
Code Naturalness to Assist Search Space
Exploration in Search-Based Program

Repair Methods

Altino Dantas1(B), Eduardo F. de Souza1, Jerffeson Souza2,
and Celso G. Camilo-Junior1

1 Intelligence for Software Group, Federal University of Goiás, Alameda Palmeiras,
Quadra D, Câmpus Samambaia, Goiânia 74690-900, Brazil

{altinobasilio,eduardosouza,celso}@inf.ufg.br
2 Optimization in Software Engineering Group, State University of Ceará, Doutor

Silas Munguba Avenue, 1700, Fortaleza 60714-903, Brazil
jerffeson.souza@uece.br

http://i4soft.com.br

Abstract. Automated Program Repair (APR) is a research field that
has recently gained attention due to its advances in proposing methods to
fix buggy programs without human intervention. Search-Based Program
Repair methods have difficulties to traverse the search space, mainly,
because it is challenging and costly to evaluate each variant. Therefore,
aiming to improve each program’s variant evaluation through providing
more information to the fitness function, we propose the combination of
two techniques, Doc2vec and LSTM, to capture high-level differences
among variants and to capture the dependence between source code
statements in the fault localization region. The experiments performed
with the IntroClass benchmark show that our approach captures differ-
ences between variants according to the level of changes they received,
and the resulting information is useful to balance the search between
the exploration and exploitation steps. Besides, the proposal might be
promising to filter program variants that are adequate to the suspicious
portion of the code.

Keywords: Automated Program Repair · Search space exploration ·
Code naturalness

1 Introduction

Automated Program Repair (APR) is a research field that aims to fix buggy
code without human intervention. Search-Based Program Repair algorithms [1]
are based on the generate-and-validate approach, where variations of the original
(bugged) code are generated and then evaluated, mostly, by a test suite. This
evaluation method is time-consuming, might lead the search to plateaus or local

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 164–170, 2019.
https://doi.org/10.1007/978-3-030-27455-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_12

Code Naturalness to Assist Search Space Exploration in SBPR Methods 165

optimal, and does not provide enough information to the fitness function to
accurately differentiate the variants.

There is evidence that using dynamic analysis to capture internal states of
the program and then using this information in the fitness function helps to
differentiate variants better and improves the search expressiveness [2]. Although
promising, this technique is still too costly and given that the search space is
usually densely populated by plausible or low-quality solutions, there is still the
need for efficient methods. Other approaches using neural network models to
evaluate or classify source code in the APR context [3,4] might be used to help
to compose the fitness function, but there is no evidence of a relation of those
approaches to a fitness evaluation.

Previous research acknowledges that source code has similar properties of
natural language and, therefore, the models used to compare natural language
suits this new context [5]. Although [6] points out that such models might not
be accurate, this research goes one step further and provide an efficient pro-
gram’s variant evaluation through the combination of two techniques, Doc2vec
and LSTM, to capture high-level differences among variants (high-order muta-
tions) and to capture the dependence between source code statements in the
fault localization region (low-order mutation).

2 Proposed Approach

End-to-end search-based Automated Program Repair techniques comprise sev-
eral steps with complex tasks involved. Yet, the focus of this proposal is about
traversing the program’s landscape concerns. Figure 1 presents an overview illus-
trating what APR aspects are involved with and are impacted by this proposal.

Fig. 1. Our proposal of using code naturalness for Automated Program Repair.

Our approach considers that correct source codes (written in the same pro-
gramming language as the buggy code) are available in order to perform an
automated program repair. Assuming that language models are trained to cap-
ture naturalness from scriptures, we rely on that to also assume that they are
capable of capturing naturalness from correct source code. The corpus used to
train the models are composed of tokens obtained through feature extraction
from the correct source codes.

166 A. Dantas et al.

One can use information from the naturalness model in a traditional search-
based program repair workflow (dashed lines). As Fig. 1 highlights with the white
circle, we propose to use those models to help as a static analysis factor to a
fitness function. The model receives a tokenized source code, transformed with
the same process as used in training, and it returns information to compound
the fitness along with the dynamic factor, which is typically based on a test suite
and requires executing the program.

Among the existing ways to capture naturalness information from a corpus,
we propose the usage of Doc2vec and LSTM. The motivation to use them, as
well as their required inputs and the expected output, is detailed next.

2.1 Doc2vec Model

Doc2vec is an unsupervised machine learning method that learns a fixed feature
representation to describe paragraphs and documents [7] throughout the distri-
butions of words and sentences in a corpus. Previous work has proposed metrics
to evaluate program variants based on a word embedding [3], but we chose the
Doc2vec because it is more appropriate to deal with the whole document.

We employ Doc2vec to encode methods or functions in source codes in the
same way it treats paragraphs in documents; thus, our technique obtains a mea-
sure of similarity between programs based on their vector representation. Given
this information, one might assume that a fix is not so distant from the original
bugged code. Besides, one can use this vector representation to investigate the
impact of mutation operators, which is typically hard to do using the patch or
AST representations.

We developed our proposal upon the Doc2vec provided by the Gensim1

library in such a way that our model, when trained, receives two source codes
and returns how similar they are.

2.2 LSTM Model

Long Short-Term Memory (LSTM) [7] is a recurrent neural network applied
to pattern recognition in several contexts as text sequences, temporal series,
genomes, and spoken words. It deals with sequences of elements without a regular
interval of dependence between them. A similar situation occurs in source codes.

Different from analyzing the whole file, likewise the previous Doc2vec model,
we propose to use LSTM to capture data from and generate information for a
specific area of the code. Therefore, we train our LSTM model (implemented
with the TensorFlow framework2) on the corpus of correct programs and then
use it to synthesize code patch considering a part of the buggy program as the
input sequence. The model receives a sequence of tokens from the suspicious
region and generates the sequence it considers more “natural” for that part of
the code. The experiment section presents how such an output sequence can be
used to evaluate program variants.
1 https://radimrehurek.com/gensim.
2 https://www.tensorflow.org.

https://radimrehurek.com/gensim
https://www.tensorflow.org

Code Naturalness to Assist Search Space Exploration in SBPR Methods 167

3 Preliminary Empirical Study

We conducted our experiments to answer the following Research Question: Do
naturalness models provide useful information to explore a program’s
search space?

Thus, to evaluate our proposal, we used the IntroClass3 benchmark. Consid-
ering this benchmark presents buggy and fixed versions but does not have fault
localization data nor the correct patches, we first performed an inspection to
generate such data. From the 99 available versions, distributed in six categories
(problems), we selected 70 of them. We did not consider fixes achieved only by
deletion, changes on the whole file, or empty diff between the bugged and fixed
versions.

The tokenization step is as follows: For all 70 versions selected (140, taking the
buggy and the correct ones), we removed all headers and comments, separated
every relevant token by space (e.g., vector[i] became vector [i]) and replaced
strings with the token “STRRPL” to prevent noise by words unlike to the one
from the programming language. Thus, the tokenization process is a feature
extraction process in the sense that each token represents a feature. After that,
the proposal trained both Doc2vec and LSTM models over the corpora from the
correct codes.

Three versions were randomly selected from each problem to test the former
model. For each version, 15 variants were generated by applying GenProg’s [8]
mutation operators and the number of mutations (1, 2, 3) they received clustered
those variants. Thus, it was generated 270 variants, and then it was possible to
calculate the similarity between the original version and its variants. Such a
metric is a unit percentage [0,1].

To the latter, the information of fault localization and a correct patch for all
70 versions were used to process the test and compute the accuracy (Acc) and
precision (Prec) metrics. Acc is |T ⋂

Y |
|T | and Prec is |T ⋂

Y |
|Y | , where T is the set

of tokens in the knowing patch fix, and Y is the set of tokens predicted by the
model. For this model requires an input sequence of tokens to produce another
sequence, different configurations of length for both sequences were verified.

Although training such models might be expensive, it occurs only once, and
its results are then used in O(1) time. A search-based program repair technique
could benefit from this while using the information from the models to pre-
evaluate a variant, alleviating the time-consuming process of running the test
suite.

Experiments’ data, scripts, and raw results are available at: https://
altinodantas.github.io/sbpr-naturalness.

3.1 Preliminary Results

Figure 2 shows the average similarity grouped by the number of mutations
the variants received and the problem they were implemented for. In some cases,
3 https://repairbenchmarks.cs.umass.edu.

https://altinodantas.github.io/sbpr-naturalness
https://altinodantas.github.io/sbpr-naturalness
https://repairbenchmarks.cs.umass.edu

168 A. Dantas et al.

Fig. 2. Similarity between original buggy versions and their variants.

such as checksum, grade, and smallest, the higher the number of mutations,
the lower the similarity. This behavior occurs if we assume that applying more
perturbations increases the entropy between the original and a variant from it.
However, for other problems, fewer mutations produced a lower similarity.

While inspecting the variants, we observed that in some cases, one mutation
could have more impact than three mutations. For instance, in the syllables
problem, a one-mutation variant deleted a “for” statement that had the main
functionality of the program. Meanwhile, for the same version, a three-mutations
variant computed higher similarity because the changes they provoked were not
as profound.

This observation is exciting because it provides a method to capture the
impact caused by mutation operators without the need of running the variant
or the original program against the test suite, which is a time-consuming task.
Therefore, a search algorithm could use the similarity to balance the exploration
and exploitation, which are two crucial steps to cover a search space adequately.
For example, using a threshold on the similarity values, one may enable muta-
tions with more or less impact on the code.

Looking at the reports from the median problem, one notices that their values
are inferior to the others. We speculate that this behavior is because the median
has more versions than the other problems. Thus, with more information from
the median to perform the training phase, the resulting model is more sensible
to get differences between versions from that problem. However, a more rigorous
investigation is needed.

Moving to the LSTM model evaluation, Table 1 presents the average of Acc
and Prec for each configuration considering all versions and problems. Configu-
rations have the format Xin Yout, where X and Y indicate the number of tokens
given as input and number of tokens expected in the output, respectively. As
Acc and Prec may be conflicting, the results show, in some sense, which config-
urations present the best trade-off.

It is possible to notice the configurations with only five tokens in the input,
the left part of the table, do not achieve the best values in Acc or Prec.

Code Naturalness to Assist Search Space Exploration in SBPR Methods 169

Table 1. Average of Acc and Prec achieved by LSTM model in all 70 selected versions.

Configuration Acc Prec Configuration Acc Prec Configuration Acc Prec

5in 10out 0.25 0.29 10in 10out 0.37 0.35 15in 10out 0.35 0.33

5in 20out 0.35 0.28 10in 20out 0.44 0.26 15in 20out 0.43 0.26

5in 30out 0.37 0.24 10in 30out 0.44 0.22 15in 30out 0.45 0.20

We might conclude that, on average, for the IntroClass’ problems, five tokens
are not enough to infer the dependence context due to some statements that are
related to others further away.

Rather, since Acc and Prec’s trade-off, all the 10-input configurations are not
dominated, that is, there is no other configuration with results at least equal to
one metric and strictly superior in the other. Notice that 10in 10out achieved
the best Prec (0.35). Despite 15in 30out reached the best Acc (0.45) and also
may be considered non-dominated, ten tokens to the input seem to be sufficient
because increasing the input does not necessarily achieve better accuracy, as the
others two 15-input does not overcome the best 10-input in this metric.

It is clear that based on local naturalness, given the faulty location and a
correct patch, it was impossible to predict all the tokens needed to a fix. However,
at least 37% of those tokens are always found in non-dominated settings; thus,
this information could be used to discard variants that present fewer tokens
than the model predicts. For instance, one could infer a threshold by analyzing
the accuracy of the model over known fixed codes. This makes sense once some
mutations are more suitable regarding the region of code they are applied.

Finally, considering the findings presented in this section, we can answer
the Research Question saying that: “yes, naturalness models can provide
useful information to be employed by a technique that needs to explore
a program’s search space”. From the Doc2vec model, it is possible to get
information to control the exploration and exploitation, and from the LSTM it
is possible to create a filter on variants that are more suitable to the context of
the region pointed by the fault localization.

4 Threats to Validity

The machine learning methods used to infer the naturalness models have a
stochastic nature; thus, we performed preliminary training to get the model
and decide about the hyperparameters. Nevertheless, fine-tuning the training
process may generate different results. Since the investigated benchmark has
small C programs, we can not generalize our findings to another programming
language. However, previous work [4] presented evidence that LSTM works for
real-world programs, including different programming languages. Finally, the
results are hugely dependent on the tokenization we adopted.

170 A. Dantas et al.

5 Final Remarks

Several APR methods fix buggy programs by generating and validating vari-
ants. However, exploring a program’s search space continues to be challenging.
Therefore, this paper introduced an approach to generate useful information to
explore a program’s search space from the naturalness of correct programs. Pre-
liminary results showed the proposal could potentially help APR methods to
control their exploration and exploitation steps and filter variants regarding the
fault localization data.

Next, we intend to couple our proposal to a search-based APR method. For
that, we are working on integrating it to GenProg. Our models will then be used
to prevent executing not such promising variants. Then, they will be used to
compound the fitness function itself.

Acknowledgements. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001 and
by the Fundação de Amparo à Pesquisa de Goiás (FAPEG).

References

1. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

2. de Souza, E.F., Le Goues, C., Camilo-Junior, C.G.: A novel fitness function for
automated program repair based on source code checkpoints. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1443–1450.
ACM, New York (2018)

3. Amorim, L.A., Freitas, M.F., Dantas, A., de Souza, E.F., Camilo-Junior, C.G.,
Martins, W.S.: A new word embedding approach to evaluate potential fixes for
automated program repair. In: Proceeding of the 2018 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 1–8, July 2018

4. Roque, L., Dantas, A., Camilo-Junior, C.G.: Programming style analysis with recur-
rent neural network to automatic pull request approval. In: Proceedings of The 2019
International Joint Conference on Neural Networks (IJCNN). ijcnn.org (2019, to be
appear)

5. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of soft-
ware. In: Proceedings of the 34th International Conference on Software Engineering,
ICSE 2012, pp. 837–847. IEEE Press, Piscataway (2012)

6. Jimenez, M., Checkam,T.T., Cordy, M., Papadakis, M., Kintis, M., Le Traon, Y.,
Harman, M.: Are mutants really natural?: A study on how naturalness helps mutant
selection. In: Proceedings of the 12th ESEM, page 3. ACM, 2018

7. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on Machine Learning, vol. 32,
ICML 2014, pp. II-1188–II-1196. JMLR.org (2014)

8. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

	Code Naturalness to Assist Search Space Exploration in Search-Based Program Repair Methods
	1 Introduction
	2 Proposed Approach
	2.1 Doc2vec Model
	2.2 LSTM Model

	3 Preliminary Empirical Study
	3.1 Preliminary Results

	4 Threats to Validity
	5 Final Remarks
	References

