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Abstract. Soft robotic arms are complementing traditional rigid arms in many
fields due to its multiple degrees of freedom, safety and adaptability to the
environment. In recent years, soft robotic arms have become the focus in
robotics research and gained increasing attention from scientists and engineers.
Despite the rapid progress of its design and manufacturing processes in the past
decade, an obstacle restricting the development of soft robotic arms remained
unsolved. The suitable sensors for soft robotic arm have not appeared on the
market and the integration of sensors into soft robotic arm has been difficult,
since most sensors and actuator systems, such as those used in traditional robotic
arms, are rigid sensors and rather simple. Therefore, finding a suitable soft
robotic arm sensor has become an urgent issue in this field. In this paper, a
simple and feasible method with a binocular camera is proposed to control the
soft robotic arm. Binocular is employed to detect the spatial target position at
first and then coordinates of target point will be transmitted to the soft robot to
generate a control signal moving the soft robotic arm, and then the distance from
target to the end effector will be measured in real time.
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1 Introduction

Soft robotic arms are safe, user-friendly and flexible in human-machine and machine-
environment interaction [1], and therefore, they have a wide range of real-world
applications and can revolutionize status quo with technological innovations [2]. For
example, soft robotic arms can be applicable in the sorting of different shapes and
fragile objects (fruits, vegetables, biological tissues etc.) [3], in medical and healthcare
industry such as rehabilitation and auxiliary devices for stroke patients and assisted
surgery [4, 5, 11]. Their physical adaptation to external environment empowers them
with excellent capability to deal with uncertainty and disturbance [6, 7], allowing for
low cost, safe and pleasurable human-robot interaction [8–10].

However, there is currently no suitable soft robotic arm sensor on the market and
most of the soft robotic arms are still controlled by traditional sensors [12]. Although
traditional rigid sensors have many applications on soft robotic arms, they are not
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always well-matched [13, 14]. Compared with traditional robotic arms, soft robotic
arms have no so-called link and joint structure even do not need to drive with an
electric motor [16]. In theory, the soft arm has multiple degrees of freedom, without an
accurately characterized stiffness and damping [13]. Therefore, many mature sensors
used in traditional robotic arms cannot be applied well in soft mechanical arms. These
factors have greatly affected the control of the soft robotic arms [14]. To bridge the gap,
a novel method to control the robotic arm with vision is employed. Visual control
system automatically receives and processes images of real objects through optical and
non-contact sensors to obtain the information required for robot motion [15, 18, 19].

Many current visual servoing robotic arms are not well solved in visual positioning
problem. The main obstacle is the inability to apply the vision sensor alone to accu-
rately obtain the depth of the target point [20]. For example, it is difficult to solve the
depth problem with a monocular camera very accurately [27]. At present, the
monocular measurement distance is very popular in machine learning model [28], and
the data comes from statistics. Even if the correct rate is continuously improved under
the supervised learning model, it is still only a regular information under big data, and
there is no physical theory or geometric model to support it. The result analysis has
uncontrollable factors. What’s more, the monocular camera is fixed in focal length and
cannot be zoomed as fast as the human eye, it cannot solve the problem of imaging at
different distances accurately. The binocular camera is a good complement to this
shortcoming. The binocular camera can cover different ranges of scenes by using two
identical cameras, which solves the problem that the monocular camera cannot switch
the focal length back and forth and can also solve the problem of recognizing the
images sharply at different distances.

By using a binocular camera, depth measurement may also face many issues such
as result accuracy, real-time trade-off [21], and difficulty in obtaining accurate corre-
sponding disparity pixel values to the actual distance in a linear model [22–24].
Therefore, in this work, some simple and feasible methods are proposed to improve the
measurement efficiency and accuracy of the binocular system, and at the same time, it
is well combined with the soft robotic arm control.

There are two main tasks of the binocular camera in this proposed system:
First, measure the depth from the target point to the end effector by binocular

disparity relatively, accurately and efficiently [25].
Second, employ the left camera of the binocular camera to establish the imaging

geometry model. And the depth information is used to obtain the X, Y coordinates of
the target point [26].

The novelty of this work:

① Proposes a simple method to improve the linear model of binocular disparity,
making measurement results more accurate, and presents a strategy to improve the
calculation speed of binocular disparity.
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② Provides a new idea for the eye-in-hand model. Compared to the most eye-in-
hand model by monocular, the binocular camera is used in this work to obtain
accurate depth measurement in real time with a high positioning accuracy.
③ Matches the vision system with the soft robotic arm model to control the soft
robotic arm moving to the target point.

2 Design

The soft robotic arm system is shown in Fig. 1. The vision system in this paper is a
binocular camera with a variable baseline length from 4.2 cm to 17.0 cm, and the
parameters of the binocular camera are listed in Table 1. It will be mounted on the end
effector of the soft robot arm, moving with the end effector of the arm as the “hand-in-
eye” model. And the details of binocular are shown in Fig. 2. Finally, the camera
detects the depth of the target to the camera in real time and transmits it back to the base
coordinate system and keeps end effector approaching the object to a predetermined
distance.

The first part of this work is to use the binocular camera for depth measurement. At
the beginning of the measurement, the camera is calibrated to remove the distortion,
followed by the camera parameters and distortion coefficient. The intrinsic parameters
will be combined with the depth information for the spatial position calculation. In this
work, the camera is calibrated using the classic Zhang Zhengyou calibration method.
A 50 mm * 50 mm, 10 * 6 calibration plate is chosen in this work. The binocular
calibration phasing has special characteristics compared to the monocular calibration,
and the calibration plate must appear in the left and right frames at the same time.
Making the calibration plate appear in the entire view can effectively improve the
accuracy of the calibration. A total of 30 pairs of image data to calibrate the binocular
to get the camera parameters are conducted. Then the original frames are rectified with
camera parameters and distortion coefficient. Next, the epipolar geometry is used to
convert binocular into a standard format. Disparity calculation of two vertically aligned
images is then conducted. There are currently three popular methods for calculating
disparity: StereoBMState, StereoSGBMState, StereoGCState. The comparison of the
three methods is as follows:

① Calculation speed: BM method > SGBM method > GC method.
② Disparity accuracy: BM method < SGBM method < GC method.

In this work, real-time and measurement accuracy are critical for the visual system,
hence, average StereoSGBMState mode is used. Based on this algorithm, a scientific
method will be employed to enhance the measurement results.

The spatial target point coordinate information is then transmitted back to the
camera coordinate frame, after that from the camera coordinate frame to the end
effector coordinate frame, and finally from the end effector coordinate frame to the
robotic arm base coordinate frame.
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3 Modeling

The soft robotic arm is different from the traditional rigid body arm, since its end-
effector position is characterized by bending angle, rotation angle, and length. There-
fore, in this paper, an algorithm transforming the software robot coordinate system into

Fig. 2. Details of binocular

Table 1. Parameters of binocular

Image
resolution

Baseline
range

Sensor
size

Pixel size Image
compression

Active array

640� 320 42 mm–

170 mm
1
3
00 3:75lm � 3:75lm MJPG

YUY2
MJPG (60FPS)
YUY2 (10FPS)

(a)                  (b)
Control platform Soft robotic arm

Fig. 1. (a) shows the control platform of the soft robotic arm system. (b) shows the soft robotic
arm.
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a Cartesian coordinate system is proposed to characterize the position of the end
effector. The block diagram of the entire work is as shown in Fig. 3.

3.1 Modeling of Binocular and Monocular

The 3D coordinates of an object in real life can be determined with binocular stereo
vision technology. Figure 4 below demonstrates the principle of binocular stereo
vision. In Fig. 4, OL and OR are optical centers of the left and right cameras. Suppose
two cameras have identical intrinsic and external parameters, which include f (focal
length), B (the distance between optical centers), two cameras being on the same plane,
and equal Y coordinates of their projection centers. The point P in space has imaging
points in two cameras as Pleft and Pright.

From trigonometry,

Xleft ¼ f
x
z

ð1Þ

Target 
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Fig. 3. Block diagram of visual servoing control by binocular vision
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Fig. 4. The principle of binocular stereo vision
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Fig. 5. Principle of camera projection
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Xright ¼ f
x� Bð Þ
z

ð2Þ

D ¼ Xleft � Xright ð3Þ

where Xleft, Xright are the values of the target point in X direction of the left and right
imaging planes, and x is the length of target point to the left camera in X direction. z is
the depth from the target point to the binocular center. D is the disparity.

Solve (1), (2), (3) simultaneously to calculate depth as well. Consequently, it can be
derived that:

z ¼ Bf
D

ð4Þ

During the imaging process of the camera, there exist 4 coordinate frames, which
are pixel, image, camera and world coordinate systems. Figure 5 demonstrates the
principle of camera imaging.

The relation between the pixel coordinate frame and the camera coordinate frame
can be expressed with homogeneous matrices:

u
v
1
1

2
664
3
775 ¼ 1

zc

1
dx

0 u0 0
0 1

dy
v0 0

0 0 1 0
0 0 0 1

2
664

3
775

f 0 0 0
0 f 0 0
0 0 1 0
0 0 0 1

2
664

3
775

xc
yc
zc
1

2
664

3
775 ð5Þ

where u; v represent the column and row numbers of the pixel in the image, u0, v0
represent pixel coordinate of the principle point, and dx, dy are the physical mea-
surements of the unit pixel on the horizontal and vertical axes. Because depth will be
considered in this issue, a 4 � 4 matrix format is used where xc, yc, zc indicate the point
in the camera coordinate frame, f represents the focal length of the camera. f

dx
, f
dy
are

abbreviated into fx, fy. Camera intrinsic parameters obtained from camera calibration
can be shown below:

fx ¼ 2:3643976238380526� 102

u0 ¼ 1:5168679331906756� 102

fy ¼ 2:3486572411007802� 102

v0 ¼ 1:2106158962347398� 102

In this work, since the camera is mounted on the end effector, it is assumed that the
camera coordinate frame and the robot end effector coordinate frame are the same.
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3.2 Modeling of Soft Robotic Arm

The soft robotic arm studied in this paper is a light-weight backboneless soft robotic
arm, consisting of 6 long elastic bellows installed circularly, and its end-effector
position is characterized by bending angle a, rotation angle b, and length l. The
geometry model of the soft arm is shown as follows in Fig. 6, and the frame transfer
relation between the base and the end effector is shown in Fig. 7.

The homogeneous transformation from base to end effector coordinate frame is
shown as follows:

eTb ¼
c2b ca� 1ð Þþ 1 sbcb ca� 1ð Þ cbsa � l

a cb ca� 1ð Þ
cbsb ca� 1ð Þ s2b ca� 1ð Þþ 1 sbsa � l

a sb ca� 1ð Þ
�cbsa �sbsa ca l

a sa
0 0 0 1

2
6664

3
7775 ð6Þ

Finally, (5) and (6) can be solved to obtain the result:

u
v
1
1

2
664
3
775 ¼ 1

Z tð ÞXL
eTb tð Þ

xb
yb
zb
1

2
664

3
775 ð7Þ

in which XL is the intrinsic parameter of the left camera.
Moreover, from calculation, it can be obtained that the target a; b; l are:

a ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !
ð8Þ
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Base Frame
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Fig. 7. Frame transfer relation
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Fig. 6. Geometric model of the soft arm
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b ¼ arctan
y
x

ð9Þ

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
sin arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þy2

p
2

� � � arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

ð10Þ

Plug the coordinates of the target point in the base coordinate frame into (8), (9),
(10) and obtain the target soft robotic arm parameters a; b, l to control the arm close to
the target point.

4 Improved Binocular Measurement Performance

4.1 Measurement Accuracy Optimization

Conversion of disparity pixel values to real distance. Since the soft robotic arm will
combined with a gripper in the end and the length of gripper is 60 cm. The experiment
is designed based on the actual range of 0–120 cm, with a gradient of 1 cm. And for
each group, 10 sets of continuous pixel value output are recorded, which amounts to be
a total of 1600 sets of data, as shown below in Fig. 8.

Two regions are omitted in the disparity map during the experiment, including
blind spot region when the distance is very close, and the undesirable low-resolution
region when the distance is very large. As a result, a clear pattern between the pixel
values and the real distances can be discovered. The data is then fitted with a high
degree polynomial to obtain a more accurate fit curve, and the result is shown in Fig. 9.
The curving fitting formula (11) is used to calculate the actual distance.

Fig. 8. Relationship between pixel and real
distance

Fig. 9. Curving fitting result
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Real Distance ¼ p1x7 þ p2x
6 þ p3x

5 þ p4x
4 þ p5x

3 þ p6x
2 þ p7xþ p8 ð11Þ

where x is the value of pixel, and p1 ¼ �4:847� 10�12, p2 ¼ 2:856� 10�9,
p3 ¼ �5:756� 10�7, p4 ¼ 2:668� 10�5, p5 ¼ 0:006586, p6 ¼ �1:101, p7 ¼ 67:91,
p8 ¼ �1532.

4.2 Measurement Time Improvement

One challenge with binocular disparity is its overly long calculation time, which
considerably restrains its application in real-time measurement. The algorithm of the
binocular disparity map mainly calculates the difference of the corresponding points
according to the matching of each pixel in the left and right images, hence, if a more
accurate disparity map is to be obtained, a large amount of time will be consumed in the
disparity calculation of left and right images. For example, during the initial experi-
ment, the disparity calculation time for big-scale images was as long as 5 s, which
certainly did not meet the time requirements for real-time measurements. To solve this
problem, the proposed solution is to reduce the size of the target measurement area as
shown in Fig. 10. The specific method is to take a square area of a certain size around
the target point, and only perform disparity calculation on the pixels of this selected
area. The relationship between the size of the region and the disparity calculation time
by this method, and the relative error at each size is shown in Fig. 11.

From the relationship in Fig. 11, the calculation time is relatively short when the
size of the region is 160 � 160 pixels with a high accuracy, for which the single
running time of the vision system is about 0.2 s. Therefore, in the final calculation
process, in order to maximize the real-time performance, a pixel area of 160 � 160 is
selected.

Target pointOriginal size

ROI:160×160 pixel

ROI:200×200 pixel

Fig. 10. Method of speeding up calcu-
lation time

Fig. 11. Relation between time/error and region
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4.3 Distance Measurement Error

According to the improvement method above, the distance measurement experiment
was conducted. Experiments were conducted on the binocular measurement system,
with a distance ranging from 57 cm to 120 cm. The measurement was recorded 10
times at each actual distance by two binocular disparity models which are linear and
curve fitting. And the error of the experiment was calculated by the following
expression

relative error ¼ error
real depth

ð12Þ

The error analysis chart is shown as follows in Fig. 12.

Because the fitting model has a significantly higher measurement accuracy in the
working area than the linear model. It can be seen from Fig. 12 that the binocular
measurement system meets the required error in the working range well.

5 Experiment

5.1 Visual Servoing Experiment

Binocular is mounted on the center of the end effector and put the mark point at any
position in the camera view. In experiment 1, the visual servoing control of robotic arm
is set to the target point at a fixed distance. The initial distance is set to be 60 cm, then
the robotic arm moves away from the target robotic arm, and finally, it comes back to
60 cm. The experiment 1 configuration is shown in Fig. 13. Experiment 2 is a real-time
tracking of the target object. When the target moves in the view of the camera, the
camera tracks the target and records the pixel coordinates. The experiment 2 config-
uration is shown in Fig. 14.

Fig. 12. Relative average error by real distance
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Based on the two experiments above, a third experiment to detect the object spatial
position is operated. A control signal moving the soft robotic arm is generated so that
the end of the arm points at the target and moves to a fixed distance from the target
object. The experiment configuration is shown in Fig. 15. The target pixel coordinate in
the image is tracked to the middle of the camera view. And the distance information is
measured in real-time to reach the fixed distance in the task. The change of target pixel
and distance are recorded and shown in Fig. 16.

Fig. 13. (a) shows the visual servoing of the robot arm under bending condition to the fixed
distance from the target point and (b) shows the depth change over time in experiment 1.

Fig. 14. (a) shows the real-time tracking of the target object. (b) shows the pixel coordinate
change in the tracking task.
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6 Conclusion

In this work, the binocular vision system can rather accurately control the distance from
the end effector to the target during the motion of the soft robotic arm so that the end-
effector can perform the task within the acceptable error range.

This simple and feasible binocular servoing control method will provide new ideas
and inspirations for solving the difficulties in soft robots controlling and sensing fields.

In the future, the aim is to achieve a more accurate estimation of the end position of
the arm, enabling the motion control to be more precise, and to equip the soft robotic
arms with better capabilities of fulfilling more tasks.
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