
Shiva Nejati
Gregory Gay (Eds.)

LN
CS

 1
16

64

11th International Symposium, SSBSE 2019
Tallinn, Estonia, August 31 – September 1, 2019
Proceedings

Search-Based
Software Engineering

Lecture Notes in Computer Science 11664

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Shiva Nejati • Gregory Gay (Eds.)

Search-Based
Software Engineering
11th International Symposium, SSBSE 2019
Tallinn, Estonia, August 31 – September 1, 2019
Proceedings

123

Editors
Shiva Nejati
SnT/University of Luxembourg
Luxembourg, Luxembourg

Gregory Gay
University of South Carolina
Columbia, SC, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-27454-2 ISBN 978-3-030-27455-9 (eBook)
https://doi.org/10.1007/978-3-030-27455-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6794-9585
https://doi.org/10.1007/978-3-030-27455-9

Foreword

Message from the General Chair

It is a great pleasure for me to welcome you to the proceedings of the 11th Symposium
on Search-Based Software Engineering (SSBSE) 2019 held in Tallinn, Estonia. SSBSE
is a premium place to discuss novel ideas and practical applications of search-based
software engineering suitable for researchers at any stage of their career. More recently,
SSBSE has also witnessed an increased number of industrial participants sharing their
experience with other participants. Moreover, SSBSE also provides a forum for PhD
students to discuss their PhD topics with the leading experts in the area.

I would like to especially thank our chairs of the various tracks for their tremendous
efforts in creating an exciting conference program—(1) Research Track: Shiva Nejati
and Gregory Gay; (2) Journal-First Track: Fuyuki Ishikawa; (3) Short and Students
Track: Raluca Lefticaru and Muhammad Zohaib Iqbal; (4) Challenge Track: Ruchika
Malhotra and Michail Papadakis. Besides, our publicity chairs, Aitziber Iglesias, Ning
Ge, Aldeida Aleti, and Ali Ouni, did a fantastic job in advertising the symposium
through various channels. Our Web chair, Tiexin Wang, did a great job in setting up the
website and carrying out numerous updates efficiently. Last but not least, these pro-
ceedings would not have been possible without our publication chair, Bruno Lima.
A huge thanks to him for his splendid efforts.

I would also like to thank Kadri Joeruut and Reelika Allemann from Reisiekspert for
professionally handling all the local arrangements.

Finally, I would like to thank our sponsors, Facebook and the Research Council of
Norway, for their generous support for the conference.

June 2019 Shaukat Ali

Message from the Program Chairs

On behalf of the SSBSE 2019 Program Committee, it is our pleasure to present the
proceedings of the 11th International Symposium on Search-Based Software
Engineering, held in Tallinn, Estonia. Estonia is a self-described “digital society,”
where Internet access is a human right and digital access to public services is the norm
rather than the exception. We can think of few better places to have held the
symposium, and hope that the participants left the symposium inspired by both the
program we assembled and the culture we presented it in.

The field of search-based software engineering (SBSE) has grown by leaps and
bounds, and although research in this field is presented at almost every software
engineering conference, SSBSE continues to bring together the international SBSE
community to present innovations, discuss new ideas, and to celebrate progress.

This year, 28 papers were submitted, across four tracks: 16 full research papers, nine
short and student papers, two journal-first papers, and one challenge paper. In total, 79
authors from 17 countries submitted their work to the symposium, with submissions
from authors located in: Austria, Belgium, Brazil, Canada, China, Germany, Ireland,
Italy, Luxembourg, The Netherlands, Pakistan, Romania, Spain, Sweden, Switzerland,
UK, and the USA. We would like to thank the authors for their submissions, and
express our appreciation for their efforts in advancing the SBSE field.

Following a strict review process, where each submission received three reviews, we
accepted 15 papers: nine papers to the research track (with four having been improved
through a shepherding process and undergoing a second round of review), three to the
short and student paper track (one shepherded), one to the challenge track, and two to
the journal-first track. We would like to thank the members of the SSBSE Program
Committees for each track. Their dedicated work and support makes this symposium
possible, and results in a stronger community.

We would also like to thank the general chair, Shaukat Ali, and the rest of the
organization team for their efforts in organizing this conference. We additionally would
like to thank the chairs of the short and student paper track—Raluca Lefticaru and
Muhammad Zohaib Iqbal—the challenge track—Ruchika Malhotra and Michail
Papadakis—and the chair of the journal-first track—Fuyuki Ishikawa. Their efforts
made this symposium possible.

In addition to a full program of research talks, SSBSE 2019 attendees had the
opportunity to attend two outstanding keynotes. The first keynote was presented by
Dr. Thomas Bäck of the Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, The Netherlands. Dr. Bäck discussed automatic configuration and
learning for evolutionary computation, a strategy for analyzing optimization results
using data-driven approaches, resulting in a better understanding of the search
mechanism. The second keynote was presented by Dr. Federica Sarro of the
Department of Computer Science, University College London. Dr. Sarro discussed the
use of predictive analytics for software engineering and the use of search-based

heuristics to tackle long-standing SE prediction problems. A tutorial from Nadia
Alshahwan of Facebook on testing Android applications allowed attendees to gain
hands-on experience with SBSE techniques.

For those who were able to attend the symposium, we hope you enjoyed and were
inspired by this year’s program. For those unable to attend—or those just now
discovering these proceedings—we hope you find the work contained in this volume
enlightening and applicable. We are proud of the program assembled this year, and are
thankful for the opportunity to present these proceedings to the SBSE research
community.

June 2019 Gregory Gay
Shiva Nejati

viii Message from the Program Chairs

Organization

Organizers

General Chair

Shaukat Ali Simula Research Laboratory, Norway

Program Chairs

Gregory Gay Chalmers|University of Gothenburg, Sweden
Shiva Nejati SnT/University of Luxembourg, Luxembourg

Journal-First Chair

Fuyuki Ishikawa National Institute of Informatics, Tokyo, Japan

Short and Student Papers Track Chairs

Muhammad Zohaib Iqbal National University of Computer and Emerging
Sciences, Pakistan

Raluca Lefticaru University of Sheffield, UK

Challenge Track Chairs

Ruchika Malhotra Delhi Technological University, India
Michail Papadakis University of Luxembourg, Luxembourg

Publicity Chairs

Aldeida Aleti Monash University, Australia
Ning Ge Beihang University, China
Aitziber Iglesias IK4-Ikerlan, Spain
Ali Ouni University of Quebec, Canada

Web Chair

Tiexin Wang Nanjing University of Aeronautics and Astronautics,
China

Publication Chair

Bruno Lima University of Porto and INESC TEC, Portugal

SSBSE Steering Committee

Gregory Gay Chalmers|University of Gothenburg, Sweden
Lars Grunske Humboldt University Berlin, Germany
Marouane Kessentini University of Michigan, USA
Phil McMinn University of Sheffield, UK
Tim Menzies North Carolina State University, USA
Annibale Panichella University of Luxembourg, Luxembourg
Federica Sarro University College London, UK
Mohamed Wiem Mkaouer Rochester Institute of Technology, YUSA
Shin Yoo KAIST, South Korea

Technical Program Committee

Aldeida Aleti Monash University, Australia
Wesley Assuncao Federal University of Technology Parana, Brazil
Rami Bahsoon University of Birmingham, UK
Jose Campos University of Washington, USA
Carlos Cetina San Jorge University, Spain
Betty H.C. Cheng Michigan State University, USA
Thelma E. Colanzi State University of Maringa, Brazil
Robert Feldt Blekinge Institute of Technology, Sweden
Erik M. Fredericks Oakland University, USA
Lars Grunske Humboldt University of Berlin, Germany
Hadi Hemmati University of Calgary, Canada
Gregory Kapfhammer Allegheny College, USA
Marouane Kessentini University of Michigan, USA
Fitsum Meshesha Kifetew Fondazione Bruno Kessler, Italy
Anne Koziolek Karlsruhe Institute of Technology, Germany
Leandro Minku University of Leicester, UK
Annibale Panichella Delft University of Technology, The Netherlands
Mike Papadakis University of Luxembourg, Luxembourg
Pasqualina Potena RISE SICS Västerås AB, Sweden
Jose Miguel Rojas University of Leicester, UK
Christopher Simons University of the West of England, UK
Paolo Tonella Fondazione Bruno Kessler, Italy
Silvia Vergilio UFPR, Brazil
Tanja Vos Universitat Politècnica de València, Spain

Challenge Track Program Committee

Xavier Devroey Delft University of Technology, The Netherlands

x Organization

Short and Student Papers Track Program Committee

José Campos University of Washington, USA
Thelma E. Colanzi State University of Maringá, Brazil
Florentin Ipate University of Bucharest, Romania
Anne Koziolek Karlsruhe Institute of Technology, Germany
Annibale Panichella Delft University of Technology, The Netherlands
Pasqualina Potena RISE Research Institutes of Sweden AB, Sweden
José Miguel Rojas University of Leicester, UK
Paolo Tonella Università della Svizzera Italiana, Switzerland
Tanja Vos Open Universiteit, The Netherlands, and Universitat

Politècnica de València, Spain
Neil Walkinshaw University of Sheffield, UK

Sponsoring Institutions

1. Research Council of Norway
2. Facebook

Organization xi

Contents

Keynote

Search-Based Predictive Modelling for Software Engineering:
How Far Have We Gone? . 3

Federica Sarro

Research Papers

A Systematic Comparison of Search Algorithms for Topic
Modelling—A Study on Duplicate Bug Report Identification 11

Annibale Panichella

Constructing Search Spaces for Search-Based Software Testing
Using Neural Networks . 27

Leonid Joffe and David Clark

A Review of Ten Years of the Symposium on Search-Based
Software Engineering. 42

Thelma Elita Colanzi, Wesley Klewerton Guez Assunção,
Paulo Roberto Farah, Silvia Regina Vergilio, and Giovani Guizzo

Does Diversity Improve the Test Suite Generation
for Mobile Applications? . 58

Thomas Vogel, Chinh Tran, and Lars Grunske

PRICE: Detection of Performance Regression Introducing
Code Changes Using Static and Dynamic Metrics . 75

Deema Alshoaibi, Kevin Hannigan, Hiten Gupta,
and Mohamed Wiem Mkaouer

General Program Synthesis Using Guided Corpus Generation
and Automatic Refactoring . 89

Alexander Wild and Barry Porter

A Search-Based Approach to Generate MC/DC Test Data
for OCL Constraints . 105

Hassan Sartaj, Muhammad Zohaib Iqbal, Atif Aftab Ahmed Jilani,
and Muhammad Uzair Khan

Bio-Inspired Optimization of Test Data Generation
for Concurrent Software. 121

Ricardo F. Vilela, Victor H. S. C. Pinto, Thelma E. Colanzi,
and Simone R. S. Souza

Revisiting Hyper-Parameter Tuning for Search-Based Test
Data Generation . 137

Shayan Zamani and Hadi Hemmati

Short and Student Papers

Towards Automated Boundary Value Testing with Program Derivatives
and Search . 155

Robert Feldt and Felix Dobslaw

Code Naturalness to Assist Search Space Exploration in Search-Based
Program Repair Methods . 164

Altino Dantas, Eduardo F. de Souza, Jerffeson Souza,
and Celso G. Camilo-Junior

Dorylus: An Ant Colony Based Tool for Automated
Test Case Generation. 171

Dan Bruce, Héctor D. Menéndez, and David Clark

Challenge Paper

Software Improvement with Gin: A Case Study . 183
Justyna Petke and Alexander E. I. Brownlee

Author Index . 191

xiv Contents

Keynote

Search-Based Predictive Modelling
for Software Engineering:
How Far Have We Gone?

Federica Sarro(B)

Department of Computer Science, University College London, London, UK
f.sarro@ucl.ac.uk

http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Abstract. In this keynote I introduce the use of Predictive Analyt-
ics for Software Engineering (SE) and then focus on the use of search-
based heuristics to tackle long-standing SE prediction problems including
(but not limited to) software development effort estimation and software
defect prediction. I review recent research in Search-Based Predictive
Modelling for SE in order to assess the maturity of the field and point out
promising research directions. I conclude my keynote by discussing best
practices for a rigorous and realistic empirical evaluation of search-based
predictive models, a condicio sine qua non to facilitate the adoption of
prediction models in software industry practices.

Keywords: Predictive analytics · Predictive modelling ·
Search-based software engineering · Machine learning ·
Software analytics

1 Introduction

Nowadays software pervades almost every aspect of our life. This allows the pro-
duction and collection of a large amount of information about people’s decisions
and behaviours. Predictive Analytics exploits such information through intelli-
gent systems which are able to identify patterns and predict future outcomes
and trends. Applied to Software Engineering, predictive analytics helps us bet-
ter understand software processes, products and customers in order to maximise
product quality, users’ satisfaction, and revenues [27].

One of the most important use of Predictive Analytics for Software Engi-
neering is building prediction systems to estimate crucial software aspects and
support engineers throughout the software production life-cycle (a.k.a Predictive
Modelling for Software Engineering). Examples of software engineering predic-
tion problems are: estimating the amount of effort likely required to develop or
maintain software [11,25], estimating the successes of mobile applications [29]

This paper provides an outline of the keynote talk given by Dr. Federica Sarro at
SSBSE 2019, with pointers to the literature for details of the results covered.

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 3–7, 2019.
https://doi.org/10.1007/978-3-030-27455-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_1

4 F. Sarro

and identifying software that will most likely contain defects [12], cause crashes
[33] or fail tests [19].

Predictive Modelling for Software Engineering has been an important and
active research field that can be dated back to 1971, when the first attempt to
estimate the number of software defects was made [18]. Since then, predictive
systems of various nature have been proposed ranging from statistical models
and analogy-based techniques to machine learning and search-based methods.
In particular, over the past 10 years, search-based prediction systems have been
specifically devised to tackle long-standing software engineering prediction prob-
lems such as software development effort, defect proneness, maintainability and
change proneness [14,21]. These systems are either stand-alone systems able to
build optimal prediction models [6,10,25] or ones that are used in combination
with other (usually machine learning-based) estimators [3–5,20,24]. A variety
of meta-heuristics based on both local and global search techniques (e.g., Sim-
ulated Annealing, Tabu Search, Genetic Algorithm, Genetic Programming) has
been used, with the latter being definitively the most studied [8,21,26] and with
Multi-Objective Evolutionary Algorithm usually resulting in the most effective
approach for different prediction tasks (see e.g. [2,25]).

In this keynote I explain how to use search-based heuristics to tackle software
engineering prediction problems. I also highlight their strengths and weaknesses
with respect to more traditional statistical or machine learning-based estima-
tors. Some of these are the possibility to use one or multiple desired measures as
a fitness function to evolve optimal prediction models [2,7,25,28] and the need
of scalable solutions [9,23]. I review the most promising results in this field and
also envisage novel applications of search-based heuristics to predictive modelling
for SE; this includes using them to analyse interesting trade-offs (e.g. models’
predictive quality vs. interpretability) and to test machine learning-based pre-
dictors, both of which are challenges currently faced by the wider SE community.
I conclude my keynote by discussing best practices for a rigorous [1,16,22,30,31]
and realistic [13,15,17,32] empirical assessment and evaluation of search-based
predictive models, which is a condicio sine qua non to grow this field and to
facilitate the adoption of prediction models in software industry practices.

References

1. Arcuri, A., Briand, L.C.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. STVR 24(3), 219–250 (2014)

2. Canfora, G., De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella,
S.: Multi-objective cross-project defect prediction. In: Proceedings of the IEEE 6th
International Conference on Software Testing, Verification and Validation, ICST
2013, pp. 252–261 (2013). https://doi.org/10.1109/ICST.2013.38

3. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.:
How effective is Tabu search to configure support vector regression for effort esti-
mation? In: Proceedings of the International Conference on Predictive Models in
Software Engineering, PROMISE 2010, pp. 4:1–4:10 (2010). https://doi.org/10.
1145/1868328.1868335

https://doi.org/10.1109/ICST.2013.38
https://doi.org/10.1145/1868328.1868335
https://doi.org/10.1145/1868328.1868335

Search-Based Predictive Modelling for Software Engineering 5

4. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: Using
tabu search to configure support vector regression for effort estimation. Empir.
Softw. Eng. 18(3), 506–546 (2013). https://doi.org/10.1007/s10664-011-9187-3

5. Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F.: A genetic algorithm to config-
ure support vector machines for predicting fault-prone components. In: Caivano,
D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS, vol.
6759, pp. 247–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21843-9 20

6. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Using Tabu search to estimate soft-
ware development effort. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-
Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 307–320.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05415-0 22

7. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Genetic programming for effort
estimation: an analysis of the impact of different fitness functions. In: Proceedings
of the 2nd International Symposium on Search Based Software Engineering, SSBSE
2010, pp. 89–98 (2010). https://doi.org/10.1109/SSBSE.2010.20

8. Ferrucci, F., Harman, M., Sarro, F.: Search-based software project management.
In: Ruhe, G., Wohlin, C. (eds.) Software Project Management in a Changing
World, pp. 373–399. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55035-5 15

9. Ferrucci, F., Salza, P., Sarro, F.: Using hadoop MapReduce for parallel genetic
algorithms: a comparison of the global, grid and island models. Evol. Comput. 26,
1–33 (2017). https://doi.org/10.1162/evco a 00213

10. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Mendes, E.: Investigating Tabu
search for web effort estimation. In: Proceedings of EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2010, pp. 350–357 (2010)

11. Ferrucci, F., Mendes, E., Sarro, F.: Web effort estimation: the value of cross-
company data set compared to single-company data set. In: Proceedings of the
8th International Conference on Predictive Models in Software Engineering, pp.
29–38. ACM (2012)

12. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. IEEE Trans. Softw.
Eng. 38(6), 1276–1304 (2012). https://doi.org/10.1109/TSE.2011.103

13. Harman, M., Islam, S., Jia, Y., Minku, L.L., Sarro, F., Srivisut, K.: Less is more:
temporal fault predictive performance over multiple hadoop releases. In: Le Goues,
C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 240–246. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09940-8 19

14. Harman, M.: The relationship between search based software engineering and pre-
dictive modeling. In: Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, PROMISE 2010, pp. 1:1–1:13 (2010). https://doi.
org/10.1145/1868328.1868330

15. Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Le Traon, Y., Harman, M.:
The importance of accounting for real-world labelling when predicting software vul-
nerabilities. In: Proceedings of the 27th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019 (2019)

16. Langdon, W.B., Dolado, J.J., Sarro, F., Harman, M.: Exact mean absolute error
of baseline predictor, MARP0. Inf. Softw. Technol. 73, 16–18 (2016). https://doi.
org/10.1016/j.infsof.2016.01.003

17. Lanza, M., Mocci, A., Ponzanelli, L.: The tragedy of defect prediction, prince
of empirical software engineering research. IEEE Softw. 33(6), 102–105 (2016).
https://doi.org/10.1109/MS.2016.156

https://doi.org/10.1007/s10664-011-9187-3
https://doi.org/10.1007/978-3-642-21843-9_20
https://doi.org/10.1007/978-3-642-21843-9_20
https://doi.org/10.1007/978-3-642-05415-0_22
https://doi.org/10.1109/SSBSE.2010.20
https://doi.org/10.1007/978-3-642-55035-5_15
https://doi.org/10.1007/978-3-642-55035-5_15
https://doi.org/10.1162/evco_a_00213
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1007/978-3-319-09940-8_19
https://doi.org/10.1145/1868328.1868330
https://doi.org/10.1145/1868328.1868330
https://doi.org/10.1016/j.infsof.2016.01.003
https://doi.org/10.1016/j.infsof.2016.01.003
https://doi.org/10.1109/MS.2016.156

6 F. Sarro

18. Menzies, T., Zimmermann, T.: Software analytics: so what? IEEE Softw. 30(4),
31–37 (2013). https://doi.org/10.1109/MS.2013.86

19. Najafi, A., Rigby, P., Shang, W.: Bisecting commits and modeling commit risk dur-
ing testing. In: Proceedings of the 27th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019 (2019)

20. Braga, P.L., Oliveira, A.L.I., Meira, S.R.L.: A GA-based feature selection and
parameters optimization for support vector regression applied to software effort
estimation. In: Proceedings of the ACM Symposium on Applied Computing, SAC
2008, pp. 1788–1792 (2008)

21. Ruchika, M., Megha, K., Rajeev, R.R.: On the application of search-based tech-
niques for software engineering predictive modeling: a systematic review and future
directions. Swarm Evol. Comput. 32, 85–109 (2017)

22. Russo, B.: A proposed method to evaluate and compare fault predictions across
studies. In: Proceedings of the 10th International Conference on Predictive Models
in Software Engineering, PROMISE 2014, pp. 2–11. ACM (2014). https://doi.org/
10.1145/2639490.2639504

23. Salza, P., Ferrucci, F., Sarro, F.: Elephant56: design and implementation of a par-
allel genetic algorithms framework on hadoop MapReduce. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, GECCO 2016, pp.
1315–1322 (2016). https://doi.org/10.1145/2908961.2931722

24. Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C.: A further analysis on the
use of genetic algorithm to configure support vector machines for inter-release
fault prediction. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC 2012, pp. 1215–1220 (2012). https://doi.org/10.1145/2245276.
2231967

25. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort estimation.
In: Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, pp. 619–630 (2016). https://doi.org/10.1145/2884781.2884830

26. Sarro, F.: Search-based approaches for software development effort estimation. In:
Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement, PROFES 2011, pp. 38–43 (2011). https://
doi.org/10.1145/2181101.2181111

27. Sarro, F.: Predictive analytics for software testing: keynote paper. In: Proceedings
of the 11th International Workshop on Search-Based Software Testing, SBST 2018,
p. 1 (2018). https://doi.org/10.1145/3194718.3194730

28. Sarro, F., Ferrucci, F., Gravino, C.: Single and multi objective genetic program-
ming for software development effort estimation. In: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC 2012, pp. 1221–1226 (2012).
https://doi.org/10.1145/2245276.2231968

29. Sarro, F., Harman, M., Jia, Y., Zhang, Y.: Customer rating reactions can be
predicted purely using app features. In: Proceedings of 26th IEEE International
Requirements Engineering Conference, RE 2018, pp. 76–87 (2018). https://doi.
org/10.1109/RE.2018.00018

30. Sarro, F., Petrozziello, A.: Linear programming as a baseline for software effort
estimation. ACM Trans. Softw. Eng. Methodol. 27(3), 12:1–12:28 (2018). https://
doi.org/10.1145/3234940

31. Shepperd, M.J., MacDonell, S.G.: Evaluating prediction systems in software
project estimation. Inf. Sofw. Technol. 54(8), 820–827 (2012). https://doi.org/
10.1016/j.infsof.2011.12.008

https://doi.org/10.1109/MS.2013.86
https://doi.org/10.1145/2639490.2639504
https://doi.org/10.1145/2639490.2639504
https://doi.org/10.1145/2908961.2931722
https://doi.org/10.1145/2245276.2231967
https://doi.org/10.1145/2245276.2231967
https://doi.org/10.1145/2884781.2884830
https://doi.org/10.1145/2181101.2181111
https://doi.org/10.1145/2181101.2181111
https://doi.org/10.1145/3194718.3194730
https://doi.org/10.1145/2245276.2231968
https://doi.org/10.1109/RE.2018.00018
https://doi.org/10.1109/RE.2018.00018
https://doi.org/10.1145/3234940
https://doi.org/10.1145/3234940
https://doi.org/10.1016/j.infsof.2011.12.008
https://doi.org/10.1016/j.infsof.2011.12.008

Search-Based Predictive Modelling for Software Engineering 7

32. Sigweni, B., Shepperd, M., Turchi, T.: Realistic assessment of software effort esti-
mation models. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, EASE 2016, pp. 41:1–41:6. ACM (2016).
https://doi.org/10.1145/2915970.2916005

33. Xia, X., Shihab, E., Kamei, Y., Lo, D., Wang, X.: Predicting crashing releases of
mobile applications. In: Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2016, pp.
29:1–29:10 (2016). https://doi.org/10.1145/2961111.2962606

https://doi.org/10.1145/2915970.2916005
https://doi.org/10.1145/2961111.2962606

Research Papers

A Systematic Comparison of Search
Algorithms for Topic Modelling—A Study
on Duplicate Bug Report Identification

Annibale Panichella(B)

Delft University of Technology, Delft, The Netherlands
a.panichella@tudelft.nl

Abstract. Latent Dirichlet Allocation (LDA) has been used to support
many software engineering tasks. Previous studies showed that default
settings lead to sub-optimal topic modeling with a dramatic impact on
the performance of such approaches in terms of precision and recall. For
this reason, researchers used search algorithms (e.g., genetic algorithms)
to automatically configure topic models in an unsupervised fashion.
While previous work showed the ability of individual search algorithms
in finding near-optimal configurations, it is not clear to what extent
the choice of the meta-heuristic matters for SE tasks. In this paper, we
present a systematic comparison of five different meta-heuristics to con-
figure LDA in the context of duplicate bug reports identification. The
results show that (1) no master algorithm outperforms the others for
all software projects, (2) random search and PSO are the least effective
meta-heuristics. Finally, the running time strongly depends on the com-
putational complexity of LDA while the internal complexity of the search
algorithms plays a negligible role.

Keywords: Topic modeling · Latent Dirichlet Allocation ·
Search-based Software Engineering · Evolutionary Algorithms ·
Duplicate Bug Report

1 Introduction

Topic model techniques have been widely used in software engineering (SE) lit-
erature to extract textual information from software artifacts. Textual informa-
tion is often used support software engineers to semi-automated various tasks,
such as traceability link retrieval [2], identify bug report duplicates [27], auto-
mated summary generator [30,34], source code labeling [11], and bug localiza-
tion [22]. Latent Dirichlet Allocation (LDA) is a topic model techniques, which
has received much attention in the SE literature due to its ability to extract
topics (cluster or relevant words) from software documents. LDA needs to set a
number of hyper-parameters. For instance, the Gibbs sampling generative model
requires to choose the number of topics K, the number of iteration N , and two
hyper-parameters α and β affecting the topic distributions across documents
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 11–26, 2019.
https://doi.org/10.1007/978-3-030-27455-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_2

12 A. Panichella

and terms. However, there are no optimal hyper-parameter values that produce
“good” LDA models for any dataset. In fact, a prior study showed that untuned
LDA can lead to suboptimal performance and can achieve lower accuracy than
simple heuristics based on identifier analysis [11,12].

To address the tuning challenge, researchers have proposed different strate-
gies over the years [1,16,17,28,35]. While early attempts focused on the number
of topics K as the only parameter to tune, Panichella et al. [28] proposed a
search-based approach to tune the LDA hyper-parameters. More specifically,
the external performance (e.g., the accuracy) of LDA with a given configura-
tion [K,N,α, β] can be indirectly estimated looking at internal cluster quality
metrics. In their study, the author used the silhouette coefficient as the driving
metric (i.e., the fitness function) to guide genetic algorithms towards finding
(near) optimal LDA configurations automatically. Their empirical study showed
that LDA settings found with GA dramatically improve the performance of LDA,
outperform “off-the-shelf” setting used in previous studies.

Based on the results in [28], Agrawal et al. [1] further investigated search
algorithms for tuning LDA. They used Differential Evolution (DE) as alternative
meta-heuristic and showed through an extensive study that it often achieves more
stable LDA configurations, leading to better topic models than GAs. Besides,
they provided further evidence about the usefulness of search-based topic mod-
els over “off-the-shelf” LDA settings. Among other results, Agrawal et al. [1]
advocated the use of DE as superior meta-heuristics for tuning LDA.

In this paper, we aim to investigate further and compare the performances of
multiple meta-heuristics (not only GA and DE) to understand whether there is
one meta-heuristic (the “master” algorithm) that constantly dominates all the
others. To this aim, we consider the case of duplicate bug report identification,
which has been often addressed with topic modeling. Duplicate reports are bug
reports that describe the same issues but that are submitted by different users
to bug tracking systems. Duplicate reports lead to a considerable extra overhead
for developers who are in charge of checking and solving the reported issues [20].

We selected seven Java projects from the Bench4BL datasets and compared
five different meta-heuristics, namely DE, GA, Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Random Search (Ran). Our results show
that there is no “master” (dominant) algorithm in search-based topic model-
ing, although Ran and PSO are significantly less effective than the other meta-
heuristics. Besides, DE does not outperforms GA (in terms of both accuracy
and running time) when the three meta-heuristics use the same number of fit-
ness evaluations and the stability of LDA is improved using restarting strategies.

2 Background and Related Work

Document Pre-processing. Applying IR methods requires to perform a
sequence of pre-processing steps aimed to extract relevant words from software
artifacts (bug reports in our case). The first step is the term extraction, in which
non-relevant characters (e.g., special characters and numbers) are removed, and

A Systematic Comparison of Search Algorithms for Topic Modelling 13

compound identifiers are split (e.g., camel-case splitting) [14]. In the second
step, a stop-word list is used to remove terms/words that do not contribute to
the conceptual context of a given artifact, such as prepositions, articles, auxiliary
verbs, adverbs, and language keywords. Besides, the stop-word function removes
words that are shorter than a given threshold (e.g., words with less than three
characters). In the last steps, a stemming algorithm (e.g., Porter stemmer for
English) transform words into their root forms (e.g., verb conjugations). The
resulting pre-processed documents are then converted into a term-by-document
matrix (M). The rows of the matrix denote the terms in the vocabulary after
pre-processing (m terms) while the columns denote the documents/artifacts in
the corpora (n documents). A generic M(i, j) denotes the weight of the i-th
term in the j-th document [3]. The basic weight of each term corresponds to its
frequency in a given document (tf = term frequency). However, prior studies
suggested using tf -idf (terms frequency with inverse document frequency) which
gives lower weights (relevance) to words that appear in most of the documents [5].
The term-by-document matrix is then used as input for an algebraic (e.g., Vector
Space Model) or probabilistic model (PLSI) to compute the textual similarities
among the documents. Such similarities are used differently depending on the
SE task to solve. For example, similarities are used to detect duplicated reports
with the idea that similar bug reports likely discuss the same bug/issue.

In this paper, we use the following pre-processing steps suggested in the
literature [3,5,10]: (1) punctuation characters and numbers are removed; (2)
splitting compound identifiers with camel-case and snake-case regular expression;
(3) a stop-word list for English Language and Java code; (4) stop-word function
with a threshold of two characters; (5) words are transformed into their root
forms using the Porter stemmer; (6) tf -idf as the weighting schema.

Identifying Duplicate Bug Report. The term-by-document matrix (or its
low-dimensional approximation produced by LDA) is then used to compute the
Euclidean distance for each pair of documents (bug reports in our case) and com-
pute the ranked list of duplicate bug reports. More specifically, each bug report is
used as a query to retrieve the corresponding duplicated reports. The candidate
list for each query is therefore determined using the Euclidean distance and sort-
ing the documents in ascending order of distances. Effective IR-methods or topic
model should assign better rankings to duplicate reports over non-duplicates. For
example, Nguyen et al. [27] combined information retrieval and topic models to
detect duplicate reports in an automated fashion. Hindle et al. [20] showed that
continuously querying bug reports helps developers to discover duplicates at the
time of submitting new bug reports.

Topic Modeling with LDA. Latent Dirichlet Allocation (LDA) [8] is a gener-
ative probabilistic model for a collection of textual documents (corpora). More
specifically, it is a three-level hierarchical Bayesian model which associates doc-
uments with multiple topics [8]. In LDA, a topic is a cluster of relevant words
in the corpora. Therefore, documents correspond to finite mixtures over a set of
K topics. The input of LDA is the term-by-document (m×n) matrix generated
using the pre-processing steps described above. LDA generates two distributions

14 A. Panichella

of probabilities, one associated with the documents and the other one related the
terms in the corpora. The first distribution is the topic-by-document matrix (Θ):
a K ×n matrix, where K is the number of topics, n is the number of documents,
and the generic entry Θ(i, j) denotes the probability of the jth document to be
relevant to the ith topic. The second distribution is the word-by-topic matrix
(Φ): an m ×K matrix, where m is the number of words in the corpora, K is the
number of topics, and the generic entry Φ(i, j) denotes the probability of the ith

word to belong to the jth topic.
LDA can also be viewed as a dimensional reduction techniquesif the number

of topics K is lower than the number of words m in the corpora. Indeed, the
term-by-document matrix is decomposed using LDA as follows:

M
m×n

≈ Φ
m×K

× Θ
K×n

(1)

where K is typically smaller than m. Using Θ, documents can be clustered
based on the topics they share based on the corresponding topic probabilities.
Documents associated with different topics belong to different topic clusters.
Vice versa, documents sharing the same topics belong to the same cluster.

There exist multiple mathematical methods to infer LDA for a given cor-
pora. VEM is the applies a deterministic variational EM method using expectation
maximization [25]. The fast collapsed Gibbs sampling generative model is an
iterative process that applied a Markov Chain Monte Carlo algorithm [37]. In
this paper, we focus on Gibbs-sampling as prior studies showed that it much
faster [31], and it can achieve more stable results [17] and better convergence
towards the global optimum than VEM [1] in SE documents.

There are four hyper-parameters to set when using the Gibbs sampling gen-
erative model for LDA [7,28]:

– the number of topics K to generate from the corpora;
– α influences the distribution of the topics per document. Smaller α values

lead to fewer topics per documents.
– β influences the term distribution in each topic. Smaller β values lead to

topics with fewer words.
– the number of Gibbs iterations N ; this parameter is specific to the Gibbs

sampling generative model.

Stability of the Generated Topics. LDA is a probabilistic model and, as such,
it can produce slightly different models (topics and mixtures) when executed
multiple times for the same corpora. Furthermore, different document orderings
may lead to different topic distributions [1] (ordering effect). Previous studies
(e.g., [1,21]) suggested different strategies to increase LDA stability, including
using random seeds and applying multiple Gibb restarts.

The Gibbs sampling generative method is a stochastic method that performs
random samples of the corpora. As any random sampler, the Gibbs method
generates random sampling using a random number generator and a starting
seed. An easy way to achieve the same topics and mixtures consists in using the

A Systematic Comparison of Search Algorithms for Topic Modelling 15

same initial seed when running LDA with the same hyper-parameters and for
the same corpora. Another well-known strategy to improve the stability of LDA
is restarting the Gibbs sampling to avoid converging toward local optima. For
example, Hughes et al. [21] proposed a sparsity-promoting restart and observed
dramatic gains due to the restarting. Binkley et al. [6] ran run the Gibbs sampler
multiple times suggesting that it reduces the probability of getting stuck in local
optima. Recently, Mantyla et al. [24] performed multiple LDA runs and combined
the results of different runs through clustering.

In this paper, we use both fixed seeds for the sampling and the restarting
strategy. More details are provided in Sect. 3.1.

Automated Tuning for LDA. A general problem when using LDA is deciding
the hyper-parameters values to adopt when applying it to a specific dataset.
Researchers from different communities agree that there is no universal setting
that works well for any dataset (e.g., [6,21,28]). Different heuristics have been
proposed by researchers to find (near) optimal hyper-parameters for a given task
[1,16,17,28,35]. Most of the early approaches focused on the number of topics
K to set while using fixed values for α, β and N [16,17,35].

Panichella et al. [28] used an internal metric for cluster quality analysis to
estimate the fitness of LDA configurations based on the idea that LDA can
also be seen as a clustering algorithm. More specifically, they used the silhouette
coefficient as the fitness function to guide genetic algorithms, which were used to
find LDA hyper-parameters that increased the coefficient values. The silhouette
coefficient is defined as [28]:

s(C) =
1

n

n∑

i=1

s(di) with s(di) =
b(di) − a(di)

max (a(di), b(di))
(2)

In the equation above, s(di) denotes the silhouette coefficient for the docu-
ment di in the corpora; a(di) measures the maximum distance of the document
di to the other documents in the same cluster (cluster cohesion); b(di) mea-
sures the minimum distance between of the document di to another document
in a different cluster (cluster separation); s(C) measure the overall silhouette
coefficient as the arithmetic mean of the coefficients s(di) for all documents in
the corpora. s(C) takes values in [−1,+1]; larger values indicate better clusters
because (on average) the separation is larger than the cohesion of the clusters.
While the silhouette coefficient is an internal cluster quality metric, Panichella
et al. [28] showed that hyper-parameters that increased the silhouette coefficient
also lead to better external performances, such as the accuracy in traceability
recovery. Besides, the LDA configurations found with GAs achieve performance
that is pretty close to the global optimum. The silhouette coefficient and GA
were also used in a later study [29] to configure the whole IR process (including
the pre-processing) automatically.

Recently, Agrawal et al. [1] further investigated the challenges of configuring
LDA with search algorithms. They showed than Differential Evolution (DE)
can generate optimal hyper-parameter values which lead to more stable LDA
models (topic and mixtures). Besides, Agrawal et al. also used a different fitness
function. An empirical comparison between GA and DE showed that the latter

16 A. Panichella

needs fewer generations and produces more stable LDA models than the former.
However, in [1] GA and LDA were configured with different termination criteria:
a few dozens of fitness evaluations for DE and thousands of fitness evaluations for
GA. Besides, Agrawal et al. [1] did not use standard strategies (e.g., restarting
strategies) to produce stable results for both GA and DE. Based on the results
in [1], Mantyla et al. [24] used DE in combination with multiple LDA runs to
achieve even more stable topics.

While prior studies argued about the superiority of DE over other meta-
heuristics for topic modeling, more research is needed to assess how different
meta-heuristics perform when using the same number of fitness evaluations (e.g.,
the same termination criteria) and using random restarting to achieve stable
results. This paper sheds lights on this open question and compares the perfor-
mance of five different meta-heuristics (not only DE and GA) when configuring
LDA for duplicate bug report identification. For the sake of our analysis, we use
the silhouette coefficient as the fitness function for all meta-heuristics.

3 Empirical Study

The following research questions steer our study:

– RQ1: Do different meta-heuristics find equally good LDA configurations? Dif-
ferent meta-heuristics may produce different LDA configurations. Our first
research question aims to investigate whether configurations produced by
alternative meta-heuristics achieves or not the same accuracy.

– RQ2: Does the running time differ across the experimented meta-heuristics?
Priori study [1] advocated the usage of Differential Evolution (DE) over
other meta-heuristics because it requires less running time. With our second
research question, we aim to compare the running time of different meta-
heuristics when configured with the same number of fitness evaluations.

Benchmark. The benchmark of our study consists of seven datasets from the
Bench4BL dataset [22] and publicly available in GitHub1. The benchmark has
been used by Lee et al. to perform a comprehensive reproduction study of state-
of-the-art IR-based bug localization techniques. For our study, we selected seven
Java project from Bench4BL: four projects from the apache commons library2,
two projects from Spring3, and one project from JBoss4. The characteristics
of the selected projects are reported in Table 1. We chose these seven projects
because they have been widely used in the SBSE literature (e.g., [9]) and are
well-managed together with issue tracking systems.

For each project, the Bench4BL contains (i) issues (from their issue tracking
systems) that are explicitly labeled as bug by the original developers, and (ii) the

1 https://github.com/exatoa/Bench4BL.
2 http://www.apache.org/.
3 https://spring.io/.
4 http://www.jboss.org/.

https://github.com/exatoa/Bench4BL
http://www.apache.org/
https://spring.io/
http://www.jboss.org/

A Systematic Comparison of Search Algorithms for Topic Modelling 17

corresponding patches/fixes [22]. Each bug report/issue contains (i) the summary
(or title), (ii) the description, and (iii) the reporter. Besides, Bench4BL also
provides the list of duplicated bug reports for each system in the dataset. The
percentage of duplicated bug reports ranges between 3% for apache commons
math and 56% for Spring SPR.

Table 1. Characteristics of the projects in our study

System #Files #Bug Reports #Duplicates

Apache commmons collections 525 92 16 (17%)

Apache commons io 227 91 7 (8%)

Apache commons lang 305 217 23 (11%)

Apache commons math 1,617 245 8 (3%)

Spring Datacmns 604 158 15 (9%)

Spring SPR 6,512 130 73 (56%)

JBoss WFly 8,990 984 27 (3%)

Meta-Heuristic Selection. We selected the following meta-heuristics:

(1) Genetic Algorithms (GAs) have been used in a prior study to configure
LDA [28] and the whole IR process [29]. GA is population-based meta-
heuristic that evolves a pool of randomly-generated solutions (LDA con-
figurations) through sub-sequent generations. In each generation, solutions
are selected based on their fitness values (silhouette coefficient) using the
binary tournament selection. Fittest solutions (parents) are combined using
binary-simulated crossover and gaussian mutation to form new solutions
(offspring). Then, the population for the new generation is formed by select-
ing the best solutions among parents and offspring (elitism).

(2) Differential Evolution (DE) is an evolutionary algorithm used by Agrawal
et al. [1]. DE is also a population-based meta-heuristic with μ randomly
generated solutions. The key difference in DE is that new solutions are
generated in each generation by using differential operators rather than
genetic operators. A new solution (LDA configuration) is generated by (1)
randomly selecting three solutions a, b, and c from the population; (2) a new
solution is generated with the formula: yi = ai +f × (bi − ci), where f is the
differential weight ∈ [0; 2]; ai, bi and ci denote the i-th elements of the three
selected solutions (i.e., the i-th LDA hyper-parameters). The differential
operator is applied with a probability pc ∈ [0; 1] (crossover probability).

(3) Particle Swarm Optimization (PSO) is a population-based meta-heuristic
proposed by Eberhart and Kennedy [13]. Similarly to DE and GA, PSO
iteratively updates the pool of initial particles (solutions) with initial posi-
tions (x), inertia (w), and velocity (v). However, unlike GA and DE that
uses crossover (and mutation with GA), PSO updates the solutions toward
the best solution in the pool by updating their positions and velocity.

18 A. Panichella

(4) Simulated Annealing (SA) is a meta-heuristic that involves only one solution
at a time [36]. One randomly-generated solution x (LDA configuration) is
updated through random mutation (neighborhood). If the mutated solution
x′ improves the fitness function (i.e., fit(x′) < fit(x)) then SA selects x′ as
new current solution. If the fitness function decreases with x′, the current
solution x is still replaced with a probability exp−ΔD/T , where ΔD is the
difference between the cost function for x′ and x while T is the tempera-
ture. The probability of accepting worst solutions decreases exponentially
with ΔD: the higher the difference between the two solutions, the lower the
probability of accepting the worst one. Usually, the parameter T decreases
in each iteration to strengthen the exploitation ability of SA.

(5) Random Search (Ran) is the simplest search algorithm to implement. It tries
K random samples and selects as the final solution (LDA configuration) the
one with the best fitness value across all generated trials. Despite its sim-
plicity, random search can outperform more sophisticated meta-heuristics
for specific problems [4] and it is often used as a baseline in SSBSE.

Parameter Settings. For the search, we opt for the standard parameter setting
and search operators suggested in the literature [1,28]. In particular, for GA we
use the following parameter values: population size of 10 LDA configurations;
crossover probability pc = 0.9; mutation probability pm = 0.25 (i.e., 1/n, where
n is the number of hyper-parameters for LDA). For DE, we use the following
setting: population size μ = 10; differential weight factor f = 0.7; crossover
probability pc = 0.9. SA was configured as follows: neighbors are generated
using the Gaussian mutation; the number of steps per temperature ns = 10;
the number of temperatures nt = 5. For PSO, we apply the following setting:
population size μ = 10; inertia weight wi = 0.9; search weights c1 = c2 = 1. The
only parameter to set for random search is the number of random solutions to
generate.

Termination Criteria. To allow a fair comparison, we set all algorithms with
the same stopping criterion: the search terminates when the maximum num-
ber of fitness evaluations (FEs) is reached. Previous studies in search-based
topic modeling suggested different values for FEs: Panichella et al. [28] used GA
with 100 individuals and 100 generations, corresponding to 10K FEs; Agrawal
et al. [1] used DE with 10 individuals and 3 generations, corresponding to 30
FEs. Agrawal et al. [1] argued that fewer FEs are sufficient to achieve good and
stable LDA configurations. In addition, too many FEs dramatically impact the
overall running time since each LDA execution (individual) is very expensive for
large corpora. Based on the motivation by Agrawal et al. [1], we use FEs = 50
since it provides a good compromise between performances (TOPk metrics) and
running time in our preliminary experiments. However, we use the same FEs for
all meta-heuristics while prior studies [1] used fewer FEs only for DE.

Implementation. For LDA, we use its implementation available in the
package topicmodels in R [18]. We chose this implementation over other

A Systematic Comparison of Search Algorithms for Topic Modelling 19

implementations (e.g., Mallet5 in Java) because it provides an interface to the
original LDA implementation in C code by Blei et al. [8]. Furthermore, Binkley
et al. [6] showed that the R implementation is less sensitive to local optima com-
pared to Mallet. The R implementation was also used in a prior study concern-
ing LDA configurations for SE tasks [28] and support strategies (e.g., random
restarts) to achieve stable LDA models. For the meta-heuristics, we also used
their implementation available in R: (1) real-coded genetic algorithms from the
package GA [33]; (2) differential evolution from the package DEoptim [26]; (3) ran-
dom search from the package randomsearch [32]; (4) Simulated-Annealing [38],
and Particle Swarm Optimization from the package NMOF [23].

The R scripts and datasets used in our experiment are publicly available at
the following link: https://apanichella.github.io/tools/ssbse-lda/.

3.1 Experimental Methodology

For each project, we run each meta-heuristic 30 times. In each run, we collected
the running time needed to reach the stop condition (see the parameter setting)
and the performance metric TOPk. At the end of each run, we use the LDA con-
figuration produced by the meta-heuristic under analysis, and we generated the
corresponding LDA model, and the topic-by-document matrix (Θ) in particular.

To answer RQ1, we use the TOPk metric, which measures the performance
of an IR-method by checking whether a duplicate bug report to a given query
is retrieved within the top k candidate reports in the ranked list. For example,
TOP5 is equal to one if the first duplicate report for a given query q is retrieved
within the first top k = 5 positions in the ranked list. The overall TOPk metric
for a given project is the average of the TOPk scores achieved for all target
reports in the project. More formally, let |Q| be the number of queries (reports)
in a given dataset, the TOPk metric is defined as [20]:

TOPk(Q) =
1

|Q|
∑

q∈Q

ink(i) (3)

where ink(i) is equal to one if the first duplicated report for the query q is
retrieved within the first k positions in the corresponding ranked list. The higher
the TOPk, the better the performance of LDA with a given configuration. In
this paper, we consider four values of k, i.e., TOP5, TOP10, TOP15, and TOP20.

To answer RQ2, we compare the running time required by the different meta-
heuristics to terminate the search process in each independent run. For our
analysis, we compare the arithmetic mean for the running time across the 30
independent runs and the corresponding standard deviation.

To assess the statistical significance, we use the Friedman test to compare
the performance (TOPk and running time) of the assessed meta-heuristics over
six projects and five different metrics (four TOPk and the running time). Each
meta-heuristic produced 4 (TOPk metrics) × 6 (projects) × 30 (runs) = 720
data points. For statistical analysis, we consider the average (arithmetic mean)
5 http://mallet.cs.umass.edu.

https://apanichella.github.io/tools/ssbse-lda/
http://mallet.cs.umass.edu

20 A. Panichella

of the TOPk metrics across the 30 runs, resulting in 24 average scores per meta-
heuristic. The five distributions (one for each meta-heuristic) are then compared
using the Friedman test [15], which is used to assess whether the performance
achieved by alternative meta-heuristics significantly differ from one another.
Then, to better understand which meta-heuristics performs better, we use the
Wilcoxon rank sum test to compare pairs of meta-heuristics. To draw our con-
clusions, we use the significance level 0.05 for both the Friedman and Wilcoxon
tests. Given the large number of pair comparisons with the Wilcoxon tests, we
report the number of times (i.e., pair of software projects and TOPk metrics) a
meta-heuristic A performs significantly better than another meta-heuristic B.

Strategies to Achieve Stable Topic Modeling. In this paper, we address
the stability problem using two standard strategies: seeding and random restart.
When evaluating each LDA configuration (individual), we store both the sil-
houette coefficient (fitness function) and the random seed used to generate the
LDA model. Therefore, when the search terminates, LDA is re-run using the
best solution (configuration) found across the generation/iterations and using
the corresponding random seed previously stored. This allows obtaining the
same results (silhouette score, topics, and mixtures) even when LDA is re-run
multiple times with the same hyper-parameters. Besides, we also used random
restarting to improve the stability of the results and reducing the likelihood of
reach a local optimum when using the Gibb-sampling method. In particular, the
Gibb sampling procedure is restarted n = 5 times (independent runs), and the
generated topics and mixtures are obtained by averaging the results achieved
across the independent results.

4 Empirical Results

Table 2 shows the average (mean) and the standard deviation performance scores
(TOP5, TOP10, TOP15, and TOP20) achieved by the different algorithms in
the comparison over 30 independent runs. First, we can notice that there is no
“master” (dominant) meta-heuristic that outperforms the others for all software
projects. DE, GA, and SA produce the best (largest) TOPk scores for different
projects and with different k values. DE achieves the highest TOP5 only for two
out of seven projects and in only one project for TOP10. However, in all three
cases, DE and GA achieve the same performance score. For all the other projects
and metrics, it does not outperform nor compete with other meta-heuristics.
Therefore, our results indicate that DE is not superior to other meta-heuristics
as argued in prior studies.

GA achieves the best scores in 17 cases (six projects with different TOPk

metrics). For the projects io, math, and wfly, GA outperforms all other meta-
heuristics according to all TOPk scores. The differences with the second high-
est scores range between 2% (math with TOP5) and 21% (wfly with TOP5).
It is worth noting that these three projects present the lowest percentages of
duplicated bug reports (<=8%) compared to the other projects (see Table 1).
These results suggest that GA is likely more effective on projects with very few

A Systematic Comparison of Search Algorithms for Topic Modelling 21

Table 2. Mean and standard deviation of the performance scores achieved by the
evaluated meta-heuristics

System Metric DE GA Ran SA PSO

Mean S.d Mean S.d Mean S.d Mean S.d Mean S.d

Collections TOP5 0.87 0.09 0.90 0.08 0.90 0.07 0.95 0.05 0.80 0.07

TOP10 0.88 0.10 0.90 0.07 0.91 0.08 0.95 0.05 0.84 0.07

TOP15 0.89 0.10 0.90 0.07 0.91 0.08 0.96 0.04 0.84 0.07

TOP20 0.90 0.08 0.90 0.07 0.91 0.08 0.96 0.04 0.85 0.07

Datacmns TOP5 0.44 0.10 0.47 0.10 0.41 0.12 0.37 0.05 0.28 0.09

TOP10 0.52 0.12 0.54 0.11 0.51 0.12 0.52 0.07 0.39 0.13

TOP15 0.54 0.13 0.57 0.11 0.53 0.15 0.61 0.13 0.42 0.14

TOP20 0.56 0.13 0.58 0.11 0.55 0.14 0.63 0.15 0.46 0.13

IO TOP5 0.51 0.12 0.54 0.11 0.45 0.16 0.41 0.17 0.22 0.05

TOP10 0.55 0.12 0.61 0.12 0.50 0.18 0.54 0.27 0.36 0.07

TOP15 0.56 0.11 0.64 0.10 0.54 0.15 0.55 0.28 0.44 0.07

TOP20 0.61 0.12 0.68 0.10 0.61 0.15 0.56 0.26 0.52 0.05

Lang TOP5 0.58 0.11 0.58 0.05 0.57 0.05 0.50 0.05 0.38 0.13

TOP10 0.62 0.12 0.62 0.06 0.64 0.05 0.68 0.07 0.45 0.09

TOP15 0.65 0.11 0.64 0.06 0.67 0.05 0.69 0.05 0.48 0.09

TOP20 0.67 0.12 0.65 0.06 0.69 0.04 0.71 0.05 0.49 0.10

Math TOP5 0.45 0.09 0.47 0.12 0.45 0.14 0.43 0.04 0.38 0.19

TOP10 0.51 0.11 0.57 0.12 0.50 0.16 0.48 0.10 0.41 0.19

TOP15 0.51 0.10 0.58 0.12 0.50 0.16 0.50 0.10 0.42 0.19

TOP20 0.51 0.10 0.58 0.12 0.51 0.15 0.50 0.11 0.44 0.18

Spr TOP5 0.62 0.04 0.62 0.06 0.58 0.06 0.53 0.08 0.53 0.12

TOP10 0.65 0.04 0.65 0.05 0.61 0.06 0.65 0.03 0.57 0.11

TOP15 0.67 0.05 0.67 0.05 0.63 0.07 0.72 0.09 0.61 0.10

TOP20 0.69 0.04 0.69 0.04 0.66 0.06 0.76 0.10 0.63 0.09

WFly TOP5 0.31 0.08 0.53 0.10 0.30 0.09 0.44 0.10 0.13 0.03

TOP10 0.33 0.08 0.53 0.09 0.31 0.10 0.48 0.09 0.15 0.03

TOP15 0.33 0.09 0.53 0.09 0.32 0.10 0.50 0.10 0.16 0.02

TOP20 0.33 0.09 0.53 0.09 0.32 0.10 0.51 0.09 0.16 0.02

duplicate bug reports. For the projects datacmns, lang, and spr, GA achieves
the best TOPk scores only for k = 5 (for both projects) and k = 10 (for
spr). For larger k values, SA produces the best TOPk scores among the five
meta-heuristics.

In general, SA achieves the best TOPk scores in 12 cases (four projects
with different TOPk metrics). Independently from the TOPk metric, SA is the
best meta-heuristic for collections, which is the smallest projects (<100 bug

22 A. Panichella

reports) in our benchmark. The differences with the second best meta-heuristic
vary between 4% and 5%. For other three projects, namely datacmns, lang, and
spr, SA achieves the best results only for larger values of k.

Random search never produces the best TOPk scores. However, it does pro-
duce better average TOPk scores than DE and GA for collections and lang.
Finally, PSO produces the lowest TOPk scores than all other meta-heuristics
and for all projects in our study. Therefore, it is not a suitable meta-heuristic
for topic models, at least in the context of duplicate bug report identifications.

The differences among the different meta-heuristics are statistically signifi-
cant according to the Friedman test, whose resulting p-value is 3.79× 10−10. To
better understands which meta-heuristics performs statistically better (or worse)
than others, Tables 3(a)–(d) report the number of projects in which each meta-
heuristic (rows in the tables) significantly outperforms another meta-heuristic
(columns in the tables) according to the Wilcoxon test. Instead, Table 4 reports
the ranking produces by the Friedman tests. According to the statistical results,
GA is ranked first, followed by SA and DE, respectively. Instead, Random search
and PSO are the bottom two meta-heuristics. While GA was ranked first, we
can notice that it does not significantly outperform all other meta-heuristics for

Table 3. Number of projects in which one meta-heuristic (row) statistically outper-
forms another one meta-heuristic (column) according to the Wilcoxon test.

TOP5

Vs. DE GA Ran SA PSO
DE - 0 3 3 7
GA 1 - 4 5 7
Ran 0 0 - 2 7
SA 2 1 2 - 7
PSO 0 0 0 0 -

TOP10

Vs. DE GA Ran SA PSO
DE - 0 2 1 7
GA 3 - 4 1 7
Ran 1 0 - 0 6
SA 3 1 3 - 7
PSO 0 0 0 0 -

TOP15

Vs. DE GA Ran SA PSO
DE - 0 1 1 7
GA 3 - 4 1 7
Ran 0 1 - 0 6
SA 3 2 4 - 7
PSO 0 0 0 0 -

TOP20

Vs. DE GA Ran SA PSO
DE - 0 1 1 7
GA 3 - 4 2 7
Ran 0 1 - 0 6
SA 3 1 5 - 7
PSO 0 0 0 0 -

(a)

(d)

(b) (c)

Table 4. Ranking produced by the Friedman Tests

Meta-heuristic Ranking

GA 2.085714

SA 2.457143

DE 2.571429

Random 3.457143

PSO 4.428571

A Systematic Comparison of Search Algorithms for Topic Modelling 23

all projects. However, it significantly outperforms Random Search and PSO in
most of the projects. It outperforms SA in most of the projects only for PTOP5

while for k > 5, the two meta-heuristics are comparable. DE (that is ranked
third) never outperforms GA according to the Wilcoxon test. Vice versa, GA
significantly outperforms DE in three out of seven projects for POSk>5.

There is no “master” (dominant) meta-heuristic when configuring topic
models for duplicate bug report identification. GA and SA perform better than
other meta-heuristics but not consistently across projects. Random search
and PSO are the least effective meta-heuristics.

Table 5. Mean and standard deviation of the running time required by the evaluated
meta-heuristics to perform 50 fitness evaluations

System DE GA Ran SA PSO

Mean S.d Mean S.d Mean S.d Mean S.d Mean S.d

Collections 14 2.34 11 2.05 7 5.15 6 0.60 14 1.25

Datacmns 91 14.53 72 14.19 46 32.66 72 36.82 85 15.36

Io 15 2.69 11 1.91 9 6.07 9 1.90 15 0.98

Math 118 16.40 96 24.97 66 47.61 138 85.66 129 20.24

Lang 92 8.83 72 11.98 48 34.14 82 58.55 80 14.81

Spr 64 12.02 58 8.00 37 26.35 85 66.07 71 10.28

WFly 6554 62.36 5196 130.78 3653 262.42 5124 501.38 6433 94.56

Table 5 reports the mean (and the standard deviation) running time required
by the evaluated meta-heuristics to reach the same stopping criterion (50 FEs)
across 30 independent runs. As expected, random search is the fastest among all
meta-heuristics since it does not involve any solution selection and update (e.g.,
mutation). For what regards the other meta-heuristics, we can notice that their
running does not differ substantially. On average, the difference between each
pair of meta-heuristics is lower than 10%, and this small difference is mostly due
to the computational complexity of the different individual operators. For exam-
ple, GA is faster than SA in three projects but slower in three other projects. DE
and PSO are instead slightly slower than GA and SA, although the differences
are small and in some cases almost negligible (e.g., few additional seconds for the
project collections). These results contradict what reported by Agrawal et al. [1],
who used fewer fitness evaluations with DE and many more with GA. In this
study, we use the same number of fitness evaluations for all meta-heuristics to
allow a fair comparison. When using the same stopping criterion, DE is slightly
slower than GA. This confirms previous results in evolutionary computation
(e.g., [19]) that showed how the extra overhead in DE is due to the computa-
tion complexity of differential operators. Indeed, a single generation of DE is on
average four times more expensive than one single generation with GA [19].

24 A. Panichella

The running time strongly depends on the number of fitness evaluation per-
formed during the search (time to infer LDA). Instead, the internal complex-
ity of the meta-heuristics is small or negligible.

Threats to Validity. Construct validity. All meta-heuristics are implemented
in R and were executed with the same stopping criterion. Furthermore, we use
seeding and random restarts for all meta-heuristics to alleviate the instability of
the LDA results. Internal validity. We drew our conclusions by executing 30 inde-
pendent runs to address the random natures of the evaluated meta-heuristics.
Besides, we use the Wilcoxon and the Friedman tests to assess the statistical
significance of the results. We use TOPk as the performance metric because it is
a standard performance metric in duplicate bug report identification. External
validity. In our study, we consider seven open source projects from the Bench4BL
dataset [22]. Assessing the different meta-heuristics and selecting more projects
is part of our future plan.

5 Conclusion and Future Work

In this paper, we empirically compare different meta-heuristics when applied to
tune LDA parameters in an automated fashion. We focus on topic-model based
identification of bug report duplicates, which is a typical SE task and addressed
in prior studies with topic model and IR methods (e.g., [20,27]). Experimental
results on seven Java projects and their corresponding bug reports show that
multiple meta-heuristics are comparable across different projects, although ran-
dom search and PSO are least effective than other meta-heuristics. Therefore,
no meta-heuristic outperforms all the others as advocated in prior studies. How-
ever, our conclusions hold for the problem of identifying duplicate bug reports.
Therefore, different results may be observed in different SE tasks. Our future
work will focus on extending our study by (i) comparing more meta-heuristics,
(ii) considering more projects and (iii) evaluating other SE tasks.

References

1. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how
to fix it using search-based software engineering. Inf. Softw. Technol. 98, 74–88
(2018)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models
for recovering traceability links between code and documentation. In: The 16th
IEEE International Conference on Software Maintenance, pp. 40–51 (2000)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Boston (1999)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2), 281–305 (2012)

5. Binkley, D., Lawrie, D.: Information retrieval applications in software maintenance
and evolution. Encycl. Softw. Eng. 454–463 (2009)

A Systematic Comparison of Search Algorithms for Topic Modelling 25

6. Binkley, D., Heinz, D., Lawrie, D., Overfelt, J.: Source code analysis with lda. J.
Softw. Evol. Process 28(10), 893–920 (2016)

7. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software
Data. Elsevier, Amsterdam (2015)

8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

9. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical
evaluation of evolutionary algorithms for unit test suite generation. Inf. Softw.
Technol. 104, 207–235 (2018)

10. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
role of the nouns in IR-based traceability recovery. In: The 17th IEEE International
Conference on Program Comprehension (2009)

11. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using IR
methods for labeling source code artifacts: Is it worthwhile? In: The 20th IEEE
International Conference on Program Comprehension (ICPC), pp. 193–202 (2012)

12. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling
source code with information retrieval methods: an empirical study. Empirical
Softw. Eng. 19(5), 1383–1420 (2014)

13. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: The
6th International Symposium on Micro Machine and Human Science, pp. 39–43
(1995)

14. Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to auto-
matically split identifiers for software analysis. In: The 6th International Working
Conference on Mining Software Repositories, pp. 71–80 (2009)

15. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study
on the CEC’2005 special session on real parameter optimization. J. Heuristics
15(6), 617–644 (2009)

16. Grant, S., Cordy, J.R.: Estimating the optimal number of latent concepts in source
code analysis. In: The 10th International Working Conference on Source Code
Analysis and Manipulation, pp. 65–74 (2010)

17. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(Suppl. 1), 5228–5235 (2004)

18. Grün, B., Hornik, K.: Topicmodels: an R package for fitting topic models. J. Stat.
Softw. 40(13), 1–30 (2011)

19. Hegerty, B., Hung, C.C., Kasprak, K.: A comparative study on differential evolu-
tion and genetic algorithms for some combinatorial problems. In: The 8th Mexican
International Conference on Artificial Intelligence, pp. 9–13 (2009)

20. Hindle, A., Onuczko, C.: Preventing duplicate bug reports by continuously querying
bug reports. Empirical Softw. Eng. 24(2), 902–936 (2019)

21. Hughes, M., Kim, D.I., Sudderth, E.: Reliable and scalable variational inference
for the hierarchical dirichlet process. In: Artificial Intelligence and Statistics, pp.
370–378 (2015)

22. Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Le Traon, Y.: Bench4bl: reproducibil-
ity study on the performance of IR-based bug localization. In: The 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 61–72.
ACM (2018)

23. Manfred Gilli, D.M., Schumann, E.: Numerical Methods and Optimization in
Finance (NMOF) (2011)

26 A. Panichella

24. Mantyla, M.V., Claes, M., Farooq, U.: Measuring lda topic stability from clusters of
replicated runs. In: The 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 49. ACM (2018)

25. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model.
In: The 18th Conference on Uncertainty in Artificial Intelligence, pp. 352–359.
Morgan Kaufmann Publishers Inc. (2002)

26. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: an R package for
global optimization by differential evolution. J. Stat. Softw. 40(6), 1–26 (2011)

27. Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate bug report
detection with a combination of information retrieval and topic modeling. In: The
27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 70–79 (2012)

28. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
How to effectively use topic models for software engineering tasks? An approach
based on genetic algorithms. In: The International Conference on Software Engi-
neering, pp. 522–531. IEEE Press (2013)

29. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.:
Parameterizing and assembling IR-based solutions for se tasks using genetic algo-
rithms. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), vol. 1, pp. 314–325. IEEE (2016)

30. Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of
test case summaries on bug fixing performance: an empirical investigation. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp.
547–558, May 2016

31. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed gibbs sampling for latent dirichlet allocation. In: The 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 569–577.
ACM (2008)

32. Richter, J.: Randomsearch: Random Search for Expensive Functions (2019)
33. Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37

(2013)
34. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards

automatically generating summary comments for java methods. In: The 25th
IEEE/ACM International Conference on Automated Software Engineering, pp.
43–52. ACM Press (2010)

35. Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. J. Am.
Stat. Assoc. 101(476), 1566–1581 (2006)

36. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing:
Theory and applications, pp. 7–15, vol 37. Springer, Dordrecht (1987). https://doi.
org/10.1007/978-94-015-7744-1 2

37. Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: The 29th
Annual International Conference on Research and Development in Information
Retrieval, pp. 178–185. ACM (2006)

38. Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing
for efficient global optimization: the GenSA package for R. R J. 5(1) (2013)

https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1007/978-94-015-7744-1_2

Constructing Search Spaces
for Search-Based Software Testing

Using Neural Networks

Leonid Joffe(B) and David Clark

University College London, Gower Street, London WC1E 6BT, UK
leonid.joffe.14@ucl.ac.uk

Abstract. A central requirement for any Search-Based Software Test-
ing (SBST) technique is a convenient and meaningful fitness landscape.
Whether one follows a targeted or a diversification driven strategy, a
search landscape needs to be large, continuous, easy to construct and
representative of the underlying property of interest. Constructing such
a landscape is not a trivial task often requiring a significant manual effort
by an expert.

We present an approach for constructing meaningful and convenient
fitness landscapes using neural networks (NN) – for targeted and diversi-
fication strategies alike. We suggest that output of an NN predictor can
be interpreted as a fitness for a targeted strategy. The NN is trained on
a corpus of execution traces and various properties of interest, prior to
searching. During search, the trained NN is queried to predict an esti-
mate of a property given an execution trace. The outputs of the NN form
a convenient search space which is strongly representative of a number
of properties. We believe that such a search space can be readily used
for driving a search towards specific properties of interest.

For a diversification strategy, we propose the use of an autoencoder;
a mechanism for compacting data into an n-dimensional “latent” space.
In it, datapoints are arranged according to the similarity of their salient
features. We show that a latent space of execution traces possesses char-
acteristics of a convenient search landscape: it is continuous, large and
crucially, it defines a notion of similarity to arbitrary observations.

Keywords: Search-Based Software Testing · Software engineering ·
Fitness function · Machine learning · Neural networks

1 Introduction

Search Based Software Testing (SBST) [16,30] methods are widely used in soft-
ware engineering. They rely on a feedback mechanism that evaluates candidate
solutions and directs the search accordingly. The effectiveness of any feedback
mechanism depends on the choice of representation and fitness function [15]. In
the context of automated search driven testing, an additional choice is that of
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 27–41, 2019.
https://doi.org/10.1007/978-3-030-27455-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_3

28 L. Joffe and D. Clark

a search strategy. In this paper we focus on constructing a convenient fitness
function for a search-based testing process.

According to Harman and Clark, the search space of a good fitness function
ought to have a number of desirable characteristics [14]. It needs to be large and
approximately continuous, the fitness function needs to have low computational
complexity and not have known optimal solutions. Furthermore, they propose
that various metrics can be used as fitness functions which implies two further
characteristics. First, according to the representation condition, a good metric
needs to be truly representative of the property it seeks to denote [38]. Second,
a metric imposes an order relation over a set of elements by definition, and for a
metric to be useful as a fitness function, the order needs to be meaningful. In this
paper we present an approach for constructing fitness functions with desirable
characteristics for two fundamental testing strategies – property targeting and
diversification driven.

1.1 Property Targeting Search Landscape

A fitness function for an execution property targeting search strategy needs to
indicate a “proximity” of a candidate solution to a property of interest (given
that the property has not been yet observed). The fitness function therefore
needs to be representative of the property of interest, i.e. it needs to meet the
representation condition.

Consider an example where a tester aims to exercise a specific program point
behind a numeric conditional statement. The numeric difference between the
value of a variable and the predicate value of the if statement (branch dis-
tance) is the obvious fitness function here [45]. In many interesting “needle in a
haystack” testing scenarios however, such an easy fitness function does not exist.
For instance, a tester is looking for a crash, but the program has not crashed
after a thousand executions produced by mutation of an original input. Can we
argue that some of those executions are “closer” to a crash and are therefore
better candidates for further mutation?

A neural network trained on execution traces and crash/no crash labels can
produce a “suspiciousness” score for each candidate solution. So rather than sim-
ply observing a “no crash” output, we query a neural network to say that some
inputs exhibited a behaviour or “looks suspiciously like a crash”. In this work
we show how such a fitness function can be constructed, and that it possesses
useful characteristics.

1.2 Diversity Driven Search Landscape

Diversity is widely accepted as beneficial for testing. Various representations
have been proposed as targets for diversification, e.g. [2,5,6,10]. Perhaps the
most common manifestation is code coverage, yet the effectiveness of coverage
driven testing strategies has been disputed [11,17,20,27,40]. This suggests that
diversifying over coverage – i.e. preferring dissimilarity of candidate solutions as
measured by code coverage – is not ideal.

Search Spaces for SBST Using NNs 29

Regardless of representation, the actual purpose of diversity driven testing
is to exercise a maximally diverse range of behaviours. To be able to exercise
diverse (i.e. dissimilar) behaviours given a representation that is thought to be
a good abstraction of program behaviour, we need a notion of similarity. The
definition of similarity can then be used to drive a search strategy. A similarity
measure requires an order relation, which is a difficult task typically requiring
an expert’s input [38]. For instance, is “cat”< “dog”? Lexicographically – yes.
By average weight of the animal – usually. By preference as a pet – debatable.

We propose defining an order relation and thus similarity using a neural
network architecture called an autoencoder to process execution traces. An
autoencoder is trained to reproduce input data on outputs. Its (n-dimensional)
intermediate layer forms an encoding of the data known as a latent space. The
autoencoder arranges the data based on the features that are most important
in distinguishing one datapoint from another. The distance in the latent space
is thus a measure of similarity of features. Importantly, an autoencoder archi-
tecture can be applied to arbitrary data formats. This means that we are not
restricted to any particular representation of execution traces. We believe that
this notion of similarity can be useful for diversification strategies.

1.3 Contributions and Scope

In this paper we propose an approach to building search landscapes for SBST
by using neural networks to process observations of executions. The approach
relies on predictor and autoencoder neural networks for property targeting and
diversification driven testing strategies respectively. We illustrate the approach
with a corpus of small C programs and several real world applications.

Our findings suggest that the landscapes possess a number of useful charac-
teristics. The first is that they are continuous and arbitrarily large. Second, they
meet the representation condition. Third, they yield a meaningful order relation
to seemingly non-orderable observations. Fourth, the order relation implies a
notion of similarity. Lastly, they are created automatically, without analytical
effort or domain knowledge.

This work is part of a larger effort in which we intend to integrate these
landscapes for use in SBST. The scope of this paper is to present the search
landscapes themselves, along with an analysis of their characteristics. Here we
do not evaluate their effectiveness for discovering properties of interest.

The section following this introduction presents the tools and datasets used
in our experiments. Section 3 describes the experiments we carried out. Section 4
reports our findings. Finally, Sect. 5 summarises and concludes the paper.

2 Tools and Datasets

2.1 AFL

We use the American Fuzzy Lop (AFL) [46] fuzzer [33] for two purposes. First,
to augment a training corpus of programs with additional inputs. Second, to

30 L. Joffe and D. Clark

produce a representation of execution traces to train autoencoders. AFL’s rep-
resentation is the following. Before fuzzing, AFL instruments a program at every
decision point. During fuzzing, transitions between these points form a hashmap
(“bitmap”) of edges and their hit counts. For performance purposes, hit counts
are assigned into eight buckets: 0, 1, 2, 3, 4–7, 8–15, 16–31, 32–127, 128+. The
bitmap also has a static size of 64K, so the resulting vector of hit counts for
small programs tends to be very sparse – most values are 0.

AFL’s representation is suitable for our second experiment (described below)
for three reasons. First, the bucketisation of the bitmap and the fixed size make
it convenient for processing by a neural network. It requires no normalisation
or pre-processing. Second, thanks to AFL’s blistering speed, it can produce vast
numbers of datapoints for a data hungry network. Finally, AFL has a built in
notion of “interestingness”, defined over the hit counts of a bitmap. All inputs
it deems interesting are kept in a persistent queue for further fuzzing.

2.2 Pin

We use the Pin instrumentation framework [29] to collect execution traces as
sequences of instruction. Raw instruction sequence data is inconvenient for two
reasons however. First, the traces are infeasibly large. A single execution of a sim-
ple program yields a trace file of size in the order of tens of gigabytes. Second,
literal values of instruction arguments become problematic. For instance, the
target address in the conditional jump jle 0x1132 is assigned by the memory
manager and is not consistent across program executions. It is also not mean-
ingful over executions of different programs; an execution trace with the value
0x1132 in program A is not meaningful for program B. This is a major problem
known as alpha renaming [13].

We bypass the above problems as follows. First, we use Pin’s built in abil-
ity to only instrument the first instance of a block execution. For instance, a
loop body is only recorded the first time it is executed. This reduces the sizes
of traces dramatically while maintaining information on the sequence of events.
The problem of alpha renaming is ignored by discarding any literal data. Thus
jle 0x1132 is only recorded as jle. This certainly loses a lot of possibly per-
tinent information, but attempting to solve alpha renaming is out of scope of
this paper. Furthermore, the sequence of op-codes is expected to provide enough
information for our purposes.

2.3 Valgrind

Valgrind is a powerful instrumentation framework which tracks every instruction
as it executes a program in a simulated environment [34,43]. We use two of its
tools, Memcheck and Cachegrind, to record properties of interest (properties
that a search aims to discover) for our datasets.

Memcheck reports properties relating to memory management. We record
Memcheck’s output of illegal reads and writes, use of uninitialised values, defi-
nitely lost memory blocks and memory still reachable at the end of execution.

Search Spaces for SBST Using NNs 31

The first three are self explanatory. “Definitely lost” blocks means that no pointer
to a memory block can be found, which is typically a symptom of a lost pointer,
and ought to be corrected. “Still reachable” is a memory block that has not been
properly freed at exit. Neither of these issues are necessarily crucial problems
and we include them in our experiments as a proof of concept: that a prox-
imity to a rare, as yet unobserved property – “a needle in a haystack” – can
be characterised by features of an execution trace as interpreted by a neural
network.

Cachegrind reports the number of reads, writes and misses on different levels
of cache. With its default settings of a simulated cache architecture, the values
are instruction cache reads (Ir), first and last level instruction cache read misses
(I1mr, ILmr), data cache reads and writes (Dr, Dw), first and last level data
cache read misses (D1mr, DLmr), and first and last level data cache write misses
(D1mw, DLmw).

These values are used as an example of a numeric property which might be
the target of optimisation in SBST. As any execution has a numeric value of a
cache behaviour (i.e. it is not a rare binary property), the use case here is not
to build a search space representing the proximity to a rare behaviour. Instead,
it may be the case that cache behaviour is difficult to measure and needs to be
approximated from an easily observable trace. The values of cache behaviour
properties are effectively unbounded which makes them inconvenient for neural
networks – training is known to become unstable [37]. We therefore log-normalise
them. Not only does this make the values amenable to training a neural network,
we believe that an order-of-magnitude estimate of these values is an interesting
property.

2.4 Dataset

Our dataset is based on a large repository of simple C programs called Code-
flaws [42], and five real world applications.

Codeflaws. Codeflaws is a program repository of thousands of small C pro-
grams, along with test cases and automatic fix scripts. Although the intended
purpose of Codeflaws is to allow for a “comprehensive investigation of the set
of repairable defect classes by various program repair tools”, we chose to use it
because it provides a vast number of varied programs conveniently arranged.

The neural networks of our approach require large training datasets, so the
test cases of the repository were not sufficient. Additional inputs were therefore
generated by fuzzing. Each program was fuzzed with AFL to produce a grand
total of 365,393 executions across 4714 unique programs. This dataset was then
split into training, testing and validation datasets. The number of unique pro-
grams and inputs were 3978 and 303,233 for the test set, 587 and 52,092 for the
test set, and 149 and 10,068 for the validation set.

32 L. Joffe and D. Clark

Real World Applications. We use five real world programs in our exper-
iments. The first one is lintxml from libxml [44]. It processes a string input
to determine whether it is valid XML. The second is cjpeg from libjpeg [28].
It is used for compressing image files into jpeg format. The third program is
sed-4.5 [31], the Unix stream editor for filtering and transforming text [4]. The
fourth program is sparse [21], a lightweight parser for C. Finally, cjson is a
parser for the JSON format. These programs were chosen because they are open
source, sufficiently quick to fuzz, and their inputs can be easily interpreted. Fur-
thermore, as we aim to investigate the order relation of a latent space, programs
that take string inputs are of interest.

3 Experimental Setup

We conducted two sets of experiments. The first presents a method for construct-
ing a search space for a property targeting search strategy. The second shows an
approach for synthesising a search space for a diversification strategy.

Exp. 1: Search Landscape for a Property Targeting Strategy. The search
landscape for a property targeting search strategy relies on a regression classifier
neural network. During training, it takes a Pin trace as input and a ground
truth property as the target. During inference, it outputs the likelihood or the
estimated value of a ground truth property given an execution trace, for categor-
ical and numeric properties respectively. The setup is illustrated in Fig. 1. The
characteristics of the datasets for this experiment are summarised in Table 1.

The network is made up of convolutional and recurrent layers. Sequence
data is typically handled with recurrent cells such as the LSTM [18]. Due to
the vanishing gradient problem however, LSTMs can only handle sequences of
up to several hundred elements. Pin traces are thousands of elements long and
therefore need to be shortened. This is done with strided convolutional layers
[9,22].

The network takes a Pin trace as input. The second layer is 64-dimensional
embedding [32]. This is followed by a stack of nine convolutional layers with a
stride of two. The strides of the convolutional layers halve the sequence length,
so the initial sequence length is shortened by a factor of 29. The next layer is
composed of 500 LSTM cells. Each layer is followed by a dropout to reduce the
risk of overfitting [39]. The output layer of the network is a single neuron.

For categorical variables, it is sigmoid activated, and the network is trained
with binary cross-entropy loss. For numeric values, the network is trained with a
mean square error loss. The networks are trained using the Adam optimiser [25].
The parameters were tuned manually by observing the performance on the val-
idation dataset.

Exp. 2: Search Landscape for a Diversity Driven Strategy. We con-
struct a search landscape for a diversification strategy using a variational autoen-
coder [8,26]. It composed of an encoder and a decoder. The encoder takes AFL’s

Search Spaces for SBST Using NNs 33

Fig. 1. Illustration of the setup for Exp. 1. A neural network is trained on execution
traces of Pin instrumented programs as inputs, and properties of interest as prediction
targets. During inference, it outputs an estimate of the property as a probability in
[0, 1] or a numeric value for categorical and numeric properties respectively.

Table 1. Statistics of the programs and properties of interest in our dataset for Exp. 1.

CF Train CF Test Cjpeg Sparse Cjson

Total traces 43685 43685 22396 1260 1000

crashes 4458 4458 1722 260 0

deflost blocks 163 163 0 9 187

illegal reads 9149 9149 3781 49 0

illegal writes 626 626 0 0 0

reachable blocks 1141 1141 16779 0 813

uninit values 195 195 934 0 0

bitmap representation of an execution trace as input. The hidden layer is a
ReLu [23] activated densely connected layer of 2048 neurons. This is followed
by a 3-dimensional encoding layer. The decoder has a symmetrical structure to
the encoder: the encoding layer is followed by a hidden layer of 2048 neurons,
which feeds into the output layer of 65536 (size of AFL’s bitmap) neurons on
the output. The encoding layer is modelled on work by Kingma et al. [26], with
random noise and regularisation. This is intended to force the points close to
zero and to provide a continuous landscape for interpolation.

An autoencoder is trained for each real world program in the dataset. The
training data is produced by a modified version of AFL. The modified AFL
dumps the bitmaps of all executions in its queue, and the bitmap of its current
execution into a temporary file. When the temporary file is consumed, AFL
dumps the bitmap of the current input again. This way our autoencoder always
has training data: the traces of AFL’s queue and traces of AFL’s latest candidate
solutions. During inference, we encode all elements in AFL’s queue into the latent
space.

34 L. Joffe and D. Clark

4 Evaluation

We present three results. First, we show that the search landscapes are continu-
ous and arbitrarily large. Second, we demonstrate that they are correlated with
various properties of interest. Third, we suggest that the latent space produces a
meaningful ordering on a set of seemingly non-orderable candidate solutions. We
believe these search landscapes to be of potential use for both property targeting
and diversification driven search strategies.

4.1 Size and Continuity of Landscapes

Common landscape characterisation techniques like population information con-
tent and negative slope coefficient require a notion of a neighbourhood [1]. The
neighbourhood of a candidate solution is composed of other candidate solutions
within a single search step. A step, and hence the neighbourhood, depends on the
search operators of the SBST framework. Our landscapes are not defined with
respect to search operators, but with respect to a neural network’s interpretation
of traces. These techniques are therefore inapplicable.

Instead, we argue our claims of continuity and size with the following facts
and findings. First, neural networks are continuous by construction [12]. This
suggests that the number of possible fitness values is limited by the resolution of
the representation. If two candidate solutions can be distinguished in the original
representation, they can be mapped to distinct points in the fitness landscape.
Second, we observe that in both sets of experiments, the ratio of fitness values

Fig. 2. A plot of the output of a neural network classifier showing its likelihood estimate
of whether a trace included an illegal write, for the Jpeg testing dataset. The classifier
is trained on the Codeflaws train dataset, with Pin execution traces as inputs and an
illegal write error as the prediction label output. We suggest that this likelihood can
be used as a fitness for a property targeting search strategy. Such a strategy would
prioritise candidate solutions that the classifier considers to be more “suspicious”.

Search Spaces for SBST Using NNs 35

to the number of unique traces was over 0.95. That is, most distinct traces were
mapped to a distinct point in the fitness landscape. Figures 2 and 3 are examples
of a property targeting and diversification driven landscape respectively.

4.2 Representation Condition

The neural network classifiers of Exp 1. have a strong predictive power for a
range of properties of interest. This means that the landscapes they produce are
strongly related to properties of interest, which in turn suggests that they meet
the representation condition.

We support this argument with the numeric results of Exp. 1, summarised in
Tables 2 and 3. Table 2 shows the Area Under Curve for the Receiver Operator
Characteristic (ROC). The ROC is a plot of the false positive versus the true
positive rate of a binary classifier. Its main benefit over the use of accuracy is
label class size independence [7,19], which makes it a more honest measure of a
model’s performance.

High values in Table 2 are examples where the model, which was trained on an
isolated training dataset of Codeflaws, predicts the property of interest well. In
these cases, it has learnt to distinguish and generalise features of execution traces
pertinent to properties of interest. Some values are low however. For instance,
the presence of reachable blocks in the Jpeg dataset has a low ROC score; the
model’s understanding of execution trace features indicative of this property is
insufficiently general.

Table 3 summarises the networks’ predictive ability for cache behaviour val-
ues. These are numeric properties, and the results are given as percentage errors
from the ground truth. These results give an insight into the fact that the per-
formance of a neural network depends strongly on the training data: they have
a strong predictive ability on the test set of Codeflaws programs but poorer
performance on others. The Cjson test set is an exception in that the models

Table 2. The predictive ability of a neural network for categorical properties in Exp. 1
by ROC score. The performance is good on an independent test set of programs from
the same dataset as the training data. The generalisability to real world applications
is limited, but not non-existent. This is evident by the low ROC scores of some test
sets. Blanks mean that there were no instances of executions with the property in our
dataset.

CF test Jpeg Sparse Cjson

crash 0.87 0.998 0.794 -

deflost blocks 0.992 - 0.915 0.772

illegal reads 0.966 0.885 0.344 -

illegal writes 0.915 - - -

reachable blocks 0.985 0.251 - 0.187

uninit values 0.735 0.751 - -

36 L. Joffe and D. Clark

Table 3. The predictive ability of a neural network for numeric properties in Exp. 1 by
percentage error. The results indicate that these numeric properties can be predicted
from Pin execution traces, and that the prediction meets the representation condition.
The generalisation to arbitrary programs is not uniformly good however which can
likely be improved with a larger training dataset.

CF test Cjpeg Xmllint Sparse Cjson

D1mr 0.151% 10.926% 7.462% 10.854% 1.583%

D1mw 0.817% 13.122% 11.195% 20.587% 0.926%

DLmr 0.747% 4.621% 8.549% 10.805% 0.594%

DLmw 0.008% 6.058% 13.755% 24.374% 2.783%

Dr 1.154% 2.413% 7.580% 16.656% 1.173%

Dw 0.695% 9.011% 3.388% 17.464% 2.326%

I1mr 0.699% 9.037% 22.508% 19.610% 1.607%

ILmr 0.265% 7.865% 16.132% 15.747% 1.586%

Ir 0.578% 13.382% 8.619% 8.808% 1.706%

predict its cache behaviour well. This is likely due to some inherent similarity of
Cjson and the programs in Codeflaws. An in depth investigation of these inher-
ent similarities is an interesting direction of future work but out of scope for this
paper.

The results presented here are an instantiation of our proposed approach –
they are conditional on the representation, the properties of interest and the
training dataset. We expect that given a larger, more representative dataset
our approach ought to perform better. This is based on the fact that given
a sufficient dataset and model size, neural networks are known to avoid local
optima [24,35,36,41]. That is, if there is a pattern in the data, a neural network
will find it. We recognise the “Deus ex machina” (or rather, “Deus ex data”)
nature of this argument: given enough data, a neural network turns into a silver
bullet. Nonetheless, even with the limited dataset, our results demonstrate a
clear effectiveness of the technique.

4.3 Meaningful Ordering of Candidate Solutions

The techniques proposed in this work can induce a meaningful ordering given
an arbitrary representation. In the case of a property targeting search landscape
(Exp. 1), the ordering is obvious – by a classifier’s estimate of the property of
interest. When there is no explicit property of interest however, an ordering is
not apparent. We suggest that a latent space of an autoencoder has a ordering
that is meaningful with respect to features of observations.

Search Spaces for SBST Using NNs 37

Fig. 3. 3-dimensional latent space encoding of the execution traces of the AFL queue for
xmllint. The position of each point in the latent space is determined by characteristics
of execution traces that the autoencoder found most useful for distinguishing one trace
from another. The points are coloured by the sequential index of the queue elements,
which allows AFL’s search process to be visualised. Whilst the candidate solutions
are spread throughout the latent space, there are regions with denser clusters and a
diversity driven search strategy could be directed to explore the less populated regions.
The numbers are ids of example candidate solutions discussed below. (Color figure
online)

Figure 3 is an example of a latent space of candidate solutions for xmllint.
It is a three dimensional space1 onto which elements of AFL’s fuzzing queue
are mapped. The axes themselves do not correspond to any specific feature,
they are simply the internal state of the autoencoder. The locality in the latent
space represents the similarity of salient features of execution traces. The colours
correspond to the sequential id of a candidate solution. The earliest candidates
are in dark purple, while more recent ones are yellow.

We present several findings of the nature of this landscape. First, the locality
in the latent space is correlated with the progression of AFL’s search process.
This is evident by points of similar colour being grouped into adjacent regions of
the space. Early candidate solutions (purple) produced similar traces. As search
progressed, novel behaviours (green clusters) were discovered. AFL then turned

1 The dimensionality is arbitrary, three is chosen here so that the space can be plotted
for qualitative analysis.

38 L. Joffe and D. Clark

its focus to some earlier examples and used those as starting points to yield newer
traces still (yellow). This is a general observation which may not be immediately
useful on its own, it nonetheless allows us to visualise and conceptualise a search
process.

Second, we note that the arrangement of points in the space is not uniform.
The autoencoder is strongly regularised to attempt to arrange the points close to
zero (L2 regularisation) and to prevent points from being arranged too close to
each other (Gaussian random noise). Despite this, there are clear concentrations
of datapoints in some areas. This suggests that some kinds of executions are
relatively more explored.

Third, upon closer manual inspection of several candidate solutions, we note
that the locality is related to program inputs. Consider the candidate solutions
pointed to by arrows in Fig. 3. The inputs that triggered them are the following.

368: 0x1f 0x8b 0x94 0x80

797: 0x1f 0x8b 0xff

2415: <S:L>><S:F>><S:R>><S:k>><S:FFFFdS:W>>5>M5>M<

2473: <S:L>><S:F>><S:R>><S:k>><S:FS:RSKFS>><FFFFFF:W>>5>Ma>M<

2627: 0xff 0xfe < 0x00 0xff --------C--ii------------ 0x00 0x80 -ii

--------- L---------------- 0x00 0x80 -ii-------------------- 0x00

0x80 0x05 0x80 0x10 0x05 0x80 0x10

3780: 0xff 0xfe< 0x00 0xef 0x0b@! 0x12 0xfb @! 0x12 0xff :R>kF@<S@! 0x13

0x19 >5>M5>M 0x01 \% 0xff 0xff 0x05

Ids 368 and 797 are close to each other in the latent space. The strings
are short and syntactically similar. 2415 and 2473 are likewise close to each
other and their syntactic structure is also similar. They are rather different from
the first pair however – both in their position in the latent space and their
syntax. Finally, 2627 and 3780 are close in the latent space, and while they
share some syntactic features, they are far from identical. The similarity of their
traces (and hence proximity in the latent space) may be due to their shared
prefix. There happens to be a connection between input strings and latent space
locality because the program is a linter whose purpose is to process strings –
and exhibit corresponding behaviours. This notion of similarity is much more
general however: it captures the innate similarity of features of arbitrary data.
Furthermore, its definition requires no manual effort.

We suggest the following implications based on the above observations. First,
a latent space representation gives us a way of reasoning about similarity of
behaviours given an arbitrary representation: something that was not naturally
ordered can now be compared in a convenient, continuous n-dimensional space.
In the context of a diversification strategy, we can utilise this notion of similarity
to drive a search towards less explored behaviours, i.e. towards less densely
populated regions of the latent space2.

2 Böhme et al. showed that enforcing diversity on AFL’s search is beneficial [3]. In
future work we intend to investigate how the effectiveness using their notion of
diversity compares with that proposed here.

Search Spaces for SBST Using NNs 39

5 Conclusion

The effectiveness of any SBST process depends on a good fitness function. The
landscape ought to be large, continuous and representative of the underlying
property of interest. Constructing such a landscape is not trivial.

We propose the use of neural networks for constructing search landscapes
with convenient characteristics for both property targeting and diversity driven
search strategies. We suggest that a property targeting search strategy can use a
landscape produced by a classifier neural network, and we illustrate this by exper-
iment. Our results show that the landscape is continuous, arbitrarily large and
representative of various properties of interest. For a diversity driven strategy,
we propose constructing a search landscape using autoencoders. An autoencoder
maps arbitrary observations onto an n-dimensional space where the location is
determined by the most distinguishing features of the data. We show how such
a space can be created and illustrate that it possesses useful characteristics such
as size, continuity and meaningful ordering.

The results and experiments of this paper present the approach of construct-
ing search landscapes, and comment on their characteristics. To the best of our
knowledge, our approach is conceptually novel and we believe it to open new
directions in SBST. This work is part of ongoing research in which the next steps
include evaluating the application of these landscapes for discovery of properties
of interest.

References

1. Aleti, A., Moser, I., Grunske, L.: Analysing the fitness landscape of search-based
software testing problems. Autom. Softw. Eng. 24(3), 603–621 (2017)

2. Alshahwan, N., Harman, M.: Coverage and fault detection of the output-uniqueness
test selection criteria. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pp. 181–192. ACM (2014)

3. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45, 489–506 (2017)

4. Bonzini, P.: sed(1) - Linux man page (2019). https://linux.die.net/man/1/sed
5. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Maher, M.J. (ed.)

ASIAN 2004. LNCS, vol. 3321, pp. 320–329. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30502-6 23

6. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive random testing for
object-oriented software. In: Proceedings of the 30th International Conference on
Software Engineering, pp. 71–80. ACM (2008)

7. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances
in Neural Information Processing Systems, pp. 313–320 (2004)

8. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908
(2016)

9. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285 (2016)

10. Feldt, R., Poulding, S., Clark, D., Yoo, S.: Test set diameter: quantifying the
diversity of sets of test cases. In: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 223–233. IEEE (2016)

https://linux.die.net/man/1/sed
https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-3-540-30502-6_23
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1603.07285

40 L. Joffe and D. Clark

11. Gay, G., Staats, M., Whalen, M., Heimdahl, M.P.: The risks of coverage-directed
test case generation. IEEE Trans. Softw. Eng. 41(8), 803–819 (2015)

12. Glasmachers, T.: Limits of end-to-end learning. arXiv preprint arXiv:1704.08305
(2017)

13. Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In: Goos, G., Hart-
manis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996). https://doi.org/
10.1007/BFb0105404

14. Harman, M., Clark, J.: Metrics are fitness functions too. In: Proceedings of 10th
International Symposium on Software Metrics, pp. 58–69. IEEE (2004)

15. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

16. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

17. Heimdahl, M.P.E., George, D., Weber, R.: Specification test coverage adequacy cri-
teria = specification test generation inadequacy criteria. In: Proceedings of Eighth
IEEE International Symposium on High Assurance Systems Engineering, pp. 178–
186. IEEE (2004)

18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

19. Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms.
IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

20. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 435–445. ACM (2014)

21. Jones, D.: Sparse - a semantic parser for C (2019). https://sparse.wiki.kernel.org/
index.php/Main Page

22. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

23. Karpathy, A.: Cs231n convolutional neural networks for visual recognition (2016).
http://cs231n.github.io/neural-networks-1/

24. Kawaguchi, K.: Deep learning without poor local minima. In: Advances in Neural
Information Processing Systems, pp. 586–594 (2016)

25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

26. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

27. Kochhar, P.S., Thung, F., Lo, D.: Code coverage and test suite effectiveness: empir-
ical study with real bugs in large systems. In: 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pp. 560–564.
IEEE (2015)

28. Lane, T., et al.: libjpeg 6b (1998). http://libjpeg.sourceforge.net/
29. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic

instrumentation. In: ACM SIGPLAN Notices, vol. 40, pp. 190–200. ACM (2005)
30. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.

Verif. Reliab. 14(2), 105–156 (2004)
31. Meyering, J., Gordon, A.: GNU sed (2019). https://www.gnu.org/software/sed/
32. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-

sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)
33. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix

utilities. Commun. ACM 33(12), 32–44 (1990)

http://arxiv.org/abs/1704.08305
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1007/BFb0105404
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
http://arxiv.org/abs/1404.2188
http://cs231n.github.io/neural-networks-1/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://libjpeg.sourceforge.net/
https://www.gnu.org/software/sed/
http://arxiv.org/abs/1301.3781

Search Spaces for SBST Using NNs 41

34. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN Notices, vol. 42, pp. 89–100. ACM (2007)

35. Nguyen, Q., Hein, M.: The loss surface of deep and wide neural networks. arXiv
preprint arXiv:1704.08045 (2017)

36. Nguyen, Q., Hein, M.: Optimization landscape and expressivity of deep CNNs. In:
International Conference on Machine Learning, pp. 3727–3736 (2018)

37. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to
accelerate training of deep neural networks. In: Advances in Neural Information
Processing Systems, pp. 901–909 (2016)

38. Shepperd, M.: Fundamentals of Software Measurement. Prentice-Hall, Upper Sad-
dle River (1995)

39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

40. Staats, M., Gay, G., Whalen, M., Heimdahl, M.: On the danger of coverage directed
test case generation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol.
7212, pp. 409–424. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28872-2 28

41. Swirszcz, G., Czarnecki, W.M., Pascanu, R.: Local minima in training of neural
networks. arXiv preprint arXiv:1611.06310 (2016)

42. Tan, S.H., Yi, J., Mechtaev, S., Roychoudhury, A., et al.: Codeflaws: a program-
ming competition benchmark for evaluating automated program repair tools. In:
Proceedings of the 39th International Conference on Software Engineering Com-
panion, pp. 180–182. IEEE Press (2017)

43. VP Users (2017). http://valgrind.org/gallery/users.html
44. Veillard, D.: The XML C parser and toolkit of Gnome (2019). http://xmlsoft.org/
45. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic

structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)
46. Zalewski, M.: American fuzzy lop (2007). http://lcamtuf.coredump.cx/afl/

http://arxiv.org/abs/1704.08045
https://doi.org/10.1007/978-3-642-28872-2_28
https://doi.org/10.1007/978-3-642-28872-2_28
http://arxiv.org/abs/1611.06310
http://valgrind.org/gallery/users.html
http://xmlsoft.org/
http://lcamtuf.coredump.cx/afl/

A Review of Ten Years of the Symposium
on Search-Based Software Engineering

Thelma Elita Colanzi1(B), Wesley Klewerton Guez Assunção2,
Paulo Roberto Farah3,4, Silvia Regina Vergilio4, and Giovani Guizzo5

1 DIN - State University of Maringa, Maringa, Brazil
thelma@din.uem.br

2 Federal University of Technology - Paraná, Toledo, Brazil
wesleyk@utfpr.edu.br

3 Santa Catarina State University, Ibirama, Brazil
paulo.farah@udesc.br

4 DInf - Federal University of Parana, Curitiba, Brazil
silvia@inf.ufpr.br

5 CREST Centre, University College London, London, UK
giovaniguizzo@gmail.com

Abstract. The year 2018 marked the tenth anniversary of the Sympo-
sium on Search Based Software Engineering (SSBSE). In order to bet-
ter understand the characteristics and evolution of papers published in
SSBSE, this work reports results from a mapping study targeting the ten
proceedings of SSBSE. Our goal is to identify and to analyze authorship
collaborations, the impact and relevance of SSBSE in terms of citations,
the software engineering areas commonly studied as well as the new
problems recently solved, the computational intelligence techniques pre-
ferred by authors and the rigour of experiments conducted in the papers.
Besides this analysis, we list some recommendations to new authors who
envisage to publish their work in SSBSE. Despite of existing mapping
studies on SBSE, our contribution in this work is to provide information
to researchers and practitioners willing to enter the SBSE field, being a
source of information to strengthen the symposium, guide new studies,
and motivate new collaboration among research groups.

Keywords: Systematic mapping · SBSE · Bibliometric analysis

1 Introduction

The year 2018 marked the tenth anniversary of the Symposium on Search Based
Software Engineering (SSBSE), the premier event on Search Based Software
Engineering (SBSE). SBSE is the research field that formulates Software Engi-
neering (SE) problems as search problems. In this way, heuristic techniques are
used to reach optimal solutions to efficiently solve a large variety of problems
associated to different SE tasks. Over the past ten years, the symposium has
drawn attention of researchers, academics and practitioners alike, contributing

This work was funded by CNPq (Grants 428994/2018-0 and 408356/2018-9) and by the
ERC Advanced Grant 2016, ID 741278, Evolving Program Improvement PE6 London
Collaborators (EPIC).

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 42–57, 2019.
https://doi.org/10.1007/978-3-030-27455-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_4

A Review of the 10 Years of SSBSE 43

to strengthen the field and to integrate the SBSE community, gathering a large
body of studies that serve as reference for researchers. To obtain and understand
a big picture of SSBSE, we synthesized this ten-year history of research through
a systematic mapping [9] conducted over all the SSBSE proceedings.

In the literature we can find surveys in the SBSE field [5–7] reporting appli-
cations of search-based algorithms on software bug fixing, project management,
planning and cost estimation, software comprehension, refactoring, software slic-
ing, service-oriented software engineering, compiler optimization, quality assess-
ment, etc. Such surveys analyze the most used search-based algorithms and also
point out research directions on SBSE. de Freitas et al. [3] present a bibliometric
analysis of the SBSE field. Such works show a growing number of SBSE papers,
and an increasing number of addressed SE activities.

Our work also analyzes the addressed SE tasks and used Computational
Intelligence (CI) techniques, similarly to aforementioned SBSE studies. But, dif-
ferently from related work, our focus is the SSBSE. In this way, we provide dif-
ferent analysis regarding the composition of steering and program committees,
submission tracks, paper acceptance rate, and impact of the papers published.
Such analysis allows a deeper view of SSBSE and contributes to comprehend
how the symposium has been evolving along the years.

In our mapping1, we adopted the guidelines of Petersen et al. [9] and the
following Research Questions (RQ):

RQ1: What are the basic SSBSE numbers? To answer this RQ we pro-
vide a quantitative analysis of the event: number of submitted and published
papers along the years, acceptance rate, authors and committees characteristics,
research groups and collaborations.

RQ2: What is the external impact of SSBSE? To answer this RQ we
provide a citation analysis of the SSBSE papers, in order to evaluate the visibility
and importance of publishing in the symposium.

RQ3: What are the most common addressed SE areas and CI tech-
niques? To answer this question we provide a quantitative analysis of the
addressed SE areas and number of papers in each, as well as the employed
CI techniques. Besides, we analyze possible changes and trends over time.

RQ4: How have the SBSE approaches been evaluated? To answer this
question we provide an analysis of the experimental evaluation carried out in
the papers, identifying applied statistical tests and subjects. The main idea is to
analyze experimental rigour employed in the studies published in the symposium
and if such a rigour has changed over time.

In this way, the main contributions of this work are: (i) to ascertain the
impact and relevance of SSBSE, by reporting its main numbers and performing
a citation analysis of the published works; (ii) to devise a co-authorship network
and depict the most prolific research groups and researchers, as well as the
participation of the industry; (iii) to point out the software engineering areas

1 Raw data at https://wesleyklewerton.github.io/SSBSE2019-DataCollection.ods.

https://wesleyklewerton.github.io/SSBSE2019-DataCollection.ods

44 T. E. Colanzi et al.

that have been most subjected to investigation as well as the ones that need
more attention; (iv) to identify the main CI techniques; and (v) to analyze how
SBSE approaches have been evaluated.

Studies like ours are important to corroborate the importance of the sym-
posium and if it has been following up the main changes pointed out by the
existing surveys and mappings of the SBSE field, as well as to evaluate its repre-
sentativeness. Besides, we list some recommendations to new authors who envis-
age to publish their work in SSBSE, providing information to researchers and
practitioners willing to enter the SBSE field, being a source of information to
strengthen the symposium, guide new studies, and motivate new collaboration
among research groups. In Sects. 2 to 5 we answered each posed RQ. Section 6
presents some recommendations to new authors. Section 7 concludes the paper.

2 RQ1 – SSBSE in Numbers

The first edition of SSBSE occurred in 2009, in Windsor, United Kingdom (UK),
and since then the symposium took place in six different countries in Europe,
South America (2014), and North America (2016). Some editions were co-located
with ESE/FSE, and with other events such as ICSME and ASE.

The symposium attracts researchers, students, lecturers and members from
industry. Each SSBSE edition had the honor of having at least two keynotes,
one from SE and other from the optimization field, in a total of 25 keynotes, as
well as 11 tutorials and 4 panels.

Committee Characteristics. Regarding the committee composition, the
number of committee members varies from a minimum of 23 in 2017 to a max-
imum of 43 in 2014 (see Fig. 1(a)). Such members are from different countries,
but we do not observe a great variation in the number of represented countries
along the editions (minimum number of countries is 9, in 2009 and maximum
number is 14, in 2014), average of 11.5.

A greater variation and significant gender imbalance are observed when we
consider the percentage of women in the committee2. This percentage varies from
a minimum of 5% (2009) to a maximum of 25% (2017). The gender imbalance has
been decreasing in the last years. Considering the steering committee (Fig. 1(b))
such imbalance has also been decreasing. Such committee was composed for the
first time in 2011. In the first four editions it had only 1 woman in a total of
9 members (percentage of 11%). The maximum percentage of women is 30%
(2016). The number of countries represented in such committee has been kept
almost constant (around 5, with a maximum number of 8 in 2012).

In spite of this gender imbalance, the percentage of women researchers in
leadership positions in SSBSE is greater regarding other conferences and the
2 We manually checked the gender of committee members and authors by doing a

web search in their profiles by using Google Scholar, Microsoft Academic, Research
Gate, Linkedin, etc. We didn’t find name and affiliation of two authors only; we used
Genderize.io API and both were defined as females.

A Review of the 10 Years of SSBSE 45

Computer Science area [1]. We had a total of 43 chairs, 14 of which are women
(33%). If we consider only the main track, this percentage is similar (35%), 7
women out of 20 chairs. This imbalance has been decreasing in the last five years.
Considering the main track, we observe a perfect balance since 2014; a woman
and a man have been chosen for chairs since then.

(a) Program Committee (b) Steering Committee

Fig. 1. Committee characteristics - gender imbalance

Table 1. SSBSE in Numbers. (COU: number of different countries submitting papers.
TSUB: number of submissions including all tracks. SUB: number of submissions. ACC:
number of accepted papers. Rate: percentage of acceptance. “-” means unknown or 0.)

YearCOUTSUBFull Short/F.Abstract Student Challenge

SUBACCRateSUBACCRate SUBACCRateSUBACCRate

2009 14 26 - 9 - 5 - 3 - - - - -

2010 - 36 - 14 - - - 3 - - - - -

2011 21 43 37 15 40.5 - 8 - 6 3 50 - - -

2012 20 38 34 15 44.1 - 3 - 4 2 50 - - -

2013 24 50 39 14 35.9 - 6 - 9 6 66.6 4 2 50

2014 19 51 32 14 43.7 3 1 33.3 8 3 37.1 8 4 50

2015 15 51 26 12 46.1 8 4 50 4 2 50 13 13 100

2016 20 48 25 13 52 9 4 44.4 7 4 57.1 7 7 100

2017 14 32 26 7 26.9 2 5 - 2 2 100 4 4 100

2018 10 13 12 12 100 8a 6 75 - - - 1 1 100
a with Hot of the Press Track

Number of Submissions and Acceptance Rate. SSBSE has provided dif-
ferent tracks in its ten editions. Some statistics about such tracks are presented
in Table 1. The main track of full research papers and the student track occurred
in all editions with independent chairs. We can see that the total number of sub-
mitted papers considering all tracks is greater in the period of 2013–2016. A
similar fact can be observed considering the number of submitted papers for the
full research papers and the student track.

46 T. E. Colanzi et al.

Regarding the main track of full research papers, the number of accepted
papers varies from 7 (in 2016) to 15 (in 2011 and 2012). The acceptance rate of
the main track falls in the range of 27% (2017) to 100% in (2018). These last
two years are outliers. In 2018, a shepherding phase was added in the reviewing
process, which may justify 100% of acceptance. In fact, we do not observed great
variations in the acceptance rate before 2016, considering 2011–1016 the mean
rate is 43%. After a period of growing and boom, we observed a decrease in the
number of submitted papers, what might be justified by the recent inclusion of
SBSE in the list of topics of several conferences.

The characteristics of the short papers track varied along the editions. In
most editions, separated calls for short papers or fast abstracts were provided,
with or without independent chairs. In some editions accepted short papers
were originally submitted as full papers. The challenge track started only in
2013. Thus it is not possible to analyze the acceptance rate over the ten years
of both tracks. The edition of 2017 included a journal-first papers track with 2
papers, and the last edition, in 2018, a Hot of the Press track that also included
short/student papers with 6 papers. Including all tracks, we had a corpus of
220 papers, 125 associated to the full track, published by IEEE in the first two
editions, and by Springer since the third one. Because of this variety in the tracks,
the analysis conducted to answer our research questions includes only the 125
papers of the full research track collected from all the SSBSE proceedings.

Table 2. Most prolific authors

Name Country P C

Andrea Arcuri Norway, Luxembourg 8 250

Gordon Fraser Germany, UK 7 208

Paolo Tonella Italy, Switzerland 7 120

Shin Yoo UK, Korea 6 176

Mark Harman UK 6 157

Marouane Kessentini USA 6 119

Jerffeson T. de Souza Brazil 5 136

Giuliano Antoniol Canada 5 67

Yann-Gaël Guéhéneuc Canada 5 64

Enrique Alba Spain 4 84

Ruilian Zhao China 4 42

Silvia R. Vergilio Brazil 4 34

Thelma E. Colanzi Brazil 4 34

Betty H.C. Cheng USA 4 30

Annibale Panichella Netherlands, Luxembourg 4 14

Table 3. Author’s churn

Year New Rep. Left Total Churn

2009 24 0 0 24 0.0

2010 32 6 18 38 133.3

2011 34 8 30 42 89.4

2012 34 16 26 50 80.9

2013 34 8 42 42 68.0

2014 39 5 37 44 92.8

2015 35 4 40 39 79.5

2016 39 6 33 45 100.0

2017 13 3 42 16 28.9

2018 31 4 12 35 193.7

Authorship. In 125 full papers, we found 271 distinct authors. Then we ana-
lyzed their affiliations, and identified the most prolific authors and collabora-
tions. Table 2 presents a ranking of authors that have published at least four
papers, ordered by number of papers and number of citations. The third and the

A Review of the 10 Years of SSBSE 47

fourth columns present the number of published papers and the total number
of citations received of all published papers, respectively. Andrea Arcuri is the
author with the greatest number of publications and citations. Another aspect
to highlight is that greater productivity does not mean higher citations as some
authors have fewer SSBSE papers and more citations (see also Sect. 3).

We can see that the great majority of authors (256 out 271 (94.5%)) published
less than 4 papers. Table 3 quantifies unique authors who are new or returned
to publish at SSBSE with at least one year without publication (column New),
authors that published in the year before and maintained their position pub-
lishing at least one paper in the event (column Rep) and authors who did not
publish anymore and left the event (Left). Additionally, we calculated the yearly
churn rate, presented in the last column. The results indicate that few authors
keep publishing along the years, 2012 was the edition with highest number of
unique authors and 2017 was the year with the lowest. Churn rate is very high,
the highest value was obtained for 2018 and the lowest for 2017.

Czech Republic
Sweden

Germany
Norway

Luxembourg
Spain

China
Canada

Brazil
Italy
USA
UK

0

10

20

30

40

50

60

70

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 2. Contribution by countries

We also investigated the number of countries represented by the authors. To
this end we identified the country of all affiliations presented in the papers. Thus,
if an author was affiliated to two countries, both were counted in our analysis.
The analysis revealed that 24 different countries contributed to SSBSE. The
top 3 countries (12.5%) had a contribution of 44.6% and the top 5 countries
(20.8%) had a contribution of 64.7%. Figure 2 shows cumulative number of con-
tributions of 12 country affiliations (50%). We can observe that authors from
the UK contributed considerably more than other countries over the ten years.
Next, there are four countries that have been disputing the second position in

48 T. E. Colanzi et al.

the period: USA, Italy, Brazil and Canada. The USA have been maintaining
the second place since 2013, tied with other countries in some years. Following,
there is a third block, composed by: China, Spain, Luxembourg, Norway, the
Netherlands, Germany, Sweden and Czech Republic. There are some interest-
ing aspects about theses countries. First, the number of authors from China
did a big jump in years 2015 and 2016, which made them lead the number of
contributions of this third group. We can also highlight the fact that Spanish
authors participated actively only in the first four years of the event and, since
2014, nobody from Spain has published any other paper. Authors from Ger-
many presented a similar behaviour, 81.8% of the contributions were published
in 2010 and 2011. Another important aspect of this group is that we observed
an increase in the number of papers from Norway and Luxembourg, maybe due
to collaborations with other countries. Norway collaborated with other countries
in 41.6% of published papers and Luxembourg in 30%.

22
33 42 46

33
40 32 37 15 30

2
7 8 5

14
6 8 9 3 7

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Men Women

Fig. 3. Authors gender imbalance

0%

20%

40%

60%

80%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
University Industry Foundation
University-Industry University-Foundation

Fig. 4. Source of contributions

Fig. 5. Collaboration network.

A Review of the 10 Years of SSBSE 49

Another analysis shown in Fig. 3 presents the percentage of women that pub-
lished papers. It varies from 8.3% in 2009 to 29% in 2013. The results show a
big gender imbalance that has not been decreasing along the years.

Some authors belong to more than one kind of institution. Figure 4 displays
the percentage of authors from universities, research foundations and indus-
try. We can observe clearly that the great majority are from universities. One
interesting point is that the research foundation Fondazione Bruno Kessler con-
tributed in almost all editions, except 2013 and 2015. The percentage of papers
exclusively from universities is 87.7%, exclusively from industry and also exclu-
sively from research foundations is 4.3%, from universities in collaboration with
industry is 3.3% and from universities and research foundations is 0.5%. We
noticed a modest participation of the industry.

Collaborations. We observed that 47.2% of papers have external collabora-
tion, that is, were published by authors from different institutions, and in 28.8%
the institutions are from different countries. To better identify the main SSBSE
groups and collaborations we constructed a co-authorship network (Fig. 5). We
observed that the University of Luxembourg formed the main group, collaborat-
ing with 11 different institutions. Fondazione Bruno Kessler collaborated with
6, University of York with 5 and University College London, University of San-
nio, Simula Research Laboratory and Università Della Svizzera Italiana with 4.
Moreover, there are many other collaborations with fewer connections.

(a) Average by edition (b) Average by paper

Fig. 6. Average number of citations per year.

3 RQ2 – Citations Analysis and External Impact

This section presents results regarding the total number of citations of SSBSE
papers and citations by papers in order to evaluate the impact of the symposium.

The number of citations was collected from Google Scholar (GS) on 14th

and 15th of March, 2019. All papers were individually evaluated, for which we
collected their total number of citations (tagged as “Citations”), total number
of citations excluding self-citations (tagged as “No Self-Citations”), and total

50 T. E. Colanzi et al.

number of citations excluding self-citations and citations by other SSBSE papers
(tagged “External Citations”)3. Our citation analysis does not encompass the
last edition of SSBSE, because by the time we collected this data, the citations
of 2018 papers had not been computed by Google Scholar yet.

In the past 10 years, SSBSE papers have received a total of 2,080 citations,
of which 1,692 (81.4%) account for no self-citations and 1,599 (76.9%) repre-
sent external citations. However, the difference between the number of no self-
citations and external citations is only 93 (4.5%), i.e., there are only 93 citations
of SSBSE papers by different SSBSE authors and the remaining citations are all
from different authors in different venues.

Figure 6 depicts the average number of citations the papers received per
year since they have been published. Figure 6(a) shows the average citations
by edition, whereas Fig. 6(b) shows the average by paper. Each SSBSE edition
receives on average 35.5 citations per year (39 median), of which 27.9 are no self-
citations (31.4 median), and 26.5 are external citations (29.4 median). Papers
of SSBSE’11 are the most cited, considering both total number of citations and
citations per year, with a total of 458 citations and 57.5 citations per year.

Next we present some statistics by paper. On average, each SSBSE paper
has received 18.41 citations (11 median), of which 14.97 are no self-citations
(8 median), and 14.15 are external citations (8 median). Moreover, each paper
receives on average 2.83 citations per year of its publication (2.17 median), of
which 2.22 are no self-citations (1.5 median) and 2.10 are external citations (1.44
median). As it happened to the cumulative number of citations of each SSBSE
edition, SSBSE’11 has the most cited papers on average with 3.82 citations
per year of publication, 3.23 of which are no self-citations and 3.05 are external
citations. However, when we consider the median, SSBSE’11 is only the 8th in the
rank with a median of 1.63, while SSBSE’17 gets the 1st position with a median of
3.00. This can be explained by the 135 citations the paper “On Parameter Tuning
in Search Based Software Engineering” by Arcuri and Fraser [2] on SSBSE’11
has got. This paper single-handedly drags the average number of citations by
paper per year from 2.88 to 3.82 considering all editions of SSBSE. Furthermore,
the average citations per year of the 2011 edition would go down to 40.38 from
57.25 if we remove this paper from the average pool.

In fact, the paper authored by Arcuri and Fraser [2] is the most cited paper
of the symposium. Table 4 shows the 10 most cited papers from all editions. It
is worth mentioning that these 10 papers have 678 citations (32% of all SSBSE
papers combined). Another interesting observation is that 5 of these papers are
focused on Testing. This greater frequency of citations for testing papers can be
explained by the greater number of testing papers in general (see Sect. 4).

Another interesting information is regarding SSBSE h-index and h5-index
values [8]. The h-index counts the maximum number of h papers that have been
cited at least h times. Similarly, the h5-index compute the h-index for the papers

3 To ease this task, we used Publish or Perish (https://harzing.com/resources/publish-
or-perish), a tool that helps researchers look up information about papers, confer-
ences, journals and others researchers in several repositories, including GS.

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish

A Review of the 10 Years of SSBSE 51

Table 4. Ranking of the 10 most cited SSBSE papers. (C: citations, NS: no self-
citations, E: external citations.)

Year Title Authors C NS E

2011 On Parameter Tuning in Search Based Software Engineering Arcuri and Fraser 135 121 112

2009 An Improved Meta-Heuristic Search for Constrained Interaction

Testing

Garvin et al. 82 75 73

2012 Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

Yoo 69 56 52

2011 Highly Scalable Multi Objective Test Suite Minimisation Using

Graphics Cards

Yoo et al. 68 59 56

2011 Ten Years of Search Based Software Engineering: A Bibliometric

Analysis

de Freitas and Souza 59 58 55

2012 Putting the Developer in-the-Loop: An Interactive GA for

Software Re-modularization

Bavota et al. 57 54 52

2009 A Study of the Multi-Objective Next Release Problem Durillo et al. 56 51 47

2012 Reverse Engineering Feature Models with Evolutionary

Algorithms: An Exploratory Study

Lopez-Herrejon et al. 52 35 33

2009 Search-Based Testing of AjaxWeb Applications Marchetto and

Tonella

51 47 46

2010 Genetic Programming for Effort Estimation: an Analysis of the

Impact of Different Fitness Functions

Ferrucci et al. 49 39 37

published in the last 5 complete years (we consider the 5 years between 2013
and 2017). The SSBSE h-index is 26 and the h5-index is 15. As a matter of com-
parison, according to GS, the h5-index of ACM/IEEE International Conference
on Software Engineering (ICSE) is 74, IEEE Transactions on Software Engineer-
ing (TSE) is 56, IEEE Software is 37, IEEE/ACM International Conference on
Automated Software Engineering (ASE) is 35 and ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) is 31. Considering only external
citations, the SSBSE h-index and h5-index values are respectively 23 and 13.

This close gap between no self-citations and external citations (both count
and h-index) may indicate that the SSBSE papers have got some substantial
external visibility, as most of the citations are from different venues. Further-
more, this can also imply that such papers might have been used as source of
inspiration for further research by the SE community.

We reported the number of citations as a measure of impact, however this
might not be very accurate. As Ghezzi [4] stated in his keynote during the
31st edition of ICSE, the most cited papers will not always represent the most
influential ones. Sometimes a paper is reported to be directly influenced by
another paper, while having more citations. This can also be observed when
comparing the rank of papers by citations count to the rank of most influential
papers judged by the experts of the field. As shown by Ghezzi [4], the 8 most
cited papers in their ICSE editions were elected as the most influential papers
of that same year, but further down the rank, the most cited papers were not
always selected as the most influential ones by experts.

52 T. E. Colanzi et al.

This phenomenon actually happened for SSBSE. During the 10th edition of
the symposium in 2018, the community was asked to vote on the most influential
paper of the past 10 years. The award was given to “The Human Competitiveness
of Search Based Software Engineering” by de Souza et al. [10]. However, the
award-winning paper is only the 11th most cited paper (46 citations).

All in all, the number of citations seemed to be the best metric of impact in
the context of our work. This metric can be of some value, as a greater number
of citations can tell more than smaller numbers, even though only about the
visibility of papers. The best approach to evaluate the external impact of SSBSE
papers would be to actually check the experts opinion, however, that is not a
trivial task. Indeed, this could be done in future work with a more carefully
designed impact evaluation with experts of top-tier software engineering venues.

4 RQ3 – Software Engineering Areas and Tasks

SE Areas. To answer RQ3, the papers were grouped by SE areas4 as depicted
in Fig. 7. 54.4% of the papers are from Software Defect Analysis, which includes
software testing and debugging, and 45.6% tackled some task related to software
testing. Test data generation was addressed by papers in every SSBSE edition.

Fig. 7. Amount of papers published by software engineering area

4 We used the four first levels of the 2012 ACM Computing Classification System
(https://www.acm.org/publications/class-2012).

https://www.acm.org/publications/class-2012

A Review of the 10 Years of SSBSE 53

Defect prediction, test case evaluation and test management were tackled
only in the first two editions. The last three editions contained papers on
regression testing, stress testing, interaction testing and test suite minimization.
Papers on tasks related to debugging addressed fault localization and program
analysis over time and, more recently (2016 and 2017), program repair.

Requirements Analysis, Software Design and Maintenance represent, respec-
tively, 8.8%, 12% and 8% of the SSBSE papers. The Next Release Problem is
the most addressed Requirements task, although the last publication about this
task was in 2015. More recently, papers have focused on detection of incomplete
requirements and non-functional requirements optimization. Regarding Software
Design, most papers deal with architecture definition and model transforma-
tion (MDE), followed by automatic software configuration, architecture improve-
ment and software modularization. After two years without publications in this
area, three papers addressing MDE were published in 2018. Maintenance papers
appeared between 2012–2016 and 55% of them addressed refactoring.

The other SE areas were focused in less than 5% of the papers. Most papers on
Project and People Management deal with business process reduction and soft-
ware project planning. Three surveys were published from 2011 to 2015. They
addressed SBSE research analysis, metrics to search-based refactoring and soft-
ware requirement selection and prioritization problems. Four papers treat SBSE
over time, in the following order: SBSE evaluation, SBSE scalability, project
decision making and online experimentation. Reverse engineering was applied
to the software product line approach in 3 published papers. SE Areas such as
Software Performance, Software Reliability, Experimentation and source-code
authorship definition (identified as Other in Fig. 7) had only one paper each.

Finally, tasks that have emerged in the last 4 years are the ones related to non-
functional properties (software performance, software reliability, non-functional
properties optimization and non-functional requirements optimization), as well
as program repair, stress testing, MDE and experimentation.

CI Techniques. Figure 8 shows the CI techniques used in the SSBSE papers
over time. 76% of the papers applied (mono or multi-objective) evolutionary
algorithms. 24% applied local search, such as Hill-Climbing, Greedy, Simulated
Annealing and Tabu Search. 4.8% used swarm intelligence algorithms (ACO
and PSO). The category named Other (almost 10% of the papers) includes algo-
rithms such as Mathematical Optimization, Mixed Integer Linear programming,
Error-Correcting Graph Matching algorithm, Constraint Programming, Artifi-
cial Immune Recognition Systems, Random Search, etc. 3.2% of papers have
also applied Machine Learning algorithms (Artificial Neural Network, Greedy
Agglomerative Clustering or Multiple Regression).

19 out 125 papers used more than one CI technique. In some cases, differ-
ent algorithms were used to compare which one has the best performance to
solve the addressed problem. In other cases, algorithms from different CI tech-
niques were combined to better solve a problem, which happened with the 4
papers that combined evolutionary algorithms and machine learning. Each one

54 T. E. Colanzi et al.

Fig. 8. Amount of papers published by CI technique

addressed the following tasks: refactoring, test data generation, test management
and automatic generation of maximally diversified versions.

As seen in Fig. 8, since 2012 swarm intelligence has not been applied in SSBSE
papers. The application of evolutionary algorithms have also decreased over time.
On the other hand, other CI techniques and machine learning algorithms have
been increasingly used.

5 RQ4 – Experimental Rigour

In this section, we discuss some aspects of the evaluations carried out in the
SSBSE papers. We observed that 121 papers (96.6%) present evaluation results
and among them 57.8% perform a statistical analysis. Almost all papers evaluate
their proposed solution with a wide range of subjects and the attention on using
statistical tests. Mainly in the last years, we can attest that the experimental
rigour has been taken into account by SSBSE authors. Further details about
subjects and statistical tests, are presented next.

Subjects. A wide range of different subjects are used. Some of them are small
computer programs typically used for educational purposes or proof of concept.
Arcade Game Maker, Microwave Oven Software, and Service and Support Sys-
tem are examples of academic subjects. Other used subjects are real-world soft-
ware, allowing an evaluation of how SBSE solutions work in practice. Such sys-
tems are in platforms like desktop (Microsoft Word and ReleasePlanner), Web
(Tudu, Oryx and Softslate Commerce), mobile (Sony Mobile and Android pro-
grams), embedded software (Adaptive headlight control, door lock control and
electric windows control modules), and MATLAB Simulink models. Open source
projects are widely used in SSBSE papers. These projects are taken mainly from

A Review of the 10 Years of SSBSE 55

repositories such as SourceForge, GitHub, SPLOT, and Google Play. Examples
of open source projects are Eclipse, Mozilla, Apache Commons project, Apache
Ant, ArgoUML, Azureus, Xerces-J, JHotDraw, AJHSQLDB, Health Watcher,
Toll System, JFreeChart, Rhino, and GanttProject.

Publicly available datasets and benchmarks also appeared in the evaluations.
Example of a benchmark set is the one with faulty programs originally devel-
oped by Siemens: print tokens, replace, schedule, schedule2, tcas, tot info, and
SF110 dataset. We also observed the use of synthetic data, non-real artifacts,
sometimes randomly generated, used to represent difficult problems or large arti-
facts, allowing to expose the power of SBSE solutions.

Statistical Tests and Effect Size Measures. Considering that SBSE
approaches rely on CI techniques, which employ randomness in their search
process, commonly proposed approaches are executed many times to identify a
standard behaviour. The collected data results are evaluated with statistical tests
to assess whether there are significant difference among results or not. Table 5
presents the Statistical tests and Effect size measures that were applied in at
least 2 SSBSE papers. The last column of the table shows the number of papers
using the tests. Among the 17 found tests/measures, Mann-Whitney-Wilcoxon
U-test, Wilcoxon Ranked Sum Test, and Vargha-Delaney A12 effect size were
by far the most commonly used. In Table 6 we can see the percentage of papers
along the years which used those tests/measures. Tests and measures have been
used since 2009, however, we can observe that after 2014 they have been used
more frequently. In 2017 all papers used these tests/measures.

Table 5. Statistical tests and Effect size mea-
sures used

Test/Measure #Papers

Mann-Whitney-Wilcoxon U-test 26

Wilcoxon Ranked Sum Test 25

Vargha-Delaney A12 effect size 22

Student’s T-test 5

Cliff’s Delta 3

Kolmogorov-Smirnov test 3

Spearman’s RC coefficient 3

Friedman test 2

Kruskal-Wallis 2

Two-Tailed Test 2

Table 6. Percentage
of papers that apply
statistical tests or
Effect size per year

Year Percentage

2009 11.1

2010 64.3

2011 46.7

2012 26.7

2013 28.6

2014 85.7

2015 83.3

2016 69.2

2017 100

2018 75

56 T. E. Colanzi et al.

6 Recommendations to Future SSBSE Authors

During the screening of the 125 papers, we have realized that some pieces of infor-
mation are not presented in several papers, what makes the SBSE approaches
not completely clear to readers. Following, we present some recommendations to
future SSBSE authors aiming at helping them to develop high quality studies,
to improve text readability and to enable study replication.

– Make it clear the ingredients of SBSE approaches that enable the application
of CI techniques to solve the corresponding SE problem: problem represen-
tation and fitness function(s). Some (meta)heuristics also need operators to
modify candidate solutions, which should also mentioned in the text;

– Illustrative examples so that readers can easily understand the problem and
the proposed solution.

– Make it clear which are the CI techniques and algorithms used, not just
mention the tool or framework name;

– For the evaluation, authors should prefer using real-word systems from dif-
ferent domains and sizes. This would make the findings more general;

– To avoid threats regarding randomness of CI techniques, run your approaches
many times (at least 30 runs) and assess the results with statistical tests and
effect size measures;

– Make the experimental package available providing, as much as possible, ways
to other authors replicate your study and/or to ease comparison.

7 Conclusion

In this paper we presented an overview of the ten-year history of SSBSE as
well as results from a systematic mapping involving all full papers of the ten
proceedings. Our findings allow us to state that SSBSE papers have made some
external impact on the SE research community. We found that most of the
citations are from different venues and identified a close gap between no self-
citations and external citations. This indicates SSBSE papers have got some
substantial external visibility.

The women SSBSE leadership participation is rather good, but authorship is
low. Gender bias is a major concern in software engineering discipline. Gender
diversity is important because it can help sharing different skills, points of view
and experiences, bringing and incorporating gender aspects of the customers and
users in software engineering, expanding potential talents, among other aspects.
Hence, increasing the participation of women in the symposium is of great value.

Regarding the area of SE problems solved with CI techniques, software test-
ing is still the main addressed task, but other problems have emerged, mostly
related to non-functional requirements, program repair, MDE and experimenta-
tion. Evolutionary algorithms remained the most used CI technique.

We could observe along the ten years a wide range of subjects used by authors
to evaluate their approaches. These subjects can also be used in new research.

A Review of the 10 Years of SSBSE 57

Besides, in recent years authors are paying more attention to the use of statistical
tests to better evaluate their results. But it is important to increase industry
participation and the creation of repositories containing benchmarks regarding
the different SBSE sub-areas.

To call attention and guide new authors willing to publish their papers and
to participate in SSBSE, we presented a set of recommendations to improve their
publications on understandability, replicability, and experimentation soundness.
However, the recommendations are limited to what we observed during the
papers screening. Also, our findings are limited to SSBSE editions and they
were not compared to other venues, which might be done in future studies.

SSBSE has been a representative venue to divulge studies and put together
academics, researchers and practitioners to discuss SBSE. Currently, the SBSE
field is explicitly listed as a topic of interest of important conferences and jour-
nals. Given what we reported and discussed in this paper, we can state that
SSBSE has helped increase the popularity of SBSE in the SE research commu-
nity and plays an important role to strengthen SBSE over the past ten years.

References

1. Agarwal, S., Mittal, N., Katyal, R., Sureka, A., Correa, D.: Women in computer
science research: what is the bibliography data telling us? SIGCAS Comput. Soc.
46(1), 7–19 (2016)

2. Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering.
In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 33–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23716-4 6

3. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: a
bibliometric analysis. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
vol. 6956, pp. 18–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23716-4 5

4. Ghezzi, C.: Reflections on 40+ years of software engineering research and
beyond an insider’s view (2009). https://www.cs.uoregon.edu/events/icse2009/
keynoteSpeakers/ICSEkeynote.pdf

5. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing. In: International Conference on Software Testing,
Verification and Validation (2015)

6. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a
comprehensive analysis and review of trends techniques and applications. Technical
report, Department of Computer Science, King’s College London (2009)

7. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 1–61 (2012)

8. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Natl.
Acad. Sci. 102(46), 16569–16572 (2005)

9. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18
(2015)

10. Souza, J.T., Maia, C.L., de Freitas, F.G., Coutinho, D.P.: The human competi-
tiveness of search based software engineering. In: SSBSE, pp. 143–152 (2010)

https://doi.org/10.1007/978-3-642-23716-4_6
https://doi.org/10.1007/978-3-642-23716-4_5
https://doi.org/10.1007/978-3-642-23716-4_5
https://www.cs.uoregon.edu/events/icse2009/keynoteSpeakers/ICSEkeynote.pdf
https://www.cs.uoregon.edu/events/icse2009/keynoteSpeakers/ICSEkeynote.pdf

Does Diversity Improve the Test Suite
Generation for Mobile Applications?

Thomas Vogel(B), Chinh Tran, and Lars Grunske

Software Engineering Group, Humboldt-Universität zu Berlin, Berlin, Germany
{thomas.vogel,grunske}@informatik.hu-berlin.de, mail@chinhtran.de

Abstract. In search-based software engineering we often use popular
heuristics with default configurations, which typically lead to suboptimal
results, or we perform experiments to identify configurations on a trial-
and-error basis, which may lead to better results for a specific problem.
To obtain better results while avoiding trial-and-error experiments, a fit-
ness landscape analysis is helpful in understanding the search problem,
and making an informed decision about the heuristics. In this paper, we
investigate the search problem of test suite generation for mobile appli-
cations (apps) using Sapienz whose heuristic is a default NSGA-II. We
analyze the fitness landscape of Sapienz with respect to genotypic diver-
sity and use the gained insights to adapt the heuristic of Sapienz. These
adaptations result in Sapienzdiv that aims for preserving the diversity
of test suites during the search. To evaluate Sapienzdiv, we perform a
head-to-head comparison with Sapienz on 76 open-source apps.

Keywords: Fitness landscape analysis · Diversity · Test generation

1 Introduction

In search-based software engineering and particularly search-based testing, pop-
ular heuristics (e.g.,[17]) with best-practice configurations in terms of operators
and parameters (e.g.,[7]) are often used. As this out-of-the-box usage typically
leads to suboptimal results, costly trial-and-error experiments are performed to
find a suitable configuration for a given problem, which leads to better results [4].
To obtain better results while avoiding trial-and-error experiments, fitness land-
scape analysis can be used [16,23]. The goal is to analytically understand the
search problem, determine difficulties of the problem, and identify suitable con-
figurations of heuristics that can cope with these difficulties (cf. [16,19]).

In this paper, we investigate the search problem of test suite generation for
mobile applications (apps). We rely on Sapienz that uses a default NSGA-II to
generate test suite for apps [17]. NSGA-II has been selected as it “is a widely-
used multiobjective evolutionary search algorithm, popular in SBSE research”
[17, p. 97], but without adapting it to the specific problem (instance). Thus, our
goal is to analyze the fitness landscape of Sapienz and use the insights for adapting
the heuristic of Sapienz. This should eventually yield better test results.
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 58–74, 2019.
https://doi.org/10.1007/978-3-030-27455-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_5

Does Diversity Improve the Test Suite Generation for Mobile Applications? 59

Our analysis focuses on the global topology of the landscape, especially how
solutions (test suites) are spread in the search space and evolve over time. Thus,
we are interested in the genotypic diversity of solutions, which is considered
important for evolutionary search [30]. According to our analysis, Sapienz lacks
diversity of solutions so that we extend it to Sapienzdiv that integrates four
diversity promoting mechanisms. Therefore, our contributions are the descriptive
study analyzing the fitness landscape of Sapienz (Sect. 3), Sapienzdiv (Sect. 4),
and the empirical study with 76 apps evaluating Sapienzdiv (Sect. 5).

2 Background: Sapienz and Fitness Landscape Analysis

Sapienz is a multi-objective search-based testing approach [17]. Using NSGA-II,
it automatically generates test suites for end-to-end testing of Android apps. A
test suite t consists of m test cases 〈s1, s2, ..., sm〉, each of which is a sequence of
up to n GUI-level events 〈e1, e2, ..., en〉 that exercise the app under test. The gen-
eration is guided by three objectives: (i) maximize fault revelation, (ii) maximize
coverage, and (iii) minimize test sequence length. Having no oracle, Sapienz con-
siders a crash of the app caused by a test as a fault. Coverage is measured at the
code (statement coverage) or activity level (skin coverage). Given these objec-
tives, the fitness function is the triple of the number of crashes found, coverage,
and sequence length. To evaluate the fitness of a test suite, Sapienz executes
the suite on the app under test deployed on an Android device or emulator.

A fitness landscape analysis can be used to better understand a search prob-
lem [16]. A fitness landscape is defined by three elements (cf. [28]): (1) A search
space as a set X of potential solutions. (2) A fitness function fk : X → IR
for each of the k objectives. (3) A neighborhood relation N : X → 2X that
associates neighbor solutions to each solution (e.g., using basic operators, or dis-
tances of solutions). Based on these three elements, various metrics have been
proposed to analyze the landscape [16,23]. They characterize the landscape, for
instance, in terms of the global topology (i.e., how solutions and the fitness are
distributed), local structure (i.e., ruggedness and smoothness), and evolvability
(i.e., the ability to produce fitter solutions). The goal of analyzing the landscape
is to determine difficulties of a search problem and identify suitable configura-
tions of search algorithms that can cope with these difficulties (cf. [16,19]).

3 Fitness Landscape Analysis of Sapienz

3.1 Fitness Landscape of Sapienz

At first, we define the three elements of a fitness landscape (cf. Sect. 2) for
Sapienz: (1) The search space is given by all possible test suites t according to
the representation of test suites in Sect. 2. (2) The fitness function is given by
the triple of the number of crashes found, coverage, and test sequence length
(cf. Sect. 2). (3) As the neighborhood relation we define a genotypic distance
metric for two test suites (see Algorithm 1). The distance of two test suites
t1 and t2 is the sum of the distances between their ordered test sequences, which

60 T. Vogel et al.

is obtained by comparing all sequences st1i of t1 and st2i t2 by index i (lines 2–4).
The distance of two sequences is the difference of their lengths (line 5) increased
by 1 for each different event at index j (lines 6–9). Thus, the distance is based on
the differences of ordered events between the ordered sequences of two test suites.

Algorithm 1 dist(t1, t2): compute distance between two test suites t1 and t2.
Input: Test suites t1 and t2, max. suite size suitemax, max. sequence length seqmax

Output: Distance between t1 and t2
1: distance ← 0;
2: for i ← 0 to suitemax do � iterate over all suitemax test sequences
3: st1i ← t1[i]; � ith test sequence of test suite t1
4: st2i ← t2[i]; � ith test sequence of test suite t2
5: distance ← distance + abs(|st1i | - |st2i |); � length difference as distance
6: for j ← 0 to seqmax do � iterate over all seqmax events
7: if |st1i | ≤ j or |s1t2

i | ≤ j then break;

8: if st1i [j] �= st2i [j] then � event comparison by index j
9: distance ← distance + 1; � events differ at index j in both seqs.

10: return distance;

This metric is moti-
vated by the basic
mutation operator of
Sapienz shuffling the
order of test sequences
within a suite, and the
order of events within
a sequence. It is com-
mon that the neighbor-
hood relation is based
on operators that make small changes to solutions [19].

3.2 Experimental Setup

To analyze the fitness landscape of Sapienz, we extended Sapienz with metrics
that characterize the landscape. We then executed Sapienz on five apps, repeat
each execution five times, and report mean values of the metrics for each app.1

The five apps we selected for the descriptive study are part of the 68 F-Droid
benchmark apps [6] used to evaluate Sapienz [17]. We selected aarddict, Munch-
Life, and passwordmanager since Sapienz did not find any fault for these apps,
and hotdeath and k9mail2, for which Sapienz did find faults [17]. Thus, we con-
sider apps for which Sapienz did and did not reveal crashes to obtain potentially
different landscape characteristics that may present difficulties to Sapienz.

We configured Sapienz as in [17]. The crossover and mutation rates are set
to 0.7 and 0.3 respectively. The population and offspring size is 50. An individual
(test suite) contains 5 test sequences, each constrained to 20–500 events. Instead
of 100 generations [17], we observed in initial experiments that the search stag-
nates earlier so that we set the number of generation to 40 (stopping criterion).

3.3 Results

The results of our study provide an analysis of the fitness landscape of Sapienz
with respect to the global topology, particularly the diversity of solutions, how
the solutions are spread in the search space, and evolve over time. According to
Smith et al. [27, p. 31], “No single measure or description can possibly charac-
terize any high-dimensional heterogeneous search space”. Thus, we selected 11
metrics from literature and implemented them in Sapienz, which characterize
(1) the Pareto-optimal solutions, (2) the population, and (3) the connectedness

1 All experiments were run on single 4.0 Ghz quad-core PC with 16 GB RAM, using
5 Android emulators (KitKat 4.4.2, API level 19) in parallel to test one app.

2 We used ver. 5.207 of k9mail and not ver. 3.512 as in the 68 F-Droid apps benchmark.

Does Diversity Improve the Test Suite Generation for Mobile Applications? 61

of Pareto-optimal solutions, all with a focus on diversity. These metrics are com-
puted after every generation so that we can analyze their development over time.
In the following, we discuss these 11 metrics and the results of the fitness land-
scape analysis. The results are shown in Fig. 1 where the metrics (y-axis) are
plotted over the 40 generations of the search (x-axis) for each of the five apps.

(1) Metrics for Pareto-Optimal Solutions

•Proportion of Pareto-optimal solutions (ppos). For a population P , ppos is
the number of Pareto-optimal solutions Popt divided by the population size:
ppos(P) = |Popt|

|P | . A high and especially strongly increasing ppos may indicate
that the search based on Pareto dominance stagnates due to missing selection
pressure [24]. A moderately increasing ppos may indicate a successful search.

For Sapienz and all apps (see Fig. 1(a)), ppos slightly fluctuates since a new
solution can potentially dominate multiple previously non-dominated solutions.
At the beginning of the search, ppos is low (0.0–0.1), shows no improvement in
the first 15–20 generations, and then increases for all apps except of password-
manager. Thus, the search seems to progress while the enormously increasing
ppos for MunchLife and hotdeath might indicate a stagnation of the search.

•Hypervolume (hv). To further investigate the search progress, we compute the
hv after each generation. The hv is the volume in the objective space covered by
the Pareto-optimal solutions [10,31]. Thus, an increasing hv indicates that the
search is able to find improved solutions, otherwise the hv and search stagnate.

Based on the objectives of Sapienz (max. crashes, max. coverage, and min.
sequence length), we choose the nadir point (0 crashes, 0 coverage, and sequence
length of 500) as the reference point for the hv . In Fig. 1(b), the evolution of the
hv over time rather than the absolute numbers are relevant to analyze the search
progress of Sapienz. While the hv increases during the first 25 generations, it
stagnates afterwards for all apps; for k9mail already after 5 generations. For
aarddict, MunchLife, and hotdeath the hv stagnates after the ppos drastically
increases (cf. Fig. 1(a)), further indicating a stagnation of the search.

(2) Population-Based Metrics

•Population diameter (diam). The diam metrics measure the spread of all popu-
lation members in the search space using a distance metric for individuals, in our
case Algorithm 1. The maximum diam computes the largest distance between
any two individuals of the population P : maxdiam(P) = maxxi,xj∈P dist(xi, xj)
[5,20], showing the absolute spread of P . To respect outliers, we can compute the
average diam as the average of all pairwise distances between all individuals [5]:

avgdiam(P) =

∑|P |
i=0

∑|P |
j=0,j �=i dist(xi, xj)

|P |(|P | − 1)
(1)

Additionally, we compute the minimum diameter to see how close individuals
are in the search space, or even identical: mindiam(P) = minxi,xj∈P dist(xi, xj).

62 T. Vogel et al.

aarddict MunchLife passwordm. hotdeath k9mail

(a) Proportion of Pareto-optimal solutions (ppos).

(b) Hypervolume (hv).

(c) Max., average, and min. population diameter (maxdiam, avgdiam, mindiam).

(d) Relative population diameter (reldiam).

(e) Proportion of Pareto-optimal solutions in clusters (pconnec).

(f) Number of clusters (nconnec).

(g) Minimum distance k for a connected graph (kconnec).

(h) Number of Pareto-optimal solutions in the largest cluster (lconnec).

(i) Proportion of hypervolume covered by the largest cluster (hvconnec).

Fig. 1. Fitness landscape analysis results for Sapienz.

Does Diversity Improve the Test Suite Generation for Mobile Applications? 63

Concerning each plot for Sapienz and all apps (see Fig. 1(c)), the upper,
middle, and lower curve are respectively maxdiam, avgdiam, and mindiam. For
each curve, we see a clear trend that the metrics decrease over time, which is typ-
ical for genetic algorithms due to the crossover. However, the metrics drastically
decrease for Sapienz in the first 25 generations. The avgdiam decreases from
>1500 to eventually <200 for each app. The maxdiam decreases similarly but
stays higher for hotdeath and k9mail than for the other apps. The development
of the avgdiam and maxdiam indicates that all individuals are continuously get-
ting closer to each other in the search space, thus becoming more similar. The
population even contains identical solutions as indicated by mindiam reaching 0.

•Relative population diameter (reldiam). Bachelet [5] further proposes the rel-
ative population diameter, which is the avgdiam in proportion to the largest
possible distance d: reldiam(P) = avgdiam(P)

d . This metric is indicative of the
concentration of the population in the search space. A small reldiam indicates
that the population members are grouped together in a region of the space [5].

For Sapienz, the largest possible distance d between two test suites is 2500,
in which case they differ in all events (up to 500 for a test sequence) for all of their
five individual test sequences. For d = 2500 and all apps (cf. Fig. 1(d)), reldiam
starts at a high level of around 0.9 indicating that the solutions are spread in the
search space. Then, it decreases in the first 25 generations to around 0.4 (aard-
dict, MunchLife, and passwordmanager), and below 0.3 (hotdeath and k9mail)
indicating a grouping of the solutions in one or more regions of the search space.

(3)Metrics Based on the Connectedness of Pareto-Optimal Solutions

The following metrics analyze the connectedness and thus, clusters of Pareto-
optimal solutions in the search space [9,22]. For this purpose, we consider a graph
in which Pareto-optimal solutions are vertices. The edges connecting the vertices
are labeled with weights δ, which are the number of moves a neighborhood
operator has to make to reach one vertice from another [22]. This results in a
graph of fully connected Pareto-optimal solutions. Introducing a limit k on δ
and removing the edges whose weights δ are larger than k leads to varying sizes
of connected components (clusters) in the graph. This graph can be analyzed by
metrics to characterize the Pareto-optimal solutions in the search space [12,22].

In our case, the weights δ are determined by the distance metric for test suites
based on the mutation operator of Sapienz (cf. Algorithm 1). We determined
k experimentally to be 300 investigating values of 400, 300, 200, and 100. While
a high value results in a single cluster of Pareto-optimal solutions, a low value
results in a high number of singletons (i.e., clusters with one solution). Thus,
two test suites (vertices) are connected (neighbors) in the graph if they differ in
less than 300 events across their test sequences as computed by Algorithm 1.

•Proportion of Pareto-optimal solutions in clusters (pconnec). This metric
divides the number of vertices (Pareto-optimal solutions) that are members of
clusters (excl. singletons) by the total number of vertices in the graph [22]. A high
pconnec indicates a grouping of the Pareto-optimal solutions in the search space.

64 T. Vogel et al.

As shown in Fig. 1(e), pconnec is relatively low during the first generations
before it increases for all apps. For MunchLife, passwordmanager, and hotdeath,
pconnec reaches 1 meaning that all Pareto-optimal solutions are in clusters,
while it converges around 0.7 and 0.8 for aarddict and k9mail respectively. This
indicates that the Pareto-optimal solutions are grouped in the search space.

•Number of clusters (nconnec). We further analyze in how many areas of
the search space (clusters) the Pareto-optimal solutions are grouped. Thus, ncon-
nec counts the number of clusters in the graph [12,22]. A high (low) nconnec
indicates that the Pareto-optimal solutions are spread in many (few) areas of
the search space.

Figure 1(f) plots nconnec for Sapienz and all apps. The y-axis of each plot
denoting nconnec ranges from 0 to 6. Initially, the Pareto-optimal solutions are
distributed in 2–4 clusters, then grouped in 1 cluster. An exception is k9mail for
which there always exists more than 3 clusters. Except for k9mail, this indicates
that the Pareto-optimal solutions are grouped in one area of the search space.

•Minimum distance k for a connected graph (kconnec). This metric identifies k
so that all Pareto-optimal solutions are members of one cluster [12,22]. Thus,
kconnec quantifies the spread of all Pareto-optimal solutions in the search space.

For Sapienz, Fig. 1(g) plots kconnec (ranging from 0 to 1400) over the genera-
tions. Similarly to the diam metrics (cf. Fig. 1(c)), kconnec decreases, moderately
for hotdeath (from initially ≈700 to ≈600) and k9mail (≈1000→ ≈800), and
drastically for passwordmanager (≈1200→ ≈200), MunchLife (≈1000→ ≈200),
and aarddict (≈600→ ≈100). This indicates that all Pareto-optimal solutions
are getting closer in the search space as the spread of the cluster is decreasing.

•Number of Pareto-optimal solutions in the largest cluster (lconnec). It deter-
mines the size of the largest cluster by the number of members [12], showing how
many Pareto-optimal solutions are in the most dense area of the search space.

Figure 1(h) plots lconnec (ranging from 0 to 50 given the population size of
50) over the generations. lconnec increases after 15–30 generations to 20 (aarddict
and hotdeath) or even 50 (MunchLife) solutions. This indicates that the largest
cluster is indeed large so that many Pareto-optimal solutions are grouped in one
area of the search space. In contrast, lconnec stays always below 10 indicating
smaller largest clusters for passwordmanager and k9mail than for the other apps.

•Proportion of hypervolume covered by the largest cluster (hvconnec). Besides
lconnec, we compute the relative size of the largest cluster in terms of hyper-
volume (hv). Thus, hvconnec is the proportion of the overall hv covered by the
Pareto-optimal solutions in the largest cluster. It quantifies how this cluster in
the search space dominates in the objective space and contributes to the hv .

For Sapienz (cf. Fig. 1(i)), hvconnec varies a lot during the first 10 genera-
tions, then stabilizes at a high level for all apps. For aarddict, MunchLife, and
passwordmanager, the largest clusters covers 100% of the hv since there is only
1 cluster left (cf. nconnec in Fig. 1(f)). For hotdeath, hvconnec is close to 70%
indicating that there is 1 other cluster covering 30% of the hv (cf. nconnec).
For k9mail, hvconnec is around 90% indicating that the other 2–3 clusters

Does Diversity Improve the Test Suite Generation for Mobile Applications? 65

(cf. nconnec) cover only 10% of the hv . This indicates that the largest clus-
ter covers the largest proportion of the hv , and thus contributes most to the
Pareto front.

3.4 Discussion

The results characterizing the fitness landscape of Sapienz reveal insights about
how Sapienz manages the search problem of generating test suites for apps.

Firstly, the development of the proportion of Pareto-optimal solutions (cf.
Fig. 1(a)) and hypervolume (cf. Fig. 1(b)) indicates a stagnation of the search
after 25 generations. The drastically increasing proportion of Pareto-optimal
solutions in some cases may indicate a problem of dominance resistance, i.e.,
the search cannot produce new solutions that dominate the current, poorly per-
forming but locally non-dominated solutions [24]. In other cases, the proportion
remains low, i.e., the search cannot find many non-dominated solutions.

Secondly, the development of the population diameters (cf. Fig. 1(c)) indicate
a decreasing diversity of all solutions during the search. The development of
the relative population diameter (cf. Fig. 1(d)) witnesses this observation and
indicates that the population members are concentrated in the search space [5].
The minimum diameter (cf. Fig. 1(c)) even indicates that the population contains
duplicates of solutions, which reduces the genetic variation in the population.

Thirdly, the development of the proportion of Pareto-optimal solutions in
clusters (cf. Fig. 1(e)) indicates a grouping of these solutions in the search space,
mostly in one cluster (cf. Fig. 1(f)). Another indicator for the decreasing diversity
of the Pareto-optimal solutions is the decreasing minimum distance k required
to form one cluster of all these solutions (cf. Fig. 1(g)). Additionally, the largest
cluster is often indeed large in terms of number of Pareto-optimal solutions
(cf. Fig. 1(h)), and hypervolume covered by these solutions (cf. Fig. 1(i)). Even
if there exist multiple clusters of Pareto-optimal solutions, the largest cluster
still contributes most to the overall hypervolume and thus, to the Pareto front.

In summary, the fitness landscape analysis of Sapienz indicates a stagnation
of the search while the diversity of all solutions decreases in the search space.

4 Sapienzdiv

Given the fitness landscape analysis results, Sapienz suffers from a decreasing
diversity of solutions in the search space over time. It is known that the perfor-
mance of genetic algorithms is influenced by diversity [21,30]. A low diversity
may lead the search to a local optimum that cannot be escaped easily [30]. Thus,
diversity is important to address dominance resistance so that the search can
produce new solutions that dominate poorly performing, locally non-dominated
solutions [24]. Moreover, Shir et al. [26, p. 95] report that promoting diversity
in the search space does not hamper “the convergence to a precise and diverse
Pareto front approximation in the objective space of the original algorithm”.

66 T. Vogel et al.

Therefore, we extended Sapienz to Sapienzdiv by integrating mechanisms
into the search algorithm that promote the diversity of the population in the
search space.3 We developed four mechanisms that extend the Sapienz algo-
rithm at different steps: at the initialization, before and after the variation, and
at the selection. Algorithm 2 shows the extended search algorithm of Sapienzdiv
and highlights the novel mechanisms in blue. We now discuss these mechanisms.

Diverse initial population. As the initial population may effect the results of the
search [13], we assume that a diverse initial population could be a better start for
the exploration. Thus, we extend the generation of the initial population Pinit

to promote diversity. Instead of generating |P | = sizepop solutions, we generate
sizeinit solutions where sizeinit > sizepop (line 7 in Algorithm 2). Then, we
select those sizepop solutions from Pinit that are most distant from each other
using Algorithm 1, to form the first population P (line 8).

Algorithm 2 Overall algorithm of Sapienzdiv

Input: AUT A, crossover probability p, mutation probability q, max. generation gmax,
population size sizepop, offspring size sizeoff , size of the large initial population
sizeinit, diversity threshold divlimit, number of diverse solutions to include ndiv

Output: UI model M , Pareto front PF , test reports C
1: M ← K0; PF ← ∅; C ← ∅; � initialization
2: generation g ← 0;
3: boot up devices D; � prepare devices/emulators that will run the app
4: inject MOTIFCORE into D; � install Sapienz component for hybrid exploration
5: static analysis on A; � for seeding strings to be used for text fields of A
6: instrument and install A; � app under test is instrumented and installed on D
7: initialize population Pinit of size sizeinit; � large initial population
8: P = selectMostDistant(Pinit, sizepop); � select sizepop most distant individuals
9: evaluate P with MOTIFCORE and update (M, PF, C);

10: divinit = calculateDiversity(P); � diversity of the initial population (Eq. 1)
11: while g < gmax do
12: g ← g + 1;
13: divpop = calculateDiversity(P); � diversity of the current population (Eq. 1)
14: if divpop ≤ divlimit × divinit then � check decrease of diversity
15: Q ← generate offspring of size sizeoff; � ≈ generate a population
16: evaluate Q with MOTIFCORE and update (M, PF, C);
17: P = selectMostDistant(P ∪ Q, |P |); � selection based on distance
18: else
19: Q ← wholeTestSuiteV ariation(P, p, q); � create offspring
20: evaluate Q with MOTIFCORE and update (M, PF, C);
21: PQ ← removeDuplicates(P ∪ Q); � duplicate elimination
22: F ← sortNonDominated(PQ, |P |);
23: P ′ ← ∅; � non-dominated individuals
24: for each front F in F do
25: if |P ′| ≥ |P | then break;

26: assignCrowdingDistance(F);
27: for each individual f in F do
28: P ′ ← P ′ ∪ f ;

29: P ′ ← sorted(P ′, ≺c);
30: P ← P ′[0 : (sizepop − ndiv)]; � take best (sizepop − ndiv) solution from P ′

31: Pdiv = selectMostDistant(PQ, ndiv); � select ndiv most distant solutions
32: P = P ∪ Pdiv; � next population

33: return (M, PF, C);

Adaptive diversity con-
trol. This mechanism
dynamically controls
the diversity if the pop-
ulation members are
becoming too close in
the search space rela-
tive to the initial popu-
lation. It further makes
the algorithm adaptive
as it uses feedback of
the search to adapt the
search (cf. [30]).

To quantify the
diversity divpop of pop-
ulation P , we use the
average population
diameter (avgdiam)
defined in Eq. 1. At the
beginning of each gen-
eration, divpop is cal-
culated (line 13) and
compared to the diver-
sity of the initial pop-
ulation divinit (line 14)
calculated once in
line 10. The comparison checks whether divpop has decreased to less than
divlimit × divinit. For example, the condition is satisfied for the given thresh-
old divlimit = 0.4 if divpop has decreased to less than 40% of divinit.

3 Sapienzdiv is available at: https://github.com/thomas-vogel/sapienzdiv-ssbse19.

https://github.com/thomas-vogel/sapienzdiv-ssbse19

Does Diversity Improve the Test Suite Generation for Mobile Applications? 67

In this case, the offspring Q is obtained by generating new solutions using
the original Sapienz method to initialize a population (line 15). The next pop-
ulation is formed by selecting the |P | most distant individuals from the current
population P and offspring Q (line 17). In the other case, the variation operators
(crossover and mutation) of Sapienz are applied to obtain the offspring (line 19)
followed by the selection. Thus, this mechanism promotes diversity by inserting
new individuals to the population, having an effect of restarting the search.

Duplicate elimination. The fitness landscape analysis found duplicated test
suites in the population. Eliminating duplicates is one technique to maintain
diversity and improve search performance [25,30]. Thus, we remove duplicates
after reproduction and before selection in the current population and offspring
(line 21). Duplicated test suites are identified by a distance of 0 computed by
Algorithm 1.

Hybrid selection. To promote diversity in the search space, the selection is
extended by dividing it in two parts: (1) The non-dominated sorting of NSGA-II
is performed as in Sapienz (lines 22–29 in Algorithm 2) to obtain the solutions
P ′ sorted by domination rank and crowding distance. (2) From P ′, the best
(sizepop − ndiv) solutions form the next population P where sizepop is the size
of P and ndiv the configurable number of diverse solutions to be included in P
(line 30). These ndiv diverse solutions Pdiv are selected as the most distant solu-
tions from the current population and offspring PQ (line 31) using the distance
metric of Algorithm 1. Finally, Pdiv is added to the next population P (line 32).

While the NSGA-II sorting considers the diversity of solutions in the objec-
tive space (crowding distance), the selection of Sapienzdiv also considers the
diversity of solutions in the search space, which makes the selection hybrid.

5 Evaluation

We evaluate Sapienzdiv in a head-to-head comparison with Sapienz to investi-
gate the benefits of the diversity-promoting mechanisms. Our evaluation targets
five research questions (RQ) with two empirical studies similarly to [17]:

RQ1. How does the coverage achieved by Sapienzdiv compare to Sapienz?
RQ2. How do the faults found by Sapienzdiv compare to Sapienz?
RQ3. How does Sapienzdiv compare to Sapienz concerning the length of their

fault-revealing test sequences?
RQ4. How does the runtime overhead of Sapienzdiv compare to Sapienz?
RQ5. How does the performance of Sapienzdiv compare to the performance of

Sapienz with inferential statistical testing?

68 T. Vogel et al.

5.1 Experimental Setup

Weconduct two empirical studies, Study 1 to answerRQ1–4, andStudy 2 to answer
RQ5. The execution of both studies was distributed on eight servers4 while each
server runs one approach to test one app at a time using 10 Android emulators
(Android KitKat version, API 19). We configured Sapienz and Sapienzdiv as in
the experiment for the fitness landscape analysis (cf. Sect. 3.2) and in [17]. The only
difference is that we test each app for 10 generations in contrast to Mao et al. [17]
who test each app for one hour, since we were not in full control of the servers run-
ning in the cloud. However, we still report the execution times of both approaches
(RQ4). Moreover, we configured the novel parameters of Sapienzdiv as follows:
sizeinit = 100, divlimit = 0.5, and ndiv = 15. For Study 1 we perform one run
to test each app over 10 generations by each approach. For Study 2 we perform 20
repetitions of such runs for each app and approach.

5.2 Results

Study 1. In this study we use 66 of the 68 F-Droid benchmark apps5 provided by
Choudhary et al. [6] and used to evaluate Sapienz [17]. The results on each app
are shown in Table 1 where S refers to Sapienz, Sd to Sapienzdiv, Coverage
to the final statement coverage achieved, #Crashes to the number of revealed
unique crashes, Length to the average length of the minimal fault-revealing test
sequences (or ‘–’ if no fault has been found), and Time (min) to the execution
time in minutes of each approach to test the app over 10 generations.

RQ1. Sapienz achieves a higher final coverage for 15 apps, Sapienzdiv for
24 apps, and both achieve the same coverage for 27 apps. Figure 2 shows that a
similar coverage is achieved by both approaches on the 66 apps, in average 45.05
by Sapienz and 45.67 by Sapienzdiv, providing initial evidence that Sapienzdiv
and Sapienz perform similarly with respect to coverage.

RQ2. To report about the found faults, we count the total crashes, out of
which we also identify the unique crashes (i.e., their stack traces are different
from the traces of the other crashes of the app). Moreover, we exclude faults
caused by the Android system (e.g., native crashes) and test harness (e.g., code
instrumentation).

As shown in Table 2, Sapienzdiv revealed more total (6941 vs 5974) and
unique (141 vs 119) crashes, and found faults in more apps (46 vs 43) than
Sapienz. Moreover, it found 51 unique crashes undetected by Sapienz, Sapienz
found 29 unique crashes undetected by Sapienzdiv, and both found the same
90 unique crashes. The results for the 66 apps provide initial evidence that
Sapienzdiv can outperform Sapienz in revealing crashes.

4 For each server: 2×Intel(R) Xeon(R) CPU E5-2620 @ 2.00 GHz, with 64 GB RAM.
5 We exclude aGrep and frozenbubble as Sapienz/Sapienzdiv cannot start these apps.

Does Diversity Improve the Test Suite Generation for Mobile Applications? 69

Table 1. Results on the 66 benchmark apps.

Subject Coverage #Crashes Length Time (min)
S Sd S Sd S Sd S Sd

a2dp 33 32 4 3 315 250 95 117
aarddict 14 14 1 1 103 454 69 74
aLogCat 66 67 0 2 – 232 125 140
Amazed 69 69 2 1 193 69 67 78
AnyCut 64 64 2 0 244 – 80 105
baterrydog 65 65 1 1 26 155 82 91
swiftp 13 13 0 0 – – 88 105
Book-Catalogue 19 24 2 4 273 223 86 98
bites 33 35 1 1 76 39 78 91
battery 79 79 9 10 251 230 109 122
addi 19 18 1 1 39 31 87 133
alarmclock 62 62 6 9 133 279 143 163
manpages 69 69 0 0 – – 81 92
mileage 34 33 5 6 252 286 100 114
autoanswer 16 16 0 0 – – 78 90
hndroid 15 16 1 1 27 53 97 111
multismssender 57 54 0 0 – – 88 102
worldclock 90 91 2 1 266 169 109 132
Nectroid 54 54 1 1 261 243 112 136
acal 21 20 7 7 222 187 140 160
jamendo 32 38 8 5 248 266 91 105
aka 45 44 8 9 234 226 140 171
yahtzee 47 47 1 1 356 215 79 86
aagtl 17 17 5 4 170 123 84 111
CountdownTimer 61 62 0 0 – – 108 143
sanity 13 13 2 3 236 192 154 149
dalvik-explorer 69 69 2 4 148 272 143 162
Mirrored 42 44 10 9 114 179 219 245
dialer2 41 41 2 0 223 – 123 129
DivideAndConquer 79 81 3 3 75 55 90 94
fileexplorer 50 50 0 0 – – 142 153
gestures 52 52 0 0 – – 62 69
hotdeath 61 67 2 2 312 360 80 95
adsdroid 38 34 2 4 210 211 107 161
myLock 31 30 0 0 – – 87 101
lockpatterngenerator 76 76 0 0 – – 80 94
mnv 29 32 5 6 222 315 118 131
k9mail 5 6 1 2 445 412 93 113
LolcatBuilder 29 28 0 0 – – 88 101
MunchLife 67 67 0 0 – – 72 80
MyExpenses 45 41 2 3 359 309 115 133
LNM 57 58 1 1 292 209 104 120
netcounter 59 61 0 1 – 256 95 106
bomber 72 71 0 0 – – 63 72
fantastischmemo 25 28 3 6 325 275 86 96
blokish 49 62 2 2 197 204 75 86
zooborns 36 36 0 0 – – 86 95
importcontacts 41 41 0 1 – 462 94 106
wikipedia 26 31 1 3 95 373 69 88
PasswordMaker 50 49 1 2 86 216 103 112
passwordmanager 15 13 1 1 185 354 121 136
Photostream 30 31 2 3 195 161 143 192
QuickSettings 44 41 0 1 – 307 96 130
RandomMusicPlayer 58 59 0 0 – – 97 113
Ringdroid 40 23 2 4 126 208 280 188
soundboard 53 53 0 0 – – 61 67
SpriteMethodTest 59 73 0 0 – – 63 74
SpriteText 60 60 1 2 116 448 93 101
SyncMyPix 19 19 0 2 – 402 97 143
tippy 70 72 1 1 384 459 84 105
tomdroid 50 52 1 1 152 90 93 111
Translate 48 48 0 0 – – 82 99
Triangle 79 79 1 0 235 – 93 89
weight-chart 47 49 3 4 171 283 88 109
whohasmystuff 60 66 0 1 – 466 118 139
Wordpress 5 5 1 1 244 223 104 224

RQ3. Considering the
minimal fault-revealing test
sequences (i.e., the short-
est of all sequences causing
the same crash), their mean
length is 244 for Sapienzdiv

and 209 for Sapienz on the
66 apps (cf. Table 2). This
provides initial evidence that
Sapienzdiv produces longer
fault-revealing sequences
than Sapienz.

RQ4. Considering the
mean execution time of test-
ing one app over 10 gener-
ation, Sapienzdiv takes 118
and Sapienz 101min for
the 66 apps. Figure 3 shows
that the diversity-promoting
mechanisms of Sapienzdiv

cause a noticeable runtime
overhead compared to
Sapienz. This provides ini-
tial evidence about the cost of
promoting diversity at which
an improved fault detection
can be obtained.

Study 2. In this study we
use the same 10 F-Droid apps
as in the statistical analysis
in [17]. Assuming no Gaussian
distribution of the results,
we use the Kruskal-Wallis
test to assess the statisti-
cal significance (p<0.05) and
the Vargha-Delaney effect size
Â12 to characterize small,
medium, and large differ-
ences between Sapienzdiv

and Sapienz (Â12 > 0.56,
0.64, and 0.71 respectively).

RQ5. The results are pre-
sented by boxplots in Fig. 4
for each of the 10 apps and
concern: coverage, #crashes,

70 T. Vogel et al.

Fig. 2. Coverage.

66 benchmark apps

Sapienz Sapienzdiv

App Crashed 43 46

Total Crashes 5974 6941

Unique Crashes 119 141

Disjoint Crashes 29 51

Intersecting Crashes 90 90

Mean sequence length 209 244

Table 2. Crashes and seq. length. Fig. 3. Time (min).

sequence length, and time (cf. Study 1). The Â12 effect size for these concerns are
shown in Table 3, which compares Sapienzdiv and Sapienz (Sd-S) and empha-
sizes statistically significant results in bold. Sapienz significantly outperforms
Sapienzdiv with large effect size on all apps for execution time. The remain-
ing results are inconclusive. Sapienzdiv significantly outperforms Sapienz with
large effect size on only 3/10 apps for coverage, 2/10 for #crashes, and almost
1/10 for length. The remaining results are not statistically significant or do not
indicate large differences.

Fig. 4. Performance comparison on 10 apps for Sapienzdiv (Sd) and Sapienz (S).

Does Diversity Improve the Test Suite Generation for Mobile Applications? 71

Table 3. Vargha-Delaney effect size (statistically significant results in bold).

App Ver. Coverage Sd-S #Crashes Sd-S Length Sd-S Time Sd-S

BabyCare 1.5 0.66 0.46 0.52 0.15
Arity 1.27 0.67 0.49 0.54 0.05
JustSit 0.3.3 0.75 0.66 0.70 0.00
Hydrate 1.5 0.52 0.52 0.64 0.00
FillUp 1.7.2 0.77 0.47 0.33 0.00
Kanji 1.0 0.66 0.56 0.38 0.09
Droidsat 2.52 0.55 0.60 0.26 0.00
BookWorm 1.0.18 0.58 0.66 0.36 0.05
Maniana 1.26 0.66 0.82 0.49 0.00
L9Droid 0.6 0.75 0.81 0.32 0.11

5.3 Discussion

Study 1 provided initial evidence that Sapienzdiv can find more faults than
Sapienz while achieving a similar coverage but using longer sequences. Espe-
cially, the fault revelation capabilities of Sapienzdiv seemed promising, however,
we could not confirm them by the statistical analysis in Study 2. The results of
Study 2 are inconclusive in differentiating both approaches by their performance.
Potentially, the diversity promotion of Sapienzdiv does not results in the desired
effect in the first 10 generations we considered in the studies. In contrast, it might
show a stronger effect at later stages since we observed in the fitness landscape
analysis that the search of Sapienz stagnates after 25 generations.

6 Threats to Validity

Internal validity. A threat to the internal validity is a bias in the selection of
the apps we took from [6,17] although the 10 apps for Study 2 were selected by
an “unbiased random sampling” [17, p. 103]. We further use the default configu-
ration of Sapienz and Sapienzdiv without tuning the parameters to reduce the
threat of overfitting to the given apps. Finally, the correctness of the diversity-
promoting mechanisms is a threat that we addressed by computing the fitness
landscape analysis metrics with Sapienzdiv to confirm the improved diversity.

External validity. As we used 5 (for analyzing the fitness landscape) and 76
Android apps (for evaluating Sapienzdiv) out of over 2.500 apps on F-Droid and
millions on Google Play, we cannot generalize our findings although we rely on
the well-accepted “68 F-Droid benchmark apps” [6].

7 Related Work

Related work exists in two main areas: approaches on test case generation for
apps, and approaches on diversity in search-based software testing (SBST).

72 T. Vogel et al.

Test case generation for apps. Such approaches use random, model-based, or
systematic exploration strategies for the generation. Random strategies imple-
ment UI-guided test input generators where events on the GUI are selected
randomly [3]. Dynodroid [14] extends the random selection using weights and
frequencies of events. Model-based strategies such as PUMA [8], DroidBot [11],
MobiGUITAR [2], and Stoat [29] apply model-based testing to apps. Systematic
exploration strategies range from full-scale symbolic execution [18] to evolution-
ary algorithms [15,17]. All of these approaches do not explicitly manage diversity,
except of Stoat [29] encoding diversity of sequences into the objective function.

Diversity in SBST. Diversity of solutions has been researched for test
case selection and generation. For the former, promoting diversity can signif-
icantly improve the performance of state-of-the-art multi-objective genetic algo-
rithms [21]. For the latter, promoting diversity results in increased lengths of
tests without improved coverage [1], matching our observation. Both approaches
witness that diversity promotion is crucial and its realization “requires some
care” [24, p. 782].

8 Conclusions and Future Work

In this paper, we reported on our descriptive study analyzing the fitness land-
scape of Sapienz indicating a lack of diversity during the search. Therefore,
we proposed Sapienzdiv that integrates four mechanisms to promote diversity.
The results of the first empirical study on the 68 F-Droid benchmark apps were
promising for Sapienzdiv but they could not be confirmed statistically by the
inconclusive results of the second study with 10 further apps. As future work, we
plan to extend the evaluation to more generations to see the effect of Sapienzdiv
when the search of Sapienz stagnates. Moreover, we plan to identify diversity-
promoting mechanisms that quickly yield benefits in the first few generations.

Acknowledgments. This work has been developed in the FLASH project (GR
3634/6-1) funded by the German Science Foundation (DFG) and has been partially
supported by the 2018 Facebook Testing and Verification research award.

References

1. Albunian, N.M.: Diversity in search-based unit test suite generation. In: Menzies,
T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 183–189. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66299-2_17

2. Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.: Mobiguitar:
automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59 (2015)

3. Android: Ui/application exerciser monkey (2017)
4. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical inves-

tigation in search-based software engineering. Emp. Softw. Eng. 18(3), 594–623
(2013)

5. Bachelet, V.: Métaheuristiques Parallèles Hybrides: Application au Problème
D’affectation Quadratique. Ph.D. thesis, Université Lille-I (1999)

https://doi.org/10.1007/978-3-319-66299-2_17

Does Diversity Improve the Test Suite Generation for Mobile Applications? 73

6. Choudhary, S.R., Gorla, A., Orso, A.: Automated test input generation for android:
are we there yet? In: Proceedings of ASE 2015, pp. 429–440. IEEE (2015)

7. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

8. Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R.: Puma: programmable
ui-automation for large-scale dynamic analysis of mobile apps. In: Proceedings of
MobiSys 2014, pp. 204–217. ACM (2014)

9. Isermann, H.: The enumeration of the set of all efficient solutions for a linear
multiple objective program. Oper. Res. Q. 28(3), 711–725 (1977)

10. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. 52(2), 26:1–26:38 (2019)

11. Li, Y., Yang, Z., Guo, Y., Chen, X.: Droidbot: a lightweight ui-guided test input
generator for android. In: Proceedings of ICSE 2017 Companion, pp. 23–26. IEEE
(2017)

12. Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: What makes an instance difficult
for black-box 0–1 evolutionary multiobjective optimizers? In: Legrand, P., Corsini,
M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013.
LNCS, vol. 8752, pp. 3–15. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11683-9_1

13. Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic
algorithm for continuous optimization problems. J. Global Optim. 37(3), 405–436
(2006)

14. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system for
android apps. In: Proceedings of ESEC/FSE 2013. pp. 599–609. ACM (2013)

15. Mahmood, R., Mirzaei, N., Malek, S.: Evodroid: segmented evolutionary testing of
android apps. In: Proceedings of FSE 2014. pp. 599–609. ACM (2014)

16. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

17. Mao, K., Harman, M., Jia, Y.: Sapienz: multi-objective automated testing for
android applications. In: Proceedings of ISSTA 2016. pp. 94–105. ACM (2016)

18. Mirzaei, N., Malek, S., Păsăreanu, C.S., Esfahani, N., Mahmood, R.: Testing
android apps through symbolic execution. Softw. Eng. Notes 37(6), 1–5 (2012)

19. Moser, I., Gheorghita, M., Aleti, A.: Identifying features of fitness landscapes and
relating them to problem difficulty. Evol. Comp. 25(3), 407–437 (2017)

20. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle
swarms using swarm diversity. In: Proceedings of CEC 2008. pp. 1128–1134. IEEE
(2008)

21. Panichella, A., Oliveto, R., Penta, M.D., Lucia, A.D.: Improving multi-objective
test case selection by injecting diversity in genetic algorithms. IEEE Trans. Soft-
ware Eng. 41(4), 358–383 (2015)

22. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective
combinatorial optimization: an experimental analysis. Multiobjective Program-
ming and Goal Programming. Lecture Notes in Economics and Mathematical Sys-
tems, vol. 618, pp. 69–77. Springer, Berlin (2009). https://doi.org/10.1007/978-3-
540-85646-7_7

23. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
Recent Advances in Intelligent Engineering. Studies in Computational Intelligence,
vol. 378, pp. 161–191. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
23229-9_8

24. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many con-
flicting objectives. IEEE Trans. Evolut. Comp. 11(6), 770–784 (2007)

https://doi.org/10.1007/978-3-319-11683-9_1
https://doi.org/10.1007/978-3-319-11683-9_1
https://doi.org/10.1007/978-3-540-85646-7_7
https://doi.org/10.1007/978-3-540-85646-7_7
https://doi.org/10.1007/978-3-642-23229-9_8
https://doi.org/10.1007/978-3-642-23229-9_8

74 T. Vogel et al.

25. Ronald, S.: Duplicate genotypes in a genetic algorithm. In: Proceedings of ICEC
1998. pp. 793–798. IEEE (1998)

26. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space
diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M.,
Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–
109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_12

27. Smith, T., Husbands, P., Layzell, P.J., O’Shea, M.: Fitness landscapes and evolv-
ability. Evol. Comput. 10(1), 1–34 (2002)

28. Stadler, P.F.: Fitness landscapes. Biological Evolution and Statistical Physics. Lec-
ture Notes in Physics, vol. 585, pp. 183–204. Springer, Berlin (2002). https://doi.
org/10.1007/3-540-45692-9_10

29. Su, T., Meng, G., Chen, Y., Wu, K., et al.: Guided, stochastic model-based gui
testing of android apps. In: Proceedings of ESEC/FSE 2017. pp. 245–256. ACM
(2017)

30. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

31. Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M.: A practical guide to select quality
indicators for assessing pareto-based search algorithms in search-based software
engineering. In: Proceedings of ICSE 2016. pp. 631–642. ACM (2016)

https://doi.org/10.1007/978-3-642-01020-0_12
https://doi.org/10.1007/3-540-45692-9_10
https://doi.org/10.1007/3-540-45692-9_10

PRICE: Detection of Performance
Regression Introducing Code Changes
Using Static and Dynamic Metrics

Deema Alshoaibi(B), Kevin Hannigan, Hiten Gupta,
and Mohamed Wiem Mkaouer(B)

Rochester Institute of Technology, New York, USA
{da3352,kph1958,hg1928,mwmvse}@rit.edu

Abstract. Performance regression testing is highly expensive as it
delays system development when optimally conducted after each code
change. Therefore, it is important to prioritize the schedule of perfor-
mance tests by executing them when a newly committed change is most
likely to introduce performance regression. This paper introduces a novel
formulation of the detection of performance regression introducing code
changes as an optimization problem. Static and dynamic metrics are
combined to generate a detection rule, which is being optimized in terms
of its ability to flag problematic code changes, and avoid false positives.
We evaluated our approach using performance issues, extracted from
the Git project. Results show the effectiveness of our approach in accu-
rately detecting performance regression introducing code changes com-
pared with state-of-the-art techniques. Moreover, our suggested detection
rules were found to be robust to the software changes over time, which
reduces the overhead of updating them frequently.

Keywords: Performance regression · Multi-objective optimization ·
Software testing · Software quality

1 Introduction

Performance is critical to software quality. Being one of the practices of quality
assurance, performance regression testing monitors the software’s overall per-
formance during its evolution to ensure least to negligible degradation of time.
It mainly detects whether any committed changes may have introduced perfor-
mance regressions.

Ideally, in order to prevent any code change from negatively impacting the
software performance, performance tests, also known as benchmarks, should be
executed along with any committed change, as a sanity check. However, in a real-
world setting, performance tests are expensive, and with the growth in the num-
ber of committed changes, software testers are constantly challenged to find the
right trade-off between optimally performance testing newly introduced changes,

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 75–88, 2019.
https://doi.org/10.1007/978-3-030-27455-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_6

76 D. Alshoaibi et al.

and increasing the development overall productivity [7]. Nevertheless, executing
Performance testing after each commit is an expensive and long process that
has overhead of resources and delays programmers from further development
until the results of testing have been gathered [8]. As a result, performance
tests are not conducted after each change on the code because they consume
resources [7]. This practice challenges the early finding the performance regres-
sion changes. For example, if performance tests are postponed by the end of
the Sprint, then developers need to commit their code throughout the cycle and
hope that no performance test would fail by the end, otherwise, they have to
rewind all previously committed changes to debug them. In this context, various
research has been analyzing performance regression inducing code changes to
characterize them and allow their early detection to support the prioritization
of performance regression i.e., for upcoming changes to commit, if any of them
exhibits characteristics that are similar to these known to have induced perfor-
mance regression, then this may be a trigger for software testers to schedule
their performance tests.

To cope with this expensive process, recent studies focus on mining per-
formance regression testing repositories to either support performance analysis
[2,6,10], or improve regression strategies [8,9], or to characterize code changes
that have introduced regression [3,11]. Characterizing performance regression
introducing code changes is complex since it goes beyond the static design of
the code e.g., coupling and complexity, and it is reflected by the dynamic nature
of the change e.g., excessive calls to external APIs, besides being specific to the
projects development practices, and programming languages [12].

This paper defines detecting Performance Regression Introducing Code
Changes (PRICE) as an optimization problem. Initially, our approach takes
as input a set of commits that are known to be problematic, then analyzes
them using static and dynamic metrics, previously used an existing study [11].
Afterward, these commits, with their corresponding metric values, are used as
a training set for the Non dominated sorting genetic algorithm (NSGA-II) [5],
which evolves the given metrics to generate a detection rule that maximizes
the detection of problematic code changes. Our experiments were carried out
using Git as the system under test. Our findings show the ability of the evolu-
tionary algorithm to generate promising results, in comparison with state-of-art
approaches.

2 Methodology

In this section, we give a high-level overview of our approach’s workflow, then we
explain how we designed NSGA-II for detecting performance regression changes.

2.1 Approach Overview

The goal of our approach is to find the best rule that detects PRICE. The general
structure is sketched in Fig. 1.

PRICE: Detection of Performance Regression Introducing Code Changes 77

Fig. 1. Approach overview.

Our approach is composed of three phases. Collection phase uses history
performance tests data collected from previous commits to calculate metrics.
Metrics represent collected data of each commit to the respect of the previous
commit. Table 1 lists static and dynamic metrics used in this work. Metrics 1,2,6
are static where the rest are both static and dynamic. The tool used to collect
static metrics is Lizard code complexity analyzer. Static data is afterward fed
into dynamic analysis process to run benchmarks and calculate dynamic metrics.

The second phase after collecting metrics is generating a detection rule. Find-
ing this rule is a multi-objective optimization problem. A Detection rule should
have the highest detection of problematic commits while minimizing the detec-
tion of benign commits. The search space contains solutions with different com-
bination of metrics and a value for each metric. In this paper, we considered
seven metrics from a previous study [11], which we will also compare our app-
roach with. Once a detection rule is generated, developers can apply it on each
commit to detect regression and decide whether to run benchmark testing or
not. In case benchmark testing is applied on a commit, dynamic metrics of that
commit is stored on the database to help in updating detection rule in the future
when rule is no longer providing good predictions.

2.2 Data Collection

We have selected the Git project to be the system under test of our study. We
have selected Git for multiple reasons, including it being open-source, containing
a complete set of benchmarks, easy to compile and run (mandatory for our
dynamic analysis), besides our familiarity with its commands. We collected data

78 D. Alshoaibi et al.

Table 1. Metrics descriptions and rationales.

Description Rationale

1 Number of deleted functions Deleted functions indicate refactoring,
which may lead to performance changes

2 Number of new functions Added functions indicate new functionality,
which may lead to performance changes

3 Number of deleted Functions
reached by the benchmark

Deleting a function which was part of the
benchmark execution could lead to a
performance change

4 The percent overhead of the
top most called function that
was changed

Altering a function that takes up a large
portion of the processing time of a
benchmark has a high risk of causing a
performance regression because it is such a
large portion of the test

5 The percent overhead of the
top most called function that
was changed by more than
10% of its static instruction
length

Similar to metric 4, however this takes into
account that the change affects a reasonable
portion of the function in question. Bigger
changes may mean higher risk

6 The highest percent static
function length change

Large changes to functions are more likely
to cause regressions than small ones

7 The highest percent static
function length change that
is called by the benchmark

The same as for metric 7, but here we
guarantee that the functions are actually
called by the benchmark in question

for 8798 commits originally. Those commits were chosen by executing the ‘git
rev-parse’ command from the master branch at the time and going back to the
first commit we could find which had performance tests. Across that range of
commits, there were 202 commits which, for technical reasons, were untestable,
so we removed them. Thus in total we considered 8596 commits.

Afterward, for each commit, we run all performance tests, and this is for two
reasons: the first one, we need to see whether any test would fail, and if so, we
tag the commit under test as problematic. The second reason is to dynamically
profile each code change and calculate some of metrics at runtime. To avoid
the flakiness of some tests and the stochastic nature of the code, we test each
commit 5 times. Running all of the performance tests for a single commit takes
a significant amount of time (hence the need for this study), so we parallelized
the task across many machines. The results of the Git performance tests are
reported in wall time, which can be impacted by using machines with different
clock speeds, RAM, etc., so to mitigate this we used identical Virtual machines
in a proprietary cloud1. The dynamic information was collected using Linux perf
[4], as for the static information, the list of functions and their location in the

1 https://www.digitalocean.com.

https://www.digitalocean.com

PRICE: Detection of Performance Regression Introducing Code Changes 79

source code, was collected by using the python lizard2 tool. While intended for
calculating cyclomatic complexity, it also provides list of functions identified in
all of the source files in the repository for that commit. We provide the dataset
and tools we used for reproducibility and extension purposes3.

2.3 Solution Representation

Our solution is encoded as a tree-based rule. The leaf nodes are termed ‘ter-
minals’ and internal nodes as ‘primitives’. Primitives are logical operators that
compares metric value with the threshold assigned to it respectively. Figure 2
illustrates a solution tree that combines five metrics and their threshold val-
ues by logical operators AND and OR. Solution tree is strictly typed to assure
structure is not broken during the evolution.

2.4 Solution Evaluation

Generated rules are evaluated by two objectives, which are hit and dismiss rates.
This subsection defines these objectives and shows how they are conflicted.

Fig. 2. Solution representation as a tree-based rule.

Hit Rate as an Objective. The Hit rate indicates the number of correctly
detected commits to total number of commits encountering regression. In formula
1 Hp is predicted problematic commits while H is actual regression commits.
Values of hit rate are between 0.0 and 1.0. Hit rate of 1 means that all commits
encounter regression are detected. Hit rate can also be 1 if all commits considered
to be problematic which is not proper to this type of problems.

|Hp ∩ H|/|H| (1)

2 http://terryyin.github.io/lizard/.
3 https://smilevo.github.io/price/.

http://terryyin.github.io/lizard/
https://smilevo.github.io/price/

80 D. Alshoaibi et al.

Dismiss Rate as an Objective. The Dismiss rate is the number of commits
classified not to be introducing regression to the total actual number of stable,
not problematic, commits. In formula 2 Dp is predicted stable commits while D
is actual stable commits. Dismiss rate values are between 0.0 and 1.0. Dismiss
rate of value 1 indicates that all non-problematic commits are correctly classified
as not introducing regression. Dismiss rate of 1 might indicate that all commits
are not problematic. It cannot be used individually as hit rate.

|Dp ∩ D|/|D| (2)

An optimal solution would score a hit and dismiss rate of 1. Since hit and
dismiss rates are conflicting, when optimizing one objective, we automatically
degrade the other as shown in Fig. 3. Hence, we are searching for near optimal
solutions that should deliver a good trade-off between these objectives that are
meant to be maximized.

2.5 Solution Variation

The multi-objective evolutionary algorithm used to traverse the search space and
find the best solution is Non-dominated Sorting Genetic Algorithm (NSGA-II)
[5]. Population is ranked based on Pareto dominance before selection to insure
no objective is dominating during the evolution. Crossover operator for NSGA-
II is Simulated Binary Crossover (SBX). Simulated Binary Crossover simulates
single point crossover with using probability density function. Crossover point is
chosen randomly between 1 and the length of the chromosome [1]. In chromosome
represented as tree, rule in our case, crossover is swapping tree sub-branches.
New trees will not necessarily be the same size as their parents. It depends on
crossover point position. If crossover point located close to terminal nodes, one
off spring might be a single metric where the other is an extended tree that
might have duplicated metrics with different threshold values.

Mutation operator in NSGA-II is Polynomial Mutation. This operator uses
polynomial probability distribution to select node to be mutated. Mutation oper-
ator depends on node type to insure producing a logical rule. To illustrate, prim-
itive nodes connecting terminal nodes should always be a comparison operator,
which are greater than or less than. As a result it will be mutated to different
operator than the original.

Choice of the Final Solution. The multi-objective nature of the algorithm
allows the choice of multiple Pareto-equivalent solutions that may differ in opti-
mizing one objective in comparison with the other. So, software testers can
choose either to prioritize the hit rate over the dismiss rate if the cost of running
benchmarks is high or the allowed testing time period is relatively short; or they
can favor the dismiss rate if they are afraid of missing any code change intro-
ducing a performance regression, at the expense of running extra test cases. For
our experiments, we have chosen the solution with the highest F-Measure across
various runs.

PRICE: Detection of Performance Regression Introducing Code Changes 81

Fig. 3. Hit and dismiss are conflicted objectives.

3 Experimental Setting

3.1 Research Questions

To evaluate the relevance of generated rules in detecting commits introducing
regression, we defined the following research questions:

RQ1. To what extent does NSGA-II provide better regression
detection compared with other techniques?

To address this research question, we applied the 10-fold cross validation. We
initially sort the commits chronologically, then we split them into 10 equal folds
where fold 1 contains the earliest (oldest) commits subset, all the way to fold 10,
which contains the latest commits subset. The validation is performed using 10
iterations. In each iteration, one fold is used for testing and the rest is used for
training. Note that Folds do not necessarily contain same number of problematic
commits, but since the majority of folds are used for training, the training set
tends to contain significantly more problematic commits, than the testing set,
which does simulate real world scenarios. Results are compared with k-Nearest
Neighbors algorithm (KNN) and a state-of-the-art approach called Perphecy [11].
We choose KNN to see the results of considering the problem of performance
regression as a non-parametric binary classification, where metrics represent the
feature space. We also compare with Perphecy since it is available online and
known to provide good results. Hit and dismiss rates and F-measurement to
compare the performance of the three methods.

RQ2. Do the generated rules continue to perform well with the
evolution of the software?

This research question challenges the stability of generated rules over the
evolution of the software. As software evolves, with committing a significant
amount of code changes, the software may undergo several structural and func-
tional changes, which may change the characteristics that have been previously
captured by the metrics. Which may consequently hinder the accuracy of the
performance detection. To simulate such scenario, similarly to RQ1, we again
sort the commits chronologically, then we split them into 10 equal folds, where

82 D. Alshoaibi et al.

the first fold contains the oldest commits, all the way to the last fold which
contains the newest commits. Optimally, we aim in splitting the commits that
are co-located in time into a separate fold. By generating the rule only using the
oldest fold, and then testing it on the remaining folds, we intend to see whether
our rule may get obsolete over time i.e., the further is the fold, the harder should
be the rule to detect performance issues.

3.2 Parameter Tuning

For NSGA-II, Different values have been used for the population size and the
maximum number of evaluations, generating a variety of configurations. We
use the trial and error and choose the configuration providing better results in
terms of hit rate and dismiss rate. We used the following parameters: Population
size = 50, iterations = 10000, Selection = Binary tournament selection without
replacement, Simulated Binary Crossover probability = 0.8, Polynomial Mutation
probability = 0.5.

Perphecy combines metrics to find the best rule that better detect perfor-
mance issues in a deterministic way. Before trying all possible metrics combi-
nations to find the best rule, Perphecy determines each metric threshold value
individually. The combination with highest hit and dismiss rate is selected. The
authors of Perphecy applied this process for each project separately, as every
project has its own characteristics and so the nominated rule differs from project
to another. In this context, we did not reuse any existing rules from the previ-
ous study and we had to generate a rule for each subset of commits, from Git
project.

For KNN, we use the gap statistic method to estimate the optimal number
of clusters K. Gap statistic is chosen since it provides a statistical procedure
to model traditional elbow and silhouette methods. To ensure fairness when
compared to NSGA-II and Perphecy, we re-estimate K for each set of input
commits.

Since our experiments contain a fold cross validation, we tune the algorithms
together once, for the first fold. To ensure fairness, we regenerate a rule repre-
senting each algorithm for every training fold, as we will detail later.

4 Results

This section will show results of experiments conducted to answer research
questions.

4.1 RQ1. To What Extent Does NSGA-II Provide Better
Regression Detection Compared with Other Techniques?

In order to compare performance of NSGA-II with KNN and Perphecy, we
plotted hit rate, dismiss rate and F-measure of each technique. In this cross-
validation, each fold has been tested with a rule, which was created using the

PRICE: Detection of Performance Regression Introducing Code Changes 83

remaining folds as the training set. In Fig. 4, the hit rate represents correctly
classified commits while the dismiss rate represents correctly avoided commits.
According to Fig. 4 results, KNN’s hit rate is very low, and only reached 10%
at most, so it highly missclassifies commits with regression in contrast with a
more successful dismiss rate where more than 95% of benign commits have been
correctly classified. This is due to the imbalance between the two class represen-
tations: commits encounter regression are only about 4% of the overall commits.
Although, this imbalanced setting represents a challenge for machine learning
algorithms, it mimics naturally the real setting for typical software projects,
where performance regression tends to be less frequent but critical to software
health [8].

Fig. 4. Hit Rate, and Dismiss Rate of KNN, Perphecy and NSGA-II, on 10-folds.

Perphecy also combines metrics to find the best rule that better detect per-
formance issues in a deterministic way. Before trying all possible metrics combi-
nations to find the best rule, Perphecy determines each metric threshold value
individually. The combination with highest hit and dismiss rate is selected. The
authors of Perphecy applied this process for each project separately, as every
project has its own characteristics and so the nominated rule differs from project
to another. In this context we applied Perphecy approach in Git project to com-
pare it with our results.

This approach has provided significantly better results than KNN since its
hit rate, across folds, varies between 39%, and 72%, as for the dismiss rate, it
ranges between 42% and 58%. Perphecy is independent of the naive aggregation
of all values, and so it clearly outperforms KNN, since its F-Measure goes up to
68% while KNN achieved an F-Measure of 17% at best.

NSGA-II’s performance was competitive to Perphecy, since its hit rate is
between 35%, and 69%, which is slightly below Perphecy’s hit rate, and for
the dismiss rate, it ranges between 48% and 79%, which was slightly above Per-
phecy’s dismiss rate. As for the F-Measure, as shown in Fig. 5, NSGA-II ’s values
are between 47%, and 68%, and it also outperforms Perphecy, in all folds, expect
for the second one. The main difference between NSGA-II and Perphecy is the
ability of the latter to change the threshold values while composing the decision

84 D. Alshoaibi et al.

Fig. 5. F-measure of KNN, Perphecy and NSGA-II, on 10-folds.

Fig. 6. An example of performance regression introducing code change. (Color figure
online)

tree, besides the global exploration of NSGA-II for many possible competing
rules during its evolutionary process.

To show a concrete example of one4 of the problematic commits, Fig. 6 shows
its contrast with previous commits. As shown in Fig. 6, the deleted lines of code
(in red) is the conventional operation of assigning a value to a particular index
of an array which is a least expensive way of adding values in an array. This
operation was replaced, as shown in the added lines (in green), by adding the
values through a function call and passing the value to be added as an argument.
If scheduling regression tests was using a straightforward heuristic like Lines
Of Code (LOC), the above-shown code will not trigger any flags as there is
no addition of new lines of code. Whereas, the newly introduced statements
are expensive, since for each function call, it will traverse a data structure and
append the new value. This issue was captured by a rule depicted in Fig. 7 (for
visibility we show a subset of the tree).

4 https://bit.ly/2I4khC3d491cf.

https://bit.ly/2I4khC3d491cf

PRICE: Detection of Performance Regression Introducing Code Changes 85

Fig. 7. Subset of a solution extracted from the Pareto front.

4.2 RQ2 Do the Generated Rules Continue to Perform Well with
the Evolution of the Software?

To evaluate generated rules stability with the evolution of the software, we used
the earliest commits subset for training and the rest nine subsets for testing.
Figure 8 contains the boxplot of F-Measure values of the Pareto front solutions
during 31 simulation runs. As shown in Fig. 8, no significant difference on median
and the 75th percentile presented on f-measure values. This indicates that gener-
ated rules were able to offer regression prediction up to the forth fold as good as
the second fold. For the remaining folds, we can observe a slight decrease from
the seventh until the tenth fold. Characteristics of code changes introducing
regression may change with the evolution of the code. This explains the regres-
sion in the prediction. Although our rules have shown their ability to maintain
a good performance across various code changes, it is recommended to update
the prediction regularly.

5 Threats to Validity

Internal Validity. We report on the uncontrolled factors that interfere with
causes and effects, and may impact the experimental results. Commits not nec-
essarily sequential: The git project itself uses git as source control, and employs
a branching strategy with merges. If the project history branched and then
merged, when you view the history linearly you might have two commits next
to each other which technically were not developed sequentially when originally
committed by the developer. However, since our approach is not dependent to
the program’s logic, it is a problem to compare out of order commits as long as
we can detect any performance regression.

Construct Validity. Herewith we report on certain challenges that validate
whether the findings of our study reflect real-world conditions. In order to exe-
cute the performance tests for over 8000 commits in a timely manner, the task
was parallelized across multiple machines. This could become a threat because
the results for the performance tests are given as a time duration, which can
vary based on CPU speed, number of cores, and other random variables between

86 D. Alshoaibi et al.

Fig. 8. Boxplots of Pareto front solutions’ F-Measure values, trained on fold 1, over 31
runs.

machines. To mitigate this, identical virtual machines were used for all perfor-
mance test results, which means CPU speed, RAM, and so on were identical.
Additionally, we ran each test 5 separate times, such that each execution was at
a different time of day on a different virtual machine. This helps mitigate other
uncontrollable random noise in the results of the testing.

External Validity. The prediction of performance regression was limited only
to one project. The generated predictor does not necessarily give the best results
for other projects. We plan on the future to apply our approach to more projects
and, if possible, across more programming languages.

6 Related Work

Chen et al. [3] found that performance regression introducing changes is rig-
orous and associated with complex syndrome. As a result, the study suggests
to frequently conduct performance testing rather than defer it until the end
of development process. Although executing comprehensive performance testing
will ease locating code change introducing performance regression, it is expensive
and might delay development process. Many researches have been conducted to
overcome this limitation. Huang et al. [8] argue that performance testing should
be devoted to only commits counter performance regression rather than all com-
mits. To achieve that they rank commits based on the probability of encounter-
ing performance regression based on a static Performance Risk Analysis (PRA).
This analysis focuses on how the change is expensive and frequent. After rank-
ing commits, based on the analysis, a comprehensive testing is conducted on
risky commits while light testing conducted on the rest. PRA is considered a
light approach because it statically estimates the risk of a code change without
running the software. Perphecy [11] agrees with PRA [8] that applying compre-
hensive performance testing on each commit is expensive. Rather than finding

PRICE: Detection of Performance Regression Introducing Code Changes 87

the problematic commit and intensively perform regression testing on it, Per-
phecy insists on testing each commit but with only test suites that would detect
performance regression. To determine which test suite can detect performance
regression, they have implemented a predictor based on a combination of indi-
cators built up from static and dynamic data collected from previous commits
compared with static data of the new commit.

7 Conclusion and Future Work

We presented a novel formulation of the early detection of performance regres-
sion as multi-objective optimization problem. We used NSGA-II to generate a
detection rule, while maximizing the correctness of hitting a regression and max-
imizing the correctness of dismissing a non-regression, as two objectives. We
evaluated our detection rule by building a dataset of performance regression,
extracted from the Git project. As we compare our results to other techniques,
we found that our approach provides a competitive detection that improves the
state-of-the-art existing results. We plan to extend this study by adding addi-
tional metrics, including branch and bound, Cyclomatic complexity, and cou-
pling between objects. We plan on also analyzing more projects to challenge the
generalizability of our approach.

Acknowledgement. We would like to sincerely thank the authors of Perphecy for
providing enough details that allowed its replication. We also thank the members of
#git-devel IRC community for answering some of our questions during this work.

References

1. Agrawal, R.B., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous
search space. Complex Syst. 9(2), 115–148 (1995)

2. Ahmed, T.M., Bezemer, C.P., Chen, T.H., Hassan, A.E., Shang, W.: Studying the
effectiveness of application performance management (APM) tools for detecting
performance regressions for web applications: an experience report. In: Proceedings
of the 13th International Conference on Mining Software Repositories, pp. 1–12.
ACM (2016)

3. Chen, J., Shang, W.: An exploratory study of performance regression introducing
code changes. In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 341–352. IEEE (2017)

4. De Melo, A.C.: The new linux ‘perf’ tools. In: Slides from Linux Kongress, vol. 18
(2010)

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45356-3 83

6. Foo, K.C., Jiang, Z.M., Adams, B., Hassan, A.E., Zou, Y., Flora, P.: Mining per-
formance regression testing repositories for automated performance analysis. In:
2010 10th International Conference on Quality Software, pp. 32–41. IEEE (2010)

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83

88 D. Alshoaibi et al.

7. Ghaith, S., Wang, M., Perry, P., Murphy, J.: Profile-based, load-independent
anomaly detection and analysis in performance regression testing of software sys-
tems. In: 2013 17th European Conference on Software Maintenance and Reengi-
neering (CSMR), pp. 379–383. IEEE (2013)

8. Huang, P., Ma, X., Shen, D., Zhou, Y.: Performance regression testing target pri-
oritization via performance risk analysis. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 60–71. ACM (2014)

9. Luo, Q., Poshyvanyk, D., Grechanik, M.: Mining performance regression inducing
code changes in evolving software. In: 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pp. 25–36. IEEE (2016)

10. Nguyen, T.H., Adams, B., Jiang, Z.M., Hassan, A.E., Nasser, M., Flora, P.: Auto-
mated detection of performance regressions using statistical process control tech-
niques. In: Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering, pp. 299–310. ACM (2012)

11. Oliveira, A.B.d., Fischmeister, S., Diwan, A., Hauswirth, M., Sweeney, P.F.: Per-
phecy: performance regression test selection made simple but effective. In: 2017
IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp. 103–113. IEEE (2017)

12. Ostermueller, E.: Troubleshooting Java Performance: Detecting Anti-Patterns with
Open Source Tools, 1st edn. Apress, Berkely (2017)

General Program Synthesis Using Guided
Corpus Generation and Automatic

Refactoring

Alexander Wild(B) and Barry Porter

Lancaster University, Lancaster, UK
{a.wild3,b.f.porter}@lancaster.ac.uk

Abstract. Program synthesis aims to produce source code based on
a user specification, raising the abstraction level of building systems
and opening the potential for non-programmers to synthesise their own
bespoke services. Both genetic programming (GP) and neural code syn-
thesis have proposed a wide range of approaches to solving this prob-
lem, but both have limitations in generality and scope. We propose a
hybrid search-based approach which combines (i) a genetic algorithm to
autonomously generate a training corpus of programs centred around
a set of highly abstracted hints describing interesting features; and (ii)
a neural network which trains on this data and automatically refactors
it towards a form which makes a more ideal use of the neural network’s
representational capacity. When given an unseen program represented as
a small set of input and output examples, our neural network is used to
generate a rank-ordered search space of what it sees as the most promis-
ing programs; we then iterate through this list up to a given maximum
search depth. Our results show that this approach is able to find up to
60% of a human-useful target set of programs that it has never seen
before, including applying a clip function to the values in an array to
restrict them to a given maximum, and offsetting all values in an array.

1 Introduction

The ever-increasing complexity of writing software – in design, implementation,
and ongoing maintenance – has led researchers to consider how programs can
be synthesised automatically from a given specification. This could allow system
designers to operate at a higher level of abstraction, defining and verifying func-
tionality rather than implementing the fine details, and also has the potential to
allow non-programmers to create custom software.

The state of the art in code synthesis has generally considered the problem
for domain-specific languages, such as string manipulation, and also tends to
restrict the scope of the problem to programs without loops. DeepCoder, for
example, uses these restrictions to demonstrate that neural network training
over a randomly sampled corpus can find speed versus exhaustive search for
a simple language [1]. FlashFill, meanwhile, demonstrates that inductive pro-
gramming can follow user examples to propose possible functions for Excel data
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 89–104, 2019.
https://doi.org/10.1007/978-3-030-27455-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_7

90 A. Wild and B. Porter

transformations within a limited set of operators [8]. Despite these promising
results, the limitations of domain specificity and linear logic result in significant
restrictions on the kinds of program that can be constructed by code synthesis.

We propose a programming-by-example approach which uses neural-network-
based program prediction to operate on a simplified general-purpose program-
ming language, with a current focus on integer manipulation, which is capable
of producing functions that contain loops and conditional branches. The user is
required to supply up to 10 input/output examples which describe the program
they wish to create, and programs generated in our intermediate language can be
directly and automatically converted to Java or C code. Our neural network is
trained on a corpus of synthetic, self-generated examples, the initial population
of which is biased using one sample human-useful program. When given a new
I/O target pair, the neural network is used to generate a search space which we
exhaustively iterate through to a given search depth to find a matching program.
In detail, our approach works as follows:

– We use a genetic programming approach to generate a training corpus of pro-
grams, based on a seed program which reflects some of the common abstract
features believed to be useful in human-required programs. This seed program
could be supplied by a human as an over-specified initial program.

– We train a neural network with the resulting corpus, such that the input layer
is provided with input/output examples, and the output layers must generate
the corresponding program by selecting one line of code per output layer. The
neural network is able to both recognise programs that it has already seen
and infer programs that it has not.

– We use a technique that we term automated corpus refactoring in which the
neural network re-trains itself by adjusting its own training corpus based on
the kinds of programs it was able to locate from that corpus; we demonstrate
that this technique can provide significant improvement in the capabilities of
the system to find more unseen programs.

Our results show that we are able to automatically generate 60% of a target
corpus of unseen programs based only on 10 I/O examples, including counting
how many of a specific value appear in an array, and shifting the contents of an
array left or right. We believe that our work is the first to demonstrate that a
neural network can be trained to output general-purpose programs that include
loops and branch statements, starting only from an automatically generated-
corpus based a small set of abstract features that useful programs tend to have.
We provide all of the source code for our system, along with instructions on how
to repeat our experiments1.

In the remainder of this paper we first survey related work in Sect. 2, then
present our approach in Sect. 3. In Sect. 4 we evaluate our system on both
abstract program learning and a specific set of human-useful programs such
as searching and array reversal. We then conclude and discuss future work in
Sect. 5.

1 https://bitbucket.org/AlexanderWildLancaster/automaticrefactoringsynthesis.git.

https://bitbucket.org/AlexanderWildLancaster/automaticrefactoringsynthesis.git

General Program Synthesis 91

2 Background

Program synthesis has long been studied in computer science; in this section we
discuss the most relevant research in genetic programming, inductive program-
ming, and neural code synthesis and imitation.

Genetic programming (GP) applies a paradigm of mutation and crossover,
seen in biological reproduction, to source code in order to formulate a particular
program. A wide range of research has examined topics from improving effi-
ciency to the ability to navigate noisy landscapes and generality of solution [3].
The genetic tools provided by this research have also shown adoption in real-
world commercial applications in the sub-field of genetic improvement [12] (GI).
However, despite its successes, there are also clear limitations in its use for syn-
thesising programs starting from no initial code. The work “Why We Do Not
Evolve Software? Analysis of Evolutionary Algorithms” [16] presents arguments
against the current state of the art in genetic algorithms, and the work “Neutral-
ity and Epistasis in Program Space” [13] explores why this may be. Specifically,
GP and hence GI rely on finding paths in the fitness landscape of program space
from a starting position to the desired functionality. If a program’s functionality
precludes this incremental path-finding, perhaps because it is a function which
cannot ‘partially succeed’ and must be fully implemented to show success, genetic
methods cannot navigate towards it in program space and instead must rely on
pure chance to find it. This is more likely to occur in the cases this paper inves-
tigates, which have very low numbers of user provided specification-examples,
and therefore very low granularity in terms of success/failure metrics. This work
focuses instead on using neural techniques to interpolate between learned and
recognised functionalities within program space, which does not require a navi-
gable fitness landscape. We show that genetic methods remain critical, however,
in the generation of the training corpus used by the neural network, to guide the
exploration of program space in a humanly-useful direction.

Inductive programming has been successfully used for a variety of code syn-
thesis tasks, most notably in the FlashFill approach to spreadsheet function
generation [8]. In this work, a set of examples is provided by a user, and a
sequence of inductive logic passes are applied to incrementally reduce the search
space of possible programs which match the examples in a broadly similar way
to SMT solving [4,5]. This approach depends heavily on the use of a highly
restricted and specialised language over which to search, often with the induc-
tive logic passes being designed specifically with that language in mind. These
approaches can synthesise functions very quickly and without training data, but
rely on carefully crafted programming languages with associated inductive logic
rules, making them hard to generalise to a broader class of synthesis problems.

Neural networks have been applied to the code sythesis problem in two differ-
ent ways: imitation and synthesis. Neural program imitation works by encoding
a program itself as a set of weights in a neural network – literally training a
neural network to imitate a program. This has been demonstrated in work such
as the Neural Turing Machine [6], the Neural GPU [10] or the Differentiable
Neural Computer [7]. These examples show that, from a large number of pure

92 A. Wild and B. Porter

I/O examples and with no prior knowledge of what any other program looks like,
a resulting ‘program’ can be learned which has high accuracy though remains
probabilistic. The main drawbacks are the volume of I/O examples needed (tens
of thousands) which arguably are no easier to generate than the algorithm itself;
the lack of generality such that the encoded program can correctly operate on
longer input lengths that those it was originally trained on; and the lack of
scrutability since the program cannot be output as conventional source code,
instead being encoded opaquely within the weights of a neural network.

Neural program synthesis, by comparison, trains a neural network on a set
of programs by showing it the source code and corresponding I/O pairs, then
attempts to generate the source code for unseen programs by issuing new I/O
pairs. This is usually done by having the neural network identify a search region
in which the program is likely to appear (for example by selecting which opera-
tors are most likely) and then searching exhaustively through this region. This
approach has the benefit that the neural network outputs source code which can
be examined, and that generated programs are both deterministic and tend to
generalise across different input sizes. The downside is that a training corpus
must be generated which is in some way informative of reaching useful unseen
programs. To date, neural program synthesis has been applied to highly sim-
plified programming languages and has used uniform random sampling of the
program space to generate a training corpus (and approach that scales for simple
languages) [1,14]. We explore the application of the neural synthesis approach
to a far more general programming language; given the non-viability of ran-
dom sampling in the resulting search space for this language, we propose a novel
solution to the corpus generation problem for training, by using weighted genetic
sampling combined with iterative automatic refactoring of the neural network’s
own training corpus based on its self-assessed success.

3 Methodology

In this section we describe the overall architecture of our system. This involves
first generating a training corpus, using a synthesis system similar to a genetic
algorithm, which uses a fitness function to select parents to reproduce with
mutation. This corpus is then used to train a neural network, using the program’s
behaviour (its I/O mappings) as features, and source code as output labels. The
neural network is then able to recognise seen algorithmic behaviour and return
source code which can reproduce that behaviour. Rather than simply read off the
highest-ranked program, we select N options for each line, and search through a
set of programs, to account for imperfections in the neural network’s outputs.

3.1 Simplified Language

We designed a simplified C-like programming language, generated functions of
which can easily be converted into Java or C-code with a cross-compiler. We
designed this language to allow rapid test/execute cycles when generating a

General Program Synthesis 93

training corpus and then searching through a projected search space given by
our neural network. This is possible because the language is directly interpreted,
rather than compiled to disk and then executed, and allows us to run around
23,500 programs per second.

Fig. 1. The operators available in our simplified language.

To simplify the design of our neural network, we map our language onto the
output neurons using a uniform set of possibilities per line. In detail, we logically
imagine that each line of a program can have the same 1, 332 different options,
derived from 15 operators (see Fig. 1), from variable declaration to addition or a
loop header. Once a program has been chosen, we check to see if it is syntactically
coherent and automatically correct programs that are not. In C-like programs
this creates two main corrections: cases in which there are too many ‘closing
braces’, and cases in which there are too few (an unterminated loop). For the
former case we simple replace hanging braces with a no-op. In the latter case
we insert a closing brace at the very end of a program for any un-closed control
blocks; in addition, any un-closed loops are converted to conditional blocks rather
than loops. By taking this approach to neuron behaviour uniformity, the neural
network does not itself have to learn special cases which limit what each line
can be based on prior lines, which would create a much more complex network
structure (and, we speculate, a more difficult learning problem).

As further restrictions for this study, in all of our tests, we use programs 9
lines long, padded with the NO OP operator. We allow 6 integer variables to be
accessed by our programs, of which two are fixed and unable to be written to. All
of our tests involve passing a single array and a single standalone integer into the
program. The two fixed integer variables are the input integer and the length
of the input array. The program then has read and write access to both the
input array and a second array used as output. These limits allow a wide range
of functionalities, while still imposing limits to maintain the problem within
computationally tractable sizes.

3.2 Neural Network and Search Architecture

Our code synthesis architecture combines a neural network, used to derive an
ordered ranking of possible options, with a search process which iteratively tries
these ranked programs up to a configurable search depth.

94 A. Wild and B. Porter

For this particular study we assume every program can take two parameters:
an integer array of length 8 as the first parameter, and an integer as the second.
We also assume that every program returns an integer array of length 8. Every
cell in an array can hold a value between −8 and 8, while the integer parameter
can hold a value between 1 and 4. Reducing the range of the integer parameter
to only positive non-zero values simplifies the search space, as they can always
meaningfully use the parameter to refer to an array index.

While our language is capable of representing much more diverse function
specifications and numerical ranges (equivalent to C), we use these restrictions
as a first step to simplify the search space and neural network complexity. The
crucial extension we are targeting is the ability to use LOOP and IF statements,
allowing more complex programs in terms of flow than are possible in other code
synthesis approaches. We accept a trade off in terms of program length in return
for being able to handle a new class of program.

The neural network is then designed as a standard feed-forward architecture
as follows. The input layer uses 1,700 input neurons to take 10 I/O examples
concatenated together. The output structure uses 9 layers, one for each potential
line of a program; each such layer consists of 1,332 neurons, one for every possible
way the respective line could be written (including the possibility of a no-op).
Internally we use 8 residual layers, each consisting of two dense layers with a
width of 512 and an additive layer skip (shown to improve deep networks [11,15]),
and using the ReLu activation function. Dropout was used on all layers, with a
probability to keep of 0.75. We used softmax activation for our output layers, and
a crossentropy loss function. Our optimizer was the Tensorflow implementation
‘RMSPropOptimizer’, with learning rate 10−5 and momentum 0.9.

The neural network is trained by (automatically) generating a corpus of
example programs; the mechanics of this generation are described in detail in
the next section. For each generated program in this corpus we randomly gener-
ate 10 input/output examples for that program. During training, our randomly
generated I/O examples are fed into the neural network’s input layer as 170 inte-
ger values (each I/O is being composed of 8 values for the input array, one value
for the input integer, and 8 values for the output array, this creates 17 values for
one I/O example and thus 170 values in total for 10 I/O examples). We choose
to encode integers as 10-bit binary numbers for input to the neural network,
which was experimentally shown to perform better than using scalar inputs, and
so our network has a total of 1,700 input neurons. The network is trained by
back-propagating the corresponding output layer neuron values from the actual
source code of the corpus program associated with these I/O examples.

Once training is complete, in the testing phase we supply only the 10 I/O
examples for a desired program and we use the neural network’s probability dis-
tribution over its output layer neurons to create a ranked list of programs to
search across, from most to least likely. The highest-confidence program would
therefore be generated by selecting the highest activity neuron from each output
layer. Each layer mapped to a line in the program being generated, and each neu-
ron mapped to one of the 1,332 valid statements which could appear on that line.

General Program Synthesis 95

The 9 highest-activity neurons, one from each of the 9 output layers, therefore
map to 9 statements which then make up the highest-confidence program.

To generate a volume of program space, the N highest ranked neurons are
chosen per line, giving N ways that particular line could be written in the sam-
pled program. The search volume would therefore consist of every combination
of these options, i.e., number of options per linenumber of lines. For the exper-
iment in this paper, when not otherwise noted, we used 4 options per line for
standard programs, and 6 when searching within the human-useful program set.

3.3 Corpus Generation

In a simple DSL, a training corpus for a neural network could be generated by
sampling uniformly at random from the space of all possible programs [2]. For
our purposes, however, the search space of our more general-purpose language is
far too large for uniform random sampling to be effective. When sampled in this
way, the resulting corpus of programs is highly repetitive, each program has a
high probability of being made up of only (or mostly) lines of code that have no
effect, and very few programs contain condition or loop elements (which feature
heavily in human-useful programs).

As an alternative to uniform random sampling we designed an approach
which combines genetic programming with a set of abstract search biases and
a dissimilarity measure. Our generator starts with a seed program, which is an
abstract problem reflecting the kinds of search biases that we need; for example
a program that uses a loop and a conditional branch, and which reads all of
the input array values once and writes each cell of the output array. Starting
from this seed program, the genetic algorithm creates iterative populations of
mutations. Within a population, we promote code length and an even distribu-
tions of all operators, and we penalise writing to loop iterator variables. Finally,
mutated programs are only accepted into a population if their are behaviourally
dissimilar to the rest of the population. This similarity is measured by feeding
25 randomly generated inputs to each program, and marking the programs dis-
similar if any of their output arrays contain a single different value as a result of
the inputs. Programs are also rejected if any program reads from or writes to the
same memory address in an array twice, further reducing the search space. To
gain good learning coverage of flow control, we seed five separate sub-corpuses to
form our overall corpus. The first had 0 flow control operators. The second had
1 loop only. The third had 1 loop and 1 CONDITIONAL GREATER THAN 0
operator. The fourth had 1 loop and 1 CONDITIONAL EQUALITY operator.
The fifth had 1 loop, 1 CONDITIONAL EQUALITY and 1 ELSE operator.

The result of this generation process was a diverse set of 10,000 function-
ally distinct programs, split between the 5 sub-corpuses of 2,000 each. In this
work we determine functional similarity by feeding both programs a set 25 ran-
domly generated inputs and checking for any difference. We then split these pro-
grams amongst training, testing and validation for the neural network. Training
received 8,000 programs, the other two corpuses received 1,000 programs each.

96 A. Wild and B. Porter

As a result, each corpus’ programs were functionally dissimilar, with no pro-
gram functionality was replicated between corpuses. Note that none of our set
of human-useful programs is involved in training the neural network; all such
programs are therefore unseen by the system.

3.4 Automatic Corpus Refactoring

Our corpus generation approach tries to train the neural network with a diverse
set of programs that facilitate its ability to synthesise human-useful programs.
However, corpus generation itself does not necessarily maximise the neural net-
work’s internal generality or its use of available model representation space.

We use a novel approach to enhancing the generality and model efficiency of
the neural network, by altering the corpus based on the network’s own success
rate – an approach we term automatic corpus refactoring.

The neural network is first trained using the corpus generated as above. It is
then asked to locate every program in the training corpus by being given the set
of I/O pairs which should result in the given program being found. Because the
neural network outputs a ranked list of potential programs, the actual program
match may be 10’s or 100’s of programs down this ranked list. However, during
experiments we observed that a functionally equivalent program would often exist
earlier in the ranking than the exact-match program in the training corpus.

In corpus refactoring, we test to see if such a functionally equivalent program
exists earlier in the ranking, and if so we replace the training program with this
equivalent version. We then retrain the neural network again (with weights re-
initialised) based on this new corpus. We can perform this refactoring iteratively,
using a new corpus to again replace programs with earlier-found equivalents,
until the performance converges to a maximum. As our results demonstrate,
refactoring in this form increases performance not just on the training corpus,
but also on the testing corpus and on the number of human-useful programs
that were correctly constructed – in other words, by adjusting its own training
corpus without actually adding any new information, the system is able to find
more programs in total than it previously could.

4 Results

This work investigates the effects of automated corpus generation and modifica-
tion techniques, in the context of trained code synthesis system.

We firstly examine the system’s overall code synthesis performance in its
intended normal configuration. This allows us to examine its performance, when
attempting to solve a human-defined testing corpus of unseen programs. We
examine the effects of our automatic refactoring (AR) technique over a set of
iterations, to isolate its performance from the initial success of the corpus genera-
tion and neural network training steps. AR allows us to improve the performance
of a system by adapting its training corpus in response to its current behaviour.

General Program Synthesis 97

We then investigate the genetic corpus generation approach in further depth,
by performing ablation studies on its ‘requirements’ and fitness function. Fol-
lowing these two studies, we attempt to shed light on the performance gains
produced by the AR technique, by examining the changes it makes the corpus.

We evaluate our approach with a set of ‘human-useful’ programs that the
synthesis system is required to find – which we distinguished from the set of
programs that the synthesis system finds during its own automated corpus gen-
eration phase. For all of our experiments we used Python 3.6.7, Tensorflow 1.12.0
and JVM openjdk 10.0.2 2018-07-17.

4.1 Program Synthesis

To test general program synthesis capability we ran our end-to-end approach
10 times to gain average results. We do this because there are two sources of
stochasticity in our approach: the way in which the corpus generation phase
works, which is based on randomised mutations; and the way in which the neural

Fig. 2. Percentage find rates for two experiment sets, with and without the automated
corpus refactoring stage (the first set averaged over 11, and the second over 17 runs).
A simple genetic programming algorithm, using the same linguistic constraints, is used
as baseline. It can be seen that GP succeeds on simpler problems, but has lower per-
formance when a conditional statement is required.

98 A. Wild and B. Porter

network is initially configured, which uses randomised starting weights prior to
training. We run corpus generation, five rounds of automated corpus refactoring,
and then present the input/output examples for our set of (previously unseen)
human-useful programs to see how many the system can find.

The results are shown in Fig. 2, detailing both the find rate before any corpus
refactoring and also the find rate after the final round of refactoring. For each
successfully found program, the neural network has output source code which
correctly derives the output from each corresponding input. As an example, for
the program “max(value, param)”, the array could be [−5, 3, −2, 3, −4, 1, 5,
8], the parameter ‘1’, and the output [1, 3, 1, 3, 1, 1, 5, 8]. From these results we
can see that our system locates an average of 38% of our human-useful programs
as a result of its initial corpus generation process; this rises to an average of 44%
(and a maximum of 60%) after five rounds of corpus refactoring. If we examine
individual programs in this target set, we see that the majority of find rates tend
to increase, while a couple of find rates (for example the offset-by-one program)
notably decrease. We speculate that the decreases in some program find rates
may be caused by those programs lying outside the generalised space into which
the neural network moves during corpus refactoring.

We next examine the find-rate of the training, test and human-useful program
set over each iteration of automatic corpus refactoring. These results are shown
in Fig. 3 for the training and testing sets, and in Fig. 4 for the human-useful set.

Fig. 3. Success rate on training (left) and test (right) corpus, over each iteration of
automatic refactoring, starting from the unmodified corpus, with Standard Deviation

Both the training and test data set show a steady increase in the find-rate of
programs from the respective set. For the training set, which shows a find-rate
increase from 0.4 to 0.65 (where a value of 1.0 would be all programs found),
the process of self-adjusting the training corpus in automatic refactoring clearly
shows an enhanced ability to correctly locate more entries in the training corpus.
The effect in the test corpus is similar, in this case showing an increase from
0.27 up to 0.36. However, in the case of the test data set the result is much more
significant. The increase in find-rate here (i.e., for programs which the system
has never seen before) indicates an unexpected phenomena: by having the neural
network’s training corpus refactored, without adding any data, this allows the

General Program Synthesis 99

neural network to locate more unseen programs than it previously could. It is
worth noting that performance decreased in some cases. This is potentially due
to the neural network specialising to a particular form of program (the most
common) at the expense of others. While this specialisation is overall beneficial,
some degradation occurs in certain types of program. We will explore ways to
mitigate this effect in future, potentially using a mixture of experts approach
employing a set of trained neural networks specialised in different areas.

We see a similar effect in the human-useful programs over successive refac-
toring iterations, as shown in Fig. 4. Again, all of these programs are unseen
by our system during training, but reshaping the training data enables more of
them to be successfully synthesised. This suggests that the use of our automated
refactoring approach perhaps causes the neural network to become more gen-
eralised in its capabilities. However, the data in Fig. 2 provides a more mixed
picture: here we see that find-rates for most programs increase after refactoring,
but some find rates actually decrease. We explore this further in the next section.

Fig. 4. Success rate on human-useful corpus, over each iteration of the automatic
refactoring process, with unchanged corpus as first data point. Corpus size is 20, so
each increment of 0.05 corresponds to an average of one program found. 1st Standard
Deviation displayed

4.2 Requirements in Corpus Generation

We now examine the effects of the initial requirements on corpus generation.
These requirements are used as input to the genetic algorithm to guide its gen-
eration of a set of programs on which the neural network is trained. As a conse-
quence of this training, the neural network is then able to find (or not find) a set
of previously unseen human-useful programs. The precise nature of these require-
ments for corpus generation are therefore an important, if indirect, element of
how successful our synthesis approach is at finding programs after training.

In this section we examine how the use of different requirements affects syn-
thesis success. Our complete set of requirements, used across all of the experi-
ments reported so far, includes three major categories as follows.

100 A. Wild and B. Porter

Array Access. This requirement is that all programs containing a loop operator
must access every element of the input array. This requirement was included to
overcome a perceived problem in the input-access of generated programs. These
would often access their inputs in ways which human-written programs rarely
would, such as only reading a single element of the input array, or altering their
loop iterator and as such skipping elements.

Program Flow. This requirement involved subdividing the corpus into 5 sub-
corpuses, each with its own requirement as to how the flow-control operators
should be used. The first corpus required all its programs to have no flow-control
operators at all. The second corpus required only a single loop operator. The
third required a single loop operator and the first type of conditional operator.
The fourth required a single loop operator and the second type of conditional
operator. The fifth type required a single loop, the first type of conditional oper-
ator and an else block. For each of these corpuses, a single “seed” program was
supplied. This program was what we considered to be the “maximally simple”
implementation of the requirements; as an example of this the loop-only require-
ment, from the second corpus, would read in all input values, then write them
out unchanged to the output array. The seed programs were implemented due
to the genetic search’s inability to start generation without them.

Genetic Fitness Function. Lastly, our genetic algorithm fitness function rewards
particular operator ratios: all operators are expected to be used at least once,
with flow control operators in particular weighted twice as highly as others.
This was done to promote the use of flow-control, while penalising operators
repetition. This was necessary to move away from the “maximally simple” seed
programs to those with more commonly useful features.

0

2

4

6

8

10

12

Full
Requirements

No Array
Requirements

No
Requirements

No heuristic or
Requirements

Requirements,
no heuristic

Pr
og

ra
m

s f
ou

nd

Fig. 5. Average performance for sets of corpuses with varying requirements for con-
stituent generated programs.

We examine the effects of the above requirements by selectively switching
them off during corpus generation and comparing how many of our human-useful

General Program Synthesis 101

program set is found as a result. The results are shown in Fig. 5, in which each
experiment was run 5 times and we average the data.

The first test shows our full set of requirements, as used in the earlier exper-
iments reported in this section. This achieves the highest performance of any
experiment, finding an average of 8.4 programs (σ = 1.5) from our human-useful
target set. The second experiment removes the array access requirement, but
keeps the program flow and fitness function heuristics. This performs slightly
worse, achieving an average of 7 human-useful programs (σ = 1.4), indicating
that most of our programs are in an area of the total search space in which
the input array is uniformly accessed. In the third experiment we removed both
the array access requirement and the program flow corpus generation technique,
leaving only the fitness function heuristics. This resulted in the worst overall
success, with only an average of 4 programs found from our set (σ = 0.71).

We then removed all requirements and the fitness function heuristics, which
actually shows a slight increase in performance with an average of 4.4 (σ = 0.98)
programs found. Finally, we experiment with only using the array access and pro-
gram flow requirements but remove the fitness function heuristics, which results
in the second-best performance overall – indicating that these requirements are
more important to success than the fitness function heuristics.

Altogether, these results support the hypothesis that achieving good perfor-
mance on the human-useful corpus requires a set of corpus generation biases that
are reflective, at a very abstract level, of the typical form of useful programs.
The way in which these abstract requirements are communicated to a synthesis
system in a human-natural way is a key area of future work.

4.3 Effects of Corpus Refactoring

In this section we examine the effects of automated corpus refactoring in more
detail, to better understand why it enables more programs to be found without
adding any new data to the system. We characterise this as not adding new data
because, even though the training corpus is modified, it is modified only as a
result of the neural network’s own output from the initial training corpus; the
only thing being ‘added’ is therefore the neural network’s apparent preference
for which precise form of a target training program to use, but this preference is
itself entirely derived from the original training corpus and the neural network’s
inherent behaviour. We therefore attempt to better understand why this effect
occurs, in so far as is possible with the black-box nature of neural networks.

In broad terms, the use of feeding output of one neural network as training
labels to another has been demonstrated previously in teacher-student distilla-
tion network training [9]; in our case however we believe the success is in fact
due to an interplay between the network and the search process. We analyse
this effect using the entropy shown by output layers before and after automatic
refactoring. These experiments help to verify whether or not the neural network
is ‘self-generalising’ as a result of its search process, or if in fact it is specialising
to certain kinds of program in which it tends to become an expert.

102 A. Wild and B. Porter

In our experiments we measure the entropy of each output layer of our neu-
ral network, where each layer corresponds to one line of code. As discussed in
Sect. 3.2, each output layer of the network can select from one of a fixed set
of possible operations for that line of code – where each option is represented
by one neuron. The highest-activated neuron in an output layer is taken as the
network’s best guess for this line of code. We hypothesise that one of the reasons
for corpus refactoring finding extra programs is that the network becomes better
generalised in its representation of algorithms. We test this theory by examining
the entropy of each output layer – in other words, across all programs, how ‘spe-
cialised’ is each output layer to always choosing the same operation for their line
of code, versus their ability to represent a balanced spread of output options.
The more balanced the spread is for each output layer, without losing the ability
to synthesise programs, the more generalised the neural network may be.

We use the Theil inequality metric to measure the ‘inequality’ of each line.
Maximum inequality (only one option ever used) would be minimum entropy
(perfectly predictable). To compute this we find the probability of every option
for every line being chosen, across all the programs in the training corpus. If every
option were chosen with equal probability, they would each be the average, μ,
which is equivalent to 1/N , where N is the number of options per line.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Line Index

Th
ei

l I
ne

qu
al

ity

Inequality per line, before automatic refactoring

1 2 3 4 5 6 7 8 9

-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

Line Index

Th
ei

l I
ne

qu
al

ity

Change in inequality following automatic
refactoring

Fig. 6. Reverse entropy of operator distributions by line, as measured by the Theil
index. Lower values imply a more even distribution of operator use for a particular,
therefore higher entropy.

Figure 6 shows the results of this experiment. On the left we see the entropy
of each output layer before any refactoring has taken place, and on the right
we see entropy after five refactoring iterations. We see a clear trend towards a
more balanced ability for each output layer to select a broader range of options,
supporting our hypothesis that our refactoring process may aid in generalising
the capacity of the neural network.

We can also infer from these experiments that program length becomes more
consistent after refactoring. This is to say, if we count the number of non-empty
lines (which can appear on any line post-refactoring), we tend towards a closer
average across all programs (the length goes from 7.11 lines with a standard devi-
ation of 1.82, to a line average of 7.78 with a standard deviation of 1.41). This
suggests that the refactoring process tends to choose longer forms of programs

General Program Synthesis 103

to effectively specialise the network towards programs of a certain length. This
is an unexpected duality: as a result of corpus refactoring our network seems
to train towards specialising to a certain length of program, which simultane-
ously generalising itself within that program length by increasing the ability for
different lines to take more diverse operations.

5 Conclusion

We have presented an investigation into combining automated corpus generation
using a genetic algorithm, with a neural network search technique, to synthesise
code in a simplified general-purpose language when given a set of I/O challenges
describing the intention of the program.

Our corpus generation is based on a set of highly abstract requirements which
align the set of self-generated training programs with roughly the features found
in human-useful programs. Our neural network then automatically refines this
corpus based on measures of its own success by locating alternative implementa-
tions of each program which proved to be higher-ranked in the neural network’s
own prediction. Together, this technique is able to locate up to 60% of our human
useful target programs (which include the synthesis of looping and conditional
branch statements) – none of which appeared in the training data.

Our future work will proceed in two main directions: firstly to further explore
how initial corpus generation can be easily directed by non-experts when a par-
ticular I/O example cannot be synthesised; and secondly to expand the range
of program types that we can synthesise to include those that feature function
composition and object instantiation/use. We also intend to further investigate
the properties of the neural network itself, to explore how well it generalises in its
recognition capabilities to I/O examples of different lengths to those in training,
and how the effects of automatic corpus refactoring may be further exploited.

Acknowledgements. This work was supported by the Leverhulme Trust Research
Project Grant The Emergent Data Centre, RPG-2017-166.

References

1. Balog, M., et al.: Deepcoder: Learning To Write Programs. ICLR (2017)
2. Chen, X., et al.: Towards synthesizing complex programs from input-output exam-

ples. ICLR, pp. 1–31 (2017)
3. Dabhi, V.K., Chaudhary, S.: Empirical modeling using genetic programming: a

survey of issues and approaches. Nat. Comput. 14(2), 303–330 (2015)
4. Feng, Y., et al.: Program synthesis using conflict-driven learning, pp. 420–435

(2017)
5. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations

from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI 2015, pp.
229–239 (2015)

6. Graves, A., et al.: Neural turing machines. CoRR, pp. 1–26 (2014)

104 A. Wild and B. Porter

7. Graves, A., et al.: Hybrid computing using a neural network with dynamic external
memory. Nature 538(7626), 471–476 (2016)

8. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: ACM SIGPLAN Notices, vol. 46, no. (1), p. 317 (2011)

9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network,
pp. 1–9 (2015). http://arxiv.org/abs/1503.02531

10. Kaiser, �L., Sutskever, I.: Neural GPUs Learn Algorithms. ICLR, pp. 1–9 (2015)
11. Kawaguchi, K., Bengio, Y.: Depth with nonlinearity creates no bad local minima

in ResNets, pp. 1–14 (2018)
12. Petke, J., et al.: Genetic improvement of software: a comprehensive survey. IEEE

Trans. Evol. Comput. 22(3), 415–432 (2018)
13. Renzullo, J., et al.: Neutrality and epistasis in program space, Gi, pp. 1–8 (2018)
14. Vijayakumar, A., et al.: Neural-guided deductive search for real-time program syn-

thesis from examples. ICLR (2018)
15. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multi-

media Tools Appl. 77(9), 10437–10453 (2017)
16. Yampolskiy, R.V.: Why we do not evolve software? Analysis of evolutionary algo-

rithms. Evol. Bioinform. Online 14(1), 1176934318815906 (2018)

http://arxiv.org/abs/1503.02531

A Search-Based Approach to Generate
MC/DC Test Data for OCL Constraints

Hassan Sartaj1,2(B) , Muhammad Zohaib Iqbal1,2, Atif Aftab Ahmed Jilani1,2,
and Muhammad Uzair Khan1,2

1 Quest Lab, National University of Computer and Emerging Sciences,
Islamabad, Pakistan

{hassan.sartaj,zohaib.iqbal,atif.jilani,uzair.khan}@questlab.pk
2 UAV Dependability Lab, National Center of Robotics and Automation (NCRA),

Islamabad, Pakistan

Abstract. Automated generation of test data is an important and chal-
lenging activity in Model-based Testing. This typically requires solving
of constraints, written in Object Constraint Language (OCL), specified
on models in order to obtain solutions that can be used as test data.
Test data generation techniques in the literature discuss various cover-
age criteria for test generation to achieve a sufficient level of coverage.
One of the recommended criteria is modified condition/decision cover-
age (MC/DC) that is a requirement of different safety standards, such
as DO-178C. In this paper, we propose a search-based strategy that uti-
lizes case-based reasoning (CBR) to reuse the already generated test
data and generate new test data that provides MC/DC coverage of OCL
constraints. To evaluate the performance of the proposed approach in
solving MC/DC constraints, we perform an empirical evaluation using
AVM without CBR, AVM with CBR, and use Random Search (RS) as
a baseline for comparison. We use 84 OCL constraints from four case
studies belonging to different domains with varying size and complex-
ity. The experimental results show that our proposed strategy of reusing
already generated test data is better as compared to generating test data
without using previous test data.

Keywords: SBSE · Model-based testing · MC/DC · OCL ·
Test data generation

1 Introduction

Model-based Testing (MBT) allows complete automation of software testing
activities and is being applied for scalable testing of industrial applications [29].
In such testing, models of the system or its context are typically used to auto-
matically generate test cases and test data for the system under test (SUT).
The model-based test data generation strategies focus on the generation of data
by solving the various constraints (e.g., guards) on the models or solving the

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 105–120, 2019.
https://doi.org/10.1007/978-3-030-27455-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_8&domain=pdf
http://orcid.org/0000-0001-5212-9787
https://doi.org/10.1007/978-3-030-27455-9_8

106 H. Sartaj et al.

corresponding invariants. Object Constraint Language (OCL) [22] is the OMG
standard for specifying constraints and invariants on models and is being widely
used [4]. The current state-of-the-art in generating test data corresponding to
OCL constraints for model-based testing is by using search-based strategies (e.g.,
in [2,3]).

This paper reports some of the work that we are doing with our indus-
try partner, who is a large avionics systems developer. A major objective in
developing such systems is to comply with the international safety standard of
DO-178C [11], which is the prevailing standard for avionics systems. Around
seventy percent of the overall objectives of DO-178C focus on verification. As
per DO-178C, an important consideration for the highest critical level avionics
application is to test the application based on the Modified Condition/Deci-
sion Coverage (MC/DC) criterion. The MC/DC criterion subsumes a number
of other structural coverage criteria (including statement coverage, branch cov-
erage, and condition coverage) and is considered as one of the most stringent
coverage criteria to achieve. Empirical evidence from previous studies also sug-
gests that the MC/DC criterion is more effective in terms of fault detection than
other structural coverage criteria [33,34].

When using MBT for testing of avionics systems, a major challenge being
faced is the automated generation of test data corresponding to MC/DC criterion
[28]. The current OCL test data generation strategies are focusing on generating
one solution corresponding to a constraint. However, for MC/DC coverage, a
number of solutions are required to cover the OCL constraint. For example,
consider the OCL constraint shown in Listing 1.1, To obtain MC/DC coverage
we need to solve the combinations of true and false values that are required to
achieve the MC/DC criterion.

An obvious strategy to obtain MC/DC coverage is to refactor the OCL con-
straints and re-execute the OCL data generator for each of the refactored con-
straints. Automated solving of non-trivial OCL constraints written for industry
systems is a time-consuming task. For instance, it can take up to 15 min to solve
a constraint. With hundreds of constraints in a reasonably sized system, the cost
of generating test data for MC/DC using such a strategy gets very high [17].

In this paper, we propose a search-based strategy that utilizes case-based
reasoning (CBR) [19] to reuse the already generated test data and generate
new test data that provides MC/DC coverage of OCL constraints. The strat-
egy defines the OCL constraints reformulation for MC/DC criterion and then
applies the CBR concept in Alternating Variable Method algorithm (AVMc) to
reuse the previous solution. To assess the proposed approach, we perform an
empirical evaluation of 84 OCL constraints from four case studies varying in
nature and size. One of the case studies is an industrial case study of a Ground
Control Station for an Unmanned Aerial Vehicle. The other two case studies, EU
Rental [12] and the Royal and Loyal [31] are widely referred in OCL literature
and are considered as academic benchmarks. The fourth case study is a subset
of UML meta-model for State Machines [23]. For the experiment, we compare
AVMo with AVMc and use Random Search (RS) as a baseline for comparison.

MC/DC Test Data Generation 107

The experimental results show that AVMc performs significantly better when
compared with the original AVMo in terms of the ability to efficiently solve
OCL constraints. To summarize, the main contributions of this paper are:

– We propose a search-based strategy that uses existing test data to generate
new test data corresponding to the MC/DC criterion.

– We devise a strategy for reformulating OCL constraints in order to achieve
the MC/DC criterion, especially dealing with negations of OCL expressions
involving collections.

– We conduct an extensive empirical evaluation consisting of 84 OCL con-
straints from four case studies varying in nature and size.

The remaining portion of this paper is organized as follows: Sect. 2 presents
our proposed strategy to include MC/DC criterion in OCL test data generation
approach, Sect. 3 provides the empirical evaluation. Section 4 provides related
work, and Sect. 5 concludes the paper.

2 Strategy to Achieve the MC/DC Criterion

To generate test data according to the MC/DC criterion, multiple solutions are
required corresponding to a constraint. For example, consider a constraint as an
expression C = p ∨ q, where p and q are the clauses of the constraint. There
are four combinations of possible outcomes, two each for p and q (TT, TF, FF,
FT). The idea of the MC/DC is to select the subset of all possible combinations
that have a direct impact on the outcome value of the entire constraint. In the
case of C, these combinations are (FF, TF, FT). To identify this subset, the first
step is to reformulate the original constraint in order to obtain more constraints
that satisfy the MC/DC criterion. During reformulation, a special consideration
needs to be given to negation of expressions involving OCL collections and han-
dling negation of logical expressions. The final step is to apply the concept of
case-based reasoning to optimize the process of constraint solving for MC/DC
criterion. Following, we further discuss these steps of our proposed strategy.

Listing 1.1. OCL constraint on Account class

context Account inv: self.accountNumber.oclIsUndefined ()=false and
(self.isActive=true or self.balance <1000)

2.1 OCL Constraint Reformulation for MC/DC

To reformulate an OCL constraint for MC/DC, we first identify the truth value
combinations that are required for MC/DC coverage of a given OCL constraint.
For this purpose, we use the pair-table approach as suggested by Chilenski and
Miller [10]. For example, consider the OCL constraint on a class Account shown
in Listing 1.1. For simplicity, we transform the predicate of the constraint to
an equivalent Boolean form by assigning each clause a unique identifier. In this
example, the resultant Boolean expression is p ∧ (q ∨ r).

108 H. Sartaj et al.

Table 1. Example pair
table

pqr Res p q r

1 TTT T 5

2 TTF T 6 4

3 TFT T 7 4

4 TFF F 2 3

5 FTT F 1

6 FTF F 2

7 FFT F 3

8 FFF F

Table 2. Negation of collection operations

Collection operation Negation

1 forAll(p) exists(not p)

2 exists(p) forAll(not p)

3 one(p) select(p)→size()<>1

4 includes(N) excludes(N)

5 select(p) select(not p) or reject(p)

6 select(p)→isEmpty() select(p)→notEmpty()

7 reject(p)→isEmpty() reject(p)→notEmpty()

8 select(p)→size()=C select(p)→size()<>C

9 select(p)→size()<C select(p)→size()>=C

10 select(p)→size()>C select(p)→size()<=C

The pair table provides a number of potential pairs for each clause and we
need to select minimum subsets of pairs that cover all clauses. The minimum
subsets of pairs that cover all required combinations for the given example are
{2, 6}, {2, 4}, and {3, 4} as shown in Table 1. These pairs represent the combi-
nations TTF, TFT, TFF, and FTF. To achieve MC/DC, the given predicate in
a constraint has to be solved so that all the truth combinations contained in the
minimum subset are solved. Therefore, for each false value of the combination,
a clause in the given predicate is negated. For example, to satisfy the combina-
tion TTF for a constraint p ∧ (q ∨ r), the constraint provided to the solver is
reformulated with a negated r, i.e. p ∧ (q ∨ ¬r).

2.2 Handling Negation for OCL

OCL constraints consist of different types of clauses i.e., the clauses using rela-
tional operators and the clauses using OCL collection operations. The negation
of relational operators is done by either adding not operation or simply invert-
ing the relational operator e.g., < is converted to >=. The negation of various
OCL collection operations is not straightforward because their negation affects
a subset or whole collection. To negate forAll(p) we need to make predicate
(i.e., p) false for the whole collection and change this operation to exists(not
p) as shown in Table 2 (row 1). In the case of exists(p) operation (row 2), the
complete collection must be negated. Thus, exists(p) is converted to forAll(not
p) with the negated predicate. In the case of one(p) operation, which requires
exactly one instance to satisfy the predicate, it is transformed using select(p)
with size() operation but with size not equal to one (row 3). The negation of
includes(N) operation is converted to excludes(N) and vice versa (row 4). The
operation select(p) is changed to select(not p) or reject(p) and vice versa (row
5). Furthermore, select(p) and reject(p) operations when applied with isEmpty()
operation, they are negated to notEmpty() (row 6 and 7). In the same way, when

MC/DC Test Data Generation 109

select(p) is used along with forAll(p), exists(p) and one(p), their corresponding
negations are applied. Moreover, when size() operation is used with select(p),
which means a specified number of instances within a collection should satisfy
the predicate. So in the case of select(p) with size() operation, the Boolean
operation used with size() is negated (rows 8–10).

2.3 Logical Operations Reformulation

To obtain the exact truth value as required by the minimum subset from the pair
table, only negating a given clause is not sufficient as the solver may still skip
solving the required clause. This is because the existing heuristics for some logical
operations such as or, xor, and implies are developed to optimize the search in a
way that they favor solving of the ‘easiest’ clause. For example, for the predicate
“A or B”, the heuristic to calculate the branch distance (as discussed in [2]) is: If
(d(A)<= d(B)) then solve A otherwise solve the B clause. Even if the clause B
is negated, the generated test data may not solve clause B because the negation
of a clause may make it even harder to solve. The heuristics for xor and implies
also suggest the same. To make sure that the resultant test data contains values
corresponding to each required combination of MC/DC, our strategy performs
a second pass to reformulate the constraint.

In the case of ‘or’ operator, the strategy changes this operator to ‘and’ oper-
ator between the negated clauses. For the case of ‘implies’ operator, first, a
logically equivalent expression containing the basic operators (i.e. and, or and
not) is obtained and then ‘or’ operator is converted to ‘and’ operator. For exam-
ple, a implies b is converted to a logically equivalent expression which is: not
(a) or b.

Listing 1.2. MC/DC constraints

C1: context Account inv: self.accountNumber.oclIsUndefined ()=false and
(self.isActive=true and self.balance >=1000) --TTF

C2: context Account inv: self.accountNumber.oclIsUndefined ()=false and
(self.isActive=false and self.balance <1000) --TFT

C3: context Account inv: self.accountNumber.oclIsUndefined ()=false and
(self.isActive=false and self.balance >=1000) --TFF

C4: context Account inv: self.accountNumber.oclIsUndefined ()=true and
(self.isActive=true and self.balance >=1000) --FTF

Similarly, in the case of ‘xor’ operator, it is also transformed to its logi-
cally equivalent expression and then the conversion from ‘or’ to ‘and’ operator
is performed. For example, a xor b is converted to logically equivalent expres-
sion which is: (a or b) and not (a and b). For the example predicate shown
in Listing 1.1, the conversion corresponding to the four required combinations
(i.e., TTF, TFT, TFF, and FTF) that results in the MC/DC constraints to
be solved by the OCL solver as shown in Listing 1.2. The MC/DC constraint
C1 in Listing 1.2 corresponding to the combination TTF has the third clause
negated and transformed logical operator (i.e., or → and). In the same way, the
constraints C2, C3, and C4 are obtained after applying MC/DC.

110 H. Sartaj et al.

2.4 Applying Case-Based Reasoning

To solve MC/DC constraints, we adapt the concept of case-based reasoning
(CBR) [19]. We apply CBR in the context of MC/DC constraints to reuse the
previous solution. CBR provides a well-suited mechanism to reuse solutions to
previously solved problems while solving a current problem that is similar to the
already solved problems.

To apply the concept of CBR in the context of OCL constraints, we define
some terminologies. Let C = {C1, C2, C3, . . . , Cn} be the collection of MC/DC
constraints to solve and all previously solved solutions in repository are: S =
{S1, S2, S3, . . . , Sn−1}, where n is the number of OCL constraints. When the
constraint C1 is solved, its solution S1 is stored in a repository for future use.
Therefore, the size of the solutions repository is one less than the total size of
MC/DC constraints. To store a solution in the repository, a constraint, a predi-
cate and the resultant data (solution) of the constraint is required. A solution is
represented as a tuple: Sk = (Ck, Pk, data). Let Ps = {Ps1 , Ps2 , Ps3 , . . . , Psn−1}
be the list of predicates of OCL constraints corresponding to each solution in
the repository. Each predicate in the repository has multiple clauses and it is
represented as Psi = {cs1 , cs2 , cs3 , . . . , csm}. For the current constraint to solve,
the target predicate is represented as Pt = {ct1 , ct2 , ct3 , . . . , ctm}, where m is the
total number of clauses in a predicate.

To identify the suitable previous solution to reuse, the similarity must be
measured between the target predicate and already solved predicate. The sim-
ilarity score between the two predicates is calculated by using Eq. 1. Where,
d

(
ctj , csij

)
is the similarity score between target clauses and a clause from the

repository. The higher the similarity score between the two predicates the more
the solution corresponding to the predicate is suitable to reuse. Since a pred-
icate has a number of clauses, the similarity score between the two clauses is
calculated by using Eq. 2.

d (Pt, Psi) =
m∑

j=1

d
(
ctj , csij

)
(1)

d
(
ctj , csij

)
=

{
1, ctj = csij
0, ctj �= csij

(2)

According to Eq. 2, if the two clauses are the same, the similarity score
between them is 1 and 0 otherwise. For the example MC/DC constraints shown
in Listing 1.2, the similarity score between constraints C3 and C4 is one because
the third clause is the same. After calculating the similarity score of each solution
in the repository, the possible set of closest solutions are obtained.

Reusing Previous Solution. Typically, a local search algorithm starts the
search by using a random individual. To optimize search for reusing the closest
previously solved solution, the initial seed needs to change. Once a set of possible
closest and already solved solutions is obtained, we need to pick one nearest
solution as an individual to start the search.

MC/DC Test Data Generation 111

Let Ns = {Ns1 , Ns2 , Ns3 , . . . , Nsx} be the list of nearest possible solutions
having size x that are obtained after calculating the similarity score. It is possible
that two or more nearest solutions in Ns have the same similarity score and in
that case, the problem is which one to select. To handle this problem, we need
to calculate the fitness of each nearest solution and then select the solution with
minimum fitness. We use the fitness function developed by Ali et al. [3] to solve
the OCL constraints. The fitness function determines how far the solution of the
constraint is from evaluating to true. For example, if for the constraint is C: x> 0,
there are two potential candidate solutions i.e., S1: x =−125 and S2: x= 0, the
solution S2 is less far from satisfying C as compared to S1. Therefore, the fitness
of S2 is better than that of S1. because it is very close to evaluate the constraint
C to true. The fitness of each nearest solution in Ns corresponding to the target
constraint is fsn = {fs1 , fs2 , fs3 , . . . , fsx}. Let Sc be the closest solution from
the set Ns with minimum fitness fsc which is calculated as fsc = min(fsn).
Now, according to the original behavior of a local search algorithm, a random
individual is generated. Let Sr be a random individual with fitness fsr . The
target closest solution is obtained by using Eq. 3.

ST =
{

Sc, fsc<fsr
Sr, fsc ≥ fsr

(3)

According to Eq. 3, if the fitness fsc of the closest previous solution Sc from
Ns is less than that of the random solution Sr, the solution Sc is selected.
Otherwise, the search is started from a random solution Sr. Since it is possible
that an individual generated randomly can be a suitable option to start the
search, so we also check the fitness of a random individual.

2.5 Identifying Conflicting Constraints

The combinations obtained for MC/DC are not always solvable and are, at times,
infeasible [26]. For example, if the required combination is FF for the constraint,
x ≥ 10 or x ≤ 25, it is considered as an infeasible combination to solve. Conflict
can occur in those constraints in which two or more clauses containing primitive
type attribute are dependent. We consider a clause as a dependent if the same
attribute is used in multiple clauses. For example, the two clauses in the predicate
x ≥ 10 or x ≤ 25 are dependent because the same attribute ‘x’ is used in both
clauses.

Therefore, first, a conflict is identified by analyzing dependency among
clauses. If two or more clauses are dependent, fitness values are examined after
a certain number of fitness evaluations. We set the number of fitness evaluations
to 1000, which is half of the total search budget. If a constraint is non-conflicting
regardless of the complexity, its fitness should improve as the search proceed.
If fitness does not improve after a specified number of fitness evaluations, the
constraint is marked as a conflicting constraint and the search process is stopped
for this constraint. Finally, we also manually inspect the conflicting constraint
for confirmation.

112 H. Sartaj et al.

3 Empirical Evaluation

In this section, we present the empirical evaluation of our proposed approach.
The main objective is to evaluate the performance of our proposed strategy to
use the previous solution in solving MC/DC constraints. For the evaluation,
we selected the original version of Alternating Variable Method (AVMo) that
solves each constraint individually using Ali et al. [3] approach. We select AVM
because the final constraints after MC/DC contain a number of conjunctions,
disjunctions, and negations for which AVM has shown better performance than
(1+1) EA in the original experiment [2,3]. AVM is a local search algorithm that
starts the search by selecting one problem variable and tries to maximize its
fitness. When the fitness is improved for the selected variable, the AVM tries to
solve the next variable and this process continues until the complete problem is
solved or the search budget exceeds. We apply our proposed strategy to reuse the
previous solution in AVM and is referred to as AVMc. We use Random Search
(RS) as a comparison baseline. Our evaluation addresses the following research
question.

RQ1: Is reusing the previous solution to solve constraints (AVMc) better
than individual constraints solving (AVMo)?

– RQ1.1: Is AVMc better than AVMo in success rates?
– RQ1.2: Is AVMc better than AVMo in iteration counts?
– RQ1.3: Is AVMc better than AVMo in time to solve OCL constraints?

We primarily evaluate the performance of the algorithms in terms of success
rates. In cases where success rates are not sufficient to significantly differentiate
between the algorithms, we perform analysis using iteration counts. We also
compare algorithms based on the time to solve OCL constraints.

3.1 Experiment Design and Settings

We perform an experiment using four distinct case studies and analyze the results
as per the guidelines given in [6]. One case study is industrial that represents
a Ground Control Station (GCS) for an Unmanned Aerial Vehicle. Two case
studies, EU-Rental [12] and the Royal and Loyal [9,31] are widely referred in
OCL literature and are considered as a benchmark. The fourth case study com-
prises of the OCL constraints used in a subset of UML meta-model for State
Machines [23].

In total, there are 402 OCL constraints in all case studies. Out of 402 con-
straints, we select constraints that have more than one predicate and that pro-
duce a Boolean result (a requirement for solving a constraint [3]) for our exper-
iment. This leads to 84 OCL constraints. The included OCL constraints have
varying complexity with predicates ranging from two clauses to constraints with
seven clauses. Each OCL constraint transforms into multiple constraints when
MC/DC criterion is applied.

As search algorithms are random in nature, therefore, we set the number
of runs to 100, i.e., each algorithm is executed 100 times for each constraint.

MC/DC Test Data Generation 113

The maximum number of iterations for each run is set to 2000 iterations because
it has been used to solve OCL constraints in the previous empirical studies such
as Ali et al. [3]. The experiment is executed on 15 independent machines, having
at least quad-core 1.2 GHz processors with at least 1 GB RAM, and Linux and
Windows operating systems.

To compare success rates (which is a dichotomous data), we apply the Fisher
Exact test and calculate the Odds Ratios to check the extent of improvement.
In the cases where success rates are not statistically significant, we compare
based on the number of iterations a search algorithm takes to solve a constraint.
We apply the Wilcoxon test to compare the search algorithms and use Vargha-
Delaney Â12 measure [30] to calculate the magnitude of improvement. The sig-
nificant level is set at 0.05 as per the accepted practice in the domain [2,3].

0 50 100

AVMc

AVMo

RS

Fig. 1. Success rates for GCS case study

0 50 100

AVMc

AVMo

RS

Fig. 2. Success rates for EUR case study

0 50 100

AVMc

AVMo

RS

Fig. 3. Success rates for SM case study

0 50 100

AVMc

AVMo

RS

Fig. 4. Success rates for RnL case study

3.2 Results and Analysis

To answer RQ1.1 and RQ1.2, for industrial (GCS) case study, from Fig. 1 we
can see that the median success rate achieved by AVMc, AVMo, and RS are
98%, ≈80%, and ≈68% respectively. To analyze the results statistically, we refer
to Table 3. In the case of AVMc vs. AVMo, for 24 out of 30 constraints the
results are significant (i.e., p-value< 0.05). The results of effect size measure
(Odds ratio and Â12) show that for 22 out of 24 constraints AVMc is better
than AVMo. When comparing AVMo with RS, the results are significant for
28 out of 30 constraints and for 15 out of 28 AVMo is better than RS. The
comparison between AVMc and RS shows that for 27 out of 30 constraints the

114 H. Sartaj et al.

Table 3. Statistical results for GCS case study

CN AVMc vs. AVMo AVMo vs. RS AVMc vs. RS

p-value OR/A p-value OR/A p-value OR/A

1 0.000012 0.3986 2.6E−13 0.669 0.0532 0.5444

2 0.8449 0.4954 5.7E−74 0.9246 1.6E−6 0.6116

3 0.335 0.5225 7.9E−33 0.7782 1.6E−11 0.6568

4 0.0846 0.4599 7.5E−35 301.2494 7.5E−35 301.2494

5 0.1764 0.4686 0.081 0.5405 0.1232 0.4647

6 0.00018 2.0599 1.7E−29 0.0242 4.4E−15 0.0498

7 3.6E−106 127.4298 0.00012 1.6782 5.8E−140 213.8522

8 0.0043 1.7226 7.4E−27 0.0388 7.8E−16 0.0669

9 1.2E−7 0.0188 9.4E−33 321.8789 1.2E−13 6.0629

10 1.5E−37 10.3353 1.3E−15 0.2588 6.5E−7 2.6751

11 3.1E−33 264.3433 2.6E−10 0.3715 1.3E−33 267.8885

12 8.4E−29 7.0351 3.4E−16 0.2512 0.0025 1.7676

13 7.6E−26 21.7076 1.3E−15 3.8677 4.3E−70 83.9588

14 9.5E−26 32.1866 3.8E−190 4420.632 1.6E−292 142285

15 1.3E−28 78.7383 8.3E−139 2709.393 4.3E−237 213333

16 4.6E−94 47.4575 1.5E−74 707.692 6.4E−273 33585.276

17 7E−22 3.5238 1.9E−119 0.0007 6.2E−51 0.0023

18 2.5E−24 15.6491 1.1E−131 2363.542 1.9E−223 36987.353

19 1 0.5 1 0.5 1 0.5

20 4.8E−34 6.1659 8.3E−37 0.1495 0.00031 0.4264

21 9.1E−196 0.9968 1.3E−295 16220.735 6.9E−293 5397.908

22 0.0112 1.6089 8.4E−35 0.0034 8.1E−24 0.0054

23 3E−59 0.815 7.3E−56 0.1987 0.00028 0.5829

24 9.9E−13 9.8444 0.0026 1.7893 1.3E−23 17.6148

25 0.1711 0.532 1E−40 0.8128 2.4E−11 0.6566

26 0.00015 2.5521 4.1E−8 0.2204 5E−14 0.677

27 5.2E−30 31.8636 6.6E−28 0.0339 5.2E−54 0.1924

28 7.7E−76 0.87 8E−50 441.5571 8E−50 441.5571

29 1.9E−30 224.076 3.3E−14 2.8472 1.6E−72 637.9834

30 6E−147 0.9688 9.6E−123 1577.4113 9.6E−123 1577.411
aBold text values indicate the results obtained based on the iterations
count and when a statistically significant difference is not observed.

MC/DC Test Data Generation 115

Table 4. Overall comparison results for all case studies

CS AVMc vs AVMo AVMc vs AVMo (Time) AVMo vs RS AVMc vs RS

Significant ES Significant ES Significant ES Significant ES

GCS 24 22 25 12 28 15 27 21

EUR 26 26 29 22 32 31 32 32

SM 10 3 9 5 7 7 9 9

RnL 8 8 8 5 9 9 9 9
aSignificant results count show the number of times p-value< 0.05 and the effect size
(ES) count show the number of times an algorithm is better.

results are significant and for 21 out of 27 AVMc is better than RS based on
effect size measure.

Due to space limitation in the paper, we provide a summarized analysis of
the results for EUR, SM, and RnL case studies in Table 4. Therefore, we refer
to this table for the discussion on the results of these case studies. However, the
detailed results are available in an online public repository1.

For EUR case study, when comparing AVMo with AVMc based on the success
rate, we can see from Fig. 2 that the median success rate achieved by AVMc,
AVMo, and RS are ≈100%, ≈65%, and ≈10% respectively. In the case of AVMc
vs. AVMo, for 26 out of 34 constraints the results are significant (p-value< 0.05)
and for all 26 constraints AVMc is better than AVMo based on effect size measure
(Table 4). When comparing AVMo with RS, the significant difference is obtained
for 32 out of 34 constraints and for 31 out of 32 constraints the effect size suggests
that AVMo is better than RS. The comparison between AVMc and RS shows
that for 32 out of 34 constraints the results are significant and for all cases,
AVMc is better than RS based on effect size measure.

For SM case study, from boxplot in Fig. 3, we see that both AVMo and
AVMc are able to achieve a 100% median success rate. In the case of RS, for
some constraints, it achieves approximately a 100% success rate and sometimes
its success rate is close to zero. Table 4 shows that in the case of AVMc vs.
AVMo, for all 10 constraints the results are statistically significant. The effect
size measure suggests that for three constraints AVMc is better than AVMo.
When comparing AVMo with RS, except for the constraint number 1, 3 and 6,
the results are statistically significant and for the remaining seven constraints the
effect size shows that AVMo is better than RS. The comparison between AVMc
and RS shows that except for the constraint number 1 results are significant and
according to effect size AVMc is better than RS for all constraints.

For RnL case study, if we compare search algorithms performance based on
success rate, from boxplot in Fig. 4, we can see that both AVMo and AVMc
are able to achieve ≈100% median success rate. In the case of RS, for some
constraints, it achieves ≈65% success rate, however, in most cases, the success
rate is close to 0. From statistical results presented in Table 4, we can see that
for AVMc vs. AVMo, for eight out of 10 constraints the results are statistically
1 https://github.com/hassansartaj/ssbse19.

https://github.com/hassansartaj/ssbse19

116 H. Sartaj et al.

significant. The effect size measure shows that for all eight constraints, AVMc is
better than AVMo. When we compare AVMo and AVMc with RS, we can observe
that for nine out of 10 constraints, the results are statistically significant and
for all nine constraints both AVMc and AVMo are better than RS according
to the effect size measure. Based on the above-mentioned discussion on four
case studies, we conclude that AVMc outperforms both AVMo and RS based on
success rates (RQ1.1) and iteration counts (RQ1.2).

To answer RQ1.3, we compare the time taken by executing AVMc and AVMo
on various case studies (as shown in Table 4, column 3). The comparison between
AVMc and AVMo for GCS case study shows that for 25 out of 30 constraints the
difference between the time taken to solve constraint with AVMc is significantly
(p-value< 0.05) better than the time taken to solve constraint with AVMo. For
EUR case study, for 29 out of 34 constraints AVMc performs significantly better
than AVMo. In the case of the SM case study, for 9 out of 10 constraints AVMc
takes significantly lesser time than AVMo. Similarly, for RnL case study, for 8
out of 10 constraints the results are significantly better than AVMo. Moreover,
the actual time taken by AVMc including the seed time is less as compared to
AVMo. For some constraints AVMc takes approximately half time from a total
of AVMo. We report the detailed time analysis results for all case studies at
online repository (see Footnote 1). The results include a statistical comparison
(p-values and effect size), the total time to solve each constraint and the initial
seed selection time for AVMc. Therefore, based on the time analysis, we conclude
that reusing the previous solution as the initial seed, as we do in AVMc, improves
the performance of constraints solving.

3.3 Threats to Validity

A potential threat to validity is the generalization of the results. To minimize
the threat to external validity, for our experiment, we selected four case studies
from various domains with different size and complexity. We used 84 OCL con-
straints from all the case studies. We selected constraints that contain predicate
with the number of clauses ranging from two to seven. The selected constraints
were representative of various cases with different complexity levels. We com-
pare AVMo using Ali et al. [3] approach with AVMc that uses our proposed
strategy to reuse the previous solution. It is not feasible to compare our app-
roach with the approaches that are not targeting OCL constraint solving and
constraint coverage, as these cannot be directly applied in our context. The
approach by Hemmati et al. [17] is the most relevant approach of MC/DC solv-
ing of OCL state machine constraints and uses the (1+1) EA approach of Ali
et al. [3]. Our approach is an improved strategy of reusing solutions while solving
a constraint for MC/DC. If other strategies of OCL constraint solving evolve,
our approach will be applicable to these approaches as well. We do not claim
that our results are generalizable for all cases, but this threat is largely common
among all empirical studies. Construct validity threat occurs when the rela-
tionship between cause and effect cannot be determined. To reduce construct
validity threat, we used the same stopping criterion for all algorithms and it was

MC/DC Test Data Generation 117

fixed up to 2000 iterations. We also used various measures such as time, suc-
cess rates, and iteration counts that are considered suitable for the comparison
among search algorithms. Conclusion validity threat is related to the effect of
treatment on the outcome of results. To reduce conclusion validity threat, we ran
each constraint 100 times. Moreover, to measure statistical significance, we used
the Fisher exact when comparing based on success rate and Wilcoxon test when
the comparison is performed based on iterations count. We also calculate the
effect size using the Odds ratio and Vargha-Delaney Â12 measure [30]. Finally,
the search algorithms we used in our experiment do not require explicit parame-
ter setting. Therefore, there is no potential threat to the internal validity of our
experiment.

4 Related Work

In the work related to code-based approaches, there are approaches that gen-
erate test data for different coverage criteria, such as branch coverage [15,16],
path coverage [18], and multiple conditions coverage [13] and modified condi-
tion/decision coverage (MC/DC) criterion [7,33,34]. Godboley et al. [14] try to
enhance MC/DC coverage using code transformation approach. Li et al. [20]
uses combinatorial testing to achieve MC/DC and then conducts an empirical
evaluation to access the efficiency and effectiveness of MC/DC in terms of faults
detection. There are some code-based test case generation approaches that tar-
get multiple coverage criteria and use the concept of solutions archiving. Rojas
et al. [27] used the concept of solutions archiving to enhance the performance of
the whole test suite generation. Panichella et al. [25] proposed an archive-based
algorithm (DynaMOSA) to efficiently generate test cases. The major advantage
of our approach over the above-mentioned approaches is that the generated test
data can be used for the application using any programming language.

In the work related to specification-based approaches, a test data gener-
ation approach was proposed that solves constraints [2,3] using search tech-
niques. Moreover, to improve test data generation, a work targeting boundary
value analysis was proposed by Ali et al. [5]. There are approaches [1,8,24] that
use OCL constraints for generating test data. For solving constraints there are
approaches that use Boolean specification [32] and state-based specification [21].
The main limitation of these approaches is that they do not support the MC/DC
criterion. Hemmati et al. [17] applied the MC/DC criterion on guard conditions
present in the state machine. Their experiment results highlight the limitations
of the search budget, search space, and execution time. Whereas our approach
significantly improves the performance of MC/DC constraints solving.

5 Conclusion

An important step in the model-based testing of systems is generating test data
from constraints written in Object Constraint Language (OCL). The existing

118 H. Sartaj et al.

test data generation approaches from OCL focus on generating one solution cor-
responding to a constraint. If a constraint has more than one clauses, there is
a possibility that test data is generated corresponding to only a subset of the
clauses. Test data generation techniques in the literature discuss various coverage
criteria for test generation to achieve a sufficient level of coverage. For safety-
critical applications, a commonly used criterion is Modified Condition/Decision
Coverage (MC/DC) which requires the coverage of individual clauses of a con-
straint. The goal of this work is to improve the OCL test data generation by
including support for MC/DC criterion. For this purpose, we propose a search-
based strategy that utilizes case-based reasoning (CBR) to reuse the already
generated test data and generate new test data that provides MC/DC cover-
age of OCL constraints. To evaluate the performance of the proposed approach
in solving MC/DC constraints, we perform an empirical evaluation using AVM
without CBR (AVMo), AVM with CBR (AVMc), and use Random Search (RS)
as a baseline for comparison. We use 84 OCL constraints from four case studies
belonging to different domains with varying size and complexity. The experi-
mental results show that our proposed strategy of reusing already generated
test data is better as compared to generating test data without using previous
test data.

References

1. Aichernig, B.K., Salas, P.A.P.: Test case generation by OCL mutation and con-
straint solving. In: Fifth International Conference on Quality Software (QSIC
2005), pp. 64–71. IEEE (2005)

2. Ali, S., Iqbal, M.Z., Khalid, M., Arcuri, A.: Improving the performance of OCL
constraint solving with novel heuristics for logical operations: a search-based app-
roach. Empir. Softw. Eng. 21(6), 2459–2502 (2016)

3. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from ocl con-
straints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013)

4. Ali, S., Yue, T., Zohaib Iqbal, M., Panesar-Walawege, R.K.: Insights on the use
of OCL in diverse industrial applications. In: Amyot, D., Fonseca i Casas, P.,
Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 223–238. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11743-0 16

5. Ali, S., Yue, T., Qiu, X., Lu, H.: Generating boundary values from OCL constraints
using constraints rewriting and search algorithms. In: 2016 IEEE Congress on
Evolutionary Computation (CEC), pp. 379–386. IEEE (2016)

6. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 1–10. IEEE (2011)

7. Awedikian, Zeina, K.A., Antoniol, G.: MC/DC automatic test input data genera-
tion. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, pp. 1657–1664. ACM (2009)

8. Benattou, M., Bruel, J.M., Hameurlain, N.: Generating test data from OCL spec-
ification. In: Proceedings of ECOOP Workshop Integration and Transformation of
UML Models (2002)

9. Cabot, J.: OCL repository (2014). https://github.com/jcabot/ocl-repository

https://doi.org/10.1007/978-3-319-11743-0_16
https://github.com/jcabot/ocl-repository

MC/DC Test Data Generation 119

10. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Softw. Eng. J. 9(5), 193–200 (1994)

11. Ferrell, T., Ferrell, U.: RTCA DO-178C/EUROCAE ED-12C (2017)
12. Frias, L., Queralt Calafat, A., Olivé Ramon, A.: EU-rent car rentals specification

(2003). http://hdl.handle.net/2117/97816
13. Ghani, K., Clark, J.A.: Automatic test data generation for multiple condition and

MCDC coverage. In: Fourth International Conference on Software Engineering
Advances, ICSEA 2009, pp. 152–157. IEEE (2009)

14. Godboley, S., Prashanth, G., Mohapatro, D.P., Majhi, B.: Increase in modified con-
dition/decision coverage using program code transformer. In: 2013 IEEE 3rd Inter-
national Advance Computing Conference (IACC), pp. 1400–1407. IEEE (2013)

15. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. ACM SIGSOFT Softw. Eng. Notes 23(6), 231–244
(1998)

16. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating test data for branch coverage.
In: Proceedings of the Fifteenth IEEE International Conference on Automated
Software Engineering, ASE 2000, pp. 219–227. IEEE (2000)

17. Hemmati, H., Arefin, S.S., Loewen, H.W.: Evaluating specification-level MC/DC
criterion in model-based testing of safety critical systems. In: 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), pp. 256–265. IEEE (2018)

18. Lakhotia, K., Harman, M., McMinn, P.: A multi-objective approach to search-
based test data generation. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, pp. 1098–1105. ACM (2007)

19. Leake, D.: Case-Based Reasoning: Experiences. Lessons and Future Directions.
MIT Press, Cambridge (1996)

20. Li, D., Hu, L., Gao, R., Wong, W.E., Kuhn, D.R., Kacker, R.N.: Improving MC/DC
and fault detection strength using combinatorial testing. In: 2017 IEEE Interna-
tional Conference on Software Quality, Reliability and Security Companion (QRS-
C), pp. 297–303. IEEE (2017)

21. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Softw. Test. Verif. Reliab. 13(1), 25–53 (2003)

22. OMG: Object constraint language specification v2.4. Object Management Group
Inc. (2014). http://www.omg.org/spec/OCL/2.4/

23. OMG: UML. unified modeling language specification, version 2.5.1. Object Man-
agement Group Inc. (2017). http://www.omg.org/spec/UML/2.5.1/

24. Packevicius, S., Krivickaite, G., Barisas, D., Jasaitis, R., Blazauskas, T., Guogis,
E.: Test data generation for complex data types using imprecise model constraints
and constraint solving techniques. Inf. Technol. Control. 42(2), 131–149 (2013)

25. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Trans. Softw. Eng. 44(2), 122–158 (2018)

26. Rajan, A., Whalen, M.W., Heimdahl, M.P.: The effect of program and model struc-
ture on MC/DC test adequacy coverage. In: Proceedings of the 30th International
Conference on Software Engineering, pp. 161–170. ACM (2008)

27. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empir. Softw. Eng. 22(2), 852–893
(2017)

28. Spitzer, C., Ferrell, U., Ferrell, T.: Digital Avionics Handbook. CRC Press, Boca
Raton (2014)

http://hdl.handle.net/2117/97816
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.5.1/

120 H. Sartaj et al.

29. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Else-
vier, Amsterdam (2010)

30. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

31. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Getting Your Mod-
els Ready for MDA. Addison-Wesley Professional, Boston (2003)

32. Weyuker, E., Goradia, T., Singh, A.: Automatically generating test data from a
boolean specification. IEEE Trans. Softw. Eng. 20(5), 353–363 (1994)

33. Woodward, M.R., Hennell, M.A.: On the relationship between two control-flow
coverage criteria: all JJ-paths and MCDC. Inf. Softw. Technol. 48(7), 433–440
(2006)

34. Yu, Y.T., Lau, M.F.: A comparison of MC/DC, mumcut and several other coverage
criteria for logical decisions. J. Syst. Softw. 79(5), 577–590 (2006)

Bio-Inspired Optimization of Test Data
Generation for Concurrent Software

Ricardo F. Vilela1(B), Victor H. S. C. Pinto1, Thelma E. Colanzi2,
and Simone R. S. Souza1

1 Institute of Mathematical and Computer Sciences,
University of São Paulo (ICMC-USP),

Trabalhador São-carlense Avenue, 400 - Center,
São Carlos, SP 13.566-590, Brazil

{ricardovilela,victor.santiago}@usp.br, srocio@icmc.usp.br
2 Informatics Department, State University of Maringá,

UEM - Av. Colombo, 5790 - Zona 7, Jd. Universitário, Maringá 87020-900, Brazil
thelma@din.uem.br

Abstract. Concurrent software includes a number of key features such
as communication, concurrency, and non-determinism, which increase
the complexity of software testing. One of the main challenges is the test
data generation. Techniques of search-based software can also benefit
concurrent software testing. To do so, this paper adopts a bio-inspired
approach, called BioConcST, to support the automatic test data gen-
eration for concurrent programs. BioConcST uses a Genetic Algorithm
(GA) and an evolutionary strategy adapted to accept genetic information
from some bad individuals (test data) in order to generate better indi-
viduals. Structural testing criteria for concurrent programs are used to
guide the evolution of test data generation. An experimental study was
carried out to compare BioConcST with an elitist GA strategy (EGA)
in terms of adequacy of testing criteria for message-passing and shared-
memory programs. Twelve concurrent Java programs were included and
the results suggest BioConcST is a promising approach, since in all the
testing criteria evaluated, it achieved a better coverage and the effect-size
measure was large in most cases.

Keywords: Concurrent software testing · Structural testing ·
Search-based software testing · Genetic algorithm ·
Test data generation

1 Introduction

Software testing is an expensive and non-trivial activity which, in general, is
carried out on the basis of the tester’s experience. In the past, a great effort to
systematize this activity was undertaken and different testing techniques, criteria
and tools have been proposed [1].

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 121–136, 2019.
https://doi.org/10.1007/978-3-030-27455-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_9

122 R. F. Vilela et al.

Concurrent software testing poses new challenges that require specialist
strategies to deal with the communication and non-determinism of these pro-
grams. The use of the same input in different executions does not guarantee
that the program will follow the same sequence of instructions owing to the non-
deterministic behavior that makes the testing activity challenging. In addition,
concurrent programs may have a significant degree of synchronization among the
processes or threads (syncs) and this must be checked during the testing activ-
ity. Structural testing criteria were drawn up for concurrent programs, including
a test model, coverage criteria and testing tools that address the question of
message-passing and shared-memory communication paradigms. These criteria
are useful for a manual selection of test data in order to determine the test
requirements of the concurrent programs under test (SUT). These test require-
ments include, for instance, to test all possible syncs, assuring the coverage of
specific aspects of concurrent programs and, therefore, contributing to deal with
challenges in this software domain. However, the manual analysis of these pro-
grams is a complex and error-prone task, even for a tester with exceptional
expertise, since non-determinism is a factor that makes this activity hard and
time-consuming.

The generation of test data is a problem that involves a large set of choices
or decisions. For a traditional program, the input domain can be infinite and
different test sets can present good solutions. The same problem happens in the
context of concurrent programs adding the necessity of finding a good test set to
execute also all possible synchronizations and communications. Hence, test data
generation for concurrent program can be treated as an optimization problem to
be tackled by search techniques, which might be guided by testing criteria based
on features of concurrent programs. Genetic Algorithm (GA) is a meta-heuristic
widely used to address the problem of test data generation, because it has a
generic form and efficient search mode. Moreover, studies involving automatic
test data generation for concurrent programs are still fairly recent [8,20].

This paper proposes a bio-inspired approach, named BioConcST, defined
to support the generation of automatic test data for concurrent programs. Bio-
ConcST involves employing evolutionary strategies that lead to a dynamic search
by avoiding an early convergence in the search space and prevents the genera-
tion of test data being restricted to the local maximum. In the context of this
work, local maximum represents a region of the program where a large num-
ber of test requirements are concentrated, but they are not necessarily the most
important for testing purposes. Our approach selects test data where there is a
low code coverage (bad candidates) to improve the test set over the generations.
The candidates (i.e. the test data) that are able to meet a large number of test
requirements (e.g. high code coverage) are not always effective in making the
software fail since the faults are usually grouped into specific parts of the pro-
gram [9]. If the test data go through a particular part of the program, there is a
risk that faults will not be revealed. The aim is to identify key test requirements,
such as synchronization edges that have not yet been executed, the use of shared
variables, and the messages exchanged, which may lead to an improvement in
the generation of new individuals by genetically recombining the test data.

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 123

To the best of our knowledge, BioConcST is the first approach for the gen-
eration of test data for concurrent programs that considers both concurrent
communication paradigms (shared-variables and message-passing). BioConcST
was evaluated experimentally and compared with an elitist approach that always
prioritizes the best individuals in the generations. We analyzed eight testing cri-
teria in twelve programs that use message passing or shared memory in the
process/thread communication. In the case of all testing criteria, there is a sta-
tistically significant difference between the samples evaluated and BioConcST
was superior in all analyses that were conducted.

The paper is structured as follows: Sects. 2 and 3 provide background and
related work; Sect. 4 describes the BioConcST approach; Sect. 5 describes an
experimental study conducted to evaluate BioConcST and finally, Sect. 6 sum-
marizes the conclusions and makes suggestions for future work.

2 Concurrent Software Testing: Basic Concepts

Concurrent programming provides features that increase the efficiency of the
execution time, avoids idle resources, and reduces computational costs [3]. Inter-
action between the processes/threads takes place through two different activities:
communication and synchronization. Communication occurs through the data
exchanged and the synchronization establishes an order of execution for the
processes/threads, and thus creates the semantics of the application. Shared-
variable and message-passing are the concurrent paradigms used for the interac-
tion between processes or threads. When the processes/threads only have sep-
arate address spaces, communication and synchronization take place through
message-passing. It is assumed that, while waiting for a message, the receiver
is already making a logical synchronization with the transmitter. In this study,
we examine the exchange of messages by send/receive primitives, following the
syntax: send (Message, Receiver Address) andreceive (Message).

Concurrent software testing focuses in detect errors related to communica-
tion, parallelism, and synchronization. Thus, the testing criteria are defined to
find the errors of these categories and also to test sequential aspects. A test
model, data flow criteria and a testing tool (ValiPar) for Java concurrent pro-
grams with message-passing and shared-memory paradigms are defined in [17].
The family of testing criteria for shared-memory and message-passing [17,18],
adhered to in this study, are presented below.

– all-nodes (AN): requires that all nodes (statements) be executed at least
once by the test sets.

– all-edges (AE): all edges (control-flow) must be executed at least once by
the test sets.

– all-sync-edges (ASE): all synchronization edges (synchronization flow)
must be executed at least once by the test sets. These edges denote the
synchronization between the threads (or processes) of the program.

– all-shared-uses (ASU): the test sets must execute paths that cover all
shared-memory communication associations. Shared-memory communication

124 R. F. Vilela et al.

association refers to shared-variables and it is defined as a triad formed of a
definition point, use point and shared-variable.

– all-m-uses (AMU): test sets must execute paths that cover all message-
passing ‘communication associations’. Message-passing ‘communication asso-
ciation’ refers to message-passing and it is defined as a triad formed by the
definition point, use point and variable sent in a communication.

– all-intra-message-uses (AAU): test sets must execute paths that cover all
intra-m-c-use and intra-m-p-use associations. The purpose of this criterion is
to reveal faults in the message-passing communication of different threads of
the same process. The intra-m-c-use and intra-m-p-use associations take note
of the m-use of data before they have been sent by a message and then the
respective c-use (computational use of a variable) and p-use (predicative use
of a variable) of the same data, after they have been received by the target
thread in the same process.

– all-inter-message-uses (AEU): test sets must execute paths that cover
all inter-m-c-use and inter-m-p-use associations. This criterion aims to reveal
faults in the message-passing communication of different threads belonging to
separate processes. The inter-m-c-use and inter-m-p-use associations include
the m-use of data before they have been sent by a message and then the
respective c-use and p-use of the same data after they have been received by
the target thread, in a separate process.

– all-uses (AU): require that all kinds of data-flow association must be exe-
cuted at least once by test sets. The purpose of this criterion is to test all
possible use of the variables in the program.

3 Search-Based Software Testing for Concurrent Software

Bio-inspired optimization techniques [12], such as GA, are becoming important
for several research areas including software testing. When applied to test data
generation, GA is usually divided into two categories: (1) coverage-based eval-
uation function, where the evaluation is performed based on the coverage of
each test data; and (2) goal-oriented evaluation function, where the function is
specified according to a goal which is usually the coverage of a particular ele-
ment. These approaches are usually employed for sequential programs [6,14] that
only focus on the data flow and/or execution flow of the programs under test.
Some related works that have explored bio-inspired techniques in the context of
concurrent programs are described next.

Chicano et al. [2] conducted a comparative study that included five meta-
heuristic algorithms to support the detection of errors in Java concurrent pro-
grams. Their main purpose was to evaluate the applicability of space-state search
techniques in the context of concurrent software. The results suggest that meta-
heuristic algorithms are a more effective way of finding safety property violations
than the classical, deterministic and ‘complete search’ algorithms that are gener-
ally used in the explicit-state model checking domain. Despite this, the approach
uses an expensive technique that may be infeasible for large programs and also
does not conduct a dynamic analysis of program execution.

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 125

Hrubá et al. [4] adopt a strategy to apply a multi-objective GA to the test-
and-noise configuration search problem (TNCS) for multi-threaded programs.
According to the authors, this technique is able to provide TNCS solutions that
cover a significant number of distinct interleaving schemes and can achieve sta-
ble results even with repeated executions. The approach also finds devices to
mitigate the influence of non-deterministic factors and extends the search to less
common patterns of behavior. The gathered data, prevented the approach from
being adversely affected by the degeneration problem and was able to obtain
settings of tests and noise that improve the efficiency of the testing process.
However, the approach does not take into account the data flow of shared vari-
ables and fails to address the problem of message passing programs.

Tian and Gong [20] devised an evolutionary method to test data generation
for concurrent programs. GA is used for producing test data that are designed for
the coverage of multiple paths, which is caused by message-passing in concurrent
programs. Empirical results indicate that the proposed method is more efficient
than a random generation. However, the authors removed the factor of non-
determinism when applying their approach and, hence, this approach does not
cover all aspects of the concurrent applications.

Rojas et al. [13] investigate the effectiveness of whole test suite generation,
through search-based techniques, under different perspectives of software testing.
A key analysis carried out verifies whether or not whole generating suites could
be optimized by only targeting coverage goals not already covered. This hedging
strategy can be efficient to prioritize those test data that perform coverage goals
not yet achieved. Nevertheless, it cannot be applied to concurrent programs
due to non-determinism, because a test data can achieve a coverage goal in a
given execution, but it cannot be guaranteed in future executions. This makes
it difficult the individual fitness evaluation.

Steenbuck and Fraser [19] proposed a coverage criterion for shared memory
programs that enforce concurrent execution of combinations of shared variable
access points with different schedules and a search-based approach in test case
generation for this coverage criterion. The results were satisfactory for the iden-
tification of defects related to data race conditions and deadlocks. However, the
approach presents limitations in the detection of the other types of faults, in par-
ticular, those related to the data flow of variables of the concurrent programs.

Based on the context presented, we noticed that there is no scientific evidence
on how test data generation can be performed for concurrent programs taking
into account the main paradigms of communication, message passing and shared
memory. In addition, important aspects such as data flow of communication and
non-determinism are not explored in the identified studies.

4 BioConcST: Bio-Inspired Optimization for Concurrent
Software Testing

Our approach uses GA to create a population of candidate solutions (i.e. a set of
test data), guided by a fitness function which uses information from concurrent

126 R. F. Vilela et al.

software testing criteria. In this optimization problem, the best solutions are not
necessarily grouped in the same region of the search space. In BioConcST, the
search process is dynamic and seeks possible best solutions far from the best
current solution. Thus, our search includes mechanisms that seek to extend to a
global search, prioritizing individuals with high and low fitness values.

To illustrate this scenario, a program that calculates two methods - Greatest
Common Divisor (GCD) and Least Common Multiple (LCM) is utilized. This
program calculates these methods from three numbers (x, y, z) by following 4
processes (one master M and three slave processes (S1, S2, S3)). M sends the
inputs to the slaves to calculate the GCD or LCM value: S1 receives the values
of x and y; S2 receives the values of y and z. S1 and S2 send the results to
process M . S3 will only be executed if the returned values do not represent the
end result. When this is the case, S3 receives the values sent by S1 and S2 so
that it can calculate the end result for GCD or LCM. The input arguments of
GCD/LCM program are given as follows: (i) the value that defines the method
required for computing (0 for GCD or 1 for LCM); (ii) the value of x; (iii) the
value of y; and (iv) the value of z.

Suppose the test input t1 = {0 9 18 6}. A timestamp of this execution
(GCD) is illustrated in Fig. 1. This figure shows a space-time diagram in which
vertical lines represent the execution of four processes P0;P1, P2 and P3. The
interaction between processes is represented by arrows from a send event to a
receive event, where these interactions represent sync-edges to be covered during
the testing activity. This test input must execute 50% of the code statements
(coverage for all-sync-edges criterion) to calculate the GCD (because neither all
sync-edges are covered). On the other hand, if the input test t2 = {1 5 5 5}
for the calculation of the LCM, it does not execute the S3 process, since the
value returned from the S1 and S2 slaves are enough to obtain the final result
(Fig. 1 (LCM)). Therefore, t2 has a lower coverage for the all-sync-edges criterion
(24.5%) although it is able to cover parts of the code not covered by t1. t1 appears
to be better than t2 for the next generations because it is able to achieve greater
coverage. However, when only the preliminary best inputs are taken into account
and the test inputs with low coverage are ignored, important test information of
the program might be overlooked with the risk that it will no longer be discovered
in the search space.

An overview of our bio-inspired optimization approach to concurrent soft-
ware testing is shown in Algorithm 1. The BioConcST algorithm requires as
input a concurrent program under test (SUT) and the information about its
communication paradigm (message-passing or shared-memory). As output, the
program provides an appropriate test set that consists of the selected test data
in the optimization process.

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 127

Fig. 1. Timestamp of GCD/LCM program.

In the first stage (line 2) a random population of test data is generated,
which will be the starting-point for optimizing the problem. The population
consists of an individual (or chromosomes) that correspond to the test data (or
test inputs) of the program under testing. The test data consists of one or more
input parameters, each parameter being regarded as a gene in our approach.
For instance, consider a program that has three integer values as input parame-
ters. Each input parameter can be regarded as a gene, and thus the set formed
by the three input values makes up a chromosome.

In the next stage (line 3), a ‘fitness evaluation’ of the population is carried out
so that the individuals can be categorized in terms of their ability to achieve a
test goal (for instance, a test goal must comply with a specific testing criterion).
The stages of the fitness evaluation are described in lines (3–10) of Algorithm 2.

In the optimization process, a stopping criterion for the algorithm must be
defined. It is important to note the difference between the stopping criterion and

128 R. F. Vilela et al.

the testing criterion. The stopping criterion is often found among the GAs since
it is responsible for determining when the optimization achieves its goal or when
the process should be interrupted for reasons of time or resources. A testing
criterion defines which elements of a program must be tested. The BioConcST’
stopping criterion includes a population able to reach 100% of coverage for all
the testing criteria, that is, our approach seeks to take account of the testing
criteria. If the stopping criterion is not met, the evolutionary process continues
until a maximum number of (previously defined) generations, is reached.

Genetic operators are used to expand the current population. In this study,
the operators were defined to avoid local maximum and premature convergence,
by adopting the Pareto-like distribution of faults [9] where most of the faults are
found in small source-code pieces. For this reason, in each generation, we select
the best and the worst solution (or test data), while the rest of the individuals
are selected by tournament.

To broaden the search for individuals, two types of genetic operators are used
for recombination (Cmethod). When two individuals are selected for recombina-
tion, following a rate value (Crate), a random method defines which one will
be used for recombination. The purpose of this strategy is to make the search
more dynamic during the generations. The first recombination method is the
single-point crossover, whereby after recombination, two new child individuals
are generated. In the second method, a random value is chosen for each parent
(range of 0 to 1), and then a chromosome gene is randomly selected and modified
(Eq. 1). This method can allow greater diversity in the search, since it accepts
a small degree of randomness in the process of recombination, unlike the first
method. The mutation also occurs by means of different operators (Mmethod),
following a previously defined rate (Mrate). In the former, a gene is selected and
a random value is redefined for that gene. Another type selects two genes in the
same chromosome and thus inverts the values between the genes.

Gene = α ∗ Parent1 + (1 − α) ∗ Parent2 (1)

A child population is generated from the genetic operators and a fitness
assessment is necessary to measure the aptitude of the new individuals. Following
this, the best and worst individuals of this population are selected to form the
new generation, and the other individuals are selected by tournament. As a
result, the optimization process is iterated until the stopping criterion is reached.
An optimized test set is obtained after the generation cycles.

The evaluation of individuals in our context defines the suitability of a test
input regarding the elements achieved by this test data. The method used to
evaluate individuals from a population is shown in Algorithm 2.

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 129

Since the fitness assessment of each individual depends on the type of com-
munication paradigm of the SUT, we define two fitness functions based on the
testing criteria pertaining to the communication paradigm. The fitness function
is formed of other functions that determine the coverage of each testing criterion,
as shown in Eq. 2, where TC represents the testing criterion. Every criterion fol-
lows the same function structure. The dividend of the fraction is formed of the
covered elements of the TC, such that “i” represents one of the executions from
the test data. Each test data is executed ten times so that different synchroniza-
tion sequences can be identified and the effects of non-determinism reduced. In
this way, the sum of all different elements identified during the runs is obtained.
In turn, the fraction divisor comprises the total number of elements required
for a program. Certain criteria are more powerful in terms of strength and for
this reason, they should be given priority during the software testing. Addition-
ally, the value obtained in Eq. 2 is standardized according to its corresponding
weight. The weights were defined according to the strength of each criterion [7].
Table 1 shows the weights defined for each testing criteria in accordance with
the communication paradigms.

f(TC) =

(
10∑
i=1

CoveredElementsi

TotalElements

)
× Weight TC (2)

Table 1. Normalization of criteria weight.

Criteria weight

AN AE AU AEU AAU ASE AMU ASU

Message passing 5 5 30 15 15 15 15 -

Shared memory 10 10 40 - - 20 - 20

The fitness value of an individual is made up of all included criteria.
Equation 3 shows the fitness function for the testing criteria of message-passing

130 R. F. Vilela et al.

programs, in which the following testing criteria are covered: all-nodes (AN), all-
edges (AE), all-uses (AU), all-inter-message-uses (AEU), all-intra-message-uses
(AAU), all-sync-edges (ASE), and all-m-uses (AMU). A fitness function has also
been established for the testing criteria for shared-memory programs (Eq. 4),
and the following testing criteria are included: all-nodes (AN), all-edges (AE),
all-uses (AU), all-sync-edges (ASE), and all-shared-uses (ASU).

FitnessMP = f(AN)+f(AE)+f(AU)+f(AEU)+f(AAU)+f(ASE)+f(AMU)
(3)

FitnessSM = f(AN) + f(AE) + f(AU) + f(ASE) + f(ASU) (4)

Some functionalities from the ValiPar testing tool [11] are employed in
Algorithm 2 to obtain information about the test, such as: testing requirements,
testing execution and evaluation. Each test data is run ten times to reduce the
effects of non-determinism and to execute separate synchronization edges. While
not ensuring that all edges will be covered, this provides more information about
the test and greater reliability for the fitness evaluation.

5 Experimental Evaluation

An experimental study was conducted to evaluate our approach in terms of test-
ing adequacy criteria. Concurrent programs that use message passing and shared
variable paradigms were subjected to BioConcST and the Elitist Genetic Algo-
rithm (EGA). Our choice was based on the contrast between the approaches.
While the former allows some worse individuals to survive through the genera-
tions, the latter does not do it. With this in mind, our objective was to inves-
tigate whether the assurance of recombination of those individuals contributes
to the selection of the test set in concurrent programs [16]. The results of these
approaches were compared in the same conditions with the aim of determin-
ing whether BioConcST is more efficient and effective than EGA in providing
coverage with regard to the testing criteria required for concurrent software.

We began by formulating the H hypothesis: BioConcST reaches coverage
above the EGA, relative to the adequacy of concurrent testing criteria. We eval-
uated H for each test criterion in relation to the programs under test. With the
null hypothesis the test sets of BioConcST reach a coverage equal to EGA. The
following hypotheses were defined on the basis of each communication paradigm.

Null hypothesis (H0): There is no difference, between the test sets of
BioConcST and EGA, with regard to the coverage of the testing criteria
(H0 : BioConcST = EGA).

Alternative hypothesis (H1): There is a difference between the test sets
of BioConcST and EGA, with regard to the coverage of the testing criteria
(H1 : BioConcST �= EGA).

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 131

5.1 Study Subjects: Concurrent Programs

The subjects were extracted from the TestPar1 benchmark making a total of
12 java concurrent programs (Table 2). The table includes some features of the
subjects. Some programs such as Greatest Common Divider (GCD) and Token
Ring have different versions since they have different implementation features.
The second column displays the communication paradigm (Par.) adopted by
each subject: Message Passing (MP) or Shared Memory (SM). The third col-
umn shows the number of processes (Pr) and the number of threads (Th). The
fourth column shows the number of synchronization edges (Sync-edges) for each
program. The number of definitions (Defs) is shown in the fifth column. The
required c-use and p-use elements are listed in the sixth column, while the intra-
m-uses and inter-m-uses elements are arranged in the seventh column. Finally,
the uses of shared variables (s-uses) are given in the eighth column. Note that
the message passing programs do not have shared variables, and shared memory
programs do not have intra/inter message uses.

Table 2. Concurrent programs selected for the experimental study

Program Par. Pr/Th Sync-edges Defs. c-uses/p-uses Intra/inter-m-uses s-uses

GCD 1 MP 4/4 33 229 412/54 95/195 -

GCD 2 MP 3/3 16 159 238/54 40/80 -

GCD/LCM MP 4/3 57 434 676/208 128/384 -

Token Ring 1 MP 4/4 12 238 302/88 8/24 -

Token Ring 2 MP 4/4 12 281 314/72 21/63 -

Token Ring 3 MP 4/4 51 285 388/128 236/726 -

Eratosthenes MP 4/4 15 380 541/174 6/42 -

Roller Coaster MP 6/6 206 530 1236/86 1088/4372 -

Producer Consumer SM 1/5 20 158 226/92 -/- 36140

Cigarette Smokers SM 1/5 42 59 92/48 -/- 5136

Matrix SM 1/13 192 552 484/24 -/- 127152

Jacobi SM 1/5 532 364 967/160 -/- 277092

5.2 Experimental Setup

In the configuration of the algorithms, the same parameters were defined for
both systems and there was an attempt to make a fair evaluation between them
(except the selection method because they are specifically designed for each
approach). In a previous study [21], we conducted a systematic mapping study to
find evidence about the configuration of GA parameters for test data generation
and a suggestion of parameters configuration was done. We use this suggestion
to define the initial configuration of the experiment. Pilot experiments were

1 http://testpar.icmc.usp.br/benchmarks.

http://testpar.icmc.usp.br/benchmarks

132 R. F. Vilela et al.

performed to calibrate the algorithms using parameter values adopted in the
literature. The population size was fixed to a higher than the required value
provided by the benchmark documentation. The number of executions was set
to obtain a significant sample of analyzes, taking into account that each SUT
is executed at least a thousand times. The number of generations as well as
mutation and crossover probabilities were set up after an algorithm convergence
analysis. Hence, these parameter values have been defined after the identification
of fitness stability. The settings are shown in Table 3.

Table 3. Experimental configuration

BioConcST EGA

Number of generations 10 10

Runs/executions 10 10

Population size 10 10

Mutation probability 0.3 0.3

Crossover probability 0.7 0.7

Selection method Tournament Elitism

The activities involved in the experiment were carried out by a virtual
machine in an isolated way, without the interference of other processes that
could affect the results. The settings of the virtual machine are as follows: (i)
Processor: Quad-core; (ii) Memory: 8 GB RAM; (iii) Operating System: Ubuntu
14.04.1 LTS; and (iv) JavaRuntime Edition: build 1.7.0 71b14.

5.3 Analysis of Results

In our analysis of the adequacy of testing criteria, we conducted normality tests
in our samples to determine the distribution of the data and define an adequate
statistical mean test. The Shapiro-Wilk test was employed for the normality test
and this resulted in a p-value greater than 0.05, which suggests that our sample
does not have a normal distribution pattern. For this reason, we opted for a
Kruskal-Wallis non-parametric mean test. In addition, we applied the Bonferroni
multiple comparison tests, which allow the samples to be divided into groups
when there is a significant statistical difference.

Figure 2 shows the results obtained by BioConcST and EGA with regard
the coverage of the testing criteria. Figure 2-A shows the results of coverage for
shared-memory programs. The analysis found significant differences between all
the evaluated criteria and, therefore, the Null Hypothesis (H0) can be rejected
with regard to the difference between the approaches, where BioConcST shows
a better criteria adequacy for this type of paradigm. The results for message-
passing programs (Fig. 2-B) also showed a significant difference in all seven of the
analyzed testing criteria, with a p-value less than 0.05. Thus, the null hypothesis

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 133

(H0) can be rejected with regard to the equality of coverage of criteria between
the approaches investigated. BioConcST achieved better results for message-
passing programs.

Fig. 2. Coverage for the test set generated by BioConcST and EGA in relation to the
testing criteria for shared-memory (A) and message-passing (B). The letters (a) and
(b) in the results represent the grouping of the samples, where there is a significant
statistical difference when different letters are in the same testing criterion.

The Vargha-Delaney Effect Size measure was used to evaluate the magnitude
of the difference estimated by the statistical test. Table 4 shows the results2 of
the effect size and the magnitude levels for all the testing criteria including the
message-passing and shared-memory paradigms. The magnitude levels for all
the criteria were large, except for ASU which was evaluated as medium. These
results corroborate that BioConcST is superior to EGA when assessed by most
of the selected criteria for concurrent programs.

Table 4. Gathered data from Vargha-Delaney Effect Size measure

AN AE AU AEU AAU ASE AMU ASU

Message passing Effect size 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -

Mag. level Large Large Large Large Large Large Large -

Shared memory Effect size 1.0 1.0 1.0 - - 1.0 - 0.7

Mag. level Large Large Large - - Large - Medium

5.4 Discussion

Concurrent programs are usually complex and carry out large tasks that involve
a high computational cost; for this reason, the testing of these programs is more

2 The experimental package is available in: http://bit.do/eNfts.

http://bit.do/eNfts

134 R. F. Vilela et al.

complex than when conducted by conventional applications. When a genetic
algorithm is adopted, each individual evaluation requires one execution of the
program under test, i.e., the costs also mainly depends on the complexity of the
program under testing. A large population in GA entails in long execution time
and the evolutionary process increases the costs of the testing even more. Despite
this, GA is still regarded as a useful strategy when compared with exhaustive
strategies, since it investigates the search space at a lower cost.

Defining a fitness function is a major challenge for concurrent software test-
ing, because the same test data may have different fitness values in two or more
evaluations as a result of non-determinism. Nevertheless, we have shown that
there is stability with regard to the adequacy of criteria in the different repeti-
tions carried out in the experiment.

On the basis of the experimental study, BioConcST was found to be better
than EGA in light of all the evaluated testing criteria and showed a statistical
difference between the samples investigated. The effective difference in size was
high for most of the criteria, a factor that is evidence of the superiority of our
approach for message passing and shared memory programs. As we have noted,
the control flow criteria are more trivial to cover than the other testing criteria,
mainly because these criteria have a lower number of testing requirements. The
data flow testing criteria included a large number of test requirements, which
created difficulties for both approaches of test data generation.

We believe that most of these data flow elements are not directly linked
to the program input, but rather to the synchronization sequence executed by
the test input. This problem has already been investigated and can be solved
using reachability or model checking techniques [5], but they require a high
computational cost caused by expensive of these techniques.

A critical issue that emerged from the results was the low coverage for certain
criteria. Although BioConcST is superior, the coverage of test requirements is
still low. This became more apparent for the shared-memory testing criteria.
The results demonstrated that only providing test data for concurrent testing
might not be sufficient and other information is required to meet these test
requirements and ensure the test activity can become more optimized.

Regarding threats to validity, the experimental study was performed using
only Java programs using paradigms of message exchange and shared memory.
These programs are relatively small but have been chosen from existing works
in this area and consider the main features of competing programs and therefore
we believe that our results can be generalized. Another threat is related to the
configuration of genetic algorithms. In this case, we chose to set the default
values between the approaches so that the results were not affected by this
configuration.

6 Conclusion and Suggestions for Future Work

This paper presents BioConcST, a bio-inspired optimized approach for automatic
test data generation for concurrent programs. The approach was evaluated using

Bio-Inspired Optimization of Test Data Generation for Concurrent Software 135

12 Java concurrent programs with communication through message-passing and
shared-memory. Our study evaluated how a dynamic search through a genetic
algorithm can lead to the generation of test data adequate to the concurrent
testing criteria. The results show the superiority of our approach to all testing
criteria investigated in both communication paradigms. The results showed that
the generated test data presented good coverage for the testing criteria. Some
critical points should be explored when optimizing this problem. For example,
checking other information to be addressed to the test data generation pro-
cess to improve test coverage, such as similarity between the test run and test
requirement not yet achieved; eliminating non-executable test requirements and
identifying synchronization sequences not yet achieved from the executions.

Taking into account the need for more empirical studies about test data
generation for concurrent software, we intend to investigate the following topics
in further research:

– Perform an optimization that is guided by other types of objectives such as
paths, synchronization sequences, and faults. Evidence is found that multi-
objective search is superior compared to a standard GA for test generation
of Java programs [10];

– Compare BioConcST to other methods, for instance Random Search because
this method presents good results for test data generation [15]; and

– Develop experimental studies to evaluate the effectiveness for revealing faults
of test data generated by BioConcST approach.

Acknowledgement. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001 and
National Council for Scientific and Technological Development (CNPq).

References

1. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: 2007
Future of Software Engineering, FOSE 2007, Washington, DC, USA, pp. 85–103.
IEEE Computer Society (2007)

2. Chicano, F., Ferreira, M., Alba, E.: Comparing metaheuristic algorithms for error
detection in Java programs. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011.
LNCS, vol. 6956, pp. 82–96. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23716-4 11

3. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

4. Hrubá, V., Křena, B., Letko, Z., Pluháčková, H., Vojnar, T.: Multi-objective
genetic optimization for noise-based testing of concurrent software. In: Le Goues,
C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 107–122. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09940-8 8

5. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017). https://doi.org/10.1016/j.ic.2016.03.006

https://doi.org/10.1007/978-3-642-23716-4_11
https://doi.org/10.1007/978-3-642-23716-4_11
https://doi.org/10.1007/978-3-319-09940-8_8
https://doi.org/10.1016/j.ic.2016.03.006

136 R. F. Vilela et al.

6. Mairhofer, S., Feldt, R., Torkar, R.: Search-based software testing and test data
generation for a dynamic programming language. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2011
(2011)

7. Melo, S.M., Souza, S.R.S., Souza, P.S.L.: Structural testing for multithreaded pro-
grams: an experimental evaluation of the cost, strength and effectiveness. In: Pro-
ceedings of the 24th International Conference on Software Engineering & Knowl-
edge Engineering (SEKE 2012), pp. 476–479 (2012)

8. Nistor, A., Luo, Q., Pradel, M., Gross, T.R., Marinov, D.: Ballerina: automatic
generation and clustering of efficient random unit tests for multithreaded code. In:
International Conference on Software Engineering (2012)

9. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial soft-
ware system. SIGSOFT Softw. Eng. Notes 27(4), 55–64 (2002)

10. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Trans. Softw. Eng. 44(2), 122–158 (2018)

11. Prado, R.R., et al.: Extracting static and dynamic structural information from
Java concurrent programs for coverage testing. In: Latin American Computing
Conference (2015)

12. Rai, D., Tyagi, K.: Bio-inspired optimization techniques: a critical comparative
study. SIGSOFT Softw. Eng. Notes 38(4), 1–7 (2013)

13. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empir. Softw. Eng. 22, 852–893 (2017)

14. Scalabrino, S., Grano, G., Di Nucci, D., Oliveto, R., De Lucia, A.: Search-based
testing of procedural programs: iterative single-target or multi-target approach?
In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 64–79. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47106-8 5

15. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn, P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Annual Conference on Genetic
and Evolutionary Computation (GECCO 2015), pp. 1367–1374 (2015)

16. ShiZhen, ZhouYang, C.T.: Comparison of steady state and elitist selection genetic
algorithms. In: Proceedings of International Conference on Intelligent Mechatronics
and Automation, pp. 495–499 (2004)

17. Souza, P.S., Souza, S.R., Zaluska, E.: Structural testing for message-passing con-
current programs: an extended test model. Concurr. Comput. 26, 21–50 (2014)

18. Souza, P.S., Souza, S.S., Rocha, M.G., Prado, R.R., Batista, R.N.: Data flow testing
in concurrent programs with message passing and shared memory paradigms. In:
Proceedings of the International Conference on Computational Science (2013)

19. Steenbuck, S., Fraser, G.: Generating unit tests for concurrent classes. In: IEEE
International Conference on Software Testing, Verification and Validation (2013)

20. Tian, T., Gong, D.: Test data generation for path coverage of message-passing
parallel programs based on co-evolutionary genetic algorithms. Autom. Softw. Eng.
23, 1–32 (2014)

21. Vilela, R.F., Souza, P.S.L., Delamaro, M.E., Souza, S.R.S.: Evidence on the config-
uration of genetic algorithms for test data generation (portuguese). In: Proceedings
of XIX Ibero-American Conference on Software Engineering (2016)

https://doi.org/10.1007/978-3-319-47106-8_5

Revisiting Hyper-Parameter Tuning
for Search-Based Test Data Generation

Shayan Zamani(B) and Hadi Hemmati

Department of Electrical and Computer Engineering,
University of Calgary, Calgary, Canada

{shayan.zamani1,hadi.hemmati}@ucalgary.ca

Abstract. Search-based software testing (SBST) has been studied a
lot in the literature, lately. Since, in theory, the performance of meta-
heuristic search methods are highly dependent on their parameters, there
is a need to study SBST tuning. In this study, we partially replicate a
previous paper on SBST tool tuning and revisit some of the claims of
that paper. In particular, unlike the previous work, our results show
that the tuning impact is very limited to only a small portion of the
classes in a project. We also argue the choice of evaluation metric in the
previous paper and show that even for the impacted classes by tuning,
the practical difference between the best and an average configuration is
minor. Finally, we will exhaustively explore the search space of hyper-
parameters and show that half of the studied configurations perform the
same or better than the baseline paper’s default configuration.

Keywords: Search-based software engineering · Test data generation ·
Hyper-parameter · Tuning · Replication

1 Introduction

Since the early days of search-based software engineering (SBSE), the topic
of search-based software testing (SBST) has been continuously studied and
improved [20]. There are now several great publicly available SBST tools such as
EvoSuite for unit testing Java programs that are continuously being maintained
and improved [10]. SBST has even gone far beyond academia and started to be
deployed in large scale, e.g., in Facebook [19].

In general, SBST techniques reformulate a test generation problem, e.g., max-
imizing branch coverage of unit tests, to an objective function and employ a
meta-heuristic search technique to optimize the objective. Examples of these
meta-heuristic search techniques are hill climbing, simulated annealing, and
evolutionary algorithms [17]. Evolutionary Algorithms, like Genetic Algorithm
(GA), are among the most common techniques that have been used in SBST,
so far. However, there are debates on whether using evolutionary algorithms or
keep generation test data with random methods [22].

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 137–152, 2019.
https://doi.org/10.1007/978-3-030-27455-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_10

138 S. Zamani and H. Hemmati

A GA starts with a set of initial population to search through the search
space. Then it evolves the candidate solutions by permuting the encoded solu-
tions with genetic and natural selection operations [20], in several iterations,
until it finds the optimal solution or exhausts the search budget. Therefore, the
choice of the objective function, the chromosome encoding format, and GA’s
input parameters (SBST’s hyper-parameters) such as population size, crossover
rate, mutation rate, etc. can have a significant impact on the effectiveness of
the SBST technique [14]. For instance, it has been illustrated in previous work
that the coverage of EvoSuite for a class varies with the values of GA’s hyper-
parameters [4].

Therefore, finding an optimal configuration of hyper-parameters could poten-
tially, improve the SBST’s effectiveness, significantly. In general, there are many
parameters to be tuned for a GA. For example, Grefenstette used six parameters
to tune its GA, namely, Population Size, Crossover Rate, Mutation Rate, Gen-
eration Gap, Scaling Window and Selection Function [16]. However, in another
paper, 19 different operators or parameters are listed that contribute in the per-
formance of a given GA and it is suggested that one should take into account
the permutation of all these 19 parameters’ values [14].

Although the tuning problem is being studied in other areas frequently
[5–8], there are not many successful reports of tuning techniques in SBST. Arcuri
et al. tried to find a tuned setting for EvoSuite that works better than its default
for a collection of classes (SF100). However, the resulting branch coverage after
tuning was less than the default configuration’s results [4]. Therefore, it is quite
important for researchers in the field, as well as practitioner, to know whether
tuning is needed before using a SBST technique for test data generation and if
so how much improvement a tuning method could potentially bring.

In this paper, we partially replicate Arcuri and Fraser’s paper titled “Param-
eter tuning or default values? An empirical investigation in search-based software
engineering”, which was published in Empirical Software Engineering journal in
2013 [4]. The paper is one of the very few studies on the hyper-parameter tuning
of SBST techniques. It includes three case studies, where the first one focuses on
illustrating the impact of tuning. The two other case studies then investigate the
effectiveness of a proposed tuning method (which showed no improvement com-
pared to default settings). In our study, we only focus on the impact of tuning,
thus only the first case study of their paper (from now on called “the baseline
paper”) will be (partially) replicated.

In particular, we focus on the first two research questions of the first case
study, in the baseline paper, where the main findings are:

– “Different parameter settings cause very large variance in the performance”
– “Default parameter settings perform relatively well, but are far from optimal”.

Here we argue that the conclusions are taken from the set of 20 handed picked
classes, which do not represent the entire project’s classes. We exhaustively study
the impact of tuning, with the similar hyper-parameter search space as the base-
line paper (1,200 different configurations), on 117 classes of three random projects
from the very same SF100 and show that different parameter settings do NOT

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 139

have the significant impact that is claimed. We show this first by looking into
all classes vs. a handpicked set and second by measuring improvements using the
raw coverage (the number of extra branches covered when using a different con-
figuration) rather than a relative measure used in the baseline paper. Together
we show that the impact of tuning is much less than the reported ones. In addi-
tion, we show that the true impact is limited to the maximum improvement ranges
(called “potentials” in this paper) in the project-level, which are 64% of class-level
potentials. Finally, we analyze the distribution of the entire 1,200 configurations
of hyper-parameters in terms of their effectiveness and show that half of the con-
figurations are performing at least as well as the default configuration. This means
that even a randomly selected configuration would have a 50% chance to be better
than the default setting, but the issue is the improvements are minor (maximum
12 extra branches per project), anyways.

The main contributions and findings of this paper are as follows:

– Running an exhaustive search with over 2 million configuration/class pair
evaluations, to study the impact of hyper-parameter tuning.

– Replicating the previous study on tuning and showing (clarifying) that, in
contrary to the reported results, on average, different parameter settings cause
no change in coverage at all on most (81%) classes.

– Showing that, in some cases, a relative coverage measure may not be the best
metric to explain the potentials of tuning. Tuning for only 12 extra branches
per project would be reported as 52% average improvement per class using
the relative coverage.

– Showing that half of the possible configurations perform as well or better
than the default configuration, but overall, the practical improvements are
insignificant in most cases.

2 Empirical Study

In this section, we will explain the details of our experiment design and results.

2.1 Objective and Research Questions

Our objective is to revisit the previous study on the impact of tuning on SBST, by
partially replicating our baseline paper, introduced in the introduction section.
Our main hypotheses are that (a) not all classes in a project are significantly
sensitive to parameter tuning, (b) the improvement of coverage is magnified in
previous studies, and (c) most configurations are already good and don’t leave
much room for improvement in the SBST context. To investigate the above
hypotheses, we design the following research questions:

– RQ1: What portion of classes in a project would be sensitive to hyper-
parameter tuning?
The idea of this question is to first identify classes that won’t be affected at
all no matter what configuration will be used.

140 S. Zamani and H. Hemmati

– RQ2: To what extent code coverage of classes within a project may change,
when the hyper-parameters of SBST techniques change?
Knowing the answer to RQ1, we now need to know how much potential
improvement one can gain by tuning, to decide whether tuning is even worth-
while (if the portion of sensitive classes is small the potentials are negligible,
tuning is not justifiable).

– RQ3: How are different hyper-parameter configurations (including the default
from the baseline paper) compared in terms of their resulting code coverage?
The goal of this RQ is to dig deeper into the effectiveness of different con-
figurations and see where a default configuration sits comparing to a median
setting.

2.2 Experiment Design

Subjects Under Study: We have selected three random projects from the
SF100 Java benchmark (which is a well-known dataset in SBST and have been
used in the previous work. It is also the same source for our baseline paper [4]),
namely, JSecurity, Geo-Google, and JOpenChart. We made sure that the sizes of
our selected projects are around or greater than the median project size within
SF100, which is 35 classes [11], per project, so that we don’t study only the
trivial projects, by chance. In addition, we checked that the average number of
branches per class in our selected projects are around the median value of SF100
projects, which is 18 branches (See Table 2). Therefore, by considering these two
measurements, we believe that our random selected classes are representative of
other SF100 projects.

The summary of SF100 projects’ properties is available in the Table 1 from
the information available in [11]:

Table 1. Summary of SF100 projects statistics

Min Median Average Max

of Classes per Project 1 35 87.84 2189

of Branches per Class 0 18 33.20 2480

Table 2. Statistics of randomly selected projects from data in [11]

Project # of Classes # of Branches Average # of
Branches per Class

JSecurity 72 998 13.86

Geo-Google 52 1344 25.84

JOpenChart 38 693 18.24

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 141

SBST Tool: In order to evaluate the tuning techniques, we use the well-known
open source SBST tool, EvoSuite [10,12]. EvoSuite is also the tool that was
used in the baseline paper [4]. EvoSuite accepts Java bytecode of a class and
creates a test suite that maximizes different criteria (e.g., branch coverage) using
a Genetic Algorithm for optimization [13]. The GA parameters it employs are
configurable. If no specific parameter is passed to EvoSuite, it will use a default
setup that we refer to as “EvoSuite defaults” or the “baseline paper defaults”.
EvoSuite defaults have been selected by following guidelines, best practices, and
experimentation, and have shown to be quite good and reasonable in the previous
study [4].

Measurements: In this study, we use code (branch) coverage as our test ade-
quacy measure, to be consistent with our baseline paper [4]. In addition to the
raw coverage data (number of the covered branches as well as their percent-
ages), we also report “Relative Coverage”, which is suggested [2] and used in the
baseline paper [4]. The rationale of using the relative coverage in the baseline
paper was that “using the raw coverage values for parameter setting comparisons
would be too noisy. Most branches are always covered regardless of the chosen
parameter setting, while many others are simply infeasible”.

Therefore, for a given configuration with resulting branch coverage equal to
b on class c, we report Relative Coverage rc(b, c) as defined below:

RelativeCoverage =
b−min

max−min

where b is the number of covered branches, and min and max are the minimum
and maximum number of branches covered in the class c over all experimented
configurations.

During the experiments, we report both raw coverage and the relative cov-
erage and discuss this choice of metric.

Among all classes within a project, there are some classes that have the same
coverage for any configuration at any iteration, and their max and min values
are the same. We call them as insensitive classes.

Experiment Procedure: The experiments investigate the sensitivity of the
three projects under study, in terms of branch coverage, when the GA hyper-
parameters changes. Basically, we define a set of limited values per GA parameter
(in EvoSuite) and run an exhaustive search over this search space. We then run
EvoSuite per configuration and calculate branch coverage for all classes within
each project.

The search space consists of the combination of 5 most important parameters
of GA in EvoSuite, i.e. population size, crossover rate, elitism rate, selection
function, and parent replacement check. In the tuning literature, there are some
cases in which more parameters are considered to be tuned [14,16]. However, due
to the extreme cost of exhaustive search and to be consistent with our baseline
paper, we limit the tuning to these five parameters.

142 S. Zamani and H. Hemmati

In the following, there is a brief explanation of the parameters of our interest
to be tuned:

1. Crossover Rate: It is the probability with which two candidates selected from
the parent generation are crossed over.

2. Population Size: This parameter indicates how many individuals exist in
each generation and due to mutation and crossover operations the population
remains constant while evolving.

3. Elitism Rate: This parameter determines how many or what percentage of
top individuals are exempted from any crossover or mutation during evolution
and are directly passed to the next generation without any modification.

4. Selection Function: This parameter specifies the mechanism with which indi-
viduals of a population are selected for the purpose of reproduction opera-
tions. In oppose to the other mentioned parameters, this one is not numerical
and is a nominal variable. Three types of known selection methods are roulette
wheel selection, tournament selection, and rank selection.
In the roulette wheel selection method, individuals with more fitness score
are more probable to be selected.
In tournament selection, based on the tournament size a number of individ-
uals are selected uniformly and this method does not weight the selection
probability regarding fitness score.
Rank selection considers fitness score into its selection method; however,
unlike roulette wheel selection, the probability is not proportional to fitness
score, rather it is based on the rank of individuals.
Therefore, the fittest individuals do not dominate the selection like what
happens in the tournament approach.

5. Parent Replacement Check: If this parameter is considered in the genetic
algorithm, it checks the two off-springs, which are generated in the repro-
duction phase, against their parents. If they do not show an improvement in
fitness score compared to at least one of their parents, they are not included
in the next generation, and the algorithm continues with the parents in the
next generation [4].

Following the baseline paper (the settings from its first case study) [4], we
also have limited the values per parameter to a small discretized sub-samples,
as follows:

– Crossover rate: 0, 0.2, 0.5, 0.75, 0.8, 1 (6 cases)
– Population size: 4, 10, 50, 100, 200 (5 cases)
– Elitism rate: 0, 1, 10%, 50% (4 cases)
– Selection: roulette wheel, tournament with size either 2 or 10, and rank selec-

tion with bias either 1.2 or 1.7 (5 cases)
– Parent replacement check: activated or not (2 cases)

Thus, the search space under exploration in this study includes 6 × 5 × 4 ×
5 × 2 = 1, 200 different combinations of GA parameters, used by EvoSuite.

During an experiment, we take a pair of one configuration and one class, each
time, and evaluate this pair’s coverage using EvoSuite, with a search budget of

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 143

two minutes, which is a realistic amount in practice and was used in the baseline
paper as well. In order to address randomness, we repeat each evaluation 10
times. The average coverage of these repetitions is then reported as the pair’s
coverage.

There are 177 classes in total, in the three projects under study. Consider-
ing 10 repetitions of evaluating these classes on a search space of 1,200 con-
figurations, where each evaluation takes two minutes, this analysis would take
177×10×1200×2 minutes equals to more than 8 years, on a single core machine.
Therefore, we used computer clusters to run this amount of computation in par-
allel. The clusters in use were ComputeCanada (Graham with 32-core instances
and Cedar with 48-core instances) and Cybera (8-core instances), which are all
Linux-based systems, summed up to 360 nodes.

Note that all the scripts and output results are publicly available1.

2.3 Results

In this section, we will report and explain the results of the experiments per
research question.

RQ1 (Insensitive Classes): As discussed in Sect. 2.2, a large proportion of
classes within a project may be insensitive to hyper-parameter tuning, which
affects the usefulness of tuning in practice. In RQ1, we report this proportion
per project in our study. Looking at Table 3 we see that 86% (73 out of 85),
95% (53 out of 56), and 50%(18 out of 36) of classes were insensitive to hyper-
parameter tuning in our three projects. The number of classes that we observed
in the projects are different from what is presented in Table 2 which were taken
from [11]. This is due to the reason that the projects are still changing, and
versions are different. The high number of insensitive classes in each project
highlights that although tuning SBST techniques for some classes may be useful
(see RQ2), the coverage of most classes in a given project will not be affected by
tuning. Thus, applying an umbrella tuning on all classes of a project may not
be effective, and the impact of tuning may be only limited to a small portion of
the project.

Table 3. The proportion of insensitive classes per projects.

Project #Classes #Insensitive Classes Proportions

JSecurity 85 73 0.86

Geo-Google 56 53 0.95

JOpenChart 36 18 0.50

Total 177 144 0.81

1 https://github.com/sea-lab/EvoSuiteTuning.

https://github.com/sea-lab/EvoSuiteTuning

144 S. Zamani and H. Hemmati

This is in contrary with this generic claim from the baseline paper [4]: “Dif-
ferent parameter settings cause very large variance in the performance”. The
issue with that claim is that it is based on the 20 manually selected classes,
where the tuning was indeed effective. The justification for this selection is given
as “We, therefore, selected classes where EvoSuite used up its entire search bud-
get without achieving 100% branch coverage, but still achieved more than 80%
coverage.” Though this might be a fine selection criterion to detect the sensitive
classes, the problem is that the conclusions are generic and do not consider the
significant number of insensitive classes.

In fact, our study on 177 classes shows that a blanket tuning over all classes
of a project will NOT have a very large variance in the SBST technique’s perfor-
mance. Insensitive classes are mainly the ones that are trivial and easy for the
SBST tool to evaluate. The analysis of insensitive classes in the projects under
study shows that 85% (123 out of 144) of them have branch coverage more than
0.9 while 4% (6 out of 144) of them are very difficult to cover and their branch
coverage is lower than 0.2, regardless of the configuration. Figure 1 summarizes
the distribution of classes per project, over the coverage range.

0 0.5 1
0

20

40

60

Coverage

C
la
ss

C
ou

nt
s

(a) JSecurity

0 0.5 1
0

20

40

Coverage

(b) Geo-Google

0 0.5 1
0

5

10

15

Coverage

(c) JOpenChart

Fig. 1. Distribution of 144 insensitive classes in 3 projects, over the coverage range.

So our conclusion is that tuning will NOT make a big difference in the cov-
erage of the entire project. So, in the SBST context, the tuning effort should be
focused only on the sensitive classes. Obviously, this first requires a systematic
approach to detect such classes, before tuning, and second a metric that only
considers those classes when evaluating the improvements, which we discuss more
in RQ2.

On average, more than 81% (144 out of 177) of classes in three projects under
study were insensitive to 1,200 different configurations of GA

hyper-parameters.

RQ2 (Evaluation Metric): As discussed in the RQ1 results, the coverage of
most classes in a project are indifferent to the hyper-parameter configuration of

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 145

Table 4. Sensitive classes in the projects under study, and their coverage in terms of
the number of covered branches and the relative coverage.

Covered Branches Relative Coverage

Project Class Names Branch Median Worst Best Median Worst Best

JSecurity DefaultWebSessionFactory 75 55.6 50.40 58 0.71 0.54 0.78

AbstractSessionManager 89 65.4 58.67 70.8 0.48 0.24 0.67

DefaultSessionManager 33 21 16.50 25.4 0.52 0.33 0.71

MemoryAuthenticationDAO 24 20.75 9.50 24 0.81 0.15 1.00

AbstractAuthenticator 47 28.4 21.60 29 0.96 0.56 1.00

SimpleAuthorizationContext 57 52 51.25 53 0.38 0.28 0.50

ThreadContext 24 17 16.67 18.25 0.17 0.11 0.38

DAOAuthenticationModule 12 5 5.00 10 0 0.00 1.00

DefaultSessionFactory 9 5 5.00 6.2 0 0.00 0.30

MemorySessionDAO 24 22.8 21.75 24 0.60 0.25 1.00

DelegatingSession 20 17 17.00 17.6 0 0.00 0.20

ModularAuthenticator 18 8 8.00 8.6 0 0.00 0.20

SimpleSessionEventSender 18 18 17.60 18 1.00 0.80 1.00

ActiveDirectoryAuthenticationModule 14 7 6.50 7 1.00 0.75 1.00

SimpleAuthenticationEventSender 29 28 27.20 28 1.00 0.60 1.00

WebUtils 15 15 14.75 15 1.00 0.75 1.00

LdapAuthenticationModule 27 16 15.75 16 1.00 0.75 1.00

AnnotationAuthorizationModule 13 8.6 8.00 9 0.60 0.00 1.00

Average 30.44 22.81 20.62 24.32 0.57 0.34 0.76

Geo-Google AddressToUsAddressFunctor 30 22 8.5 22 1.00 0.21 1.00

GeoAddressStandardizer 38 27 23.6 28.5 0.87 0.64 0.97

MappingUtils 8 6.1 5.4 6.6 0.37 0.13 0.53

Average 25.33 18.37 12.5 19.03 0.74 0.33 0.83

JOpenChart CoordSystemUtilities 92 70.4 39.8 89.33 0.69 0.25 0.96

RadarChartRenderer 22 2 2 6.00 0.00 0.00 0.20

CoordSystem 71 65.2 59.6 69.00 0.75 0.37 1.00

DefaultChart 20 6 5.8 15.80 0.07 0.05 0.72

BarChartRenderer 16 7.6 4 11.80 0.40 0.14 0.70

InterpolationChartRenderer 17 12 8.75 13.40 0.67 0.40 0.78

AbstractChartDataModel 37 27.8 22.75 31.40 0.62 0.16 0.95

DefaultChartDataModelConstraints 30 28.8 22.2 30.00 0.89 0.29 1.00

StackedChartDataModelConstraints 54 51 46.8 51.00 1.00 0.58 1.00

LineChartRenderer 17 12 9.2 13.40 0.60 0.32 0.74

PieChartRenderer 14 2 2 5.60 0.00 0.00 0.36

StackedBarChartRenderer 18 13.6 7.8 15.80 0.66 0.08 0.88

PlotChartRenderer 11 9.6 7 10.00 0.93 0.50 1.00

DefaultChartDataModel 34 34 32.6 34.00 1.00 0.72 1.00

AbstractRenderer 7 6.2 3.5 7.00 0.84 0.30 1.00

ChartEncoder 9 4.8 3 6.00 0.60 0.00 1.00

Legend 12 11.6 10.25 12.00 0.87 0.42 1.00

AbstractChartRenderer 16 15.00 14.8 15.00 1.00 0.80 1.00

Average 27.61 21.08 16.77 24.25 0.64 0.30 0.85

Overall 31.14 23.48 19.73 25.87 0.67 0.34 0.86

the SBST technique. In this section, we will assess the potential of the remaining
sensitive classes to improve their branch coverage by SBST tuning, with two
metrics: number of covered branches and relative coverage. Then, we will discuss
how useful are these metrics, in this context.

146 S. Zamani and H. Hemmati

Table 4 reports the number of total branches per class (the Branch column)
and summarizes the branch coverage as the number of covered branches vs. rel-
ative coverage (explained in Sect. 2.2). For each category, it reports the median,
the worst, and the best numbers overall 1,200 × 10 configuration evaluations,
per class. The last row of each project summarizes all columns per project.

Following the relative metric, suggested in the baseline paper, we can con-
clude that the range of relative coverage per class is huge when looking at the
best vs worst relative coverage (On average 42%, 50%, and 55% in JSecurity,
Geo-Google, and JOpenChart projects, respectively). However, if we look at the
raw coverage numbers the range between the best and the worst configuration,
with respect to the number of covered branches are pretty small (3.7, 6.53, and
7.48 in JSecurity, Geo-Google, and JOpenChart projects, respectively). These
numbers can be minimal for some classes, e.g., in the JSecurity project, there
are 8 classes (out of 15 classes) where the difference between the best and the
worst configurations is less than one branch (which practically can be called an
insensitive class).

In other words, although the relative coverage metric shows a great poten-
tial (52%) for improvement using a tuning technique, the actual raw numbers
reveal that the practical impact is limited to a few branches (on average 6.14
extra). This is equal to (6.14/31.14) 19.7% improvement on raw branch cover-
age. Although even the 6.14 extra branches might be among buggy ones and
thus a good tuning would in fact result in extra bug detection, but the point we
make here is that the measurement should be reflective of the real-world effect.
If the raw potential is 19.7% (regardless of how many more bugs potentially
can be detected by such a tuning) we should not say the potential is 52%. This
artificially exaggerates expectations from a tuning method.

Another point is that the impact of tuning is not going to be on the scale
of the range of coverage as reported above (The Best - The Worst). In practice,
choosing the worst configuration is rare. Even a random configuration would be
better than the median results in 50% of the times. Thus, a more reasonable
comparison is to set the expectations for improvement between the best and the
median, not the worst. Following this approach, the improvement in raw branch
coverage per class would be even smaller (25.87 − 23.48 = 2.39 branches, equals
to 2.39/31.14 = 7.7% potential coverage improvement for each class).

Therefore, we can conclude that although using relative coverage can avoid
noises in the results, in some cases, it exaggerates the effectiveness of SBST tool
tuning while there are only a few extra branches to be covered.

Following the above discussion, in RQ3, we will look deeper into the distri-
bution of configurations and their corresponding results.

Looking at relative coverage are not always helpful in terms of measuring
tuning potentials. On average, an extra 6 branches on a total of 31 branches

in sensitive classes would be reported as 52% improvement in relative
coverage – In addition, the potential improvement on raw branch coverage
when comparing the best and the median is just 2.39 branches, per class.

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 147

RQ3 (Distribution of Configurations): In RQ2, we listed the best/ worst/
median configurations for each sensitive class of projects under study. When it
comes to tuning an SBST tool on a project scale, the problem changes a bit.
The goal is no longer finding the best configuration per class. It is rather finding
one single tuned configuration that works the best over all classes of the project.
Note that these two (the class-level and the project-level best configurations) are
different. In many cases, It might not be possible to have a configuration that
works best for all classes.

Therefore, it is obvious that it might not be possible for a tuning method
to be as good as the best configuration as reported in RQ2. So, we define a
“Maximum/Minimum” configuration as the best/worst possible configuration
in a project-level, as the configuration that results in the highest total branch
coverage over all classes in the project. This follows the baseline paper’s definition
of “optimal” (equal to our “Maximum”) configuration, as well.

Now to see the real impact of tuning, in Table 5, we report the Maximum
and Minimum results per project. We also report the Best and Worst from RQ2
aggregated on a project-level to show that these two measures are different.

Overall, we can observe that the range of feasible coverage (Maximum -
Minimum) of a given project is quite smaller than the range of potential coverage
reported in RQ2. Looking at Table 5, the feasible ranges of coverage for projects
JSecurity, GeoGoogle, and JOpenChart are only 54, 86, and 52 (on average 64)
percents of the potential ones, reported in RQ2, respectively.

Thus, when it comes to assessing the impact of tuning, we have to measure
it with raw coverage measures and look at the feasible coverage range bounds.

In practice, a typical SBST tool would have a default configuration, which
tuning’s goal is to improve its performance. So the next question is to see how
EvoSuite default setting performs in comparison to others in the search space.

The current values of EvoSuite default configuration for the hyper-parameters
of our interest are as follows:

– Crossover rate: 0.75
– Population size: 50
– Elitism rate: 1
– Selection: rank selection with bias either 1.7
– Parent replacement check (activated)

Table 5. The number of branches per project, the class-level and project-level potential
ranges of covered branches, and the median and default performance.

Project-level Potential Range Class-level Potential Range

Project Total Maximum Minimum All Best All Worst Median Default

JSecurity 1093 828.20 792.33 843.85 777.13 818.0 822.6

Geo-Google 1408 1371.6 1354.8 1372.1 1352.5 1370.0 1370.3

JOpenChart 795 667.8 579.55 697.53 562.85 644.0 639.7

148 S. Zamani and H. Hemmati

Looking at last two columns of Table 5, we will see that although the default
configuration of EvoSuite is working well and is very close to the Maximum
(optimal) coverage of each project (only misses less than 11.66 branches, on
average), the median covered branches of all configurations is also very close
(missing only 11.86 branches, on average), and performs even better than default
for the JOpenChart project.

This suggests that 50% of configurations in our 1,200-member search space,
i.e. 600 configurations, are working with a performance very close to or better
than the default, which means one has at least 50% chance to select a configura-
tion as good or better than the default, randomly, without any tuning. In Fig. 2,
the entire distribution of configurations and their yielded coverage is illustrated,
for all three projects.

790 800 810 820 830
0

200

400

600

Number of Covered Branches

C
on

fig
.
C
ou

nt
s

(a) JSecurity

1,355 1,360 1,365 1,370
0

200

400

600

800

1,000

Number of Covered Branches

C
on

fig
.
C
ou

nt
s

(b) Geo-Google

600 650
0

100

200

300

400

Number of Covered Branches

C
on

fig
.
C
ou

nt
s

(c) JOpenChart

Fig. 2. Distribution of 1,200 configurations in the search space over coverage, per
project.

Tuning in practice is done on the entire project level, which on average has a
36% less potential for improvement compared to what was reported in RQ2 –

As the observed median coverage suggests, half of the configurations are
performing as well or better than the default configuration.

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 149

2.4 Threats to Validity

In terms of construct validity, the metrics that we used in our experiments
are the number of covered branches and relative coverage which both are very
common metrics in the context of software search-based testing to illustrate
branch coverage. In RQ2, we compared the results of these two metrics and
avoided the relative coverage reported in the baseline paper.

Regarding conclusion validity, we address the randomness of the SBST cov-
erage results by repeating each experiment 10 times with different random seeds
and taking averages. Note that since we do not directly compare different tech-
niques and only show the ranges a statistical significant test was not applicable.

To minimize internal validity, we replicated the baseline paper as much as
possible. We used the same tool, dataset, and hyper-parameters. The only part
which was slightly different was that we used the current default values of Evo-
Suite, whereas the baseline paper used the default values at the time. Although
the overall results are not that different, we wanted to make sure that we use the
best default the tool comes with when comparing it with median setting results.
In addition, one possible threat is changing the default setting from what is used
in [4] to what is used in the current version of EvoSuite (i.e. 1.0.6). Our assump-
tion is that given the wealth of projects that use EvoSuite, over the years from
the publishing time of the baseline paper, the new baseline has improved and
provides even better results (or at least equal) to those reported in the baseline
paper. So it is safe to focus only on the new version of EvoSuite defaults.

Regarding external validity, more empirical studies are needed to generalize
the results. Our results are limited to SF100 (not even covering that all). So we
need to replicate the study on more SF100 projects and beyond. In addition,
we are limited to GA-based SBST (the EvoSuite implementation). Therefore,
more experiments are needed where other GA or non-GA-based SBST tools are
studied, with respect to the tuning impact. However, given the extreme cost of
this type of study, our results are very valuable. The replication nature of the
paper is also indirectly helping on the generalization of this type of studies.

3 Related Works

One of the most influential works in tuning in the context of search-based soft-
ware testing is the empirical study of effect of tuning evolutionary algorithms on
test data generation tools [3], which was extended later on in the baseline paper
for our study [4]. Their preliminary work focuses on 20 random Java classes and
uses the relative coverage metric. They noted that there is a high variance of cov-
erage when a different configuration is set for the SBST tool [3]. Later, knowing
that tuning is effective for improving the coverage, they applied response surface
methodology tuning method on 10 large-scale projects with 609 classes in total
to assess only 280 configurations. But, the raw coverage of the tuned configura-
tion was found to be less than default coverage. They reported that the tuning
method in use was not working in the SBST context [4]. Later, Kotelyanskii et al.
replicated this study using Sequential Parameter Optimization Toolbox (SPOT)

150 S. Zamani and H. Hemmati

method and confirmed that the default setting for EvoSuite is performing well,
and tuning cannot outperform it [18]. In contrast, in our study, we studied 177
Java classes from three projects on all settings rather than on a few ones.

While the aforementioned papers are the closest ones in terms of the context
of our study, there are many other papers that used and confirmed their finding
about effectiveness of tuning in other applications of SBSE. For example, in the
configuration of Software Product Lines problem based on stakeholder needs,
two meta-heuristics were evaluated with different hyper-parameter settings. It
was found that the performance of algorithms depends on the hyper-parameter
settings [21]. Parameter tuning of machine learning approaches to solving soft-
ware effort estimation problem has been also studied, and it was shown that
parameter settings make a difference in the results of machine learning per-
formance [23]. In addition, it was found that tuning machine learning defect
predictors can improve the performance, and it can even change the decisions on
what are the important factors of software development [15]. In another study
on 6 clone detection tools that are used widely, it was shown that tool configu-
ration can improve the performance [24]. In our study, however, we claim that
this dependency to the hyper-parameter settings in the context of our interest
doesn’t change the results significantly and is limited to covering only a few more
branches.

4 Conclusion and Future Work

This paper revisits the problem of hyper-parameter tuning in SBST, studied in
a previous publication. Studying 177 Java classes from 3 random projects from
SF100, we observed that 81% of classes are insensitive to tuning. Moreover, the
evidence from this study implies that the relative coverage improvement, used
in the baseline paper, may unhelpfully exaggerate the effectiveness of tuning.
Exhaustively searching through 1,200 configurations in the hyper-parameters
search space, we conclude that not only EvoSuite default but also half of the
configurations are covering most of the branches missing only about 12 branches
per project compared to the best feasible coverage.

Regardless of the low potentials for tuning observed in this study, the next
main observation is that the potentials are much higher in the individual class-
levels than the entire project tuning. Thus for future works, we will try to devise a
tuning method that looks at the static features of classes and tunes the settings
in class-level rather than project-level. Moreover, we will try more GA-based
(e.g., EvoMaster [1]) and non-GA-based SBST (e.g., [9]) techniques to confirm
our findings and will extend our study to more projects from SF100 and beyond.

Acknowledgement. This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada [RGPIN/05108-2014].

Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation 151

References

1. Arcuri, A.: Evomaster: evolutionary multi-context automated system test genera-
tion. In: Proceedings of the 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pp. 394–397, April 2018

2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 1–10 (2011)

3. Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering.
In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 33–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23716-4 6

4. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empir. Softw. Eng. 18, 594–623 (2013)

5. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In: Mumford,
C.L., Jain, L.C. (eds.) Computational Intelligence. Intelligent Systems Reference
Library, vol. 1, pp. 177–201. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01799-5 6

6. Craenen, B.G.W., Eiben, A.E.: Stepwise adaption of weights with refinement and
decay on constraint satisfaction problems. In: Proceedings of the 3rd Annual Con-
ference on Genetic and Evolutionary Computation, pp. 291–298 (2001)

7. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter
tuning of a choice-function based hyperheuristic using particle swarm optimization.
Expert Syst. Appl. 40(5), 1690–1695 (2013)

8. Feldt, R., Nordin, P.: Using factorial experiments to evaluate the effect of genetic
programming parameters. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.,
Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 271–282.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2 20

9. Feldt, R., Poulding, S.: Broadening the search in search-based software testing: it
need not be evolutionary. In: Proceedings of the Eighth International Workshop
on Search-Based Software Testing, pp. 1–7 (2015)

10. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (2011)

11. Fraser, G., Arcuri, A.: Sound empirical evidence in software testing. In: 2012 34th
International Conference on Software Engineering (ICSE). IEEE (2012)

12. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

13. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using evosuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014)

14. Freisleben, B., Härtfelder, M.: Optimization of genetic algorithms by genetic algo-
rithms. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets
and Genetic Algorithms, pp. 392–399. Springer, Vienna (1993). https://doi.org/
10.1007/978-3-7091-7533-0 57

15. Fu, W., Menzies, T., Shen, X.: Tuning for software analytics: is it really necessary?
Inf. Softw. Technol. 76, 135–146 (2016)

16. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE
Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

17. Harman, M.: The current state and future of search based software engineering.
In: Future of Software Engineering (FOSE 2007), pp. 342–357 (2007)

https://doi.org/10.1007/978-3-642-23716-4_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-540-46239-2_20
https://doi.org/10.1007/978-3-7091-7533-0_57
https://doi.org/10.1007/978-3-7091-7533-0_57

152 S. Zamani and H. Hemmati

18. Kotelyanskii, A., Kapfhammer, G.M.: Parameter tuning for search-based test-data
generation revisited: support for previous results. In: Proceedings of the 2014 14th
International Conference on Quality Software, pp. 79–84 (2014)

19. Mao, K., Harman, M., Jia, Y.: Sapienz: multi-objective automated testing for
android applications. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, pp. 94–105. ACM (2016)

20. McMinn, P.: Search-based software testing: past, present and future. In: Proceed-
ings of the 2011 IEEE Fourth International Conference on Software Testing, Veri-
fication and Validation Workshops, pp. 153–163 (2011)

21. Sayyad, A.S., Goseva-Popstojanova, K., Menzies, T., Ammar, H.: On parameter
tuning in search based software engineering: a replicated empirical study. In: Pro-
ceedings of Workshop on Replication in Empirical Software Engineering (2013)

22. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn, P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 1367–1374 (2015)

23. Song, L., Minku, L.L., Yao, X.: The impact of parameter tuning on software effort
estimation using learning machines. In: Proceedings of the 9th International Con-
ference on Predictive Models in Software Engineering, pp. 9:1–9:10 (2013)

24. Wang, T., Harman, M., Jia, Y., Krinke, J.: Searching for better configurations:
a rigorous approach to clone evaluation. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pp. 455–465 (2013)

Short and Student Papers

Towards Automated Boundary Value
Testing with Program Derivatives

and Search

Robert Feldt and Felix Dobslaw(B)

Department of Computer Science and Engineering, Division of Software Engineering,
Chalmers University of Technology, Gothenburg, Sweden

{robert.feldt,dobslaw}@chalmers.se

Abstract. A natural and often used strategy when testing software is to
use input values at boundaries, i.e. where behavior is expected to change
the most, an approach often called boundary value testing or analysis
(BVA). Even though this has been a key testing idea for long it has been
hard to clearly define and formalize. Consequently, it has also been hard
to automate.

In this research note we propose one such formalization of BVA by,
in a similar way as to how the derivative of a function is defined in
mathematics, considering (software) program derivatives. Critical to our
definition is the notion of distance between inputs and outputs which we
can formalize and then quantify based on ideas from Information theory.

However, for our (black-box) approach to be practical one must search
for test inputs with specific properties. Coupling it with search-based
software engineering is thus required and we discuss how program deriva-
tives can be used as and within fitness functions.

This brief note does not allow a deeper, empirical investigation but
we use a simple illustrative example throughout to introduce the main
ideas. By combining program derivatives with search, we thus propose
a practical as well as theoretically interesting technique for automated
boundary value (analysis and) testing.

Keywords: Automated software testing ·
Search-based software testing · Boundary value analysis ·
Information theory · Partition testing

1 Introduction

Software systems increasingly govern our modern society and it is essential that
we have effective and efficient ways to avoid that they contain critical faults. An
old and natural way for software practitioners to think when creating software
tests is to try to identify borders where the behavior of the software should
change (the most). Even though such boundary value analysis (BVA) and testing
(BVT) based on it is a classic technique in the software testing literature [5],
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 155–163, 2019.
https://doi.org/10.1007/978-3-030-27455-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_11

156 R. Feldt and F. Dobslaw

and typically a mandatory part of relevant textbooks and certification programs
[2,17], there has been only limited progress on how to objectively formalize and
define it in a general way.

Boundary value analysis is closely related to partition analysis (PA) which
divides the input domain for the software under test (SUT) into sub-domains for
which we expect the behavior to be uniform for all inputs within the domains [12].
If the software behaves incorrectly on a sub-domain, the intuition is that it should
fail for many or all of its elements. Further, if this holds true, we only need to test
one or a few inputs per sub-domain which reduces the testing efforts many-fold.
Practical experience also shows that software developers frequently introduce
faults at domain borders, for example the common ‘off-by-one’ errors [11]. Iden-
tifying boundaries in the input domain and adding test cases to detect faults at
such boundaries is thus often an effective testing strategy.

After the initial papers by White and Cohen [20] and Clarke et al. [5] that
introduced and extended the basic method for boundary value analysis and
testing1 it was further refined by a number of authors. Jeng and Weyuker [19]
simplified and generalized the approach to also cover discrete-valued inputs and
Jeng and Forgacs [13] then proposed a semi-automated approach in which a
dynamic search for test inputs is combined with algebraic manipulation of the
boundary conditions in order to more efficiently generate test data for BVT.

However, a downside of all of these approaches is that they target numeric
real-valued inputs. Discrete-valued inputs are sometimes supported by approx-
imation schemes. Only recently did Zhao et al. [22] consider string inputs and
showed how to generate test data to better find problems at borders in code
with string predicates. Their basic idea is to introduce a specific string distance
metric that is adapted to how strings are typically compared (lexicographically)
in string predicates. Since software not only allow for numeric or string inputs,
but frequently also complex and structured inputs, it is not obvious how BVA
may be generalised or how it facilitates automated testing.

In this research note we argue that a general and sound basis for BVA can be
created by considering the information distance between test inputs and their
resulting outputs. The information distance is based on Kolmogorov complexity
and is thus applicable to any type of object [3] and thereby to any type of software
input. Since Kolmogorov complexity is not computable it may seem as though
little has been gained. But by approximating it with compression algorithms it
has been shown repeatedly and in various domains that these information theo-
retical metrics can reach state-of-the-art results [4,18]. Furthermore, they can do
so without any specific knowledge about the objects features, their importance,
or the type of similarity to be considered.

Feldt et al. [10] have previously applied these metrics to measure the dis-
tance between software tests and proposed their use to search for test cases.
More recently, Feldt et al. [9] generalized these results to search for diverse
sets of test cases and Marculescu and Feldt [15] investigated distance metrics
in robustness testing. In this research note, we propose a further application

1 Also called domain testing in several papers but less so in recent years.

Towards Automated Boundary Value Testing 157

of these information theoretic measures in software testing: searching for pairs
of test inputs for automated boundary value testing based on the normalized
compression distance.

In the following we first introduce a short, illustrative example in Sect. 2.
Then, in Sect. 3, we introduce a general formalism for the location of bound-
aries which is inspired by the concept of the classic single-value derivative of
a function in (mathematical) calculus. In Sect. 4, we apply our approach to an
implementation of the illustrative example specification, and locate boundaries
without source-code access, i.e. in a black-box manner. This note closes with a
discussion on ways forward and in particular how to use our proposed program
derivative in search-based software testing for automated BVA.

2 Illustrative Example: Constrained Sum

We focus on the general situation where there is a given specification and then
some software that implements it. Further, we don’t have or don’t want to access
the source code and we seek relevant boundaries for testing. Thus, a black-box,
boundary value testing scenario. We here simply call this example (a variant of)
the constrained sum problem with the specification:

Constrained Sum: The software should calculate the sum of two float-
ing input values. The result should be returned with one (significant) dec-
imal. Negative input values are invalid, as well as any inputs or outputs
larger than or equal to 6.

Figure 1, in Sect. 4, shows a conceptual picture of the boundaries the software
engineer had in mind while writing and reasoning about this function for the
software system.

3 Difference Quotient and Derivative of a Program

The classic derivative from mathematical calculus is based on comparing the
difference between the outputs of a function given as small a change as possible
in the inputs. It is typically formally defined in terms of one point, x, and a delta
value, h, which together define a second point after summation. The derivative
is then the limit as the delta value goes to zero:

lim
h→0

f(x + h) − f(x)
h

We argue that this, very general, idea is close to what we want to do in
boundary value analysis. We need something akin to a derivative for a software
program. A derivative in standard, mathematical calculus measures the sensi-
tivity to change of a quantity (often called the function value or the dependent
variable) as determined by another quantity (the independent variable). A large
(absolute value of a) derivative thus indicates large sensitivity to the input, inde-
pendent, variable. Detecting inputs that are highly sensitive to small changes,

158 R. Feldt and F. Dobslaw

i.e. nearby inputs for which outputs differ a lot, would thus help us identify
boundaries. It is there where we likely should spend more time testing.

However, in contrast to the continuous, single-input functions studied in
mathematical calculus, programs in software can have other types than real-
valued numbers as inputs and/or outputs. They also commonly have more than
one input and sometimes more than one output. The latter problem can be
approached in a similar way to how it is done in calculus, i.e. for functions of
multiple input values we can define partial derivatives. The former problem con-
cerning the restricted domains is more fundamental. How can we construct a
new input point from a given input point and a ‘delta’ value, and what does
the ‘delta’ even mean, e.g. for structured input domains such as graphs, trees or
databases?

In order to resolve this we take the alternative viewpoint on defining deriva-
tives, namely the ‘difference quotient’ over an interval [21]:

DQ(a, b) =
f(a) − f(b)

a − b

The derivative can now be found by letting the input b go towards the input a.
Note that the subtract operation ‘-’ here, essentially, acts as a distance function
twice, once for the outputs and once for the inputs2. For software programs,
when neither the inputs nor the outputs might be numbers, we must generalize
this and allow for a general distance function for any type of data (inputs and
outputs) rather than assuming we can simply use subtraction. Formally we thus
define the Program Derivative as follows:

Definition 1. The Program Derivative (PD) for program P at input a, with
output distance function do, and input distance function di is

PDdo,di
(a) = PDQdo,di

(a, bmin) =
do(P (a), P (bmin))

di(a, bmin)
with

bmin = argmin
b,b �=a

di(a, b),

where P (x) denotes the output of the program for input x.

The PD and the program difference quotient3, PDQ, are parameterized on
two distance functions: one for the inputs and one for the outputs. They may be
the same but need not be; it depends on the types of the inputs and outputs,

2 Subtraction also preserves directionality, however, in the following we focus purely
on the distance (the absolute value) rather than on its directionality (which we argue
is less clear a concept for arbitrary data types).

3 We note that for search-based testing the PDQ, used on the right hand side of the
PD definition, might be a more fruitful concept than the derivative itself since, for
complex and high-dimensional data domains the closest value to another value can
be ill-defined, and there can be several directions that are interesting to consider for
sensitivity and rates of change (not only the one of the closest ‘neighbour’).

Towards Automated Boundary Value Testing 159

respectively, and which of the often many possible distance functions for one
type are chosen.

Also, note here that for some distance functions di and input spaces it might
be hard to find a unique bmin, i.e. one might find several inputs with the same
distance to a. This could either be resolved by randomly selecting one of them
or by selecting by largest output distance or in some other way, depending on
the use case4.

The most general choice of distance function is to use the Normalized Infor-
mation Distance (NID) for both inputs and outputs since it is both universal
and general and should capture any important differences [3,18]. We will call
this theoretical measure the information difference quotient (IDQ).

By using the ‘compression trick’ of Cilibrasi and Vitanyi we can approximate
the IDQ by substituting a compression function, C, for Kolmogorov complex-
ity [4]. We thus define the Compression Difference Quotient (CDQ) of a program
P for inputs a and b:

CDQC(a, b) = PDQNCDC ,NCDC
(a, b) =

NCDC(P (a), P (b))
NCDC(a, b)

where NCD is the Normalized Compression Distance [4]. However, we note that
if either the inputs or the outputs are numbers, numerical vectors or matrices it
may be sensible to use data-type specific distance functions. In general we thus
talk about the PDQd1,d2 where d1 and d2 is by default NCD, but can be any
chosen as any suitable distance function.

The program derivative and its quotient thus imply whole families of concrete
measures that can be instantiated and then utilized for different testing and
analysis purposes. By selecting specific distance functions and calculating the
quantities defined by the formulas above, we should be able to detect areas of
special interest for software comprehension and quality assurance tasks.

The connection to search-based software testing seems rather direct. For com-
plex and structured data types it might be very hard to define how to maximize
and minimize the involved quantities or take ‘delta’ steps between values. Thus,
even though more exact search and optimization approaches might be useful for
some programs and distance functions we can always fall back on general, black-
box, meta-heuristic optimization. A good base choice might be an evolutionary
search algorithm connected to a data generation framework, e.g. [7], but also
alternative search methods can be called for [8,14].

4 Boundary Value Analysis of Constrained Sum

For the purpose of understanding local output differences for the software in our
illustrative example from Sect. 2, we applied the CDQC on the grid of values
in the range covered by x, y ∈ [−2, 8]. For each point in a cell on a grid we

4 Future work should investigate the many alternatives here and if they make any
difference in practice.

160 R. Feldt and F. Dobslaw

then sampled a set of surrounding points, calculated CDQC , and selected the
one with the maximal value5. We then color-coded the CDQC values in order
to visualize the local differences in a two-dimensional plane presented in Fig. 2a.
The darker the color of a pixel, the more diverse the outputs of the neighboring
inputs it represents according to the applied generic measure. This way, and even
without specification, we can learn local functional properties for the software
system regardless of its input and output data types (since any data can be
dumped to a string and a compressor applied to it).

Fig. 1. Boundaries
as conceptualized for
the constrained sum
program.

Figure 2b shows the result of the exact same experi-
ment for another program with the same interface. The
plot is clearly dissimilar to Fig. 2a which suggests that it
does not implement the specification. When looking more
closely we find that the region of similar values in the cen-
ter is larger, and in fact the second program allows for the
sum to be larger or equal to 7. Comparing this to the con-
ceptual image of what we expect the software to do, Fig. 1,
it seems clear that there might be some problem with the
implementation in Fig. 2b. Further, we might want to rea-
son about the significance of the ‘boundaries’ outside of
the triangle in Fig. 2a.

−2

0

6

8

−2 0 6 8
x

y

Color Scale
[5.1,5.35)
[5.35,5.6)
[5.6,5.84)
[5.84,6.09)
[6.09,6.34)
[6.34,6.59)
[6.59,6.84)
[6.84,7.09)
[7.09,7.34)

(a) Program one.

−2

0

6

8

−2 0 6 8
x

y

Color Scale
[5.1,5.29)
[5.29,5.49)
[5.49,5.69)
[5.69,5.88)
[5.88,6.08)
[6.08,6.27)
[6.27,6.47)
[6.47,6.66)
[6.66,6.86)

(b) Program two.

Fig. 2. Heatmaps of the program derivative values for each cell of a part of the two-
dimensional input space for two different implementations of the constrained sum spec-
ification from Sect. 2. One program implements the specification (left) and one does
not (right). Boundaries of changing behavior are clearly present.

5 In an automated BVA tool we would instead have used search here.

Towards Automated Boundary Value Testing 161

5 Discussion

We have proposed program derivatives to detect boundaries for boundary value
analysis and testing. They can be seen as a generalisation of derivatives of single-
valued mathematical functions in calculus. While the mathematical derivative
and differential calculus of Leibniz and Newton focus on numbers, we propose the
use of information distance and the compression trick to generalize this concept
to any input and output data types. It can thus be applied to any program. While
there have been some proposals for derivatives of specific types of programs such
as parsers [16] we know of no as general attempts as the one proposed in this
paper.

Since this is only a brief research note there are many avenues for future work.
The illustrative example we used here was chosen for simplicity and visualisation
potential and as such takes numbers as inputs, which goes against our main
motivation. However, the outputs can be of many different types (exceptions
were thrown for invalid values, for example) so already on this simple example
the NCD allowed comparing values of different types. But future work should
also explore the many different ways in which these proposed derivatives and
differential quotients can be used in fitness functions and coupled with search-
based testing. For example, Marculescu and Feldt [15] proposed a search-based
algorithm to find a border between the valid and invalid values of a program
under test. We should combine this type of search to ‘squeeze’ a border with the
measures proposed in here to even find other types of borders.

Furthermore, it is not clear that minimizing the denominator in difference
quotients is the single possible goal. For constructing sets of interesting test cases
we will most likely need a multi-objective formulation that combines diversity
of sets of values [9] and derivatives/quotients. Practical work on how to select
interesting and relevant distance functions for particular purposes and how to
speed up distance calculations are also important and recent advances show
promise [6].

A more conceptually intriguing area for future work would be to consider
derivatives and quotients of other types of program- and test-related information.
As was noted already by Feldt et al. [10], all types of test-related information
can be used in information distances and their approximations might have value.
They also calculated distances and diversities both on inputs, state information
captured in execution traces, and outputs. Alshahwan and Harman later saw
promising results when using output diversity [1]. Nevertheless, we propose to
investigate the benefits of relating different diversities and distances to each
other in more ways than outlined here. For example, we can consider different
partial derivatives or relating other quantities, e.g. the derivative of a program’s
state (output) with respect to one of its inputs (state variables). A lot of future
work seems called for.

162 R. Feldt and F. Dobslaw

References

1. Alshahwan, N., Harman, M.: Augmenting test suites effectiveness by increasing
output diversity. In: 2012 34th International Conference on Software Engineering
(ICSE), pp. 1345–1348. IEEE (2012)

2. Bath, G., McKay, J.: The Software Test Engineer’s Handbook: A Study Guide for
the ISTQB Test Analyst and Technical Analyst Advanced Level Certificates, 2nd
edn. Rocky Nook, Santa Barbara (2012)

3. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M., Zurek, W.H.: Information distance.
IEEE Trans. Inf. Theory 44(4), 1407–1423 (1998)

4. Cilibrasi, R., Vitányi, P., De Wolf, R.: Algorithmic clustering of music based on
string compression. Comput. Music J. 28(4), 49–67 (2004)

5. Clarke, L.A., Hassell, J., Richardson, D.J.: A close look at domain testing. IEEE
Trans. Softw. Eng. 4, 380–390 (1982)

6. Cruciani, E., Miranda, B., Verdecchia, R., Bertolino, A.: Scalable approaches for
test suite reduction. In: 41st International Conference on Software Engineering
(ICSE). IEEE (2019)

7. Feldt, R., Poulding, S.: Finding test data with specific properties via metaheuris-
tic search. In: 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), pp. 350–359. IEEE (2013)

8. Feldt, R., Poulding, S.: Broadening the search in search-based software testing: it
need not be evolutionary. In: Proceedings of the Eighth International Workshop
on Search-Based Software Testing, pp. 1–7. IEEE Press (2015)

9. Feldt, R., Poulding, S., Clark, D., Yoo, S.: Test set diameter: quantifying the
diversity of sets of test cases. In: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 223–233. IEEE (2016)

10. Feldt, R., Torkar, R., Gorschek, T., Afzal, W.: Searching for cognitively diverse
tests: towards universal test diversity metrics. In: IEEE International Conference
on Software Testing Verification and Validation Workshop, ICSTW 2008, pp. 178–
186. IEEE (2008)

11. Glass, R.L.: Frequently forgotten fundamental facts about software engineering.
IEEE Softw. 3, 110–112 (2001)

12. Hierons, R.M.: Avoiding coincidental correctness in boundary value analysis. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 15(3), 227–241 (2006)

13. Jeng, B., Forgács, I.: An automatic approach of domain test data generation. J.
Syst. Softw. 49(1), 97–112 (1999)

14. Löscher, A., Sagonas, K.: Targeted property-based testing. In: Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 46–56. ACM (2017)

15. Marculescu, B., Feldt, R.: Finding a boundary between valid and invalid regions
of the input space. arXiv preprint arXiv:1810.06720 (2018)

16. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: ACM SIGPLAN Notices, vol. 46, pp. 189–195. ACM (2011)

17. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations: A Study Guide
for The Certified Tester Exam. Rocky Nook Inc., Santa Barbara (2014)

18. Vitányi, P.M., Balbach, F.J., Cilibrasi, R.L., Li, M.: Normalized information dis-
tance. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statistical
Learning, pp. 45–82. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-
84816-7 3

http://arxiv.org/abs/1810.06720
https://doi.org/10.1007/978-0-387-84816-7_3
https://doi.org/10.1007/978-0-387-84816-7_3

Towards Automated Boundary Value Testing 163

19. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Trans. Softw.
Eng. 7, 703–711 (1991)

20. White, L.J., Cohen, E.I.: A domain strategy for computer program testing. IEEE
Trans. Softw. Eng. 3, 247–257 (1980)

21. Wikipedia: Difference quotient – Wikipedia, the free encyclopedia (2019). https://
en.wikipedia.org/wiki/Difference quotient. Accessed 20 June 2019

22. Zhao, R., Lyu, M.R., Min, Y.: Automatic string test data generation for detecting
domain errors. Softw. Test. Verif. Reliab. 20(3), 209–236 (2010)

https://en.wikipedia.org/wiki/Difference_quotient
https://en.wikipedia.org/wiki/Difference_quotient

Code Naturalness to Assist Search Space
Exploration in Search-Based Program

Repair Methods

Altino Dantas1(B), Eduardo F. de Souza1, Jerffeson Souza2,
and Celso G. Camilo-Junior1

1 Intelligence for Software Group, Federal University of Goiás, Alameda Palmeiras,
Quadra D, Câmpus Samambaia, Goiânia 74690-900, Brazil

{altinobasilio,eduardosouza,celso}@inf.ufg.br
2 Optimization in Software Engineering Group, State University of Ceará, Doutor

Silas Munguba Avenue, 1700, Fortaleza 60714-903, Brazil
jerffeson.souza@uece.br

http://i4soft.com.br

Abstract. Automated Program Repair (APR) is a research field that
has recently gained attention due to its advances in proposing methods to
fix buggy programs without human intervention. Search-Based Program
Repair methods have difficulties to traverse the search space, mainly,
because it is challenging and costly to evaluate each variant. Therefore,
aiming to improve each program’s variant evaluation through providing
more information to the fitness function, we propose the combination of
two techniques, Doc2vec and LSTM, to capture high-level differences
among variants and to capture the dependence between source code
statements in the fault localization region. The experiments performed
with the IntroClass benchmark show that our approach captures differ-
ences between variants according to the level of changes they received,
and the resulting information is useful to balance the search between
the exploration and exploitation steps. Besides, the proposal might be
promising to filter program variants that are adequate to the suspicious
portion of the code.

Keywords: Automated Program Repair · Search space exploration ·
Code naturalness

1 Introduction

Automated Program Repair (APR) is a research field that aims to fix buggy
code without human intervention. Search-Based Program Repair algorithms [1]
are based on the generate-and-validate approach, where variations of the original
(bugged) code are generated and then evaluated, mostly, by a test suite. This
evaluation method is time-consuming, might lead the search to plateaus or local

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 164–170, 2019.
https://doi.org/10.1007/978-3-030-27455-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_12

Code Naturalness to Assist Search Space Exploration in SBPR Methods 165

optimal, and does not provide enough information to the fitness function to
accurately differentiate the variants.

There is evidence that using dynamic analysis to capture internal states of
the program and then using this information in the fitness function helps to
differentiate variants better and improves the search expressiveness [2]. Although
promising, this technique is still too costly and given that the search space is
usually densely populated by plausible or low-quality solutions, there is still the
need for efficient methods. Other approaches using neural network models to
evaluate or classify source code in the APR context [3,4] might be used to help
to compose the fitness function, but there is no evidence of a relation of those
approaches to a fitness evaluation.

Previous research acknowledges that source code has similar properties of
natural language and, therefore, the models used to compare natural language
suits this new context [5]. Although [6] points out that such models might not
be accurate, this research goes one step further and provide an efficient pro-
gram’s variant evaluation through the combination of two techniques, Doc2vec
and LSTM, to capture high-level differences among variants (high-order muta-
tions) and to capture the dependence between source code statements in the
fault localization region (low-order mutation).

2 Proposed Approach

End-to-end search-based Automated Program Repair techniques comprise sev-
eral steps with complex tasks involved. Yet, the focus of this proposal is about
traversing the program’s landscape concerns. Figure 1 presents an overview illus-
trating what APR aspects are involved with and are impacted by this proposal.

Fig. 1. Our proposal of using code naturalness for Automated Program Repair.

Our approach considers that correct source codes (written in the same pro-
gramming language as the buggy code) are available in order to perform an
automated program repair. Assuming that language models are trained to cap-
ture naturalness from scriptures, we rely on that to also assume that they are
capable of capturing naturalness from correct source code. The corpus used to
train the models are composed of tokens obtained through feature extraction
from the correct source codes.

166 A. Dantas et al.

One can use information from the naturalness model in a traditional search-
based program repair workflow (dashed lines). As Fig. 1 highlights with the white
circle, we propose to use those models to help as a static analysis factor to a
fitness function. The model receives a tokenized source code, transformed with
the same process as used in training, and it returns information to compound
the fitness along with the dynamic factor, which is typically based on a test suite
and requires executing the program.

Among the existing ways to capture naturalness information from a corpus,
we propose the usage of Doc2vec and LSTM. The motivation to use them, as
well as their required inputs and the expected output, is detailed next.

2.1 Doc2vec Model

Doc2vec is an unsupervised machine learning method that learns a fixed feature
representation to describe paragraphs and documents [7] throughout the distri-
butions of words and sentences in a corpus. Previous work has proposed metrics
to evaluate program variants based on a word embedding [3], but we chose the
Doc2vec because it is more appropriate to deal with the whole document.

We employ Doc2vec to encode methods or functions in source codes in the
same way it treats paragraphs in documents; thus, our technique obtains a mea-
sure of similarity between programs based on their vector representation. Given
this information, one might assume that a fix is not so distant from the original
bugged code. Besides, one can use this vector representation to investigate the
impact of mutation operators, which is typically hard to do using the patch or
AST representations.

We developed our proposal upon the Doc2vec provided by the Gensim1

library in such a way that our model, when trained, receives two source codes
and returns how similar they are.

2.2 LSTM Model

Long Short-Term Memory (LSTM) [7] is a recurrent neural network applied
to pattern recognition in several contexts as text sequences, temporal series,
genomes, and spoken words. It deals with sequences of elements without a regular
interval of dependence between them. A similar situation occurs in source codes.

Different from analyzing the whole file, likewise the previous Doc2vec model,
we propose to use LSTM to capture data from and generate information for a
specific area of the code. Therefore, we train our LSTM model (implemented
with the TensorFlow framework2) on the corpus of correct programs and then
use it to synthesize code patch considering a part of the buggy program as the
input sequence. The model receives a sequence of tokens from the suspicious
region and generates the sequence it considers more “natural” for that part of
the code. The experiment section presents how such an output sequence can be
used to evaluate program variants.
1 https://radimrehurek.com/gensim.
2 https://www.tensorflow.org.

https://radimrehurek.com/gensim
https://www.tensorflow.org

Code Naturalness to Assist Search Space Exploration in SBPR Methods 167

3 Preliminary Empirical Study

We conducted our experiments to answer the following Research Question: Do
naturalness models provide useful information to explore a program’s
search space?

Thus, to evaluate our proposal, we used the IntroClass3 benchmark. Consid-
ering this benchmark presents buggy and fixed versions but does not have fault
localization data nor the correct patches, we first performed an inspection to
generate such data. From the 99 available versions, distributed in six categories
(problems), we selected 70 of them. We did not consider fixes achieved only by
deletion, changes on the whole file, or empty diff between the bugged and fixed
versions.

The tokenization step is as follows: For all 70 versions selected (140, taking the
buggy and the correct ones), we removed all headers and comments, separated
every relevant token by space (e.g., vector[i] became vector [i]) and replaced
strings with the token “STRRPL” to prevent noise by words unlike to the one
from the programming language. Thus, the tokenization process is a feature
extraction process in the sense that each token represents a feature. After that,
the proposal trained both Doc2vec and LSTM models over the corpora from the
correct codes.

Three versions were randomly selected from each problem to test the former
model. For each version, 15 variants were generated by applying GenProg’s [8]
mutation operators and the number of mutations (1, 2, 3) they received clustered
those variants. Thus, it was generated 270 variants, and then it was possible to
calculate the similarity between the original version and its variants. Such a
metric is a unit percentage [0,1].

To the latter, the information of fault localization and a correct patch for all
70 versions were used to process the test and compute the accuracy (Acc) and
precision (Prec) metrics. Acc is |T ⋂

Y |
|T | and Prec is |T ⋂

Y |
|Y | , where T is the set

of tokens in the knowing patch fix, and Y is the set of tokens predicted by the
model. For this model requires an input sequence of tokens to produce another
sequence, different configurations of length for both sequences were verified.

Although training such models might be expensive, it occurs only once, and
its results are then used in O(1) time. A search-based program repair technique
could benefit from this while using the information from the models to pre-
evaluate a variant, alleviating the time-consuming process of running the test
suite.

Experiments’ data, scripts, and raw results are available at: https://
altinodantas.github.io/sbpr-naturalness.

3.1 Preliminary Results

Figure 2 shows the average similarity grouped by the number of mutations
the variants received and the problem they were implemented for. In some cases,
3 https://repairbenchmarks.cs.umass.edu.

https://altinodantas.github.io/sbpr-naturalness
https://altinodantas.github.io/sbpr-naturalness
https://repairbenchmarks.cs.umass.edu

168 A. Dantas et al.

Fig. 2. Similarity between original buggy versions and their variants.

such as checksum, grade, and smallest, the higher the number of mutations,
the lower the similarity. This behavior occurs if we assume that applying more
perturbations increases the entropy between the original and a variant from it.
However, for other problems, fewer mutations produced a lower similarity.

While inspecting the variants, we observed that in some cases, one mutation
could have more impact than three mutations. For instance, in the syllables
problem, a one-mutation variant deleted a “for” statement that had the main
functionality of the program. Meanwhile, for the same version, a three-mutations
variant computed higher similarity because the changes they provoked were not
as profound.

This observation is exciting because it provides a method to capture the
impact caused by mutation operators without the need of running the variant
or the original program against the test suite, which is a time-consuming task.
Therefore, a search algorithm could use the similarity to balance the exploration
and exploitation, which are two crucial steps to cover a search space adequately.
For example, using a threshold on the similarity values, one may enable muta-
tions with more or less impact on the code.

Looking at the reports from the median problem, one notices that their values
are inferior to the others. We speculate that this behavior is because the median
has more versions than the other problems. Thus, with more information from
the median to perform the training phase, the resulting model is more sensible
to get differences between versions from that problem. However, a more rigorous
investigation is needed.

Moving to the LSTM model evaluation, Table 1 presents the average of Acc
and Prec for each configuration considering all versions and problems. Configu-
rations have the format Xin Yout, where X and Y indicate the number of tokens
given as input and number of tokens expected in the output, respectively. As
Acc and Prec may be conflicting, the results show, in some sense, which config-
urations present the best trade-off.

It is possible to notice the configurations with only five tokens in the input,
the left part of the table, do not achieve the best values in Acc or Prec.

Code Naturalness to Assist Search Space Exploration in SBPR Methods 169

Table 1. Average of Acc and Prec achieved by LSTM model in all 70 selected versions.

Configuration Acc Prec Configuration Acc Prec Configuration Acc Prec

5in 10out 0.25 0.29 10in 10out 0.37 0.35 15in 10out 0.35 0.33

5in 20out 0.35 0.28 10in 20out 0.44 0.26 15in 20out 0.43 0.26

5in 30out 0.37 0.24 10in 30out 0.44 0.22 15in 30out 0.45 0.20

We might conclude that, on average, for the IntroClass’ problems, five tokens
are not enough to infer the dependence context due to some statements that are
related to others further away.

Rather, since Acc and Prec’s trade-off, all the 10-input configurations are not
dominated, that is, there is no other configuration with results at least equal to
one metric and strictly superior in the other. Notice that 10in 10out achieved
the best Prec (0.35). Despite 15in 30out reached the best Acc (0.45) and also
may be considered non-dominated, ten tokens to the input seem to be sufficient
because increasing the input does not necessarily achieve better accuracy, as the
others two 15-input does not overcome the best 10-input in this metric.

It is clear that based on local naturalness, given the faulty location and a
correct patch, it was impossible to predict all the tokens needed to a fix. However,
at least 37% of those tokens are always found in non-dominated settings; thus,
this information could be used to discard variants that present fewer tokens
than the model predicts. For instance, one could infer a threshold by analyzing
the accuracy of the model over known fixed codes. This makes sense once some
mutations are more suitable regarding the region of code they are applied.

Finally, considering the findings presented in this section, we can answer
the Research Question saying that: “yes, naturalness models can provide
useful information to be employed by a technique that needs to explore
a program’s search space”. From the Doc2vec model, it is possible to get
information to control the exploration and exploitation, and from the LSTM it
is possible to create a filter on variants that are more suitable to the context of
the region pointed by the fault localization.

4 Threats to Validity

The machine learning methods used to infer the naturalness models have a
stochastic nature; thus, we performed preliminary training to get the model
and decide about the hyperparameters. Nevertheless, fine-tuning the training
process may generate different results. Since the investigated benchmark has
small C programs, we can not generalize our findings to another programming
language. However, previous work [4] presented evidence that LSTM works for
real-world programs, including different programming languages. Finally, the
results are hugely dependent on the tokenization we adopted.

170 A. Dantas et al.

5 Final Remarks

Several APR methods fix buggy programs by generating and validating vari-
ants. However, exploring a program’s search space continues to be challenging.
Therefore, this paper introduced an approach to generate useful information to
explore a program’s search space from the naturalness of correct programs. Pre-
liminary results showed the proposal could potentially help APR methods to
control their exploration and exploitation steps and filter variants regarding the
fault localization data.

Next, we intend to couple our proposal to a search-based APR method. For
that, we are working on integrating it to GenProg. Our models will then be used
to prevent executing not such promising variants. Then, they will be used to
compound the fitness function itself.

Acknowledgements. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001 and
by the Fundação de Amparo à Pesquisa de Goiás (FAPEG).

References

1. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

2. de Souza, E.F., Le Goues, C., Camilo-Junior, C.G.: A novel fitness function for
automated program repair based on source code checkpoints. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1443–1450.
ACM, New York (2018)

3. Amorim, L.A., Freitas, M.F., Dantas, A., de Souza, E.F., Camilo-Junior, C.G.,
Martins, W.S.: A new word embedding approach to evaluate potential fixes for
automated program repair. In: Proceeding of the 2018 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 1–8, July 2018

4. Roque, L., Dantas, A., Camilo-Junior, C.G.: Programming style analysis with recur-
rent neural network to automatic pull request approval. In: Proceedings of The 2019
International Joint Conference on Neural Networks (IJCNN). ijcnn.org (2019, to be
appear)

5. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of soft-
ware. In: Proceedings of the 34th International Conference on Software Engineering,
ICSE 2012, pp. 837–847. IEEE Press, Piscataway (2012)

6. Jimenez, M., Checkam,T.T., Cordy, M., Papadakis, M., Kintis, M., Le Traon, Y.,
Harman, M.: Are mutants really natural?: A study on how naturalness helps mutant
selection. In: Proceedings of the 12th ESEM, page 3. ACM, 2018

7. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on Machine Learning, vol. 32,
ICML 2014, pp. II-1188–II-1196. JMLR.org (2014)

8. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

Dorylus: An Ant Colony Based Tool
for Automated Test Case Generation

Dan Bruce(B), Héctor D. Menéndez, and David Clark

University College London, London, UK
dan.bruce.17@ucl.ac.uk

Abstract. Automated test generation to cover all branches within a
program is a hard task. We present Dorylus, a test suite generation
tool that uses ant colony optimisation, guided by coverage. Dorylus con-
structs a continuous domain over which it conducts independent, mul-
tiple objective search that employs a lightweight, dynamic, path-based
input dependency analysis. We compare Dorylus with EvoSuite with
respect to both coverage and speed using two corpora. The first bench-
mark contains string based programs, where our results demonstrate that
Dorylus improves over EvoSuite on branch coverage and is 50% faster
on average. The second benchmark consists of 936 Java programs from
SF110 and suggests Dorylus generalises well as it achieves 79% coverage
on average whereas the best performing of three EvoSuite algorithms
reaches 89%.

Keywords: Search-based testing · Automated test case generation ·
Ant colony optimisation · Dorylus

1 Introduction

Testing software can be a long and arduous task for developers. It can take up
much of the development budget for what may feel like relatively little output.
However, it is crucial for checking the correctness and reliability of programs.
Automated test generation aims to reduce the burden on the developer by pro-
viding test suites that, according to some criterion, effectively test the program.
An important part of creating tests for programs is ensuring that much of the
program is exercised by the test suite. This has led to the common goal of cov-
erage amongst manual test developers and automation tools alike [6].

Common goals for automatic test generation tools based on coverage are: pri-
oritisation of branches in the generation process [6], infeasibility [2] and travers-
ing branches that depend on complex conditions such as those based on sub-
regions of strings. To deal with these problems we present Dorylus. Dorylus
is a search-based optimisation tool capable of generating test data for Java
programs. The goal of Dorylus is branch coverage for which it requires only
the binary files of the software under test. It uses a two phase search-based
optimisation algorithm which prioritises targets to maximise potential coverage.
c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 171–180, 2019.
https://doi.org/10.1007/978-3-030-27455-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-27455-9_13

172 D. Bruce et al.

It then solves each target as a separate search problem. Rather than focusing on
one target at a time, the target being solved changes continually according to its
probability of selection. This reduces wasting time on infeasible targets, whilst
also allowing prerequisite branches to be covered early in the process. Moreover,
only targets immediately reachable from current coverage are considered at any
time, creating a dynamic vector of targets.

The contribution of this paper is the Dorylus tool. For any given target the
search space of the problem is reduced through a novel lightweight path-based
input dependency analysis. This combined with the construction of a probability
distribution over numeric inputs and leveraging Levenshtein distance to define
distances for string operations, allows rapid convergence on correct inputs. Unlike
other techniques, Dorylus considers paths and aims to propagate many unique
paths through the program to reach the targets. This path diversity unlocks rare
probability predicates, due to many of them being only feasible from a specific
rare probability state of the program.

A proof-of-concept qualitative analysis has been performed, comparing Dory-
lus with EvoSuite to demonstrate its suitability for the problem of test gener-
ation. Both tools are tested on 12 programs, 10 of which are taken from the
literature, one of these is further modified and one program constructed from
interesting code constructs [1]. The results show that on all programs Dorylus
at least matched EvoSuite which, on average, covered 95.1% compared with
Dorylus’ 97.7%. Furthermore, Dorylus was twice as fast on average, reaching
maximal coverage in 20.3 s whereas EvoSuite took 41.8 s on average. To test
the generalisability of Dorylus, both tools are tested on 936 programs from the
SF110 benchmark. For this corpus Dorylus was compared with three algorithms
in EvoSuite; whole test suite (WTS), many objective sorting algorithm (MOSA)
and many independent objectives (MIO). The results suggest that Dorylus’ tech-
niques generalise well as it reaches 79% branch coverage on the corpus, compared
with that of EvoSuite who achieves 89%, 86% and 88% with WTS, MOSA and
MIO respectively.

2 Dorylus

Dorylus’ aim is branch coverage. In order to achieve its goal Dorylus needs
two pieces of information from the program that it obtains by instrumenting it.
Firstly, the basic blocks that were executed in a given execution, and secondly
the values of the operands and the operator at each predicate. This information
will guide Dorylus’ search aiming for maximum coverage. With the operator’s
information from a given predicate, Dorylus uses branch distance, as defined
by Korel [10], to calculate how far the given test inputs are from executing
the unseen branch on the other side of the predicate. Branch distance specifies
how far a given predicate is from switching outcomes. For example, given a
conditional statement containing the expression a == 100, if the outcome is false
then the branch distance is 100 − a. Korel defined such distances for all boolean
operations on numeric operands. Branch distance is used for all Java primitives

Dorylus: An Ant Colony Based Tool for Automated Test Case Generation 173

as they are numeric. For string comparisons, Levenshtein distance is used to
defined a measure for all core Java boolean string comparison functions. This
indicates the number of characters which must be changed (inserted, swapped
or deleted) in order to change the outcome of the predicate. Furthermore, as
Dorylus operates on bytecode any complex boolean expressions are broken down
into atomic components so need not be considered.

Uncovered branches become targets for Dorylus and this list is dynamically
updated. A predicate can be observed as the guard of two branches, each labelled
as ls → ld where ls is the block containing the predicate and ld is the destination
block. Targets are defined as those branches where ls is covered by the test suite
but ld is not. Therefore, as coverage changes the set of targets to be tackled
is updated. When the program is executed, a trace of executed branches and
the operands and operators of all executed predicates is given as output. The
predicate information can be used to measure branch distance at a given location
in the trace. When a test case’s trace includes a previously unseen branch, it is
added to the test suite.

Once the program is instrumented, some initial inputs are generated uni-
formly at random and ran on the instrumented program. The traces of these
executions define the initial coverage and therefore provide Dorylus with a set of
initial targets. Each target is a separate optimisation problem, where the fitness
function is branch distance. It is important, however, that even though each
search problem is separate, information should be shared between them. There-
fore, all test cases that are generated are shared with all targets for which they
pass through the guarding predicate. At each target, a novel lightweight dynamic
path-based input dependency analysis is carried out to reduce the search space.
This analysis identifies parts of the inputs whose mutation affects the outcome of
the predicate, thereby drastically reducing the search space of inputs. This must
be done on a path basis as depending on the path taken to the guard, different
inputs may be included in the variables used in the predicate statement. For
primitive numerical types we apply a search process called Ant Colony Optimi-
sation for continuous domains (ACOR) [16]. It creates a probability distribution
for each input at each target given the path taken to the guard. This is con-
structed by maintaining an archive of best performing test cases at each target,
diversified by mandating that unique paths must be maintained and may not be
removed. ACOR controls the proximity to the target via Gaussian kernels [16].
When creating a new test case, the kernel is sampled to generate new primitive
values. For String input values, rather than attempt to create a distribution,
three mutations are defined based on the Levenshtein distance: insert, swap and
delete. A guide test case is selected from the target’s archive and the string
is mutated uniformly at random a number of times according to the branch
distance.

Dorylus not only works on simple programs requiring only primitives or
strings, but also on more complicated real-world programs. Given a Java class to
be tested, Dorylus identifies constructors and all public methods which can be
called and labels them as entry points. It looks at the inputs for each method, and

174 D. Bruce et al.

uses refection for those containing objects to find the object’s constructor and its
required inputs. This cycle is repeated until all objects have been deconstructed
to primitive and string inputs and a sequence of method calls to instantiate an
object of the required type. Initial test cases call a constructor followed by a pub-
lic method covering all combinations. During the search process, if for a target
it appears that there are no inputs affecting the outcome, then the methods of
any objects formed by the inputs are searched over. This process identifies state
changing methods, such as setter methods, and then searches for the required
input values. If it still appears that there are no inputs that affect the target, the
process backtracks to previous targets. The aim being to find new paths to the
guard predicate which can pass through the guard. When a test case is added
to the test suite, the methods it calls and their inputs are sent to each target.
Every target then adds a call to the method containing the target to the end of
the sequence. This builds up complex sequences of method calls to explore all
possible states of the program.

3 Experimental Setup

EvoSuite is a state-of-the-art test generation tool for Java programs [6]. Its aim is
to generate unit tests to cover as much of a program as possible, using a genetic
algorithm. EvoSuite’s search-based approach has featured many improvements
over the years with techniques such as dynamic symbolic execution, hybrid search
and testability transformations [8]. Furthermore, it has been the winner of a
number of test case generation tool competitions [12].

This evaluation tests Dorylus and EvoSuite on a number of programs, and in
all instances both were given 2 min to achieve as much coverage as possible. All
experiments were carried out 10 times. The choice of 2 min is a tradeoff between
coverage and time spent, which has been identified and used in a number of
previous studies [7,15]. Three different algorithms within EvoSuite were used;
whole test suite (WTS) [6], Multiple Objective Sorting Algorithm (MOSA) [14]
and Many Independent Objective (MIO) [2]. In all cases EvoSuite’s only coverage
criterion was branch coverage, as this is the only criterion included in Dorylus.
All other setting of EvoSuite were left to their default values.

There are two corpora on which the tools have been compared. The first
corpus consists of 12 programs which demonstrate constructs and programming
styles using string inputs. This was selected due to Dorylus being specialised
on primitive and string inputs. Furthermore, 10 of these programs have been
used widely in the literature to test tools aiming to generate strings that must
conform to some constraints, in order to reach parts of the program [1]. Some of
the programs exhibit features which can be hard to handle for automated tools.
Two programs have been added to the corpus in order to further test the tools.
The first addition is to collapse multiple string inputs into a single input which
is the split in the program. The other was made by combining different features
of the programs to create a hard to cover program. Table 1 shows the complete
list of all programs in the first corpus.

Dorylus: An Ant Colony Based Tool for Automated Test Case Generation 175

The second corpus was selected from the SF1101 benchmark. SF110 contains
110 Java projects from SourceForge, the first 100 were selected to be statistically
representative, the final 10 were the 10 most popular Java projects on Source-
Forge at the time [7]. SF110 consists of 23,886 programs, of this Dorylus can
handle 8,398, of which 1,000 were chosen uniformly at random to judge the per-
formance of Dorylus and test how well it generalises. If any of the 10 repetitions
of a program failed due to a crash in one of the tools, we reran it up to three
times. If after these reruns there were still repetitions which had failed, the pro-
gram was removed from the corpus. Of the 1000 selected programs there were
64 that caused such issues and were therefore removed, leaving a final corpus of
936 classes with an average of 7.6 branches.

4 Results

Table 1 presents the first corpus on which the tools where tested, along with
each tools average time and coverage for each program. Dorylus can be seen to
be competitive on coverage with EvoSuite, matching coverage on all programs
and improving coverage on two. EvoSuite covers an average of 95.1% reaching
100% on all but three programs, whereas Dorylus achieves 100% on all but one
program, with an average of 97.7% branch coverage. The programs on which
EvoSuite fails to reach 100% coverage are those which require optimisation of
sub-regions of inputs. For example, FileSuffix takes two string input parameters,
the first being the type of file and the second a file name. The file extension is then
taken to be the substring after the last period in the file name. The program then
checks the extension against the file type. Coverage of this program is conditional
upon being able to generate an input with at least one period, and being able
to find the correct substring to be placed after this period (the extension). The
correct extension is dependent upon first providing a valid file type, and then
matching the given extension with the one defined in the program. Dorylus covers
the entire program in under 10 s on average, whereas EvoSuite only reaches
100% coverage on one of the ten repetitions, on average only covering 84.8%.
TestProgram is similarly conditional on substring optimisation in addition to
having a branch that is only feasible when a certain path is taken through the
program. On this class, EvoSuite consistently reached 84.6% coverage and no
higher, never covering the branch that required a specific path to be followed.
This program emphasises the need for path diversity.

In terms of performance, EvoSuite is far quicker on the simpler programs
without nested conditional statements and with many literals present for seed-
ing, for example, in the case of DateParse. As programs get more complex, Dory-
lus’ performance overtakes that of EvoSuite. On the corpus, EvoSuite reaches
maximum coverage in a mean time of 41.8 s with a median of 14.5 s, compared
with Dorylus’ mean time of 20.3 s and median of 7.3 s. As 100% coverage is not
attained in three instances for EvoSuite there are three cases of reaching the
maximum time of 120 s, Dorylus only reaches the timeout once. An interesting
1 http://www.evosuite.org/experimental-data/sf110/.

http://www.evosuite.org/experimental-data/sf110/

176 D. Bruce et al.

Table 1. Results on the first corpus for both EvoSuite and Dorylus. It shows the mean
time and coverage for each tool over 10 repetitions on each program.

Program Branches EvoSuite WTS Dorylus

Time (s) Coverage Time (s) Coverage

Calc 12 1.1 100% 6.5 100%

Cookie 13 16.6 100% 3.7 100%

Costfuns 20 1.5 100% 3.9 100%

DateParse 39 1.1 100% 31.7 100%

FileSuffix 23 119.6 84.8% 9.6 100%

NotyPevar 8 2.4 100% 1.6 100%

Ordered4 29 37.8 100% 2.1 100%

Pat 39 120 72% 120 72%

Text2Txt 23 10.5 100% 8.0 100%

Title 43 12.4 100% 11.3 100%

DateParse1V 39 58.6 100% 39.4 100%

TestProgram 13 120 84.6% 5.7 100%

Mean 25 41.8 95.1% 20.3 97.7%

Median 23 14.5 100% 7.3 100%

program to mention is DateParse1V, which is DateParse modified so that instead
of two string inputs there is only one. This input is then split so that the first
three characters become the original input two, and the remaining characters
the original input one. The control flow of the program is left unaffected by this
change. Despite a small change to the representation, the time taken for Evo-
Suite to cover the program jumps from 1.1 s up to 58.6 s. Whereas Dorylus only
increases from 31.7 to 39.4 s. DateParse1V demonstrates that Dorylus can be
more resilient to representation changes than EvoSuite and is quicker to handle
substring optimisation.

In the second corpus there are 936 real-world Java classes upon which the
tools were tested, the results for which can be seen in Table 2. All three algo-
rithms within EvoSuite performed similarly, with WTS reaching 89.5%, MOSA
85.7% and MIO 87.6%. Dorylus reached 79.1% in 30.2 s on average. This sug-
gests that the techniques used in Dorylus generalise well, given that EvoSuite
is a mature state-of-the-art tool. Interesting to note is the number of programs
on which each algorithm achieved higher coverage than the other three. Dorylus
outperforms all EvoSuite configurations on 29 programs, suggesting that there
is a set of programs on which its techniques are more effective.

However, many of the classes within SF110 are small, with many having
no branches at all. As such results for the largest 100 classes of the 936 are
also presented. These classes, are substantial with an average of 42 branches and
minimum and maximum of 24 and 273 branches respectively. Coverage was much

Dorylus: An Ant Colony Based Tool for Automated Test Case Generation 177

lower, Dorylus reaches 31.29% coverage and EvoSuite 54.56%. However, it can be
seen that Dorylus is much quicker on these larger programs. This suggests that
it is either failing or stopping the search process early and as such future work
will include more randomness in the search in order to continue to improve given
more time. As can be seen in Table 2, there are nine classes of the largest 100 on
which Dorylus achieves higher coverage than EvoSuite, implying that Dorylus’
technique could be used to complement EvoSuite in specific circumstances.

Possible threats to validity include the different implementations of the tools.
As previously mentioned, all three algorithms in EvoSuite achieve similar results.
It would be worth investigating an implementation of Dorylus in EvoSuite to
get a better comparison with less confounding factors.

Table 2. Results on the second corpus for WTS, MOSA, MIO and Dorylus. It shows
mean time, coverage and the number of programs where each tool gets the higher
coverage than all other approaches.

Classes Branches Algorithm Coverage (%) Time (s) Best

All 936 7.6 WTS 89.47 32.6 58

MOSA 85.66 29.4 44

MIO 87.58 36.2 19

Dorylus 79.12 30.2 29

Largest 100 42.4 WTS 54.56 101.9 16

MOSA 54.28 98.49 27

MIO 51.85 112.1 4

Dorylus 31.29 75.67 9

5 Related Work

There are many search-based methods that can be used for automated test gen-
eration [11]. What these algorithms have in common is that they obtain solutions
guided by a fitness function [9]. The way in which these test cases are created or
how the search is guided is what distinguishes these methods from one another.
In the context of automated test generation the most prominent search based
method used is Genetic Algorithms [4]. A well-known example is the work of
Fraser et al. on EvoSuite [5]. EvoSuite produces unit tests for Java programs
using a genetic algorithm with some coverage metrics as the fitness functions.
It has been tested for both unit testing and system testing and has achieved
the highest score compared with state of the art tools for a number of years
[12]. Owing to its success a number of algorithms have been integrated into the
EvoSuite tool.

Firstly, the Many Objective Search Algorithm (MOSA) uses a multi-objective
approach, where every target is an objective [14]. Many test cases are compared

178 D. Bruce et al.

based on their performance across all objectives in order to obtain the best per-
forming test cases. In this approach, infeasible branches may cause wasted effort,
as targets that have a control dependency on an infeasible branch are infeasi-
ble targets, and therefore not worth considering. This improvement was imple-
mented in Dynamic MOSA (DynaMOSA) where targets are updated to only
include those immediately reachable from currently covered branches. Dorylus
uses a similar design by updating targets dynamically [13]. In doing this, an
infeasible region in the control flow graph will only be represented as a single
objective, the branch guarded by the infeasible predicate. This approach was
proved to be at least as good as the original algorithm [13]. DynaMOSA cre-
ates many test cases which are scored according to their position in the Pareto
front of all objectives. Conversely, our work aims to prioritise targets in order to
speed up exploration of required ancestors before effort is spent on descendants.
It is possible for the Pareto front of DynaMOSA to be affected by infeasible
targets with very low branch distances, although they will have less impact on
performance than on MOSA. Unfortunately we were unable to compare with
DynaMOSA as it was not in the release of EvoSuite used in the experiments.

The existing tool most similar to Dorylus is Many Independent Objectives
(MIO), in which a population is maintained for each of the objectives [2,3].
MIO was compared against random search, MOSA and whole test suite and
found to outperform all three [3]. The goal of MIO is to produce the highest
covering test suite in the allotted timeframe. It handles this goal starting with
the easiest to solve branches, which provide immediate coverage. This means
that where MIO punishes complex and difficult to solve targets, Dorylus puts
effort into attempting to solve them unless they are heuristically identified as
infeasible. Infeasible branches are implicitly ignored by MIO as it prioritises those
targets for whom better performing test cases are being found. Once a plateau
is reached for an infeasible branch no new test cases will be found. Dorylus aims
to get many paths through to the targets, thereby introducing path diversity. In
the case that current members of the archive are unable to affect change on a
predicate, Dorylus backtracks to the previous target in order to find new paths.
Backtracking can take many steps in order to find new rare probability paths,
which are needed to unlock specific regions of code. On the other hand, MIO
has a counter for each target which is incremented on every attempt to find a
new test case, and resets when a test case is added to the archive. Therefore,
if the correct path does not make it to the target, it will implicitly be seen as
infeasible and therefore given less attention.

6 Conclusion

We have put forward a new tool to generate input data to cover hard to reach
regions of code. It is a search-based method, founded on the ideas of Ant Colony
Optimisation, with novel heuristics to assist in unlocking difficult predicates. The
concept of a conditional statementś dependency on an input variable for a spe-
cific path has proved in practice to work well and assist in speed and quality of

Dorylus: An Ant Colony Based Tool for Automated Test Case Generation 179

coverage. Our tool has been compared against EvoSuite, a highly successful test
case generation tool. We demonstrated that Dorylus can outperform EvoSuite
on programs with complex predicates and code structure. Furthermore, we have
shown Dorylus can handle a large number of real-world programs and provide
good coverage. Two steps for future work have been identified. Firstly, to incor-
porate other coverage criterion to improve the effectiveness of the generated test
suite. The second step is to combine the approaches of Dorylus with those of
EvoSuite to create a hybrid thereby improving EvoSuite’s effectiveness on the
programs which Dorylus beat it.

References

1. Alshraideh, M., Bottaci, L.: Search-based software test data generation for string
data using program-specific search operators. Softw. Test. Verif. Reliab. 16(3),
175–203 (2006)

2. Arcuri, A.: Many Independent Objective (MIO) algorithm for test suite generation.
In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 3–17. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66299-2 1

3. Arcuri, A.: Test suite generation with the Many Independent Objective (MIO)
algorithm. Inf. Softw. Technol. 104, 195–206 (2018)

4. Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of
evolutionary algorithms for test suite generation. In: Menzies, T., Petke, J. (eds.)
SSBSE 2017. LNCS, vol. 10452, pp. 33–48. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66299-2 3

5. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 416–419. ACM
(2011)

6. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

7. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using evosuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8 (2014)

8. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite genera-
tion with dynamic symbolic execution. In: IEEE 24th International Symposium
Software Reliability Engineering (ISSRE), pp. 360–369 (2013)

9. Harman, M., Clark, J.: Metrics are fitness functions too. In: Proceedings of 10th
International Symposium on Software Metrics, pp. 58–69. IEEE (2004)

10. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng.
16(8), 870–879 (1990)

11. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

12. Panichella, A., Campos, J., Fraser, G.: EvoSuite at the SBST 2019 tool competition.
In: International Workshop on Search-Based Software Testing (SBST), pp. 29–32
(2019)

13. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans.
Softw. Eng. 44(2), 122–158 (2018)

https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3

180 D. Bruce et al.

14. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

15. Panichella, A., Kifetew, F.M., Tonella, P.: A large scale empirical comparison of
state-of-the-art search-based test case generators. Inf. Softw. Technol. 104, 236–
256 (2018)

16. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185(3), 1155–1173 (2008)

Challenge Paper

Software Improvement with Gin:
A Case Study

Justyna Petke1(B) and Alexander E. I. Brownlee2

1 University College London, London, UK
j.petke@ucl.ac.uk

2 University of Stirling, Stirling, UK
sbr@cs.stir.ac.uk

Abstract. We provide a case study for the usage of Gin, a genetic
improvement toolbox for Java. In particular, we implemented a simple
GP search and targeted two software optimisation properties: runtime
and repair. We ran our search algorithm on Gson, a Java library for
converting Java objects to JSON and vice-versa. We report on run-
time improvements and fixes found. We provide all the new code
and data on the dedicated website: https://github.com/justynapt/
ssbseChallenge2019.

Keywords: Genetic improvement · Search-based software engineering

1 Introduction

Genetic improvement (GI) uses automated search to improve existing soft-
ware [10]. GI-evolved changes have already been incorporated into develop-
ment [6,7]. Only recently two frameworks emerged that aim to help researchers
experiment with GI: Gin [3,11] and PyGGI [1,2]. The new version of Gin pro-
vides support for large-scale Java projects, thus we decided to use it for our
study.

In this paper we aim to determine whether we can improve various software
properties using Gin. We chose Gson for the case study, as it is written in Java
and follows the Maven directory structure. The second version of Gin provides
utilities for setting up Maven and Gradle projects, so that the user only needs to
provide project name and top level directory. This way researchers can quickly
test their novel GI strategies on such projects. Several of Gin’s utilities are
method-based, thus search can be restricted to individual methods.

In this work we use Gin to generate patches for one of the most frequently
used methods of Gson. We aim to improve its runtime and fix (injected) bugs.

2 Subject Program

Gson1 is a Java library for converting Java Objects to JSON and vice-versa. It
is used by over 152,000 projects on GitHub, and there have been 39 releases
1 https://github.com/google/gson.

c© Springer Nature Switzerland AG 2019
S. Nejati and G. Gay (Eds.): SSBSE 2019, LNCS 11664, pp. 183–189, 2019.
https://doi.org/10.1007/978-3-030-27455-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27455-9_14&domain=pdf
https://github.com/justynapt/ssbseChallenge2019
https://github.com/justynapt/ssbseChallenge2019
https://github.com/google/gson
https://doi.org/10.1007/978-3-030-27455-9_14

184 J. Petke and A. E. I. Brownlee

so far. It can be built with Maven or Gradle, and follows the standard project
structure. In this work we use the latest release, that is, gson-parent-2.8.5.

We first ran cloc2 and the PIT mutation tool3 to get information about the
project. Gson contains 50874 lines of code, 25193 of which are in Java. The test
suite achieves 83% line coverage and 77% mutation coverage.

3 Test Suite

The test suite consists of 1051 JUnit tests, 1050 of which are runnable
with mvn test (1 test is skipped; the total runtime of the remaining 1050
is <10 s). Running PIT issued warnings that two tests (com.google.gson
.functional.ConcurrencyTest.testMultiThreadDeserialization and com.google

.gson.functional.ConcurrencyTest.testMultiThreadSerialization) leave hang-
ing threads. We ran those tests using Gin’s utility, gin.util.EmptyPatchTester

(which runs all provided unit tests in the input file for a project), and indeed the
program did not terminate, unless the -j option was added, which runs tests in
a separate JVM. Therefore, we fixed those tests by adding a shutDown hook for
the ExecutorService instances at the end of each of the two faulty unit tests4.

4 Methodology

We set out to show how the latest version of the genetic improvement tool,
Gin [3], can be used for the purpose of runtime improvement as well as pro-
gram repair. Therefore, we used the same search algorithm for targeting both
objectives: genetic programming; the most frequently used strategy in genetic
improvement [10]. Each individual in the population is represented as a list of
source code edits.

4.1 Search

Following the famous GenProg algorithm structure [8], for each generation
we select two parents from the previous population at random, apply 1-point
crossover to create two children, and append both parents and both children to
the current population. If the required population size is not divisible by four, we
add the original program to the population until we reach the desired number5.
Finally, we mutate each of the created individuals and calculate their fitness.

Crossover: Crossover takes two parents, i.e., a list of edits, and creates two
children: one comprising the first half of edits of parent 1 and the second half of
edits of parent 2; the second child containing the remaining edits.
2 https://cloc.org/.
3 Plugin used: https://github.com/STAMP-project/pitmp-maven-plugin.
4 Fixed test class is available on the submission’s website, in the input folder.
5 We decided to make this small change following insight that fixes usually require no
more that four AST node edits [9].

https://cloc.org/
https://github.com/STAMP-project/pitmp-maven-plugin

Software Improvement with Gin: A Case Study 185

Mutation: We use two types of mutation operators, which were introduced in
Gin [3]. The first type are constrained statement edits, that contain delete,
copy, swap and replace operations to adhere with the Java grammar. delete
simply targets a single Java statement for deletion. The remaining three edits
target matching pairs of Java statements (e.g. two assignment statements, or two
if statements). The second mutation type are Binary and Unary replacement
operators. These follow the micro-mutations in [5]: binary operator replacement
will replace e.g. == with !=, or <with>; unary operator replacement will replace
e.g. ++ with --.

Fitness: For the purpose of runtime improvement, we simply used runtime mea-
sured by the system clock, in milliseconds, as fitness. We only allowed individuals
that pass all the tests to be considered for mating in the next generation. For
the purpose of program repair, we used the number of tests failed as a fitness
measure. We only allowed individuals that compile and do not fail more tests
than the original program to move to the mating population.

4.2 Setup

For our experiments, due to time constraints, we used 10 generations with pop-
ulation size of 21. For runtime improvement, we ran each test (with 2 s timeout)
500 times and took the total time. This is to off-set the fact that each test case
can be run in milliseconds. For program repair this condition is not necessary.

In order to establish which methods to improve, we first ran Gin’s utility
gin.util.Profiler to establish which methods are the most frequently used.
This utility uses hprof6 to check how often a method appears on the call stack,
sampling it every 10 ms. This is a non-deterministic procedure, so we ran each
test 10 times to ensure the most frequently used methods are in the output file.

We implemented 4 new classes: gin.util.GP is an abstract class, which also
processes input and output; gin.util.GPSimple implements GP search; while gin

.util.GPFix and gin.util.GPRuntime extend it, implementing fitness functions.
We ran our experiments on a Lenovo ThinkPad Edge laptop with Intel Core

i5-2410M CPU @ 2.30 GHz 4 processor, running 64-bit Ubuntu 18.04.2 LTS.

5 Results

Gin’s Profiler revealed that the most frequently used method is com.google.

gson.Gson.newJsonReader. However, we did not use it in our experiments as it
consisted of only three lines that essentially just instantiated JsonReader and
returned it. Thus this method is unlikely to be improvable. Therefore, we opted
to target the second most frequently used method: com.google.gson.GsonBuilder
.create. This method also contains two addition operators, so it would be inter-
esting to see if the Binary operator could find improvements. Profiler identi-
fied 78 tests that cover this method. Overall, Profiler found 585 tests on the

6 https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html.

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

186 J. Petke and A. E. I. Brownlee

hprof call stack (sampled at 10 ms intervals, so not all 1050 tests captured, as
expected).

5.1 Runtime Improvement

We first tried the constrained statement edits. The GP run finished in
22 min. 56 improved patches were found. The best individual found improved
runtime by 19% on the training set. The best patch found removed one
line: addTypeAdaptersForDate(datePattern, dateStyle, timeStyle, factories);7

However, when the mutant was run with mvn test, several test cases failed. This
shows that the methods used were not enough to capture the desired software
behaviour for that method.

We can attribute this to the process the Profiler uses to determine the
tests associated with a given target method. The Profiler samples the call
stack at regular intervals, so could conceivably miss some calls. It also excludes
parametrised tests. Running on a subset of the tests helps avoid overfitting to
any dominant tests in the complete set, but cannot guarantee correct behaviour
(insofar as the test suite can measure it). The only solution to this is to treat the
limited test set produced by the Profiler for a target method as a quick-running
surrogate for the whole test set, but one should still evaluate on the whole set
at intervals.

We thus ran a second experiment, with all 585 tests identified by the Profiler

for training. Since we increased the number of tests to 585 from 78, we decreased
the number of repetitions of each test by the same fraction (500/7.5 = 67), to
save time. The experiment finished in 40 min, finding 46 improved patches.

This time Gin was able to find improvements that generalised to the whole
test suite of 1050 tests. The best patch improved runtime by 24% on the training
set and swapped the following two lines:

factories.addAll(hierarchyFactories);

addTypeAdaptersForDate(datePattern, dateStyle, timeStyle, factories);

That being said, the improvement is unnoticeable, when tests are run once.
This is due to the fact that all tests run in a fraction of a second (1050 tests
finish in less than 10 s). Moreover, the 24% improvement amounts to 1.25 s, which
could be due to environmental bias, as total execution time was calculated for
fitness evaluation purposes.

Even though significant improvements have not been found, there is a
key point worth noting. The test suite has a strong impact on the valid-
ity of the results of a GI framework. Despite the evolved patch passing all
tests, we doubt that this was the intended behaviour of the software, as the
addTypeAdaptersForDate method uses the factories variable. By swapping the
statements, the value of the factories variable is changed. Thus it is crucial to
re-run the full test suite at regular intervals during the search, and before appli-
cation of GI, it is important to ensure that the test suite is adequate. Generating

7 This mutant can be obtained by running gin.PatchAnalyser with the text for the
patch found in the output file of GPRuntime.

Software Improvement with Gin: A Case Study 187

additional tests on the correctly running original version of the program using a
tool such as EvoSuite [4] is also advised.

5.2 Repair

In order to inject faults, we looked at the PIT reports. We found one mutation
that was both killed by the existing test suite and could be potentially found
by our mutation operators, that is, a change of sign from +3 to −3. We thus
introduced that mutant and ran our experiment with the 78 tests identified by
Profiler to cover the GsonBuilder.create method. Since we did not repeat test
runs, this experiment was quick, running in under 2 min.

The original code segment affected by the mutation was as follows:
List<TypeAdapterFactory> factories = new ArrayList<TypeAdapterFactory>(

this.factories.size()+ this.hierarchyFactories.size()+ 3);

The mutant looked like this:
List<TypeAdapterFactory> factories = new ArrayList<TypeAdapterFactory>(

this.factories.size()+ this.hierarchyFactories.size()- 3);

In this case, only the Binary and Unary replacement mutations were used in
the GP. Given that we ran the process with 21 individuals and 10 generations,
210 patches were generated overall during the search. 171 of those passed all the
tests. The first patch was found in the first generation, and changed the minus
sign to a multiplication. This patch passed all 1050 tests. In this case the fix was
found quickly because of the limited search space: having limited the possible
code mutations that the GP could explore to only mutations that would be likely
to fix the bug. To fix a wider range of bugs (i.e. where we do not know the bug a
priori), the number of edit types would need to be extended to at least the wider
range included with Gin and the search would take correspondingly longer.

As in the runtime experiment, we observed that the 78 tests might not be
enough to cover all the behaviour, we ran another experiment with the 585 tests
identified by the Profiler. This time 174 fixes were found in 4 min. This set
contained several individuals that contained the required mutation that changed
the minus to the plus sign. However, again the first patch found changed minus
to a multiplication instead. The question arises whether the fixes found are true
fixes, or whether the test suite should be improved.

We also injected another fault, that swaps the following two statements:
factories.addAll(this.factories);

Collections.reverse(factories);

Out of 78 tests, just one failed for this mutant. GP search took 41 seconds, this
time limited to the constrained statement mutations. No fix was found. We also
ran this experiment with 585 tests, to avoid overfitting. No fix was found either.
We know the fix is in the search space, so a larger run could potentially produce
the desired fix (or different random seeds for mutation selection and individual
selection). Given that previous research found that fixes usually contain short
mutations, perhaps a different search strategy would have been more effective.
The current one almost always increases the size of each mutant by one.

188 J. Petke and A. E. I. Brownlee

Finally, we introduced a bug that copied the following line right under itself:
Collections.reverse(factories);

We ran GP with the 78 tests and 585 tests, as before. In both cases the
correct fix was found in the first generation (i.e., deleting the extra line).

6 Conclusions

We showed how Gin can be used for the purpose of program’s runtime improve-
ment and repair. It shows how quickly and easily researchers can conduct GI
experiments on large Java projects. We added a simple GP search to Gin, and
applied it to Gson. Our results show that expression-level changes are possible
with Gin that can lead to useful mutations (fixes). There are several future direc-
tions. More fine-grained fitness values are possible with Gin, as it captures the
expected and actual result of tests. This could guide the search better. From our
results a question arises whether GP is the best approach for GI.

We also showed that existing test suites are not enough to capture software
behaviour. We pose that Gin can thus be used to test the strength of a given
test suite. Gin also provides a utility to generate EvoSuite tests, which could
strengthen the test suite, though currently the feature is experimental.

All data for replicability purposes is available on the dedicated website:
https://github.com/justynapt/ssbseChallenge2019.

Acknowledgement. The work was funded by the UK EPSRC grant EP/P023991/1
and Carnegie Trust grant RIG008300.

References

1. An, G., Blot, A., Petke, J., Yoo, S.: PyGGI 2.0: language independent genetic
improvement framework. In: Proceedings of the 12th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Tallinn, Estonia, 26–30 August 2019.
ACM (2019)

2. An, G., Kim, J., Yoo, S.: Comparing line and AST granularity level for program
repair using PyGGI. In: Petke, J., Stolee, K.T., Langdon, W.B., Weimer, W. (eds.)
Proceedings of the 4th International Genetic Improvement Workshop, GI@ICSE
2018, Gothenburg, Sweden, 2 June 2018, pp. 19–26. ACM (2018). https://doi.org/
10.1145/3194810.3194814

3. Brownlee, A.E.I., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.:
Gin: genetic improvement research made easy. In: Auger, A., Stützle, T. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2019, Prague, Czech Republic, 13–17 July 2019, pp. 985–993. ACM (2019). https://
doi.org/10.1145/3321707.3321841

4. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Gyimóthy, T., Zeller, A. (eds.) SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,
Hungary, 5–9 September 2011, pp. 416–419. ACM (2011). https://doi.org/10.1145/
2025113.2025179

https://github.com/justynapt/ssbseChallenge2019
https://doi.org/10.1145/3194810.3194814
https://doi.org/10.1145/3194810.3194814
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179

Software Improvement with Gin: A Case Study 189

5. Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I., Cairns, D.: Exploring fit-
ness and edit distance of mutated python programs. In: McDermott, J., Castelli,
M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS,
vol. 10196, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55696-3 2

6. Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I., Siggeirsdottir, K.: Fixing
bugs in your sleep: how genetic improvement became an overnight success. In:
Bosman, P.A.N. (ed.) Genetic and Evolutionary Computation Conference, Berlin,
Germany, 15–19 July 2017, Companion Material Proceedings, pp. 1513–1520. ACM
(2017). https://doi.org/10.1145/3067695.3082517

7. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA anal-
ysis software with genetic programming. In: Silva, S., Esparcia-Alcázar, A.I. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, 11–15 July 2015, pp. 1063–1070. ACM (2015). https://doi.
org/10.1145/2739480.2754652

8. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012). https://
doi.org/10.1109/TSE.2011.104

9. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the
search space of automated program fixing. Empirical Softw. Eng. 20(1), 176–205
(2015). https://doi.org/10.1007/s10664-013-9282-8

10. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol.
Comput. 22(3), 415–432 (2018). https://doi.org/10.1109/TEVC.2017.2693219

11. White, D.R.: GI in no time. In: Bosman, P.A.N. (ed.) Genetic and Evolutionary
Computation Conference, Berlin, Germany, 15–19 July 2017, Companion Mate-
rial Proceedings, pp. 1549–1550. ACM (2017). https://doi.org/10.1145/3067695.
3082515

https://doi.org/10.1007/978-3-319-55696-3_2
https://doi.org/10.1007/978-3-319-55696-3_2
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1145/3067695.3082515
https://doi.org/10.1145/3067695.3082515

Author Index

Alshoaibi, Deema 75
Assunção, Wesley Klewerton Guez 42

Brownlee, Alexander E. I. 183
Bruce, Dan 171

Camilo-Junior, Celso G. 164
Clark, David 27, 171
Colanzi, Thelma E. 121
Colanzi, Thelma Elita 42

Dantas, Altino 164
de Souza, Eduardo F. 164
Dobslaw, Felix 155

Farah, Paulo Roberto 42
Feldt, Robert 155

Grunske, Lars 58
Guizzo, Giovani 42
Gupta, Hiten 75

Hannigan, Kevin 75
Hemmati, Hadi 137

Iqbal, Muhammad Zohaib 105

Jilani, Atif Aftab Ahmed 105
Joffe, Leonid 27

Khan, Muhammad Uzair 105

Menéndez, Héctor D. 171
Mkaouer, Mohamed Wiem 75

Panichella, Annibale 11
Petke, Justyna 183
Pinto, Victor H. S. C. 121
Porter, Barry 89

Sarro, Federica 3
Sartaj, Hassan 105
Souza, Jerffeson 164
Souza, Simone R. S. 121

Tran, Chinh 58

Vergilio, Silvia Regina 42
Vilela, Ricardo F. 121
Vogel, Thomas 58

Wild, Alexander 89

Zamani, Shayan 137

	Foreword
	Message from the General Chair

	Message from the Program Chairs
	Organization
	Contents
	Keynote
	Search-Based Predictive Modelling for Software Engineering: How Far Have We Gone?
	1 Introduction
	References

	Research Papers
	A Systematic Comparison of Search Algorithms for Topic Modelling—A Study on Duplicate Bug Report Identification
	1 Introduction
	2 Background and Related Work
	3 Empirical Study
	3.1 Experimental Methodology

	4 Empirical Results
	5 Conclusion and Future Work
	References

	Constructing Search Spaces for Search-Based Software Testing Using Neural Networks
	1 Introduction
	1.1 Property Targeting Search Landscape
	1.2 Diversity Driven Search Landscape
	1.3 Contributions and Scope

	2 Tools and Datasets
	2.1 AFL
	2.2 Pin
	2.3 Valgrind
	2.4 Dataset

	3 Experimental Setup
	4 Evaluation
	4.1 Size and Continuity of Landscapes
	4.2 Representation Condition
	4.3 Meaningful Ordering of Candidate Solutions

	5 Conclusion
	References

	A Review of Ten Years of the Symposium on Search-Based Software Engineering*-14pt
	1 Introduction
	2 RQ1 – SSBSE in Numbers
	3 RQ2 – Citations Analysis and External Impact
	4 RQ3 – Software Engineering Areas and Tasks
	5 RQ4 – Experimental Rigour
	6 Recommendations to Future SSBSE Authors
	7 Conclusion
	References

	Does Diversity Improve the Test Suite Generation for Mobile Applications?
	1 Introduction
	2 Background: Sapienz and Fitness Landscape Analysis
	3 Fitness Landscape Analysis of Sapienz
	3.1 Fitness Landscape of Sapienz
	3.2 Experimental Setup
	3.3 Results
	3.4 Discussion

	4 Sapienzdiv
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusions and Future Work
	References

	PRICE: Detection of Performance Regression Introducing Code Changes Using Static and Dynamic Metrics
	1 Introduction
	2 Methodology
	2.1 Approach Overview
	2.2 Data Collection
	2.3 Solution Representation
	2.4 Solution Evaluation
	2.5 Solution Variation

	3 Experimental Setting
	3.1 Research Questions
	3.2 Parameter Tuning

	4 Results
	4.1 RQ1. To What Extent Does NSGA-II Provide Better Regression Detection Compared with Other Techniques?
	4.2 RQ2 Do the Generated Rules Continue to Perform Well with the Evolution of the Software?

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

	General Program Synthesis Using Guided Corpus Generation and Automatic Refactoring
	1 Introduction
	2 Background
	3 Methodology
	3.1 Simplified Language
	3.2 Neural Network and Search Architecture
	3.3 Corpus Generation
	3.4 Automatic Corpus Refactoring

	4 Results
	4.1 Program Synthesis
	4.2 Requirements in Corpus Generation
	4.3 Effects of Corpus Refactoring

	5 Conclusion
	References

	A Search-Based Approach to Generate MC/DC Test Data for OCL Constraints
	1 Introduction
	2 Strategy to Achieve the MC/DC Criterion
	2.1 OCL Constraint Reformulation for MC/DC
	2.2 Handling Negation for OCL
	2.3 Logical Operations Reformulation
	2.4 Applying Case-Based Reasoning
	2.5 Identifying Conflicting Constraints

	3 Empirical Evaluation
	3.1 Experiment Design and Settings
	3.2 Results and Analysis
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion
	References

	Bio-Inspired Optimization of Test Data Generation for Concurrent Software
	1 Introduction
	2 Concurrent Software Testing: Basic Concepts
	3 Search-Based Software Testing for Concurrent Software
	4 BioConcST: Bio-Inspired Optimization for Concurrent Software Testing
	5 Experimental Evaluation
	5.1 Study Subjects: Concurrent Programs
	5.2 Experimental Setup
	5.3 Analysis of Results
	5.4 Discussion

	6 Conclusion and Suggestions for Future Work
	References

	Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation
	1 Introduction
	2 Empirical Study
	2.1 Objective and Research Questions
	2.2 Experiment Design
	2.3 Results
	2.4 Threats to Validity

	3 Related Works
	4 Conclusion and Future Work
	References

	Short and Student Papers
	Towards Automated Boundary Value Testing with Program Derivatives and Search
	1 Introduction
	2 Illustrative Example: Constrained Sum
	3 Difference Quotient and Derivative of a Program
	4 Boundary Value Analysis of Constrained Sum
	5 Discussion
	References

	Code Naturalness to Assist Search Space Exploration in Search-Based Program Repair Methods
	1 Introduction
	2 Proposed Approach
	2.1 Doc2vec Model
	2.2 LSTM Model

	3 Preliminary Empirical Study
	3.1 Preliminary Results

	4 Threats to Validity
	5 Final Remarks
	References

	Dorylus: An Ant Colony Based Tool for Automated Test Case Generation
	1 Introduction
	2 Dorylus
	3 Experimental Setup
	4 Results
	5 Related Work
	6 Conclusion
	References

	Challenge Paper
	Software Improvement with Gin: A Case Study
	1 Introduction
	2 Subject Program
	3 Test Suite
	4 Methodology
	4.1 Search
	4.2 Setup

	5 Results
	5.1 Runtime Improvement
	5.2 Repair

	6 Conclusions
	References

	Author Index

