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Abstract. In search-based software engineering we often use popular
heuristics with default configurations, which typically lead to suboptimal
results, or we perform experiments to identify configurations on a trial-
and-error basis, which may lead to better results for a specific problem.
To obtain better results while avoiding trial-and-error experiments, a fit-
ness landscape analysis is helpful in understanding the search problem,
and making an informed decision about the heuristics. In this paper, we
investigate the search problem of test suite generation for mobile appli-
cations (apps) using Sapienz whose heuristic is a default NSGA-II. We
analyze the fitness landscape of Sapienz with respect to genotypic diver-
sity and use the gained insights to adapt the heuristic of Sapienz. These
adaptations result in Sapienzdiv that aims for preserving the diversity
of test suites during the search. To evaluate Sapienzdiv, we perform a
head-to-head comparison with Sapienz on 76 open-source apps.
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1 Introduction

In search-based software engineering and particularly search-based testing, pop-
ular heuristics (e.g.,[17]) with best-practice configurations in terms of operators
and parameters (e.g.,[7]) are often used. As this out-of-the-box usage typically
leads to suboptimal results, costly trial-and-error experiments are performed to
find a suitable configuration for a given problem, which leads to better results [4].
To obtain better results while avoiding trial-and-error experiments, fitness land-
scape analysis can be used [16,23]. The goal is to analytically understand the
search problem, determine difficulties of the problem, and identify suitable con-
figurations of heuristics that can cope with these difficulties (cf. [16,19]).

In this paper, we investigate the search problem of test suite generation for
mobile applications (apps). We rely on Sapienz that uses a default NSGA-II to
generate test suite for apps [17]. NSGA-II has been selected as it “is a widely-
used multiobjective evolutionary search algorithm, popular in SBSE research”
[17, p. 97], but without adapting it to the specific problem (instance). Thus, our
goal is to analyze the fitness landscape of Sapienz and use the insights for adapting
the heuristic of Sapienz. This should eventually yield better test results.
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Our analysis focuses on the global topology of the landscape, especially how
solutions (test suites) are spread in the search space and evolve over time. Thus,
we are interested in the genotypic diversity of solutions, which is considered
important for evolutionary search [30]. According to our analysis, Sapienz lacks
diversity of solutions so that we extend it to Sapienzdiv that integrates four
diversity promoting mechanisms. Therefore, our contributions are the descriptive
study analyzing the fitness landscape of Sapienz (Sect. 3), Sapienzdiv (Sect. 4),
and the empirical study with 76 apps evaluating Sapienzdiv (Sect. 5).

2 Background: Sapienz and Fitness Landscape Analysis

Sapienz is a multi-objective search-based testing approach [17]. Using NSGA-II,
it automatically generates test suites for end-to-end testing of Android apps. A
test suite t consists of m test cases 〈s1, s2, ..., sm〉, each of which is a sequence of
up to n GUI-level events 〈e1, e2, ..., en〉 that exercise the app under test. The gen-
eration is guided by three objectives: (i) maximize fault revelation, (ii) maximize
coverage, and (iii) minimize test sequence length. Having no oracle, Sapienz con-
siders a crash of the app caused by a test as a fault. Coverage is measured at the
code (statement coverage) or activity level (skin coverage). Given these objec-
tives, the fitness function is the triple of the number of crashes found, coverage,
and sequence length. To evaluate the fitness of a test suite, Sapienz executes
the suite on the app under test deployed on an Android device or emulator.

A fitness landscape analysis can be used to better understand a search prob-
lem [16]. A fitness landscape is defined by three elements (cf. [28]): (1) A search
space as a set X of potential solutions. (2) A fitness function fk : X → IR
for each of the k objectives. (3) A neighborhood relation N : X → 2X that
associates neighbor solutions to each solution (e.g., using basic operators, or dis-
tances of solutions). Based on these three elements, various metrics have been
proposed to analyze the landscape [16,23]. They characterize the landscape, for
instance, in terms of the global topology (i.e., how solutions and the fitness are
distributed), local structure (i.e., ruggedness and smoothness), and evolvability
(i.e., the ability to produce fitter solutions). The goal of analyzing the landscape
is to determine difficulties of a search problem and identify suitable configura-
tions of search algorithms that can cope with these difficulties (cf. [16,19]).

3 Fitness Landscape Analysis of Sapienz

3.1 Fitness Landscape of Sapienz

At first, we define the three elements of a fitness landscape (cf. Sect. 2) for
Sapienz: (1) The search space is given by all possible test suites t according to
the representation of test suites in Sect. 2. (2) The fitness function is given by
the triple of the number of crashes found, coverage, and test sequence length
(cf. Sect. 2). (3) As the neighborhood relation we define a genotypic distance
metric for two test suites (see Algorithm 1). The distance of two test suites
t1 and t2 is the sum of the distances between their ordered test sequences, which
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is obtained by comparing all sequences st1i of t1 and st2i t2 by index i (lines 2–4).
The distance of two sequences is the difference of their lengths (line 5) increased
by 1 for each different event at index j (lines 6–9). Thus, the distance is based on
the differences of ordered events between the ordered sequences of two test suites.

Algorithm 1 dist(t1, t2): compute distance between two test suites t1 and t2.
Input: Test suites t1 and t2, max. suite size suitemax, max. sequence length seqmax

Output: Distance between t1 and t2
1: distance ← 0;
2: for i ← 0 to suitemax do � iterate over all suitemax test sequences
3: st1i ← t1[i]; � ith test sequence of test suite t1
4: st2i ← t2[i]; � ith test sequence of test suite t2
5: distance ← distance + abs(|st1i | - |st2i |); � length difference as distance
6: for j ← 0 to seqmax do � iterate over all seqmax events
7: if |st1i | ≤ j or |s1t2

i | ≤ j then break;
8: if st1i [j] �= st2i [j] then � event comparison by index j
9: distance ← distance + 1; � events differ at index j in both seqs.

10: return distance;

This metric is moti-
vated by the basic
mutation operator of
Sapienz shuffling the
order of test sequences
within a suite, and the
order of events within
a sequence. It is com-
mon that the neighbor-
hood relation is based
on operators that make small changes to solutions [19].

3.2 Experimental Setup

To analyze the fitness landscape of Sapienz, we extended Sapienz with metrics
that characterize the landscape. We then executed Sapienz on five apps, repeat
each execution five times, and report mean values of the metrics for each app.1

The five apps we selected for the descriptive study are part of the 68 F-Droid
benchmark apps [6] used to evaluate Sapienz [17]. We selected aarddict, Munch-
Life, and passwordmanager since Sapienz did not find any fault for these apps,
and hotdeath and k9mail2, for which Sapienz did find faults [17]. Thus, we con-
sider apps for which Sapienz did and did not reveal crashes to obtain potentially
different landscape characteristics that may present difficulties to Sapienz.

We configured Sapienz as in [17]. The crossover and mutation rates are set
to 0.7 and 0.3 respectively. The population and offspring size is 50. An individual
(test suite) contains 5 test sequences, each constrained to 20–500 events. Instead
of 100 generations [17], we observed in initial experiments that the search stag-
nates earlier so that we set the number of generation to 40 (stopping criterion).

3.3 Results

The results of our study provide an analysis of the fitness landscape of Sapienz
with respect to the global topology, particularly the diversity of solutions, how
the solutions are spread in the search space, and evolve over time. According to
Smith et al. [27, p. 31], “No single measure or description can possibly charac-
terize any high-dimensional heterogeneous search space”. Thus, we selected 11
metrics from literature and implemented them in Sapienz, which characterize
(1) the Pareto-optimal solutions, (2) the population, and (3) the connectedness

1 All experiments were run on single 4.0 Ghz quad-core PC with 16 GB RAM, using
5 Android emulators (KitKat 4.4.2, API level 19) in parallel to test one app.

2 We used ver. 5.207 of k9mail and not ver. 3.512 as in the 68 F-Droid apps benchmark.
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of Pareto-optimal solutions, all with a focus on diversity. These metrics are com-
puted after every generation so that we can analyze their development over time.
In the following, we discuss these 11 metrics and the results of the fitness land-
scape analysis. The results are shown in Fig. 1 where the metrics (y-axis) are
plotted over the 40 generations of the search (x-axis) for each of the five apps.

(1) Metrics for Pareto-Optimal Solutions

•Proportion of Pareto-optimal solutions (ppos). For a population P , ppos is
the number of Pareto-optimal solutions Popt divided by the population size:
ppos(P ) = |Popt|

|P | . A high and especially strongly increasing ppos may indicate
that the search based on Pareto dominance stagnates due to missing selection
pressure [24]. A moderately increasing ppos may indicate a successful search.

For Sapienz and all apps (see Fig. 1(a)), ppos slightly fluctuates since a new
solution can potentially dominate multiple previously non-dominated solutions.
At the beginning of the search, ppos is low (0.0–0.1), shows no improvement in
the first 15–20 generations, and then increases for all apps except of password-
manager. Thus, the search seems to progress while the enormously increasing
ppos for MunchLife and hotdeath might indicate a stagnation of the search.

•Hypervolume (hv). To further investigate the search progress, we compute the
hv after each generation. The hv is the volume in the objective space covered by
the Pareto-optimal solutions [10,31]. Thus, an increasing hv indicates that the
search is able to find improved solutions, otherwise the hv and search stagnate.

Based on the objectives of Sapienz (max. crashes, max. coverage, and min.
sequence length), we choose the nadir point (0 crashes, 0 coverage, and sequence
length of 500) as the reference point for the hv . In Fig. 1(b), the evolution of the
hv over time rather than the absolute numbers are relevant to analyze the search
progress of Sapienz. While the hv increases during the first 25 generations, it
stagnates afterwards for all apps; for k9mail already after 5 generations. For
aarddict, MunchLife, and hotdeath the hv stagnates after the ppos drastically
increases (cf. Fig. 1(a)), further indicating a stagnation of the search.

(2) Population-Based Metrics

•Population diameter (diam). The diam metrics measure the spread of all popu-
lation members in the search space using a distance metric for individuals, in our
case Algorithm 1. The maximum diam computes the largest distance between
any two individuals of the population P : maxdiam(P ) = maxxi,xj∈P dist(xi, xj)
[5,20], showing the absolute spread of P . To respect outliers, we can compute the
average diam as the average of all pairwise distances between all individuals [5]:

avgdiam(P ) =

∑|P |
i=0

∑|P |
j=0,j �=i dist(xi, xj)

|P |(|P | − 1)
(1)

Additionally, we compute the minimum diameter to see how close individuals
are in the search space, or even identical: mindiam(P ) = minxi,xj∈P dist(xi, xj).



62 T. Vogel et al.

aarddict MunchLife passwordm. hotdeath k9mail

(a) Proportion of Pareto-optimal solutions (ppos).

(b) Hypervolume (hv).

(c) Max., average, and min. population diameter (maxdiam, avgdiam, mindiam).

(d) Relative population diameter (reldiam).

(e) Proportion of Pareto-optimal solutions in clusters (pconnec).

(f) Number of clusters (nconnec).

(g) Minimum distance k for a connected graph (kconnec).

(h) Number of Pareto-optimal solutions in the largest cluster (lconnec).

(i) Proportion of hypervolume covered by the largest cluster (hvconnec).

Fig. 1. Fitness landscape analysis results for Sapienz.
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Concerning each plot for Sapienz and all apps (see Fig. 1(c)), the upper,
middle, and lower curve are respectively maxdiam, avgdiam, and mindiam. For
each curve, we see a clear trend that the metrics decrease over time, which is typ-
ical for genetic algorithms due to the crossover. However, the metrics drastically
decrease for Sapienz in the first 25 generations. The avgdiam decreases from
>1500 to eventually <200 for each app. The maxdiam decreases similarly but
stays higher for hotdeath and k9mail than for the other apps. The development
of the avgdiam and maxdiam indicates that all individuals are continuously get-
ting closer to each other in the search space, thus becoming more similar. The
population even contains identical solutions as indicated by mindiam reaching 0.

•Relative population diameter (reldiam). Bachelet [5] further proposes the rel-
ative population diameter, which is the avgdiam in proportion to the largest
possible distance d: reldiam(P ) = avgdiam(P )

d . This metric is indicative of the
concentration of the population in the search space. A small reldiam indicates
that the population members are grouped together in a region of the space [5].

For Sapienz, the largest possible distance d between two test suites is 2500,
in which case they differ in all events (up to 500 for a test sequence) for all of their
five individual test sequences. For d = 2500 and all apps (cf. Fig. 1(d)), reldiam
starts at a high level of around 0.9 indicating that the solutions are spread in the
search space. Then, it decreases in the first 25 generations to around 0.4 (aard-
dict, MunchLife, and passwordmanager), and below 0.3 (hotdeath and k9mail)
indicating a grouping of the solutions in one or more regions of the search space.

(3)Metrics Based on the Connectedness of Pareto-Optimal Solutions

The following metrics analyze the connectedness and thus, clusters of Pareto-
optimal solutions in the search space [9,22]. For this purpose, we consider a graph
in which Pareto-optimal solutions are vertices. The edges connecting the vertices
are labeled with weights δ, which are the number of moves a neighborhood
operator has to make to reach one vertice from another [22]. This results in a
graph of fully connected Pareto-optimal solutions. Introducing a limit k on δ
and removing the edges whose weights δ are larger than k leads to varying sizes
of connected components (clusters) in the graph. This graph can be analyzed by
metrics to characterize the Pareto-optimal solutions in the search space [12,22].

In our case, the weights δ are determined by the distance metric for test suites
based on the mutation operator of Sapienz (cf. Algorithm 1). We determined
k experimentally to be 300 investigating values of 400, 300, 200, and 100. While
a high value results in a single cluster of Pareto-optimal solutions, a low value
results in a high number of singletons (i.e., clusters with one solution). Thus,
two test suites (vertices) are connected (neighbors) in the graph if they differ in
less than 300 events across their test sequences as computed by Algorithm 1.

•Proportion of Pareto-optimal solutions in clusters (pconnec). This metric
divides the number of vertices (Pareto-optimal solutions) that are members of
clusters (excl. singletons) by the total number of vertices in the graph [22]. A high
pconnec indicates a grouping of the Pareto-optimal solutions in the search space.
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As shown in Fig. 1(e), pconnec is relatively low during the first generations
before it increases for all apps. For MunchLife, passwordmanager, and hotdeath,
pconnec reaches 1 meaning that all Pareto-optimal solutions are in clusters,
while it converges around 0.7 and 0.8 for aarddict and k9mail respectively. This
indicates that the Pareto-optimal solutions are grouped in the search space.

•Number of clusters (nconnec). We further analyze in how many areas of
the search space (clusters) the Pareto-optimal solutions are grouped. Thus, ncon-
nec counts the number of clusters in the graph [12,22]. A high (low) nconnec
indicates that the Pareto-optimal solutions are spread in many (few) areas of
the search space.

Figure 1(f) plots nconnec for Sapienz and all apps. The y-axis of each plot
denoting nconnec ranges from 0 to 6. Initially, the Pareto-optimal solutions are
distributed in 2–4 clusters, then grouped in 1 cluster. An exception is k9mail for
which there always exists more than 3 clusters. Except for k9mail, this indicates
that the Pareto-optimal solutions are grouped in one area of the search space.

•Minimum distance k for a connected graph (kconnec). This metric identifies k
so that all Pareto-optimal solutions are members of one cluster [12,22]. Thus,
kconnec quantifies the spread of all Pareto-optimal solutions in the search space.

For Sapienz, Fig. 1(g) plots kconnec (ranging from 0 to 1400) over the genera-
tions. Similarly to the diam metrics (cf. Fig. 1(c)), kconnec decreases, moderately
for hotdeath (from initially ≈700 to ≈600) and k9mail (≈1000→ ≈800), and
drastically for passwordmanager (≈1200→ ≈200), MunchLife (≈1000→ ≈200),
and aarddict (≈600→ ≈100). This indicates that all Pareto-optimal solutions
are getting closer in the search space as the spread of the cluster is decreasing.

•Number of Pareto-optimal solutions in the largest cluster (lconnec). It deter-
mines the size of the largest cluster by the number of members [12], showing how
many Pareto-optimal solutions are in the most dense area of the search space.

Figure 1(h) plots lconnec (ranging from 0 to 50 given the population size of
50) over the generations. lconnec increases after 15–30 generations to 20 (aarddict
and hotdeath) or even 50 (MunchLife) solutions. This indicates that the largest
cluster is indeed large so that many Pareto-optimal solutions are grouped in one
area of the search space. In contrast, lconnec stays always below 10 indicating
smaller largest clusters for passwordmanager and k9mail than for the other apps.

•Proportion of hypervolume covered by the largest cluster (hvconnec). Besides
lconnec, we compute the relative size of the largest cluster in terms of hyper-
volume (hv). Thus, hvconnec is the proportion of the overall hv covered by the
Pareto-optimal solutions in the largest cluster. It quantifies how this cluster in
the search space dominates in the objective space and contributes to the hv .

For Sapienz (cf. Fig. 1(i)), hvconnec varies a lot during the first 10 genera-
tions, then stabilizes at a high level for all apps. For aarddict, MunchLife, and
passwordmanager, the largest clusters covers 100% of the hv since there is only
1 cluster left (cf. nconnec in Fig. 1(f)). For hotdeath, hvconnec is close to 70%
indicating that there is 1 other cluster covering 30% of the hv (cf. nconnec).
For k9mail, hvconnec is around 90% indicating that the other 2–3 clusters
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(cf. nconnec) cover only 10% of the hv . This indicates that the largest clus-
ter covers the largest proportion of the hv , and thus contributes most to the
Pareto front.

3.4 Discussion

The results characterizing the fitness landscape of Sapienz reveal insights about
how Sapienz manages the search problem of generating test suites for apps.

Firstly, the development of the proportion of Pareto-optimal solutions (cf.
Fig. 1(a)) and hypervolume (cf. Fig. 1(b)) indicates a stagnation of the search
after 25 generations. The drastically increasing proportion of Pareto-optimal
solutions in some cases may indicate a problem of dominance resistance, i.e.,
the search cannot produce new solutions that dominate the current, poorly per-
forming but locally non-dominated solutions [24]. In other cases, the proportion
remains low, i.e., the search cannot find many non-dominated solutions.

Secondly, the development of the population diameters (cf. Fig. 1(c)) indicate
a decreasing diversity of all solutions during the search. The development of
the relative population diameter (cf. Fig. 1(d)) witnesses this observation and
indicates that the population members are concentrated in the search space [5].
The minimum diameter (cf. Fig. 1(c)) even indicates that the population contains
duplicates of solutions, which reduces the genetic variation in the population.

Thirdly, the development of the proportion of Pareto-optimal solutions in
clusters (cf. Fig. 1(e)) indicates a grouping of these solutions in the search space,
mostly in one cluster (cf. Fig. 1(f)). Another indicator for the decreasing diversity
of the Pareto-optimal solutions is the decreasing minimum distance k required
to form one cluster of all these solutions (cf. Fig. 1(g)). Additionally, the largest
cluster is often indeed large in terms of number of Pareto-optimal solutions
(cf. Fig. 1(h)), and hypervolume covered by these solutions (cf. Fig. 1(i)). Even
if there exist multiple clusters of Pareto-optimal solutions, the largest cluster
still contributes most to the overall hypervolume and thus, to the Pareto front.

In summary, the fitness landscape analysis of Sapienz indicates a stagnation
of the search while the diversity of all solutions decreases in the search space.

4 Sapienzdiv

Given the fitness landscape analysis results, Sapienz suffers from a decreasing
diversity of solutions in the search space over time. It is known that the perfor-
mance of genetic algorithms is influenced by diversity [21,30]. A low diversity
may lead the search to a local optimum that cannot be escaped easily [30]. Thus,
diversity is important to address dominance resistance so that the search can
produce new solutions that dominate poorly performing, locally non-dominated
solutions [24]. Moreover, Shir et al. [26, p. 95] report that promoting diversity
in the search space does not hamper “the convergence to a precise and diverse
Pareto front approximation in the objective space of the original algorithm”.
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Therefore, we extended Sapienz to Sapienzdiv by integrating mechanisms
into the search algorithm that promote the diversity of the population in the
search space.3 We developed four mechanisms that extend the Sapienz algo-
rithm at different steps: at the initialization, before and after the variation, and
at the selection. Algorithm 2 shows the extended search algorithm of Sapienzdiv
and highlights the novel mechanisms in blue. We now discuss these mechanisms.

Diverse initial population. As the initial population may effect the results of the
search [13], we assume that a diverse initial population could be a better start for
the exploration. Thus, we extend the generation of the initial population Pinit

to promote diversity. Instead of generating |P | = sizepop solutions, we generate
sizeinit solutions where sizeinit > sizepop (line 7 in Algorithm 2). Then, we
select those sizepop solutions from Pinit that are most distant from each other
using Algorithm 1, to form the first population P (line 8).

Algorithm 2 Overall algorithm of Sapienzdiv

Input: AUT A, crossover probability p, mutation probability q, max. generation gmax,
population size sizepop, offspring size sizeoff , size of the large initial population
sizeinit, diversity threshold divlimit, number of diverse solutions to include ndiv

Output: UI model M , Pareto front PF , test reports C
1: M ← K0; PF ← ∅; C ← ∅; � initialization
2: generation g ← 0;
3: boot up devices D; � prepare devices/emulators that will run the app
4: inject MOTIFCORE into D; � install Sapienz component for hybrid exploration
5: static analysis on A; � for seeding strings to be used for text fields of A
6: instrument and install A; � app under test is instrumented and installed on D
7: initialize population Pinit of size sizeinit; � large initial population
8: P = selectMostDistant(Pinit, sizepop); � select sizepop most distant individuals
9: evaluate P with MOTIFCORE and update (M, PF, C);

10: divinit = calculateDiversity(P ); � diversity of the initial population (Eq. 1)
11: while g < gmax do
12: g ← g + 1;
13: divpop = calculateDiversity(P ); � diversity of the current population (Eq. 1)
14: if divpop ≤ divlimit × divinit then � check decrease of diversity
15: Q ← generate offspring of size sizeoff; � ≈ generate a population
16: evaluate Q with MOTIFCORE and update (M, PF, C);
17: P = selectMostDistant(P ∪ Q, |P |); � selection based on distance
18: else
19: Q ← wholeTestSuiteV ariation(P, p, q); � create offspring
20: evaluate Q with MOTIFCORE and update (M, PF, C);
21: PQ ← removeDuplicates(P ∪ Q); � duplicate elimination
22: F ← sortNonDominated(PQ, |P |);
23: P ′ ← ∅; � non-dominated individuals
24: for each front F in F do
25: if |P ′| ≥ |P | then break;
26: assignCrowdingDistance(F );
27: for each individual f in F do
28: P ′ ← P ′ ∪ f ;
29: P ′ ← sorted(P ′, ≺c);
30: P ← P ′[0 : (sizepop − ndiv)]; � take best (sizepop − ndiv) solution from P ′

31: Pdiv = selectMostDistant(PQ, ndiv); � select ndiv most distant solutions
32: P = P ∪ Pdiv; � next population
33: return (M, PF, C);

Adaptive diversity con-
trol. This mechanism
dynamically controls
the diversity if the pop-
ulation members are
becoming too close in
the search space rela-
tive to the initial popu-
lation. It further makes
the algorithm adaptive
as it uses feedback of
the search to adapt the
search (cf. [30]).

To quantify the
diversity divpop of pop-
ulation P , we use the
average population
diameter (avgdiam)
defined in Eq. 1. At the
beginning of each gen-
eration, divpop is cal-
culated (line 13) and
compared to the diver-
sity of the initial pop-
ulation divinit (line 14)
calculated once in
line 10. The comparison checks whether divpop has decreased to less than
divlimit × divinit. For example, the condition is satisfied for the given thresh-
old divlimit = 0.4 if divpop has decreased to less than 40% of divinit.

3 Sapienzdiv is available at: https://github.com/thomas-vogel/sapienzdiv-ssbse19.

https://github.com/thomas-vogel/sapienzdiv-ssbse19
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In this case, the offspring Q is obtained by generating new solutions using
the original Sapienz method to initialize a population (line 15). The next pop-
ulation is formed by selecting the |P | most distant individuals from the current
population P and offspring Q (line 17). In the other case, the variation operators
(crossover and mutation) of Sapienz are applied to obtain the offspring (line 19)
followed by the selection. Thus, this mechanism promotes diversity by inserting
new individuals to the population, having an effect of restarting the search.

Duplicate elimination. The fitness landscape analysis found duplicated test
suites in the population. Eliminating duplicates is one technique to maintain
diversity and improve search performance [25,30]. Thus, we remove duplicates
after reproduction and before selection in the current population and offspring
(line 21). Duplicated test suites are identified by a distance of 0 computed by
Algorithm 1.

Hybrid selection. To promote diversity in the search space, the selection is
extended by dividing it in two parts: (1) The non-dominated sorting of NSGA-II
is performed as in Sapienz (lines 22–29 in Algorithm 2) to obtain the solutions
P ′ sorted by domination rank and crowding distance. (2) From P ′, the best
(sizepop − ndiv) solutions form the next population P where sizepop is the size
of P and ndiv the configurable number of diverse solutions to be included in P
(line 30). These ndiv diverse solutions Pdiv are selected as the most distant solu-
tions from the current population and offspring PQ (line 31) using the distance
metric of Algorithm 1. Finally, Pdiv is added to the next population P (line 32).

While the NSGA-II sorting considers the diversity of solutions in the objec-
tive space (crowding distance), the selection of Sapienzdiv also considers the
diversity of solutions in the search space, which makes the selection hybrid.

5 Evaluation

We evaluate Sapienzdiv in a head-to-head comparison with Sapienz to investi-
gate the benefits of the diversity-promoting mechanisms. Our evaluation targets
five research questions (RQ) with two empirical studies similarly to [17]:

RQ1. How does the coverage achieved by Sapienzdiv compare to Sapienz?
RQ2. How do the faults found by Sapienzdiv compare to Sapienz?
RQ3. How does Sapienzdiv compare to Sapienz concerning the length of their

fault-revealing test sequences?
RQ4. How does the runtime overhead of Sapienzdiv compare to Sapienz?
RQ5. How does the performance of Sapienzdiv compare to the performance of

Sapienz with inferential statistical testing?
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5.1 Experimental Setup

Weconduct two empirical studies, Study 1 to answerRQ1–4, andStudy 2 to answer
RQ5. The execution of both studies was distributed on eight servers4 while each
server runs one approach to test one app at a time using 10 Android emulators
(Android KitKat version, API 19). We configured Sapienz and Sapienzdiv as in
the experiment for the fitness landscape analysis (cf. Sect. 3.2) and in [17]. The only
difference is that we test each app for 10 generations in contrast to Mao et al. [17]
who test each app for one hour, since we were not in full control of the servers run-
ning in the cloud. However, we still report the execution times of both approaches
(RQ4). Moreover, we configured the novel parameters of Sapienzdiv as follows:
sizeinit = 100, divlimit = 0.5, and ndiv = 15. For Study 1 we perform one run
to test each app over 10 generations by each approach. For Study 2 we perform 20
repetitions of such runs for each app and approach.

5.2 Results

Study 1. In this study we use 66 of the 68 F-Droid benchmark apps5 provided by
Choudhary et al. [6] and used to evaluate Sapienz [17]. The results on each app
are shown in Table 1 where S refers to Sapienz, Sd to Sapienzdiv, Coverage
to the final statement coverage achieved, #Crashes to the number of revealed
unique crashes, Length to the average length of the minimal fault-revealing test
sequences (or ‘–’ if no fault has been found), and Time (min) to the execution
time in minutes of each approach to test the app over 10 generations.

RQ1. Sapienz achieves a higher final coverage for 15 apps, Sapienzdiv for
24 apps, and both achieve the same coverage for 27 apps. Figure 2 shows that a
similar coverage is achieved by both approaches on the 66 apps, in average 45.05
by Sapienz and 45.67 by Sapienzdiv, providing initial evidence that Sapienzdiv
and Sapienz perform similarly with respect to coverage.

RQ2. To report about the found faults, we count the total crashes, out of
which we also identify the unique crashes (i.e., their stack traces are different
from the traces of the other crashes of the app). Moreover, we exclude faults
caused by the Android system (e.g., native crashes) and test harness (e.g., code
instrumentation).

As shown in Table 2, Sapienzdiv revealed more total (6941 vs 5974) and
unique (141 vs 119) crashes, and found faults in more apps (46 vs 43) than
Sapienz. Moreover, it found 51 unique crashes undetected by Sapienz, Sapienz
found 29 unique crashes undetected by Sapienzdiv, and both found the same
90 unique crashes. The results for the 66 apps provide initial evidence that
Sapienzdiv can outperform Sapienz in revealing crashes.

4 For each server: 2×Intel(R) Xeon(R) CPU E5-2620 @ 2.00 GHz, with 64 GB RAM.
5 We exclude aGrep and frozenbubble as Sapienz/Sapienzdiv cannot start these apps.
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Table 1. Results on the 66 benchmark apps.

Subject Coverage #Crashes Length Time (min)
S Sd S Sd S Sd S Sd

a2dp 33 32 4 3 315 250 95 117
aarddict 14 14 1 1 103 454 69 74
aLogCat 66 67 0 2 – 232 125 140
Amazed 69 69 2 1 193 69 67 78
AnyCut 64 64 2 0 244 – 80 105
baterrydog 65 65 1 1 26 155 82 91
swiftp 13 13 0 0 – – 88 105
Book-Catalogue 19 24 2 4 273 223 86 98
bites 33 35 1 1 76 39 78 91
battery 79 79 9 10 251 230 109 122
addi 19 18 1 1 39 31 87 133
alarmclock 62 62 6 9 133 279 143 163
manpages 69 69 0 0 – – 81 92
mileage 34 33 5 6 252 286 100 114
autoanswer 16 16 0 0 – – 78 90
hndroid 15 16 1 1 27 53 97 111
multismssender 57 54 0 0 – – 88 102
worldclock 90 91 2 1 266 169 109 132
Nectroid 54 54 1 1 261 243 112 136
acal 21 20 7 7 222 187 140 160
jamendo 32 38 8 5 248 266 91 105
aka 45 44 8 9 234 226 140 171
yahtzee 47 47 1 1 356 215 79 86
aagtl 17 17 5 4 170 123 84 111
CountdownTimer 61 62 0 0 – – 108 143
sanity 13 13 2 3 236 192 154 149
dalvik-explorer 69 69 2 4 148 272 143 162
Mirrored 42 44 10 9 114 179 219 245
dialer2 41 41 2 0 223 – 123 129
DivideAndConquer 79 81 3 3 75 55 90 94
fileexplorer 50 50 0 0 – – 142 153
gestures 52 52 0 0 – – 62 69
hotdeath 61 67 2 2 312 360 80 95
adsdroid 38 34 2 4 210 211 107 161
myLock 31 30 0 0 – – 87 101
lockpatterngenerator 76 76 0 0 – – 80 94
mnv 29 32 5 6 222 315 118 131
k9mail 5 6 1 2 445 412 93 113
LolcatBuilder 29 28 0 0 – – 88 101
MunchLife 67 67 0 0 – – 72 80
MyExpenses 45 41 2 3 359 309 115 133
LNM 57 58 1 1 292 209 104 120
netcounter 59 61 0 1 – 256 95 106
bomber 72 71 0 0 – – 63 72
fantastischmemo 25 28 3 6 325 275 86 96
blokish 49 62 2 2 197 204 75 86
zooborns 36 36 0 0 – – 86 95
importcontacts 41 41 0 1 – 462 94 106
wikipedia 26 31 1 3 95 373 69 88
PasswordMaker 50 49 1 2 86 216 103 112
passwordmanager 15 13 1 1 185 354 121 136
Photostream 30 31 2 3 195 161 143 192
QuickSettings 44 41 0 1 – 307 96 130
RandomMusicPlayer 58 59 0 0 – – 97 113
Ringdroid 40 23 2 4 126 208 280 188
soundboard 53 53 0 0 – – 61 67
SpriteMethodTest 59 73 0 0 – – 63 74
SpriteText 60 60 1 2 116 448 93 101
SyncMyPix 19 19 0 2 – 402 97 143
tippy 70 72 1 1 384 459 84 105
tomdroid 50 52 1 1 152 90 93 111
Translate 48 48 0 0 – – 82 99
Triangle 79 79 1 0 235 – 93 89
weight-chart 47 49 3 4 171 283 88 109
whohasmystuff 60 66 0 1 – 466 118 139
Wordpress 5 5 1 1 244 223 104 224

RQ3. Considering the
minimal fault-revealing test
sequences (i.e., the short-
est of all sequences causing
the same crash), their mean
length is 244 for Sapienzdiv

and 209 for Sapienz on the
66 apps (cf. Table 2). This
provides initial evidence that
Sapienzdiv produces longer
fault-revealing sequences
than Sapienz.

RQ4. Considering the
mean execution time of test-
ing one app over 10 gener-
ation, Sapienzdiv takes 118
and Sapienz 101min for
the 66 apps. Figure 3 shows
that the diversity-promoting
mechanisms of Sapienzdiv

cause a noticeable runtime
overhead compared to
Sapienz. This provides ini-
tial evidence about the cost of
promoting diversity at which
an improved fault detection
can be obtained.

Study 2. In this study we
use the same 10 F-Droid apps
as in the statistical analysis
in [17]. Assuming no Gaussian
distribution of the results,
we use the Kruskal-Wallis
test to assess the statisti-
cal significance (p<0.05) and
the Vargha-Delaney effect size
Â12 to characterize small,
medium, and large differ-
ences between Sapienzdiv

and Sapienz (Â12 > 0.56,
0.64, and 0.71 respectively).

RQ5. The results are pre-
sented by boxplots in Fig. 4
for each of the 10 apps and
concern: coverage, #crashes,



70 T. Vogel et al.

Fig. 2. Coverage.

66 benchmark apps

Sapienz Sapienzdiv

# App Crashed 43 46

# Total Crashes 5974 6941

# Unique Crashes 119 141

# Disjoint Crashes 29 51

# Intersecting Crashes 90 90

Mean sequence length 209 244

Table 2. Crashes and seq. length. Fig. 3. Time (min).

sequence length, and time (cf. Study 1). The Â12 effect size for these concerns are
shown in Table 3, which compares Sapienzdiv and Sapienz (Sd-S) and empha-
sizes statistically significant results in bold. Sapienz significantly outperforms
Sapienzdiv with large effect size on all apps for execution time. The remain-
ing results are inconclusive. Sapienzdiv significantly outperforms Sapienz with
large effect size on only 3/10 apps for coverage, 2/10 for #crashes, and almost
1/10 for length. The remaining results are not statistically significant or do not
indicate large differences.

Fig. 4. Performance comparison on 10 apps for Sapienzdiv (Sd) and Sapienz (S).
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Table 3. Vargha-Delaney effect size (statistically significant results in bold).

App Ver. Coverage Sd-S #Crashes Sd-S Length Sd-S Time Sd-S

BabyCare 1.5 0.66 0.46 0.52 0.15
Arity 1.27 0.67 0.49 0.54 0.05
JustSit 0.3.3 0.75 0.66 0.70 0.00
Hydrate 1.5 0.52 0.52 0.64 0.00
FillUp 1.7.2 0.77 0.47 0.33 0.00
Kanji 1.0 0.66 0.56 0.38 0.09
Droidsat 2.52 0.55 0.60 0.26 0.00
BookWorm 1.0.18 0.58 0.66 0.36 0.05
Maniana 1.26 0.66 0.82 0.49 0.00
L9Droid 0.6 0.75 0.81 0.32 0.11

5.3 Discussion

Study 1 provided initial evidence that Sapienzdiv can find more faults than
Sapienz while achieving a similar coverage but using longer sequences. Espe-
cially, the fault revelation capabilities of Sapienzdiv seemed promising, however,
we could not confirm them by the statistical analysis in Study 2. The results of
Study 2 are inconclusive in differentiating both approaches by their performance.
Potentially, the diversity promotion of Sapienzdiv does not results in the desired
effect in the first 10 generations we considered in the studies. In contrast, it might
show a stronger effect at later stages since we observed in the fitness landscape
analysis that the search of Sapienz stagnates after 25 generations.

6 Threats to Validity

Internal validity. A threat to the internal validity is a bias in the selection of
the apps we took from [6,17] although the 10 apps for Study 2 were selected by
an “unbiased random sampling” [17, p. 103]. We further use the default configu-
ration of Sapienz and Sapienzdiv without tuning the parameters to reduce the
threat of overfitting to the given apps. Finally, the correctness of the diversity-
promoting mechanisms is a threat that we addressed by computing the fitness
landscape analysis metrics with Sapienzdiv to confirm the improved diversity.

External validity. As we used 5 (for analyzing the fitness landscape) and 76
Android apps (for evaluating Sapienzdiv) out of over 2.500 apps on F-Droid and
millions on Google Play, we cannot generalize our findings although we rely on
the well-accepted “68 F-Droid benchmark apps” [6].

7 Related Work

Related work exists in two main areas: approaches on test case generation for
apps, and approaches on diversity in search-based software testing (SBST).
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Test case generation for apps. Such approaches use random, model-based, or
systematic exploration strategies for the generation. Random strategies imple-
ment UI-guided test input generators where events on the GUI are selected
randomly [3]. Dynodroid [14] extends the random selection using weights and
frequencies of events. Model-based strategies such as PUMA [8], DroidBot [11],
MobiGUITAR [2], and Stoat [29] apply model-based testing to apps. Systematic
exploration strategies range from full-scale symbolic execution [18] to evolution-
ary algorithms [15,17]. All of these approaches do not explicitly manage diversity,
except of Stoat [29] encoding diversity of sequences into the objective function.

Diversity in SBST. Diversity of solutions has been researched for test
case selection and generation. For the former, promoting diversity can signif-
icantly improve the performance of state-of-the-art multi-objective genetic algo-
rithms [21]. For the latter, promoting diversity results in increased lengths of
tests without improved coverage [1], matching our observation. Both approaches
witness that diversity promotion is crucial and its realization “requires some
care” [24, p. 782].

8 Conclusions and Future Work

In this paper, we reported on our descriptive study analyzing the fitness land-
scape of Sapienz indicating a lack of diversity during the search. Therefore,
we proposed Sapienzdiv that integrates four mechanisms to promote diversity.
The results of the first empirical study on the 68 F-Droid benchmark apps were
promising for Sapienzdiv but they could not be confirmed statistically by the
inconclusive results of the second study with 10 further apps. As future work, we
plan to extend the evaluation to more generations to see the effect of Sapienzdiv
when the search of Sapienz stagnates. Moreover, we plan to identify diversity-
promoting mechanisms that quickly yield benefits in the first few generations.

Acknowledgments. This work has been developed in the FLASH project (GR
3634/6-1) funded by the German Science Foundation (DFG) and has been partially
supported by the 2018 Facebook Testing and Verification research award.
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