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Chapter 6
Motivation: A Valuation Systems 
Perspective

Andero Uusberg, Gaurav Suri, Carol Dweck, and James J. Gross

 Motivation: A Valuation Systems Perspective

The questions that keep behavioral scientists up at night often concern motivation or 
why people and other animals do what they do. Why do people behave in ways that 
harm them in the long run? Why don’t all students try to learn and all adults engage 
in exercise? Why do people conform to some norms but break others? Motivation 
has been central to behavioral science since early theorists such as Sigmund Freud 
and Clark Hull used it as a foundation for constructing grand accounts of behavior. 
In the decades since their time, motivation has continued to fascinate researchers both 
as a focal interest (Dweck, 2017; Ryan, 2012; Shah & Gardner, 2008) and a pathway 
to understanding other phenomena such as the nervous system (Simpson & Balsam, 
2016), emotion (Fox, Lapate, Shackman, & Davidson, 2018), cognition (Braver, 
2016; Kreitler, 2013), development (Heckhausen, 2000), individual differences 
(Corr, DeYoung, & McNaughton, 2013), and social relations (Dunning, 2011). 
These diverse efforts to understand motivation have yielded a diversity of accounts 
that await attempts at integration. In this chapter, we offer one such attempt.
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Our starting point is the idea that understanding motivation involves under-
standing how behavior obtains its force and direction (Pezzulo, Rigoli, & Friston, 
2018). For instance, take the behavior of queuing to buy a ticket for a concert. 
Motivational force relates to the quantitative aspects of this behavior, such as the 
time spent in the queue or the price paid for the ticket. Motivational direction 
relates to the qualitative aspects of this behavior, such as choosing a particular 
concert or ticket booth over alternatives. Where do these aspects of behavior come 
from? Our view is that they emerge from the complex dynamics that produce 
behavior—different mental processes acting and interacting in parallel (Cisek, 
2012; Gross, 2015; Hunt & Hayden, 2017; Ochsner & Gross, 2014; Pessoa, 2018). 
Products of complex dynamics tend to have emergent properties—features that 
characterize the product but not necessarily any of the individual processes that 
give rise to it. For example, political will is an emergent property of a society that 
cannot be found in its entirety within any individual or institution. We view the 
defining features of motivation—force and direction of behavior—as similarly 
emergent properties of behavior that need not exist in their entirety anywhere else 
in the mind. The force and direction of queuing for a ticket simply emerge from a 
combination of perceptions, beliefs, expectations, plans, feelings, habits, and other 
mental processes.

In this chapter, we trace the emergence of different motivational phenomena 
from the mental system that shape behavior. In the first section, we offer a simplified 
sketch of the systems that give rise to behavior and thereby motivation. Specifically, 
we introduce the notion of a valuation system that shapes behavior by solving two 
adaptive problems. Perception loops within valuation systems solve the problem of 
understanding the world by matching models of the world to sensory evidence. 
Action loops within valuation systems solve the problem of acting effectively on the 
world by matching models of means to models of ends. Both loops rely on different 
versions of hierarchical feedback control, the principle of reducing gaps between 
pairs of representations by iteratively altering one of them.

In the second section of the paper, we suggest that distributed valuation systems 
give rise to different forms of motivational force and direction that can be placed 
along a gradient of complexity, revealing three broad levels. The first inherent moti-
vation level consists of the predictability and competence motives arising from the 
gaps that perception and action loops seek to minimize. The second intentional 
motivation level consists of goal commitment arising from sufficiently realistic and 
valuable goals and goal pursuit arising from synchronization of valuation systems 
into a behavioral feedback control cycle. The third identity motivation level consists 
of goals about goals, or identity as well as pursuit of pursuits, or self-regulation that 
emerges from further synchronization of intentional motivation. These emergent 
motivational phenomena are often reflected in awareness as feelings that modulate 
the operation of distributed valuation systems and provide a teaching signal. The 
valuation system perspective integrates insights from motivation theories in a novel 
way and demonstrates how complex motivational phenomena can be characterized 
as emerging from basic perception and action processes.
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 Valuation Systems

To trace how motivation emerges during behavior, we begin with a functional analy-
sis of the valuation systems that produce behavior. By valuation system, we mean 
any mental system that represents the world and prompts action to help an individ-
ual to transition toward more valued states of the world. The mind can be viewed as 
a collection of different valuation systems, many of which are active and interactive 
most of the time (Gross, 2015). For instance, evolutionarily older systems involved 
in producing automatic behavior are complemented by evolutionarily younger sys-
tems producing flexible behavior (Evans & Stanovich, 2013; Rangel, Camerer, & 
Montague, 2008). Likewise, more specialized systems involved in dealing with par-
ticular challenges are complemented by more domain-general systems (Cosmides 
& Tooby, 2013).

To characterize the broad set of different valuation systems in common terms, we 
turn to a functional analysis. Grounded in an understanding of the problems that a 
set of systems can solve, a functional analysis seeks to identify general operating 
principles of these systems on a computational level, overlooking, initially at least, 
algorithmic and implementational details (Marr, 1982). For instance, a functional 
analysis of braking systems would reveal that all braking systems address the prob-
lem of how to slow a vehicle by converting kinetic energy into another type of 
energy. These insights characterize braking systems irrespective of their underlying 
algorithms (e.g., friction or regeneration) and implementations (e.g., steel or carbon 
fiber), thereby providing a common set of concepts for thinking about different 
braking systems. Our aim is to find a comparable common set of concepts for think-
ing about different valuation systems.

As with any functional analysis, we start by asking what problems valuation 
systems address. Broadly, these systems produce behavior that helps an individual 
to approach rewarding and to avoid punishing configurations of the internal and 
external environment. To do this, the valuation systems need to solve two basic 
problems—the perception problem of building a serviceable map of the world while 
relying only on fragmented sensory input and the action problem of finding 
situation- specific means to desired ends.

The perception problem arises because the mind lacks direct knowledge of the 
world. It receives information through an array of sensors that transform isolated 
features of the internal and external environment into streams of noisy data. For 
instance, single features of fruits, such as their size, color, or location, may all fail 
to reliably distinguish edible from inedible fruits. In order to act adaptively, valua-
tion systems need some understanding of the structure of the world, such as the 
objects of edible and inedible fruits. Solving the perception problem therefore 
requires extracting the adaptively relevant structure of the world.

The action problem arises because an action that is appropriate in one place or 
time may not be appropriate in another place or time. For example, just because 
looking near a tree for food worked well last time does not mean it will work well 
this time. Trees do not carry fruit all of the time, and not all trees carry edible fruit. 

6 Motivation: A Valuation Systems Perspective
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Solving the action problem thus requires flexibly producing different actions in 
different situations. This is because it would be difficult to solve this problem by 
relying solely on rigid links between stimuli and actions (e.g., reflexes) or between 
needs and actions (e.g., instincts). Solving the action problem therefore  requires 
acting in accordance with the structure of the world.

Formulating the perception and action problems helps to identify the operating 
principles that valuation systems use to solve these problems. In the sections that 
follow, we argue that valuation systems solve both problems by combining hier-
archical mental models that represent the structure of the world by conjoining sim-
pler models into increasingly elaborate ones with hierarchical feedback control 
processes that minimize gaps between pairs of models by altering one of them.

 Hierarchical Mental Models

Mental representations are neural patterns that stand in for different pieces of infor-
mation in some computation (Pouget, Dayan, & Zemel, 2000). Some mental repre-
sentations are mental models that stand in for multimodal states that the world can 
take. The term world is used broadly here, to denote the environment both outside 
and inside the individual, and the term state is used to denote a multimodal configu-
ration of the internal and external environment. States of the world can therefore 
include places like a grocery store, beings like a cashier, or objects like an apple. 
They can also include bodily states such as hunger and mental states such as a plan 
to get some apples.

Most mental models rely on hierarchical abstraction, whereby more elaborate 
models are formed by conjoining a number of less elaborate models (Fig.  6.1; 
Ballard, 2017; Simon, 1962). The least elaborate mental models represent embod-
ied experiences produced by the sensory-motor repertoire of the individual (Binder 
et al., 2016). Embodied models on a lower layer help define less embodied semantic 
models on a higher layer such as “food” and “paying.” As hierarchical abstraction 
progresses, it yields increasingly elaborate mental models including schemata, sce-
narios, and narratives (Baldassano, Hasson, & Norman, 2018; Binder, 2016). 
Elaborate models can denote whole situations or events that relate places, beings, 
objects, as well as mental and bodily states into a single comprehensive representa-
tion such as “grocery shopping” (Radvansky & Zacks, 2011). Abstraction hierar-
chies are implemented throughout the brain (Ballard, 2017; Fuster, 2017) and can 
be algorithmically expressed as multilayered neural networks (Lake, Ullman, 
Tenenbaum, & Gershman, 2017; McClelland & Rumelhart, 1981).

A key feature of mental models is their reusability. For example, there is consid-
erable overlap between the neural patterns involved in perceiving and imagining 
equivalent stimuli (Lacey & Lawson, 2013) as well as between performing and 
imagining equivalent actions (Jeannerod, 2001; O’Shea & Moran, 2017). The same 
mental model can thus be used to denote a state of the world as it is experienced here 
and now for one computation and to denote an equivalent state of the world as it is 
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Abstract models
grocery shopping

Intermediate models
buying, food

Concrete models
apple, cashier

Fig. 6.1 Mental models formed through hierarchical abstraction. Mental models (squares in each 
row) are neural patterns denoting states that the world can take. They are formed through hierar-
chical abstraction whereby patterns on a lower layer denoting experienced states of the world 
(e.g., an apple) are linked to patterns on a higher layer denoting more abstract states of the world 
(e.g., grocery shopping)

mentally simulated within a different computation (Hesslow, 2012). For instance, 
seeing an apple within reach and wanting an apple that has yet to be found can 
involve the same mental model of an apple. Mental models can be reused for differ-
ent purposes, including recalling how the world was, mentalizing how it might seem 
from another perspective, and, crucially for motivation, predicting how it might be 
in the near or distant future (Hesslow, 2012; Moulton & Kosslyn, 2009; Mullally & 
Maguire, 2014). Mental models are activated as predictions that denote states of the 
world that are probable given information arriving  from—and stored knowledge 
about—the world. Some predictions concern imminent sensory input given how the 
world is believed, but not yet sensed, to be here and now (Huang & Rao, 2011; 
Kersten, Mamassian, & Yuille, 2004; Kok & de Lange, 2015). Other predictions 
concern sensory input from the states that the world is expected to take in the future 
(Gershman, 2018; Moulton & Kosslyn, 2009; Toomela, 2016). We assume that most 
mental models can be reused for either of these two versions of prediction (de 
Lange, Heilbron, & Kok, 2018).

Mental models play a key role in solving both the perception and action problems. 
They help to solve the perception problem by replacing the fragmented and variable 
sensory information arriving from the world with a coherent and stable perceived 
reality furnished by mental models. A crocodile is perceived to have sharp teeth 
even if its mouth is closed, because the actual sensory information about teeth, which 
is vulnerable to occlusion, is replaced by a mental model (Kersten et  al., 2004). 
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However, a model is only as useful as its match to the world. It would be decidedly 
unhelpful to mentally model a swimming crocodile as a floating log. Solving the 
perception problem thus requires not only possessing mental models but also choos-
ing the right ones to represent a given state of the world. This suggests that the mind 
has a way to keep track of the probability that a prediction it has made really cor-
responds to reality. In functional terms, the mind can be said to have a tagging sys-
tem that captures perceptual certainty (Petty, Briñol, & DeMarree, 2007). For 
instance, the mental model of an apple will have a stronger certainty tag when it is 
used to perceive a graspable apple than when it is used to desire an as yet unseen 
apple. Certainty tagging is a functional construct that can be implemented in the 
brain using different neural codes (Ma & Jazayeri, 2014). The idea that activated 
mental models have variable certainty aligns with evidence that neural representa-
tions are often probabilistic and that awareness is often accompanied by variable 
degrees of certainty or confidence (Grimaldi, Lau, & Basso, 2015; Pouget, 
Drugowitsch, & Kepecs, 2016). There is further evidence that perceptual decisions 
involve accumulation of evidence in favor of competing representations until one 
crosses a threshold (Gold & Shadlen, 2007). This suggests that strengthening cer-
tainty tags above some threshold is what turns the tagged mental model from a 
prediction into part of perceived reality.

In addition to helping solve the perception problem, mental models also help to 
solve the action problem of choosing one of several possible means, such as pushing 
or pulling the door, to pursue an end, such as to enter a room. Mental models help 
here by representing means and ends in a common modality of future states of the 
world. Ends such as entering a room are mental models of future states that the 
individual is inclined to approach or avoid (c.f. Elliot & Fryer, 2008; Kruglanski 
et al., 2002; Tolman, 1925). Means are mental models of future states that are likely 
to result from preforming some action, such as a door being pushed open (Gershman, 
2018; Hamilton, Grafton, & Hamilton, 2007; Hommel, Müsseler, Aschersleben, & 
Prinz, 2001; Ridderinkhof, 2014).

In addition to representing means and ends in a common domain, however, 
solving the action problem also requires choosing means that are appropriate for an 
end in a given context. This suggests that the mind has a way to keep track of the 
probability that a means would lead to a desired end. We propose, again in func-
tional terms, that this probability is captured by bipolar valence tags. Specifically, a 
valence tag of a mental model represents the extent to which the state of the world 
denoted by that model (i.e., a means) would make a desired state (i.e., an end) more 
or less likely. The idea that activated mental models have variable valence tags 
aligns with evidence that most mental representations have an evaluative property 
of goodness vs. badness for the individual (Bargh, Chaiken, Govender, & Pratto, 
1992; Carruthers, 2018; Cunningham, Zelazo, Packer, & Van Bavel, 2007; Man, Nohlen, 
Melo, & Cunningham, 2017). 

Akin to how certainty tags above some threshold determine which mental models 
are perceived to be real, we argue that valence tags above some threshold determine 
which mental models function as action tendencies or a future state that valuation 
systems seek to make more likely (for positive valence tags) or less likely (for negative 
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valence tags) through action. This view aligns with evidence that actions are 
initiated in the brain not primarily as representations of motion paths or muscle 
movements but instead as representations of states of the world that muscle move-
ments should produce (Adams, Shipp, & Friston, 2013; Colton, Bach, Whalley, & 
Mitchell, 2018; Todorov, 2004). For instance, the action tendency to grasp an apple 
is encoded as a valence-tagged model of the world where the apple is already in 
hand. Under favorable conditions, the tendency can be enacted through muscle 
movements believed to bring about this end state.

Action tendencies can range from very broad, such as to approach or to avoid a 
tagged state of the world (Krieglmeyer, De Houwer, & Deutsch, 2013; Phaf, Mohr, 
Rotteveel, & Wicherts, 2014), to very specific, such as to produce or refrain from a 
small movement. Broad action tendencies that merely indicate whether a state 
should be approached or avoided are usually thought of as ends. More specific 
action tendencies that indicate more fine-grained courses of action are usually 
thought of as means. However, our perspective suggests that both ends such as 
being in a room and means such as the door becoming open through pushing or 
pulling ultimately belong to the same class of action tendencies—valence-tagged 
predictions that valuation systems seek to make more or less likely to exist. 

Our functional analysis thus far suggests that valuation systems involve mental 
models with variable certainty and valence tags. The strength of these tags, which 
can vary independently across different models as well as for the same model across 
different times, determine whether a model functions as a prediction, as part of 
perceptual reality, or as an action tendency (Fig. 6.2). To illustrate, consider a person 

Strength of VALENCE

PERCEIVED REALITY

AC
TIO

N
 TEN

D
EN

C
IES

St
re

ng
th

 o
f C

ER
TA

IN
TY

Fig. 6.2 Different functions of mental models based on variable certainty and valence tags. Many 
mental models are activated as predictions about what the situation might contain now or in the 
future. Valuation systems compare these predictions against sensory evidence and strengthen the 
certainty tags of the most accurate models, turning them into perceived reality. Valuation systems 
also compare means-like predictions to end-like predictions and strengthen the valence tags of the 
most effective means, turning them into action tendencies
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entering a café. As she steps into the café, her abstract schema of a café as well as 
information arriving at her senses combine to activate a number of mental models. 
At this early stage, most of these models are predictions about what the room is 
believed but not yet confirmed to contain (e.g., there should be tea for sale here). 
The predictions also concern what is believed to happen at a café in the future, either 
via action (e.g., getting tea by ordering it) or otherwise (e.g., people will be talking). 
The initially weak certainty tags of such predictions are updated as more sensory 
evidence is accumulated, leading some predictions to be tagged certain enough to 
become part of perceived reality (e.g., I now smell and see tea on sale here). 
Meanwhile, valence tags will be transferred from broad end-like action tendencies 
(e.g., drink something) to increasingly specific means-like action tendencies (e.g., 
order a cup of green tea).

 Hierarchical Feedback Control

Armed with the idea of mental models with variable certainty and valence tags, we 
can now ask how valuation systems activate mental models and update their cer-
tainty and valence tags. Mental models can be activated by bottom-up and top-down 
information flows within abstraction hierarchies (Fig.  6.1; Bar, 2007; de Lange 
et al., 2018; Lamme & Roelfsema, 2000). On the one hand, coarse sensory input 
rapidly spreads across abstraction layers where it activates various mental models of 
what could be causing the sensed input. For instance, from a distance, a shop front 
on a street could activate the models of a café, a restaurant, and a bakery. On the 
other hand, as each activated abstract model activates its less abstract constituent 
models, a parallel top-down stream of model activation ensues. For instance, the 
café model activates the models of people sitting at tables, while the bakery model 
activates the models of people queuing at the counter. As a result of the parallel 
bottom-up and top-down activation flows, there are usually a large number of acti-
vated mental models at any given time. Most of these models function as predictions 
about what might be going on in that moment as well as in the future.

The next step toward solving the perception and action problems involves updat-
ing the certainty and valence tags of the activated predictions so that only the most 
accurate models become parts of perceived reality and only the most desirable mod-
els become action tendencies. We suggest that both tasks can be accomplished by 
variations of the computational principle of hierarchical feedback control (Clark, 
2013; Friston, 2010; Seth, 2015). Feedback control involves iteratively producing 
outputs that reduce a gap between an input and a target. For example, a guitar can 
be tuned by playing a note on one string (input), comparing it to the same note 
played on another string (target), and changing the tension of one of the two strings 
(output) until the gap between the strings is sufficiently reduced. Given that either 
of the strings could be tuned to reduce the gap, there are two kinds of feedback 
control—ascending and descending (see Fig. 6.3).
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Fig. 6.3 Ascending and descending feedback control. Feedback control involves detecting a gap 
between an input and a target and seeking to reduce it with an output that changes the target 
(ascending feedback control) or the input (descending feedback control)

Ascending feedback control loops consider their lower-level input as the refer-
ence value and change their target until it matches the input. This form of feedback 
control helps solve the perception problem by matching mental models to sensory 
input. Descending feedback control loops, by contrast, consider their higher- level 
target as the reference value and change their input until it matches the target. This 
form of feedback control helps solve the action problem by matching means to ends. 
The computational principle of feedback control has a long history in behavioral 
science (Ashby, 1954; Maxwell, 1868; Miller, Galanter, & Pribram, 1960; Powers, 
1973; von Uexküll, 1926; Wiener, 1948) as well as compelling algorithmic and 
implementation expressions including Bayesian inference (Friston, 2010; Gershman, 
2019), optimal feedback control (Scott, 2004; Todorov, 2004), and reinforcement 
learning (Glimcher, 2011; Lee, Seo, & Jung, 2012). It is therefore a promising can-
didate for a functional description of the common operating principles of different 
valuation systems (Carver & Scheier, 2011; Gross, 2015; Pezzulo & Cisek, 2016; 
Seth, 2015; Stagner, 1977; Sterling, 2012).

Ascending and descending feedback control help to solve the perception and 
action problems, respectively, when they operate between layers of abstraction 
hierarchies populated by mental models (see Figs. 6.4 and 6.5). Ascending feed-
back control operating between abstraction layers forms perception loops that use 
bottom- up evidence to assess the accuracy of top-down predictions (Chanes & 
Barrett, 2016; Clark, 2013; Friston, 2010; Henson & Gagnepain, 2010; Huang & 
Rao, 2011). Imagine a person taking a first sip from a cup of tea she has just ordered 
in a café. The action of ordering the tea has activated the mental model of “hot tea” 
as the best guess of what her cup contains. This prediction in turn generates a top- 
down cascade of increasingly specific further predictions about the sensations that 
a cup of tea should cause, such as “hotness.” Meanwhile, imagine that the drink in 
her cup is actually iced tea, producing the sensory observation of “coldness.” As 
predictions such as hotness cascade downward and evidence such as coldness cas-
cade upward along abstraction hierarchies, perception loops can harness the gaps 
between these information flows to solve the perception problem using ascending 
feedback control. Specifically, a perception loop takes top-down predictions (e.g., 
hotness) as its targets, compares them to the bottom-up sensory evidence (e.g., 
coldness) as its input, and updates the certainty tags of the predictions as its 
output (e.g., weaken the certainty tag of “hot tea,” strengthen that of “iced tea”). 
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Abstract models
café, bakery

Intermediate models
hot tea, iced tea

Concrete models
hot liquid, cold liquid

Certainty 
tag update

prediction:
hotness

perception:
coldness

prediction:
cup of hot tea

perception:
cup of cold tea

Certainty 
tag update

WORLD

SENSORY 
INPUT

Fig. 6.4 Perception loops using ascending feedback control between successive abstraction layers 
to match predictions to sensory evidence. Top-down flow of information corresponds to increas-
ingly specific sensory predictions. Bottom-up flow of information corresponds to increasingly 
abstract sensory evidence. Ascending feedback control loops operating between pairs of layers use 
gaps between predictions and evidence to update certainty tags of predictions on the upper layer

This process can be repeated until all perceptual gaps are sufficiently minimized 
(see Fig. 6.4).

Perception loops minimize gaps between many pairs of abstraction layers in 
parallel. For instance, the target layer of the previous example, where the models 
“hot tea” and “iced tea” reside, is simultaneously the input layer to a more abstract 
feedback loop whose target layer contains a schema representing how cafés work. 
The higher loop takes the evidence produced by the lower loop that the cup might 
contain iced tea as its input and compares it to predictions such as “receiving the hot 
tea that was ordered” produced by the schema. It detects a gap and converts it into 
a change to the broader schema, for instance by inferring that the barista must 
have misunderstood the original order to mean iced tea. Iterative and hierarchically 
parallel ascending feedback control can therefore underlie increasingly complex 
perceptual and cognitive phenomena from perception to categorization, attribution, 
judgment, and so forth (Clark, 2013; Friston, 2010; Seth, 2015).

Mirroring how ascending feedback control loops address the perception prob-
lem, descending feedback control loops address the action problem of selecting 
situation-specific means to valence-tagged ends. Action loops work with predic-
tions that represent how the world ought to be in the future (i.e., ends) and how it 
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action tendency:
order tea

action outcome:
walk to counter

action tendency:
drink tea

action outcome:
order tea

WORLD

Valence 
tag update

Valence 
tag update

Abstract models
visiting a café

Intermediate models
making a purchase

Concrete models
walking, counter

MOTOR 
OUTPUT

Fig. 6.5 Action loops using descending feedback control between successive abstraction layers to 
match means to ends. Top-down flow of information corresponds to increasingly specific action 
tendencies. Bottom-up flow of information corresponds to increasingly abstract action outcomes. 
Descending feedback control loops operating between pairs of layers use gaps between action 
tendencies and action outcomes to update valence tags of action outcomes on the lower layer

would be if different action tendencies were enacted (i.e., means). The computa-
tional task for the action loop is to strengthen the action tendencies that promise to 
be most effective means to an end in a given situation. This can be done by running 
descending feedback control loops between hierarchical layers of mental models 
(Adams et al., 2013; Shadmehr, Smith, & Krakauer, 2010; Todorov, 2004). The target 
positions of such loops are occupied by ends, such as the broad action tendency to 
“drink tea” that might be activated when a person enters a café (Fig. 6.5). The input 
to such loops consists of the expected outcomes of specific actions afforded by the 
situation, such as ordering different beverages from the barista. The action loop can 
now detect gaps between the end state (drink tea) and the predicted action out-
comes (getting the ordered tea vs. getting the ordered coffee) and update the valence 
tags of the actions that yield the smallest gap (strengthen the positive tag for order-
ing tea, weaken the positive tag for ordering coffee).

Action loops minimize gaps between many abstraction layers in parallel. This is 
helpful for implementing relatively abstract action tendencies such as “drink tea” 
that can require different combinations of specific means depending on the charac-
teristics of a situation, such as whether orders are taken at the table or at the counter 
in a particular café. Once a relatively abstract action loop has valence tagged an 
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action outcome such as “order tea” as an effective means to the end of “drink tea,” 
a less abstract action loop can treat “order tea” as its end state and find that it would 
be served well by a means such as being over at the counter. An even less abstract 
loop may then valence-tag walking as a suitable means toward the end of being at 
the counter and so forth. Conversely, an end such as “drink tea” may itself have 
become an action tendency within an action loop serving a more abstract end such 
as adhering to the social convention of ordering something in a café. In effect, 
descending feedback control extends the valence tags from more to less abstract 
predictions until a way to change the world is found (Fishbach, Shah, & Kruglanski, 
2004). This operating principle allows action loops to flexibly identify effective 
courses of action to strive for end states across different and changing situations.

Perception and action processes are deeply interwoven (Hamilton et al., 2007; 
Hommel et al., 2001; Ridderinkhof, 2014). For instance, perception makes use of 
simulated action outcomes to infer how different states of the world might have 
come about (Hesslow, 2012). Similarly, action makes use of perceived action out-
comes to fine-tune motor control (Todorov, 2004). We therefore view each valua-
tion system as a collection of functionally coupled perception and action loops 
(Fig. 6.6). A primary manifestation of perception-action coupling within a valuation 
system is the emergence of action affordances or perceived opportunities for action a 
situation offers (Cisek, 2007; Gibson, 1954). In functional terms, action affordances 
are a series of predictions that are deemed reasonably probable by perception loops 
and are also  linked into a means-ends chain by action loops. For instance, the 

Perception 
loops

Action 
loops

WORLD

SENSORY 
INPUT

MOTOR 
OUTPUT

Fig. 6.6 A valuation 
system. A set of 
functionally coupled 
perception and action loops 
can be thought of as a 
valuation system. The 
system operates with a 
commonly accessible pool 
of mental models (squares 
in each row) activated 
across different layers of 
abstraction hierarchies. 
Action affordances emerge 
from valuation systems as 
perception loops activate 
models of states that may 
follow the current one and 
action loops organize these 
predictions into means- 
ends chains
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model of drinking tea functions as an action affordance if it is deemed a probable 
occurrence in a café by a perception loop and is also related to action tendencies 
such as ordering tea and walking to the counter by an action loop. Detection of 
action affordances thus requires perception loops to predict different action out-
comes and action loops to organize them into effective means-end chains.

We have now defined a single valuation system, consisting of coupled perception 
and action loops that minimize gaps between mental models to solve key adaptive 
problems. This sketch of the complex dynamics underlying behavior remains 
incomplete, however, as we also need to consider that behavior usually emerges 
from several valuation systems acting and interacting in parallel. The existence of 
many different valuation systems may reflect the evolution of the brain as an expand-
ing set of fairly compartmentalized solutions to fairly circumscribed problems, in 
addition to a suite of shared and domain-general cognitive resources (Cosmides & 
Tooby, 2013; Pinker, 1999). Rather than being inefficient, this setup may in fact 
provide flexibility and robustness to behavior control (Sterling, 2012). Overt behav-
ior may therefore be best thought of as a distributed consensus between valuation 
systems focusing on different features of the world as well as on different kinds of 
end states (Cisek, 2012; Hunt & Hayden, 2017; O’Doherty, 2014; Vickery, Chun, & 
Lee, 2011). This principle is illustrated by functional specialization in the prefrontal 
cortex between regions evaluating information from different sources such as 
exteroceptive and interoceptive senses, visceral and skeletal motor systems, episodic 
simulation, and metacognitive representations of actions, emotions, and the self 
(Dixon, Thiruchselvam, Todd, & Christoff, 2017).

Given the existence of different valuation systems, how can their contributions 
be integrated without producing contradictory behavior, such as someone reaching 
simultaneously for an apple and a chocolate bar, and failing to grasp either? One 
possibility is that behavioral consistency emerges from competitions between men-
tal models. Both perceptual and action decisions appear to involve sequential accu-
mulation of “evidence” in favor of alternatives until one crosses a threshold and 
emerges as a discrete winner (Bogacz, 2007; Gold & Shadlen, 2007; Ratcliff, Smith, 
Brown, & McKoon, 2016; Yoo & Hayden, 2018). Within our perspective, this 
implies that discrete perception of some models as real emerges from sequential 
accumulation of certainty tags and discrete commitment to act emerges from 
sequential accumulation of valence tags. For instance, a decision to grasp an apple 
over a chocolate bar can ensue when the valence tag on the action tendency to grasp 
an apple reaches a decision threshold sooner than the valence tag on the tendency to 
grasp the chocolate bar. Notably, competitions can occur at different abstraction 
layers in parallel. For instance, in parallel with the competition between grasping 
action tendencies, another competition may have occurred on a higher layer of 
abstraction between end-like tendencies such as eating something tasty or eating 
something healthy. As valuation systems facilitate both ascending and descending 
information flows, the competitions on different layers influence each-other. For 
instance, as the tendency to eat in a healthy manner is strengthened, it will function 
as one source of the evidence that can tip the competition between grasping actions 
in favor of grasping for the apple rather than the chocolate bar.
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 The Emergence of Motivation

We have now considered how valuation systems are formed when hierarchical men-
tal models are combined with feedback control operating in perception and action 
loops. From our valuation systems perspective, it is these  dynamic interactions 
within and between valuation systems that give rise to the emergent motivational 
properties of force and direction.

Complex dynamics can give rise to emergent properties and often do so across 
many levels of increasing complexity. To take an example from the physical domain, 
some properties of water—such as adhesion to other molecules—emerge as soon as 
hydrogen and oxygen atoms form a water molecule. By contrast, other properties of 
water—such as the orderly structure of ice crystals—emerge from interactions 
involving larger numbers of water molecules. In a similar fashion, behavior can be 
characterized by different kinds of force and direction that emerge along a gradient 
of complexity.

In the sections that follow, we identify motivational phenomena that emerge at 
three levels of complexity along this gradient. Each level corresponds to a broad 
section of the gradient, and transitions between the levels are gradual. On the first 
inherent motivation level, predictability and competence motives emerge from 
aggregated gap reduction imperatives of the perception and action loops, respec-
tively. On the second intentional motivation level, goal commitment and goal pur-
suit cycles emerge from synchronized valuation systems. On the third identity 
motivation level, identity and self-regulation emerge from synchronized goal pur-
suit cycles.

As we consider each of these emergent phenomena, we will argue that they can 
become reflected in conscious awareness as affective feelings that orchestrate 
system- wide responses and facilitate learning from experience (Carver & Scheier, 
1990; Chang & Jolly, 2018; Lang & Bradley, 2010; Pessoa, 2018; Weiner, 1985). 
We consider feelings to be affective when they contain the evaluative property of 
goodness vs badness. This suggests that all affective feelings reflect the valence tags 
of relevant mental models, as they are retrieved and updated. However, not all 
valence tags are reflected in feelings as valence tags can also be retrieved and 
updated outside conscious awareness.

From the perspective of understanding motivation, affective feelings have two 
important functions. First, they can modulate several distributed valuation systems 
at once. For instance, affective feelings prioritize relevant world states within men-
tal competitions (Frijda, 2009), constrict and broaden the scope of information pro-
cessing (Gable & Harmon-Jones, 2010), and make certain action families more or 
less prepotent (Frijda, 1987). Affective feelings are therefore one way in which 
emergent motivational phenomena can influence the processes they emerge from. 
The second function of affective feelings is to produce a learnable piece of informa-
tion. As a conscious reflection of an otherwise hidden process, an affective feeling 
makes motivational phenomena part of the world that can be explained by mental 
models (Barrett, 2017; Seth, 2013). As such models are stored in memory, they can 
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influence the operation of valuation systems upon future encounters of similar 
situations. For instance, a memory trace of relaxation brought about by a cup of tea 
can strengthen an action tendency to have another cup of tea in the future.

 Inherent Motivation: Predictability and Competence

The first novel feature to emerge from a constellation of valuation systems involves 
an aggregation of the gap reduction imperatives within individual feedback control 
loops into the motives of predictability and competence (c.f. Mineka & Hendersen, 
1985). Feedback control loops generate elemental motivational force by transform-
ing otherwise inert differences between mental models into changes to certainty and 
valence tags. Individually, each change generated in this way may fall short of being 
a consistent form of motivation, as it may not become manifest in behavior. 
Collectively, however, the outputs of all active feedback control loops give rise to 
the emergent motives of predictability and competence.

The predictability motive emerges from the aggregate imperatives to minimize 
gaps in perception loops. This motive manifests as a desire to understand the world, 
over and above any desire to influence it. Constructs that overlap with the predict-
ability motive include epistemic motivation (De Dreu, Nijstad, & van Knippenberg, 
2008) and the needs for optimal predictability (Dweck, 2017), for confidence 
(Cialdini & Goldstein, 2004), for cognition (Cacioppo & Petty, 1982), for closure 
(Kruglanski & Webster, 1996), and for understanding (Stevens & Fiske, 1995). Our 
perspective suggests that these constructs relate to an imperative to minimize per-
ceptual gaps by finding mental models that explain information arriving from the 
world. Sometimes, sufficiently accurate models can simply be retrieved from mem-
ory. This in itself can be motivating as indicated by the allure of quizzes and cross-
word puzzles. At other times, new models need to be constructed by combining new 
information with information that is already known. The predictability motive 
therefore also contributes to behaviors that facilitate the development of mental 
models such as strategic observation and intuitive experimentation (Gopnik & 
Schulz, 2007).

The competence motive emerges from the aggregate imperative to minimize 
gaps in action loops. This motive manifests as a desire to be able to impact the world 
over and above any ensuing rewards and punishments (Abramson, Seligman, & 
Teasdale, 1978; Bandura, 1977; Leotti, Iyengar, & Ochsner, 2010; Skinner, 1996). 
Constructs that overlap with the competence motive include the needs for compe-
tence (Deci & Ryan, 2000; Dweck, 2017), for achievement (McClelland, Atkinson, 
Clark, & Lowell, 1953), for control (Burger & Cooper, 1979), and for effectance 
(Stevens & Fiske, 1995; White, 1959). Our perspective suggests that these constructs 
relate to an imperative to minimize action gaps by finding effective means to various 
ends. Over short time scales, this can be accomplished without overt action, by 
computations within valuation systems that organize scattered predictions into 
coherent means-ends chains, or action affordances. This in itself can be motivating 
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as indicated by the aversion people feel to situations where their freedom to act is 
restricted. Over longer time scales, minimizing action gaps requires overt action and 
feedback to acquire and hone new skills. The competence motive therefore contrib-
utes to behaviors that facilitate skill acquisition such as play and exploration 
(Pellegrini, 2009).

Interestingly, people’s preferences for predictability and competence appear to 
taper off above some optimal level (Dweck, 2017). For instance, people tend to like 
music in which they can predict many but not all changes in melody and rhythm 
(Eerola, 2016). Similarly, people tend to enjoy games in which they have a good but 
not perfect control over winning (Abuhamdeh & Csikszentmihalyi, 2012). It appears 
that neither complete predictability nor complete competence is necessarily desir-
able. One explanation for this is that the predictability and competence motives are 
satisfied not only by the state of minimized perception and action gaps but also by 
the progress in minimizing them. Focusing only on the size of perception and action 
gaps, and not on their dynamics, can be short-sighted as it may preclude the indi-
vidual from exploring new environments and acquiring new skills. For instance, 
playing one level of a multilevel computer game over and over again would soon 
provide minimal perception and action gaps as event sequences and action out-
comes become fully known. However, sticking to one level would preclude the 
player from discovering new environments and acquiring new skills. Players’ gen-
eral eagerness to progress to new levels suggests that people are motivated by pro-
gressive decreases in perception and action gaps not only by their low levels. The 
nonlinearity of the predictability and competence motives may therefore help main-
tain a balance between exploiting and exploring the environment (Cohen, McClure, 
& Yu, 2007; Friston et al., 2015).

As they emerge from distributed valuation systems, predictability and compe-
tence motives can give rise to affective feelings. Conscious reflections of the pre-
dictability motive include the feelings of surprise, confusion and curiosity that have 
been associated with directing cognitive resources toward understanding (D’Mello, 
Lehman, Pekrun, & Graesser, 2014; Loewenstein, 1994; Silvia, 2008; Wessel, 
Danielmeier, Morton, & Ullsperger, 2012). Our perspective suggests that these feel-
ings reflect to-be-minimized gaps within perception loops. Surprise, elicited by 
unexpected events, should correspond to perception gaps caused by sensory evi-
dence contradicting recent predictions about the future. Confusion and curiosity, by 
contrast, should correspond to perception gaps caused by sensory evidence contra-
dicting predictions about the present, i.e., difficulties in finding mental models that 
would explain the current state of the world.

Conscious reflections of the competence motive may include the feelings of frus-
tration and boredom that have been associated with regulation of effort and explora-
tion (Geana, Wilson, Daw, & Cohen, 2016; Louro, Pieters, & Zeelenberg, 2007; 
Westgate & Wilson, 2018). Our perspective relates these feelings to gaps within 
action loops. Frustration should arise from gaps remaining within action loops 
because of difficulties in detecting feasible action affordances or means-end 
chains that would take the individual from the current state of affairs toward some 
end state. Boredom, by contrast, should arise when the gaps in action loops 
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are  minimized to such a high degree that the individual runs the risk of missing 
opportunities to learn new skills, i.e., of sacrificing exploration to exploitation 
(Geana et al., 2016).

Predictability and competence motives form the first level of motivation to 
emerge from distributed valuation systems. This level is relatively low on the 
gradient of complexity as predictability and competence motives arise from sim-
ple aggregation of the gap reduction imperatives within perception and action 
loops. Over and above predictability and competence, people prefer to understand 
some things more than others and to be competent in some activities more than in 
others. We argue that these motives result from the more complex forms of moti-
vation relating to goals and identity, which we will consider in the next two 
subsections.

 Intentional Motivation: From Goal Commitment to Goal Pursuit

The motivational phenomena emerging on the second level along the gradient of 
complexity range from goal commitment to goal pursuit. Goal commitment, or 
incentive salience (Berridge, 2018), is what distinguishes the few goals that domi-
nate behavior at a given time from the many other potential goals or ends that action 
loops also consider. Goal pursuit is the relatively coherent and persistent behavior 
aimed at reducing goal gaps between the current and desired states of the world 
(Moskowitz & Grant, 2009). In this section, we suggest that synchronous certainty 
and valence tagging across several valuation systems give rise to committed goals 
and goal pursuit cycles.

At any given time, people are committed to pursue only a subset of activated 
action tendencies—the future states with valence tags suggesting they should be 
approached or avoided (Elliot & Fryer, 2008; Klein, Wesson, Hollenbeck, & Alge, 
1999). For example, a person in a café might exhibit action tendencies to “talk to 
people” as well as to “read the news” but become committed to only one of these 
goals. What determines which one? Expectancy-value accounts of motivation sug-
gest that people generally commit to end states that are sufficiently valuable as well 
as sufficiently probable (Atkinson, 1957; Eccles & Wigfield, 2002; Hull, 1932; 
Steel & König, 2006; Weiner, 1985). Expressed in terms of our perspective, com-
mitted goals are therefore predictions with sufficiently strong certainty and valence 
tags. For a prediction such as “talk to people” to emerge as a goal, it thus needs to 
be considered sufficiently probable by perception loops as well as a sufficiently 
feasible means toward some end by action loops. Crucially, the more ends a predic-
tion serves, the stronger its valence tag can be. For instance, “talk to people” may 
win commitment over “read the news” because even as both action tendencies 
are feasible means to the end of “avoid boredom,” only talking to people is also a 
feasible means to the end of “find a companion.” We therefore suggest that predic-
tions generally become goals through synchronized consideration by several valua-
tion systems.
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The emergence of a goal can in turn amplify the synchronization between differ-
ent valuation systems. Goal commitment is often accompanied by substantial pri-
oritization of goal-relevant perception and action at the expense of alternatives 
(Landhäußer & Keller, 2012; Shah, Friedman, & Kruglanski, 2002). Our framework 
explains this by the synchronizing impact a prediction with strong certainty and 
valence tags can have on perception and action loops. As a prediction with a strong 
certainty tag, a committed goal activates a number of goal-relevant predictions 
within perception loops. For instance, someone committed to drinking tea may be 
imagining what drinking tea feels like, thinking about where to get tea, and recalling 
a recent article about the health effects of drinking tea. As a prediction with a strong 
valence tag, a committed goal also generates further goal-relevant action tendencies 
within action loops. For instance, the person wanting tea may imagine walking to 
one café, driving to another, and preparing tea at the office. The simultaneous 
impacts on perception and action loops manifest in goal-relevant information 
becoming more easily detected, more thoroughly processed, and more difficult to 
ignore, often at the expense of models that are less relevant for the goal, contributing 
to the related phenomena of motivated attention (Pessoa, 2015; Vuilleumier, 2015) 
and goal shielding (Shah et al., 2002).

Another consequence of increased synchrony between perception and action 
loops is the reliable emergence of a previously unavailable signal of goal gap. Goal 
gap represents the distance between how the world is perceived to be and how it is 
desired to be according to the goal (Chang & Jolly, 2018; Elliot & Fryer, 2008; 
Kruglanski et al., 2002). This signal is distinct from both the perception and action 
gaps that are computed within valuation systems. A goal gap compares the world as 
it is according to the most certain models to how it should be according to the com-
mitted goal. By contrast, a perception gap compares the world as it might be accord-
ing to various predictions to how it is according to sensory evidence, and an action 
gap compares the world as it would be in some end state to how it would be owing 
to some action. A goal gap is an important additional piece of information that 
complements the value (valence tag) and expectancy (certainty tag) associated with 
a goal. The goal gap indicates how much more work and time might be needed 
before a goal can be attained. Integration of recent goal gap changes can further 
function as a speedometer indicating whether success in goal pursuit is accelerating 
or decelerating. These pieces of information are known to be pivotal to the force and 
direction with which people strive for goals (Carver & Scheier, 2011; Chang & 
Jolly, 2018; Louro et al., 2007).

The final unique property to emerge from distributed valuation systems on the 
second level of complexity is the goal pursuit cycle that implements descending 
feedback control to minimize goal gaps (Fig. 6.7a). Recall that descending feedback 
control, which is also operative within action loops, involves iteratively changing an 
input to minimize a gap between the input and a target. Within the goal pursuit 
cycle, the target position is occupied by the goal, the input position by the current 
state of world, and the output position by a desired change to the world. As it iter-
ates, the goal pursuit cycle seeks to minimize the goal gap by changing the world. 
This function emerges from the operation of distributed valuation systems in the 
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Fig. 6.7 Emergence of goal pursuit. (a) Goal pursuit as an emergent feedback control cycle that 
takes the perceived reality produced by perception loops as input, compares it to the committed 
goal as its target, and uses action loops to change the world as its output. (b) A schematic rendering 
of the processes in (a) that focuses on four iterative steps of the goal pursuit cycle

sense that the goal pursuit cycle relies on perception loops for its input and action 
loops for its output. The current state of world, which is compared to the goal, is 
produced by the collective operation of perception loops. Likewise, the change to 
the world that the goal pursuit cycle outputs is produced by the collective operation 
of action loops that translate the desired change to the world into action tendencies 
by valence tagging increasingly specific predictions. The goal pursuit feedback con-
trol cycle is therefore an emergent process that recapitulates the structure of 
descending feedback control.

The goal pursuit process can be redrawn as a simpler cycle consisting of four key 
steps of World, Perception, Valuation, and Action (Fig. 6.7b). Consider for instance 
someone committed to a goal to assemble a piece of furniture such as a shelf. The 
World step of the goal pursuit cycle denotes the current state of the world with a 
disassembled shelf. At the Perception step, mental models are found to capture 
goal-relevant information such as pieces of the shelf and affordances for connecting 
them to each other. At the Valuation step, the perceived disassembled shelf is com-
pared to the committed goal of assembled shelf, and the gaps between the two are 
detected. At the Action step, action tendencies intended to reduce the goal gap are 
generated and, as long as the pursuit of the given goal remains a priority, enacted. 
Next, all steps of the loop are repeated to adjust behavior to the outcomes of the 
actions and other changes in the world. The loop generally iterates until the goal gap 
has been minimized, unless people are also motivated to maintain the absence of the 
gap (Ecker & Gilead, 2018). The loop can also disintegrate when the goal loses its 
committed status (Carver & Scheier, 2005).

These intentional motivational phenomena can be reflected in awareness through 
their contributions to achievement emotions such as hope and anxiety, contentment 
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and disappointment, or relief and despair (Harley, Pekrun, Taxer, & Gross, 2019; 
Pekrun, 2006; Weiner, 1985). This is because emotions rely on appraisal processes 
that represent the relationship between a situation and goals (Moors, 2010; Smith & 
Lazarus, 1993), leading to loosely orchestrated changes in the mind and the body 
(Barrett, Mesquita, Ochsner, & Gross, 2007; Moors, Ellsworth, Scherer, & Frijda, 
2013; Mulligan & Scherer, 2012). In terms of our framework, the appraised rela-
tionships between a situation and goals overlaps with the goal gaps computed at the 
Valuation step of the feedback control goal pursuit cycle (Chang & Jolly, 2018; 
Moors, Boddez, & De Houwer, 2017; Uusberg, Taxer, Yih, Uusberg, & Gross, 
2019). In particular, goal gaps are closely aligned with the appraisal of goal congru-
ence that is strongly associated with the valence of affective feelings (Scherer, Dan, 
& Flykt, 2006). Specifically, positive affect is generated when the world is helpful 
for goals and negative affect is generated when the world is unhelpful for goals. The 
helpfulness assessment may also take into account the rate of goal progress, leading 
to positive affect when a goal is getting closer and negative affect when it is not 
(Carver & Scheier, 1990). Other important appraisal dimensions such as account-
ability and coping potential can be thought of as abstract features of the mental 
models that valuation systems have applied to explain the situation.

We have now seen how intentional motivation ranging from goal commitment to 
goal pursuit can emerge from distributed valuation systems. The synchronized com-
bination of valence and certainty tags produces committed goals and goal pursuit 
feedback control cycles. This cycle focuses perception loops on the extraction of 
goal-relevant information and action loops on the implementation of desired 
changes to the world. One consequence of the emergence of goal pursuit is the tem-
poral and cross-situational durability of the impact a committed goal has on behav-
ior. For instance, someone who has already spent some time queuing for a concert 
ticket may be more resistant to giving up than someone who has not yet begun. 
However, the temporal durability of some goals exceeds what can be explained by 
intentional motivation alone, suggesting a role for a third level of motivation to 
emerge along the gradient of complexity that we discuss next.

 Identity Motivation: From Self to Self-Regulation

The motivational phenomena to emerge on the identity motivation level include 
identity, or a valued sense of self (Berkman, Livingston, & Kahn, 2017), and self- 
regulation, or biasing of behavioral impulses serving more imminent goals in favor 
of pursuits of more distant goals (Berkman et al., 2017; Kotabe & Hofmann, 2015; 
O’Leary, Uusberg, & Gross, 2017). We propose that these motivational phenomena 
emerge from distributed valuation systems on the third level along the gradient of 
complexity. In this section, we will argue that identity and self-regulation can be 
seen as meta-level versions of goal commitment and goal pursuit. Specifically, we 
view identity as a commitment to attain certain goals and self-regulation as a feed-
back control pursuit of certain goal pursuits.
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Identity as well as self-regulation revolve around highly abstract mental models 
that denote the self. Mental models of the self can be viewed as conjunctions of 
various other models that represent self-related information such as personal char-
acteristics, social roles, long-term goals, and personal narratives (Dweck, 2013; 
Gillihan & Farah, 2005; McAdams, 2013). These self-related mental models arise 
within perception loops to help make sense of what is going on inside and outside 
of the person. Self-models with a sufficiently good match to evidence populate 
a person’s self-awareness. Over time, some self-models can obtain persistent certainty 
tags and become part of perceived reality irrespective of momentary evidence, 
underlying a person’s self-concept.

Self-models can also function as committed goals or end states that an individual 
seeks to turn into reality. We refer to such goals as identity. Our perspective suggests 
that self-models amount to identity the same way any mental model becomes a 
goal—by sufficiently strong valence and certainty tags. Identity includes parts of 
the self-concept that are persistently tagged with positive or negative valence, giv-
ing rise to the phenomenon of self-esteem (Mann, Hosman, Schaalma, & de Vries, 
2004). We suggest that the need for self-coherence or the self-verification motive 
can be understood as a commitment to positively valenced aspects of the self- 
concepts (Dweck, 2017; Leary, 2007; Swann, 1982). A related but distinct compo-
nent of identity is the ideal self (Higgins, 1987) which can be viewed as a set of 
self-models that are strongly valence tagged, insufficiently certainty tagged to 
already belong to the self-concept, but sufficiently certainty tagged to emerge as a 
committed goal. The striving for this aspect of identity overlaps with motivational 
phenomena such as self-enhancement and self-protection (Alicke & Sedikides, 
2009; Leary, 2007).

 We suggest that identity can synchronize valuation systems the same way all 
committed goals do and should therefore produce goal shielding and goal gaps. This 
prediction aligns with findings that self-related information is prioritized in various 
information processing stages, indicating that identity can indeed produce goal 
shielding (Alexopoulos, Muller, Ric, & Marendaz, 2012). Identity can also produce 
goal gaps, or representations of the distance between the self as it is perceived to be 
and how it is desired to be. For instance, people can have a strong sense of being 
incongruent with their self-concept (Swann, 1982) and not living up to their ideal 
selves (Alicke & Sedikides, 2009).

The unique feature to emerge on the third level of the gradient of complexity is 
recursiveness or meta-level nature of identity and self-regulation. Identity, a type of 
goal, can be thought of as a goal about other goals. The intentional-level goals are 
often in competition as people regularly juggle different pursuits in parallel. For 
instance, a meeting with a colleague can involve working on several agenda items, 
maintaining the relationship, handling of phone notifications, and dealing with 
bodily signals such as thirst. The number of parallel goals people care about 
increases with the temporal window of analysis, as we move from a moment to a 
day, to a week, to a year, or to the foreseeable future. Identity can be seen as one 
mechanism through which some goals will become prioritized over others (Berkman 
et al., 2017). For instance, when the meeting described above grows overwhelming, 
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a person who identifies with being an efficient manager but not with being a nice 
person may sacrifice the goal of managing the relationship in service of managing 
the agenda. The person’s identity has therefore functioned as a goal to prioritize one 
goal over another.

The recursiveness of identity motivation is also visible when self-regulation is 
viewed as an identity pursuit gap reduction feedback loop. Self-regulation is what is 
needed to stop oneself from consuming pleasant substances that are harmful in the 
long run or to sacrifice activities with a short-term payoff such as watching TV to 
activities with a long-term payoff such as exercising. A common element in these 
situations, and a defining feature of self-regulation, is the competition between the 
pursuit of shorter-term goals and the pursuit of longer-term goals (Berkman et al., 
2017; Duckworth, Gendler, & Gross, 2016; Kotabe & Hofmann, 2015; Van Tongeren 
et al., 2018). The goals or end states that self-regulation seeks to alter thus amount 
not to any state in the external environment but to the state of competition between 
different goal pursuits within the individual. 

Viewing self-regulation as a form of goal pursuit suggests that self-regulation 
can also be analyzed as a feedback control process involving the World, Perception, 
Valuation, and Action steps (see Fig. 6.8). Self-regulation as a feedback control goal 
pursuit cycle seeks to reduce the gap between some component of identity and the 
perceived self. A key difference between regular goal pursuit emerging on the inten-
tional motivation level and the meta-level goal pursuit of self-regulation is the nature 
of the world that these cycles seek to change. Whereas goal pursuit seeks to change 
the state of environment, both external and internal, self-regulation seeks to change 
the state of other goal pursuits. For instance, consider someone trying to overcome 
a craving for a tasty burger in favor of a healthy and environmentally friendly salad. 
Self-regulation is needed in this situation not for actually ordering the salad, 
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Fig. 6.8 Self-regulation as identity pursuit. Self-regulation is a feedback control goal pursuit cycle 
that seeks to minimize a gap between an aspect of identity and perceived state of the self. It repre-
sents the state of relevant ongoing goal pursuits at the Perception step, evaluates them in relation 
to identity at Valuation step, and launches regulation strategies at the Action step
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which would be trivial for action loops within an intentional-level goal pursuit cycle. 
Self- control is needed in this situation to shift the balance among the motivational 
 processes emerging on the intentional level to commit to the salad instead of the 
burger. Thus, the world that self-regulation seeks to change is the state of other goal 
pursuits (Fig. 6.8).

The focus on other goals is then propagated to the remaining steps of self- 
regulation goal pursuit cycle (Gross, 2015; O’Leary et al., 2017). The Perception 
step of self-regulation involves perception loops using interoceptive and other evi-
dence to populate self-awareness with appropriate mental models, such as the con-
cept of craving for the burger (Barrett, 2017; Seth, 2013). At the Valuation step, gaps 
are detected between the perceived state of ongoing goal pursuits and aspects of 
identity such as being a healthy and ethical person. Finally, the Action step of self- 
regulation includes overt and covert action that are directed at changing the state of 
ongoing goal pursuits, such as deliberately focusing on the negative consequences 
of eating the burger with the aim to reappraise its allure (Duckworth et al., 2016; 
Lazarus, 1993; O’Leary et al., 2017). Self-regulation can go through multiple itera-
tions before the identity gap is minimized.

Identity motivation can also give rise to unique emotional episodes. One class of 
emotions emerging on this level are self-conscious emotions such as pride, shame, 
and guilt (Leary, 2007; Tracy & Robins, 2004). The appraisal process underlying 
these emotions assesses the congruence between the situation and aspects of iden-
tity, such as one’s social standing. Another unique class of emotion to emerge on 
this level are meta-emotions or emotions arising in response to another emotion. For 
instance, people can feel negatively about an emotion they experience, such as anxi-
ety, if they have appraised this emotion to be incongruent with a relevant goal such 
as giving a good presentation (Tamir, 2015). The affective feelings in response to 
internal states are important triggers of self-regulatory processes such as emotion 
regulation (Gross, 2015).

We have drawn parallels between committed goals and identity and between goal 
pursuit and self-regulation. In fact, the structure of the feedback control goal pursuit 
process can also help us understand the action tendencies produced by the higher- 
order self-regulatory process (Gross, 1998, 2015). As the goal of identity pursuit is 
to alter the state of concurrent goal pursuits, it can in principle alter each of the four 
phases of goal pursuit. First, the self-regulatory loop can alter or modify the world 
states that goal pursuit processes take as their input. For instance, someone wishing 
to avoid eating too many sweets may remove sweets from their home. Second, 
self- regulation can interfere with the Perception step of goal pursuit by directing 
attention away from thinking about sweets. Third, the self-regulatory loop can inter-
fere with the Valuation step of goal pursuit, for instance by thinking about how a 
recent meal already provided a sweet experience, thereby making the goal gaps 
seem smaller. Finally, the self-regulatory loop can launch actions that directly target 
the tendencies produced by goal pursuit processes, such as suppressing the urge to 
get some sweets.

6 Motivation: A Valuation Systems Perspective



184

 Conclusion

In this chapter, we have presented a valuation systems perspective on motivation. 
This account relies on a functional analysis of valuation systems that combine 
mental models with hierarchical feedback control to solve the perception and action 
problems associated with producing adaptive behavior in a dynamic, rapidly chang-
ing world. The perception problem is solved by perception loops that populate per-
ceptual reality with predictions that do the best job of explaining sensory evidence. 
The action problem is solved by action loops that generate action tendencies by 
identifying the means that do the best job of approximating end states. Motivational 
force and direction emerge from the dynamic interactions within and between valu-
ation systems at three broad levels along a gradient of complexity. Inherent motives 
of predictability and competence arise from aggregated gaps within perception and 
action loops, respectively. Intentional motivation arises as predictions with suffi-
cient certainty and valence tags become committed goals that synchronize valuation 
systems and give rise to a goal pursuit cycle that uses descending feedback control 
to minimize goal gaps. Identity motivation arises from further synchronization of 
valuation systems into identity, or goal about goals, and self-regulation, or feedback 
control of goal pursuits. Each of these levels can also give rise to affective feelings 
that can regulate distributed valuation systems and function as teaching signals.

Motivation as viewed from the valuation systems perspective has three broad char-
acteristics. First, motivation is emergent. There is no stage in the unfolding of behavior 
at which the motive to act is fully formed and then merely implemented. Instead, 
action affordances detected by valuation systems are converted to action tendencies 
across several competing valuation systems. Second, motivation is constructive as it 
arises neither from the environment nor the person in isolation but from an active 
negotiation between the two within valuation systems. Our perception of the world, of 
our own goals, and of afforded actions relies on the mental models that perception 
systems have generated over time and in the moment. This suggests that the mental 
models we bring to a situation have a substantial impact on the motivation we experi-
ence (Dweck, 2017). Third, motivation is allostatic. While homeostatic control seeks 
to maintain a fixed state of a system, allostatic control seeks to flexibly adjust the state 
of the system in anticipation of changes in the world (Barrett, 2017; Sterling, 2012; 
Toomela, 2016). Action loops enact allostatic control by guiding behavior toward 
predictive mental models across multiple layers of complexity. Taken together, we 
hope these ideas help move us toward an integrative perspective on motivation.
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