
Monocular Visual-Inertial SLAM
with Camera-IMU Extrinsic Automatic
Calibration and Online Estimation

Linhao Pan(&), Fuqing Tian, Wenjian Ying, and Bo She

Department of Weapon, Naval University of Engineering,
Wuhan 430033, Hubei, China
jaypancool@gmail.com

Abstract. An approach of automatic calibration and online estimation for
camera-IMU extrinsic parameters in monocular visual-inertial SLAM (Simul-
taneous Localization and Mapping) is proposed in this paper. Firstly, the
camera-IMU extrinsic rotation is estimated with the hand-eye calibration as well
as the gyroscope bias. Secondly, the scale factor, gravity and camera-IMU
extrinsic translation are approximated without considering the accelerometer
bias. All these parameters are refined with the gravitational magnitude and
accelerometer bias taken into account at last. Furthermore, the camera-IMU
extrinsic parameters are put into state vectors for online estimation. Experiment
result with the EuRoC dataset shows that the algorithm automatically calibrates
and estimates the camera-IMU extrinsic parameter with the extrinsic orientation
and translation’s error within 0.5° and 0.02 m separately, which contributes to
the rapid use and accuracy of the VI-SLAM system.

Keywords: VI-SLAM � Sensor fusion � Initialization � Extrinsic calibration �
State estimation

1 Introduction

VI-SLAM (Visual-Inertial Simultaneous Localization and Mapping) plays an important
role in giving autonomous robots the ability to build the map of surroundings as well as
estimate their states. Visual camera and inertial measurement unit (IMU) are ideal
choice for SLAM since they could complement each other. On the one hand, the rich
representation of environments projected by a camera helps to build a map and to
estimate the trajectory of the robot up-to-scale. On the other hand, gyroscope and
accelerometer of an IMU can obtain the angular velocity and linear acceleration of the
sensor suite, which helps to recover the absolute scale information as well as make the
gravity and the pitch and roll angle of the robot observable; however, the collected data
will be affected by the measurement noise and drift with time [1]. Their superior size,
weight and energy consumption make them widely used in the fields of robot navi-
gation [2], UAVs [3] etc.

Recent years, several visual-inertial techniques have been presented in the field,
such as the EKF based VI-SLAM [4, 5] algorithm and the nonlinear optimization
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methods [6, 7]. However, all the VI-SLAM algorithms depend heavily on accurate
system initialization and prior precise extrinsic calibration of the 6DoF (Degree-of-
Freedom) transformation between the camera and the IMU. Extrinsic parameters play a
bridge role in the state transformation between camera reference frame and IMU ref-
erence frame.

At present, there are two main calibration methods for monocular camera-IMU
extrinsic parameters: offline method and automatic calibration in system initialization.
Offline calibration method requires technicians to carefully move the calibration
checkboard in front of the sensor suite [8], which is complex and time-consuming.
Automatic calibration in system initialization jointly estimate initial values and
extrinsic parameters. Li [9], incorporating the camera-IMU transformation into the state
vector, uses the extended Kalman filter (EKF) to estimate them. The convergence of the
algorithm depends on the accuracy of the state estimation in initialization, and there is
no systematic analysis of the results in the literature. Dong-Si proposed a geometric
method to calibrate the camera-IMU extrinsic parameters in [10]. However, this
method does not consider the noise of the sensor and tracking accuracy of the system
will be affected by the accumulation of IMU bias. Yang and Shen [11], based on
Lupton [12] and Martineli [13], calibrate the parameters (except for IMU bias) with an
optimization-based linear estimator. The IMU bias is estimated as a state variable in the
sliding window nonlinear estimator in their subsequent work of VI-SLAM system [14].
In the work of Huang [15], based on the work of Mur-Artal [16], a linear equation
system is established to estimate the camera-IMU extrinsic parameters and other ini-
tialization parameters. This method has high initialization accuracy, but the camera-
IMU extrinsic parameters become fixed after initialization without online estimation.

In this paper, we realize a VI-SLAM algorithm with monocular camera-IMU
extrinsic automatic calibration and online estimation. Without knowing the mechanical
configuration of the sensor suite, the scale factor, gravity, IMU biases and extrinsic
parameters are jointly estimated in the initialization, as well as online estimation of
camera-IMU extrinsic parameters during motion.

The rest of this paper is organized as follows. Section 2 describes the preliminaries
of this algorithm. Then the initialization process with camera-IMU extrinsic automatic
calibration is proposed in Sect. 3. Section 4 describes online estimation algorithm of
camera-IMU extrinsic parameters. Experimental results are shown in Sect. 5. Finally,
conclusions are given in Sect. 6.

2 Preliminaries

This section provides the necessary explanations for the notation and geometric con-
cepts involved in this article. In addition, the relationship between reference frames and
the IMU preintegration model on manifold are also described.

2.1 Notation

The matrices and vectors used here are indicated in bold uppercase and lowercase
respectively. The letter in the upper right corner of the vector indicates the reference
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frames of the vector, e.g. vW for the vector v expressed in frame W . Incorporating
geometric meaning, pCB and vWB represent the point pB and velocity vector vB in the
reference frames C and W respectively. In the frame C, the rotation matrix and
translation matrix of the frame B are represented by RCB and TCB respectively.

2.2 Reference Frames

The VI-SLAM system mainly involves four frames: camera frame C, IMU body frame
B, world frame W and inertial frame E. As shown in Fig. 1,

The monocular camera and the IMU are fixed by external devices, and the trans-
formation matrix TCB ¼ RCB pCB

��� �
between them needs to be calibrated. Since the VI-

SLAM system measures the relative motion, the absolute attitude in the earth’s inertial
frame E cannot be determined. Therefore, the coordinate system of the first keyframe
determined by the VI-SLAM system generally coincides with the world frame W . The
goal is to calibrate the rotation matrix RCB 2 SOð3Þ and translation vector pCB 2 R

3

between camera frame C and IMU body frame B and estimate the gravitational
acceleration in the world frame W . By aligning the gravity in the system’s world frame
gW with the gravity in the earth’s inertial frame gE, the absolute pose of the system in
the inertial frame is determined. Considering the scale factor s, the transformation
between camera frame C and IMU body B frame is

RWB ¼ RWC � RCB ð1Þ

pWB ¼ s � pWC þRWC � pCB ð2Þ

2.3 Preintegration

The IMU sensor acquires angular velocity and acceleration of the sensor w.r.t. the IMU
body frame B at a certain frequency. However, the gyroscope and accelerometer are
subject to white sensor noises ga and gg, as well as low-frequency drift biases ba and

Fig. 1. The Reference frame transformation.
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bg. In the case where the initial state of the system is known, the state estimation of the
system can be propagated by integrating the IMU measurements. However, this method
is based on the initial state. When the nonlinear optimization adjusts system initial
state, the integration process needs to be repeated.

To avoid repeated integration, the concept of preintegraed IMU measurement on
the manifold space was proposed by Forster et al [17]. Assuming two consecutive
keyframes at time i and j, and the IMU measurement value is constant during the
sampling interval. So the pose and velocity relationship can be computed by numerical
integration of all measurements within this period

RWBj ¼ RWBi

Yj�1

k¼i

Exp xBk � bkg � gkg

� �
Dt

� �

vWBj
¼ vWBi

þ gWDtij þ
Xj�1

k¼i

RWBk aBk � bka � gka
� �

Dt ð3Þ

pWBj
¼ pWBi

þ
Xj�1

k¼i

vWBk
Dtþ 1

2
gWDt2 þ

	
1
2
RWBk aBk � bka � gka

� �
Dt2



Where Dt denotes the IMU sampling interval, Dtij ¼
Pj�1

i
Dt represents time interval

between two consecutive frames. According to the definition in [17], Exp �ð Þ maps Lie
algebra so 3ð Þ to Lie group SO 3ð Þ. When the bias is assumed to remain constant
between two image acquisition moments, a small bias correction w.r.t. previously

estimated b
i
�ð Þ could be dbi �ð Þ. The Eq. (8) can be rewritten as

RWBj ¼ RWBiDRBiBjExp Jg
DRBiBj

� dbig
	 


vWBj
¼ vWBi

þ gWDtij þRWBi DvBi
Bj
þ Jg

Dv
Bi
Bj

� dbig þ Ja
Dv

Bi
Bj

� dbia
 !

ð4Þ

pWBj
¼ pWBi

þ vWBi
Dtij þ 1

2
gWDt2ij þRWBi DpBi

Bj
þ Jg

Dp
Bi
Bj

� dbig þ Ja
Dp

Bi
Bj

� dbia
 !

Jg�ð Þ and Ja�ð Þ are Jacobian matrix of preintegration measurements relative to bias esti-

mation, which is deduced in the appendix of paper [17]. DRBiBj ; Dv
Bi
Bj
and DpBi

Bj
are the

terms of preintegration which are independent of the states at time i and the gravity,
used to describe the relative motion of two frames
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DRBiBj ¼
Yj�1

k¼i

Exp xBk � b
i
g

� �
Dt

� �

DvBi
Bj
¼
Xj�1

k¼i

DRBiBk aBk � b
i
a

� �
Dt ð5Þ

DpBi
Bj
¼
Xj�1

k¼i

DvBi
Bk
Dtþ 1

2
DRBiBk aBk � b

i
a

� �
Dt2

	 


3 Initialization with Camera-IMU Extrinsic Automatic
Calibration

This section elaborates on the initialization method with camera-IMU extrinsic auto-
matic calibration. This method jointly calibrates the camera-IMU extrinsic parameters
TCB, as well as estimates factor scale s, gravity acceleration in the world frame gW ,
biases of gyroscope and accelerometer ba and bg.

3.1 Camera-IMU Extrinsic Orientation Calibration

The extrinsic rotation between the monocular camera and the IMU is very important for
the robustness of the VI-SLAM system. Excessive deviation can cause the system
initialization to collapse. The hand-eye calibration method is used to align the rotations
of the camera with the integrated IMU rotations. Because the monocular camera can
track the pose of the system, to detect the relative rotation RCiCiþ 1 between consecutive
frames. In addition, the angular velocity measured by the gyroscope can be integrated
to obtain relative rotation RBiBiþ 1 in the IMU body frame. So it leads to

RBiBiþ 1 � RBC ¼ RBC � RCiCiþ 1 ð6Þ

With the quaternion representation, (6) can be described as

qBiBiþ 1
� qBC ¼ qBC � qCiCiþ 1

) qBiBiþ 1

� �
L
� qCiCiþ 1

� �
R

h i
qBC ¼ Qi;iþ 1 � qBC ¼ 04�1

ð7Þ
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Linear over-determined equation can be established for temporally continuous
frames

a0;1 � Q0;1
a1;2 � Q1;2

..

.

aN�1;N � QN�1;N

26664
37775qBC ¼ QN � qBC ¼ 0 ð8Þ

N indicates the number of frames used when extrinsic rotation converges; aN�1;N is
a weight for outlier handling. As the extrinsic rotation calibration runs with incoming
measurements, the previously estimated result bRBC can be used as the initial value to
weight the residual

ri;iþ 1 ¼ arccos tr bR�1
BCR

�1
BiBiþ 1

bRBCRCiCiþ 1

� �
� 1

� �
=2

� �
ð9Þ

The weight is a function of the residual

ai;iþ 1 ¼
1; ri;iþ 1 \ t0
t0

ri;iþ 1
; otherwise



ð10Þ

t0 is the threshold. The solution to (8) can be found as the right unit singular vector
corresponding to the smallest singular value of QN .

3.2 Gyroscope Bias Estimation

The gyroscope bias can be estimated by the rotation relationship of consecutive key-
frames. This paper assumes that the gyroscope bias remains constant in the initial-
ization stage, and the initial gyroscope bias bg is 0.

Substituting the extrinsic rotation matrix bRBC estimated in Sect. 3.1 into (4)

RWCi � bRCB

� �T
RWCiþ 1 � bRCB

� �
¼ DRBiBiþ 1Exp Jg

DRBiBiþ 1

� dbg
	 


ð11Þ

For all keyframes during initialization, we use the minimum function for bias
estimation,

db�g ¼ argmin
dbg

XN�1

i¼1

Log DRBiBiþ 1Exp Jg
DRBiBiþ 1

� dbg
	 
	 
T bRBCRCiWRWCiþ 1

bRCB

 !�����
�����
2

ð12Þ

where �k k is the L2-norm, Log �ð Þ is the inverse of Exp �ð Þ. RWCi and DRBiBiþ 1 are known
to be obtained by monocular camera pose tracking and preintegration of gyroscope
measurements respectively. This equation can be solved with Gauss-Newton algorithm.
The final estimated gyroscope bias is b̂g ¼ bg þ db�g ¼ db�g.
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3.3 Scale, Gravity and Translation Approximation Without
Accelerometer Bias

Once the gyroscope bias has been estimated, the preintegrations can be rectified by
Eq. (5). And continue to estimate the scale factor s, gravity gW and extrinsic translation
pCB approximately. Since the gravity and accelerometer bias are hard to be distin-
guished, accelerometer bias is not considered in this stage. So the Ja

Dv
Bi
Bj

and Ja
Dp

Bi
Bj

can be

set to zero. Substituting Eq. (2) into the third equation of Eq. (4), the relationship of
two consecutive keyframes can be obtained,

s � pWCiþ 1
¼ s � pWCi

þ vWBi
� Dti;iþ 1 þ 1

2
gW � Dt2i;iþ 1

þRWCi � bRCB � DpBi
Biþ 1

þ RWCi � RWCiþ 1

� �
pCB

ð13Þ

The goal is to estimate s, gW and pCB. Using two relations between three consecutive
keyframes to eliminate velocities vWBi

, which leads to the following expression:

k ið Þ b ið Þ u ið Þ½ �
s
gW

pCB

24 35 ¼ c ið Þ ð14Þ

Writing the subscript i; iþ 1; iþ 2 as 1, 2, 3, we have:

k ið Þ ¼ pWC3
� pWC2

� �
Dt12 þ pWC1

� pWC2

� �
Dt23

b ið Þ ¼ � 1
2

Dt212Dt23 þDt223Dt12
� �

I3�3

u ið Þ ¼ RWC3�RWC2ð ÞDt12 þ RWC1�RWC2ð ÞDt23

c ið Þ ¼ RWC1 � bRCB � DvB1
B2
Dt12Dt23 þRWC2 � bRCB � DpB2

B3
Dt12

� RWC1 � bRCB � DpB1
B2
Dt23

ð15Þ

For N consecutive keyframes, a linear over-determined equation A3ðN�2Þ�7 � x7�1 ¼
B3ðN�2Þ�1 can be stacked. ŝ; ĝW ; p̂CB can be solved by SVD decomposition. Note that
there are 3ðN � 2Þ linear constraints and 7 unknowns, so at least 5 keyframes is
required to solve the equation.

3.4 Accelerometer Bias Estimation, and Scale, Gravity and Translation
Refinement

Assuming the gravity gE in the inertial frame E is known, and G ¼ 9:8 represents the
magnitude of the gravitational acceleration as well as �gE ¼ 0; 0;�1ð Þ represents its
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direction. It is stipulated that the earth’s inertial frame E coincides with the origin of the
world frame W , the rotation RWE between them can be computed as follows, shown in
Fig. 2:

RWE ¼ Exp hbð Þ

b ¼ �gE � �gW

�gE � �gWk k ; h ¼ atan2 �gE � �gW
�� ��; �gE � �gW� � ð16Þ

As �gW ¼ ĝW= ĝW
�� �� represents the gravity direction in the world frame W estimated

in Sect. 3.3. This rotation can be optimized by appending perturbation dh 2 R
3�1:

gW ¼ RWE � ExpðdhÞgE � RWE � gE � RWEðgEÞ^dh

dh ¼ dhTxy; 0
h iT

; dhxy ¼ dhx; dhy

h iT
ð17Þ

Substituting Eq. (17) into Eq. (13) and including the effect of accelerometer bias,
we have:

s � pWCiþ 1
¼s � pWCi

þ vWBi
Dti;iþ 1 � 1

2
RWEðgEÞ^dh � Dt2i;iþ 1

þRWCi � bRCB DpBi
Biþ 1

þ Ja
DpBiBiþ 1

� dba
	 


þ RWCi � RWCiþ 1

� �
pCB

þ 1
2
RWE � gE � Dt2i;iþ 1

ð18Þ

EX
EY

EZ

EgWg WER

θ

β

Fig. 2. Diagram of gravity acceleration direction angle.

Monocular Visual-Inertial SLAM with Camera-IMU 713



Considering the constraints between three consecutive keyframes as well, we can
construct the following linear equations:

k ið Þ a ið Þ / ið Þ u ið Þ½ �
s

dhxy
dba
pCB

2664
3775 ¼ v ið Þ ð19Þ

Where k ið Þ; u ið Þ remains the same as Eq. (15), a ið Þ;/ ið Þ; v ið Þ are computed as
follow:

a ið Þ ¼ 1
2
RWEðgEÞ^ Dt212Dt23 þDt223Dt12

� �� �
:;1:2ð Þ

/ ið Þ ¼ RWC1 � bRCB � Ja
DpB1B2

Dt23 � RWC2 � bRCB � Ja
DpB2B3

Dt12

� RWC1 � bRCB � Ja
Dv

B1
B2

Dt12Dt23

v ið Þ ¼ RWC2 � bRCB � DpB2
B3
Dt12 þRWC1 � bRCB � DvB1

B2
Dt12Dt23

þ 1
2
RWE � gE Dt212Dt23 þDt12Dt

2
23

� �� RWC1 � bRCB � DpB1
B2
Dt23

ð20Þ

�½ � :;1:2ð Þ in the a ið Þ means the first two columns of the matrix.
Similar to above, a linear over-determined equation A3ðN�2Þ�9 � x9�1 ¼ B3ðN�2Þ�1

can be constructed to calculate the db�a; s
�; dh�xy and pC�B . Since the initial

accelerometer bias is also set to zero, the final estimated accelerometer bias is
b̂a ¼ ba þ db�a ¼ db�a. What’s more, the gravity in the world frame is adjusted by
incorporating perturbation, i.e. gW� ¼ RWE � Expðdh�ÞgE.

4 Camera-IMU Extrinsic Online Estimation

Through the initialization process with camera-IMU extrinsic calibration, an accurate
extrinsic parameter could be estimated. However, during the movement of system, the
mechanical configuration of the sensor suite changes slightly. Fixed camera-IMU
extrinsic parameters can hardly track this change, which leads to system error affecting
the tracking accuracy and robustness of the system. With regards to this, we put the
camera-IMU extrinsic parameters into the state vectors for online estimation.

4.1 States and Factor Graph Representation

During the motion of the VI-SLAM system, the states to be estimated in each frame
include pose, velocity and IMU biases of the sensor suite. On this basis, the camera-
IMU extrinsic parameters are also put into the state vector for online estimation.
Defining the IMU body frame as the frame to be estimated, the states to be estimated in
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each image frame is pWBi
;RWBi ; v

W
Bi
; big; b

i
a;RCB; pCB

n o
. In addition to these, the location

of the k th landmark point lWk 2 R
3 is also included in the states. Using factor graph to

describe the constraint relationship between these states, the representation of the VI-
SLAM system with the camera-IMU extrinsic parameters online estimation is:

As shown in the Fig. 3, the circles represent the variables to be estimated, and
squares are the factors. So there are three kinds of constraint in the VI-SLAM system:

(1) Each image pose, camera-IMU extrinsic parameters and landmark point have
graph feature position observation constraint;

(2) Poses, velocities and IMU biases of consecutive frames have preintegration
constraint of IMU measurements;

(3) IMU biases of consecutive frames have IMU bias random walk constraint.

Therefore, the camera-IMU extrinsic parameters are limited by the graph feature
position observation constraint. To estimate it online, it’s necessary to construct a
nonlinear estimation function of the graph feature position observation constrain.

4.2 Graph Feature Constraint and Its Jacobian

Assuming the states of the frame i is pWBi
;RWBi ; v

W
Bi
; big; b

i
a;RCB; pCB

n o
, and the landmark

point k’s position in the world frame is lWk . The feature position observed on the frame i
of the landmark point k is p̂i;k with the uncertainty of one pixel. Pinhole projection

model projects the landmark point lWk as the pixel pi;k .
So the reprojection error ei;k of the graph feature position constraint is:

ei;k ¼ p̂i;k �
1
zC

K I3 03�1½ � lCk
1

" #

¼ p̂i;k �
1
zC

K I3 03�1½ �TCB
RWBi pWBi

0 1

� ��1
lWk
1

" # ð21Þ

Fig. 3. Factor graph of VI-SLAM system.
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K2�3 is the camera intrinsic matrix; the three components of lCk (landmark k’s
position in the camera frame C) is xC; yC; zC; lCk can be calculated:

lCk ¼ RCBR�1
WBi

lWk � pWBi

� �
þ pCB ð22Þ

According to Eq. (21), the reprojection error ei;k ’s Jacobian w.r.t. lCk is:

@ei;k
@lCk

¼�
fx
zC

0 � fxxC
z2C

0 fy
zC

� fyyC
z2C

24 35 ð23Þ

fx; fy; cx; cy are parameters of intrinsic matrix K.
In this way, the rejection error ei;k w.r.t. camera-IMU extrinsic translation is:

@ei;k
@dp

¼ @ei;k
@lCk

� @l
C
k

@dp

¼ �
fx
zC

0 � fxxC
z2C

0 fy
zC

� fyyC
z2C

24 35RCB

ð24Þ

Similarly, rejection error ei;k w.r.t. camera-IMU extrinsic rotation is:

@ei;k
@dh

¼ @ei;k
@lCk

� @l
C
k

@dh

¼
fx
zC

0 � fxxC
z2C

0 fy
zC

� fyyC
z2C

24 35 RCBR�1
WBi

lWk � pWBi

� �h i^
RCB

ð25Þ

At this point, the camera-IMU extrinsic parameters can be estimated online based
on the residual constraint and the Jacobian.

5 Experimental Evaluation

In this section, performances of our VI-SLAM algorithm with camera-IMU extrinsic
calibration and online estimation are estimated on the EuRoC dataset which provides
accurate position ground-truth and camera-IMU extrinsic parameters. Eleven sequence,
recorded with a Micro Aerial Vehicle (MAV), are divided into three levels: simple,
medium and difficult according to different speeds of the aircrafts, illumination, image
blur and environment texture. All the experiments are carried out with an Intel CPU i7-
5500U (3.0 GHz) laptop computer with 4 GB RAM.
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5.1 Implementation Details

The extrinsic rotation calibration is placed in the Tracking thread of the ORB-SLAM,
because it’s easily excited. The rest the initialization method is implemented in the
Local Mapping thread, between the Local BA module and the Local Keyframes
Culling module. Considering there are not enough observations to limit the camera-
IMU extrinsic parameters in the tracking thread, the camera-IMU extrinsic online
estimation is executed in the Local BA module. Since the convergence judgment
condition is set only for the extrinsic rotation calibration, the time of the remaining
initialization method is set to 23 s.

5.2 Initialization Results

Under the experimental condition of this paper, the initialization and camera-IMU
extrinsic estimation results are evaluated using the V2_01_easy sequence of the EuRoC
dataset. Figures 4 and 5 show the process of camera-IMU extrinsic rotation calibration.
The singular values to Eq. (8) become larger as time goes by (Fig. 4). When the second
smallest singular value r2 reaches the set threshold rthr ¼ 0:25, the process is achieved.
A convergence plot of the yaw, pitch and roll can be found in Fig. 5 to their benchmark
½89:147953	; 1:476930	; 0:215286	�.

Fig. 4. Time varied singular value.

Fig. 5. Process of extrinsic rotation calibration.
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The process of camera-IMU extrinsic translation, gyroscope bias, accelerometer
bias, scale factor and gravity in world frame is shown in Figs. 6, 7 and 8. Each state
quantity begins to converge between 5 s and 10 s after running. The extrinsic trans-
lation calibrated will have a few centimeters of error in each axis to its standard
½�0:021;�0:064; 0:009�m.

5.3 Extrinsic Estimation Results

Figures 9 and 10 illustrate the online estimation process of the camera-IMU extrinsic
parameters. During the online estimation process, the deviation of the extrinsic rotation
in three axial directions fluctuates within 0.5° and the deviation of the extrinsic
translation in three axial directions fluctuates within 0.02 m.

Fig. 6. Process of extrinsic translation calibration.

Fig. 7. Process of gyroscope bias and accelerometer bias calibration.

Fig. 8. Process of gravity and scale factor calibration.
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Using the V2_01_easy dataset, ten trials for our method, linear and nonlinear
processes of VINS-Mono are conducted in Fig. 11. It is observed that the extrinsic
rotation calibrated from our method and VINS-Mono’ linear process deviates from the
benchmark greatly, because we both do not take the gyroscope bias into account.
However, our calibrated extrinsic translation is more consistent and accurate than
VINS-Mono’s linear estimation as we considering the influence of IMU bias. After our
online estimation of the extrinsic parameters and VINS-Mono’s nonlinear optimization,
both camera-IMU extrinsic rotation and translation achieve high precision and con-
sistency. The estimated error of the camera-IMU extrinsic rotation and translation
obtained by the method proposed by use, is within 0.5° and 0.02 m separately.

Fig. 9. Process of extrinsic rotation online estimation.

Fig. 10. Process of extrinsic rotation calibration.

Fig. 11. Process of extrinsic rotation calibration.
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6 Conclusion

In this paper, we propose a VI-SLAM algorithm with camera-IMU extrinsic automatic
calibration and online estimation without knowing the mechanical configuration of the
sensor suite. Compare to VIORB which need prior precise extrinsic calibration, our
method is a plug-and-play solution for mobile robots. Through the experiment of
EuRoC dataset, the performance of the proposed algorithm in camera-IMU extrinsic
calibration and online estimation is verified. The error of the estimated extrinsic
rotation and translation is within 0.5° and 0.02 m separately. Compare to VINS-Mono,
our method achieves comparable or higher precision and consistency. A limitation of
our method is the long time (about 35 s) for the convergence of the extrinsic cali-
bration. To overcome this, we plan to set judgment of convergence in our future work.
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