the navigation and localization system.

The main software packages are based on ROS and explained in the following
sections. These include the state machine (Sect. 5.1), global and local localization
(Sect. 5.2) and packages for perception (Sect. 5.3) and manipulation (Sect. 5.4).
We also improved the rotating table approach (Sect. 5.5). To perform the trans-
portation logistics, a task planner node processes the orders received from the
referee box and calculates the best route considering the maximum transport
capacity and distances between the workstations. This module finds the optimal
solution up to five objects. From six objects on, we need to split the orders in
groups of five due to the long computing time of the current solution, resulting
on an suboptimal result.

5.1 State Machine

The main control of the robot is coordinated over the state machine in Fig. 6.
It starts with an initialization state where the robot receives the map and tries
to localize itself on it. From there, it moves to the “stateIdle” and waits for
new tasks to perform. The Referee Box provides the orders which are processed
by the task planner node and sent to the state machine divided into a vector
of smaller subtasks. The subtasks Move, Grasp, Delivery, PreciseDelivery and
RotatingTable are now managed in the “stateRunning”. Once every subtask is
finished it returns to the “stateIdle” to wait again for new tasks to perform.

The first subtask is usually a Move action performed over the navigation
node. Depending on the required accuracy on the localization, the robot may
execute a fine navigation approach. Both modules are explained in Sect. 5.2.
After a specific workstation location is reached, the robot may look for a specific
object, container or cavity on the workstation. In case of a Grasp subtask, the
exact pose of the desired object is identified. For Delivering an object, the robot
must recognize the exact pose of containers or cavities for PreciseDelivery. Once
the desired pose is located, the arm manipulation is activated, whether for pick-
ing up and storing the object on the robot or for delivering it. The perception
and manipulation nodes are explained in Sects. 5.3 and 5.4 respectively. In case

1 http://wiki.ros.org/.

http://wiki.ros.org/

RoboCup@Work 2018 Team AutonOHM 505

Fig. 6. Global overview of the AutonOHM State Machine

of a RotatingTable subtask, before grasping an object, a preprocessing step to
determine objects velocity and pose in the table is required (Sect. 5.5). Once the
manipulation subtask is finished, the robot moves away from the service area
and returns to the “stateNextSubtask” to manage the following subtask to do
(Fig. 7).

Fig. 7. The Running state is divided into substates where the SubTasks are managed

In addition, most of the states have error handling behaviors that man-
age recovery actions such as in case a navigation goal is not reachable, an
object cannot be found or a grasping was unsuccessful. It is important to notice
these failures and react to them by repeating the action or triggering planning

506 J. Martin et al.

modifications. The state machine framework can be found on GitHub under our
laboratory’s repository.2

5.2 Navigation and Localization

For the navigation, the ROS navigation stack has been used. The localization is
based on a particle filter algorithm, close to amcl localization, as described in
[1]. The algorithm is capable of using two laser scanners and an omnidirectional
movement model. Due to the Monte Carlo filtering approach, our localization
is robust and accurate enough to provide useful positioning with an approxi-
mate error of about 6 cm, depending on the complexity and speed of the actual
movement.

For the fine navigation, such as approximation to service areas and moving
left and right to find the objects on them, we use an approach based on the front
laser scanner data. Initially, the robot is positioned by means of the particle filter
localization and ROS navigation. If the service area is not visible in the laser
scan due to its small height, the robot is moved to the destination pose using
particle filter localization and two separate controllers for x and y movement.
If the service area is high enough, RANSAC algorithm [2] is used to detect the
workstation in the laser scan. Out of this, the distance and angle relative to
the area are computed. Using this information, the robot moves in a constant
distance along the workstation. We achieved a mean positioning error of under
3 cm during a navigation benchmark tests performed in the European Robotics
League local tournament in Milan.

5.3 Perception

This section introduces the implemented nodes for the different perception tasks.
The object detection is presented first. Subsequent the detection of the barrier
tape is described. Finally, the box detection is depicted.

Object Detection: To grasp objects reliably, a stable object recognition is
required. For this purpose, an IntelR© RealSenseTMD435 RGB-D camera is used.

Firstly, the robot navigates to a pregrasp position. Once the base reaches
this position, the arm is positioned above the service area. Due to the limited
field of view, the robot base moves first left, then right so all the objects in the
workstation can be discovered.

On each position, the plane of the service area is searched in the point cloud
using the RANSAC [2] algorithm. Afterwards the detected points are projected
to the 2D-RGB image and used as a mask to segment the objects in the 2D-image
(Fig. 8a and b).

As all workstations have a white surface, the canny edge detector is used in
order to find the concave border of the object in the segmented images for a more

2 https://github.com/autonohm/obviously.

https://github.com/autonohm/obviously

RoboCup@Work 2018 Team AutonOHM 507

Fig. 8. Segmentation mask: The projected point cloud to camera’s RGB image (a).
Filled border and morphological operations (b). Classified objects (c).

accurate result. To classify an object, the following features are extracted: length,
width, area, circle factor, corners count, height and black area. The distance to
the workstation surface and the camera calibration matrix is used to calculate
distance invariant values. With the help of a kNN classifier and the extracted
features, the similarity to each previously trained item is calculated. With this
information and the inventory information from the referee box, the best possible
fitting combination for the detected object on the workstation is searched. To
estimate the location of the object, its mass center is calculated. For the rotation
of the object, the main axis of inertia is computed and used. The robot will now
move in front of the elected object and activate the object recognition again
to obtain a more accurate gripping pose. For the newly introduced challenge
of unknown orientation of the objects, the objects are trained from all possible
orientations. The corresponding height of the detected object will be passed
to the manipulation node for correct grasping. The use of the same features
of the corresponding objects is an advantage of this approach. The features of
black area and height are not considered, as they are not needed for a successful
classification.

Box Detection: Some tasks require an object placement into a blue or a red
box (see Fig. 9a).

Fig. 9. Box Detection: Blue and red box on workstation (a). Point cloud of workstation
(b). Red filtered point cloud and mass center (c). (Color figure online)

508 J. Martin et al.

The boxes are easily distinguishable from the background because of their
color. Therefore a different strategy is used instead of the described object detec-
tion in Sect. 5.3. The advantage is a faster detection of the drop point. In front
of the workstation the robot arm is moved in order to position the camera in
a 45◦ angle to the workstation. Subsequently, the point cloud is filtered by the
color of the searched box (Fig. 9c). If the filtered point cloud is too small, the
robot drives closer to the workstation. If no colored points could be detected,
the robot will move to the left side first, then to the right side, until a significant
amount of points is found. After that the mass center of the filtered point cloud
is calculated and passed to the manipulation node as the drop point for the
object.

Barrier Tape Detection: Yellow/black barrier tapes are used to mark
restricted areas in the RoboCup@Work competition. If the robot crosses this
tape the team is penalized with point deduction (Fig. 10).

Fig. 10. Barrier Tape Detection: Camera image of the barrier tape (a) Birdview (b)
Filter for yellow RGB and HSV values and HU-Moments (c) (Color figure online)

In order to detect this barrier tape the camera image is transformed in bird’s-
eye perspective. Next the image is filtered by RGB and HSV values, which
correspond with the yellow part of the barrier tape. For the next step the HU-
Moments are calculated and compared to filter out false shapes. Afterwards the
detected shapes are transformed and saved in a global map. This gives the robot
the ability to avoid the barrier tape even it is not visible in the camera image
anymore.

5.4 Manipulation

The manipulation controller is responsible for arm and gripper controls, as well
as for inventory management. It provides interfaces for arm positions, grasping
or placing tasks and for linear arm movements (Figs. 11 and 12).

At the beginning of a grasp or placement process, it receives the target pose
from the perception node. A self developed algorithm for the inverse kinemat-
ics and interpolation plans a linear and orthogonal trajectory to the worksta-
tion, object or container. This prevents the gripper from accidentally touching

RoboCup@Work 2018 Team AutonOHM 509

Fig. 11. Precise placement of objects. Fig. 12. Placing an object below the
shelf without causing a collision.

or moving other objects lying on the workstation. Safety behaviors have been
implemented during the grasping and placing process to ensure a reliable object
handling and inventory management. In specific cases where objects are lost, the
affected inventory slot is blocked to further use. The inventory state is broad-
casted, so it can be used e.g. by the task planner.

For 2018, the placement process for the shelf workstations was adapted to
the changes in the rulebook. Placing an object below the shelf is higher rewarded
than placing it on top, because its more likely to cause a collision with parts of the
sensor head attached to the gripper. Therefore, a custom placement trajectory
has been added to ensure safe operation in the enclosed space below the shelf.
Additionally, the grasping process for moved objects was modified to enable
more accurate timing and placement of the TCP.

The gripper controller consists of two separated nodes. The driver node runs
a microcontroller program which is connected to the Dynamixel servo motors.
It initializes and controls the motors position, torque and speed. The microcon-
troller is connected to the main PC via USB and offers an interface for motor
controls and parameter settings. The gripper controller node runs on the main
PC and offers dynamic reconfigure options and the grasping services used by the
manipulation controller and other nodes. It uses the current torque applied to
the motor to determine if an object has been grasped. The torque feedback is
also used to prevent the motor from overcurrents by reducing the torque in case
of high loads.

5.5 Rotating Turntable

As explained in Sect. 3 the rules for this challenge have been significantly changed
in 2018. To adapt our system to the changes, the following algorithm considers
various parameters such as the rotation speed, rotating direction and the pose
of each object on the table.

The robot first navigates to the rotating turntable and extends the manip-
ulator arm to an object detection position. Only performed once, an object
recognition preprocessing approach is started to obtain the rotating table speed

510 J. Martin et al.

Fig. 13. Rotating Turn Table: Robot in front of the rotating turntable grasping an
object (a) All data points, given by the object recognition, and the result of the deter-
mined circular paths of all objects on the turntable with different grasp points (red
marked) (b). (Color figure online)

and the direction of rotation. First, the 2D position, the time stamp and the type
of incoming objects into the camera visual field are recorded over a defined time.
Second, the gathered data is used to determine objects circular paths, defining
specific grasping position for each circular path. Figure 13b shows a result of
this process determining four circular paths with four different grasping posi-
tions (red marked).

With the collected data points of each circular path, a RANSAC-based algo-
rithm [2] calculates the rotation speed of the table, its center (blue marked in
Fig. 13b) and the radius of each determined path. Having all necessary infor-
mation and making use of the previously recorded time stamps, it is possible
to estimate an approximate moment, when each object passes the object grasp-
ing position. To achieve an accurate grasping, an additional stereoscope RGB
camera has been attached on top of the manipulator. A background change algo-
rithm is now applied to the image in order to detect the object entrance in the
camera view. The previously calculated circular path velocity is used to close
the gripper at the right moment.

With the implemented feedback of the gripper the robot recognizes, whether
grasping was successful or has failed. In case of success, the object is placed
on the robot and the manipulator then moves over the next circular path to
grasp the remaining objects. If the grasping fails, the manipulator stays in the
position and waits one more time until the same object arrives at the RGB
camera. If this retry fails again, the robot tries to grasp the next object on the
rotating turntable. The smallest object of the @Work competition, a small nut,
was successfully grasped demonstrated a remarkable accuracy.

6 Results

Table 2 presents the scorings of the world cup in Montreal 2018.

RoboCup@Work 2018 Team AutonOHM 511

Table 2. Results of the RoboCup@Work world cup competition.

Place Team BMT BTT1 BTT2 PPT BTT3 RTT Final Total

1 AutonOHM 1043,75 900 975 550 1050 425 1375 6318,75

2 b-it-bots 675 800 900 450 450 225 1175 4675

3 MRL@work 525 550 850 0 875 0 1050 3850

4 RobOTTO 575 725 1050 0 0 25 1075 3450

5 LUHbots 675 475 0 37,5 1000 25 650 2862,5

6 RED 325 75 525 0 0 0 0 925

7 RoboErectus 225 0 200 50 350 25 0 850

7 Conclusion and Future Work

This paper described the participation of team AutonOHM in the RoboCup@
work league. It contains detailed information of the hardware setup and software
packages like navigation, perception and manipulation. We believe that our sys-
tem stability and repeatability are the key factors to achieve such a regular and
high performance shown in Table 1.

To further increase the system stability and defend the RoboCup@Work
champions title we introduced several improvements in different fields. First, the
new gripper and its feedback function has improved the reliability for correctly
grasping objects, specially during the RTT. Second, the object detection rate
was increased to improve the decoy objects detection during the RTT.

Our main goal for 2019 is to develop a new robot platform to participate
in the German open RoboCup@work, because our Youbot is getting unstable.
Besides, there are several software modules which must be adapted to the new
platform. Additionally, it is planned a software reorganization to make the dif-
ferent modules more modular, independent of each other and reusable.

References

1. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile
robots. In: Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No. 99CH36288C), vol. 2, pp. 1322–1328, May 1999

2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM
24(6), 381–395 (1981)

3. Hochgeschwender, N., et al.: Work Rulebook (2017)
4. Kraetzschmar, G.K., et al.: RoboCup@Work: competing for the factory of the future.

In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup
2014. LNCS (LNAI), vol. 8992, pp. 171–182. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-18615-3 14

5. Martin, J., Engelhardt, H., Fink, T., Masannek, M., Scholz, T.: RoboCup@Work
winners 2017 team AutonOHM. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel,
F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 498–508. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00308-1 41

https://doi.org/10.1007/978-3-319-18615-3_14
https://doi.org/10.1007/978-3-319-18615-3_14
https://doi.org/10.1007/978-3-030-00308-1_41

homer@UniKoblenz: Winning Team
of the RoboCup@Home Open Platform

League 2018

Raphael Memmesheimer(B), Ivanna Mykhalchyshyna, Viktor Seib,
Tobias Evers, and Dietrich Paulus

Active Vision Group, Institute for Computational Visualistics,
University of Koblenz-Landau, 56070 Koblenz, Germany

{raphael,ivannamyckhal,vseib,tevers,paulus}@uni-koblenz.de
http://homer.uni-koblenz.de

http://agas.uni-koblenz.de

Abstract. We won this year’s RoboCup@Home track in the Open Plat-
form League in Montreal (Canada). The approaches as used for the
competition are briefly described in this paper. The robotic hardware
of our custom built robot Lisa and the PAL Robotics TIAGo, both run-
ning the same methods, are presented. New approaches for object recog-
nition, especially the preprocessed segment augmentation, effort based
gripping, gesture recognition and approaches for visual imitation learning
based on continuous spatial observations between a demonstrator and the
interacting objects are presented. Further, we present the current state
of research of our Imitation Learning approaches, where we propose a
hybrid benchmark and methods for bootstrapping actions. Furthermore,
our research on point cloud based object recognition is presented.

Keywords: RoboCup@Home · Imitation learning ·
Gesture recognition · Object recognition · Object manipulation ·
RoboCup · Open platform league · Domestic service robotics ·
homer@UniKoblenz

1 Introduction

In this year’s RoboCup we successfully participated in the RoboCup@Home
Open Platform League, where we achieved the first place. After the RoboCup
World Cup in Nagoya (Japan (2017)) and Hefei (China (2015)), this is the third
time that we won this title. The team consisted of one supervisor and five stu-
dents. Additionally, two more students were supporting the preparation.

Besides the RoboCup competitions, we also attend the European Robotics
League and the World Robot Summit. For this year’s participation we focused on
imitation learning by observation of humans. We demonstrated this twice. Once
at the RoboCup GermanOpen and once in RoboCup@Home Open Platform
league. This year we also improved our team’s infrastructure by a continuous
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 512–523, 2019.
https://doi.org/10.1007/978-3-030-27544-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_42&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_42

homer@UniKoblenz: Winning Team of the RoboCup@Home 513

Fig. 1. The arena setup from Montreal. Different colors are corresponding to different
rooms. Corridor is yellow, kitchen is cyan, dining room is pink, bedroom is red, living
room is green (Color figure online)

software integration and built our packages for a variety of processor architec-
tures.

Section 2 gives a short overview of the RoboCup@Home competition. In
Sect. 3 we present the robots that we used for this year’s participation. A special
focus is put on the hardware changes that the robots have undergone. Section 4
describes the architecture and software approaches we are using. An overview
of the current research topics is given in Sect. 5. Finally, Sect. 6 summarizes and
concludes this paper.

2 RoboCup@Home

Domestic tasks are benchmarked in RoboCup@Home. The competition is
divided into two stages. An Open Challenge and the Finals allow to present
the current research focus in a practical application scenario. In Stage 1 focuses
is on a variety of individual functionalities. The Speech and Person Recognition
test, benchmarks the speech recognition, sound source localization, person recog-
nition and gender estimation. In Help Me Carry robots are supposed to follow a
person outside of the apartment to a car. The person hands over a shopping bag
in a natural way. On the way back obstacles are put into the path of the robot
that should be avoided. In Storing Groceries the robot has to pick groceries from
a table and sort them into a shelf where items of the same category are already
stored. In the General Purpose (GPSR) task all possible capabilities are tested.
The robot receives a speech command consisting of several sub-commands and
has to execute them. Stage 2 consists of the Dishwasher Test, Restaurant, EE-
GPSR (Extended Endurance General Purpose Service Robot) and the Open
Challenge. The Dishwasher Test focuses on precise manipulation. Robots have
to open a dishwasher and store cutlery and plates safely. Further, a dish wash-
ing tab should be placed into the dishwasher. The Restaurant task takes place
outside of the arena in a previously unknown restaurant. The robots are placed

514 R. Memmesheimer et al.

Rode VideoMic Go

Microsoft Kinect 2

7 Inch Screen

Lenovo P50

Kinova Mico

SICK LMS100

UlrichC CU2WD

Hokuyo URG-04LX

Custom Gripper Adapter

Rode VideoMic Go

7 Inch Screen

Lenovo P50

Nvidia Jetson TX2

Orbec Astra

Parallel Gripper

Differential Base

7 DOF Arm

Liftable Torso

Hokuyo URG-04LX-UG

Fig. 2. The robots Lisa (left) and Marge (right). Lisa is our main robot inspired by
Marge as a successor. Both robots run the same software with minor exceptions like
the model descriptions and hardware interfaces.

at an initial location and search for a waving or shouting person. A map in a
dynamic environment needs to be created online. The ordering persons should
be approached and asked for an order. This is particularly hard as the chosen
scenarios are usually quite noisy. The EE-GPSR task is an enhanced-endurance
version of the GPSR task where multiple robots are operating at the same time.
The arena setup from this year’s RoboCup in Montreal is shown in Fig. 1.

3 Hardware

We use a custom built robot called Lisa and a PAL Robotics TIAGo (Marge).
Lisa is built upon a CU-2WD-Center robotics platform. The PAL Robotics
TIAGo robot is able to move its torso up and down and has a wider work-
ing range. Currently, we are using a workstation notebook equipped with an
Intel Core i7-6700HQ CPU @ 2.60 GHz × 8, 16 GB RAM with Ubuntu Linux
16.04 and ROS Kinetic. Each robot is equipped with a laser range finder (LRF)
for navigation and mapping. The most important sensors of Lisa are set up on
top of a pan-tilt unit. Thus, they can be rotated to search the environment or
take a better view of a specific position of interest. Apart from a RGB-D camera
(Microsoft Kinect 2) a directional microphone (Rode VideoMic Pro) is mounted
on the pan-tilt unit. A 6-DOF robotic arm (Kinova Mico) is used for mobile
manipulation. The end effector is a custom setup and consists of 4 Festo Finray-
fingers. Finally, an Odroid C2 inside the casing of Lisa handles the robot face

homer@UniKoblenz: Winning Team of the RoboCup@Home 515

Fig. 3. The Mask-RCNN resulting image of cutlery objects as used for the Dishwasher
challenge.

and speech synthesis. A Raspberry Pi 3 in combination with a Matrix Creator
board was used for the integration of a sound source localization system.

TIAGo has a mobile differential base with a Hokuyo URG-04LX-UG01 laser
range finder. We compute the odometry from wheel encoders. In combination
with the LRF we can create a map of the environment and localize the robot. The
robot has a torso which is lift-able by 40 cm. In case of the toilet cleaning task
during the World Robot Summit competition this was a benefit for the use of the
sponge-end effector. We could reach the toilet seat with a top-down end-effector
pose, but also the ground of the toilet. The 7-DOF arm was used for cleaning
the toilet seat, picking up the paper pieces and cleaning the floor of the toilet.
The head has a 2-DOF and holds an Orbbec ASTRA RGB-D camera which was
used for the segmentation of the toilet seat and the detection of the trash on the
floor. Further, we used a Lenovo P50 workstation notebook equipped with Intel
i7-6700HQ CPU, 16 GB memory and a 2 GB Quadro M1000 GPU and mounted
it on the back of TIAGo. A NVIDIA Jetson TX2 was used to compensate for the
low graphical memory available on TIAGO’s notebook in order to run multiple
models in parallel. The robot setup is depicted in Fig. 2.

4 Approaches

This section briefly introduces our approaches. The applied software architecture
has been described previously [1–3].

Object Recognition. This year we used Mask-RCNN [4] in combination with
a custom augmentation approach as a segmentation method for images. The
segmented images with the labels are augmented in image space among different
backgrounds of the arena. In the background images we ensured that no relevant
objects are visible. The use of background images decreases also the false positive
detections. This segmentation method is beneficial for more precise manipulation

516 R. Memmesheimer et al.

Fig. 4. Tracking Overview. We employ a RFS Bernoulli single target tracker in combi-
nation with a deep appearance descriptor to re-identify and online classify the appear-
ance of the tracked identity. Measurements, consisting of positional information and an
additional image patch serve as input. The Bernoulli tracker estimates the existence
probability and the likelihood of the measurement being the operator. Positive against
negative appearances are continuously trained. The online classifier returns scores of
the patch being the operator.

tasks i.e. for cutlery objects which are not segmentable in the depth images as
the height differences are below the separable threshold. As the segmentation
method is computationally expensive we calculate the mask proposals on single
images only. A faster approach that yields object masks with high frequency
is desirable as future work to allow closed loop manipulation. An exemplary
segmentation image is shown in Fig. 3. In total 344 images containing containing
multiple objects where labeled.

Speech Recognition. For speech recognition we use a grammar based solution
supported by an academic license for the VoCon speech recognition software by
Nuance1. We combine continuous listening with begin and end-of-speech with
the integrated detection to get good results even for complex commands. Recog-
nition results below a certain threshold are rejected. The grammar generation is
supported by the content of a semantic knowledge base that is also used for our
general purpose architecture.

Operator Following. We developed an integrated system to detect and track
a single operator that can switch off and on when it leaves and (re-)enters the
scene [5]. Our method is based on a set-valued Bayes-optimal state estimator that
integrates RGB-D detections and image-based classification to improve tracking
results in severe clutter and under long-term occlusion. The classifier is trained
in two stages. First, we train a deep convolutional neural network to obtain a
feature representation for person re-identification. Then, we bootstrap an online
classifier that discriminates the operator from remaining people on the output of
the state-estimator (Fig. 4). The approach is applicable for following and guiding
tasks.
1 http://www.nuance.com/for-business/speech-recognition-solutions/vocon-hybrid/

index.htm.

http://www.nuance.com/for-business/speech-recognition-solutions/vocon-hybrid/index.htm
http://www.nuance.com/for-business/speech-recognition-solutions/vocon-hybrid/index.htm

homer@UniKoblenz: Winning Team of the RoboCup@Home 517

Fig. 5. Gesture recognition output: (A) extracted person poses in the Restaurant chal-
lenge at RoboCup@Home 2018 in Montreal, Canada: detected human poses are marked
red, calling persons are highlighted green; (B) projection of the body keypoints into
3D space. (Color figure online)

Person Detection. For person detection we integrated multiple approaches for
different sensors that can be optionally fused and used to verify measurements
of other sensors. A leg detector [6] is applied on the laser data. This yields high
frequency, but error prone measurements. For finding persons in point clouds we
follow an approach by Munaro et al. [7]. The most reliable detections are by a
face detection approach [8], assuming that the persons are facing the camera.
For gender estimation we then apply an approach by Levi et al. [9].

Gesture Recognition. In this section, we describe the gesture recognition app-
roach as used during RoboCup@Home 2018 in Montreal, Canada. This method
differs from our model based approach as presented in [10]. Therefore we give
a more detailed description of our approach here. Gesture recognition, and in
particular the waving gesture detection, is one of the features that are tested in
many RoboCup challenges such as in Restaurant, GPSR and EEGPSR. Human
pose features are extracted by Convolutional Pose Machines (CPM) [11] with
pre-trained COCO-model from a RGB-image. The extracted features result in
the set F with 18 possible body parts represented in the pixel space. We denote
the joint keypoint as f i ∈ F where:

f i =
[
xi

yi

]
, (1)

and i ∈ {0, ..., 17}. Moreover, we define a vector connecting ith and jth body
parts as follow:

vi,j =
[
xi − yj

yi − yj

]
, (2)

518 R. Memmesheimer et al.

Fig. 6. Illustration of our effort gripping approach: (A) is the starting position. In (B)
the robot prepared to grasp. (C) the arm is moved over the object and downwards
while observing the torque and then stopped to grasp. In (D) the arm is lifted again
and the success or failure of the grasping is verified.

with i, j ∈ {0, ..., 17} and j �= i. Furthermore, the angle between the vectors of
two body parts is calculated exploiting the following formula:

a(vi,j ,vl,j) = arccos(
vi,j • vl,j

||vi,j || · ||vl,j ||), (3)

where i, j, l ∈ {0, ..., 17} and j �= i �= l. Finally, the given pose is classified as
the waving gesture considering angles between particular body parts defined by
COCO pose format: hand-elbow with connecting vectors v4,3 for the right arm
and v7,6 for the left arm and elbow-shoulder with the connecting vector v5,6.
The angles between hand-elbow and elbow-nose with connecting vectors v0,3 for
the right arm and v0,6 for the left arm are examined by utilizing Eq. 3 in the
following function:

call() =

⎧⎪⎨
⎪⎩

1, if 0 < a(v4,3,v0,3) ≤ θ ∧ 0 < a(v4,3,v2,3) ≤ θ

1, if 0 < a(v7,6,v0,6) ≤ θ ∧ 0 < a(v7,6,v5,6) ≤ θ

0, otherwise.
(4)

Based on conducted experiments we found that θ = 150 works well for the
call() function defined in Eq. 4. The result of the call detection is depicted in
Fig. 5(A), where the waving gesture is highlighted in green. To estimate a final
position of the gesticulating person we project the average over the body part
position into map-coordinates.

The result of the projection is shown in Fig. 5 (B).
A video of this approach during the Restaurant task is available2. A model

based approach [10] has been proposed later. Currently, we are also working on
an extension of the gesture recognition approach to image sequences.

Effort Gripping. For gripping tiny objects that are hardly differentiable from
the underlying surface in the depth image the estimation of a precise grasp
pose is not possible. This is the case for i.e. cutlery or dishwasher tabs. We
therefore propose an closed loop effort (in motor-current or force-torque) based
2 Restaurant challenge video: https://www.youtube.com/watch?v=31Tmmhhqo 4.

https://www.youtube.com/watch?v=31Tmmhhqo_4

homer@UniKoblenz: Winning Team of the RoboCup@Home 519

Fig. 7. Approach overview for extracting action informations from 2D image sequences
in order to execute them on a mobile robot. Exemplary object detections (yellow, pink)
and human pose estimates (green) are observed. Actions are recognized using a set of
constraints. For replicating the observed actions we used two mobile robots equipped
with an arm. (Color figure online)

grasping approach. An object pose slightly above the object position and the
end-effector facing downwards is defined as an initial arm pose. Then the joint
efforts are continuously observed while the end-effector is moved downwards
approaching the object with Cartesian movements until the joint effort peaks.
Freely spoken this approach moves the end-effector downwards to the object
until the underlying surface is touched. After the object grasping we observe
the joint positions of the gripper in order to verify if the object was grasped
successfully. A sequential overview is given in Fig. 6. This approach has proven
to be beneficial for small objects multiple times during the challenge and can also
be used for safely placing objects on detected surfaces. A video of this approach
integrated in the Dishwasher scenario is available3.

Imitation Learning. This year in the Open Challenge and in the Finals we pre-
sented a novel approach for imitating human behavior based on visual informa-
tion of a RGB camera. The human hand and objects are continuously detected.
We proposed a visual approach for Imitation Learning [12]. This approach was

3 Effort based gripping approach as used for the Dishwasher challenge: https://www.
youtube.com/watch?v=luSMEtMoX7w.

https://www.youtube.com/watch?v=luSMEtMoX7w
https://www.youtube.com/watch?v=luSMEtMoX7w

520 R. Memmesheimer et al.

Fig. 8. Overview: this figure gives an overview of our hybrid benchmarking model. We
provide a dataset recorded with a RGB-D camera and a motion capturing system. The
sequences of the dataset are supposed to be interpreted by approaches for imitation
learning, which then have to execute the imitation in a simulated environment grounded
by the ground truth initial object positions. After the performance in simulation, results
are automatically evaluated by provided scripts.

presented during the 2018 RoboCup@Home Finals in Montreal. Current robotic
systems that lack a certain desired behavior commonly need an expert program-
mer to add the missing functionality. Contrary, we introduce an approach related
to programming robots by visual demonstration that can be applied by common
users. Provided a basic scene understanding, the robot observes a person demon-
strating a task and is then able to reproduce the observed action sequence using
its semantic knowledge base. We presented an approach for markerless action
recognition based on Convolutional Pose Machines (CPM) [13], object obser-
vations [14] and continuous spatial relations. The actions are executable on a
robot that is able to execute a set of common actions. The initial scene analysis
allows semantic reasoning in case the required object is not present. Further,
this allows executing the same action sequence with different objects which is
a major benefit over action sequencing approaches that rely on positional data
only. Even though we are demonstrating our approach on 2D observations, the
formulations are also adaptable for 3D. Figure 7 gives an overview of our app-
roach. More information is available on our project page4.

5 Current Research

The current focus of research is on Imitation Learning. The previously described
visual imitation learning approach is based on spatial relations between the
demonstrator and objects and uses a mapping between recognized actions
and robot actions. Additionally, we focus on research in benchmarking Imita-
tion Learning and bootstrap actions by observation. Further, we introduce our
research activities in point cloud based object recognition methods.

4 Imitation Learning project page: https://userpages.uni-koblenz.de/∼raphael/
project/imitation learning/.

https://userpages.uni-koblenz.de/~raphael/project/imitation_learning/
https://userpages.uni-koblenz.de/~raphael/project/imitation_learning/

homer@UniKoblenz: Winning Team of the RoboCup@Home 521

 D

Enviroment

G

D

Fig. 9. Diagram of the Generative Adversarial Imitation approach for learning robotics
tasks from the expert demonstrations. Two neural networks, the Discriminator network
D and the Generator network G, are trained resulting in an optimal policy πθ(a|s). D
uses the expert trajectories τ E for the training to distinguish the expert trajectories
from the trajectories τ G produced by the policy. D outputs the reward vector r which
is used to optimize the policy in the inner loop.

Imitation Learning Benchmark. Currently, there is a lack of datasets for
Imitation Learning through human observation. We created a benchmark called
Simitate where we recorded a dataset using a commonly available RGB-D camera
calibrated against a motion capturing system. Data was recorded in a domestic
real world testbed as used for the European Robotics League. Different people
performed daily activities like performing movements with their hand, picking,
placing, stacking or moving objects. For the demonstrator’s hand and the inter-
acting objects ground truth poses are recorded with the motion capturing sys-
tem. As ground truth positions of the objects and hand are available we can
spawn them into a simulated representation of the environment where simu-
lated robots should imitate the demonstrations. We suggest metrics for effect
and trajectory level imitations. The approach is visualized in Fig. 8 and more
information can be found on the project page5.

General Adversarial Imitation Learning. Generative Adversarial Imitation
Learning (GAIL) was recently proposed by Ho and Ermon [15] as an approach
to teach a robot to accomplish the given task using expert demonstrations. In
our work we leverage from GAIL and regard the robotic manipulation prob-
lem as a sequential decision making task where the robot follows a stochastic
parametrized policy πθ(a|s) that maps observed state s to a distribution over

5 Simitate Imitation Learning project page: https://agas.uni-koblenz.de/data/
simitate/.

https://agas.uni-koblenz.de/data/simitate/
https://agas.uni-koblenz.de/data/simitate/

522 R. Memmesheimer et al.

manipulation actions a. The overview of the approach is depicted in the Fig. 9.
For training the generative model we use the expert trajectories from the dataset
described in Sect. 5. Furthermore, we exploit the Proximal Policy Optimization
method [16] in the inner loop as it is shown in the Fig. 9 by utilizing reward
vector r ∈ RT given by the Discriminator in order to estimate the advantage
function.

Point Cloud Recognition and Affordance Estimation. Despite the great
success of deep learning approaches in the recent years, we also continue research
on some classic methods. Classic methods are especially useful if only little train-
ing data or computational resources are available. We further refined the nearest-
neighbor point cloud recognition presented in [17] to be computationally more
efficient and achieve higher classification rates with an optimized codebook fil-
tering method6. This approach will be further combined with an affordance
estimation algorithm [18] in the future.

6 Summary

RoboCup@Home is a robot competition where domestic robots compete in daily
tasks. For this year we used two robots, a custom build robot called Lisa and a
PAL Robotics TIAGo. We briefly described our approaches and presented our
research focus. Novel approaches for gesture recognition, effort based gripping
and visual imitation learning where successfully presented in this year’s compe-
tition. In the finals we further demonstrated that the acquired knowledge by one
observing robot is reusable by other robots with a common set of functionalities.

Acknowledgement. First we want to thank the participating students Niklas Yann
Wettengel, Tobias Evers, Lukas Buchhold, Thies Möhlenhof, Lukas Debald and Anatoli
Eckert. A major thanks is given to PAL Robotics SL which supported us with the
free loan of a TIAGo robot and further supported us in organizing the shipping to
Montreal. Thanks to Nuance Communications Inc. for supporting the team with an
academic license for speech recognition. Further, we want to thank NVIDIA for the
grant of a graphics card that has been used for training the operator re-identification
and the object segmentation.

References

1. Memmesheimer, R., Seib, V., Paulus, D.: homer@UniKoblenz: winning team of the
RoboCup@Home open platform league 2017. In: Akiyama, H., Obst, O., Sammut,
C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 509–520.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 42

2. Memmesheimer, R., et al.: Robocup: homer@unikoblenz (germany). Fachbereich
Informatik. Technical report 4/2018 (2018)

6 Detailed description and code on https://github.com/vseib/PointCloudDonkey.

https://doi.org/10.1007/978-3-030-00308-1_42
https://github.com/vseib/PointCloudDonkey

homer@UniKoblenz: Winning Team of the RoboCup@Home 523

3. Seib, V., Memmesheimer, R., Paulus, D.: A ROS-based system for an autonomous
service robot. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625,
pp. 215–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9 9

4. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

5. Wojke, N., Memmesheimer, R., Paulus, D.: Joint operator detection and tracking
for person following from mobile platforms. In: 2017 20th International Conference
on Information Fusion (Fusion), pp. 1–8, July 2017

6. Lu, D.V., Smart, W.D.: Towards more efficient navigation for robots and humans.
In: IEEE/RSJ International Conference On Intelligent Robots and Systems
(IROS), pp. 1707–1713. IEEE (2013)

7. Munaro, M., Menegatti, E.: Fast RGB-D people tracking for service robots. Auton.
Robots 37(3), 227–242 (2014)

8. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

9. Levi, G., Hassner, T.: Emotion recognition in the wild via convolutional neural
networks and mapped binary patterns. In: Proceedings of the 2015 ACM on Inter-
national Conference on Multimodal Interaction, pp. 503–510. ACM (2015)

10. Memmesheimer, R., Mykhalchyshyna, I., Paulus, D.: Gesture recognition on human
pose features of single images. In: 2018 9th International Conference on Intelligent
Systems (IS), pp. 1–7. IEEE (2018)

11. Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4724–4732 (2016)

12. Memmesheimer, R., Mykhalchyshyna, I., Seib, V., Theisen, N., Paulus, D.: Mark-
erless visual robot programming by demonstration. CoRR, vol. abs/1807.11541
(2018). http://arxiv.org/abs/1807.11541

13. Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.
CoRR, vol. abs/1602.00134 (2016). http://arxiv.org/abs/1602.00134

14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

15. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural
Information Processing Systems, pp. 4565–4573 (2016)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms.’ arXiv preprint arXiv:1707.06347 (2017)

17. Seib, V., Link, N., Paulus, D.: Pose estimation and shape retrieval with hough
voting in a continuous voting space. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR
2015. LNCS, vol. 9358, pp. 458–469. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24947-6 38

18. Seib, V., Knauf, M., Paulus, D.: Affordance origami: unfolding agent models for
hierarchical affordance prediction. In: Braz, J., et al. (eds.) VISIGRAPP 2016.
CCIS, vol. 693, pp. 555–574. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-64870-5 27

https://doi.org/10.1007/978-3-319-26054-9_9
http://arxiv.org/abs/1807.11541
http://arxiv.org/abs/1602.00134
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-319-24947-6_38
https://doi.org/10.1007/978-3-319-24947-6_38
https://doi.org/10.1007/978-3-319-64870-5_27
https://doi.org/10.1007/978-3-319-64870-5_27

ToBI - Team of Bielefeld Enhancing
the Robot Capabilities of the Social

Standard Platform Pepper

Florian Lier, Johannes Kummert, Patrick Renner, and Sven Wachsmuth(B)

Exzellenzcluster Cognitive Interaction Technology (CITEC),
Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany

swachsmu@techfak.uni-bielefeld.de

http://www.cit-ec.de/de/ToBI

Abstract. In this paper, we describe the joint effort of the Team of
Bielefeld (ToBI) winning the RoboCup@Home Social Standard Plat-
form League (@Home SSPL) at the world cup in Montreal 2018. The
@Home competition consists of benchmarking tests that cover multi-
ple skills required for service robotics and human-robot interaction in
domestic environments. The @Home SSPL is one of three different sub
leagues – two of those focus on specific standard platforms, the third
allows open platforms. In the SSPL the standard platform is the Pepper
robot by Softbank. In this contribution, we present our approach and
the design decisions for enhancing the standard platform Pepper for the
competition. This includes the development and testing environment, the
preparation process, the integrated software system as well as the com-
ponents providing enhanced skills for the robot. We further describe the
ideas and techniques used to extend the human-robot interaction by a
mixed-reality interface and a first approach to bimanual grasping. Both
was presented in the final demonstration of the competition.

1 Introduction

The RoboCup@Home competition [1] aims at bringing robotic platforms to use
in realistic domestic environments. In contrast to other leagues like soccer, which
predefine and standardize the field, robots in the @Home league need to deal with
different apartment layouts, changing decorations, unknown sites, unstructured
public spaces, as well as cooperating or interfering humans. Human operators
are not at all – or only very briefly – instructed how to interact with the robot.
Thus, the design and robustness of human-robot interaction is one of the key
challenges for the RoboCup@Home competition – and especially for the Social
Standard Platform League. In this paper, we treat this issue on different levels.
On the level of capabilities, we extend the Pepper platform by using alterna-
tive speech recognition, person recognition, and person tracking components to

This work has been supported by the DFG Excellencecluster Cognitive Interaction
Technology (EXC277).

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 524–535, 2019.
https://doi.org/10.1007/978-3-030-27544-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_43&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_43

ToBI - Team of Bielefeld 525

improve robustness. On the level of system integration, we use a flexible frame-
work that allows to integrate software components developed in different ecosys-
tems as well as to easily configure and use on-board and off-board computation.
On the level of the interaction interface (Open Challenge and Final), we offer an
intuitive Augmented Reality device that allows a more transparent inspection of
the state of the robot for the user, its integration as an extended sensor device
for the robot as well as a human teach-in for the configuration of new scenarios.

The RoboCup@Home competition consists of a set of benchmarking tasks
that are adapted or newly defined each year. These typically require multi-
ple capabilities, like navigation and mapping, person recognition and tracking,
speech understanding and simple dialogues, object recognition and manipula-
tion. The competition is organized into different stages. Within the first stage,
tests focus on a small set of capabilities (e.g. person following and guiding or
object recognition and manipulation) scoring the best two tries out of three.
The stage is finalized by an integration challenge (GPSR – General Purpose
Service Robot) where robots have no predefined task, but need to autonomously
sequence a task given by speech. The best 50% of the teams proceed to the sec-
ond stage. Here, robots are tested in an enhanced and longer version of GPSR
(EE-GPSR), in a real restaurant as a waiter, and in an individual open perfor-
mance (Open Challenge). The final is an extended open challenge that is judged
by an internal and external jury. The Team of Bielefeld (ToBI) was founded
in 2009 and successfully participated in the RoboCup German Open as well as
the RoboCup World Cup from 2009 to 2018 with different robotic platforms. In
2016, the team ended first in the Open Platform League (OPL) [2]. At RoboCup
2017, the team achieved the third place in the OPL competition and the seventh
place in the Social Standard Platform League (SSPL). Finally, the team achieved
the SSPL world champion award at RoboCup 2018. Thus, our overall approach
as been successfully ported to the Pepper platform which has to deal with (i)
limited processing capacities on the platform and the low bandwith of the wire-
less connection to external computing resources, (ii) limited sensor capabilities,
e.g., low range and low resolution in space and time of the ultrasonic and laser
sensors, (iii) its own ecosystem (NaoQi) which needs to be integrated with other
ROS-based components. In the following sections, we will describe our approach
to establish an improved development environment for the Pepper robot that
allows to support the RoboCup activities as well as the more general research
agenda on human-robot interaction.

Bielefeld University is involved in research on human-robot interaction for
more than 20 years especially gaining experience in experimental studies with
integrated robotic systems [3]. Within this research, strategies are utilized for
guiding the focus of attention of human visitors in a museum’s context [4]. Fur-
ther strategies are explored in a project that combines service robots with smart
environments [5], e.g. the management of the robot’s attention in a multi-user
dialogue [6]. A critical property for any human-robot interaction experiment is
the reproducibility of the robotic system and its performance evaluation dur-
ing its incremental development progress. However, this is rarely achieved [7].

526 F. Lier et al.

(a) Pepper ∗ (b) Pepper with
attached laser

(c) TIAGo (d) Floka

Fig. 1. Robotic platforms of ToBI. Pepper is 120 cm tall, the overall height of TIAGo is
adjustable ≈110 cm–145 cm as well as the Floka platform ≈160 cm–200 cm. (∗ http://
innoventionsblog.blogspot.de/2014/06/meet-pepper-first-personal-robot-who.html)

This applies to experimentation in robotics as well as to RoboCup. A Technical
Description Paper (e.g. [8]) – as typically submitted to RoboCup competitions
– is by far not sufficient to describe or even reproduce a robotic system with
all its artifacts. The introduction of a systematic approach towards reproducible
robotic experiments [9] has been turned out as a key factor to maximally sta-
bilize basic capabilities like, e.g., navigation or person following. Together with
appropriate simulation engines [10] it paves the way to an automated testing of
complete RoboCup@Home tasks.

2 Robot Platforms and System Description

During the last years, the RoboCup@Home and related research activities at
Bielefeld University utilized different robotic platforms. In 2016, ToBI partici-
pated with the two service robots Biron and Floka [2], in 2017 with Biron and
Pepper, in 2018 with Pepper. Current research also aims at the TIAGo platform.
Figure 1 gives an overview of the three platforms (Pepper, TIAGo, Floka) which
are still in the focus of current research activities. Although focusing on the
Pepper in this paper, we still aim at the development of platform independent
as well as multi-platform robot capabilities. The Social Standard Platform
Pepper (cf. Fig. 1(a)) has been newly introduced to the RoboCup@Home com-
petition in 2017. It features an omni-directional base, two ultrasonic and six
laser sensors. Together with three obstacle detectors in his legs, these provide
him with navigation and obstacle avoidance capabilities. Two RGB cameras, one
3D camera, and four directional microphones are placed in his head. It further
possesses tactile sensors in his hands for social interaction. A tablet is mounted
at the frontal body and allows the user to make choices or to visualize the inter-
nal state of the robot. In our setup we use an additional laptop as an external

http://innoventionsblog.blogspot.de/2014/06/meet-pepper-first-personal-robot-who.html
http://innoventionsblog.blogspot.de/2014/06/meet-pepper-first-personal-robot-who.html

ToBI - Team of Bielefeld 527

Fig. 2. System architecture for the Pepper platform. The software components are
partially deployed on an external computing resource. The architecture abstracts from
communication protocols and computing ecosystems. Thus, ROS as well as NAOqi
processing components can be used on the external computer as well as onboard the
robot. Images are streamed in a compressed format in order to meet online processing
requirements.

computing resource which is connected to the on-board computer of the Pep-
per via Wi-Fi. Because the on-board laser is quite short range, we developed
a hardware mounting for an external laser sensor (Fig. 1(b)) that can be easily
attached or removed. Thereby, the Pepper is enabled to build precise maps of
the environment that can be used during competition for navigating with the
limited on-board laser sensors. In our research, all three robot platforms are run
with the same framework but slightly different robot skill implementations. This
allows a transfer of robot behaviors between platforms on an abstract level.

System Architecture: Our service robots employ distributed systems with multi-
ple clients sharing information over network. On these clients there are numerous
software components written in different programming languages. Such hetero-
geneous systems require abstraction on several levels. Figure 2 depicts a simpli-
fied overview of the system architecture used for the Pepper robot including an
external processing resource—a single high performance laptop. In our archi-
tecture, the NAOqi framework still encapsulates hardware access to the robot,
but we additionally managed to run ROS on the head PC1 of the Pepper. Our
installation includes the entire ROS navigation stack and the depth processing
pipeline2 for instance. This allows a further abstraction across different ecosys-
tems and seamless integration. Software components from both worlds, NAOqi
and ROS, can be flexibly deployed onboard or offboard the robot. Skills in the
same ecosystem can communicate using ROS or native Qi messages, those in
different ecosystems communicate through a ROS wrapper.
1 Intel Atom, 32Bit Gentoo Linux, outdated and streamlined release.
2 http://wiki.ros.org/depth image proc.

http://wiki.ros.org/depth_image_proc

528 F. Lier et al.

(a) MORSE simulation for Pepper (b) Modeling HRI in MORSE

Fig. 3. Simulation of RoboCup@Home tasks for Pepper in MORSE.

The computational resources on the robot’s head PC are limited. Thus, only
components that are time-critical, e.g. for safe and robust autonomous naviga-
tion, are deployed on the head PC, while other skills, like people perception,
speech recognition, semantic scene analysis and behavior coordination, are run-
ning on the external laptop. In order to meet online processing requirements
in certain robot behaviors, e.g. person following, depth and color images are
streamed in a compressed format achieving frame rates of approximately 10 Hz.

The robot behavior is coordinated using hierarchical state machines. The
hierarchical structure consists of re-usable building blocks that refer to abstract
sensors and actors, skills, and complete task behaviors. A typical abstract sensor
would be a people detector, while a typical skill would be person following that
already deals with certain interferences or robot failures like briefly loosing and,
then, re-establishing a human operator. As far as possible, we re-use robot skills
that already have been used on previous RoboCup@Home or related research
systems [2], like Floka or TIAGo. However, this has certain limits if, e.g., a skill
person following is based on dense, longer-range, high-frequency laser scans.
The laser scans of the Pepper platform only achieve a frame rate of 6.66 Hz
with a very low resolution and reliable range. Therefore, we already merged
the LIDAR with depth information from the camera located in the head of the
robot. However, this requires that the robot looks down rather than looking up
watching for people. Thus, this conflicts with other robot behaviors introducing
new dependencies in the skill and behavior design of the robot. Abstracting
skills from task behaviors still leads to a description of task-level state machines
that are agnostic with regard to such considerations. The explicit definition of
skills further allows to reason about them and track their success during the
performance of the robot. Based on this, new elements had been introduced
during the last years, like reporting on success and failure of tasks assigned to
the robot in GSPR [2].

Development, Testing, and HRI Simulation: The continuous as well as incremen-
tal software development process is based on the Cognitive Interaction Toolkit
(CITK) [9]. It provides a framework that allows to describe, deploy, and test
systems independent of the underlying ecosystem. Thus, the concepts apply

ToBI - Team of Bielefeld 529

(a) HRI using the HoloLens (b) Augmenting the operator’s view

Fig. 4. Enhanced capabilities of the Pepper system: mixed-reality HRI

for ROS-based components and systems as well as for those defined with, e.g.,
NAOqi. Combined with an appropriate abstraction architecture, a re-usability
of components and behaviors can be achieved across platforms. The CITK
framework has already been applied to the Nao platform3 as well as previous
RoboCup systems including the Pepper platform in 2017 and 2018. For the
RoboCup@Home SSPL competition we further work on enhancing our simu-
lation approach that allows to easily switch between the real hardware and a
simulated environment including virtual sensors and actors. In order to keep
our cross-platform approach, we utilized the MORSE Simulation framework [11]
that additionally offers extended possibilities for modeling virtual human agents
for testing human-robot interaction scenarios [10].

The software dependencies—from operating system dependencies to inter-
component relations—are completely modeled in the description of a system
distribution which consists of a collection of so called recipes [9]. In order to
foster reproducibility/traceability and potential software (component) re-use of
the ToBI system, we provide a full specification of the 2016 system in our online
catalog platform4. The catalog provides detailed information about the soft- and
hardware system including all utilized software components, as well as the facility
to execute live system tests and experiments remotely5. The MORSE simulation
environment [11] allows to conduct human-robot interaction experiments and
provides virtual sensors for the cameras and laser-range sensors (see Fig. 3(a)).
The virtual image streams and laser scans are published on the equivalent ROS
topics which are used by the real sensors. In Lier et al. [10], we show how to utilize
this framework for an automated testing of a virtual human agent interfering
with the navigation path of a robot (see Fig. 3(b)).

3 https://toolkit.cit-ec.uni-bielefeld.de/systems/versions/nao-minimal-nightly.
4 https://toolkit.cit-ec.uni-bielefeld.de/systems/versions/robocup-champion-2016-

2016-champion.
5 In order to gain access to our remote experiment execution infrastructure please

contact the authors.

https://toolkit.cit-ec.uni-bielefeld.de/systems/versions/nao-minimal-nightly
https://toolkit.cit-ec.uni-bielefeld.de/systems/versions/robocup-champion-2016-2016-champion
https://toolkit.cit-ec.uni-bielefeld.de/systems/versions/robocup-champion-2016-2016-champion

530 F. Lier et al.

3 Research on MR-HRI and Bimanual Handovers

Facilitating HRI by Mixed-Reality Techniques: Further research is conducted
with the Pepper platform in order to explore how human-robot interaction can
be facilitated by mixed-reality techniques (Fig. 4) [12,13]. Augmented and Mixed
Reality techniques are already applied in various areas of robotics development
and debugging [14–17]. Apart from tele-operators and developers, everyday HRI
can also be enhanced using AR/MR techniques by displaying virtual avatars
on physical robots [18], creating spatial dialogues [19], augmenting a work cell
of a industrial robot arm [20] or by communicating intended movements [21].
In our ongoing work, we pick up these ideas but add a novel approach which
we suppose to be even more helpful for a human user. Our aim is to not only
use a MR headset for visualizing data, but to also integrate its sensor data,
giving the user a more direct interface to the robot. This way, on the one hand
the user can always be aware of the current robot status and intent. On the
other hand, the robot can integrate the human’s location in the environment
as well as data of the MR headset from, e.g., RGB-D sensors. Moreover, voice
instructions can be given remotely, even when the robot is located in another
room. For implementing such a scenario, we integrated the Microsoft HoloLens
into our robotic framework based on ROS [22]. The Unity3D game engine was
used for implementation on the HoloLens. Communication between the MR
device and ROS was realized using MQTT. Making use of the room-scale tracking
capabilities of the HoloLens, we only initially had to calibrate the coordinate
system of the robot and the MR device. This was done by displaying an AR
marker on the tablet attached to Pepper. After this marker is detected once,
the robot is correctly represented in the coordinate system of the HoloLens and
vice versa. Pose updates of the robot are used to also update the representation
in the HoloLens. To facilitate interactions with the robot, we use AR in two
different ways: like done in previous work, sensor data are visualized to a get a
better grasp of the robot’s capabilities. Here, we show the map and the robot’s
localization on it, the costmap and laser scans for giving sensory information.
The planned path is shown for making the user aware of the next movements
(Fig. 4(b)). Thus, the user is able to understand the reason for e.g. the robot not
being able to reach its current navigation goal. This will also help the human to
take the correct path, not interfering with the path of the robot. For grasping, the
robot can visualize its grasp space when it is not able to reach to an object. This
way, the robot can actively ask the user for help, committing information which
otherwise would not be obvious. Secondly, since the HoloLens is integrated with
the robot’s coordinate system, it can be used as an additional sensory and input
device. In our example case, by this means the robot gains knowledge about the
user’s position and orientation in the environment. Wherever the user goes, she
can instruct the robot to come and fulfill a task by a voice command interpreted
by the AR device. The user’s view using the Microsoft HoloLens can be seen in
Fig. 4(a). In the RoboCup Open Challenge and Final, we successfully realized a
mixed-reality HRI application scenario simulating the business case of a robotic
version of Airbnb. In a first run, the owner of an apartment teaches the robot

ToBI - Team of Bielefeld 531

Fig. 5. Enhanced capabilties of the Pepper system: bimanual handover

a sequence of behaviors for a procedure for welcoming and introducing a guest.
Therefore, she or he uses the HoloLens to teach in places: using the localization of
the HoloLens, the owner just walks through the apartment wearing the AR device
and remotely instructs the robot what to say at which place in the apartment.
After that, when the guest arrives the robot takes the initiative, identifies the
guest based on face identification, and proceeds the tour though the apartment
in a guiding mode telling the guest the taught-in information about each room.
At the kitchen counter the robot is further instructed to check if any drinks
are missing. Any feedback information is communicated to the owner’s mobile
device without the owner being required to be present at the site.

Bimanual Object Handovers: Although the Pepper robot is not made for grasp-
ing, delivery tasks are a typical use case that is expected from a service robot
at home. Regular strategies for grasping do not apply because the Pepper hand
is under-actuated offering only a closing or opening, the hand is too small to
grasp typical household objects, the large backlash of the arms’ gears results
in an imprecise control, and finally the depth camera in the head provides no
valid 3D data at grasping distance. For the RoboCup@Home competition, we
explored two different strategies for compensating the deficiencies of the plat-
form. First, we implemented an interactive strategy for an open loop handover
of a customized tray. Here the operator triggers the robot by speech to get into
a predefined handover pose. Then the robot takes over and instructs the opera-
tor to hang one side of the tray into the right hand and touch the back of the
hand. Then, the robot moves the left hand to its final position while the operator
hands in the other side of the tray. Finally, the robot closes both hands to hold
the tray in front of the robot. This strategy has been successfully used in the
restaurant task to carry the drinks and combos from the bar to the guests. In
the Final, we further showed an enhanced strategy for an autonomous bimanual

532 F. Lier et al.

Fig. 6. Accumulated scores from the 1st and 2nd stage tests in RoboCup@Home. The
numbers on the x-axis refer to tests, the X∗-tests have been won by the ToBI-Team.

handover strategy. Here, the robot perceives a 3D box presented to the robot,
computes appropriate grasping points for both arms, and, plans a synchronized
bimanual movement to grasp it. First, the box is segmented using a model-free
segmentation algorithm on the depth images [23] combined with a fitting of box-
or cylinder-shaped primitives. This step is computed on a larger distance than
grasp distance because of the limitations of the depth camera. Figure 5 illustrates
the grasping process. As shown in the upper part the manipulation strategy is
robot agnostic. It applies the Task Constructor framework of MoveIt! [24]. Here,
sub-tasks are defined in stages which model atomic movement planning prob-
lems. A generator stage was used to build a bi-manual grasp generator. The
initially generated grasp consists of two poses, one for each end-effector. These
are sampled on the object’s surface considering that both end-effectors apply
enough force on the object between them to hold it. As the Pepper arms only
have 5-DoF for computing a 6D-pose, the KDL inverse kinematics solver was
patched to deal with low precision requirements in one rotational DoF. The
trajectories of each arm where independently generated and then synchronized
in a merging container combining both into a single trajectory. First successful
handovers where shown at the RoboCup 2018 finals.

4 Analysis, Lessons Learned and Conclusion

During the RoboCup@Home competition the Pepper robot of our team achieved
significant scores in all tests of the competition. In Fig. 6, the results of the 5
best teams of RoboCup@Home SSPL 2018 are shown for the stage-1 and -2 tests.
ToBI achieved best performances in the Speech & Person Recognition, Cocktail
Party, Help Me Carry, GPSR, Open Challenge, Restaurant, and EE-GPSR tests.
For most of the required capabilities, the onboard Pepper components have been
exchanged by other available standard libraries that were integrated using the
hybrid architecture presented before. The key components (navigation, speech

ToBI - Team of Bielefeld 533

processing, basic person detection) were deployed on the on-board computer so
that the team was not severely affected by WLAN dropouts.

The navigation component – we used ROS Gmapping and the standard ROS
planning pipeline – robustly worked with the laser and camera depth data which
were fused in a preprocessing step. There was only a single dropout in the Tour
Guide task, where the robot blocked itself because of a failure in the setup
procedure. For speech processing, we used PocketSphinx with context specific
grammars that were adapted to each dialogue step. In most conditions this
worked quite well. However, in cases where there was too much noise we offered
an additional user interface on the Pepper’s touchpad where the robot’s question
and the options for the user’s answer were displayed by buttons or menus.

For development and testing, we exploited the dedicated toolchain for repro-
ducible experimentation in robotics described in Sect. 2 [9,25]. In the Cognitive
Interaction Toolkit (CITK), there is a versioned description of any – incremen-
tally developed – system distribution including all software and data dependen-
cies which is automatically built on a continuous integration (CI) server. This
allowed to track down any system change that might have caused an error or
repaired it. Another important aspect is to design robot behaviors for the com-
plete competition and not only for a single test. For example, furniture or persons
sometimes blocked navigation goals in the apartment; thus, the robot needed to
deal with these situations all the time – not only when mentioned in the rule-
book. A general behavior for memorizing and reporting about these events even
achieved additional points for the team in the EE-GPSR test. The reasoning
about task performances will be a critical capability for future RoboCup@Home
developments. The mixed-reality scenario implemented for the Open Challenge
and Final has been ranked first by the league internal and external juries. This
shows the general interest in possible application scenarios for a standard plat-
form like Pepper.

5 Conclusion

We have described the main features of the architecture and technical solution
of the ToBI system for the RoboCup@Home Social Platform League (SSPL).
There have been several key points that were essential for winning the SSPL
competition in Montreal 2018: (i) heterogeneous computing environments: We
proposed a general approach – the Cognitive Interaction Toolkit – that allows us
to deal with distributed computing and different ecosystems in a unified man-
ner. This allowed us to integrate ROS-based components, on-board NaoQi-skills,
and even external sensor devices like HoloLens (with communication based on
MQTT) in a systematic, easy to use building process. This is also essential for
keeping a vivid exchange to the other sub-leagues, which systems are mainly
based on ROS. (ii) Graceful degradation: Even if Wi-Fi breaks down or it is too
noisy to recognize speech, the platform must continue to work. This has been
realized, e.g., by installing essential components directly on the robot head, or
by offering a continue rule interface on the robot’s touchpad. We further intro-
duced several ways of augmentation of the platform by adding an external laser

534 F. Lier et al.

for mapping, by using a tray for transportation, or by connecting a HoloLens
for an extended human-robot interaction. This opens new ways to keep the
Pepper platform competitive also to open robot platforms, which is important
to develop all sub-leagues towards common goals. (iii) Modular behaviors that
are applicable when ever needed, in contrast to programming fixed behavior
sequences for pre-defined tasks: An example is the reporting capability of the
robot about what went wrong. Such an approach opens up further possibilities
to interactively teach a robot appropriate behaviors, which was shown in the
Airbnb-scenario in the RoboCup@Home SSPL Final. Overall, the SSPL league
has made a larger performance step forward compared to last year, where sig-
nificantly less scores were achieved. This makes us confident that there is still
much potential for further developments, which will significantly profit from an
intensified exchange between the RoboCup@Home leagues. We presented several
avenues how to technically support this.

References

1. Wachsmuth, S., Holz, D., Rudinac, M., Ruiz-del Solar, J.: RoboCup@Home -
benchmarking domestic service robots. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI 2015, pp. 4328–4329. AAAI Press
(2015)

2. Meyer zu Borgsen, S., Korthals, T., Lier, F., Wachsmuth, S.: ToBI – team of biele-
feld: enhancing robot behaviors and the role of multi-robotics in RoboCup@Home.
In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI),
vol. 9776, pp. 577–588. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68792-6 48

3. Lohse, M., Siepmann, F., Wachsmuth, S.: A modeling framework for user-driven
iterative design of autonomous systems. Int. J. Soc. Robot. 6(1), 121–139 (2014)

4. Pitsch, K., Wrede, S.: When a robot orients visitors to an exhibit. Referential
practices and interactional dynamics in the real world. In: Ro-Man 2014, pp. 36–
42 (2014)

5. Bernotat, J., et al.: Welcome to the future – how näıve users intuitively address
an intelligent robotics apartment. In: Agah, A., Cabibihan, J.-J., Howard, A.M.,
Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 982–992.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47437-3 96

6. Richter, V., et al.: Are you talking to me? Improving the robustness of dialogue
systems in a multi party HRI scenario by incorporating gaze direction and lip
movement of attendees. In: Proceedings of the Fourth International Conference on
Human-agent Interaction, ACM Digital Library (2016)

7. Amigoni, F., Reggiani, M., Schiaffonati, V.: An insightful comparison between
experiments in mobile robotics and in science. Auton. Robots 27(4), 313–325
(2009)

8. Meyer zu Borgsen, S., Korthals, T., Wachsmuth, S.: ToBI-team of bielefeld the
human-robot interaction system for RoboCup@Home 2016 (2016)

9. Lier, F., et al.: Towards automated system and experiment reproduction in
robotics. In: Burgard, W., (ed.) 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE (2016)

https://doi.org/10.1007/978-3-319-68792-6_48
https://doi.org/10.1007/978-3-319-68792-6_48
https://doi.org/10.1007/978-3-319-47437-3_96

ToBI - Team of Bielefeld 535

10. Lier, F., Lütkebohle, I., Wachsmuth, S.: Towards automated execution and evalua-
tion of simulated prototype HRI Experiments. In: HRI ’14 Proceedings of the 2014
ACM/IEEE International Conferenceon Human-Robot Interaction, pp. 230–231.
ACM (2014)

11. Lemaignan, S., Echeverria, G., Karg, M., Mainprice, J., Kirsch, A., Alami, R.:
Human-robot interaction in the morse simulator. In: Proceedings of the Seventh
Annual ACM/IEEE International Conference on Human-Robot Interaction, pp.
181–182. ACM (2012)

12. Renner, P., Lier, F., Friese, F., Pfeiffer, T., Wachsmuth, S.: Facilitating HRI by
mixed reality techniques. In: HRI 2018 Companion: 2018 ACM/IEEE International
Conference on Human-Robot Interaction Companion. ACM/IEEE (2018)

13. Meyer zu Borgsen, S., Renner, P., Lier, F., Pfeiffer, T., Wachsmuth, S.: Improving
human-robot handover research by mixed reality techniques. In: VAM-HRI 2018
The Inaugural International Workshop on Virtual, Augmented and Mixed Reality
for Human-Robot Interaction (2018)

14. Collett, H.T.J., Macdonald, B.A.: An augmented reality debugging system for
mobile robot software engineers. J. Softw. Eng. Robot. 1(1), 18–32 (2010)

15. Kozlov, A.: Augmented reality technologies for the visualisation of SLAM systems.
Ph.D. thesis (2012)

16. Nishiwaki, K., Kobayashi, K., Uchiyama, S., Yamamoto, H., Kagami, S.: Mixed
reality environment for autonomous robot development. In: IEEE International
Conference on Robotics and Automation, pp. 2211–2212. IEEE (2008)

17. Stilman, M., Michel, P., Chestnutt, J., Nishiwaki, K., Kagami, S., Kuffner, J.:
Augmented reality for robot development and experimentation. Technical report,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2005)

18. Dragone, M., Holz, T., O’Hare, G.M.: Mixing robotic realities. In: Proceedings of
the 11th International Conference on Intelligent User Interfaces (IUI 2006), pp.
261–263. ACM, New York (2006)

19. Green, S.A., Chase, J.G., Chen, X., Billinghurst, M.: Evaluating the augmented
reality human-robot collaboration system. Int. J. Intell. Syst. Technol. Appl. 8,
130–143 (2009)

20. Bischoff, R., Kurth, J.: Concepts, tools and devices for facilitating human-robot
interaction with industrial robots through augmented reality. In: ISMAR Workshop
on Industrial Augmented Reality, vol. 22, October 2006

21. Coovert, M.D., Lee, T., Shindev, I., Sun, Y.: Spatial augmented reality as a method
for a mobile robot to communicate intended movement. Comput. Hum. Behav.
34(Supplement C), 241–248 (2014)

22. Quigley, M., et al.: ROS: an open-source robot operating system (2009)
23. Ückermann, A., Haschke, R., Ritter, H.: Realtime 3D segmentation for human-

robot interaction. In: IEEE/RSJ International Conference of Intelligent Robots
and Systems (2013)

24. Görner, M., Haschke, R., Ritter, H., Zhang, J.: MoveIt! task constructor for
task-level motion planning. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2018)

25. Lier, F., Wienke, J., Nordmann, A., Wachsmuth, S., Wrede, S.: The cognitive
interaction toolkit – improving reproducibility of robotic systems experiments. In:
Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014.
LNCS (LNAI), vol. 8810, pp. 400–411. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11900-7 34

https://doi.org/10.1007/978-3-319-11900-7_34
https://doi.org/10.1007/978-3-319-11900-7_34

Author Index

Aangenent, Wouter 413
Akın, H. Levent 137
Akiyama, Hidehisa 170, 450
Ali, Sulaiman 425
Allgeuer, Philipp 436
Amo, Victoria 251
Ari, I. Made Pande 425
Arifin, Muhammad 425
Arrazi, Muhammad Reza 425
Aşık, Okan 137
Asshakina, Syifaul Qolby 425
Attamimi, Muhammad 425
Azevedo, José Luis 19

Baltes, Jacky 193, 387
Barros, Pablo 337
Behnke, Sven 70, 436
Bestmann, Marc 162, 337
Bramastyo, Oktaviansyah Purwo 425
Brandenburger, André 70, 436
Bruijnen, Dennis 413
Buche, Cédric 57
Bugueño, Ignacio 122

Camp, Tracy 109
Castro, Sebastian 476
Chalup, Stephan K. 45, 362
Chen, Lingyun 401
Chen, Zexi 401
Cruz, Nicolás 122
Cunha, Bernardo 19

de Groot, Cas 413
del Solar, Javier Ruiz 251
Dias, Ricardo 19
Douven, Yanick 413

Engelhardt, Helmut 500
Estivill-Castro, Vladimir 96
Evers, Tobias 512

Farahani, Marzieh Dolatabadi 413
Farazi, Hafez 436

Felbinger, Georg Christian 150
Ficht, Grzegorz 436
Fiedler, Niklas 162
Fukushima, Takuya 170, 450

Gabel, Alexander 181
Gabel, Thomas 3
Gerndt, Reinhard 181, 193
Gillmann, Kay 500
Godehardt, Eicke 3
Gómez, Cristopher 32, 287
Görer, Binnur 137
Göttsch, Patrick 150
Grisetti, Giorgio 238
Gu, Jianyang 401

Harbusch, Karin 217
Harrouet, Fabrice 57
Hendrich, Norman 162
Heuer, Tanja 181
Hosseini, Mojtaba 436
Houliston, Trent 45
Houtman, Wouter 413
Hu, Peng 401
Huang, Zheyuan 401

Iocchi, Luca 238

Jeffery, Ryan 362
Jumel, Fabrice 205

Klöppner, Philipp 3
Kuijpers, Wouter 413
Kummert, Johannes 524

Lau, Nuno 19, 324
Lázaro, María T. 238
Leber, Raphael 205
Leiva, Francisco 122
Li, Jiacheng 401
Lier, Florian 524
Lisetti, C. 262
Lombardi, Eric 205

Loth, Pascal 150
Lu, Huimin 374
Ludwiger, Jakob 488
Luo, Sha 374
Ly, Olivier 193

MacAlpine, Patrick 462
Martin, Jon 500
Masannek, Marco 500
Matamoros, Mauricio 217
Matignon, Laetitia 205
Mattamala, Matías 32
Maulana, Alfi 425
Meessen, Koen 413
Memmesheimer, Raphael 512
Meyer zu Driehausen, Felix 251
Michael, Olivia 230
Muhtadin 425
Mykhalchyshyna, Ivanna 512

Nakashima, Tomoharu 170, 275, 450
Nardi, Federico 238
Nardin, Luis G. 476
Norambuena, Esteban 287

Obst, Oliver 230
Ohori, An 450
Olthuis, Jorrit 413

Paetzel, Maike 193
Paulus, Dietrich 217, 512
Pavez, Matías 251
Pavlichenko, Dmytro 436
Pavse, Brahma 462
Peña, P. 262
Pereira, Artur 19
Peters, Lasse 150
Polceanu, M. 262
Polceanu, Mihai 57
Pomas, Tanguy 275
Pratama, Tommy 425
Purnomo, Mauridhi Hery 425
Purwanto, Djoko 425
Putra, Ahmad Hernando Pradanatta 425

Reis, Luís Paulo 324
Renner, Patrick 524
Resink, Tim 32

Reyes, Esteban 287
Rodriguez, Diego 70, 436
Ruiz-del-Solar, Javier 32, 122, 287

Sadeghnejad, Soroush 387
Saraydaryan, Jacques 205
Schadde, Benjamin 500
Scheers, Pim 413
Scheunemann, Marcus M. 349
Schiering, Ina 181
Schmidsberger, Falk 230
Schmucker, Robin 299
Schoenmakers, Ferry 413
Scholz, Tobias 500
Schwab, Devin 83
Seib, Viktor 512
Senden, Jordy 413
Shahsavari, Mohammad Navid 387
Shimizu, Masaru 311
Sigmon, John 462
Simões, David 324
Simonin, Olivier 205
Sleap, Scott 362
Sommer, Ruben 413
Speck, Daniel 337
Steinbauer, Gerald 488
Stolzenburg, Frieder 230
Stone, Peter 462
Suzuki, Yudai 450
Szemenyei, Marton 96

Takahashi, Tomoichi 311
Tharwat, Alaa 3
Torabi, Faraz 462
Turner, Peter 362

Ulz, Thomas 488

van ’t Klooster, Marjon 413
van Brakel, Patrick 413
van de Loo, Harrie 413
van de Molengraft, René 413
van Dijk, Sander G. 349
van Lith, Peter 413
van Ninhuijs, Bob 413
Veloso, Manuela 83, 299
Visser, Arnoud 476
Visser, U. 262

538 Author Index

Wachsmuth, Sven 524
Wang, Yunkai 401
Watkinson II, Warren Blair 109
Wege, Felix 150
Wen, Licheng 401
Wicaksono, Dhany Satrio 425
Wolf, Christian 205
Wong, Aaron S. W. 362

Xiao, Junhao 374
Xiong, Rong 401

Yao, Weijia 374
Yazdankhoo, Behnam 387

Zhong, Jiarun 450
Zhou, Chenghui 299
Zhu, Yifeng 83

Author Index 539

	Preface
	Organization
	Contents
	Best Paper Award
	Communication in Soccer Simulation: On the Use of Wiretapping Opponent Teams
	1 Introduction
	2 Background
	2.1 Communication in RoboCup's Soccer Simulation 2D League
	2.2 Related Work

	3 Eavesdropping Opponent Agent Communication
	3.1 Learning Problem Formalization
	3.2 Bit-Level Representation of Communicated Messages
	3.3 Model Architecture and Performance

	4 Implementation Within the FRA-UNIted Framework
	5 Empirical Evaluation
	5.1 Communication Behavior Variants (CBV)
	5.2 Distribution of Communication Data
	5.3 Empirical Methodology
	5.4 Results
	5.5 Discussion

	6 Conclusion
	References

	Oral Presentations
	Multi-Robot Fast-Paced Coordination with Leader Election
	1 Introduction
	2 State of the Art
	2.1 Distributed Assignment
	2.2 Centralised Assignment
	2.3 Centralised Assignment with Leader Election

	3 The Consensus Problem
	3.1 Paxos
	3.2 Raft

	4 Proposed Solution
	4.1 Timing Parameters
	4.2 The Backup State
	4.3 Preferred Leader Agent

	5 Experimental Setup and Results
	5.1 Failed Elections
	5.2 Election Time
	5.3 Simultaneous Multiple Candidates
	5.4 Leadership Attribution

	6 Conclusion
	References

	Visual SLAM-Based Localization and Navigation for Service Robots: The Pepper Case
	1 Introduction
	2 Visual SLAM
	3 Platform, Coordinate Systems and Notation
	3.1 Notation
	3.2 Pepper Robot

	4 Localization and Navigation System
	4.1 ORB-SLAM-based Localization
	4.2 Navigation

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Experiments
	5.3 Discussion

	6 Conclusions
	References

	Visual Mesh: Real-Time Object Detection Using Constant Sample Density
	1 Introduction
	2 Visual Mesh Geometry
	2.1 Circle
	2.2 Sphere
	2.3 Object Dependent Sample Density
	2.4 Graph Structure of the Mesh
	2.5 Network

	3 Evaluation of the Visual Mesh
	3.1 Dataset
	3.2 Network Architecture
	3.3 Training
	3.4 Results
	3.5 Discussion and Conclusion

	References

	Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling
	1 Introduction
	2 Related Work
	3 Image and Histogram Downsampling
	3.1 Approximating Levels
	3.2 Image Downsampling
	3.3 Histogram Downsampling

	4 Adaptive Feature Pyramid Construction
	5 Results
	6 Conclusions and Future Work
	References

	Combining Simulations and Real-Robot Experiments for Bayesian Optimization of Bipedal Gait Stabilization
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Gaussian Process Regression
	3.2 Bayesian Optimization
	3.3 Multi-Fidelity Entropy Search
	3.4 Bipedal Walking with Feedback Mechanisms

	4 Gait Parameter Learning
	4.1 Cost Function
	4.2 Termination Criteria

	5 Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Learning Skills for Small Size League RoboCup
	1 Introduction
	2 Small Size League (SSL) RoboCup
	3 Related Work
	4 Approach
	4.1 Algorithm
	4.2 Simulation
	4.3 Skills
	4.4 Go to Ball and Shoot Tactic

	5 Empirical Results
	5.1 Skill Learning
	5.2 Tactics Evaluation

	6 Conclusion
	References

	Real-Time Scene Understanding Using Deep Neural Networks for RoboCup SPL
	1 Introduction
	2 Related Work
	3 Preparation of the Training Data
	4 Model Selection and Training
	5 Real-Time Implementation
	6 Results
	7 Conclusion
	References

	Training a RoboCup Striker Agent via Transferred Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning and Markov Decision Processes
	2.2 Large and Continuous State and Action Spaces
	2.3 Transfer Learning

	3 Methodology
	3.1 Overview
	3.2 Training Experiences
	3.3 Training Implementation
	3.4 DDPG Architecture Details

	4 Results
	4.1 Empty Goal Experiment
	4.2 Defended Goal Experiment
	4.3 Other Observations

	5 Conclusions and Future Work
	References

	Playing Soccer Without Colors in the SPL: A Convolutional Neural Network Approach
	1 Introduction
	2 Playing Soccer Without Color Information
	2.1 The General Framework
	2.2 High Contrast Regions Detection
	2.3 Robot Detection
	2.4 Robot Orientation Determination
	2.5 Ball Detection
	2.6 Field Lines and Special Features Detection

	3 Design and Training of the CNN-Based Detectors
	3.1 Base CNN
	3.2 Active Learning Training Methodology

	4 Results
	4.1 CNN Classification
	4.2 Robots, Ball and Field Features Detection Systems
	4.3 Robot Orientation Determination
	4.4 Profiling

	5 Conclusions
	References

	Poster Presentations
	End-to-End Deep Imitation Learning: Robot Soccer Case Study
	1 Introduction
	2 Related Work
	2.1 End to End Learning
	2.2 Ball Dribbling Task

	3 Methods
	3.1 Dataset Creation
	3.2 Deep Imitation Learning

	4 Experiments and Results
	4.1 The Learning Performance
	4.2 Discussion

	5 Conclusion
	References

	Designing Convolutional Neural Networks Using a Genetic Approach for Ball Detection
	1 Introduction
	2 Prerequisites
	2.1 Genetic Algorithm
	2.2 Convolutional Neural Networks

	3 Genetic Design of Convolutional Neural Networks
	3.1 Network Structure
	3.2 Search Space
	3.3 Fitness Function

	4 Data Acquisition
	4.1 Data Setup
	4.2 Candidate Generation

	5 Experiments and Evaluation
	5.1 Setup
	5.2 Results
	5.3 Evaluation
	5.4 Generalization Test
	5.5 Runtime Analysis on the NAO Robot

	6 Conclusion
	References

	ImageTagger: An Open Source Online Platform for Collaborative Image Labeling
	1 Introduction
	2 Related Work
	3 ImageTagger Overview and Features
	3.1 Manual Labeling
	3.2 Automated and Offline Labeling
	3.3 Label Verification
	3.4 Image Management
	3.5 Collaboration

	4 Evaluation
	5 Conclusion and Further Work
	References

	Mimicking an Expert Team Through the Learning of Evaluation Functions from Action Sequences
	1 Introduction
	2 Related Work
	3 Action Selection
	4 Learning Evaluation Functions by Neural Networks
	5 Experiments
	5.1 Experimental Settings
	5.2 Results

	6 Conclusion
	References

	Jetson, Where Is the Ball? Using Neural Networks for Ball Detection at RoboCup 2017
	1 Introduction
	2 Related Work
	3 Vision Pipeline
	4 Machine Learning
	5 Experimental Results
	5.1 Dataset
	5.2 Validation
	5.3 Performance of Inferencing

	6 Discussion
	7 Conclusion
	References

	Bridging the Gap - On a Humanoid Robotics Rookie League
	1 Introduction
	2 Soccer Leagues Development
	3 The Humanoid Rookie League
	3.1 Bipedal Locomotion
	3.2 Basic Perception
	3.3 Localization with Local Maps
	3.4 Elementary Decision Making and Planing
	3.5 The Playing Field
	3.6 A Road Towards the Main Competition

	4 Draft Rookie League Rule Sheet
	5 Conclusions
	References

	Context Aware Robot Architecture, Application to the RoboCup@Home Challenge
	1 Introduction
	2 Service Robots and Software Architectures
	3 Overview of the LyonTech Architecture
	4 General Behavior Manager
	5 Navigation Strategy Selection
	6 Human Detection and Interaction
	7 Step by Step Scenario Execution
	8 Experimental Evaluation
	9 Conclusion
	References

	From Commands to Goal-Based Dialogs: A Roadmap to Achieve Natural Language Interaction in RoboCup@Home
	1 Introduction
	2 Speech Recognition and Natural Language Understanding in RoboCup@Home
	2.1 Historical Overview of HRI Testing
	2.2 Adopted Strategies and Software Solutions for HRI

	3 Challenges
	3.1 Noise
	3.2 Operators
	3.3 Generators

	4 Solution Strategy and Roadmap
	5 Conclusions
	References

	RoboCupSimData: Software and Data for Machine Learning from RoboCup Simulation League
	1 Introduction
	2 Description of the Software Environment
	3 Overview on the Provided Data
	4 Description of the Ground Truth Data
	5 Description of Local Player Data
	6 Code
	7 Conclusions
	References

	Generation of Laser-Quality 2D Navigation Maps from RGB-D Sensors
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Extraction of Scans from Depth Images
	3.2 Estimation of the Robot Trajectory
	3.3 Occupancy Grid for Navigation

	4 Experiments
	5 Conclusions
	References

	Towards Long-Term Memory for Social Robots: Proposing a New Challenge for the RoboCup@Home League
	1 Introduction
	2 Human Memory
	3 Open Questions for Implementing Long-Term Memory for Social Robots
	4 Long-Term Memory in the RoboCup@Home League
	4.1 Requirements
	4.2 Required Information for Validation
	4.3 Episode Generation
	4.4 Validation
	4.5 Test Proposal: Sick and Elderly Care

	5 Conclusions
	References

	eEVA as a Real-Time Multimodal Agent Human-Robot Interface
	1 Introduction
	2 Related Work and Motivation
	3 Modular Architecture for Real-Time Multimodal User-Interface Agents
	3.1 RoboCanes-VISAGE: Integration of Two Agent-Based Frameworks
	3.2 eEVA: A Framework for Building Empathic Embodied Virtual Agents
	3.3 RoboCanes Components

	4 Pilot Study: Culturally-Sensitive Greetings on HSR with RoboCanes-VISAGE
	4.1 Participants
	4.2 Experiment Design and Procedure
	4.3 Results
	4.4 Discussion

	5 Conclusions and Future Work
	References

	Evaluation of Situations in RoboCup 2D Simulations Using Soccer Field Images
	1 Introduction
	2 Related Work
	3 Task Definition
	4 Datasets Construction
	4.1 Procedure
	4.2 Play-On Only Dataset
	4.3 Raw Numerical Dataset

	5 Experiments and Results
	5.1 Experiments on Raw Numerical Data
	5.2 Experiments Using Images as Input Data
	5.3 Additional Remarks

	6 Conclusion
	References

	Near Real-Time Object Recognition for Pepper Based on Deep Neural Networks Running on a Backpack
	1 Introduction
	2 Robust and Fast Object Recognition Using YOLO
	3 Adapting YOLO to Be Used with Pepper Robots
	3.1 YOLO for Pepper
	3.2 YOLO for Jetson TK1
	3.3 Results

	4 Pepper Backpack
	4.1 Mechanical Design
	4.2 Hardware

	5 Conclusions and Future Work
	References

	Multimodal Movement Activity Recognition Using a Robot's Proprioceptive Sensors
	1 Introduction
	2 Related Work
	3 Robot Activity Recognition
	4 Activity Recognition Pipeline
	4.1 Sensor Data
	4.2 Preprocessing
	4.3 Synchronization
	4.4 Scaling
	4.5 Recognition

	5 Evaluation
	5.1 Pipeline Implementation
	5.2 Recognizing Movement Activities
	5.3 Detecting Human Interference

	6 Conclusion
	References

	Survey of Rescue Competitions and Proposal of New Standard Task from Ordinary Tasks
	1 Introduction
	2 Survey of Rescue Tasks
	2.1 Competitions of Rescue Robots
	2.2 Standard Test Methods in Robot Competitions
	2.3 Issues of RoboCup Rescue League

	3 New Standard Task from Ordinary Tasks
	3.1 Use of Wi-Fi in Networking Ability Evaluation
	3.2 Proposal of New Ordinary Investigation Task

	4 A New Ordinary Investigation Task Simulation Field
	4.1 Background of Proposal
	4.2 Sample Tasks for Networking Ability Evaluation

	5 Summary and Discussion
	References

	Adjusted Bounded Weighted Policy Learner
	1 Introduction
	2 Weighted Policy Learner
	2.1 Numerical Analysis

	3 Bounded Weighted Policy Learner
	3.1 Bounded and High WPL
	3.2 Adjusted Bounded WPL

	4 Results
	4.1 Adjusted Bounded WPL and WPL
	4.2 Comparing Mixed-Policy Algorithms

	5 Conclusion
	References

	Towards Real-Time Ball Localization Using CNNs
	1 Introduction
	2 Hamburg Bit-Bots Ball Dataset 2018
	2.1 Data
	2.2 Metrics

	3 Proposed Architecture
	3.1 Model 1 (CNN)
	3.2 Model 2 (FCNN)

	4 Experimental Results
	4.1 Ball Localization
	4.2 False Positives
	4.3 Hardware Benchmarks

	5 Discussion
	6 Conclusion
	7 Future Work
	References

	Deep Learning for Semantic Segmentation on Minimal Hardware
	1 Introduction
	2 Related Work
	3 Network Architecture
	4 Experiments
	5 Results
	5.1 Binary Segmentation
	5.2 Multi-class Segmentation

	6 Conclusions
	References

	RoboCup Junior in the Hunter Region: Driving the Future of Robotic STEM Education
	1 Introduction
	2 RoboCup Junior in the Hunter Region
	3 Results
	3.1 Quantitative Analysis
	3.2 A Case Study

	4 Discussion: Partnerships
	4.1 The University of Newcastle, Faculty of Engineering and Built Environment
	4.2 Regional Development Australia (RDA) Hunter – Manufacturing Engineering (ME) Program
	4.3 Robogals Newcastle Initiative
	4.4 Tribotix
	4.5 Community Sponsorship and Membership

	5 Conclusion
	References

	Distributed Circumnavigation Control with Dynamic Spacing for a Heterogeneous Multi-robot System
	1 Introduction
	2 Problem Formulation
	3 Utility-Based Circumnavigation Control Algorithm
	4 Experimental Results and Analysis
	4.1 Experiment with Soccer Robots

	5 Concluding Remarks and Future Work
	References

	Prediction of a Ball Trajectory for the Humanoid Robots: A Friction-Based Study
	1 Introduction
	2 Prediction Methods
	2.1 Online Methods
	2.2 Offline Methods

	3 Friction Model
	4 Simulation
	4.1 Assumptions and Parameters
	4.2 Simulation Results

	5 Conclusion and Future Works
	References

	Champion Papers
	RoboCup SSL 2018 Champion Team Paper
	1 Introduction
	2 ZJUNlict New Dribbler Design
	2.1 Typical Dribblers and Existing Problems
	2.2 Dribbler Improvements
	2.3 Tests and Verifications

	3 SSL Vision Solution
	3.1 Existing Problems
	3.2 Solution Introduction
	3.3 Results

	4 Interception Prediction Algorithm and Application
	4.1 Robot Arrival Time Prediction
	4.2 Search-Based Interception Prediction Algorithm

	5 Conclusion
	References

	Tech United Eindhoven Middle Size League Winner 2018
	1 Introduction
	2 Robot Platform
	2.1 Hardware
	2.2 Software

	3 RoboCup 2018 Statistics
	4 Eight-Wheeled Platform
	4.1 Design of the Eight-Wheeled Platform
	4.2 Low-Level Control of the Eight-Wheeled Platform
	4.3 Results During RoboCup 2018

	5 TURTLE Skills
	5.1 Improved Ball State Estimate
	5.2 Human-Alike Dribble
	5.3 Results During RoboCup 2018

	6 Artificial Intelligence
	6.1 Detailed Opponent Detection
	6.2 Opponent Action Prediction
	6.3 Results During RoboCup 2018

	7 Passing
	7.1 Where and Who to Pass To?
	7.2 Pass Handler
	7.3 Result During RoboCup 2018

	8 Conclusions
	References

	Ichiro Robots Winning RoboCup 2018 Humanoid TeenSize Soccer Competitions
	Abstract
	1 Introduction
	2 Mechanical Hardware Overview
	3 Visual Perception
	3.1 Landmark Detection
	3.2 Ball Detection
	3.3 Localization on the Field

	4 Robot Behavior and Strategy
	4.1 Robot Monitoring System
	4.2 Walking Engine and Localization Method
	4.3 Teamwork Strategies
	4.4 Kicking Strategy

	5 Performance in Soccer Tournament
	5.1 Technical Challenges

	6 Conclusions
	References

	NimbRo Robots Winning RoboCup 2018 Humanoid AdultSize Soccer Competitions
	1 Introduction
	2 Robot Hardware
	3 Software Design
	3.1 Visual Perception
	3.2 Soccer Behaviors
	3.3 Bayesian Gait Optimization

	4 Performance
	4.1 Technical Challenges

	5 Conclusions
	References

	HELIOS2018: RoboCup 2018 Soccer Simulation 2D League Champion
	1 Introduction
	2 Soccer Simulation 2D League
	3 Online Search of Cooperative Behavior
	3.1 Action Sequence Planning
	3.2 Pruning in Action Sequence Planning
	3.3 Knowledge Sharing in Action Sequence Planning
	3.4 Learning Evaluation Functions by Supervised Learning Method

	4 Opponent Analysis
	5 Conclusion
	References

	UT Austin Villa: RoboCup 2018 3D Simulation League Champions
	1 Introduction
	2 Domain Description
	3 Changes for 2018
	3.1 Variable Distance Fast Walk Kicks
	3.2 Deep Learning Passing Strategy

	4 Main Competition Results and Analysis
	4.1 Analysis of Components
	4.2 Additional Tournament Competition Analysis

	5 Technical Challenges
	5.1 Free Challenge
	5.2 Goalie Challenge

	6 Conclusion
	References

	Integrating the Latest Artificial Intelligence Algorithms into the RoboCup Rescue Simulation Framework
	1 Introduction
	2 Interactive Approach
	2.1 Unsupervised Methods
	2.2 Supervised Methods
	2.3 Path Planning
	2.4 ROS Interface

	3 ADF Integration
	3.1 Clustering Integration
	3.2 Classifier Integration

	4 Conclusion
	References

	A Robust and Flexible System Architecture for Facing the RoboCup Logistics League Challenge
	1 Introduction
	2 Logistics League
	3 Software Architecture
	3.1 Planning and Scheduling
	3.2 Executive
	3.3 Behavior and Control

	4 Conclusions and Future Work
	References

	RoboCup@Work 2018 Team AutonOHM
	1 Introduction
	2 AutonOHM
	3 RoboCup@Work
	4 Hardware Description
	5 Software Description
	5.1 State Machine
	5.2 Navigation and Localization
	5.3 Perception
	5.4 Manipulation
	5.5 Rotating Turntable

	6 Results
	7 Conclusion and Future Work
	References

	homer@UniKoblenz: Winning Team of the RoboCup@Home Open Platform League 2018
	1 Introduction
	2 RoboCup@Home
	3 Hardware
	4 Approaches
	5 Current Research
	6 Summary
	References

	ToBI - Team of Bielefeld Enhancing the Robot Capabilities of the Social Standard Platform Pepper
	1 Introduction
	2 Robot Platforms and System Description
	3 Research on MR-HRI and Bimanual Handovers
	4 Analysis, Lessons Learned and Conclusion
	5 Conclusion
	References

	Author Index

