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Abstract. Dynamic modeling and analysis of human lower limb motion is
necessary in many fields like medical, robotics and energy supplying of wear-
able device. As it is complex to model the human lower limb motions, a sim-
plified plant model of human lower limb was established in this paper to explore
the properties in walking motion. To present the position relation of each joints
in the plant model, kinematic methods such as Denavit-Hartenberg notion and
Roberson-Wittenburg algorithm were used. In addition, dynamic methods like
Newton Euler, Lagrange equation and Kane equation were also applied to
characterize the plant model. Simultaneously, the applicability of these methods
was illustrated and compared. Furthermore, an experiment was conducted on a
treadmill at a speed of 5 km/h to evaluate the validity of plant model. The
Simulink model results were compared with the experiment results, which
demonstrated the robustness and accuracy of the plant model.
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1 Introduction

Modeling and analysis of human walking motion is essential in human health moni-
toring, medical diagnoses, design of prostheses and orthoses, humanoid robot, and
energy supply to wearable devices [1–3]. Therefore, lots of efforts have been devoted to
model and analysis in human walking. The walking motion requiring interaction
among joints of the body, especially the hip and knee in the lower limb [4]. Therefore,
the development of an appropriate human lower limb model is highly desired.

Many human lower limb models have been developed these years, such as inverted
pendulum model, multiple-mass inverted pendulum model, and multi-segment-rigid
body model [5, 6]. In inverted pendulum model, the body mass concentrates at one
point (center of gravity), and the massless leg acts as the supporting rod. It’s simple but
is unable to generate natural and realistic human motion. Multiple-mass inverted
pendulum model is more stable as it considered the dynamic effect of the swing leg [7].
Multi-rigid-body model shares appropriate fidelity which can produce kinematic out-
puts similar to natural gait [8].

The human lower limb model needs to be described by some equations to represent
its moving characteristics. Generally, the equations are obtained by kinematics and
dynamics. The Kinematic representations of many open-loop robotic applications are
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commonly based on the Denavit-Hartenberg (D-H) notion [9]. Qiu used D-H notation
to calculate the position of knee and hip when the limb at the stand phase [10].
Roberson-Wittenburg (R-S) algorithm utilize the system graph theory to replace the
connection of multi-rigid-body system structure [11].

As for dynamic characters analysis, there are different dynamic modeling methods
to calculate the forces and moments of each joint during gait. To solve the dynamic
parameters at the joint, Newton-Euler equation is applied to establish the human lower
limb dynamic equations [12]. Pejhan et al. applied classical Lagrange dynamic equa-
tions to build the model of human lower limb for optimizing an above-knee prosthesis
based on the kinematics of gait [13]. As Kane equation is ideally suited for the analysis
of multi-body system dynamics, Mu used Kane equation in the impact prediction of
human motion [14]. Nasir applied Kane equation to model the motion of human lower
limb [15].

Both the kinematic and dynamic modeling methods have been widely used in
human lower limb motion. However, the previous studies lack distinct comparison
among these methods. This paper aims to find an applicable dynamic modeling method
toward human lower limb to describe the moving characteristics during human’s
walking.

The rest of this paper is organized as follows. In Sect. 2, human lower limbs are
simplified as a plant model which moves in the two-dimensional sagittal plane. In
Sect. 3, the kinematic analysis methods are illustrated to establish relationships of
human lower limb joints. Dynamic methods are displayed to exhibit the dynamic
characteristics of joints. In addition, a comparison among the methods was also made.
In Sect. 4, the experimental data of an adult man walking at 5 km/h are analyzed and
the comparison between the torques calculated by the Lagrange equation and the
simulation results is also discussed. The conclusion is drawn in the final section.

2 Plant Model of Human Lower Limb

Lower limb motion produce the walking of human. As the three joints of hip, knee and
ankle play an important role in human lower limb motion, hip and knee mainly stretch
and flex the thigh and shank, which acute the whole body to move. Considering the
ankle presents no obvious influence in forward motion as it rotates by a slight angle,
rotation of the ankle can be ignored. The swing leg can then be simplified as two rigid
links, and the stance leg is simplified as a rigid rod fixed to the ground. Therefore, the
structure of human lower limbs are reduced to planar rigid body model as shown in
Fig. 1.

In the model, H, K and A respectively represent the hip, knee and ankle of swing
leg, T and S are respectively the centers of mass of swing thigh and shank. L represents
the centers of mass of stance leg. The stance foot is taken as the origin of coordinate. p1
is the distance from origin to mass center of the stance foot, p2 is the distance from hip
to mass center of swing thigh, p3 is the distance between mass center of swing shank
and knee. l1 is the length of stance leg, l2 and l3 are the length of thigh and shank of
swing leg, h1 is the angle from Y axis to stance leg, h2 is the angle from Y axis to thigh,
h3 is the angle from Y axis to shank.
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3 Analysis Methods of the Plant Model

3.1 Kinematic Analysis Method

Denavit-Hartenberg Notion. D-H method fixes a coordinate in each link, and then
the homogeneous transformation matrix is applied to describe the space relation
between two adjacent links. Based on the plant model, D-H parameters of the plant
model are established as Table 1.

Based on Table 1, the homogeneous transformation matrix is calculated as follows,

Ti;iþ 1 ¼
coshi �sinhicosai sinhisinai aicoshi
sinhi coshicosai �coshisinai aisinhi
0 sinai cosai di
0 0 0 1

2
664

3
775 ð1Þ

The kinematic equations can be derived based on the transformation matrix to obtain
the position of knee and hip. The D-H method describes the position changes of each
link in the plant model, which is comprehensible and convenient. In some closed-loop
or tree structures, the transmission shaft may exceed one and results in the ambiguous
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Fig. 1. A plant model of human lower limb

Table 1. D-H parameters

i ai/rad ai/m hi/rad di/m

1 0 0.885 h1 0
2 0 0.505 h2 0
3 0 0.38 h3 0
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relationship. Fortunately, modified D-H has developed and compensated this shortage
[16]. For the human lower limb model, D-H is enough and concise.

Roberson-Wittenburg Algorithm. The structure and path relationship of the system
are described by the incidence matrix and path matrix in graph theory. A pair of
adjacent rigid bodies of each hinge is taken as the independent unit, one rigid body act
as the reference, and the generalized coordinates of the hinge express the other rigid
body. The generalized coordinate is usually the hinge displacement between adjacent
rigid bodies, so that the position of the open loop system can be determined through the
generalized coordinate matrix of all the hinges. In the plant model of human lower
limb, the incidence matrix and path matrix can be shown as follow,

S ¼
�1 1 1
0 �1 1
0 0 �1

2
4

3
5 T ¼

�1 �1 �1
0 �1 �1
0 0 �1

2
4

3
5 ð2Þ

Based on the theorem of motion of mass center and theorem of momentum, the
dynamic equations can be established.

3.2 Dynamic Analysis Method

Newton Euler Equation. As a classical mechanics method, Newton Euler method
simplifies human body as rigid links. The plane motion of a body is decomposed as
translation from a point and rotation around a point. Newton Euler equation of thigh
and shank can be written as follow respectively,

~f1 �~f2 þm1g ¼ m1p1€h1

M1 ¼ I1€h1 þ _h1 � I1 _h1

8<
: ) I1€h1 þ _h1 � I1 _h1 ¼ Mh �~f1 � p1 þ~f2 � ðl1 � p1Þ ð3Þ

~f2 �~f3 þm2g ¼ m2p2€h2

M2 ¼ I2€h2 þ _h2 � I2 _h2

8<
: ) I2€h2 þ _h2 � I2 _h2 ¼ Mh �Mk �~f2 � p2 þ~f3 � ðl2 � p2Þ

ð4Þ

m3gþ~f3 ¼ m3p3€h3

M3 ¼ I3€h3 þ _h3 � I3 _h3

8<
: ) I3€h3 þ _h3 � I3 _h3 ¼ Mk �~f3 � p3 ð5Þ

where I1 and M1 are the inertia tensor and moment of stance leg, I2 and I3 are the inertia
tensor of swing thigh and shank. M2 and M3 are the moment of swing thigh and shank.
Moreover, f1 is the ground support force applied to stance leg, f2 is the constraint force
that thigh react to the stance leg and f3 denotes the force that thigh act to shank in swing
leg.
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The moment of hip and knee can be derived as Mh and Mk respectively as follows,

Mk ¼ f2p2 sin h2 þ I2€h2 þ _h2 � I2 _h2
Mh ¼ I1€h1 þ _h1 � I1 _h1 þ f2p2 sin h2 þ I2€h2 þ _h2 � I2 _h2 þ f1p1 cos h1 � f2ðl1 � p1Þ cos h1

�
ð6Þ

In the Newton Euler equation, the existence of constraint reaction forces increase the
dynamic analysis complexity. In addition, Newton Euler equation illustrates the
dynamic characteristics of one rigid body. The human lower limb model consists of
three rigid bodies, the dynamic equation of the plant model is a simultaneous equations
composed of multiple equations.

Lagrange Equation. Based on the viewpoint of energy, the kinetic energy function is
represented by generalized coordinates and velocity. It avoids the complicated calcu-
lation of force, velocity, acceleration and other vectors. The Lagrange equation of the
plant model can be formed as follows.

Ek ¼ 1
2m1p21

_h21 þ 1
2m2l21 _h

2
1 þ 1

2m2p22 _h
2
2 þ 1

2m2l22 _h
2
2 þ 1

2m3p23 _h
2
3

Ep ¼ m1gp1ð1� cos h1Þþm2gp2ð1� cos h2Þþm3gp3ð1� cos h3Þþm3gl2ð1� cos h2Þ
�

ð7Þ

L ¼Ek � Ep ¼ 1
2
m1p

2
1
_h21 þ

1
2
m2l

2
1
_h21 þ

1
2
m2p

2
2
_h22 þ

1
2
m2l

2
2
_h22 þ

1
2
m3p

2
3
_h23

�m1gp1ð1� cos h1Þ � m2gp2ð1� cos h2Þ � m3gp3ð1� cos h3Þ � m3gl2ð1� cos h2Þ
ð8Þ

Mk ¼ d
dt

@L
@ _h3

� @L
@h3

¼ m3p23€h3 � m3gp3 sin h3

Mh ¼ d
dt

@L
@ _h2

� @L
@h2

¼ ðm2p22 þm2l22Þ€h2 � ðm2p2 þm3l2Þg sin h2

(
ð9Þ

Compared with Newton Euler equation, Lagrange illustrates the multi-rigid-body
system in one equation, and no constrain force is included. As for the plant model of
human lower limb, Lagrange equation is more simple and distinct.

Kane Equation. Kane equation is established using Alembert principle and virtual
displacement principle. (The system is composed of n particles, with ideal constraints
and n degrees of freedom)

Fr þ F�
r ¼ 0 ðr ¼ 1; . . .; nÞ ð10Þ

Fr and F�
r are generalized applied force and inertia force which depend on the

generalized coordinates respectively. That is,

Fr ¼
XN
i¼1

fi ¼ m1gþm2g ð11Þ

F�
r ¼

XN
i¼1

ð�miaiÞ ¼ �m1P1
€h1 � m2P2

€h2 þ 2m1
_h1 � P1

€h1 þ 2m2
_h2 � P2

€h2 ð12Þ

Modeling and Analysis of Human Lower Limb in Walking Motion 101



3.3 Summary of Analysis Method

To summarize these analysis methods when they describe the plant model, Table 2 is
shown as follow.

We can see that Lagrange method is more straightforward than Newton Euler and
Kane method to characterize the dynamic features of knee and hip, and it’s the reason
why Lagrange method is widely used in human motion modeling and analysis.

4 Comparison Between Simulation and Experimental Results

The plant model is simulated in the Simulink to imitate the motion of human. The
experiment on the treadmill is conducted to verify the plant model and the dynamic
analysis method. The subject is a health man (24 years old, 65 kg, 1.78 m) without
previous history musculoskeletal injury. The experiment setup is shown in Fig. 2 and
the acceleration sensors (CXL04GP3) are used to collect the human walking infor-
mation when the treadmill’s speed is controlled at 3, 4, 5, 6, 7 km/h.

Table 2. Analysis methods comparisons

Methods Application Characteristics

Denavit-Hartenberg Kinematic analysis Concise and basic
Roberson-Wittenburg Kinematic analysis Features of each linkage is specific
Newton Euler equation Dynamic analysis Clear but complex due to constraint
Lagrange equation Dynamic analysis Simple to derive
Kane equation Dynamic analysis Convenient for numerical calculation

signal 
collection 

system

treadmill

accelero
meter

data 
acquisition 

card

DC 
power 
supply

Fig. 2. Experiment setup
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The torques of hip and knee are then calculated by Lagrange method based on the
experiment data. This paper uses motion data at 5 km/h as it is close to the normal
walking speed mostly. Both the numerical calculated torques and experiment calculated
torques of hip and knee respectively are shown in Fig. 3.

Some errors exist between the experimental analysis and simulation, it may result
from the relative motion between clothes and human body. Compared with the sim-
ulation, the experiment result line presents many glitch impulses which come from the
muscles jitter, damp characteristic and flexibility of human body. Moreover, the period

(a)

(b)

Fig. 3. (a) The torque of hip (b) The torque of knee
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of simulation and experiment at hip are totally coincide, but they are not as well at the
knee. It implies that knee and hip may have relative hysteresis in the real motion, which
hasn’t been considered in the plant model and simulation. Aiming at these phenomena,
further research work will be carried out in the future to quantify these influences.

5 Conclusion

The human lower limb was simplified to a three-rigid-link system which moves in a
two-dimensional sagittal plane, and it is named as plant model. To explore the prop-
erties of the pant model in walking motion, Denavit-Hartenberg notion and Roberson-
Wittenburg algorithm were used to deploy the relation of each joints. Moreover,
Newton Euler, Lagrange equation and Kane equation were compared when they build
the dynamic equation of the plant model. The superiority of Lagrange equation was
demonstrated. Therefore, the torques of experiment data were analyzed by Lagrange
equation. The comparisons of simulation and experiment results show that the dynamic
properties of plant model is similar to the real human, thus the fidelity of the plant
model is validated.
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