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Abstract. A central requirement for any Search-Based Software Test-
ing (SBST) technique is a convenient and meaningful fitness landscape.
Whether one follows a targeted or a diversification driven strategy, a
search landscape needs to be large, continuous, easy to construct and
representative of the underlying property of interest. Constructing such
a landscape is not a trivial task often requiring a significant manual effort
by an expert.

We present an approach for constructing meaningful and convenient
fitness landscapes using neural networks (NN) – for targeted and diversi-
fication strategies alike. We suggest that output of an NN predictor can
be interpreted as a fitness for a targeted strategy. The NN is trained on
a corpus of execution traces and various properties of interest, prior to
searching. During search, the trained NN is queried to predict an esti-
mate of a property given an execution trace. The outputs of the NN form
a convenient search space which is strongly representative of a number
of properties. We believe that such a search space can be readily used
for driving a search towards specific properties of interest.

For a diversification strategy, we propose the use of an autoencoder;
a mechanism for compacting data into an n-dimensional “latent” space.
In it, datapoints are arranged according to the similarity of their salient
features. We show that a latent space of execution traces possesses char-
acteristics of a convenient search landscape: it is continuous, large and
crucially, it defines a notion of similarity to arbitrary observations.

Keywords: Search-Based Software Testing · Software engineering ·
Fitness function · Machine learning · Neural networks

1 Introduction

Search Based Software Testing (SBST) [16,30] methods are widely used in soft-
ware engineering. They rely on a feedback mechanism that evaluates candidate
solutions and directs the search accordingly. The effectiveness of any feedback
mechanism depends on the choice of representation and fitness function [15]. In
the context of automated search driven testing, an additional choice is that of
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a search strategy. In this paper we focus on constructing a convenient fitness
function for a search-based testing process.

According to Harman and Clark, the search space of a good fitness function
ought to have a number of desirable characteristics [14]. It needs to be large and
approximately continuous, the fitness function needs to have low computational
complexity and not have known optimal solutions. Furthermore, they propose
that various metrics can be used as fitness functions which implies two further
characteristics. First, according to the representation condition, a good metric
needs to be truly representative of the property it seeks to denote [38]. Second,
a metric imposes an order relation over a set of elements by definition, and for a
metric to be useful as a fitness function, the order needs to be meaningful. In this
paper we present an approach for constructing fitness functions with desirable
characteristics for two fundamental testing strategies – property targeting and
diversification driven.

1.1 Property Targeting Search Landscape

A fitness function for an execution property targeting search strategy needs to
indicate a “proximity” of a candidate solution to a property of interest (given
that the property has not been yet observed). The fitness function therefore
needs to be representative of the property of interest, i.e. it needs to meet the
representation condition.

Consider an example where a tester aims to exercise a specific program point
behind a numeric conditional statement. The numeric difference between the
value of a variable and the predicate value of the if statement (branch dis-
tance) is the obvious fitness function here [45]. In many interesting “needle in a
haystack” testing scenarios however, such an easy fitness function does not exist.
For instance, a tester is looking for a crash, but the program has not crashed
after a thousand executions produced by mutation of an original input. Can we
argue that some of those executions are “closer” to a crash and are therefore
better candidates for further mutation?

A neural network trained on execution traces and crash/no crash labels can
produce a “suspiciousness” score for each candidate solution. So rather than sim-
ply observing a “no crash” output, we query a neural network to say that some
inputs exhibited a behaviour or “looks suspiciously like a crash”. In this work
we show how such a fitness function can be constructed, and that it possesses
useful characteristics.

1.2 Diversity Driven Search Landscape

Diversity is widely accepted as beneficial for testing. Various representations
have been proposed as targets for diversification, e.g. [2,5,6,10]. Perhaps the
most common manifestation is code coverage, yet the effectiveness of coverage
driven testing strategies has been disputed [11,17,20,27,40]. This suggests that
diversifying over coverage – i.e. preferring dissimilarity of candidate solutions as
measured by code coverage – is not ideal.
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Regardless of representation, the actual purpose of diversity driven testing
is to exercise a maximally diverse range of behaviours. To be able to exercise
diverse (i.e. dissimilar) behaviours given a representation that is thought to be
a good abstraction of program behaviour, we need a notion of similarity. The
definition of similarity can then be used to drive a search strategy. A similarity
measure requires an order relation, which is a difficult task typically requiring
an expert’s input [38]. For instance, is “cat”< “dog”? Lexicographically – yes.
By average weight of the animal – usually. By preference as a pet – debatable.

We propose defining an order relation and thus similarity using a neural
network architecture called an autoencoder to process execution traces. An
autoencoder is trained to reproduce input data on outputs. Its (n-dimensional)
intermediate layer forms an encoding of the data known as a latent space. The
autoencoder arranges the data based on the features that are most important
in distinguishing one datapoint from another. The distance in the latent space
is thus a measure of similarity of features. Importantly, an autoencoder archi-
tecture can be applied to arbitrary data formats. This means that we are not
restricted to any particular representation of execution traces. We believe that
this notion of similarity can be useful for diversification strategies.

1.3 Contributions and Scope

In this paper we propose an approach to building search landscapes for SBST
by using neural networks to process observations of executions. The approach
relies on predictor and autoencoder neural networks for property targeting and
diversification driven testing strategies respectively. We illustrate the approach
with a corpus of small C programs and several real world applications.

Our findings suggest that the landscapes possess a number of useful charac-
teristics. The first is that they are continuous and arbitrarily large. Second, they
meet the representation condition. Third, they yield a meaningful order relation
to seemingly non-orderable observations. Fourth, the order relation implies a
notion of similarity. Lastly, they are created automatically, without analytical
effort or domain knowledge.

This work is part of a larger effort in which we intend to integrate these
landscapes for use in SBST. The scope of this paper is to present the search
landscapes themselves, along with an analysis of their characteristics. Here we
do not evaluate their effectiveness for discovering properties of interest.

The section following this introduction presents the tools and datasets used
in our experiments. Section 3 describes the experiments we carried out. Section 4
reports our findings. Finally, Sect. 5 summarises and concludes the paper.

2 Tools and Datasets

2.1 AFL

We use the American Fuzzy Lop (AFL) [46] fuzzer [33] for two purposes. First,
to augment a training corpus of programs with additional inputs. Second, to
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produce a representation of execution traces to train autoencoders. AFL’s rep-
resentation is the following. Before fuzzing, AFL instruments a program at every
decision point. During fuzzing, transitions between these points form a hashmap
(“bitmap”) of edges and their hit counts. For performance purposes, hit counts
are assigned into eight buckets: 0, 1, 2, 3, 4–7, 8–15, 16–31, 32–127, 128+. The
bitmap also has a static size of 64K, so the resulting vector of hit counts for
small programs tends to be very sparse – most values are 0.

AFL’s representation is suitable for our second experiment (described below)
for three reasons. First, the bucketisation of the bitmap and the fixed size make
it convenient for processing by a neural network. It requires no normalisation
or pre-processing. Second, thanks to AFL’s blistering speed, it can produce vast
numbers of datapoints for a data hungry network. Finally, AFL has a built in
notion of “interestingness”, defined over the hit counts of a bitmap. All inputs
it deems interesting are kept in a persistent queue for further fuzzing.

2.2 Pin

We use the Pin instrumentation framework [29] to collect execution traces as
sequences of instruction. Raw instruction sequence data is inconvenient for two
reasons however. First, the traces are infeasibly large. A single execution of a sim-
ple program yields a trace file of size in the order of tens of gigabytes. Second,
literal values of instruction arguments become problematic. For instance, the
target address in the conditional jump jle 0x1132 is assigned by the memory
manager and is not consistent across program executions. It is also not mean-
ingful over executions of different programs; an execution trace with the value
0x1132 in program A is not meaningful for program B. This is a major problem
known as alpha renaming [13].

We bypass the above problems as follows. First, we use Pin’s built in abil-
ity to only instrument the first instance of a block execution. For instance, a
loop body is only recorded the first time it is executed. This reduces the sizes
of traces dramatically while maintaining information on the sequence of events.
The problem of alpha renaming is ignored by discarding any literal data. Thus
jle 0x1132 is only recorded as jle. This certainly loses a lot of possibly per-
tinent information, but attempting to solve alpha renaming is out of scope of
this paper. Furthermore, the sequence of op-codes is expected to provide enough
information for our purposes.

2.3 Valgrind

Valgrind is a powerful instrumentation framework which tracks every instruction
as it executes a program in a simulated environment [34,43]. We use two of its
tools, Memcheck and Cachegrind, to record properties of interest (properties
that a search aims to discover) for our datasets.

Memcheck reports properties relating to memory management. We record
Memcheck’s output of illegal reads and writes, use of uninitialised values, defi-
nitely lost memory blocks and memory still reachable at the end of execution.
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The first three are self explanatory. “Definitely lost” blocks means that no pointer
to a memory block can be found, which is typically a symptom of a lost pointer,
and ought to be corrected. “Still reachable” is a memory block that has not been
properly freed at exit. Neither of these issues are necessarily crucial problems
and we include them in our experiments as a proof of concept: that a prox-
imity to a rare, as yet unobserved property – “a needle in a haystack” – can
be characterised by features of an execution trace as interpreted by a neural
network.

Cachegrind reports the number of reads, writes and misses on different levels
of cache. With its default settings of a simulated cache architecture, the values
are instruction cache reads (Ir), first and last level instruction cache read misses
(I1mr, ILmr), data cache reads and writes (Dr, Dw), first and last level data
cache read misses (D1mr, DLmr), and first and last level data cache write misses
(D1mw, DLmw).

These values are used as an example of a numeric property which might be
the target of optimisation in SBST. As any execution has a numeric value of a
cache behaviour (i.e. it is not a rare binary property), the use case here is not
to build a search space representing the proximity to a rare behaviour. Instead,
it may be the case that cache behaviour is difficult to measure and needs to be
approximated from an easily observable trace. The values of cache behaviour
properties are effectively unbounded which makes them inconvenient for neural
networks – training is known to become unstable [37]. We therefore log-normalise
them. Not only does this make the values amenable to training a neural network,
we believe that an order-of-magnitude estimate of these values is an interesting
property.

2.4 Dataset

Our dataset is based on a large repository of simple C programs called Code-
flaws [42], and five real world applications.

Codeflaws. Codeflaws is a program repository of thousands of small C pro-
grams, along with test cases and automatic fix scripts. Although the intended
purpose of Codeflaws is to allow for a “comprehensive investigation of the set
of repairable defect classes by various program repair tools”, we chose to use it
because it provides a vast number of varied programs conveniently arranged.

The neural networks of our approach require large training datasets, so the
test cases of the repository were not sufficient. Additional inputs were therefore
generated by fuzzing. Each program was fuzzed with AFL to produce a grand
total of 365,393 executions across 4714 unique programs. This dataset was then
split into training, testing and validation datasets. The number of unique pro-
grams and inputs were 3978 and 303,233 for the test set, 587 and 52,092 for the
test set, and 149 and 10,068 for the validation set.
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Real World Applications. We use five real world programs in our exper-
iments. The first one is lintxml from libxml [44]. It processes a string input
to determine whether it is valid XML. The second is cjpeg from libjpeg [28].
It is used for compressing image files into jpeg format. The third program is
sed-4.5 [31], the Unix stream editor for filtering and transforming text [4]. The
fourth program is sparse [21], a lightweight parser for C. Finally, cjson is a
parser for the JSON format. These programs were chosen because they are open
source, sufficiently quick to fuzz, and their inputs can be easily interpreted. Fur-
thermore, as we aim to investigate the order relation of a latent space, programs
that take string inputs are of interest.

3 Experimental Setup

We conducted two sets of experiments. The first presents a method for construct-
ing a search space for a property targeting search strategy. The second shows an
approach for synthesising a search space for a diversification strategy.

Exp. 1: Search Landscape for a Property Targeting Strategy. The search
landscape for a property targeting search strategy relies on a regression classifier
neural network. During training, it takes a Pin trace as input and a ground
truth property as the target. During inference, it outputs the likelihood or the
estimated value of a ground truth property given an execution trace, for categor-
ical and numeric properties respectively. The setup is illustrated in Fig. 1. The
characteristics of the datasets for this experiment are summarised in Table 1.

The network is made up of convolutional and recurrent layers. Sequence
data is typically handled with recurrent cells such as the LSTM [18]. Due to
the vanishing gradient problem however, LSTMs can only handle sequences of
up to several hundred elements. Pin traces are thousands of elements long and
therefore need to be shortened. This is done with strided convolutional layers
[9,22].

The network takes a Pin trace as input. The second layer is 64-dimensional
embedding [32]. This is followed by a stack of nine convolutional layers with a
stride of two. The strides of the convolutional layers halve the sequence length,
so the initial sequence length is shortened by a factor of 29. The next layer is
composed of 500 LSTM cells. Each layer is followed by a dropout to reduce the
risk of overfitting [39]. The output layer of the network is a single neuron.

For categorical variables, it is sigmoid activated, and the network is trained
with binary cross-entropy loss. For numeric values, the network is trained with a
mean square error loss. The networks are trained using the Adam optimiser [25].
The parameters were tuned manually by observing the performance on the val-
idation dataset.

Exp. 2: Search Landscape for a Diversity Driven Strategy. We con-
struct a search landscape for a diversification strategy using a variational autoen-
coder [8,26]. It composed of an encoder and a decoder. The encoder takes AFL’s
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Fig. 1. Illustration of the setup for Exp. 1. A neural network is trained on execution
traces of Pin instrumented programs as inputs, and properties of interest as prediction
targets. During inference, it outputs an estimate of the property as a probability in
[0, 1] or a numeric value for categorical and numeric properties respectively.

Table 1. Statistics of the programs and properties of interest in our dataset for Exp. 1.

CF Train CF Test Cjpeg Sparse Cjson

Total traces 43685 43685 22396 1260 1000

crashes 4458 4458 1722 260 0

deflost blocks 163 163 0 9 187

illegal reads 9149 9149 3781 49 0

illegal writes 626 626 0 0 0

reachable blocks 1141 1141 16779 0 813

uninit values 195 195 934 0 0

bitmap representation of an execution trace as input. The hidden layer is a
ReLu [23] activated densely connected layer of 2048 neurons. This is followed
by a 3-dimensional encoding layer. The decoder has a symmetrical structure to
the encoder: the encoding layer is followed by a hidden layer of 2048 neurons,
which feeds into the output layer of 65536 (size of AFL’s bitmap) neurons on
the output. The encoding layer is modelled on work by Kingma et al. [26], with
random noise and regularisation. This is intended to force the points close to
zero and to provide a continuous landscape for interpolation.

An autoencoder is trained for each real world program in the dataset. The
training data is produced by a modified version of AFL. The modified AFL
dumps the bitmaps of all executions in its queue, and the bitmap of its current
execution into a temporary file. When the temporary file is consumed, AFL
dumps the bitmap of the current input again. This way our autoencoder always
has training data: the traces of AFL’s queue and traces of AFL’s latest candidate
solutions. During inference, we encode all elements in AFL’s queue into the latent
space.
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4 Evaluation

We present three results. First, we show that the search landscapes are continu-
ous and arbitrarily large. Second, we demonstrate that they are correlated with
various properties of interest. Third, we suggest that the latent space produces a
meaningful ordering on a set of seemingly non-orderable candidate solutions. We
believe these search landscapes to be of potential use for both property targeting
and diversification driven search strategies.

4.1 Size and Continuity of Landscapes

Common landscape characterisation techniques like population information con-
tent and negative slope coefficient require a notion of a neighbourhood [1]. The
neighbourhood of a candidate solution is composed of other candidate solutions
within a single search step. A step, and hence the neighbourhood, depends on the
search operators of the SBST framework. Our landscapes are not defined with
respect to search operators, but with respect to a neural network’s interpretation
of traces. These techniques are therefore inapplicable.

Instead, we argue our claims of continuity and size with the following facts
and findings. First, neural networks are continuous by construction [12]. This
suggests that the number of possible fitness values is limited by the resolution of
the representation. If two candidate solutions can be distinguished in the original
representation, they can be mapped to distinct points in the fitness landscape.
Second, we observe that in both sets of experiments, the ratio of fitness values

Fig. 2. A plot of the output of a neural network classifier showing its likelihood estimate
of whether a trace included an illegal write, for the Jpeg testing dataset. The classifier
is trained on the Codeflaws train dataset, with Pin execution traces as inputs and an
illegal write error as the prediction label output. We suggest that this likelihood can
be used as a fitness for a property targeting search strategy. Such a strategy would
prioritise candidate solutions that the classifier considers to be more “suspicious”.
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to the number of unique traces was over 0.95. That is, most distinct traces were
mapped to a distinct point in the fitness landscape. Figures 2 and 3 are examples
of a property targeting and diversification driven landscape respectively.

4.2 Representation Condition

The neural network classifiers of Exp 1. have a strong predictive power for a
range of properties of interest. This means that the landscapes they produce are
strongly related to properties of interest, which in turn suggests that they meet
the representation condition.

We support this argument with the numeric results of Exp. 1, summarised in
Tables 2 and 3. Table 2 shows the Area Under Curve for the Receiver Operator
Characteristic (ROC). The ROC is a plot of the false positive versus the true
positive rate of a binary classifier. Its main benefit over the use of accuracy is
label class size independence [7,19], which makes it a more honest measure of a
model’s performance.

High values in Table 2 are examples where the model, which was trained on an
isolated training dataset of Codeflaws, predicts the property of interest well. In
these cases, it has learnt to distinguish and generalise features of execution traces
pertinent to properties of interest. Some values are low however. For instance,
the presence of reachable blocks in the Jpeg dataset has a low ROC score; the
model’s understanding of execution trace features indicative of this property is
insufficiently general.

Table 3 summarises the networks’ predictive ability for cache behaviour val-
ues. These are numeric properties, and the results are given as percentage errors
from the ground truth. These results give an insight into the fact that the per-
formance of a neural network depends strongly on the training data: they have
a strong predictive ability on the test set of Codeflaws programs but poorer
performance on others. The Cjson test set is an exception in that the models

Table 2. The predictive ability of a neural network for categorical properties in Exp. 1
by ROC score. The performance is good on an independent test set of programs from
the same dataset as the training data. The generalisability to real world applications
is limited, but not non-existent. This is evident by the low ROC scores of some test
sets. Blanks mean that there were no instances of executions with the property in our
dataset.

CF test Jpeg Sparse Cjson

crash 0.87 0.998 0.794 -

deflost blocks 0.992 - 0.915 0.772

illegal reads 0.966 0.885 0.344 -

illegal writes 0.915 - - -

reachable blocks 0.985 0.251 - 0.187

uninit values 0.735 0.751 - -
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Table 3. The predictive ability of a neural network for numeric properties in Exp. 1 by
percentage error. The results indicate that these numeric properties can be predicted
from Pin execution traces, and that the prediction meets the representation condition.
The generalisation to arbitrary programs is not uniformly good however which can
likely be improved with a larger training dataset.

CF test Cjpeg Xmllint Sparse Cjson

D1mr 0.151% 10.926% 7.462% 10.854% 1.583%

D1mw 0.817% 13.122% 11.195% 20.587% 0.926%

DLmr 0.747% 4.621% 8.549% 10.805% 0.594%

DLmw 0.008% 6.058% 13.755% 24.374% 2.783%

Dr 1.154% 2.413% 7.580% 16.656% 1.173%

Dw 0.695% 9.011% 3.388% 17.464% 2.326%

I1mr 0.699% 9.037% 22.508% 19.610% 1.607%

ILmr 0.265% 7.865% 16.132% 15.747% 1.586%

Ir 0.578% 13.382% 8.619% 8.808% 1.706%

predict its cache behaviour well. This is likely due to some inherent similarity of
Cjson and the programs in Codeflaws. An in depth investigation of these inher-
ent similarities is an interesting direction of future work but out of scope for this
paper.

The results presented here are an instantiation of our proposed approach –
they are conditional on the representation, the properties of interest and the
training dataset. We expect that given a larger, more representative dataset
our approach ought to perform better. This is based on the fact that given
a sufficient dataset and model size, neural networks are known to avoid local
optima [24,35,36,41]. That is, if there is a pattern in the data, a neural network
will find it. We recognise the “Deus ex machina” (or rather, “Deus ex data”)
nature of this argument: given enough data, a neural network turns into a silver
bullet. Nonetheless, even with the limited dataset, our results demonstrate a
clear effectiveness of the technique.

4.3 Meaningful Ordering of Candidate Solutions

The techniques proposed in this work can induce a meaningful ordering given
an arbitrary representation. In the case of a property targeting search landscape
(Exp. 1), the ordering is obvious – by a classifier’s estimate of the property of
interest. When there is no explicit property of interest however, an ordering is
not apparent. We suggest that a latent space of an autoencoder has a ordering
that is meaningful with respect to features of observations.
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Fig. 3. 3-dimensional latent space encoding of the execution traces of the AFL queue for
xmllint. The position of each point in the latent space is determined by characteristics
of execution traces that the autoencoder found most useful for distinguishing one trace
from another. The points are coloured by the sequential index of the queue elements,
which allows AFL’s search process to be visualised. Whilst the candidate solutions
are spread throughout the latent space, there are regions with denser clusters and a
diversity driven search strategy could be directed to explore the less populated regions.
The numbers are ids of example candidate solutions discussed below. (Color figure
online)

Figure 3 is an example of a latent space of candidate solutions for xmllint.
It is a three dimensional space1 onto which elements of AFL’s fuzzing queue
are mapped. The axes themselves do not correspond to any specific feature,
they are simply the internal state of the autoencoder. The locality in the latent
space represents the similarity of salient features of execution traces. The colours
correspond to the sequential id of a candidate solution. The earliest candidates
are in dark purple, while more recent ones are yellow.

We present several findings of the nature of this landscape. First, the locality
in the latent space is correlated with the progression of AFL’s search process.
This is evident by points of similar colour being grouped into adjacent regions of
the space. Early candidate solutions (purple) produced similar traces. As search
progressed, novel behaviours (green clusters) were discovered. AFL then turned

1 The dimensionality is arbitrary, three is chosen here so that the space can be plotted
for qualitative analysis.
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its focus to some earlier examples and used those as starting points to yield newer
traces still (yellow). This is a general observation which may not be immediately
useful on its own, it nonetheless allows us to visualise and conceptualise a search
process.

Second, we note that the arrangement of points in the space is not uniform.
The autoencoder is strongly regularised to attempt to arrange the points close to
zero (L2 regularisation) and to prevent points from being arranged too close to
each other (Gaussian random noise). Despite this, there are clear concentrations
of datapoints in some areas. This suggests that some kinds of executions are
relatively more explored.

Third, upon closer manual inspection of several candidate solutions, we note
that the locality is related to program inputs. Consider the candidate solutions
pointed to by arrows in Fig. 3. The inputs that triggered them are the following.

368: 0x1f 0x8b 0x94 0x80

797: 0x1f 0x8b 0xff

2415: <S:L>><S:F>><S:R>><S:k>><S:FFFFdS:W>>5>M5>M<

2473: <S:L>><S:F>><S:R>><S:k>><S:FS:RSKFS>><FFFFFF:W>>5>Ma>M<

2627: 0xff 0xfe < 0x00 0xff --------C--ii------------ 0x00 0x80 -ii

--------- L---------------- 0x00 0x80 -ii-------------------- 0x00

0x80 0x05 0x80 0x10 0x05 0x80 0x10

3780: 0xff 0xfe< 0x00 0xef 0x0b@! 0x12 0xfb @! 0x12 0xff :R>kF@<S@! 0x13

0x19 >5>M5>M 0x01 \% 0xff 0xff 0x05

Ids 368 and 797 are close to each other in the latent space. The strings
are short and syntactically similar. 2415 and 2473 are likewise close to each
other and their syntactic structure is also similar. They are rather different from
the first pair however – both in their position in the latent space and their
syntax. Finally, 2627 and 3780 are close in the latent space, and while they
share some syntactic features, they are far from identical. The similarity of their
traces (and hence proximity in the latent space) may be due to their shared
prefix. There happens to be a connection between input strings and latent space
locality because the program is a linter whose purpose is to process strings –
and exhibit corresponding behaviours. This notion of similarity is much more
general however: it captures the innate similarity of features of arbitrary data.
Furthermore, its definition requires no manual effort.

We suggest the following implications based on the above observations. First,
a latent space representation gives us a way of reasoning about similarity of
behaviours given an arbitrary representation: something that was not naturally
ordered can now be compared in a convenient, continuous n-dimensional space.
In the context of a diversification strategy, we can utilise this notion of similarity
to drive a search towards less explored behaviours, i.e. towards less densely
populated regions of the latent space2.

2 Böhme et al. showed that enforcing diversity on AFL’s search is beneficial [3]. In
future work we intend to investigate how the effectiveness using their notion of
diversity compares with that proposed here.
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5 Conclusion

The effectiveness of any SBST process depends on a good fitness function. The
landscape ought to be large, continuous and representative of the underlying
property of interest. Constructing such a landscape is not trivial.

We propose the use of neural networks for constructing search landscapes
with convenient characteristics for both property targeting and diversity driven
search strategies. We suggest that a property targeting search strategy can use a
landscape produced by a classifier neural network, and we illustrate this by exper-
iment. Our results show that the landscape is continuous, arbitrarily large and
representative of various properties of interest. For a diversity driven strategy,
we propose constructing a search landscape using autoencoders. An autoencoder
maps arbitrary observations onto an n-dimensional space where the location is
determined by the most distinguishing features of the data. We show how such
a space can be created and illustrate that it possesses useful characteristics such
as size, continuity and meaningful ordering.

The results and experiments of this paper present the approach of construct-
ing search landscapes, and comment on their characteristics. To the best of our
knowledge, our approach is conceptually novel and we believe it to open new
directions in SBST. This work is part of ongoing research in which the next steps
include evaluating the application of these landscapes for discovery of properties
of interest.
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