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Abstract. Motor skill acquisition and refinement is critical for the robot
to step in human daily lives, which can endow it with the ability of
autonomously performing unfamiliar tasks. However, how does the robot
autonomously fulfill the new motion task with preassigned performance
based on the demonstration task is still a challenge. We in this paper
proposed a novel motor skill acquisition policy to conquer above prob-
lem, which is based on improved local weighted regression (iLWR), pol-
icy improvement with path integral (PI2). Besides, the mixture Gaus-
sian regression (GMR) guided self-reconstruction of basis function and
the search of weight coefficient in the policy expression are performed
alternately in basis function space and weight space to seek the opti-
mal/suboptimal solution. In this way, robot can achieve the gradual
acquisition of movement skills from similar tasks which is related to
the demonstration to unsimilar task with different criterion. At last, the
classical via-points trajectory planning experiment are performed with
SCARA manipulator, NAO humanoid robot to verify that the proposed
method is effective and feasible.

Keywords: Alternate study in two spaces · GMR-PI2 ·
Motor skill acquisition

1 Introduction

It had long been a dream for researchers in the robot communities to endow
the robot with motor skill similar to the man. Recently, robot learning from
demonstration (LfD) together with reinforcement learning (RL) (Argall et al.
2009; Peters and Schaal 2008; Rombokas et al. 2013; Deisenroth et al. 2013) has
attracted significantly increased attention. By means of LfDRL, researchers can
derive a robot controller autonomously merely by back-driving or teleoperating
it. Furthermore, the controller could be self-improved to refine and expand robot
motor capability obtained from demonstration to fulfill the task dissimilar to
demonstration task.
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Usually a parametric policy representation is selected firstly for the LfDRL.
Generally, a dynamic model with flexible adjustment sounds good, for the reason
that it is easy to modulate online and exhibit robustness. DS (Khansari-Zadeh
and Billard 2010; 2011) and DMPs (Ude and Gams 2010; Ijspeert et al. 2013)
models are current popular dynamic model. DS represents motion scheduling in
the form of a nonlinear autonomous dynamic system, which is time-invariance
and global/local asymptotic stable. Whereas, DMPs models the movement plan-
ning as superimposition of a linear dynamic system and a nonlinear term. The
former takes precedence over the latter to guarantee the global convergence at
the end of the motion. Then a flexible method to adjust the model is required,
including radial basis function networks, regularized kernel least-square, locally
weighted regression (Atkeson et al. 1997) and Gaussian process etc.

It is often easier to learn a policy than model a robot with its environment,
hence, model-free policy search methods are more popular than model-based pol-
icy search methods. Some classic model-free policy search methods were proposed
recently, such as Relative Entropy Policy Search (REPS), Covariance Matrix
Adaptation-Evolutionary Strategy (CMA-ES). REPS (Parisi et al. 2015; Peters
et al. 2010) formulates the policy search problem as an optimization problem in
an information theoretic way, meanwhile updates its policy by weighted maxi-
mum likelihood estimates. However, CMA-ES is a black-box optimizer. And it
uses heuristics to estimate the weight and update the distribution, which often
work well in practice but are not founded on a theoretical basis (Gregory et al.
2015).

Aimed to develop a generic method for motor skill learning with good quality
for given motion planning task, this paper proposed a DMPs-iLWR policy which
learning in two space to search target solution and this paper is organized as
follows. Section 2 depicted DMPs-iLWR for policy representation and imitation
learning. Section 3 investigates the policy optimization based on GMR-PI2 from
a viewpoint stochastic optimal control. Section 4 describes reconstruction of basis
function with auto-encoding and deep iteration process. In Sect. 5, we present in
detail the classical benchmark experiment trajectory planning via prior unknown
point(s).

2 DMPS-iLWR Based Robot Motor Skill Learning

Classical DMPs model the robot movement in each degree of freedom (DOF)
as independent transformation system, which is synchronized in time dimension
by a share phase variable. Specifically, it presents a parametric policy in the
representation phase, which comprises the transfer system, canonical system
and function approximation. Those systems are described as following

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ ẍt = αx (βx (g − xt) − ẋt)
︸ ︷︷ ︸
spring−damping.system

+Ψ θ (st) st (g − x0)
︸ ︷︷ ︸

forcing.term

transf.system

τṡt = −αsst canon.system

Ψθ (st) =
∑K

i=1 ψiwi∑K
i=1 ψi

func.approx

(1)
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where τ is the scaling factor for the duration of motion. xt = qref is the reference
trajectory generated by transformation system for one DOF, st is the phase of
the movement generated by canonical system, which decays from 1 to 0 over the
same duration with transformation system. ψi is the Gaussian kernel function
with the variance spaced equally across motion duration.

wi is the weight associated. The goal g is a point attractor and x0 is the start
state. αx, βx, αs are positive constants, by which the spring damping system is
modeled as a 2 order critical damping system. θ is the hyper-parameter for basis
functions. As we can see, DMPs for each transformation system is a single-input
(time) and single-output (joint) (SISO) system. It constructs a time-dependent
control reference rather than traditional state dependent one, which dramatically
simplifies the learning process.

We in this paper propose an DMPs-iLWR policy representation in which we
employ improved Local Weighted Regression (iLWR) to avoid the poor perfor-
mance of traditional LWR in the imitation learning and employ the data-driven
Gaussian Mixture Model to adjust the feature of trajectories adaptively dur-
ing the PI2 learning. It is shown in Eq. (2), which comprises a transformation
system, a canonical system, a gating system and a weighted basis function.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ ẍt = αx (βx (g − xt) − ẋt)
︸ ︷︷ ︸

as

+htB̄st
w̄

︸ ︷︷ ︸
af

transf.system

τ ṡt =
{1/T if t ≤ T

0 otherwise
canon.system

ht = 1
1+eαh(t−τT ) gatin.system

w̄ =
[
w̄1 · · · w̄K w̄K+1 · · · w̄2K

]T weight
B̄st

=
[
γ1st · · · γKst γ1 · · · γK

]
basis.function

(2)

where B̄ is the equivalent basis function, and the form of real basis shows as
following

γ(i) =
exp

(
− 1

2σ2
i
(st − ci)2

)

K∑

j=1

exp
(
− 1

2σ2
j

(st − cj)
2
) (3)

The revised canonical system can guarantee that the phase is proportional
to time in the transient process, and the gating system is used to guarantee the
convergence of forcing term, and the transformation system is the important
controllable part, and we adopt the form dot product between basis function
B̄st

and weight w̄ to approximate forcing term as, and the trajectories can be
adjusted by controlling the weight w̄.

The traditional LWR presents an restrictive effect of imitation learning.
Because the default fitting trajectories must cross the origin of coordinates,
which means if the phase variable is close to zero, so must be the forcing term.
Therefore we revise the controlling term from pattern (y = Ax) to pattern
(y = Ax + B) to avoid this restriction. And the new forcing term can be seen as
Eq. (4).
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f(st) =

K∑

i=1

ψi(st)
[
Ai Bi

]

K∑

i=1

ψi(st)

[
st

1

]

(g − y0) (4)

=
K∑

i=1

γ(i)(Aist + Bi)(g − y0)

Associated with the optimization policy of PI2, we can learn this two parameters
(A and B) simultaneously, which can be seen as the slope and the interception of
the linear function respectively. The number of real basis are set to K, naturally
the equivalent one are twice and the forms of equivalent basis and weight show
as following

B̄(m)
st

=
{

γ(i)st m = i,m ≤ K
γ(i) m = i + K,K < m ≤ 2K

w̄(m) =
{

Ai m = i,m ≤ K
Bi m = i + K,K < m ≤ 2K

Next, LfD can conduct DMPs-iLWR to learn a feasible solution or more in
joint space.

3 Policy Improvement Based on iLWR-PI2

Although DMPs-iLWR can effectively replicate and generalize robot demonstra-
tion movement, it maybe not a optimal/suboptimal policy for the task. Further-
more, it can not autonomously fulfill the motion different from demonstration
one with a high-quality level, such as the task with additional criterion, though
vanilla DMPs-iLWR by which (g − y0) can be adapt to the goal change and scal-
ing law is an orientation-preserving homeomorphism between the original equa-
tions using g−y0 and the scaled differential equation using k (g − y0) (Ijspeert et
al. 2013). So we combine DMPs-iLWR (policy representation) with path integra-
tion (policy improvement) (Theodorou et al. 2010) through stochastic optimal
control to meet the requirement. Specifically, we apply Feynman-Kac theorem
to derive the state value function based on path integral, and then deduce the
optimal control policy. In this way, we solve the Hamilton-Jacobian-Bellman
equation indirectly.

As a reinforcement learning, the cost function shows as the Eq. (5), and we
add the constraint associated with tasks.

S (τi) = φtN
+

N−1∑

j=i

qtj
dt+

1
2

N−1∑

j=i

(w + ε)T
Bstj

BT
stj

BT
stj

R−1Bstj

(
w + εtj

)
+

λ

2

N−1∑

j=i

ln |H|

(5)
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where λ
2

N−1∑

j=i

ln |H| is usually removed given that basis function is fixed. The

optimal time-variant policy with value function Vti
shows as

wti
= −R−1BT

st

(∇zti
Vti

)

=
∫

P (τi)u (τi) dτi,
(6)

where

P (τi) = e
− 1

λ
S(τti)

∫
e
− 1

λ
S(τti)dτi

u (τi) =
R−1Bti

BT
ti

BT
ti

R−1Bti

(w + εti
)

(7)

Specifically, P (τi) is the path depended probability distribution and u (τi) is
local optimal control derived by value function.

In practical engineering, we usually carry out K roll-outs. And for specific
time index i, we gain P (τi,k) similar to softmax function (taking the frequency
as probability), where k is the index of K roll-outs.

In this way, we achieve weighted average of adjustment δwti
= wti

−w across
N time index as equivalent time-invariant policy, which could be expressed as

δw =
∑N−1

i=0 (N − i)Bti
δwti

∑N−1
i=0 (N − i)Bti

(8)

4 Basis Function Auto-Encoding and Alternate Learning
in Two Space

Embodiment feature indicates the intelligence what an agent is capable of (from
low-level sensory-motor activities to high-level cognitive activities) is closely
related to the morphology what the agent is composed of and the way which
agent interact with the environment (Pfeifer and Bongard 2006). Therefore, basis
function in the policy representation plays an decisive role in determining the
feasible coverage of the robot’s kinematic intelligent capability. When the robot
faces new task which is different from demonstration (for example with addi-
tional performance criterion), the new task is less correlative to the experience
obtained from demonstration task. In other words, there exists the relative large
gap between the experimental basis function from demonstration task and appro-
priate one for new task. As for new task the minimal return in finite horizon
from experimental basis function is ordinarily large than that with appropriate
one. We specially draw the Fig. 1 to facilitate the comprehending. Basis function
B1 is obtained from demonstration task and blue elliptical region is the projec-
tion from space spanned by basis function B1 to feature/measure space. And
the location of optimal approximation which associate the optimal weight with
basis B1 indicates the distance L3 is relative large. We assume basis function
B3 is appropriate basis for the new task and red elliptical region is associated
projection. As seen, there are no overlap between two projection regions. That
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overlap region A1 

overlap region A2 

space spanned 
by basis B1

space spanned 
by basis B2

space spanned 
by basis B3

feature1 axis 

feature2 axis 

optimal/suboptimal point

optimal 
approximation

Fig. 1. Diagrammatic sketch of idea for RBAE (Color figure online)

means no correlation between two tasks which is one of the difficulties for the
robot skill learning and autonomous skill acquisition.

Since it is unrealistic for the robot to preset the appropriate basis func-
tion such as B3 prior to the new task arising in the unstructured scenarios,
it is necessary to endow the robot with the capability of gradual learning and
skill acquisition. In other words, we can design a sequence of projection zone
overlapped each other to join the demonstration task and new task, as yellow
elliptical region works shown in Fig. 1. By means of the correlation (overlap)
between anteroposterior projection zone in which robot evolving along with, for
example form blue zone via yellow zone to red zone shown in Fig. 1, autonomous
specific skill improvement could be achieved.

We put forward the alternate learning in two spaces based on above analysis
to conduct motion skill acquisition from demonstration to new task. Specifi-
cally, reinforcement learning in weight space will gradually drive the candidate
elites from blue zone B1 into the overlap region A1 by means of the distance
(reward) in feature space. By means of the presentation learning on the data
generated from candidate elites, the algorithms can automatically generate the
new basis and zone B3 in which the better performance capability is available.
In this way, robot can eventually approach the optimal/suboptimal point for
the specific new skill by repeating the procedure. So we propose the improved
LWR and PI2 learning in two space to overcome the above challenge. Its main
flow is 1© → 2©→ 3©→ 4©→ 5© → 6©→ 4©→ 5©→ 6©· · · shown in Fig. 2. Policy rep-
resentation (iLWR) for motor skill is firstly constructed based on the principle
of maximum entropy. In other words, alike Gaussian functions ψi with identical
variances are evenly assigned along the phase duration, which can provide the
policy the most flexible for learning unknown motion given that the number
of basis function is fixed. ( 1©). Then LfD is conducted to seek the appropriate
weight to replicate the demonstration( 2©). Next, for new task (with different per-
formance criterion), we apply RL(iLWR-PI2) to search the suitable weight until
the cost doesn’t decrease apparently any more ( 3© 4©). Usually, the best trajec-
tories so far imply the feature of new task. So K-means++ is applied to cluster
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classification on the data generated by those candidate elites. Then EM-GMM
is adopted to estimates the appropriate parameters μk and Σk for respective
Gaussian distribution component. Next, these parameters will be assign to ψi

and r(m) to construct the new basis function B̄st
. In a sense, more appropriate

basis functions are constructed adaptively based on data-driven according to the
character of targeted task. Also, LfD is performed to seek weights to replicate
the best trajectories so far with a posterior maximization.( 5©). Based on them,
we again apply DL(iLWR-PI2) to search the best approximation in the new
space( 6©). This procedure repeat again and again ( 4©→ 5©→ 6©) until a satisfied
trajectory is obtained.

Fig. 2. Algorithm flow for RBAE

5 Simulation Experiment

In this part, we employ NAO robot shown in Fig. 3(a) to verify the effectiveness
of the proposed method. This robot is the first humanoid robot of the Aldebaran
Robotics company. And it is an interactive companion robot. There are twenty-
five joints on the NAO robot. But this experiment only involves five revolute
joints with the right arm of NAO: RShulderRoll, RShouderPitch, RElbowRoll,
RElbowYaw and RWristYaw.

In this experiment, we fix RShouderPitch and RWristYaw at 0 degree. Expe-
riences are depicted as following. Firstly, man drag the right hand of NAO from
starting point to the end point. And at the same time we read the data of three
joint angles every 0.05 s. There are 100 sets of data used as the original trajectory.
Then we randomly put a small landmark in the domain, which the arm can reach
(excluding the start point and the end point). So the arm is supposed to move
passing through this via-point (for example strike) from previous start point to
end point with the same duration. In addition, the cost which is described in
Eq. (9) are met.

In the experiment, we set the start point with (112.62, 62.56, −15.53) in
the operation space, which is corresponding to (0.0705, −0.8054, 1.1137) in the
joint space. And the coordinates of terminal point is (118.03, 30.59, 214.26)
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(a) the experiment platform (b) the position of base frame

Fig. 3. The position of base frame and joints

corresponding to (−0.15, 0.70, 1.46) in the joint space. We choose randomly
a point (157.46, 122.69, 78.30) as via point. In the joint space, this via point
is with corresponding several groups of joint angle. We choose irregularly and
randomly the data (0.03, 0.15, 1.04) in multi group data as the value of via point
in the joint space. A clear contrast between our proposed iLWR-PI2 and classical
LWR-PI2 will be illustrated later.

We now proceeded to test the performance of iLWR-PI2 and LWR-PI2. Detail
results are listed in Table 1. The cost function is in the form of

S = 0.5
3∑

j=1

N−1∑

i=1

[

103
(
ẍ(j)(i)

)2

+
(
a
(j)
f (i)

)2
]

+
3∑

j=1

1010
[(

x(j)(m) − x(j)
v

)2
]

+
3∑

j=1

103
[(

ẋ(j) (N)
)2

+
(
x(j) (N) − x(j)

g

)2
] (9)

Where i indicates the time index from 1 to N , j indicates the joint index
from 1 to 3. Besides, x

(j)
g denotes the expected position of point j when the task

ends. When the time index equals m, x(j)(m) is the position of joint j which is
corresponding to the expected via-point x

(j)
v of the joint j. Apparently, ẍ(j) is

an arbitary state-dependent cost value, a
(j)
f (i) is the acceleration (forcing term)

relevant to joint j at the time index i. ẋ(j) (N) is the velocity of joint when time
index is N .

According to the result, the proposed iLWR-PI2 methods execute better
than original LWR-PI2. As for Table 1, we run fifteen times under the same
condition. Shown in Table 1 the cost generated by iLWR-PI2 are remarkably
smaller than that of LWR-PI2, which the overall weighted evaluation include
energy consuming, via point and terminal status etc. It indicates that iLWR-PI2

outperform LWR-PI2.
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Table 1. The final costs when algorithm stop

Times Cost1 (LWR-PI2) Cost2 (iLWR-PI2)

1st 1.39E+08 2.24E+07

2nd 1.58E+08 2.21E+07

3rd 1.32E+08 2.88E+07

4th 2.00E+08 2.25E+07

5th 2.06E+08 1.74E+07

6th 1.68E+08 1.96E+07

7th 2.03E+08 1.87E+07

8th 2.40E+08 2.03E+07

9th 1.24E+08 2.68E+07

10th 1.79E+08 1.72E+07

Mean 1.75E+08 2.16E+07

Fig. 4. The red curve shows the cost caused by iLWR-PI2, The blue curve shows the
cost caused by LWR-PI2(Color figure online)

(a) the origin track (b) the track of iLWR-PI2 (c) the track of LWR-PI2

Fig. 5. The track on the platform
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(b) the curve of LWR-PI2 through via-
point

Fig. 6. The curve of iLWR-PI2 and LWR-PI2 through via-point in the joint space

Besides, we compare the learning rate between two methods. As shown in
Fig. 4, quicker coverage speed of iLWR-PI2 is manifest.

And Fig. 6 shows the results of iLWR-PI2 and LWR-PI2 through via-point in
the joint space. They both have excellent results when they pass the via-point.
But clearly, the curve of iLWR-PI2 shown in the Fig. 6(a) is more smooth than
LWR-PI2. The origin track is shown in Fig. 5(a). The actual track of iLWR-PI2

and LWR-PI2 on the robot is displayed in Fig. 5(b) and 5(c). Compared that
with Fig. 5(b), the track of iLWR-PI2 and LWR-PI2 can go through the via-
point. So they all have certain learning abilities. Besides, we can get that the
trajectories of iLWR-PI2 shown in the left figure of Fig. 5 is smoother than LWR-
PI2. And the impact to mark of trajectory generated by iLWR-PI2 is stronger,
which indicates that the precision of iLWR-PI2 is higher.

6 Conclusion

Recently motor skill acquisition has been received strong attention to, and it
is also the highlight for robot learning. However associative dilemma, broad
learning and targeted improvement for robot, has still been a challenge. In this
paper, we propose a novel GMR-PI2 motor skill learning based on RBAE to
overcome the dilemma throughout the all phases of LfDRL. GMR-PI2 comprise
two parts: DMPs-GMR for LfD, GMR-PI2 for RL. Besides, affiliated RBAE can
extract features discovered so far and perform target-oriented exploration with
the basis function generated from previous RBAE. After this process iteratively
to a certain depth, robot can obtain the capability to fulfilling unfamiliar task
with an optimal/suboptimal criterion.

The most important and prominent part of our work is that we propose
general RBAE framework and associated algorithms. Specially, we applied the
auto-encoding method into GMR-PI2, and this promotes the optimization more
accurately. There are a few interesting future research directions along this topic.
Firstly, how to seek the optimal hyper-parameters such as the noise and num-
ber of updating the parameters for PI2 need to study, since it is somewhat
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time-consuming to set them suitably. Secondly, we only make uses of the latest
information (best trajectories so far) in the algorithms, it is intuitive to allocate
and integrate the old/new information which may make the robot more flexible.
Thirdly, there are many set of basis functions generated by RBAE which are
the features in different proficiency scale. How to utilized them in parallel is a
promising research direction.
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