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1  Introduction

Plant growth and development is affected by abiotic stress which results in important 
losses in plant yield and in the money spent in agriculture. The abiotic stress that has 
a strong impact on plant yield is the hydric stress (drought, salinity, and cold). Plants 
have developed strategies to contend with hydric stress, between them one of the 
most important is the synthesis and accumulation of osmolytes (Yancey et al. 1982). 
In plants, one of the most studied osmolytes is glycine betaine followed by proline 
and trehalose (Singh et al. 1972; Stewart and Lee 1974; Hare et al. 1998; Iordachescu 
and Imai 2008; Chen and Murata 2008; Paul et al. 2008; Krasenky and Jonak 2012).

Glycine betaine (N,N,N-trimethyl glycine, GB) is a quaternary amine, isolated 
for the first time from sugar beet (Scheibler 1869). In mammals, GB participates in 
homocysteine/methionine cycle [Hcy/Met cycle] as methyl donor to homocysteine 
to produce methionine, reaction catalyzed by betaine homocysteine methyl transfer-
ase [BHMT] (du Vigneaud et al. 1946; Finkelstein and Martin 1984; Pajares and 
Pérez-Sala 2006). As a consequence of GB participation in the Hcy/Met cycle, a 
wide set of physiological roles of GB has been found (Craig 2004; Olthof and 
Verhoef 2005; Lawson-Yuen and Levy 2006; Lever and Slow 2010; Ueland 2011; 
Figueroa-Soto and Valenzuela-Soto 2018).

Physiological functions of GB are as an osmolyte to contribute to maintaining 
cellular volume, as an osmoprotector to protect cells under stress, and/or as a source 
of methyl groups through transmethylation reactions (Takabe et  al. 2006; Craig 
2004; Chen and Murata 2011). However, not all plants accumulate GB in response 
to stress; in fact, the vast majority of plants of agricultural importance are not accu-
mulators of GB. For this reason, attempts have been made to genetically transform 
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those plants with the genes of GB synthesis enzymes (Takabe et al. 2006; Giri 2011; 
Chen and Murata 2011; Wani et al. 2013).

In plants, two routes of GB synthesis have been proposed, one from choline and 
the other from glycine. The first route requires two choline oxidation steps catalyzed 
by the choline monooxygenase [CMO] and betaine aldehyde dehydrogenase [BADH]; 
the second route involves two methylation steps catalyzed by glycine sarcosine meth-
yltransferase [GSMT] and sarcosine dimethylglycine transferase [SDMT] (Weretilnyk 
and Hanson 1989; Rathinasabapathi et al. 1997; Valenzuela- Soto and Muñoz-Clares 
1994; Nyyssola et al. 2000; Waditee et al. 2005; Chen et al. 2008).

There are several studies about the GB accumulation in different plant species as 
a response to abiotic stress [drought, salinity, cold, heat, etc.] (Rhodes and Hanson 
1993; Sakamoto and Murata 2002; Giri 2011; Chen and Murata 2011; Kurepin et al. 
2015). These studies have demonstrated that GB plays a role in different processes 
in plant metabolism, e.g., there is evidence of GB direct and/or indirect participation 
in protein stability, protein synthesis, enzyme activity, photosynthesis, oxidative 
stress response, and plant growth and development (Chen et al. 2008; Khan et al. 
2009; Giri 2011; Chen and Murata 2011; Wani et al. 2013). However, less is known 
about the enzymes that synthesize GB or transform it into other compounds, e.g., 
what are the structural and kinetic characteristics of that enzymes or how they are 
regulated. The aim of this review is to summarize the knowledge garnered about 
GB’s metabolism and how it impacts the growth and development of plants under 
abiotic stress conditions.

2  Glycine Betaine Metabolism

2.1  Synthesis Pathways

In GB accumulator plants, it is synthesized from choline, choline is oxidized to 
betaine aldehyde by choline monooxygenase [E.C. 1.14.15.7], and betaine aldehyde 
dehydrogenase [BADH EC 1.2.1.8] catalyzes the betaine aldehyde oxidation to GB 
(Fig. 1a) (Rathinasabapathi et al. 1997; Ling et al. 2001; Hibino 2002; Wang and 
Showalter 2004; Park et  al. 2007; Muñoz-Clares and Valenzuela-Soto 2008). 
Extremely halophilic plants and microorganisms, also methanogenic organisms, 
synthesize GB from glycine; it is methylated by glycine sarcosine methyl transfer-
ase [GSMT] to N,N-dimethylglycine and sarcosine; furthermore, N,N- 
dimethylglycine is methylated by the sarcosine dimethylglycine transferase [SDMT] 
to GB; thus, both enzymes use S-adenosylmethionine (SAM) as methyl donor 
(Fig. 1b) (Nyyssola et al. 2000; Waditee et al. 2005).

Choline is synthesized in the cytosol, and there are three described possible cho-
line synthesis routes, all of them start with ethanolamine [EA], which can be 
N-methylated by SAM as free bases, phosphorylethanolamine bases, or 
 phosphatidylethanolamine bases; each methylation step is catalyzed by phospho-
ethanolamine methyltransferase [PEAMT] (Fig.  2) (Hanson and Rhodes 1983; 

E. M. Valenzuela-Soto and C. G. Figueroa-Soto



125

a

b

c

Choline

Glycine

Glycine betaine+Homocysteine

Glycine betaine

Glycine betaine

Betaine aldehyde

Sarcosine

Dimethyl glycine + Methionine

N,N-Dimethyl
glycine

CMO

SAM SAH SAM SAH

GSMT

SAM SAH

SDMT

BHMT

GSMT/
SDMT

NAD+ NADH

BADH

Fig. 1 Glycine betaine synthesis and degradation pathways. (a) GB synthesis in plants. (b) GB 
synthesis in extremely halophylic plants and microorganisms or metanogenics organisms. (c) GB 
catabolism in animals, some bacteria and in the cyanobacteria Aphanothece halophytica. CMO 
choline monooxygenase, BADH betaine aldehyde dehydrogenase, GSMT glycine sarcosine 
methyl transferase, and SDMT dimethylglycine transferase, BHMT betainehomocysteine 
methyltransferase

Fig. 2 Interplay between choline, GB, ethylene, and polyamine synthesis pathways. SAMS 
S-adenosylmethionine synthase, PEAMT phosphoethanolamine methyltransferase, CK choline 
kinase, CMO choline monooxygenase, BADH betaine aldehyde dehydrogenase, ACC aminocy-
clopropane carboxylic acid, ACCS aminocyclopropane carboxylic acid synthase, EA ethanol-
amine, PEA phosphoethanolamine, Pd-EA phosphatidylethanolamine. Pink circle, choline 
transporter; green ellipse, chloroplast; red arrows indicate inhibition of PEAMT by P-choline
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Datko and Mudd 1988; Nuccio et al. 1998, 2000). The three pathways can be used 
by plants; however, preference by one of them has been found, e.g., in Chenopodiaceae 
plants, choline comes from phosphoethanolamine (P-EA); in tobacco, choline origi-
nates from phosphatidyl-EA; in soy bean instead, the first step is the methylation of 
P-EA to phosphomonomethyl ethanolamine [P-MME] followed by a conversion to 
phosphatidylmonomethylethanolamine [Ptd-MME] via a cytidyl intermediate 
(Mudd and Datko 1989a; McNeil et al. 2000a). Later Ptd-MME is methylated to 
phosphatidyldimethylethanolamine [Ptd-DME], which is converted to Ptd-choline 
and later to P-choline (Hanson and Rhodes 1983; McNeil et al. 2000a, b; Nuccio 
et al. 2000). The last step in choline synthesis is the dephosphorylation of P-choline 
by choline phosphatase or choline kinase [CK] (Summers and Weretilnyk 1993; 
McNeil et  al. 2000b). Choline synthesis is regulated by P-choline and 
S-adenosylhomocysteine [SAH]; both are inhibitors of PEAMT activity (Fig.  2) 
(Mudd and Datko 1989b; Nuccio et al. 2000; Sahu and Shaw 2009).

Choline is transported to the chloroplast and used as a substrate by CMO, the 
first enzyme in the GB synthesis. CMO is unique in plants and catalyzes the BA 
synthesis, its crystallographic structure has not been determined yet, the molecular 
mass of the monomer is ≈ 45 kDa, and it contains a Rieske-type [2Fe-2S] center and 
requires ferredoxin to be active (Rathinasabapathi et al. 1997). Hibino et al. (2002) 
found that Cys-181 is essential to the spinach CMO function, and as found in other 
oxygenases, a histidine [Hys-283] participates in the coordination of the [2Fe-2S] 
center.

The genes coding CMO have been studied in plant accumulator species and plant 
non-accumulator species. CMO gene sequences from spinach and sugar beet share 
78% identity between them, while the sequence of CMO from Arabidopsis shares 
51% identity with that of spinach and sugar beet (Hibino et  al. 2002). Instead, 
Amaranthus tricolor CMO shares 69.4% and 69.5% identity with spinach and sugar 
beet CMOs and Atriplex prostrate, while rice shares 82.9% and 63% identity with 
deduced amino acid sequence of spinach and sugar beet, respectively (Ling et al. 
2001; Wang and Showalter 2004; Luo 2007).

Amino acid sequence analysis of the CMO from Amaranthus tricolor, 
Arabidopsis, barley, rice, sugar beet, and spinach showed that all of them contained 
consensus sequences for coordination of the Rieske-type [2Fe-2S] cluster, 
CXHX15–17CX2H, and for coordination of mononuclear non-heme Fe, G/DX3–4 
DX2HX4–5H [X equal to any amino acid] (Russell et al. 1998; Rathinasabapathi 
et  al. 1997; Meng et  al. 2001; Ling et  al. 2001; Hibino et  al. 2002; Wang and 
Showalter 2004; Luo et al. 2007; Mitsuya et al. 2011). In addition, the modeling of 
Spinacia oleracea CMO showed that in the active site there is an aromatic box con-
formed by Tyr281, Tyr295, and Phe301 and by a Glu residue [Glu346] (Carrillo- 
Campos et al. 2018). Aromatic box is involved in the choline’s trimethylammonium 
group, while the side chain carboxyl group of Glu346 participates in an ionic inter-
action with that group (Carrillo-Campos et al. 2018).

An analysis of the promoter of Amaranthus tricolor CMO gene allowed identify-
ing a fragment of 410 pb upstream of the translation start codon that contains the 
sequence responsive to salt stress (Bhuiyan et al. 2007). In addition, Xu et al. (2018) 
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found that the CMO gene from watermelon [Citrullus lanatus] suspension cells 
contained responsive elements to light, plant hormone-responsive cis-elements, and 
cis-elements responsive to biotic and abiotic stresses.

To this date, it seems that plants that do not accumulate GB possess the CMO 
genes, but those genes were proposed as not functional, as it has been found in rice 
and maize (Peel et al. 2010; Luo et al. 2012). However, there is other possible expla-
nation to that results, for a recent phylogenetic study in Amaranthaceae plants 
showed that plant CMO evolved to two kinds of CMO proteins grouped in two 
clades called CMO1 and CMO2 and CMO2 diverged from CMO1 (Carrillo-Campos 
et al. 2018). From 167 plant CMO sequences analyzed, Carrillo et al. (2018) found 
that CMO1 and CMO2 proteins share 30% identity, CMO1 proteins share 50% 
identity between them, and otherwise CMO2 proteins share more than 85% identity. 
CMO1 and CMO2 modelling results showed that neither the CMO1 active site nor 
the Glu346 as found in CMO2 has the aromatic box; this would explain why CMO1 
does not catalyze the oxidation of choline to betaine aldehyde (Carrillo-Campos 
et al. 2018). In addition, the chloroplast signal peptide is not conserved in CMO1 
amino acid sequences (Carrillo-Campos et al. 2018).

The second step in GB synthesis is catalyzed by betaine aldehyde dehydrogenase 
[BADH]. Plant BADHs belong to ALDH superfamily, and they are grouped in the 
family ten [ALDH10] (Sophos and Vasiliou 2003). Within the ALDH10 family, 
there are proteins that use as substrate ω-aminoaldehydes [3-amino propionalde-
hyde or 4-aminobutyraldehyde] and ω-quaternary amino group [trimethylammo-
nium] and as betaine aldehyde, trimethylaminobutiraldehyde or 
dimethylsulfoniopropionaldehyde (Trossat et  al. 1997; Vojtechová et  al. 1997; 
Ŝebela et al. 2000; Brauner et al. 2003; Livingstone et al. 2003; Oishi and Ebina 
2005; Bradbury et al. 2008; Fujiwara et al. 2008). It has been proposed that BADH 
activity depends on only one amino acid residue at position 441 [SoBADH number-
ing] (Muñoz-Clares et  al. 2014). The ability to oxidize betaine aldehyde by the 
BADH is related to the presence of an Ala or Cys in the 441 position in the protein 
(Muñoz-Clares et al. 2014).

The first plant BADH crystal structure obtained was from spinach, which showed 
that there are four aromatic residues Tyr160, Trp167, Trp285, and Trp456 at the 
active site (Díaz-Sanchez et al. 2012). By using in silico model building, kinetic 
studies, and site-directed mutagenesis of SoBADH, it was found that the aromatic 
ring of Tyr160 is of great importance for BA binding, followed by Trp285 and 
Trp167 (Díaz-Sanchez et  al. 2012). The position that occupies in the active site 
pocket Trp456 is determined by the conformation adopted by the side chain of the 
amino acid residue in position 441 [Ile, Ala or Cys], to allow or not the proper posi-
tioning of the trimethylammonium group of BA, so Ile size would push Trp456 to 
such a position that there would be no adequate space for the binding of trimethyl-
ammonium group (Díaz-Sanchez et  al. 2012; Muñoz-Clares et  al. 2014). 
Interestingly, a great number of BADH from GB accumulators’ plants possess an 
Ala or Cys in position 441 (Muñoz-Clares et al. 2014).

ALDH10 isoenzymes evolved from the gene coding to an Ile in position 441 as a 
consequence of environmental pressure; however, all plants conserved isoenzymes 
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with one of three amino acids in the 441 position (Ile, Ala, and/or Cys), which allow 
isoenzymes to perform other metabolic functions in plants (Muñoz-Clares et al. 2014).

Different studies have demonstrated that BADH in plants is a homodimer of ≈ 
120 kDa, except in wild amaranth and pea which are heterodimeric and homotetra-
meric, respectively (Weretilnyk and Hanson 1989; Valenzuela-Soto and Muñoz- 
Clares 1994; Figueroa-Soto and Valenzuela-Soto 2001; Ŝebela et  al. 2000; 
Livingstone et al. 2002; Oishi and Ebina 2005; Fujiwara et al. 2008). Plant BADHs 
show an acidic pI, an optimum pH ranging from 8.0 to 8.5, and they exhibit prefer-
ence to use NAD+ as coenzyme (Weretilnyk and Hanson 1989; Trossat et al. 1997; 
Valenzuela-Soto and Muñoz-Clares 1994; Incharoensakdi et al. 2000; Hibino et al. 
2001; Fujiwara et al. 2008).

Similar to cis-acting regulatory elements described before for CMO, the BADH 
is also regulated at the genetic level. Analysis of the BADHs’ gene promoter 
sequence from Suaeda liaotungensis revealed regulatory elements, such as a TATA- 
box, a CAAT-box, a GC-motif, EIRE, MRE, WUNmotif, a heat shock element, 
ABRE, methyl jasmonate-responsive element, and ethylene-responsive element 
[ERE] (Zhang et al. 2008; Xu et al. 2018).

2.2  Glycine Betaine Degradation Routes

In animals and some bacteria, GB is catabolized to methionine and glycine by beta-
ine homocysteine methyl transferase [BHMT], it removes a methyl group from GB 
to produce dimethylglycine, and the methyl group is transferred to homocysteine 
for methionine synthesis (Fig. 1c) (Pajares and Perez-Salas 2006). A glycine betaine 
transmethylase was proposed in Rhizobium meliloti as the enzyme to convert GB to 
dimethylglycine (Smith et  al. 1988), whereas in the cyanobacteria Aphanothece 
halophytica, GB was catabolized by BHMT under hyperosmotic conditions 
(Incharoensakdi and Waditee 2000; Waditee and Incharoensakdi 2001). After a deep 
search about BHMT in plants, no information was found. This being the reason why 
is not possible to relate methionine synthesis with GB degradation. However, it is 
possible to speculate that BHMT has not been searched and therefore identified.

2.3  Cellular Compartment of Glycine Betaine Synthesis

GB synthesis has been localized in chloroplasts, peroxisomes, and cytoplasm. It has 
been suggested that in dicotyledons GB synthesis takes place in the chloroplast, 
while in monocotyledons it occurs in the peroxisome (Nakamura et al. 1997; Mitsuya 
et al. 2011). BADH isoenzyme localization differs between plants, e.g., in spinach, 
one of them is targeted to chloroplast and the other to cytosol; in barley, one isoen-
zyme is directed to the peroxisome and the other to the cytosol; and in rice, both 
isoenzymes are targeted to the peroxisome, whereas in Avicennia marina, one of 
them is delivered to the chloroplast and the other to peroxisome (Weigel et al. 1986; 
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Nakamura et al. 1997; Hibino et al. 2001; Nakamura et al. 2001; Shirasawa et al. 
2006). BADH isoenzymes targeted to chloroplast or to peroxisome possess a short 
signal peptide [seven or three residues, respectively]; in barley, the signal  
peptide is located in the C-terminus, whereas in spinach it is in the N-terminus 
(Weretilnyk and Hanson 1990; Nakamura et al. 2001). To this date, it is known the 
BADHs with high BA affinity are located in the chloroplast (Weigel et  al. 1986; 
Hibino et al. 2001).

2.4  GB Synthesis in Plant Tissue

In plants capable of synthesizing and accumulating GB, it has been found that GB 
is distributed throughout the whole plant under stress conditions (Yamada et  al. 
2009). The leaf is the tissue with the highest content of GB, but it is influenced by 
the leaf age; in barley and sugar beet, it was found that GB is synthesized mainly in 
old leaves where CMO activity was detected (Nakamura et al. 1996; Hattori et al. 
2009; Yamada et al. 2009). The root has the ability to synthesize GB; however, the 
expression of CMO and BADH is lower compared to the leaf (Bhuiyan et al. 2007; 
Yamada et  al. 2009). On the other hand, BADH was detected in old and young 
leaves and roots of sugar beet, so it is concluded that the synthesis of GB is limited 
by the availability of CMO (Bhuiyan et al. 2007; Fujiwara et al. 2008; Yamada et al. 
2009).

Since GB has been found in tissues that do not contain CMO activity, the mobi-
lization of GB has been investigated. Two transporters have been found: one in 
sugar beet and another in barley called BvBet/ProT1 and HvProT2, respectively; 
they transport proline and GB with the highest affinity detected for GB (Yamada 
et  al. 2009; Fujiwara et  al. 2010). BvBet/Pro1 and HvProT2 were localized in 
plasma membrane: BvBet/Pro1 was more abundant in old than in young leaves, 
while HvProT2 is distributed in old leaves and roots (Yamada et al. 2009; Fujiwara 
et al. 2010).

3  GB Synthesis and Control of Plant Growth 
and Development

GB synthesis requires choline in any cellular compartment where it is carried out; 
at the date, the important aspects that limit the synthesis of GB are the availability 
of choline and the structural characteristics to carry out the union of the substrates 
and the catalysis of the CMO and BADH isoenzymes (Nuccio et al. 1998; Díaz- 
Sanchez et  al. 2012; Muñoz-Clares et  al. 2014; Carrillo-Campos et  al. 2018). 
Synthesis of P-choline is strongly favored in the cytosol; however, it depends on the 
dephosporylation of choline because only choline can be transported to chloroplast 
or vacuole (Bligny et al. 1989; McNeil et al. 2000a). On the other hand, choline 
produced is distributed between vacuole, chloroplast, and cytosol which limit the 
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availability of choline to GB synthesis (Nuccio et al. 1998; McNeil et al. 2000a; 
Sahu and Shaw 2009).

Considering that the concentration of choline is not limiting, the synthesis of GB 
would require a high concentration of SAM which would immediately cause a 
decrease in the synthesis of ethylene and polyamines (Ravanel et al. 1998; Sahu and 
Shaw 2009; Wang et al. 2010; Khan et al. 2014). In addition, SAM is required for 
chlorophyll synthesis, DNA replication, cell wall synthesis, etc.; therefore, GB syn-
thesis cannot be very high, which corresponds with GB concentrations found in 
plants (Huang et al. 2000; Holstrom et al. 2000; Sakamoto and Murata 2001; Quan 
et al. 2004; Tabuchi et al. 2005; Wei et al. 2017). Tabuchi et al. (2005) suggested a 
co-regulation between the levels of S-adenosyl-L-methionine synthetase [SAMS] 
transcript with those of CMO and PEAMT; this would allow sustain active GB pro-
duction without significantly diminishing the synthesis of other metabolites depen-
dent on SAM.

Plants capable of synthesizing and accumulating GB show tolerance to stress 
mainly to drought, salinity, and extreme temperature [cold and heat] stress; the 
growth and development of those plants are affected depending on the stage of 
development of the plant, as well as the type and species of the plant. It has been 
demonstrated that drought, salinity, and low and high temperature decrease root and 
shoot growth and development, but GB’s synthesizing plants manage to reduce the 
effect of stress on both parameters. The degree or level of protection varies between 
species and even between varieties of the same species.

Under stress conditions, GB participates in maintaining of fundamental pro-
cesses for growth and development such as (a) photosynthesis, energy production 
[ATP], and carbon skeletal, (b) conservation of the cell-reducing environment, and 
(c) enzyme functionality. Since GB can be present in all parts of the plant [either by 
synthesis or transport], its effect can occur in the entire plant. With all the informa-
tion generated, it can be said that GB effects on plants under stress conditions are 
related to its ability to stabilize protein structure and regulate gene transcription and 
enzyme activities; those functions are the ways on how GB can play a role in plant 
growth and development.

Photosynthesis is inhibited by heat, chilling, salinity, and drought stress; how-
ever, GB contributes to maintain the photosynthesis activity through the PSII dam-
aged reparation increasing the expression of D1 protein and increasing its degradation 
when it is damaged (Fig. 3) (Onishi and Murata 2006; Murata et al. 2007; Yang et al. 
2008; Fan et al. 2012). In addition, PSII oxygen-evolving complex structure, Mn 
cluster, and PSII association with extrinsic polypeptides 18, 23, and 33  kDa are 
strongly stabilized by GB in plants under stress (Murata et al. 1992; Papageorgiou 
and Murata 1995; Allakhverdiev et al. 1996; Allakhverdiev et al. 1999). An adequate 
electron transport in the thylakoid maintains adequate levels of photosynthetic 
parameters as photosynthetic rate [A], intercellular CO2 [Ci], transpiration rate [E], 
stomatal conductance [gs], and maximal efficiency of PSII [Fv/Fm] (Fig. 3) (Zhao 
et al. 2007; Yang et al. 2008; Guha et al. 2010; Wei et al. 2017).

The other face of photosynthesis is the CO2 fixation by the RUBISCO and the 
flux of carbon skeletal through the Calvin cycle enzymes. RUBISCO, Rubisco acti-
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vase, fructose biphosphatase [FBPase], fructose biphosphatase aldolase 
[FBPaldolase], and phosphoribulose kinase [PRKase] are activated by GB by  
stabilizing their structure under stress conditions (Fig. 3) (Makela et al. 2000; Yang 
et al. 2005; Murata et al. 2007; Konrad and Zvi 2008; Fan et al. 2012). Interestingly, 
Yang et al. (2005) found that under heat stress conditions, Rubisco activase is asso-
ciated with thylakoid membrane, which is avoided by GB. A suitable CO2 fixation 
has been proposed by Murata et al. (2007) as an important factor to decrease the 
PSII damage, because suppression of CO2 fixation drives to oxidative stress which 
inhibits D1 protein synthesis and the repair of PSII.

To contend with oxidative stress, transgenic plants or wild-type plants able to 
synthesize GB increase the expression of enzymes of antioxidant system; an 
increase in mRNA of the enzymes superoxide dismutase [SOD], catalase [CAT], 
ascorbate peroxidase [APX], glutathione reductase [GR], glutathione peroxidase 
[GPX], and dehydroascorbate reductase [DHAR] has been found in different plant 
species (Fig. 3) (Hoque et al. 2008; Islam et al. 2009; Fan et al. 2012; Hasanuzzaman 
et al. 2014; Zhang et al. 2016; Yao et al. 2018). Increases in antioxidant enzyme 
activity decrease the lipid peroxidation and protein carbonylation protecting cell 
survival (Hoque et al. 2008; Islam et al. 2009; Karabudak et al. 2014). Likewise, 
increases in the concentration of metabolites with antioxidant activity have been 
found, e.g., increases in glutathione reduced [GSH], ascorbate reduced [ASA], phe-

Fig. 3 Schematic model of glycine betaine synthesis effects and changes induced to explain its 
mode of action. The scheme includes plant hormones involved in the induction of GB synthesis. 
Orange ellipse enclosed proteins involved in photosynthesis; proteins are enclosed in a yellow 
circle
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nolic compounds, and flavonoids (Hoque et al. 2008; Islam et al. 2009; Ahmed et al. 
2013; Wang et al. 2019).

Changes in the activity of enzymes involved in Calvin cycle, antioxidant system 
(enzymatic and nonenzymatic), or proline synthesis are consequence of changes in 
their gene expression or changes in the enzyme activity induced by GB. In animals, 
GB induces changes in DNA methylation status and interacts with transcription fac-
tors to modify gene expression (Song et al. 2007; Zhang et al. 2013; Deminice et al. 
2015; Idriss et al. 2017); in plants, there is no information about it. However, it is 
tempting to propose that something similar to what happens in animals may be hap-
pening in plants.

Synthesis of ATP under stress conditions is less studied; Jin et al. (2015) found a 
high ATP/ADP ratio induced by GB in loquat fruit submitted to a low-temperature 
conditioning. It has been proposed that GB improves the lipid composition of cell 
membranes, that is, thylakoid membranes of wheat were protected by GB applica-
tion, which provoked changes in the fat acid composition (Zhao et al. 2007; Tiang 
et al. 2017). Changes in lipid composition of thylakoid membranes increased the 
membrane fluidity, improving their function (Zhao et al. 2007; Tiang et al. 2017). 
Therefore, if GB maintains the functionality of thylakoid membranes and positively 
modulates photosynthesis, then there is a good proton gradient to carry out the ATP 
synthesis (Yang et al. 2008; Zhao et al. 2007; Guha et al. 2010; Ogbaba et al. 2014; 
Wei et al. 2017; Tiang et al. 2017).

Drought, salinity, heat, and cold stress increase GB synthesis both in GB natural 
synthesizing and in transgenic plants; this GB increase has a strong impact in the 
plant growth. Several works have been demonstrated that GB increases the growth 
of root, shoot, hypocotyl, and plant measured as high, biomass [fresh weight or dry 
weight], or leaf area under stress conditions and relative of the control plant 
(Kishitani et al. 2000; Quan et al. 2004; Yang et al. 2005; Park et al. 2007; Yang 
et al. 2008; Guha et al. 2010; Goel et al. 2011; Fan et al. 2012; Karabudak et al. 
2014; Ke et al. 2016; Manaf 2016). The spiking time in transgenic maize plants 
under stress was less affected compared with wild-type plants (Quan et al. 2004). 
GB increased the number of anthers, pistils, and petals in transgenic Arabidopsis 
plants (Sulpice et al. 2003).

In transgenic maize, the reproductive development is promoted by GB under 
drought stress (Quan et al. 2004). The percentage and time of germination of seeds 
of transgenic rice, tomato, and tobacco plants are promoted by GB under salt and 
drought stress (Park et al. 2007; Kathuria et al. 2009; Goel et al. 2011; Li et al. 
2011). Plant productivity of plants under stress conditions is also promoted in those 
plants capable of synthesizing GB. Based on maintaining the growth and develop-
ment of the plants synthesizing GB, the productivity of them is also positively 
affected. Sulpice et  al. (2003) found in transgenic Arabidopsis plants a greater 
 number of flowers and seeds per plant, whereas in transgenic maize, Quan et al. 
(2004) reported a greater number of seeds per plant and a greater weight per grain.

Despite all the positive effects of GB on growth and development of plants, there 
is no evidence that GB is directly promoting growth, so it has been proposed that 
GB could be interacting with plant hormones like auxins and ABA, since they are 
involved in the control of growth (Kurepin et al. 2015). To date it has been found 
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that ABA and methyl jasmonate increase the synthesis of GB (Fig. 3) (Ishitani et al. 
1995; Jagendorf and Takabe 2001; Xing and Rajashekar 2001; Xu et  al. 2018). 
Salicylic acid seems to be playing a role of increasing the methionine content to 
support the SAM production used to GB synthesis and decreasing the ethylene pro-
duction (Khan et  al. 2014). Barley and poplar transgenic plants overexpressing 
CodA gene showed increased expression levels of auxin-responsive IAA genes (Li 
et al. 2014; Ke et al. 2016).

4  Conclusion and Future Perspectives

The growth of plants primarily requires sugars, protein synthesis, ATP, reducing 
power, and a reducing cellular environment, all of which are influenced directly 
or indirectly by GB. All those aspects are influenced by GB synthesis, transport, 
and accumulation, by which it has a positive influence in plant growth and devel-
opment under stress conditions. The mechanism by which GB influences the 
expression of genes is much less known and is an important aspect to study. The 
capacity of GB to stabilize proteins and to induce their synthesis explains in part 
changes in the activity of enzymes studied up to now; however, it remains to be 
defined if GB interacts directly as activator or inhibitor of enzymes. A great 
advance has been reached in the knowledge of the impact that GB synthesis has 
on the growth and development of the plants, as well as in the structural and 
evolutionary characteristics of the enzymes that catalyze its synthesis. The role 
of plant hormones in the induction of GB synthesis also begins to be clearer, as 
well as the impact that the synthesis of GB has on the ethylene and polyamine 
synthesis pathways.

There are still important aspects of the GB synthesis that need to be defined to 
increase agricultural productivity through plants with the ability to synthesize 
GB.  Photosynthesis requires all proteins involved in H2O hydrolysis and in the 
transport of electrons and protons to remain functional, just as the enzymes that 
participate in ATP synthesis and carbon skeletal synthesis, as well as the chloroplast 
and thylakoid membranes. However, GB synthesis requires the availability of cho-
line whose synthesis demands a high content of SAM, methionine, and ethanol-
amine. All these points must be taken into account for the improvement or genetic 
engineering of plants that synthesize and accumulate GB.
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