®

Check for
updates

A Systematic Comparison of Search
Algorithms for Topic Modelling—A Study
on Duplicate Bug Report Identification

Annibale Panichella(®)

Delft University of Technology, Delft, The Netherlands
a.panichella@tudelft.nl

Abstract. Latent Dirichlet Allocation (LDA) has been used to support
many software engineering tasks. Previous studies showed that default
settings lead to sub-optimal topic modeling with a dramatic impact on
the performance of such approaches in terms of precision and recall. For
this reason, researchers used search algorithms (e.g., genetic algorithms)
to automatically configure topic models in an unsupervised fashion.
While previous work showed the ability of individual search algorithms
in finding near-optimal configurations, it is not clear to what extent
the choice of the meta-heuristic matters for SE tasks. In this paper, we
present a systematic comparison of five different meta-heuristics to con-
figure LDA in the context of duplicate bug reports identification. The
results show that (1) no master algorithm outperforms the others for
all software projects, (2) random search and PSO are the least effective
meta-heuristics. Finally, the running time strongly depends on the com-
putational complexity of LDA while the internal complexity of the search
algorithms plays a negligible role.

Keywords: Topic modeling - Latent Dirichlet Allocation -
Search-based Software Engineering - Evolutionary Algorithms -
Duplicate Bug Report

1 Introduction

Topic model techniques have been widely used in software engineering (SE) lit-
erature to extract textual information from software artifacts. Textual informa-
tion is often used support software engineers to semi-automated various tasks,
such as traceability link retrieval [2], identify bug report duplicates [27], auto-
mated summary generator [30,34], source code labeling [11], and bug localiza-
tion [22]. Latent Dirichlet Allocation (LDA) is a topic model techniques, which
has received much attention in the SE literature due to its ability to extract
topics (cluster or relevant words) from software documents. LDA needs to set a
number of hyper-parameters. For instance, the Gibbs sampling generative model
requires to choose the number of topics K, the number of iteration NV, and two
hyper-parameters « and (3 affecting the topic distributions across documents

© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 11-26, 2019.
https://doi.org/10.1007/978-3-030-27455-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_2

12 A. Panichella

and terms. However, there are no optimal hyper-parameter values that produce
“good” LDA models for any dataset. In fact, a prior study showed that untuned
LDA can lead to suboptimal performance and can achieve lower accuracy than
simple heuristics based on identifier analysis [11,12].

To address the tuning challenge, researchers have proposed different strate-
gies over the years [1,16,17,28,35]. While early attempts focused on the number
of topics K as the only parameter to tune, Panichella et al. [28] proposed a
search-based approach to tune the LDA hyper-parameters. More specifically,
the external performance (e.g., the accuracy) of LDA with a given configura-
tion [K, N,a,] can be indirectly estimated looking at internal cluster quality
metrics. In their study, the author used the silhouette coefficient as the driving
metric (i.e., the fitness function) to guide genetic algorithms towards finding
(near) optimal LDA configurations automatically. Their empirical study showed
that LDA settings found with GA dramatically improve the performance of LDA,
outperform “off-the-shelf” setting used in previous studies.

Based on the results in [28], Agrawal et al. [1] further investigated search
algorithms for tuning LDA. They used Differential Evolution (DE) as alternative
meta-heuristic and showed through an extensive study that it often achieves more
stable LDA configurations, leading to better topic models than GAs. Besides,
they provided further evidence about the usefulness of search-based topic mod-
els over “off-the-shelf” LDA settings. Among other results, Agrawal et al. [1]
advocated the use of DE as superior meta-heuristics for tuning LDA.

In this paper, we aim to investigate further and compare the performances of
multiple meta-heuristics (not only GA and DE) to understand whether there is
one meta-heuristic (the “master” algorithm) that constantly dominates all the
others. To this aim, we consider the case of duplicate bug report identification,
which has been often addressed with topic modeling. Duplicate reports are bug
reports that describe the same issues but that are submitted by different users
to bug tracking systems. Duplicate reports lead to a considerable extra overhead
for developers who are in charge of checking and solving the reported issues [20].

We selected seven Java projects from the Bench4BL datasets and compared
five different meta-heuristics, namely DE, GA, Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Random Search (Ran). Our results show
that there is no “master” (dominant) algorithm in search-based topic model-
ing, although Ran and PSO are significantly less effective than the other meta-
heuristics. Besides, DE does not outperforms GA (in terms of both accuracy
and running time) when the three meta-heuristics use the same number of fit-
ness evaluations and the stability of LDA is improved using restarting strategies.

2 Background and Related Work

Document Pre-processing. Applying IR methods requires to perform a
sequence of pre-processing steps aimed to extract relevant words from software
artifacts (bug reports in our case). The first step is the term extraction, in which
non-relevant characters (e.g., special characters and numbers) are removed, and

A Systematic Comparison of Search Algorithms for Topic Modelling 13

compound identifiers are split (e.g., camel-case splitting) [14]. In the second
step, a stop-word list is used to remove terms/words that do not contribute to
the conceptual context of a given artifact, such as prepositions, articles, auxiliary
verbs, adverbs, and language keywords. Besides, the stop-word function removes
words that are shorter than a given threshold (e.g., words with less than three
characters). In the last steps, a stemming algorithm (e.g., Porter stemmer for
English) transform words into their root forms (e.g., verb conjugations). The
resulting pre-processed documents are then converted into a term-by-document
matriz (M). The rows of the matrix denote the terms in the vocabulary after
pre-processing (m terms) while the columns denote the documents/artifacts in
the corpora (n documents). A generic M(i,j) denotes the weight of the i-th
term in the j-th document [3]. The basic weight of each term corresponds to its
frequency in a given document (¢tf = term frequency). However, prior studies
suggested using ¢ f-idf (terms frequency with inverse document frequency) which
gives lower weights (relevance) to words that appear in most of the documents [5].
The term-by-document matriz is then used as input for an algebraic (e.g., Vector
Space Model) or probabilistic model (PLST) to compute the textual similarities
among the documents. Such similarities are used differently depending on the
SE task to solve. For example, similarities are used to detect duplicated reports
with the idea that similar bug reports likely discuss the same bug/issue.

In this paper, we use the following pre-processing steps suggested in the
literature [3,5,10]: (1) punctuation characters and numbers are removed; (2)
splitting compound identifiers with camel-case and snake-case regular expression;
(3) a stop-word list for English Language and Java code; (4) stop-word function
with a threshold of two characters; (5) words are transformed into their root
forms using the Porter stemmer; (6) ¢f-idf as the weighting schema.

Identifying Duplicate Bug Report. The term-by-document matrix (or its
low-dimensional approximation produced by LDA) is then used to compute the
Euclidean distance for each pair of documents (bug reports in our case) and com-
pute the ranked list of duplicate bug reports. More specifically, each bug report is
used as a query to retrieve the corresponding duplicated reports. The candidate
list for each query is therefore determined using the Euclidean distance and sort-
ing the documents in ascending order of distances. Effective IR-methods or topic
model should assign better rankings to duplicate reports over non-duplicates. For
example, Nguyen et al. [27] combined information retrieval and topic models to
detect duplicate reports in an automated fashion. Hindle et al. [20] showed that
continuously querying bug reports helps developers to discover duplicates at the
time of submitting new bug reports.

Topic Modeling with LDA. Latent Dirichlet Allocation (LDA) [8] is a gener-
ative probabilistic model for a collection of textual documents (corpora). More
specifically, it is a three-level hierarchical Bayesian model which associates doc-
uments with multiple topics [8]. In LDA, a topic is a cluster of relevant words
in the corpora. Therefore, documents correspond to finite mixtures over a set of
K topics. The input of LDA is the term-by-document (m X n) matrix generated
using the pre-processing steps described above. LDA generates two distributions

14 A. Panichella

of probabilities, one associated with the documents and the other one related the
terms in the corpora. The first distribution is the topic-by-document matriz (©):
a K xn matrix, where K is the number of topics, n is the number of documents,
and the generic entry ©(i, j) denotes the probability of the j** document to be
relevant to the " topic. The second distribution is the word-by-topic matrix
(®): an m x K matrix, where m is the number of words in the corpora, K is the
number of topics, and the generic entry @(i,j) denotes the probability of the i*"
word to belong to the j** topic.

LDA can also be viewed as a dimensional reduction techniquesif the number
of topics K is lower than the number of words m in the corpora. Indeed, the
term-by-document matrix is decomposed using LDA as follows:

M~ & x O (1)
mxn mxK Kxn
where K is typically smaller than m. Using ©, documents can be clustered
based on the topics they share based on the corresponding topic probabilities.
Documents associated with different topics belong to different topic clusters.
Vice versa, documents sharing the same topics belong to the same cluster.
There exist multiple mathematical methods to infer LDA for a given cor-
pora. VEM is the applies a deterministic variational EM method using expectation
maximization [25]. The fast collapsed Gibbs sampling generative model is an
iterative process that applied a Markov Chain Monte Carlo algorithm [37]. In
this paper, we focus on Gibbs-sampling as prior studies showed that it much
faster [31], and it can achieve more stable results [17] and better convergence
towards the global optimum than VEM [1] in SE documents.
There are four hyper-parameters to set when using the Gibbs sampling gen-
erative model for LDA [7,28]:

— the number of topics K to generate from the corpora;

— « influences the distribution of the topics per document. Smaller o values
lead to fewer topics per documents.

— [influences the term distribution in each topic. Smaller [values lead to
topics with fewer words.

— the number of Gibbs iterations IN; this parameter is specific to the Gibbs
sampling generative model.

Stability of the Generated Topics. LDA is a probabilistic model and, as such,
it can produce slightly different models (topics and mixtures) when executed
multiple times for the same corpora. Furthermore, different document orderings
may lead to different topic distributions [1] (ordering effect). Previous studies
(e.g., [1,21]) suggested different strategies to increase LDA stability, including
using random seeds and applying multiple Gibb restarts.

The Gibbs sampling generative method is a stochastic method that performs
random samples of the corpora. As any random sampler, the Gibbs method
generates random sampling using a random number generator and a starting
seed. An easy way to achieve the same topics and mixtures consists in using the

A Systematic Comparison of Search Algorithms for Topic Modelling 15

same initial seed when running LDA with the same hyper-parameters and for
the same corpora. Another well-known strategy to improve the stability of LDA
is restarting the Gibbs sampling to avoid converging toward local optima. For
example, Hughes et al. [21] proposed a sparsity-promoting restart and observed
dramatic gains due to the restarting. Binkley et al. [6] ran run the Gibbs sampler
multiple times suggesting that it reduces the probability of getting stuck in local
optima. Recently, Mantyla et al. [24] performed multiple LDA runs and combined
the results of different runs through clustering.

In this paper, we use both fixed seeds for the sampling and the restarting
strategy. More details are provided in Sect. 3.1.

Automated Tuning for LDA. A general problem when using LDA is deciding
the hyper-parameters values to adopt when applying it to a specific dataset.
Researchers from different communities agree that there is no universal setting
that works well for any dataset (e.g., [6,21,28]). Different heuristics have been
proposed by researchers to find (near) optimal hyper-parameters for a given task
[1,16,17,28,35]. Most of the early approaches focused on the number of topics
K to set while using fixed values for «, § and N [16,17,35].

Panichella et al. [28] used an internal metric for cluster quality analysis to
estimate the fitness of LDA configurations based on the idea that LDA can
also be seen as a clustering algorithm. More specifically, they used the silhouette
coefficient as the fitness function to guide genetic algorithms, which were used to
find LDA hyper-parameters that increased the coefficient values. The silhouette
coefficient is defined as [28]:

S(C) =23 s(d) with s(dy)

n -
=1

I
]
»
—
N
S
o
—~
AN
N
—~
\}
~—

In the equation above, s(d;) denotes the silhouette coefficient for the docu-
ment d; in the corpora; a(d;) measures the maximum distance of the document
d; to the other documents in the same cluster (cluster cohesion); b(d;) mea-
sures the minimum distance between of the document d; to another document
in a different cluster (cluster separation); s(C') measure the overall silhouette
coefficient as the arithmetic mean of the coefficients s(d;) for all documents in
the corpora. s(C') takes values in [—1,+1]; larger values indicate better clusters
because (on average) the separation is larger than the cohesion of the clusters.
While the silhouette coefficient is an internal cluster quality metric, Panichella
et al. [28] showed that hyper-parameters that increased the silhouette coefficient
also lead to better external performances, such as the accuracy in traceability
recovery. Besides, the LDA configurations found with GAs achieve performance
that is pretty close to the global optimum. The silhouette coefficient and GA
were also used in a later study [29] to configure the whole IR process (including
the pre-processing) automatically.

Recently, Agrawal et al. [1] further investigated the challenges of configuring
LDA with search algorithms. They showed than Differential Evolution (DE)
can generate optimal hyper-parameter values which lead to more stable LDA
models (topic and mixtures). Besides, Agrawal et al. also used a different fitness
function. An empirical comparison between GA and DE showed that the latter

16 A. Panichella

needs fewer generations and produces more stable LDA models than the former.
However, in [1] GA and LDA were configured with different termination criteria:
a few dozens of fitness evaluations for DE and thousands of fitness evaluations for
GA. Besides, Agrawal et al. [1] did not use standard strategies (e.g., restarting
strategies) to produce stable results for both GA and DE. Based on the results
in [1], Mantyla et al. [24] used DE in combination with multiple LDA runs to
achieve even more stable topics.

While prior studies argued about the superiority of DE over other meta-
heuristics for topic modeling, more research is needed to assess how different
meta-heuristics perform when using the same number of fitness evaluations (e.g.,
the same termination criteria) and using random restarting to achieve stable
results. This paper sheds lights on this open question and compares the perfor-
mance of five different meta-heuristics (not only DE and GA) when configuring
LDA for duplicate bug report identification. For the sake of our analysis, we use
the silhouette coefficient as the fitness function for all meta-heuristics.

3 Empirical Study

The following research questions steer our study:

— RQ1: Do different meta-heuristics find equally good LDA configurations? Dif-
ferent meta-heuristics may produce different LDA configurations. Our first
research question aims to investigate whether configurations produced by
alternative meta-heuristics achieves or not the same accuracy.

— RQ2: Does the running time differ across the experimented meta-heuristics?
Priori study [1] advocated the usage of Differential Evolution (DE) over
other meta-heuristics because it requires less running time. With our second
research question, we aim to compare the running time of different meta-
heuristics when configured with the same number of fitness evaluations.

Benchmark. The benchmark of our study consists of seven datasets from the
Bench4BL dataset [22] and publicly available in GitHub!. The benchmark has
been used by Lee et al. to perform a comprehensive reproduction study of state-
of-the-art IR-based bug localization techniques. For our study, we selected seven
Java project from Bench4BL: four projects from the apache commons library?,
two projects from Spring®, and one project from JBoss*. The characteristics
of the selected projects are reported in Table 1. We chose these seven projects
because they have been widely used in the SBSE literature (e.g., [9]) and are
well-managed together with issue tracking systems.

For each project, the Bench4BL contains (i) issues (from their issue tracking
systems) that are explicitly labeled as bug by the original developers, and (ii) the

! https://github.com/exatoa/Bench4BL.
2 http://www.apache.org/.

3 https://spring.io/.

4 http://www.jboss.org/.

https://github.com/exatoa/Bench4BL
http://www.apache.org/
https://spring.io/
http://www.jboss.org/

A Systematic Comparison of Search Algorithms for Topic Modelling 17

corresponding patches/fixes [22]. Each bug report/issue contains (i) the summary
(or title), (ii) the description, and (iii) the reporter. Besides, Bench4BL also
provides the list of duplicated bug reports for each system in the dataset. The
percentage of duplicated bug reports ranges between 3% for apache commons
math and 56% for Spring SPR.

Table 1. Characteristics of the projects in our study

System #Files | #Bug Reports | #Duplicates
Apache commmons collections | 525 92 16 (17%)
Apache commons io 227 91 7 (8%)
Apache commons lang 305 217 23 (11%)
Apache commons math 1,617 | 245 8 (3%)
Spring Datacmns 604 158 15 (9%)
Spring SPR 6,512 | 130 73 (56%)
JBoss WFly 8,990 | 984 27 (3%)

Meta-Heuristic Selection. We selected the following meta-heuristics:

(1)

Genetic Algorithms (GAs) have been used in a prior study to configure
LDA [28] and the whole IR process [29]. GA is population-based meta-
heuristic that evolves a pool of randomly-generated solutions (LDA con-
figurations) through sub-sequent generations. In each generation, solutions
are selected based on their fitness values (silhouette coefficient) using the
binary tournament selection. Fittest solutions (parents) are combined using
binary-simulated crossover and gaussian mutation to form new solutions
(offspring). Then, the population for the new generation is formed by select-
ing the best solutions among parents and offspring (elitism).

Differential Evolution (DE) is an evolutionary algorithm used by Agrawal
et al. [1]. DE is also a population-based meta-heuristic with p randomly
generated solutions. The key difference in DE is that new solutions are
generated in each generation by using differential operators rather than
genetic operators. A new solution (LDA configuration) is generated by (1)
randomly selecting three solutions a, b, and ¢ from the population; (2) a new
solution is generated with the formula: y; = a; + f X (b; — ¢;), where f is the
differential weight € [0; 2]; a;, b; and ¢; denote the i-th elements of the three
selected solutions (i.e., the i-th LDA hyper-parameters). The differential
operator is applied with a probability p. € [0; 1] (crossover probability).
Particle Swarm Optimization (PSO) is a population-based meta-heuristic
proposed by Eberhart and Kennedy [13]. Similarly to DE and GA, PSO
iteratively updates the pool of initial particles (solutions) with initial posi-
tions (), inertia (w), and velocity (v). However, unlike GA and DE that
uses crossover (and mutation with GA), PSO updates the solutions toward
the best solution in the pool by updating their positions and wvelocity.

18 A. Panichella

(4) Simulated Annealing (SA) is a meta-heuristic that involves only one solution
at a time [36]. One randomly-generated solution z (LDA configuration) is
updated through random mutation (neighborhood). If the mutated solution
x’ improves the fitness function (i.e., fit(z’) < fit(z)) then SA selects 2’ as
new current solution. If the fitness function decreases with z’, the current
solution x is still replaced with a probability exp~2P/T where AD is the
difference between the cost function for ' and z while T is the tempera-
ture. The probability of accepting worst solutions decreases exponentially
with AD: the higher the difference between the two solutions, the lower the
probability of accepting the worst one. Usually, the parameter T decreases
in each iteration to strengthen the exploitation ability of SA.

(5) Random Search (Ran) is the simplest search algorithm to implement. It tries
K random samples and selects as the final solution (LDA configuration) the
one with the best fitness value across all generated trials. Despite its sim-
plicity, random search can outperform more sophisticated meta-heuristics
for specific problems [4] and it is often used as a baseline in SSBSE.

Parameter Settings. For the search, we opt for the standard parameter setting
and search operators suggested in the literature [1,28]. In particular, for GA we
use the following parameter values: population size of 10 LDA configurations;
crossover probability p. = 0.9; mutation probability p,, = 0.25 (i.e., 1/n, where
n is the number of hyper-parameters for LDA). For DE, we use the following
setting: population size p = 10; differential weight factor f = 0.7; crossover
probability p. = 0.9. SA was configured as follows: neighbors are generated
using the Gaussian mutation; the number of steps per temperature ns = 10;
the number of temperatures nt = 5. For PSO, we apply the following setting:
population size p = 10; inertia weight w; = 0.9; search weights ¢; = co = 1. The
only parameter to set for random search is the number of random solutions to
generate.

Termination Criteria. To allow a fair comparison, we set all algorithms with
the same stopping criterion: the search terminates when the maximum num-
ber of fitness evaluations (FEs) is reached. Previous studies in search-based
topic modeling suggested different values for FEs: Panichella et al. [28] used GA
with 100 individuals and 100 generations, corresponding to 10K FEs; Agrawal
et al. [1] used DE with 10 individuals and 3 generations, corresponding to 30
FEs. Agrawal et al. [1] argued that fewer FEs are sufficient to achieve good and
stable LDA configurations. In addition, too many FEs dramatically impact the
overall running time since each LDA execution (individual) is very expensive for
large corpora. Based on the motivation by Agrawal et al. [1], we use FEs = 50
since it provides a good compromise between performances (TOP metrics) and
running time in our preliminary experiments. However, we use the same FEs for
all meta-heuristics while prior studies [1] used fewer FEs only for DE.

Implementation. For LDA, we use its implementation available in the
package topicmodels in R [18]. We chose this implementation over other

A Systematic Comparison of Search Algorithms for Topic Modelling 19

implementations (e.g., Mallet® in Java) because it provides an interface to the
original LDA implementation in C code by Blei et al. [8]. Furthermore, Binkley
et al. [6] showed that the R implementation is less sensitive to local optima com-
pared to Mallet. The R implementation was also used in a prior study concern-
ing LDA configurations for SE tasks [28] and support strategies (e.g., random
restarts) to achieve stable LDA models. For the meta-heuristics, we also used
their implementation available in R: (1) real-coded genetic algorithms from the
package GA [33]; (2) differential evolution from the package DEoptim [26]; (3) ran-
dom search from the package randomsearch [32]; (4) Simulated-Annealing [38],
and Particle Swarm Optimization from the package NMOF [23].

The R scripts and datasets used in our experiment are publicly available at
the following link: https://apanichella.github.io/tools/ssbse-1da/.

3.1 Experimental Methodology

For each project, we run each meta-heuristic 30 times. In each run, we collected
the running time needed to reach the stop condition (see the parameter setting)
and the performance metric TOPy. At the end of each run, we use the LDA con-
figuration produced by the meta-heuristic under analysis, and we generated the
corresponding LDA model, and the topic-by-document matriz (©) in particular.

To answer RQ1, we use the TOP; metric, which measures the performance
of an IR-method by checking whether a duplicate bug report to a given query
is retrieved within the top k candidate reports in the ranked list. For example,
TOPs5 is equal to one if the first duplicate report for a given query ¢ is retrieved
within the first top k = 5 positions in the ranked list. The overall TOPj, metric
for a given project is the average of the TOP} scores achieved for all target
reports in the project. More formally, let |@Q| be the number of queries (reports)
in a given dataset, the TOP}, metric is defined as [20]:

TOPk Z an (3)
|Q| =

where ing (i) is equal to one if the first duplicated report for the query ¢ is
retrieved within the first k positions in the corresponding ranked list. The higher
the TOPy, the better the performance of LDA with a given configuration. In
this paper, we consider four values of k, i.e., TOP5, TOP1y, TOP;15, and TOPy.

To answer RQ2, we compare the running time required by the different meta-
heuristics to terminate the search process in each independent run. For our
analysis, we compare the arithmetic mean for the running time across the 30
independent runs and the corresponding standard deviation.

To assess the statistical significance, we use the Friedman test to compare
the performance (TOPj, and running time) of the assessed meta-heuristics over
six projects and five different metrics (four TOP; and the running time). Each
meta-heuristic produced 4 (TOPj metrics) x 6 (projects) x 30 (runs) = 720
data points. For statistical analysis, we consider the average (arithmetic mean)

5 http://mallet.cs.umass.edu.

https://apanichella.github.io/tools/ssbse-lda/
http://mallet.cs.umass.edu

20 A. Panichella

of the TOPj metrics across the 30 runs, resulting in 24 average scores per meta-
heuristic. The five distributions (one for each meta-heuristic) are then compared
using the Friedman test [15], which is used to assess whether the performance
achieved by alternative meta-heuristics significantly differ from one another.
Then, to better understand which meta-heuristics performs better, we use the
Wilcoxon rank sum test to compare pairs of meta-heuristics. To draw our con-
clusions, we use the significance level 0.05 for both the Friedman and Wilcoxon
tests. Given the large number of pair comparisons with the Wilcoxon tests, we
report the number of times (i.e., pair of software projects and TOPj, metrics) a
meta-heuristic A performs significantly better than another meta-heuristic B.

Strategies to Achieve Stable Topic Modeling. In this paper, we address
the stability problem using two standard strategies: seeding and random restart.
When evaluating each LDA configuration (individual), we store both the sil-
houette coefficient (fitness function) and the random seed used to generate the
LDA model. Therefore, when the search terminates, LDA is re-run using the
best solution (configuration) found across the generation/iterations and using
the corresponding random seed previously stored. This allows obtaining the
same results (silhouette score, topics, and mixtures) even when LDA is re-run
multiple times with the same hyper-parameters. Besides, we also used random
restarting to improve the stability of the results and reducing the likelihood of
reach a local optimum when using the Gibb-sampling method. In particular, the
Gibb sampling procedure is restarted n = 5 times (independent runs), and the
generated topics and mixtures are obtained by averaging the results achieved
across the independent results.

4 Empirical Results

Table 2 shows the average (mean) and the standard deviation performance scores
(TOP5, TOP19, TOP;5, and TOPy) achieved by the different algorithms in
the comparison over 30 independent runs. First, we can notice that there is no
“master” (dominant) meta-heuristic that outperforms the others for all software
projects. DE, GA, and SA produce the best (largest) TOP}, scores for different
projects and with different k values. DE achieves the highest TOPj5 only for two
out of seven projects and in only one project for TOP,y. However, in all three
cases, DE and GA achieve the same performance score. For all the other projects
and metrics, it does not outperform nor compete with other meta-heuristics.
Therefore, our results indicate that DE is not superior to other meta-heuristics
as argued in prior studies.

GA achieves the best scores in 17 cases (six projects with different TOPy
metrics). For the projects io, math, and wfly, GA outperforms all other meta-
heuristics according to all TOPy scores. The differences with the second high-
est scores range between 2% (math with TOPs5) and 21% (wfly with TOP3).
It is worth noting that these three projects present the lowest percentages of
duplicated bug reports (<=8%) compared to the other projects (see Table1).
These results suggest that GA is likely more effective on projects with very few

A Systematic Comparison of Search Algorithms for Topic Modelling 21

Table 2. Mean and standard deviation of the performance scores achieved by the
evaluated meta-heuristics

System Metric | DE GA Ran SA PSO

Mean | S.d | Mean | S.d |Mean|S.d |Mean |S.d | Mean |S.d
Collections | TOP5 |0.87 [0.09]/0.90 | 0.08/0.90 |0.07/0.95 [0.05|/0.80 |0.07
TOP10|0.88 |0.10/0.90 |0.07/0.91 |0.08/0.95 |0.05/0.84 |0.07
TOP5/0.89 |0.10/0.90 |0.07/0.91 |0.08/0.96 |0.040.84 | 0.07
TOP2 | 0.90 |0.08/0.90 |0.07/0.91 |0.08/0.96 |0.040.85 |0.07
Datacmns | TOPs |0.44 |0.10/0.47 |0.10/0.41 |0.12/0.37 |0.05|/0.28 |0.09
TOP10|0.52 |0.12]/0.54 1 0.11/0.51 |0.12/0.52 |0.07/0.39 |0.13
TOP;5|0.54 |0.13/0.57 |0.11/0.53 |0.15/0.61 | 0.13]/0.42 |0.14
TOP20|0.56 |0.13/0.58 [0.11]0.55 |0.14/0.63 |0.15]/0.46 |0.13
10 TOPs |0.51 |0.12/0.54 0.11/0.45 |0.16/0.41 |0.17]/0.22 |0.05
TOPi0|0.55 |0.12|/0.61 |0.12/0.50 |0.18/0.54 |0.27/0.36 | 0.07
TOP15|0.56 |0.11]/0.64 0.10]/0.54 |0.15/0.55 |0.280.44 |0.07
TOPy | 0.61 |0.12/0.68 |0.10/0.61 |0.15/0.56 |0.26|0.52 |0.05
Lang TOPs |0.58 |0.11/0.58 |0.05|0.57 |0.05/0.50 |0.05/0.38 |0.13
TOP10|0.62 |0.12/0.62 |0.06|0.64 |0.05|/0.68 |0.07|0.45 |0.09
TOP;5|0.65 |0.11/0.64 |0.06|0.67 |0.05|/0.69 |0.05]0.48 |0.09
TOPy | 0.67 |0.12/0.65 |0.06|0.69 |0.04/0.71 | 0.05]/0.49 |0.10
Math TOPs |0.45 [0.09|/0.47 0.12/0.45 |0.14/0.43 |0.04|0.38 |0.19
TOP1p|0.51 |0.11]0.57 0.12/0.50 |0.16 /0.48 |0.10|0.41 |0.19
TOP15|0.51 |0.10/0.58 [0.12/0.50 |0.160.50 |0.10|/0.42 |0.19
TOPg | 0.51 |0.10/0.58 1 0.12/0.51 |0.15/0.50 |0.11]0.44 |0.18
Spr TOPs |0.62 | 0.04|0.62 |0.06|0.58 |0.06|0.53 |0.08/0.53 |0.12
TOP0 | 0.65 | 0.04|0.65 0.05/0.61 |0.06 0.65 |0.03|0.57 |0.11
TOP;5|0.67 |0.05/0.67 |0.05/0.63 |0.07/0.72 | 0.09|0.61 |0.10
TOPy | 0.69 |0.04/0.69 |0.04|/0.66 |0.06 0.76 |0.10|0.63 |0.09
WFly TOPs |0.31 |0.08/0.53 [0.10/0.30 |0.09/0.44 |0.10|0.13 |0.03
TOP10|0.33 |0.08/0.53 |0.09/0.31 |0.10/0.48 |0.09|0.15 |0.03
TOP;15/0.33 [0.09/0.53 0.09/0.32 |0.10/0.50 [0.10|0.16 |0.02
TOPy | 0.33 |0.09/0.53 [0.09/0.32 |0.10/0.51 |0.09|0.16 |0.02

duplicate bug reports. For the projects datacmns, lang, and spr, GA achieves
the best TOPj scores only for k = 5 (for both projects) and k = 10 (for
spr). For larger k values, SA produces the best TOP; scores among the five
meta-heuristics.

In general, SA achieves the best TOP scores in 12 cases (four projects
with different TOP metrics). Independently from the TOPj, metric, SA is the
best meta-heuristic for collections, which is the smallest projects (<100 bug

22 A. Panichella

reports) in our benchmark. The differences with the second best meta-heuristic
vary between 4% and 5%. For other three projects, namely datacmns, lang, and
spr, SA achieves the best results only for larger values of k.

Random search never produces the best TOPy, scores. However, it does pro-
duce better average TOP}, scores than DE and GA for collections and lang.
Finally, PSO produces the lowest TOPj scores than all other meta-heuristics
and for all projects in our study. Therefore, it is not a suitable meta-heuristic
for topic models, at least in the context of duplicate bug report identifications.

The differences among the different meta-heuristics are statistically signifi-
cant according to the Friedman test, whose resulting p-value is 3.79x 10719, To
better understands which meta-heuristics performs statistically better (or worse)
than others, Tables3(a)—(d) report the number of projects in which each meta-
heuristic (rows in the tables) significantly outperforms another meta-heuristic
(columns in the tables) according to the Wilcoxon test. Instead, Table 4 reports
the ranking produces by the Friedman tests. According to the statistical results,
GA is ranked first, followed by SA and DE, respectively. Instead, Random search
and PSO are the bottom two meta-heuristics. While GA was ranked first, we
can notice that it does not significantly outperform all other meta-heuristics for

Table 3. Number of projects in which one meta-heuristic (row) statistically outper-
forms another one meta-heuristic (column) according to the Wilcoxon test.

(a) TOP; (b) TOP, (¢) TOPys
Vs. |DE GA Ran SA PSO Vs. |[DE GA Ran SA PSO Vs. |DE GA Ran SA PSO
DE -0 3 3 7 DE | - 0 2 1 7 DE -0 1 1 7
GA |1 - 4 5 7 GA | 3 - 4 1 7 GA | 3 - 4 1 7
Ran| 0 O - 2 7 Ran| 1 O - 0 6 Ran| 0 1 - 0 6
SA 2 1 2 - 7 SA 3 1 3 - 7 SA 3 2 4 - 7
PSO| 0 O 0 0 - PSO| 0 O 0 0 - PSO| 0 O 0 0 -
(d) TOP,

Vs. [DE GA Ran SA PSO

DE | - 0 1 1 7

GA | 3 - 4 2 7

Ran| 0 1 - 0 6

SA 3 1 5 - 7

PSO| 0 O 0 0 -

Table 4. Ranking produced by the Friedman Tests

Meta-heuristic | Ranking

GA 2.085714
SA 2.457143
DE 2.571429
Random 3.457143

PSO 4.428571

A Systematic Comparison of Search Algorithms for Topic Modelling 23

all projects. However, it significantly outperforms Random Search and PSO in
most of the projects. It outperforms SA in most of the projects only for PTOP;
while for £ > 5, the two meta-heuristics are comparable. DE (that is ranked
third) never outperforms GA according to the Wilcoxon test. Vice versa, GA
significantly outperforms DE in three out of seven projects for POSg~s5.

There is no “master” (dominant) meta-heuristic when configuring topic
models for duplicate bug report identification. GA and SA perform better than
other meta-heuristics but not consistently across projects. Random search
and PSO are the least effective meta-heuristics.

Table 5. Mean and standard deviation of the running time required by the evaluated
meta-heuristics to perform 50 fitness evaluations

System DE GA Ran SA PSO
Mean|S.d |Mean|S.d Mean|S.d Mean|S.d Mean|S.d
Collections| 14 | 2.34| 11 2.05 7 5.15 6 0.60| 14 | 1.25
Datacmns 91 (14.53| 72 | 14.19| 46 | 32.66| 72 | 36.82| 85 |15.36

Io 15 | 2.69| 11 1.91 9 6.07 9 1.90 15 | 0.98
Math 118 116.40| 96 | 24.97| 66 | 47.61| 138 | 85.66| 129 |20.24
Lang 92 | 883 72| 11.98| 48 | 34.14) 82 | 58.55| 80 |14.81
Spr 64 [12.02| 58 8.00 37 | 26.35, 85 | 66.07| 71 |10.28
WFly 6554 62.36|5196 |130.78|3653 |262.42/5124 501.38 6433 |94.56

Table 5 reports the mean (and the standard deviation) running time required
by the evaluated meta-heuristics to reach the same stopping criterion (50 FEs)
across 30 independent runs. As expected, random search is the fastest among all
meta-heuristics since it does not involve any solution selection and update (e.g.,
mutation). For what regards the other meta-heuristics, we can notice that their
running does not differ substantially. On average, the difference between each
pair of meta-heuristics is lower than 10%, and this small difference is mostly due
to the computational complexity of the different individual operators. For exam-
ple, GA is faster than SA in three projects but slower in three other projects. DE
and PSO are instead slightly slower than GA and SA, although the differences
are small and in some cases almost negligible (e.g., few additional seconds for the
project collections). These results contradict what reported by Agrawal et al. [1],
who used fewer fitness evaluations with DE and many more with GA. In this
study, we use the same number of fitness evaluations for all meta-heuristics to
allow a fair comparison. When using the same stopping criterion, DE is slightly
slower than GA. This confirms previous results in evolutionary computation
(e.g., [19]) that showed how the extra overhead in DE is due to the computa-
tion complexity of differential operators. Indeed, a single generation of DE is on
average four times more expensive than one single generation with GA [19].

24 A. Panichella

The running time strongly depends on the number of fitness evaluation per-
formed during the search (time to infer LDA). Instead, the internal complex-
ity of the meta-heuristics is small or negligible.

Threats to Validity. Construct validity. All meta-heuristics are implemented
in R and were executed with the same stopping criterion. Furthermore, we use
seeding and random restarts for all meta-heuristics to alleviate the instability of
the LDA results. Internal validity. We drew our conclusions by executing 30 inde-
pendent runs to address the random natures of the evaluated meta-heuristics.
Besides, we use the Wilcoxon and the Friedman tests to assess the statistical
significance of the results. We use TOPy, as the performance metric because it is
a standard performance metric in duplicate bug report identification. Ezxternal
validity. In our study, we consider seven open source projects from the Bench4BL
dataset [22]. Assessing the different meta-heuristics and selecting more projects
is part of our future plan.

5 Conclusion and Future Work

In this paper, we empirically compare different meta-heuristics when applied to
tune LDA parameters in an automated fashion. We focus on topic-model based
identification of bug report duplicates, which is a typical SE task and addressed
in prior studies with topic model and IR methods (e.g., [20,27]). Experimental
results on seven Java projects and their corresponding bug reports show that
multiple meta-heuristics are comparable across different projects, although ran-
dom search and PSO are least effective than other meta-heuristics. Therefore,
no meta-heuristic outperforms all the others as advocated in prior studies. How-
ever, our conclusions hold for the problem of identifying duplicate bug reports.
Therefore, different results may be observed in different SE tasks. Our future
work will focus on extending our study by (i) comparing more meta-heuristics,
(ii) considering more projects and (iii) evaluating other SE tasks.

References

1. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how
to fix it using search-based software engineering. Inf. Softw. Technol. 98, 74-88
(2018)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models
for recovering traceability links between code and documentation. In: The 16th
IEEE International Conference on Software Maintenance, pp. 40-51 (2000)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Boston (1999)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2), 281-305 (2012)

5. Binkley, D., Lawrie, D.: Information retrieval applications in software maintenance
and evolution. Encycl. Softw. Eng. 454-463 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Systematic Comparison of Search Algorithms for Topic Modelling 25

Binkley, D., Heinz, D., Lawrie, D., Overfelt, J.: Source code analysis with Ida. J.
Softw. Evol. Process 28(10), 893-920 (2016)

Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software
Data. Elsevier, Amsterdam (2015)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993-1022 (2003)

Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical
evaluation of evolutionary algorithms for unit test suite generation. Inf. Softw.
Technol. 104, 207-235 (2018)

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
role of the nouns in IR-based traceability recovery. In: The 17th IEEE International
Conference on Program Comprehension (2009)

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using IR
methods for labeling source code artifacts: Is it worthwhile? In: The 20th IEEE
International Conference on Program Comprehension (ICPC), pp. 193-202 (2012)
De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling
source code with information retrieval methods: an empirical study. Empirical
Softw. Eng. 19(5), 1383-1420 (2014)

Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: The
6th International Symposium on Micro Machine and Human Science, pp. 39-43
(1995)

Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to auto-
matically split identifiers for software analysis. In: The 6th International Working
Conference on Mining Software Repositories, pp. 71-80 (2009)

Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study
on the CEC’2005 special session on real parameter optimization. J. Heuristics
15(6), 617-644 (2009)

Grant, S., Cordy, J.R.: Estimating the optimal number of latent concepts in source
code analysis. In: The 10th International Working Conference on Source Code
Analysis and Manipulation, pp. 65-74 (2010)

Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(Suppl. 1), 5228-5235 (2004)

Griin, B., Hornik, K.: Topicmodels: an R package for fitting topic models. J. Stat.
Softw. 40(13), 1-30 (2011)

Hegerty, B., Hung, C.C., Kasprak, K.: A comparative study on differential evolu-
tion and genetic algorithms for some combinatorial problems. In: The 8th Mexican
International Conference on Artificial Intelligence, pp. 9-13 (2009)

Hindle, A., Onuczko, C.: Preventing duplicate bug reports by continuously querying
bug reports. Empirical Softw. Eng. 24(2), 902-936 (2019)

Hughes, M., Kim, D.I., Sudderth, E.: Reliable and scalable variational inference
for the hierarchical dirichlet process. In: Artificial Intelligence and Statistics, pp.
370-378 (2015)

Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Le Traon, Y.: Bench4bl: reproducibil-
ity study on the performance of IR-based bug localization. In: The 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 61-72.
ACM (2018)

Manfred Gilli, D.M., Schumann, E.: Numerical Methods and Optimization in
Finance (NMOF) (2011)

26

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

A. Panichella

Mantyla, M.V., Claes, M., Farooq, U.: Measuring lda topic stability from clusters of
replicated runs. In: The 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 49. ACM (2018)

Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model.
In: The 18th Conference on Uncertainty in Artificial Intelligence, pp. 352-359.
Morgan Kaufmann Publishers Inc. (2002)

Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: an R package for
global optimization by differential evolution. J. Stat. Softw. 40(6), 1-26 (2011)
Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate bug report
detection with a combination of information retrieval and topic modeling. In: The
27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 70-79 (2012)

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
How to effectively use topic models for software engineering tasks? An approach
based on genetic algorithms. In: The International Conference on Software Engi-
neering, pp. 522-531. IEEE Press (2013)

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
Parameterizing and assembling IR-based solutions for se tasks using genetic algo-
rithms. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), vol. 1, pp. 314-325. IEEE (2016)
Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of
test case summaries on bug fixing performance: an empirical investigation. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp.
547-558, May 2016

Porteous, I., Newman, D., Thler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed gibbs sampling for latent dirichlet allocation. In: The 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 569-577.
ACM (2008)

Richter, J.: Randomsearch: Random Search for Expensive Functions (2019)
Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1-37
(2013)

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards
automatically generating summary comments for java methods. In: The 25th
IEEE/ACM International Conference on Automated Software Engineering, pp.
43-52. ACM Press (2010)

Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. J. Am.
Stat. Assoc. 101(476), 1566-1581 (2006)

Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing;:
Theory and applications, pp. 7-15, vol 37. Springer, Dordrecht (1987). https://doi.
org/10.1007/978-94-015-7744-1_2

Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: The 29th
Annual International Conference on Research and Development in Information
Retrieval, pp. 178-185. ACM (2006)

Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing
for efficient global optimization: the GenSA package for R. R J. 5(1) (2013)

https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1007/978-94-015-7744-1_2

	A Systematic Comparison of Search Algorithms for Topic Modelling—A Study on Duplicate Bug Report Identification
	1 Introduction
	2 Background and Related Work
	3 Empirical Study
	3.1 Experimental Methodology

	4 Empirical Results
	5 Conclusion and Future Work
	References

