
An Improved A* Algorithm Based on Loop
Iterative Optimization in Mobile

Robot Path Planning

Gang Peng1,2, Lu Hu1,2(&), Wei Zheng1,2, and Shan Liang Chen1,2

1 School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan 430074, China

hulu525@foxmail.com
2 Key Laboratory of Image Processing and Intelligent Control

of Education Ministry, Wuhan, China

Abstract. In the mobile robot system, point-to-point path solving is one of the
research hotspots in the field of robotics. Due to the many inflection points in the
path planned by the traditional A* algorithm, the number of robot turns and the
moving distance increases. Therefore, an improved A* algorithm is proposed.
Based on the path of the traditional A* algorithm, a loop iterative optimization
process is added. The path solved by the traditional A* algorithm is taken as the
initial path of the loop iterative optimization process, from rough to fine layered
iterative optimization until the total number of path nodes is minimized, and the
optimal path solution is obtained. Compared with the traditional A* algorithm,
the improved A* algorithm proposed in this paper effectively reduces the total
number of path nodes and the number of inflection points, which can signifi-
cantly improve the mobility of the robot in the actual environment. Experimental
comparison results verify the feasibility and effectiveness of the proposed
method.

Keywords: Loop iterative optimization � A* algorithm � Path inflection point �
Path planning � Mobile robot

1 Introduction

With the development of robot technology and the continuous expansion of the
application range, and the working environment of robots is becoming more and more
complicated, one of the biggest technical challenges for intelligent mobile robots is
efficient and smooth movement in the scene. Therefore, in the robot system, point-to-
point path solving is one of the research hotspots in the field of robotics. The purpose of
path solving is to find an optimal collision-free path from the starting point to the target
point according to an evaluation index in an obstacle environment [1]. A lot of
researches have been done on robot path solving, including sampling-based Voronoi
diagram method, fast search random tree method etc. [2], node-based Dijkstra, A*
algorithm, D* algorithm etc. [3, 4], based on biological heuristics Neural networks,
genetic algorithms, ant colony algorithms etc. [5]. Among them, the A* algorithm is
widely used in mobile robot path solving [6]. Because there are many inflection points

© Springer Nature Switzerland AG 2019
H. Yu et al. (Eds.): ICIRA 2019, LNAI 11743, pp. 118–130, 2019.
https://doi.org/10.1007/978-3-030-27538-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27538-9_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27538-9_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27538-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-27538-9_11

in the path solved by the A* algorithm, there are many redundant nodes in the path.
Such a path is neither optimal nor conducive to control the movement of the robot,
causing the robot to move less efficiently.

Therefore, aiming at the problem of traditional A* algorithm path solving, an
improved A* algorithm is proposed. Based on the traditional A* algorithm solution
path, one loop iterative optimization process is added. The path solved by the tradi-
tional A* algorithm is used as the initial path of the loop iterative optimization process,
and the loop iterative optimization is continuously performed until the total number of
path nodes reaches the minimum, and the global optimal path is obtained.

2 Improved A* Algorithm

The A* algorithm is a classic method based on heuristic information search optimal
path, which maintains a cost function and evaluates the current feasible path according
to the cost function [7]. The cost function is composed of the current existing cost value
and the estimated cost value. The estimated cost value, that is, the heuristic informa-
tion, is the core of the whole A* algorithm [8]. The cost function has a different design
depending on the application backgrounds. For the field of ground mobile robots, the
2D grid map is used to represent the robot motion space. Therefore, the A* algorithm is
applied to the 2D grid map to realize the point-to-point path solution of the mobile
robot. At the same time, an improved A* algorithm is proposed aiming at the defi-
ciency of traditional A* algorithm in path solving.

2.1 A* Algorithm Principle

Using the heuristic information from the starting point of the robot to the target point,
as well as selecting the appropriate cost function [9], the optimal solution is obtained by
dynamically adjusting the search strategy according to the value of the cost function.
Therefore, the key to the A* algorithm is to find the cost function, as in Eq. (1).

f ðnÞ ¼ gðnÞþ hðnÞ ð1Þ

In Eq. (1), gðnÞ is the cost that has been paid from the starting node Start to the
current node n, and hðnÞ is the cost estimation function from the current node n to the
target node Goal. The A* algorithm starts from the starting node s and searches for the
node with the smallest f ðnÞ value until the target point is searched to determine the
shortest path.

The A* algorithm solution path is divided into the following steps:

(1) Create two tables: Open list and Close list, Open list records the nodes to be
detected, and Close list records the nodes that have been detected;

(2) Add the starting node to the Open list;
(3) Repeat the following steps:

(a) Find the node with the smallest f ðnÞ value in the Open list, use it as the
current node, and transfer it to the Close list table;

An Improved A* Algorithm Based on Loop Iterative Optimization 119

(b) Consider the eight neighbor nodes of the current node:
(b:1) If the neighbor node is unreachable or already in the Close list, ignore

the neighbor node, otherwise continue with the following steps:
(b:2) If it is not in the Open list table, add it, calculate the f ðnÞ of the neighbor

node, and then use the current node as its parent node;
(b:3) If it already exists in the Open list table, it is necessary to judge whether

the path from the current node to the neighbor node is better, the method
is to use the cost gðnÞ to judge, if the gðnÞ from the current node to the
neighbor node is smaller than the neighbor node The original gðnÞ, then
change the original parent node of the neighbor node to the current node,
and recalculate its f ðnÞ, and reorder the Open list table;

(c) When the target node has been added to the Open list, it means that a path has
been successfully searched; or if the target node is not found when the Open
list is empty, it means that the path cannot be found.

(4) Starting from the target node, based on the direction of its parent node, back to the
state of the starting node, an optimal path is generated.

In the above algorithm, the proportion of hðnÞ in the whole cost function f ðnÞ
determines the efficiency of the path solution [10]. If the hðnÞ ratio is too small, that is,
the heuristic information of the current node n to the target node g is too small, the
search rate of the algorithm becomes slow, increases the solution time, but can get a
better path. Conversely, the A* algorithm can have a faster search rate, and you can
find a passable path if you search for fewer nodes, but it may not be the optimal path.

Therefore, considering the rate and quality of the solution, this paper uses the D-
Euclidean distance to design the heuristic function hðnÞ, as shown in Eq. (2). First, a
better path is solved in advance in a short time, and then optimized based on the
solution path to obtain the optimal path.

hðnÞ ¼ D �
ffi
ðn:x� Goal:xÞ2 þðn:y� Goal:yÞ2

q
ð2Þ

In Eq. (2), n is the current node, Goal is the target node, and D is the cost to move
one step from the current node along the Euclidean distance, Eq. (2) represents the pre-
estimated cost that needs to be paid to move from the current node n along the
Euclidean distance to the target point Goal.

2.2 Loop Iterative Optimization Process

In the grid map, no matter how the heuristic function hðnÞ is designed when using the
traditional A* algorithm, there are always many inflection points in the path of the
solution, resulting in many redundant nodes in the obtained path, as shown by the black
solid line in Fig. 1. The path is not optimal and is not conducive to controlling the
motion of the robot. Therefore, the path to be solved needs to be optimized to reduce
the number of redundant nodes in the path and improve the efficiency of robot
movement.

The black square in Fig. 1 represents the obstacle, the white square represents the
passable area, the solid black line represents the unoptimized path, and n1 to n5 are the

120 G. Peng et al.

nodes on the unoptimized path. Connect to subsequent nodes from the starting point of
the path, such as In Fig. 1, the starting node Start is connected to the dotted line
between n1 and n5 respectively. If there is an obstacle on the dotted line between the
starting node Start and the current node, then the dotted line between the starting node
Start and the previous node will be as the optimal path. Looking at Fig. 1, it can be
seen that the point on the dotted line between Start and n5 contact with the obstacle
area. As shown by the circle in Fig. 1, the line between Start and n5 is impassable and
cannot be optimized. Therefore, the dotted line between Start and n4 is selected as the
current optimal path.

From the above analysis, the idea of improving the A* algorithm is as follows, on
the basis of the path solved by the traditional A* algorithm, a path loop iterative
optimization process is added until the total number of path nodes from the starting
node to the target node is minimized, and the optimal path solution is found.

It should be noted that in order to obtain the global optimal path solution, the idea
of hierarchical iterative optimization is adopted, that is, the path optimized by each
layer is used as the initial path of the next layer of iterative optimization, and the
hierarchical iteration from coarse to fine. Until the total number of path nodes reaches
the minimum or the number of loop iterations is reached, the optimal path solution is
obtained. The detailed process is shown in Fig. 2.

Define a local start node Local_start, local target node Local_goal, last local target
node Last_local_goal, and assign the global start node Start to Local_start, Local_goal,
Last_local_goal.

Firstly, the path solved by the traditional A* algorithm is taken as the initial path of
the optimization process, and then each path node is considered from the Local_goal,
and it is judged whether there is an obstacle on the line of Local_goal to Local_start,
and the optimal path is found by the method until the global The target node Goal is
Local_goal, backtracks to the global starting node Start, generates an optimal path,
completes an iterative optimization, calculates the total number of path nodes obtained
by the current optimization, and determines whether the current iteration number

Fig. 1. Path optimization principle

An Improved A* Algorithm Based on Loop Iterative Optimization 121

reaches the set maximum number of iterations, or current Whether the number of path
nodes reaches the minimum, otherwise the path obtained this time is used as the initial
path for the next iteration optimization, and the layered iteration is continued until the
optimal path is obtained.

In the hierarchical iterative optimization process, it is the most time-consuming step
in the whole optimization process to determine whether there are obstacles on the line
between the two nodes, which determines the rate of path optimization. Considering
the real-time motion of the robot, the optimal path needs to be solved quickly.
Therefore, in order to accelerate the path optimization process, the Bresenham [11] line
algorithm is used to quickly determine whether there are obstacles on the line of the
two-pixel node. The algorithm is as follows.

Start

Does the A* algorithm
have a solution?

As an initial path for hierarchical
iterative optimization

Last_local_goal=Local_goal and update
Local_goal to the next path node

Is the straight line between Local_goal and
Local_start conflicting with obstacles?

End

Use the straight line between Last_local_goal
and Local_start as the local optimal path

Local_start=Last_local_goal

Is Local_goal global
target point Goal?

Go back from node Goal to node
Start to get an optimal path

The maximum number of iterations
has arrived or the total number of path

nodes is the smallest?

Get the optimal path

Y

N

N

Y

Y

N

N

Y

Fig. 2. Flow chart of the loop iterative optimization process

Fig. 3. Bresenham line algorithm principle

122 G. Peng et al.

As shown in Fig. 3, the intersection of the horizontal line and the vertical line is
regarded as a pixel node, and if there is an obstacle on the line between the two pixel
nodes ðx1; y1Þ and ðx2; y2Þ, it is necessary to calculate the coordinates of each pixel
node between the two pixel nodes. The calculation is stopped until a pixel node whose
coordinates are obstacles is encountered.

Suppose the line equation is y ¼ k � xþ b, and its slope k is between 0 and 1, if
x2 [x1, then Dx ¼ ðx2 � x1Þ, Dy ¼ ðy2 � y1Þ. The principle of the algorithm is to find
the pixel node closest to the point D on the straight line. The judgment of the distance is
determined by comparing the sizes of d1 and d2. It is assumed that the i-th step has
determined that the coordinates of the i-th pixel node is ðxi; yiÞ, then the i+1th pixel
coordinate:

d1 � d2 ðxi þ 1; yi þ 1Þ
d1\d2 ðxi þ 1; yiÞ

�
ð3Þ

As can be seen from Fig. 3, d1 ¼ ðy� yiÞ, d2 ¼ ðyi þ 1� yÞ in the formula (3).
Multiply both sides of the equal sign of d1 and d2 by Dx, and bring the line equation
y ¼ k � xþ b into d1 and d2, as shown in Eq. (4):

Dx � d1 ¼ Dx � ðy� yiÞ ¼ Dy � ðxi þ 1ÞþDx � b� Dx � yi
Dx � d2 ¼ Dx � ðyi þ 1� yÞ ¼ Dy � ðyi þ 1Þ � Dx � ðxi þ 1Þ � Dx � b

(
ð4Þ

Among them, the size of d1 and d2 can be compared by difference, so it can be
derived from Eq. (4).

Dx � ðd1 � d2Þ ¼ 2Dy � xi � 2Dx � yi þ c ð5Þ

In Eq. (5), c is a constant. Since Dx ¼ ðx2 � x1Þ and x2 [x1, therefore Dx is greater
than 0, then the sign of d1 � d2 does not change. Let pi ¼ Dx � ðd1 � d2Þ, then the final
point-finding equation is:

pi � 0; ðxi þ 1; yi þ 1Þ; piþ 1 ¼ pi þ 2ðDy� DxÞ
pi\0; ðxi þ 1; yiÞ; piþ 1 ¼ pi þ 2Dy

�
ð6Þ

The pixel coordinates of the next node are selected by the positive and negative of
pi, and it is judged whether the pixel node is an obstacle. If yes, the judgment is
stopped. Otherwise, the value of piþ 1 is calculated by Eq. (6), and then the coordinates
of the next pixel are selected by the positive and negative of piþ 1, and the relationship
between piþ 1 and piþ 2 is calculated, thereby continuously recursively calculating.
Finally, it is determined whether the line between the two pixels ðx1; y1Þ and ðx2; y2Þ
conflicts with the obstacle.

The algorithm can effectively reduce the amount of computation in the iterative
optimization process and greatly accelerate the solution process of path loop iterative
optimization.

An Improved A* Algorithm Based on Loop Iterative Optimization 123

3 Experimental Analysis

In order to verify the application effect of the improved A* algorithm in the actual
complex environment. The original A* algorithm and the improved A* algorithm is
integrated into the ROS system environment, and a comparative experiment was car-
ried out on a mobile robot equipped with a single-line lidar. Figure 4 shows the mobile
robot system used in this experiment. Figure 5 shows an experimental environment
with a length of 10 m and a width of 7 m. Set the maximum linear speed of the robot to
0.5 m/s and the maximum angular velocity to 1 rad/s.

3.1 Improved A* Algorithm Experiment

In order to verify the path optimization performance of the improved A* algorithm, this
paper pre-uses the laser mapping algorithm to build a grid map with a resolution of
0.025 m in a laboratory scene with a length of 10 m and a width of 7 m, as shown in
Fig. 6. And the occupied grid map is binarized and corroded. In the figure, white is a
passable area, black is an obstacle area, S is a starting node, and G is a target node.

Under the premise of the same starting node S and target node G, the traditional A*
algorithm and the improved A* algorithm is used to solve the path separately. Figure 7
shows the path solution of the traditional A* algorithm, there are many inflection points
in the path in the Fig. 7. As shown in the blue circle in Fig. 7, there are many redundant
nodes in the path. Such a path will reduce the motion efficiency of the robot. Therefore,
the path can be further optimized. Under the premise of ensuring effective obstacle
avoidance, the path is used as the initial value of hierarchical iterative optimization, and
the path is optimized. Figure 8a is the result of iterative optimization once. Compared
with the path before optimization, the number of inflection points is significantly
reduced, but the total number of path nodes does not reach the minimum at this time.
Therefore, the path is used as the initial value of hierarchical iterative optimization, and
the second optimization is continued, as shown in Fig. 8b, at this time, the path is
optimal. The number of inflection points is the smallest and the total number of path
nodes is minimized.

The experimental results show that, based on the initial value, the improved A*
algorithm only needs to be iterated several times to make the path optimal. Table 1

Fig. 4. Mobile robot system Fig. 5. Experimental environment

124 G. Peng et al.

compares the performance of the algorithm. The final optimization result is compared
with the path of the traditional A* algorithm. The path length is reduced by 13.9%, and
the cumulative number of inflection points is reduced by 62.5%. Using the optimized
path to control robot movement can effectively reduce the number of turns and improve
the robot’s moving efficiency.

Fig. 6. Occupy the grid map Fig. 7. A* algorithm solution results

(a) Iterative optimization 1 time (b) Iterative optimization 2 times

Fig. 8. Improved A* algorithm solution results

Table 1. Comparison of algorithm performance

Algorithm Traditional A*
algorithm

Improved A* algorithm
Iterative optimization
1 time

Iterative optimization 2
times

Number of inflection
points

16 10 6

Path length 17.302 m 15.515 m 14.895 m

An Improved A* Algorithm Based on Loop Iterative Optimization 125

3.2 Comparison of Original A* Algorithm and Improved A* Algorithm

In order to verify the improvement effect of the loop iterative optimization process on
the original A* algorithm, a comparative experiment was conducted in a laboratory
environment with dense obstacles and a narrow space. As shown in Fig. 5, a Car-
tographer mapping algorithm was used in advance to establish a high-precision global
occupied grid map in this environment. the current position of the robot taken as the
global starting point, the global target point is randomly selected in the blank area
occupying the grid map, as shown by the blue and red dots in Figs. 9 and 10. On the
map, the point-to-point path solving experiment is performed using the original A*
algorithm and the improved A* algorithm, respectively, and the robot is controlled to
move along the pre-planned path at the same linear velocity and angular velocity.
Figure 9 shows the path solved by the original A* algorithm, among which the blue
circle is the path inflection point. Figure 10 is the path after the improved A* algorithm
is optimized twice in the loop iteration.

In order to effectively evaluate the performance of the improved A* algorithm,
multiple sets of different global starting points and target points were used to perform
multiple sets of comparison experiments using the original A* algorithm and the
improved A* algorithm. Among them, the total length of the path solved by the two
algorithms, the total time of the robot moving to the target point, the number of turns
along the path movement are used as performance evaluation indicators, and the robot
is controlled to complete the motion experiment at the same linear velocity and angular
velocity, the experimental results are shown in Table 2.

It can be seen from the analysis in Table 2 that, compared with the original A*
algorithm, no matter where the global starting point and the target point are set, the total
length of the solved path is the shortest, and the number of path turns is the least, the
time to move to the global target point is minimal. Therefore, using the improved A*
algorithm to solve the path can effectively reduce the number of turns, shorten the
movement time, and improve the robot movement efficiency.

Fig. 9. Original A* algorithm results
(Color figure online)

Fig. 10. Improved A* algorithm results
(Color figure online)

126 G. Peng et al.

3.3 Experimental Comparison of Obstacle Avoidance Path Planning
Methods

In order to verify the actual effect of the improved A* algorithm in obstacle avoidance
path planning, in the same experimental environment, the same obstacle environment,
the same linear velocity and angular velocity, the improved A* algorithm and the
artificial potential field method were compared in multiple groups.

Obstacle Avoidance Path Planning Experiment with Improved A* Algorithm
In the experimental environment shown in Fig. 5, the improved A* algorithm is used to
perform the obstacle avoidance path planning experiment for the special obstacle of the
human body. The experimental verification process is shown in Fig. 11.

Table 2. Multi-group path solving comparison experiment

Number of experiments 1 2 3 4 5

Start(X, Y)m 1.17, 0.34 1.43, 0.06 0.08, −2.97 2.72, 3.82 −0.28, −2.86

Target(X, Y)m 0.05, −2.88 0.08, −2.79 2.72, 3.82 1.50, 0.19 −0.48, 3.78

Original A*
algorithm

Path length 9.22 m 8.99 m 12.25 m 8.23 m 15.78 m

Number of turns 8 Times 9 Times 7 Times 6 Times 8 Times

Time of
movement

61.1 s 62.3 s 69.25 s 53.32 s 80.21 s

Improved A*
algorithm

Path length 8.42 m 8.33 m 11.42 m 7.85 m 14.52 m

Number of turns 4 Times 3 Times 3 Times 3 Times 3 Times

Time of
movement

49.39 s 47.26 s 59.03 s 45.41 s 66.21 s

Iterative times 3 Times 2 Times 2 Times 2 Times 3 Times

Path length reduction (%) 8.67% 7.34% 6.77% 4.61% 7.98%

Reduced number of turns (%) 50% 66.6% 57.1% 50% 62.5%

(a) (b) (c) (d) (e)

Fig. 11. Robot avoids the human body

An Improved A* Algorithm Based on Loop Iterative Optimization 127

The obstacle avoidance process in Fig. 11 shows that, after the robot detects the
obstacle, in order to bypass the obstacle, an improved A* algorithm is used to plan an
optimal path from the current position to the global target point. The robot is controlled
to move along the path to avoid obstacles. At the same time, in the obstacle avoidance
process, the obstacle avoidance method can adjust the obstacle avoidance path in real
time according to the safety distance between the robot and the obstacle. Therefore, the
improved A* algorithm is used for obstacle avoidance path planning, which having the
advantages of short moving distance and stable motion, which can effectively shorten
the motion time of the robot and improve the motion efficiency.

Multiple Sets of Comparison Experiments
In order to effectively compare the obstacle avoidance path planning performance of the
improved A* algorithm, five different global starting points and target points, five
different obstacle environments are shown in Fig. 12. A comparative experiment was
conducted on two obstacle avoidance path planning methods. Among them, the mini-
mum safe distance between the robot and the obstacle, the time to complete the obstacle
avoidance, the moving distance of the robot to bypass the obstacle is the performance
evaluation index, and the control robot completes the motion experiment under the same
expected linear velocity and angular velocity. The results are shown in Table 3.

(a) (b) (c) (d) (e)

Fig. 12. Five obstacle environments

Table 3. Multiple sets of contrast experiments for two obstacle avoidance path planning
methods

Number of experiments 1 2 3 4 5 Average

Artificial potential
field algorithm

Minimum safe distance 28 cm 30 cm 26 cm 27 cm 20 cm 26.2 cm
Distance to bypass
obstacles

2.95 m 3.39 m 3.78 m 3.99 m 4.41 m 3.704 m

Complete an obstacle
avoidance time

25.32 s 28.13 s 32.5 s 34.1 s 42.3 s 32.47 s

Improved A*
algorithm

Minimum safe distance 20 cm 14 cm 10 cm 13 cm 8 cm 13 cm

Distance to bypass
obstacles

1.62 m 1.56 m 2.56 m 2.32 m 2.96 m 2.204 m

Complete an obstacle
avoidance time

9.93 s 8.76 s 15.2 s 13.4 s 17.2 s 12.898 s

Avoid obstacle distance reduction % 45.08% 53.98% 32.27% 41.85% 32.87% 4.49%
Reduced timed for obstacle reduction % 60.7% 68.85% 53.23% 60.70% 59.33% 60.27%

128 G. Peng et al.

It can be seen from Table 3 that in the five experiments, the improved A* algorithm
compared with the artificial potential field method. In order to avoid obstacles, the
distance of movement is reduced by an average of 40.49%, and the time to complete an
obstacle avoidance is reduced by an average of 60.27%. Therefore, the obstacle
avoidance method of this paper can effectively shorten the obstacle avoidance time and
reduce the moving distance. However, in Table 3, the minimum safe distance perfor-
mance of the obstacle avoidance method of this paper is not as good as the artificial
potential field method. The reason is that the closer the artificial potential field method
is to the obstacle, the greater the repulsive force generated, which makes the safe
distance of the robot from the obstacle larger. The obstacle avoidance method in this
paper is based on the principle of solving the optimal path to avoid obstacles, so that
the safety distance between the robot and the obstacle is small. At the same time, due to
the error of the localization accuracy of the robot, the estimated distance between the
robot and the obstacle is deviated from the actual distance.

4 Conclusion

Aiming at the problem of the original A* algorithm having many inflection points in
the field of robot path planning which leads to many redundant nodes in the path, this
paper proposes an improved A* algorithm. That is, adding a loop iterative optimization
process based on the original A* algorithm, using the path solution solved by the
original A* algorithm as the initial value of the loop iterative optimization process, and
minimizing the total number of path nodes through continuous loop iteration, so as to
obtain the optimal path. The experimental results show that the improved A* algorithm
only needs a simple iteration several times to optimize the path, which makes the
algorithm feasible in engineering applications. At the same time, the improved A*
algorithm is applied to the obstacle-intensive and complex experimental environment
for multi-group comparison experiments. The results show that the improved A*
algorithm proposed in this paper can effectively reduce the number of path inflection
points and shorten the path length. The moving efficiency of the mobile robot in the
actual environment is improved. The experimental comparison results fully verify the
feasibility and effectiveness of the improved A* algorithm proposed in this paper.

When the mobile robot turns around the obstacle, due to the localization error and
the noise of the laser sensor, there is a certain error between the estimated distance
between the robot and the obstacle and the actual distance. Therefore, the optimal
obstacle avoidance path solved by the improved A* algorithm is close to the obstacle,
which causes the risk of the robot to increase along the obstacle avoidance path. This
problem can be solved by increasing the range of obstacles in the grid map, or by
improving the accuracy of the lidar and localization.

An Improved A* Algorithm Based on Loop Iterative Optimization 129

References

1. Eele, A.J., Richards, A.: Path-planning with avoidance using nonlinear branch-and-bound
optimization. J. Guid. Control Dyn. 32(2), 384–394 (2015)

2. Kothari, M., Postlethwaite, I.: A probabilistically robust path planning algorithm for UAVs
using rapidly-exploring random trees. J. Intell. Rob. Syst. 71(2), 231–253 (2013)

3. Zhang, B., Cao, Q.X., Wang, W.S.: Path planning of mobile robot using 3D grid
map. J. Xi’an Jiaotong Univ. 47(10), 57–61 (2013)

4. Montiel, O., Sepúlveda, R., Orozco-Rosas, U.: Optimal path planning generation for mobile
robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79(2), 237–
257 (2015)

5. Zhu, D.Q., Sun, B., Li, L.I.: Algorithm for AUV’s 3-D path planning and safe obstacle
avoidance based on biological inspired model. Control Decis. 30(5), 798–806 (2015)

6. Wei, W., Dong, P., Zhang, F.: The shortest path planning for mobile robots using improved
A* algorithm. J. Comput. Appl. (2018)

7. Fu, B., Chen, L., Zhou, Y., et al.: An improved A* algorithm for the industrial robot path
planning with high success rate and short length. Robot. Auton. Syst. 106, 26–37 (2018)

8. Jing, X., Yang, X.: Application and improvement of heuristic function in A** algorithm.
In: The 37th China Control Conference (2018)

9. Wang, Y., Liu, Z., Zuo, Z., et al.: Local path planning of autonomous vehicles based on
A** algorithm with equal-step sampling. In: The 37th China Control Conference (2018)

10. Wei, W., Dong, P., Zhang, F.: The shortest path planning for mobile robots using improved
A** algorithm. J. Comput. Appl. (2018)

11. Li, X., Shao, X.: Fast line drawing algorithm by circular subtraction based on Bresenham. In:
Proceedings of SPIE - The International Society for Optical Engineering, vol. 8349, p. 20
(2012)

130 G. Peng et al.

	An Improved A* Algorithm Based on Loop Iterative Optimization in Mobile Robot Path Planning
	Abstract
	1 Introduction
	2 Improved A* Algorithm
	2.1 A* Algorithm Principle
	2.2 Loop Iterative Optimization Process

	3 Experimental Analysis
	3.1 Improved A* Algorithm Experiment
	3.2 Comparison of Original A* Algorithm and Improved A* Algorithm
	3.3 Experimental Comparison of Obstacle Avoidance Path Planning Methods

	4 Conclusion
	References

