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Abstract. Learning from demonstration with the reinforcement learn-
ing (LfDRL) framework has been successfully applied to acquire the skill
of robot movement. However, the optimization process of LfDRL usually
converges slowly on the condition that new task is considerable different
from imitation task. We in this paper proposes a ProMPs-Bayesian-PI2

algorithms to expedite the transfer process. The main ideas is adding
new heuristic information to guide optimization search other than ran-
dom search from the stats of imitation learning. Specifically, we use the
result of Bayesian estimation as the heuristic information to guide the
PI2 when it random search. Finally, we verify this method by UR5 and
compare it with the traditional method of ProMPs-PI2. The experimen-
tal results show that this method is feasible and effective.

Keywords: Motion planning · Path integral · Bayesian estimation ·
Probabilistic movement primitives

1 Introduction

Researchers in the robot have been desiring to make the robot behave like human.
Learning from demonstration (LfD) (Schaarschmidt et al. 2018; Havoutis and
Calinon 2018) can make robot learn the similar skills as the demonstration
action. But it is impossible to learn more complex and dissimilar to demonstra-
tion task. So recently, robot learning from demonstration together with reinforce-
ment learning (RL) has attracted significantly increased attention. By means of
LfDRL, researchers can autonomously derive a robot controller from merely
observing a human’s own performance. Furthermore, the controller could be
self-improved ro refine and expand robot motor capability obtained from demon-
stration to meet with task requirement depicted as a functional criterion. Those
advantages indicate that LfDRL might been the promising paradigm to bring
the above dream closer to reality.

Usually, LfDRL is built throughout three-phase paradigm sequentially: rep-
resentation phase, imitation phase and optimization phase. A parametric policy
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representation is selected on the first phase. Generally, a dynamic model with
flexible adjustment sounds good, for the reason that it is easy to modulate online
and exhibit robustness. DS (Khoramshahi and Billard 2019; Salehian et al. 2017)
and DMPs (Pervez and Lee 2018; Yang et al. 2018) models are current popu-
lar dynamic model. DS represent motion scheduling in the form if a nonlinear
autonomous dynamic system, which is time-invariance and global/local asym-
potic stable. Whereas, DMPs models the movement planning as superimposition
of a linear dynamic system and a nonlinear term. And there is time-based model
like probabilistic movement primitives (ProMPs) (Paraschos et al. 2018; Kroe-
mer et al. 2018). During the imitation phase, the flexible adjustment of model
will learn suitable parameters according to the data from demonstration. Various
methods including radial basis function networks, regularized kernel least-square,
locally weighted regression (Sigaud et al. 2011) and Gaussian process (Deisen-
roth et al. 2015; Ben Amor et al. 2014) etc. were proposed to present flexible
adjustment.

On the optimization stage, the policy parameters learned from the second
phase will be constantly adjusted, chosen and updated with respect to a utility
function with reinforcement learning until reach the target task.

Although there are many successful achievements int the LfDRL community,
many if the existing studies lay emphasis on the innovation in one phase. In our
previous research results in Fu et al. (2015a, b), we have developed an effective
policy representation which combines a 2nd order critical damping system and a
forcing term in the form of Gaussian Mixture Regression (GMR). In previous we
proposed a method named PI2-GMR for motor skill learning, with which robot
could be board applicable for various task and of good quality for given task
simultaneously.

This main contribution of this paper is introduction of a method to learning
complex task faster. On the basis of previous research we propose a method
named Bayesian-PI2 for the moment, which can improve the efficiency of rein-
forcement learning on the third stage of LfDRL. Traditional PI2 can explore all
space of parameter, so it has lower efficiency for our task scenario. The Bayesian-
PI2 can narrow the search space of parameter, and we can call this method a
heuristic search.

The paper is organized as follow. Section 2 depicted ProMPs for policy repre-
sentation and imitation learning. In Sect. 3, we can introduce briefly traditional
PI2. At the same time introduce the ProMPs-PI2. Then the heuristic process
of Bayesian estimation for parameter search is introduced in detail in Sect. 4.
And we can discussed the method of Bayesian-PI2 in combination with imita-
tion learning. In Sect. 5, we present in detail the classical benchmark experiment
trajectory planning via prior unknown point(s) using the theory of this article. In
addition, detailed experimental settings and results are presented and analyzed.
Finally, conclusions are given in Sect. 6.
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2 Probabilistic Movement Primitives

In the first stage of LfDRL, we use probabilistic movement primitives as paramet-
ric policy representation. This is a method based on probability, so this method
is data-drived. This section we could introduce basic concepts of ProMPs.

ProMPs represent a distribution over trajectory that are correlated spatially
and temporally. For a single DOF, mark the current position of the joint with
a symbol qt. Thus, we denote yt = qt as state of joint at time step t, and a
trajectory of length T as a sequence y1:T . Assuming a smooth trajectory, it can
be achieved by linear regression on N Gaussian basis functions, here denoted as
ψ. Thus,

yt = qt = ψT
t ω + εt (1)

and,
p(yt|ω) = N (yt|ψT

t ω, Σt) (2)

where ψt is a time dependent basis matrix and εt ∼ N (0, Σt). The probability
of observing the whole trajectory is then

p(y1:T |ω) =
T∏

1

N (yt|ψT
t ω, Σt) (3)

In order to decouple movement from time, a phase variable is introduced to
replace the time in the Eq. (2). For simplicity, in this article we will assume the
phase of the model os identical to the timing of the demonstration such that
zt = t and ψzt

= ψt.
For probabilistic models, a large amount of data is needed to learn the

parameters. So assume M trajectories are obtained via demonstrations. we can
obtain a set of parameter of each trajectory denoted ωm, and there is sign
W = {ω1, · · · , ωm, · · · , ωM}. Define a learning parameter θ to govern the distri-
bution of ωm such that ω ∼ p(ω;θ). A distribution of trajectory is obtained by
integrating out ω,

p(y1:T ;θ) =
∫

p(y1:T |ω)p(ω;θ)dω (4)

In ProMPs, the relationship between parameters is shown in the Fig. 1.
we model p(ω) as a Gaussian with mean μ ∈ R

N and covariance Σ ∈ R
N×N ,

that is θ = {μ,Σ}, computed from the training set W . The fidelity with which
the distribution of trajectories in Eq. (4) captures the true nature of a task clearly
depends on how θ controls the distribution of weights.

Fig. 1. Relationship between parameters of ProMPs
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3 Path Integral

Although imitation learning can effectively replicate and generalize robot demon-
stration movement, it maybe not a optimal/suboptimal policy for the task. Fur-
thermore, it can not autonomously fulfill the motion different from demonstra-
tion criterion. So we combine imitation learning (policy representation) with
path integration (policy improvement) (Theodorou et al. 2010) through stochas-
tic optimal control to meet the requirement. Specifically, we apply Feynman-
Kac theorem to derive the state value function based on path integral, and then
deduce the optimal control policy. In this way, we solve the Hamilton-Jacobian-
Ballman (HJB) equation indirectly.

In Sect. 2, we use the method of ProMPs to parameterize the trajectory of
robot joint. The ω in Eq. (2) is the parameter representation of trajectory. we
can use parameter ω to repeat the demonstration. In this section, we will use
a reinforcement learning called Policy Improvement with Path Integrals(PI2) to
make robot obtain skill of complex task like via point(s).

Multiple paths of variation τi can be generated by adding random perturba-
tion to the weights(ω), and the optimal control quantity of system is the form
of weighted average of the path shown as Eq. (5).

uti
= −R−1BT

sti

(∇xti
Vti

)

=
∫

P (τi) uL (τi) dτi
(5)

where P (τi) is a softmax function maping the cost S(τi) of ith trajectory to the
interval [0,1] shown as Eq. (6), and there is the higher the cost, the lower the
probability which can ensure that PI2 converges to the lower cost. And uL(τi)
means the local control based on variation path, the form can be seen as Eq. (7).

P (τi) =
e− 1

λ S(τti)
∫

e− 1
λ S(τti)dτi

(6)

uL (τi) =
R−1Bsti

BT
sti

BT
sti

R−1Bsti

(ω + εti
) (7)

The most important part for the customized task is the cost function in
applying PI2 which limits the convergence direction of algorithm, the form shows
as following:

S (τi , k) = φtN ,k+
N−1∑
j=i

qtj
dt +

1
2

N−1∑
j=i

(
ω + Mtj ,kεtj ,k

)T
R

(
ω + Mtj ,kεtj ,k

) (8)

where φtN ,k means the terminal reward, qtj
are a state-dependent variable that

the acceleration squared is used in this paper, and bmMtj ,k is a projection matrix



360 J. Fu et al.

Algorithm 1. The pseudocode of ProMPs-PI2
1: initialization parameter
2: ProMPs represent movement of joint, result denoted as ω
3: repeat
4: - create K roll-outs from start state ω using stochastic parameters
5: - using equation (6) (8) (9) (11) (12) to calculate new parameters denoted ωnew

6: - update parameters, ω = ωnew

7: - if rate of change of cost is less than the set value, break
8: until rate of change of cost is less than the set value
9: calculate the final trajectory by using ProMPs

that can be seen as following:

Mtj ,k =
R−1Bsti

BT
sti

BT
sti

R−1Bsti

(9)

Combining the actual task, the cost of end point present,

φtN
= K1

tN∑

i=tN′

ẏ2 + K2

tN∑

i=tN′

(y − ygoal)2 (10)

where the y and ẏ are the position and velocity respectively. The cost consists
of two part, one can ensure the velocity decay to zero in a very short time which
is from tN ′ to tN , other make sure that the joint can reach the desired position.
K1 and K2 are constants which can be adjusted based on the demand.

In order to via point, we add the three part to cost function.

Rviapoint = K
N∑

i=1

(
yi,tj

− y∗
i,tj

)2

(11)

where the yi,tj
and y∗

i,tj
are the joint current position and desire position respec-

tively. So, we can get the goal parameter which can achieve via point task.

δωti
=

K∑

k=1

[P (τi,k) Mti,kεti,k] (12)

ωnew = ωold +
∑N−1

i=0 (N − i)wti
δωti∑N−1

i=0 wti
(N − i)

(13)

The way of via point by using ProMPs-PI2 is shown as the Algorithm 1.
When using the method of ProMPs-PI2 to make the robot get new skills, we

should use Eq. (14) to generate K roll-outs that is shown the line 4 in Algorithm1.

ωk = ω + εk, k = 1 · · · K (14)

where ω ∈ R
N , and N is the number of basis. And, εk ∈ R

N is the random. εi
k

that is the ith component obeys the Gaussian that mean is 0 and the variance
is proportional to the order of magnitude of the data.
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Algorithm 2. The pseudocode of ProMPs-Bayesian-PI2
1: initialization parameter
2: ProMPs represent movement of joint, result denoted as ω
3: repeat
4: - use equation (15) of Bayesian to complete task, result denoted as ω+

5: - calculate the direction of perturbation, η = sign(ω+ − ω)
6: - create K roll-outs from start state ω using heuristic stochastic parameters
7: - using equation (6) (8) (9) (11) (12) to calculate new parameters denoted ωnew

8: - update parameters, ω = ωnew

9: - if rate of change of cost is less than the set value ,break
10: until rate of change of cost is less than the set value
11: calculate the final trajectory by using ProMPs

4 ProMPs-Bayesian-PI2

Random perturbation will be added to the original PI2 in parameter optimiza-
tion. In other word, original PI2 could search the whole parameter space. So,
The efficiency of using traditional PI2 to complete task of via point is relatively
lower. In this section, we introduce a method of PI2 combining the Bayesian
estimate to compete the task such that via points faster.

Similar to Sect. 3, we assume the current position of joint at time t is yt,
desired position is y∗

t . Based on ProMPs, we can represent the trajectory as
θ = {μω,Σω}. On the basis of this assumption, we could use Eq. (15) to update
the trajectory of via point.

μ+
ω = μω + K(y∗

t − HT
t μω )

Σ+
ω = Σω − K(HT

t Σω )
K = Σω Ht(Σ∗

y + HT
t Σω Ht)−1

(15)

where Ht = ψt, and the parameter K is called Kalman gain in the algorithm of
Kalman filter.

The parameter θ+ = {μ+
ω ,Σ+

ω } generate trajectory which could via point.
This method complete task of via point very fast, because it only needs to be
calculated once. But this trajectory isn’t smooth, especially near the time t. Too
much acceleration is fatal to the joint damage of robots.

In order to make better use of the advantages of Bayesian estimate and PI2,
we can use the results of Bayesian estimate to inspire the parameter search of PI2.
Let’s call this method Bayesian-PI2. To be specific, using Bayesian estimation
complete the task quickly. Then which is the result of Bayesian estimation can
provide a direction for the PI2 search. It can avoid PI2 explore in the whole
parameter space. At the same time, in order to ensure the effect of PI2, we could
inspire the primary weights of the related task.

Compare the pseudocode in Algorithms 1 and 2, the method proposed in
this paper adds heuristic search for PI2 by result target of Bayesian estimate as
shown the line 4–6 in the Algorithm2. The method of heuristic search generate
K roll-outs shown in the Eq. (16).
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ωk = ω + η′T · εk, k = 1 · · · K
η′ = [1,ηi:i′ ,1]

(16)

where the η′ ∈ R
N and the N is the number of basis. Here we recombine the

heuristic factory η′ that the part of ηi:i′ is the [ηi · · · ηi′ ] and others are the scalar
1. The position of i in the η and η′ is the same and the option of parameters
of i and i′ is related with task. Such as the task of via point in this article, we
can select the position of the basis with the largest influence for via-point and
its left and right five. The εi,i′ is the positive random and others is the random
which obey Gaussian.

As shown in the Algorithm 2 and the Eq. (16), the parameter η′ has been
added into heuristic information when PI2 random search by using the result of
Bayesian estimation. It can improve learning speed and ability of PI2. The use
of this method is described in more detail in the next section.

5 Simulation and Experiments

In this section, we would verify the method of preceding part of the text. At
the same time, we would also explain the application scenarios of the theory.
In the first experiment we verified the validity and rapidity of the algorithm
with actual UR5 robot. Later, more complex tasks will be performed using a
simulation robot on the V-REP platform by using Bayesian-PI2.

5.1 Simple Task with Actual UR5

The UR5 is a collaborative robot with six degrees of freedom a repetition accu-
racy of 0.03 mm. So we can ignore the error of the robot itself in the experiment.

As shown int the table 2, using ProMPs represents the movement of the robot
joint firstly. So based on the theory, we do several demonstration actions and
record data of joints’ trajectory for the same task. When we say the same task,
we mean the same starting point and ending point and the general trend of the
trajectory is the same.

In the experiment, we use 31 basis function and evenly distribute over the
timeline to fit the trajectory.

Then we randomly put a small landmark in the domain, which the robot
can reach (excluding the point of demonstrations trajectories). So the robot
is supposed to move passing through this via-point (for example strike) from
previous start point to end point with the same duration.

We now proceeded to test the performance of traditional PI2 and Bayesian
PI2. Detail results are shown in Fig. 2. The cost function is in the form of
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0.5
6∑

j=1

N−1∑

i=1

[
103

(
ẍ(j)(i)

)2

+
(
a
(j)
f (i)

)2
]
+

6∑

j=1

1010
[(

x(j)(m)−x(j)
v

)2
]

+
6∑

j=1

103
[(

ẋ(j) (N)
)2

+
(
x(j) (N) − x(j)

g

)2
] (17)

where i indicates the time index from 1 to N , j indicates the joint index from
1 to 3. Besides, x

(j)
g denotes the expected position of point j when the task

ends. When the time index equals m, x(j)(m) is the position of joint j which is
corresponding to the expected via-point x

(j)
v of the joint j. Apparently, ẍ(j) is an

arbitrary state-dependent cost value, a
(j)
f (i) is the acceleration (forcing term)

relevant to joint j at the time index i. ẋ(j) (N) is the velocity of joint when time
index is N .
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Fig. 2. The curve of Bayesian-PI2 and tradition PI2 through via-point in the joint
space, Left: Bayesian-PI2, Right: tradition PI2, and the red mark(*) is the via point
which is set artificial randomization in the joint space (Color figure online)

In this experiment, we set a point which position of joint space is (0.8,-
1.14,1.2,-1.0,-0.18,-0.02) and make robot via point at time 1.5s. According to the
result as shown in Fig. 2, the traditional PI2 and Bayesian PI2 both complete the
task of via point with high accuracy. It can explain that the method mentioned
in this paper is effective. But in terms of the rate of convergence of cost, as shown
in Fig. 3, Bayesian PI2 has fewer iterations than the methods of traditional PI2.

On the other hand, we use the same number of iterations to compare the
results of two methods. The results are shown in the Fig. 4.

As shown in Fig. 4, dash line is the mean trajectory of multiple demonstra-
tion. Dash-dot line and solid line are the curve of traditional PI2 and Bayesian
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Fig. 3. Compare cost of traditional PI2 and Bayesian PI2
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Fig. 4. Compare the trajectory in space of joint when traditional PI2 and Bayesian
PI2 both have the same number of iterations

PI2, respectively. In the experiment, we use the UR5 to verify proposed method
and the result is shown as Fig. 5.

In this experiment, the result indicate the Bayesian PI2 of this paper is
effective and converges faster than traditional PI2.

5.2 Complex Task on V-REP Platform

As shown in Fig. 6(a), we set two points in the joint space which
the position in the space of joint are (0.8,1.9,1.2,−1.0,−0.18,−0.22) and
(0.55,−1.5,1.34,−0.62,−0.7,0.16) denoted as the mark (*) and (+) respectively.
In Fig. 6(b), the mark of red and blue are point set int the Cartesian space which
calculate by forward kinematics. Using the method of Bayesian-PI2 make the end
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(a) the original trajec-
tory

(b) the trajectory of
Bayesian PI2

(c) the trajectory of
traditional PI2

Fig. 5. The actual with UR5, tradition PI2 and Bayesian-PI2 both pass the point

of robot via two point at time 1s and 2s, respectively. The result indicates the
method has the ability to perform more complex tasks.

Similar to the experiment in the Sect. 5.1, we compare the method tradition
PI2 when make robot via two point. The result is shown as Fig. 7. In the Fig. 7(a),
the way of traditional PI2 can’t via points accurately. But the method that this
paper proposed can via points we set randomly. The result shows the method
of Bayesian PI2 has the better performance for complex task such that via two
points. As shown in Fig. 7(b), the rate of convergence of Bayesian PI2 is faster
than traditional PI2 similarly.
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Fig. 6. Via two points by using the method of Bayesian-PI2 (Color figure online)



366 J. Fu et al.

Time(s)
0 2 4

P
os

(r
ad

)
0

1

2

Time(s)
0 2 4

P
os

(r
ad

)

-4

-2

0

Time(s)
0 2 4

P
os

(r
ad

)

0

1

2

Time(s)
0 2 4

P
os

(r
ad

)

-2

-1

0

Time(s)
0 2 4

P
os

(r
ad

)

-1

0

1

Time(s)
0 2 4

P
os

(r
ad

)

-0.2

0

0.2

(a) the curve of via two point by using
tradition PI2
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Fig. 7. The result of tradition PI2 and compare the cost with Bayesian PI2

6 Conclusions

This paper present an methods which can make the robot obtain new skills faster
on the policy improved stage. The results of Bayesian estimation can provide a
heuristic to the search parameters. The search space of policy improved can
be reduced by the posterior space of Bayesian estimation. So it can speed up
optimization.

At the same time, the article verify the method of Bayesian-PI2 with UR5.
As shown in the experiment, it not only complete task but also does converge
faster and for the complex task this method has the better performance. Our
method is effective for a class of tasks that can predict results such that motion
planning of via point(s). In the future, the path planning method with better
generalization ability can be explored.
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