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1  �Introduction

Most green plants are fully autotrophic organisms and can produce their entire  
biomass from inorganic molecules with the help of light energy captured by photo-
synthesis. Energy from photosynthesis is thereby not only needed to reduce CO2 to 
carbohydrates but also to assimilate nitrogen, phosphorus, and sulfur from inor-
ganic salts for the biosynthesis of proteins and nucleic acids (Buchanan et al. 2000; 
Taiz et al. 2018). In contrast, most non-photosynthetic organisms, including animals 
and humans, depend on the uptake of organic material both as energy source and as 
building material (Hill et  al. 2016). This fundamental difference exists since the 
development of oxygenic photosynthesis by cyanobacteria, which were later con-
verted to endosymbiotic chloroplasts in eukaryotic algae and plants (Nozaki 2005; 
Zimorski et al. 2014). It is therefore not surprising that despite the use of identical 
building blocks in all living organisms, i.e., nucleotides, amino acids, and carbohy-
drates, the pathways to acquire or synthesize these building blocks are not identical 
in distantly related groups of organisms. Knowledge about human metabolism can 
therefore only serve to guide investigations of regulatory and metabolic pathways in 
plant primary metabolism but not as a direct template.
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An additional layer of complexity is added by the fact that many primary  
metabolites are used for additional specific purposes in plants. This and the follow-
ing two chapters focus on the amino acid proline, which is an essential constituent 
of most proteins but serves additionally as a compatible solute with important func-
tions in stress defense, as a signaling molecule, and as a precursor for secondary 
metabolites in some plant species. The functions and regulation of proline metabo-
lism and accumulation in stress defense are summarized in detail in the following 
chapter, while other chapters of this book will specifically focus on the physiologi-
cal function and agronomic potential of proline uptake from external sources 
(Chaps. 4 and 9) and on the role of proline as a signaling molecule in stress adapta-
tion (Chap. 11). The present chapter summarizes the current knowledge about the 
biochemical pathways of proline metabolism and its functions in regulating plant 
development and physiology both in the absence or presence of stress.

2  �Proline Biosynthesis and Degradation: Enzymes and Their 
Subcellular Localization

The concentration of free proline in a plant cell is determined largely by four meta-
bolic processes, namely, biosynthesis and degradation of proline as well as con-
sumption of proline for protein biosynthesis and release of proline during protein 
degradation (Hildebrandt 2018). Additionally, the distribution of proline among dif-
ferent sub-compartments of the cell is not uniform and proline is distributed within 
the plant by long-distance transport along vascular bundles and locally by transport 
across the plasma membrane or through plasmodesmata. This section will focus on 
the anabolic and catabolic enzymes and their subcellular localization, whereas the 
next section will integrate this information with the known transport routes to estab-
lish metabolic pathways.

2.1  �Proline Biosynthetic Enzymes

In prokaryotes, three enzymes have been identified that can synthesize proline: orni-
thine cyclodeaminase (OCD), pyrroline-2-carboxylate reductase (P2CR), and 
pyrroline-5-carboxylate reductase (P5CR) (Fig. 1). OCD uses NAD+ as a cofactor 
during the cyclization and subsequent deamination of ornithine. In the proposed 
reaction mechanism, NAD+ is transiently reduced and later re-oxidized during 
enzyme regeneration and proline release (Goodman et al. 2004). OCD is encoded 
by rolD on the transfer DNA (T-DNA) of Rhizobium rhizogenes (better known 
under its traditional name Agrobacterium rhizogenes) and an integrated copy of 
such a T-DNA has been found in genomic DNA of Catharanthus roseus (GenBank 
accession DQ852612). Endogenous proteins with homology to OCD can be 
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identified in plant genomes, but an in-depth analysis of the Arabidopsis OCD homo-
log (At5g52810) did not yield any evidence of OCD activity or any other function 
in proline biosynthesis (Sharma et  al. 2013). Pyrroline-5-carboxylate (P5C) and 
pyrroline-2-carboxylate (P2C) are reduced to proline by P5CR or P2CR, respec-
tively, under consumption of NAD(P)H (Fichman et  al. 2015). Bacterial P2CRs 
often have dual specificities for the conversion of P2C to proline or Δ1-piperidine-
2-carboxylate to pipecolate and function in trans-3-hydroxy-L-proline degradation 
or pipecolate biosynthesis (Watanabe et  al. 2014). Early biochemical studies 
reported or postulated P2CR activity in few plant species (Meister et  al. 1957; 
Mestichelli et  al. 1979), and in several plant genomes, hypothetical P2CRs are 
annotated. However, the molecular identification of a plant P2CR has not been 
reported so far and the hypothetical P2CRs do not align unambiguously to charac-
terized P2CRs. Therefore, P5C is at present the only confirmed precursor for proline 
biosynthesis in plants.

Fig. 1  Substrates, enzymes, and cofactors of proline metabolism. Blue and red circles indicate 
cytosolic and mitochondrial enzymes, respectively. The yellow color of OCD indicates the pro-
karyotic origin of this protein. Proline is depicted in its super proline dress to emphasize its many 
important functions in adaptation, defense, and development of plants. GSA glutamate-5-
semialdehyde, OAT ornithine-δ-aminotransferase, OCD ornithine cyclodeaminase, P2C pyrroline-
2-carboxylate, P2CR P2C reductase, P5C pyrroline-5-carboxylate, P5CDH P5C dehydrogenase, 
P5CR P5C reductase, P5CS P5C synthetase, PLP pyridoxal phosphate, ProDH proline 
dehydrogenase
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P5CR has been cloned or purified from a number of plant species and was found 
to form large homo-oligomers (Delauney and Verma 1990; Forlani et  al. 2015; 
Funck et al. 2012; Ma et al. 2008; Murahama et al. 2001; Ruszkowski et al. 2015). 
The first crystal structure of P5CR from rice (Oryza sativa) revealed a decameric 
structure consisting of a ring of five dimers, which is in agreement with most 
molecular mass estimates for P5CR from other plant species (Forlani et al. 2015). 
P5CR can use both NADH and NADPH to reduce P5C to proline, and in the absence 
of NAD(P)+, higher turnover rates were obtained with NADH. However, the affinity 
of P5CR for NADPH is much higher and even low concentrations of NADP+ inhib-
ited the reaction of Arabidopsis (Arabidopsis thaliana) P5CR with NADH (Giberti 
et al. 2014). At physiological pH values, the reaction is nearly unidirectional toward 
proline formation, while at high pH (>9) also the reverse reaction can be detected, 
because P5C is highly labile at elevated pH (Rena and Splittstoesser 1975) (unpub-
lished data by G. Forlani). Unfortunately, proline-dependent formation of NAD(P)
H by soluble plant extracts at high pH is often erroneously interpreted as ProDH 
activity (see below). Most plant species contain a single P5CR gene, and in 
Arabidopsis, a P5CR:GFP fusion protein was detected exclusively in the cytosol 
(Funck et al. 2012). After cell fractionation, the major part of the P5CR activity was 
detected in the soluble protein fraction in many plant species, whereas some authors 
also reported P5CR activity in chloroplast-enriched fractions (Murahama et  al. 
2001; Noguchi et al. 1966; Rayapati et al. 1989). It remains to be clarified if P5CR, 
which lacks a conserved chloroplast transit peptide in all analyzed genomes, can be 
imported into plastids by an unconventional mechanism or can be partially attached 
to plastids during isolation.

P5C is formed nonenzymatically by cyclization of glutamate-5-semialdehyde 
(GSA), which is an equilibrium reaction in aqueous solution. Two plant enzymes 
are known to produce GSA: ornithine-δ-aminotransferase (OAT) and P5C synthe-
tase (P5CS). The first plant OAT gene was isolated by trans-complementation of an 
Escherichia coli strain unable to synthesize P5C with a cDNA clone from Vigna 
aconitifolia (Delauney et al. 1993). OAT is localized in the mitochondria and uses 
pyridoxal phosphate as cofactor in the transfer of the δ-amino group of ornithine to 
α-ketoglutarate, yielding GSA and glutamate (Funck et  al. 2008; Roosens et  al. 
1998; Stránská et al. 2008). For mammalian OAT, it has been shown that it also cata-
lyzes the reverse reaction in certain tissues, although the chemical equilibrium is far 
to the side of GSA and glutamate (Strecker 1965).

The second enzyme, P5CS, reduces glutamate to GSA in a two-step reaction 
consuming ATP and NADPH. All land plants and animals have bifunctional P5CS 
enzymes, whereas prokaryotes and some unicellular green algae and fungi have 
separate γ-glutamyl kinase and glutamyl-γ-phosphate reductase enzymes (Fichman 
et al. 2015; Hu et al. 1992; Zhang et al. 1995). A previous report describing the 
occurrence of prokaryote-like γ-glutamyl kinase and glutamyl-γ-phosphate reduc-
tase genes in tomato (Solanum lycopersicum) was most likely an artifact, because 
no such genes are present in genomic sequences of tomato (Fujita et al. 1998). In the 
initial reaction, the γ-glutamyl kinase domain of P5CS uses ATP to phosphorylate 
the γ-carboxy group of glutamate, and in the second reaction, glutamyl-γ-phosphate 
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is reduced to GSA under consumption of NADPH. The γ-glutamyl kinase activity 
is inhibited by millimolar concentrations of proline and mutations identified in 
bacterial enzymes were used to engineer feedback-insensitive variants of P5CS in 
plants (Hu et al. 1992; Zhang et al. 1995). The first plant P5CS gene was isolated by 
complementation of a proline synthesis-deficient E. coli strain (Hu et  al. 1992). 
Most plant species have at least two P5CS isoforms, of which one can be regarded 
as a housekeeping gene, while others are induced by stress to enable proline accu-
mulation (Kim and Nam 2013; Signorelli and Monza 2017; Székely et al. 2008; 
Turchetto-Zolet et  al. 2009; Wang et  al. 2014). Initial characterization of the 
Arabidopsis P5CS proteins by GFP fusion indicated that both isoforms are cytosolic 
in non-stressed plants but may be imported into plastids upon osmotic stress 
(Székely et al. 2008), whereas our own data indicate exclusive cytosolic localization 
(Funck et al. 2019). Similarly, GFP fusions of two out of three P5CS isoforms from 
Medicago truncatula co-localized with the small subunit of ribulose bisphosphate 
carboxylase/oxygenase in root hairs, but like in the Arabidopsis P5CS sequences, 
no typical chloroplast transit peptides are present in the protein sequences (Kim and 
Nam 2013). By cell fractionation and Western blot, corn (Zea mays) P5CS2 was 
detected exclusively in the cytosol and not in the organelle fraction (Wang et al. 
2014). Because glutamate, ATP, and NADPH can be used as substrates by many 
different enzymes (e.g., glutamine synthetase or P5C dehydrogenase, see below), a 
specific assay of P5CS activity in crude plant or organelle extracts has not been 
reported so far, and thus the subcellular localization awaits biochemical 
confirmation.

2.2  �Proline Degradation Enzymes

For the degradation of excess proline that is not used for protein synthesis or as 
compatible solute, also a single enzyme is known in plants. Proline dehydrogenase 
(ProDH), previously also referred to as proline oxidase, is an FAD-containing 
enzyme at the inner mitochondrial membrane, which oxidizes proline back to P5C 
while transferring the obtained electrons to the mitochondrial electron transport 
chain and thus fueling respiratory ATP production (Elthon and Stewart 1981; Huang 
and Cavalieri 1979; Schertl et al. 2014). Structural studies of Put1, the ProDH of 
baker’s yeast (Saccharomyces cerevisiae), strongly indicate that the electrons are 
transferred via the tightly bound FAD cofactor to ubiquinone (Moxley et al. 2017; 
Wanduragala et al. 2010). A ProDH gene from Arabidopsis has been independently 
identified by homology searches and by screening for genes that respond rapidly to 
changes in the water status (Kiyosue et al. 1996; Peng et al. 1996; Verbruggen et al. 
1996). Many plant genomes contain a single ProDH gene, while an early genome 
duplication in the Brassicaceae led to two isoforms in Arabidopsis with further 
multiplications occurring in Brassica species (Faes et al. 2015; Funck et al. 2010; 
Mani et al. 2002). ProDH activity has been exclusively detected in mitochondria 
unless the reverse reaction of P5CR at high pH was erroneously assigned to ProDH 

Proline Metabolism and Its Functions in Development and Stress Tolerance



46

(see above; (Huang and Cavalieri 1979; Schertl et al. 2014). C-terminal GFP fusion 
proteins of both Arabidopsis ProDH isoforms were targeted to the mitochondria in 
stably transformed plants, whereas a transient transformation assay provided evi-
dence for chloroplast targeting of ProDH2 (Funck et al. 2010; Van Aken et al. 2009).

P5C produced by ProDH has three potential fates: It can be converted to proline 
by P5CR, or it can be linearized to GSA and be converted to ornithine by OAT or to 
glutamate by P5C dehydrogenase (P5CDH, recently suggested to be renamed as 
glutamate semialdehyde dehydrogenase, GSALDH, to better reflect the actual sub-
strate and the evolutionary relationship to the aldehyde dehydrogenase family 
(Tanner 2019)). The latter is the last metabolic enzyme that is discussed here in 
detail. P5CDH activity was first characterized in corn mitochondria, and 20 years 
later the first P5CDH gene from Arabidopsis was identified by functional cloning 
(Deuschle et al. 2001; Elthon and Stewart 1981). In most annotated plant genomes, 
P5CDH is a single-copy gene except for polyploid species (Ayliffe et  al. 2005; 
Deuschle et al. 2001; Korasick et al. 2019). Biochemical analyses of isolated corn 
mitochondria provided evidence for two P5CDH isoforms with distinct pH optima 
(Elthon and Stewart 1982), and for the single-copy P5CDH gene in the Zea mays 
genome, several predicted splicing variants are annotated (NCBI gene ID: 
100193220). P5CDH is a soluble enzyme in the mitochondrial matrix and prefers 
NAD+ over NADP+ as electron acceptor during the oxidation of GSA to glutamate 
(Forlani et al. 1997). In many bacteria, ProDH and P5CDH activities are combined 
in a single enzyme that allows direct substrate channeling, and recently it was 
reported that also the two plant enzymes might be physically linked through interac-
tion with the inhibitory protein DROUGHT AND FREEZING RESPONSIVE 
GENE 1 (DFR1; (Ren et al. 2018).

Especially in fragrant rice but also in some other plant species, proline and P5C 
were also identified as potential precursors for the production of 2-acetyl-1-
pyrroline, the main constituent of the typical flavor (Wakte et al. 2017; Yoshihashi 
et al. 2002). However, a recent metabolomic and genomic study in rice proposed 
putrescine-derived 4-aminobutanal as immediate precursor for 2-acetyl-1-pyrroline 
and challenged the direct involvement of proline or P5C (Daygon et al. 2017).

3  �Proline Transport and Metabolic Pathways

Proline is most likely synthesized exclusively in the cytosol but is needed for protein 
biosynthesis also in mitochondria and plastids. In leaves of osmotically stressed 
potato (Solanum tuberosum) plants, the highest concentrations of proline were 
reported for chloroplasts (Büssis and Heineke 1998). Additionally, a substantial part 
of protein degradation occurs in the vacuole, and proline degradation takes place in 
mitochondria. After release from stress, the high concentration of proline rapidly 
decreases, primarily by ProDH- and P5CDH-dependent degradation (Deuschle 
et al. 2004; Nanjo et al. 1999b). Therefore, efficient transport proteins for proline 
must exist in most intracellular membranes, but their molecular identity is only 
beginning to be revealed.
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3.1  �Intracellular Proline Transport

Isolated mitochondria from monocot seedlings can use proline and P5C/GSA as 
substrates for respiratory O2 consumption, but in Arabidopsis mitochondria proline-
dependent respiration was only detected when the expression of ProDH1 was stimu-
lated by proline treatment prior to the isolation of mitochondria (Boggess et  al. 
1978; Cabassa-Hourton et al. 2016; Elthon and Stewart 1982). No carriers for pro-
line or P5C/GSA in mitochondria have been molecularly identified so far. However, 
biochemical analyses provided evidence that the import of proline into mitochon-
dria is dependent on a proton gradient and at least two transporters, a proline uni-
porter and a proline/glutamate antiporter, are present in the inner mitochondrial 
membrane (Di Martino et al. 2006; Elthon et al. 1984). Recently, several members 
of the mitochondrial carrier family (MCF) were shown to mediate glutamate trans-
port, but no evidence for proline transport activity has been obtained yet (Monne 
et al. 2018; Porcelli et al. 2018). Even less data is available on amino acid transport 
across the chloroplast membranes, where so far only a malate/glutamate antiporter 
(DiT2 in the inner envelope) and a transporter for neutral amino acids in the outer 
envelope (OEP16) have been characterized (Pohlmeyer et  al. 1997; Renné et  al. 
2003). In the vacuolar membrane of yeast, the family of AMINO ACID VACUOLAR 
TRANSPORTERS (AVT) has been characterized, and recently it was shown that 
Arabidopsis homologues AVT3A and AVT3C complement the defects of avt3/avt4 
double mutant yeast cells (Fujiki et al. 2017). These proteins are localized in the 
vacuolar membrane in Arabidopsis and functional studies suggested that they medi-
ate the ATP-dependent export of several amino acids, including proline, from the 
vacuole. This suggestion is in agreement with evidence from potato showing that 
proline concentration in the cytosol can be 260-fold greater than in the vacuole, 
indicating the presence of an active transport system (Büssis and Heineke 1998).

3.2  �Pathways for Proline Biosynthesis and Degradation

The lack of information about the activity and specificity of transport proteins in 
intracellular membranes makes it difficult to draw definite conclusions about the 
metabolic pathways of proline biosynthesis and degradation that occur in  vivo. 
Biosynthesis of proline from glutamate by the sequential action of P5CS and P5CR 
appears to be the predominant pathway, especially for stress-induced proline accu-
mulation. Accordingly, both P5CS and P5CR are essential genes in Arabidopsis, 
and double mutations in P5CS1 and P5CS2 are gametophytic lethal, as no fertile 
p5cs1/p5cs2 mutant pollen is formed, while homozygous p5cr mutant embryos 
were observed but aborted at a very early developmental stage (Funck et al. 2010; 
Mattioli et  al. 2012). These observations demonstrate that no other pathway can 
produce sufficient amounts of proline for successful sexual reproduction. An alter-
native pathway of proline biosynthesis from ornithine has been assumed based on 
radiotracer studies, co-expression analyses, and analogy to mammals (da Rocha 
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et al. 2012; Mestichelli et al. 1979; Roosens et al. 1998). To actually bypass P5CS 
activity, this pathway depends on export of GSA/P5C produced from ornithine by 
OAT in mitochondria, which was detectable in isolated corn mitochondria but is 
difficult to assess in vivo due to the high reactivity and inherent instability of GSA/
P5C at neutral pH (Elthon and Stewart 1982; Mezl and Knox 1976). When mito-
chondria were incubated with proline, the production of glutamate was two orders 
of magnitude higher than GSA/P5C production, and also in Arabidopsis plants 
treated with external proline, GSA/P5C content stayed below the detection limit of 
50  nmol/g fresh weight unless p5cdh mutants were used (Boggess et  al. 1978; 
Deuschle et al. 2004). Much higher GSA/P5C contents were reported in a study 
using plants overexpressing ProDH and, together with unchanged GSA/P5C to pro-
line ratios, were interpreted as evidence for a proline-GSA/P5C cycle between the 
cytosol and mitochondria (Miller et al. 2009). However, Miller et al. (2009) did not 
provide evidence that the employed color reaction is specific for GSA/P5C in crude 
plant extracts and the production of glutamate by both OAT and P5CDH makes it 
difficult to exclude that ornithine only stimulates the P5CS-dependent pathway of 
proline biosynthesis. Similarly, there is at present no evidence that proline degrada-
tion might yield ornithine instead of glutamate in plants, as it has been proposed for 
certain mammalian tissues (Ginguay et al. 2017).

3.3  �Intercellular Proline Transport

In contrast to organellar proline transporters, which remain elusive so far, numerous 
proline transporters were identified that are localized in the plasma membrane. 
Several members of the amino acid/auxin permease (AAAP) family mediate amino 
acid-proton symport (Dinkeloo et al. 2018). Among these, members of the amino 
acid permease (AAP) and lysine histidine transporter (LHT) subfamilies transport 
proline along with a rather broad range of both neutral and charged amino acids 
(Fischer et al. 1995; Hirner et al. 2006). Members of the proline transporter (ProT) 
subfamily have rather narrow substrate specificity and transport proline, glycine 
betaine, or γ-aminobutyric acid (GABA) (Lehmann et al. 2011). A recent analysis 
of Arabidopsis aap1 mutants suggested that AAP1 could contribute to the uptake of 
proline from the growth substrate (Perchlik et al. 2014; Wang et al. 2017). However, 
little is known about the concentrations of free proline in natural soils and its rele-
vance for plant nutrition or communication, indicating that the major function of 
AAPs and ProTs is the redistribution of proline within the plant. Amino acids are 
transported in both the xylem and the phloem, and several members of the AAP 
family were shown to contribute to phloem loading in source leaves or retrieval of 
amino acids along the transport route (Tegeder and Hammes 2018). Apoplastic 
phloem loading requires that amino acids are released by source cells into the inter-
cellular space and also loading of the dead xylem vessels in roots requires export of 
amino acids and other solutes by the surrounding living cells. In 2012, the SILIQUES 
ARE RED 1 (SIAR1/UMAMIT18) protein was identified in Arabidopsis as the first 
transporter that can mediate bidirectional amino acid transport, depending on the 
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electrochemical gradient across the membrane (Ladwig et al. 2012). SIAR1 is part 
of a protein family with 44 members in Arabidopsis, of which several members have 
been characterized in the meantime as broad specificity amino acid exporters and 
which were therefore named “usually multiple amino acids move in and out trans-
porters” (UMAMITs) (Besnard et al. 2016, 2018; Müller et al. 2015). Also, plasmo-
desmata are a possible route for amino acid transport between connected cells, but 
to our knowledge, no specific transport mechanisms have been described so far.

4  �Proline Biosynthesis and Degradation: Spatial 
and Temporal Regulation

The diverse functions of proline metabolism, which must sustain the variable 
requirements of protein synthesis, while playing multiple additional physiological 
functions and responding to environmental and biotic stimuli, are reflected in, and 
derived from, an elaborate network of gene and enzyme activity regulation (Fig. 2). 
Most of the known regulatory mechanisms for proline metabolism operate at the 
transcriptional level and appear to distinguish between stress and normal physiolog-
ical conditions. Key to this distinction is the capability to detect and respond to 
different inputs via several signaling pathways that result in expression or activation 
of specific transcription factors (TFs). Accordingly, the promoters of all genes cod-
ing for proline metabolic enzymes that were characterized so far are especially rich 
in confirmed or predicted TF recognition elements (Fichman et al. 2015; Zarattini 
and Forlani 2017). Further regulatory mechanisms were found to act epigenetically 
or posttranscriptionally on gene expression, or allosterically on enzyme activities. 
Far less is known about posttranslational modifications or regulated degradation of 
proline metabolic enzymes and transporters. Most of the knowledge about regula-
tory mechanisms of proline metabolism has been obtained by analysis of Arabidopsis 
wild-type plants or mutants. As indicated above, duplications and functional diver-
sification of proline metabolic genes occurred several times independently in differ-
ent plant taxa. Therefore, it is at present unknown how much of the knowledge 
obtained in Arabidopsis can be directly transferred to different species (Mattioli 
et al. 2018; Signorelli and Monza 2017; Turchetto-Zolet et al. 2009). We will focus 
on the knowledge gained for Arabidopsis and indicate it specifically, when data 
from other plants are described as well.

4.1  �Regulation of Genes Coding for Proline Biosynthesis 
Enzymes

As discussed above, the short pathway converting glutamate into GSA and P5C into 
proline is the most important and probably unique route of proline synthesis in 
higher plants. Compelling evidence indicates that P5CS, the first enzyme of 
glutamate-derived proline synthesis, is under most conditions the rate-limiting 
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enzyme of proline synthesis in higher plants. This evidence derives from the strict 
correlation between P5CS expression and proline accumulation (Hu et  al. 1992; 
Peng et al. 1996; Savouré et al. 1995; Strizhov et al. 1997; Yoshiba et al. 1999) and 
from the effects of P5CS overexpression (Kavi Kishor et al. 1995; Per et al. 2017) 
and antisense inhibition (Nanjo et al. 1999b) or knockout mutations (Mattioli et al. 
2008; Székely et al. 2008). Accordingly, the overall rate of proline biosynthesis is 
predominantly determined by the temporal and spatial regulation of P5CS gene 
expression.

The two Arabidopsis P5CS genes are located on chromosome 2 and 3 and share 
the same genomic structure with 20 exons sharing a nucleotide identity ranging 

Fig. 2  The regulatory network controlling proline metabolism. Enzymes are given in blue letters 
and metabolic fluxes as solid black arrows. The uncertain transport of P5C/GSA across the mito-
chondrial membrane is indicated by a dashed arrow. Green and red lines indicate induction and 
repression, respectively. Lines ending at an enzyme name indicate regulation of gene expression, 
while lines ending at the metabolic flux indicate posttranslational regulation. For reasons of sim-
plicity, low water potential and high ionic strength are depicted as a single regulatory unit, although 
they probably use partly independent signaling cascades. ABA abscisic acid, αKG α-ketoglutarate, 
BR brassinosteroids, DFR1 drought and freezing regulated gene 1, GDH glutamate dehydroge-
nase, Glu glutamate, GSA glutamate-5-semialdehyde, OAT ornithine-δ-aminotransferase, OCD 
ornithine-cyclodeaminase, Orn ornithine, P5C pyrroline-5-carboxylate, P5CDH, P5C dehydroge-
nase, P5CR P5C reductase, P5CS P5C synthetase, Pi Phosphate, Pro proline, ProDH proline dehy-
drogenase, TCA tricarboxylic acid cycle, ΨW water potential
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from 80% to 94%. A higher degree of difference is found in the promoter regions, 
the 5′ and 3′ untranslated sequences and introns, including variations in putative 
splicing sites, which might give rise to four different P5CS1 and two different 
P5CS2 transcripts included in the current annotation (ARAPORT11) of the 
Arabidopsis genome (https://www.Arabidopsis.org). The four different /P5CS1/ 
transcripts are derived from two splice variants and two alternative transcription 
initiation sites, while in P5CS2 a single-splice variant skipping exon 3 is annotated. 
Skipping of exon 3 of P5CS1 produces nonfunctional transcripts and has been 
experimentally confirmed as potential mechanism underlying differential drought 
tolerance of several natural accessions from different regions (Kesari et al. 2012).

The expression of P5CS1 and P5CS2 in Arabidopsis has been analyzed by north-
ern blot, in situ hybridization, and analysis of transgenic plants carrying promoter-
GUS and promoter-gene-GFP fusion constructs (Abrahám et al. 2003; Fabro et al. 
2004; Mattioli et al. 2018; Mattioli et al. 2009; Strizhov et al. 1997; Yoshiba et al. 
1999). There are some minor discrepancies between the results, most likely attribut-
able to different cultivation conditions and analysis techniques. The prevailing pic-
ture is that both isoforms have partially overlapping expression patterns, whereby 
P5CS1 is expressed more strongly in aboveground tissues and differentiated cells, 
whereas P5CS2 expression levels are highest in regions of active cell division. In 
flowers, both P5CS isoforms are almost exclusively expressed in developing micro-
spores and pollen (Mattioli et al. 2018). P5CS1 and, to a lesser extent, P5CS2 tran-
scription is rapidly induced by drought and salt stress, with light and abscisic acid 
(ABA) as key inducing signals (Abrahám et al. 2003; Feng et al. 2016; Strizhov 
et al. 1997). An independent pathway seems to mediate induction of P5CS1 expres-
sion in response to phosphate starvation (Aleksza et al. 2017). Proline-, brassino-
lide-, and phospholipase-dependent signaling were identified as negative regulators 
of P5CS expression and probably contribute to the rapid downregulation after relief 
from stress (Abrahám et al. 2003; Thiery et al. 2004). Bioinformatic analyses of the 
promoters of P5CS1 and P5CS2 showed that the promoter of P5CS1 is enriched in 
putative binding sites for TFs related to abiotic stress, such as ABA response ele-
ments, AP2/EREBP, ERF2, DREB/CBF, and MYB binding sites (Fichman et al. 
2015). The promoter of P5CS2, on the contrary, is enriched in putative regulatory 
elements for TFs related to biotic stresses such as HD-HOX, AP2/EREBP, MYB, 
WRKY, and bZIP (Fichman et al. 2015). Additionally, the promoter of P5CS2 con-
tains putative binding sites for TFs related to flowering time, such as SQUAMOSA 
PROMOTER BINDING-LIKE (SPL) and bHLH factors, and related to pollen devel-
opment and function such as WRKY2 and WRKY34 (Mattioli et al. 2018).

Most studies on stress-induced or developmental accumulation of proline report 
good correlation between P5CS transcript levels and proline content, indicating that 
proline biosynthesis is predominantly regulated at the level of transcription. Early 
studies describing proline accumulation in tomato and grapevine in the absence of 
increased P5CS transcript levels can now be explained by the presence of second 
P5CS isoforms in these species that were unknown at the time (Fujita et al. 1998; 
Stines et al. 1999). More direct evidence for post-transcriptional regulation of P5CS 
expression was obtained by computational identification of matching micro-RNAs 
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in potato and chickpea (Shui et al. 2013; Yang et al. 2013). Expression levels of 
some micro-RNAs during stress were negatively correlated with P5CS transcript 
levels, but direct proof for their involvement in P5CS regulation is still missing. 
Epigenetic regulation caused by modulations of the methylation pattern of specific 
genes may also contribute to P5CS regulation. Changes in DNA methylation 
induced by environmental stresses or by developmental stimuli are known to modu-
late both plant stress tolerance and developmental processes, respectively (Bastow 
et al. 2004; Chinnusamy and Zhu 2009; Karan et al. 2012; Richards 2006). In rice, 
differential methylation of a P5CS gene has been proposed as a mechanism for 
trans-generational stress memory (Zhang et al. 2013). As mentioned above, another 
level of regulation is added by allosteric inhibition of the γ-glutamyl kinase activity 
of plant P5CS proteins by proline (Hu et al. 1992; Zhang et al. 1995). It is so far 
unknown if and how feedback inhibition of P5CS may be overcome in tissues or 
conditions where proline accumulation is desired. Immunoblot analyses of 
Arabidopsis P5CS1 protein levels in different protein phosphatase 2C mutants indi-
cated the presence of posttranslational modifications or mechanisms to regulate pro-
tein stability (Bhaskara et al. 2015).

The concept of P5CS catalyzing the rate-limiting step in proline biosynthesis is 
contested by several studies reporting higher proline content, especially under stress 
conditions, upon overexpression of P5CR (De Ronde et al. 2004; Ma et al. 2008; 
Szoke et al. 1992). The most detailed analysis of P5CR expression has again been 
performed in Arabidopsis. In particular, a P5CR promoter-GUS fusion construct 
showed ubiquitous expression with the highest expression levels in areas of active 
cell division, in guard cells, and in reproductive tissues, especially pollen and devel-
oping seeds (Hua et al. 1997). Similarly, a P5CR promoter-gene-GFP fusion con-
struct was expressed ubiquitously in leaves and roots, with highest expression in the 
root tip (Funck et al. 2010). The 5’-UTR of P5CR was found to mediate posttran-
scriptional regulation by stabilizing P5CR transcripts under heat and drought stress 
while at the same time inhibiting translation, resulting in unchanged protein levels 
despite strongly increased transcript levels, thus raising the question how P5CR 
keeps up with increased P5CS-mediated GSA/P5C production during stress (Hua 
et al. 2001). The biochemical properties of P5CR might solve this apparent conflict, 
as the activity of purified P5CR was stimulated by high ion concentrations when 
NADPH was available as electron donor (Forlani et al. 2015; Giberti et al. 2014). 
Phosphoproteomics studies have revealed two directly adjacent phosphorylation 
sites at T237 and S238 of Arabidopsis P5CR, but information about the possible 
function of P5CR phosphorylation is not available (Schulze et al. 2015).

As discussed in Sect. 3.2, it is at present unclear whether OAT-mediated produc-
tion of GSA constitutes an alternative route for proline biosynthesis or whether it 
stimulates proline synthesis merely by increasing the level of glutamate. The spatial 
distribution of OAT expression has not been analyzed in Arabidopsis, while in pea 
the highest activity was detected in cotyledons, followed by true leaves, roots, and 
seeds (Taylor and Stewart 1981). In pine seedlings, OAT transcript levels were  
highest in the radicle and peaked transiently after germination (Canas et al. 2008). 
In young Arabidopsis and rice seedlings as well as in radish cotyledons and cashew 
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leaves, OAT activity or gene expression was induced in response to salt or drought 
stress (da Rocha et al. 2012; Liu et al. 2018; Roosens et al. 1998; You et al. 2012). 
Rice OAT expression was additionally induced by heat, ABA, brassinolide, and 
auxin treatment (You et  al. 2012). Arabidopsis oat knockout mutants developed 
normally and had unchanged proline content but were unable to utilize arginine as 
nitrogen source for growth (Funck et al. 2008). In contrast, deletion of OAT in rice 
caused fertility defects and lower proline content together with general symptoms 
of nitrogen deficiency (Liu et al. 2018). In summary, the available data supports an 
essential role of OAT in recycling of nitrogen from arginine degradation, but does 
not demonstrate or exclude the existence of an alternative route for proline 
biosynthesis.

4.2  �Regulation of Genes Coding for Proline Catabolic 
Enzymes

Since the transporters that mediate the uptake of proline into mitochondria have not 
been molecularly identified, we know virtually nothing about the regulation of this 
transport. Once cytosolic proline is imported into mitochondria, it can either be used 
for mitochondrial protein synthesis or it can be oxidized to glutamate by the sequen-
tial action of ProDH and P5CDH (see Sect. 2.2). Copy numbers of ProDH genes 
have not been thoroughly analyzed in available genomes except in Brassicaceae, 
where an early family-specific genome duplication produced two copies that were 
further multiplied in the genus Brassica (Faes et al. 2015). In Arabidopsis, the best-
characterized species, it was shown that both genes, ProDH1 and ProDH2, encode 
functional proteins with nonredundant but partially overlapping functions (Funck 
et al. 2010). P5CDH is encoded by a single-copy gene in Arabidopsis and in cereals, 
while no systematic searches in other plant genomes were reported (Ayliffe et al. 
2005; Deuschle et al. 2001). As for proline biosynthesis, most studies on temporal 
and spatial regulation of proline catabolism were performed in Arabidopsis and we 
will therefore focus on this species, being aware that this knowledge might not be 
readily transferred to other plants with different gene copy numbers.

ProDH1, the more extensively characterized proline catabolic gene, is after a 
weak and transient induction repressed by dehydration but is rapidly and strongly 
induced by rehydration (Kiyosue et al. 1996; Peng et al. 1996; Verbruggen et al. 
1996). In addition, ProDH1 expression is induced by proline and hypoosmolarity 
and during HR-mediated pathogen defense but repressed by hyperosmolarity 
(Cecchini et al. 2011; Kiyosue et al. 1996; Monteoliva et al. 2014; Verbruggen et al. 
1996; Yoshiba et al. 1999). More interesting in respect to plant development is the 
pattern of ProDH1 expression under non-stressed conditions. Weak constitutive 
expression of ProDH1 was observed in most organs of Arabidopsis, while in root 
tips and in flowers, particularly in pollen grains, stigmata, carpels, and developing 
seeds, the promoter activity was higher (Nakashima et al. 1998). Analysis of orthol-
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ogous ProDH1 genes in Brassica species revealed a very similar expression pattern 
(Faes et al. 2015). These findings are particularly interesting because they imply 
that the molecular mechanisms that reduce proline degradation and support accu-
mulation under stress may be quite different from those active in proline accumula-
tion during reproductive development.

Detailed analysis of the Arabidopsis ProDH1 promoter revealed an ACTCAT 
motif responsible for proline and hypoosmolarity-mediated induction of ProDH1 
(Nakashima et al. 1998; Satoh et al. 2002). The ACTCAT motif is a typical binding 
site for basic leucine zipper (bZIP) TFs of the S1-group, and among these AtbZIP53 
and AtbZIP1 were shown to physically interact with the promoter of ProDH1 and to 
mediate induction of gene expression in response to proline, hypoosmolarity, and low 
sugar or energy levels (Dietrich et al. 2011; Satoh et al. 2002; Weltmeier et al. 2006). 
The activity of the ProDH1 promoter was shown to be additionally controlled by the 
interaction between ARR18 and bZIP63, the former being a type-B response regula-
tor that functions as a positive osmotic stress response regulator in Arabidopsis seeds, 
the latter a negative regulator of seed germination upon osmotic stress (Veerabagu 
et al. 2014). Furthermore, ROS- and redox-mediated signaling was reported to regu-
late ProDH1 expression, but the precise mechanisms remain to be determined 
(Shinde et al. 2016). Immunoblot analyses of ProDH1 protein levels in leaf extracts 
or isolated mitochondria yielded multiple bands, indicating that ProDH1 may be 
subject to posttranslational modifications or alternative processing during mitochon-
drial import (Bhaskara et al. 2015; Cabassa-Hourton et al. 2016; Schertl et al. 2014).

The pattern and regulation of ProDH2 expression appear largely different from 
ProDH1: ProDH2 promoter activity was mainly detected in vascular tissue and in 
the abscission zone of sepals, petals, and stamina (Funck et al. 2010). In contrast to 
ProDH1, transcript levels of ProDH2 were induced during senescence and by salt 
stress, whereas the repression by high sugar concentrations and the induction by 
proline and during pathogen defense were similar for both isoforms (Cecchini et al. 
2011; Funck et al. 2010). Similar to P5CS1, expression of ProDH2 was induced by 
phosphate starvation (Aleksza et al. 2017). Averaged over the entire seedlings or 
tissues, the expression level of ProDH2 was much lower compared to ProDH1, and 
accordingly, deletion of ProDH2 had no influence on the capacity of isolated mito-
chondria for proline-dependent respiration, whereas for mitochondria isolated from 
prodh1 mutants, proline-dependent respiration was undetectable (Cabassa-Hourton 
et al. 2016; Funck et al. 2010). The strong and specific expression of ProDH2 in the 
vascular system and its strong downregulation in the presence of sucrose are 
consistent with the report of Hanson et al. (2008) that identified ProDH2, along with 
ASPARAGINE SYNTHETASE1 (ASN1) as two of the early targets of bZIP11, a tran-
scription factor induced by SUCROSE NON-FERMENTING1 RELATED 
KINASE1 (SnRK1) in response to energy deprivation (O'Hara et al. 2013; Weiste 
et al. 2017). SnRK1 and bZIP11 also provide a direct link between proline metabo-
lism and trehalose signaling and metabolism, which is discussed in more detail in 
Chap. 8 of this book.
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Arabidopsis mutants for either ProDH1 or ProDH2 (Funck et al. 2010; Nanjo 
et  al. 2003), as well as transgenic plants with antisense-mediated repression of 
ProDH1 and ProDH2 (Cecchini et al. 2011; Mani et al. 2002), have been generated. 
While no phenotypic or developmental aberrations were observed under normal 
conditions, these mutants exhibited enhanced proline accumulation under stress 
conditions, but stress tolerance and pathogen defense were weakened (Cecchini 
et al. 2011; Sharma et al. 2011). An unexpected, and as yet unexplained, observation 
is the hypersensitivity of prodh1 mutants to exogenous proline under non-stressed 
conditions (Funck et al. 2010; Nanjo et al. 2003). Toxicity of proline supply was 
also observed in non-stressed wild-type plants but was proposed to be linked to 
ProDH activity, with either excess P5C production or excess electron load on the 
mitochondrial electron transport chain as harmful effects (Hellmann et  al. 2000; 
Miller et al. 2009).

A crucial role in preventing proline toxicity was attributed to P5CDH, either by 
P5C/GSA detoxification or by withdrawing P5C/GSA from the proposed P5C-
proline cycle (Deuschle et  al. 2004; Deuschle et  al. 2001; Miller et  al. 2009). 
P5CDH expression was observed constitutively in Arabidopsis leaves, where it 
increased with leaf age, and to a lesser extent in roots (Deuschle et al. 2004). In 
reproductive organs, P5CDH was strongly expressed in pollen, developing embryos, 
and aborted seeds. External proline supply stimulated P5CDH expression, although 
with slower kinetics compared to ProDH1, whereas no prominent changes in tran-
script levels were observed in response to salt stress or pathogen infection (Cecchini 
et al. 2011; Deuschle et al. 2001; Monteoliva et al. 2014). In contrast to Arabidopsis 
P5CDH, the P5CDH gene from flax (Linum usitatissimum) was strongly induced by 
pathogen attack, but only when the plant encountered a virulent rust strain that did 
not elicit a hypersensitive response (Ayliffe et al. 2002; Mitchell et al. 2006). No 
upstream elements of P5CDH regulation have been identified so far, but transcript 
levels might be regulated posttranscriptionally by double-strand RNA formation 
with transcripts from the overlapping SIMILAR TO RCD ONE 5 (SRO5) (Borsani 
et al. 2005). Recently, a posttranslational mechanism for the regulation of ProDH 
and P5CDH activity was identified: Binding of DFR1 to both ProDH and P5CDH 
was found to inhibit their enzymatic activity and could thus explain how proline 
accumulation and high levels of ProDH expression can occur simultaneously (Ren 
et  al. 2018). Strong expression of DFR1 was observed in inflorescences and in 
response to salt, drought, and cold stress.

In summary, the knowledge about the regulation of genes and enzymes involved 
in proline metabolism supports important contributions to stress tolerance and 
pathogen defense but also to sexual reproduction and other developmental processes 
both in the absence and presence of stress. Regulation of proline metabolism was 
found to occur at multiple levels, and therefore we need to be careful when inferring 
physiological functions from mere correlations between proline content, gene 
expression, and phenotypic observations.
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5  �Developmental Processes Influenced by Proline 
Metabolism

5.1  �Proline and Plant Development

The idea that proline may be an active player in plant development, besides being 
one of the 21 amino acids used for protein synthesis, began to be accepted only at 
the end of the last century, when different groups detected, under non-stressed con-
ditions, large amounts of proline in the reproductive organs of some plant species 
(Chiang and Dandekar 1995; Fujita et al. 1998; Mutters et al. 1989; Schwacke et al. 
1999; Venekamp and Koot 1988; Walton et  al. 1991). Similarly, upregulation of 
proline biosynthesis genes was reported in flowers, fruits, and seeds of plants not 
subjected to evident biotic or abiotic stress (Armengaud et al. 2004; Fujita et al. 
1998; Schmidt et al. 2007; Schwacke et al. 1999; Vansuyt et al. 1979). Overall, these 
data indicated that proline levels could locally increase even in the absence of stress. 
In the vegetative Arabidopsis rosette before floral transition, for example, Chiang 
and Dandekar (1995) found a percentage of proline, relative to the total amino 
acidic pool, ranging from 1% to 3% in striking contrast to up to 26% in reproductive 
tissues after the floral transition (Chiang and Dandekar 1995). A similar result was 
reported by Schwacke et al. (1999) who measured a proline content in tomato flow-
ers 60 times higher than in any other organ analyzed. The striking difference in 
proline concentrations between vegetative and floral tissues suggested that proline 
might play a special role in plant reproduction while raising the problem of the ori-
gin of the accumulated proline. As described in Sect. 3, the distribution of proline in 
plants is subjected to a complex regulation, involving long-distance transport 
between tissues through vascular vessels (Girousse et  al. 1996), active transport 
from cell to cell and between different cell compartments (Lehmann et al. 2011; 
Rentsch et al. 1996; Schmidt et al. 2007; Schwacke et al. 1999), direct synthesis 
within target tissues (Chiang and Dandekar 1995; Mattioli et al. 2018), selective 
catabolism (Kiyosue et al. 1996; Nanjo et al. 1999b), and the rates of protein syn-
thesis and degradation (Hildebrandt 2018). The complexity of these regulations, by 
itself, was suggestive of some special importance of proline in plant development, 
particularly in the reproductive phase. Indeed, although proline is relatively com-
mon in plant proteins, because of the frequent occurrence of long stretches of pro-
line and/or hydroxyproline residues in a number of cell wall proteins, such as 
extensins, arabinogalactan-proteins, and hybrid proline-rich (Hyp/Pro-rich) pro-
teins (Kavi Kishor et al. 2015), it seemed unlikely that, under non-stressed condi-
tions, such large amounts of proline would be accumulated only for the requirements 
of protein synthesis.

However, differently from stress-induced proline accumulation, a phenomenon 
generally considered beneficial to plant cells, proline accumulation in the absence 
of stress drew little attention and was mostly attributed to some type of prior or 
undetected stress. Chiang and Dandekar (1995), for example, hypothesized that the 
high content of proline found in anthers and pollen grains of Arabidopsis could 

M. Trovato et al.



57

function as a compatible osmolyte to protect pollen grains from the water stress 
caused by the natural process of dehydration during pollen maturation. A significant 
step toward the understanding of the role of proline in plant development came from 
the study of the hairy root syndrome induced by infection with the soil bacterium 
Rhizobium rhizogenes, formerly known as Agrobacterium rhizogenes (Trovato et al. 
2018). The capability of R. rhizogenes to reprogram plant development and induce 
de novo root synthesis on differentiated tissues has been long studied as a paradigm 
of plant development control and relies on the integration of a transfer DNA 
(T-DNA) into the plant genome. It turned out that rolD, one of the four “root locus” 
(rol) genes in the T-DNA responsible for hairy root induction, codes for an ornithine 
cyclodeaminase (OCD), which converts ornithine into proline and ammonium 
(Trovato et al. 2001). This finding, along with the above-cited proline accumulation 
in floral organs of plants grown in optimal conditions, disclosed a novel role for 
proline in plant development, and we now know that proline is critically involved in 
a number of developmental processes, such as root elongation, floral transition, pol-
len fertility, and embryo development.

5.2  �Germination

Seed germination, a developmental process of enormous physiological and eco-
nomic relevance, has been sometimes reported to be positively correlated with pro-
line accumulation, particularly under stress conditions, although the observations 
are rather scarce and a clear-cut demonstration of the involvement of proline in 
germination is still lacking. Because of the beneficial role that proline accumula-
tion, or more probably proline metabolism, exerts on plant cells under stressful 
conditions, it may be difficult to distinguish a generic improvement of stress toler-
ance from a specific effect on seed germination.

Notwithstanding this, a limited number of authors have reported that the accumula-
tion of proline and/or the upregulation of proline biosynthesis genes can improve seed 
germination rates. Roosens et al. (2002) reported that overexpression of Arabidopsis 
OAT increased proline biosynthesis and germination rates in transgenic tobacco 
(Nicotiana tabacum) plants under osmotic stress conditions. Similarly, transgenic 
tobacco plants overexpressing a feedback-insensitive variant of Vigna aconitifolia 
P5CS accumulated high levels of proline and exhibited higher germination rates under 
stress (Zonglie et al. 2000). A few reports also described positive effects of proline 
pretreatment on germination rates (Hua-long et al. 2014; Kubala et al. 2015; Posmyk 
and Janas 2007). However, this procedure, known as “osmopriming,” can also func-
tion with different compatible solutes and might be dependent on the provision of a 
carbon and nitrogen source rather than a specific effect of proline.

The more convincing and exhaustive report claiming a positive role of proline 
metabolism on Arabidopsis germination comes from a study published by Hare et al. 
(2003) who observed that proline biosynthesis and the oxidative pentose phosphate 
pathway (OPPP) were induced in parallel during Arabidopsis seed germination. 
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Antisense inhibition of P5CS1 (which most likely silences both P5CS1 and P5CS2 
expression due to the high sequence similarity) delayed seed germination, whereas 
external proline supply inhibited germination and this inhibition was relieved by 
addition of artificial electron acceptors. Hare et al. (2003) proposed that proline bio-
synthesis served to lower the NADPH/NADP+ ratio, which is known to stimulate the 
OPPP in many organisms and may be needed to provide sufficient ribose for nucleo-
tide synthesis in the geminating seed (Shetty and Wahlqvist 2004).

5.3  �Root Growth

In addition to being an essential component of protein biosynthesis in any growing 
tissue, proline also seems to play a role as a modulator of cell division, especially in 
the root elongation zone (Biancucci et al. 2015; Wang et al. 2014). This novel role 
ascribed to proline is not completely surprising as the elongation of the hairy roots 
induced by transformation by R. rhizogenes was originally ascribed to the action of 
rolD, later recognized as a proline producing OCD (Trovato et al. 2001; White et al. 
1985). A specific requirement for proline metabolism was also reported in the elon-
gation of Arabidopsis and corn primary roots at low water potential (Verslues and 
Skarp 1999; Sharma, 2011). Sharma et al. (2011) proposed that proline synthesized 
and accumulated in leaves was transferred to the root, where it was degraded to 
provide energy and building blocks for sustained root growth. In non-stressed 
Arabidopsis seedlings, exogenous proline supplementation, at micromolar concen-
tration, was shown to induce root elongation and branching (Mattioli et al. 2009). 
Contrarily, exogenous supply of proline at millimolar concentrations inhibited root 
growth with symptoms resembling programmed cell death (Hellmann et al. 2000). 
Arabidopsis mutants with strongly reduced capacity to synthesize proline 
(p5cs1/p5cs1;P5CS2/p5cs2) displayed reduced root growth by reduction of the area 
of active cell division in the root meristem (Mattioli et al. 2009). In both Arabidopsis 
and corn p5cs mutants, reduced root growth was correlated with decreased expres-
sion levels of cyclins and other cell cycle-related genes, suggesting a link between 
proline or proline biosynthesis and cell cycle regulation (Mattioli et al. 2009; Wang 
et al. 2014).

5.4  �Flowering

After the first demonstration of the importance of the rol genes in hairy root induction 
(White et al. 1985), rolD/OCD from R. rhizogenes has been overexpressed in tobacco, 
tomato, and Arabidopsis (Bettini et al. 2003; Falasca et al. 2010; Mauro et al. 1996). 
The ectopic expression of rolD, driven by its own promoter, was subjected to a com-
plex developmental regulation and eventually led to early flowering and formation of 
increased numbers of flowers (Trovato et  al. 1997). Transgenic tobacco plants 
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expressing rolD under the control of its own promoter reached anthesis 60 to 75 days 
before untransformed plants, produced abundant and long-lasting inflorescences, and 
exhibited an overall altered morphology with height reduction and bract-like leaves 
(Mauro et al. 1996). In addition, in vitro flower formation on tissue explants was 
stimulated in rolD transgenic plants, presumably by RolD-mediated conversion of 
ornithine to proline (Mauro et al. 1996; Trovato et al. 2001). Switchgrass (Panicum 
virgatum) plants overexpressing a heterospecific P5CS gene flowered earlier than 
control plants and produced more tillers after mowing (Guan et al. 2018). In trans-
genic Arabidopsis plants overexpressing an additional copy of P5CS1 driven by the 
strong CaMV 35S promoter, the time until flowering induction was shortened and 
axillary coflorescences proliferated, especially in short-day conditions (Mattioli et al. 
2008). The overexpression of the transgenic P5CS1 copy was only transient though, 
and soon after the floral transition, a downregulation of both P5CS1 and P5CS2 took 
place, likely because of gene silencing (Mattioli et al. 2008). Unfortunately, most of 
the numerous studies on P5CS overexpression in other plant species focused on 
drought and salt stress tolerance and did not systematically analyze flowering. 
Consistent with a role of proline synthesis in flowering induction, upregulation of 
both proline biosynthesis (P5CS, P5CR) and transport (ProT) genes has been 
reported, under normo-osmotic conditions, in reproductive organs, such as flowers, 
inflorescences, and anthers (Savouré et al. 1997; Schwacke et al. 1999; Verbruggen 
et al. 1993). Intriguingly, also the expression of the proline catabolic genes (ProDH, 
P5CDH) was reported to increase in reproductive tissues in the absence of stress 
(Deuschle et al. 2001; Verbruggen et al. 1996), in contrast with the steep downregula-
tion of these genes observed under stress conditions (Kiyosue et al. 1996; Peng et al. 
1996). It is as yet unknown, whether upregulation of proline catabolic genes by high 
proline concentrations under non-stressed conditions causes rapid metabolic cycling 
or whether posttranscriptional mechanisms like the interaction with DFR1 limit the 
rate of proline degradation (Ren et al. 2018).

The antisense expression of P5CS1 (likely affecting both P5CS1 and P5CS2, see 
above) has been shown to inhibit Arabidopsis bolting (Nanjo et  al. 1999a). 
Ambiguous observations have been reported for insertional mutants: in two labs, 
growth and flowering of p5cs1 single mutants were not different from wild-type 
plants, whereas in a third lab, a delay in the onset of bolting was observed (Funck 
et al. 2012; Mattioli et al. 2008; Székely et al. 2008). For p5cs2 single mutants and 
near-double mutants (p5cs1/p5cs1, P5CS2/p5cs2), a generally slower development 
was observed (Funck et al. 2012; Mattioli et al. 2012). Similarly, silencing of P5CS2 
expression in Lotus japonicus produced several lines with defects in flower and seed 
formation (S. Signorelli, unpublished observations). Altogether, these data indicate 
that both P5CS1 and P5CS2 can modulate flowering and suggest that proline plays 
a role in floral transition, bolting, and coflorescence emergence.

In Arabidopsis, and probably all flowering plants, multiple signaling pathways 
respond to a range of environmental (photoperiod, cold, heat) and endogenous 
(metabolites, gibberellin, age) stimuli and converge to induce the conversion of 
vegetative shoot meristems into floral meristems (Khan et al. 2014; Srikanth and 
Schmid 2011). CONSTANS, one of the master regulators of the photoperiodic  
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pathway of flowering induction, has been identified as an inducer of P5CS2 in 
Arabidopsis (Samach et al. 2000). FLOWERING LOCUS C (FLC) was identified 
as inducer of P5CS1 along with ELONGATED HYPOCOTYL 5 (HY5), which was 
found to be a crucial factor in the light-dependent induction of P5CS1 by stress, 
indicating that proline may indeed contribute to the light-dependent regulation of 
flowering (Abrahám et al. 2003; Chen et al. 2018; Feng et al. 2016; Hayashi et al. 
2000). Recently, a number of plant species, belonging to different taxonomic 
groups, have been reported to flower rapidly after exposure to a wide range of dif-
ferent stressors (Wada and Takeno 2010). Since the responses to many types of 
stress involve proline accumulation, it is tempting to speculate that stress-induced 
flowering and proline-induced flowering in non-stressed plants may rely on a com-
mon mechanism. The distribution of proline under normal physiological conditions, 
however, seems partly different from that found under stress conditions: In 
Arabidopsis, a locally and temporally confined increase of proline in the shoot api-
cal meristem at floral transition has been reported, whereas, under stress conditions, 
proline is accumulated at high levels in all the tissues of the plant (Mattioli et al. 
2008). Overall, the body of accumulated evidence points to proline as a modulator 
of floral transition, although its mechanism of action, the genes involved in this 
process, and the interaction with other regulatory pathways still need to be revealed 
in detail.

5.5  �Pollen Fertility

Among floral organs, the highest proline contents have been observed in the pollen 
of many plant species including Arabidopsis, tomato, dandelion (Taraxacum offici-
nale), willow (Salix sp.), and petunia (Petunia hybrida) (Auclair and Jamieson 1948; 
Chiang and Dandekar 1995; Hong-qi et al. 1982; Schwacke et al. 1999). In grass 
pollen, proline was the most abundant amino acid, accounting for up to 1.65% of 
pollen dry weight (Bathurst 1954). Proline was the most abundant amino acid in 
anthers of devil’s trumpet (Datura metel) and the only one found to increase during 
pollen development (Sangwan 1978). In addition to this correlative evidence, 
recently proline has been shown to be essential for pollen development and fertility 
by two research groups, who independently reported that in Arabidopsis p5cs1/
p5cs2 double-mutant pollen was misshaped and infertile (Funck et al. 2012; Mattioli 
et al. 2012). The morphological abnormalities were accompanied by lack of storage 
compounds and nuclei and appeared late in pollen development, starting from stage 
11 of anther development. The requirement for proline biosynthesis was specific for 
pollen, because only the pollen failed to transmit both p5cs mutant alleles simultane-
ously, whereas p5cs1/p5cs2 double mutant egg cells showed almost no compromised 
fertility. Importantly, exogenous L-proline, supplemented in planta to developing 
anthers of p5cs1/p5cs1 P5CS2/p5cs2 near-double mutant plants, allowed the forma-
tion of fully developed and fertile p5cs1/p5cs2 double mutant pollen (Mattioli et al. 
2012). Quite surprisingly, Arabidopsis plants carrying mutations in P5CR, the gene 
coding for the second and final step of proline biosynthesis, are embryo lethal, but 
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not male sterile, presumably because P5CR is an exceptionally long-lived  
protein (Funck et al. 2012). High expression of the specific proline transporter ProT1 
in the pollen of tomato and Arabidopsis raised the question, whether proline is 
imported during pollen development or is synthesized cell autonomously (Grallath 
et al. 2005; Schwacke et al. 1999). By targeting P5CS expression to different tissues 
in Arabidopsis anthers, Mattioli et al. (2018) demonstrated that only proline synthe-
sized within developing pollen grains can fully restore fertility of p5cs1/p5cs2 dou-
ble mutant pollen. Consistently, both P5CS1 and P5CS2 genes exhibit a strong and 
specific expression in microspores and pollen grains but are essentially unexpressed 
in surrounding sporophytic tissues of the anther, as shown by β-glucuronidase (GUS) 
analysis, and inferred by bioinformatic analysis of P5CS1 and P5CS2 promoters 
(Mattioli et al. 2018).

5.6  �Embryo Development

The analysis of p5cs2 knockout mutants in Arabidopsis has disclosed an essential 
role of proline in plant embryogenesis. Three research groups have independently 
isolated and characterized two p5cs2 T-DNA insertion mutants (Funck et al. 2012; 
Mattioli et  al. 2009; Székely et  al. 2008). Quite surprisingly, despite the high 
sequence similarity shared by the two paralogous genes, and although the same pat-
tern of expression was detected for both P5CS1 and P5CS2 transcripts by in situ 
hybridisation of sections of shoot apical meristems and embryos (Mattioli et  al. 
2009; Székely et al. 2008), p5cs2, but not p5cs1 mutants, are embryo lethal suggest-
ing a specific role of P5CS2 or posttranscriptional repression of P5CS1 activity 
during embryogenesis. P5CS2-GFP fusion proteins were uniformly distributed in 
the cytosol of Arabidopsis embryos, whereas P5CS1-GFP formed cytoplasmic 
speckles, possibly indicating that P5CS1 is inactivated by aggregation (Székely 
et al. 2008). Spraying flowers with proline, induction of P5CS1 expression by salt 
stress, or in vitro cultivation of immature seeds allowed rescuing homozygous p5cs2 
mutants, which were retarded in development but produced viable seeds under 
favorable conditions (Funck et al. 2012; Mattioli et al. 2009; Székely et al. 2008). 
The reason why homozygous p5cs2 embryos die only in the siliques of heterozy-
gous, but not of homozygous, mutants is not yet fully understood. Potentially, the 
slowly developing homozygous mutants are aborted when the faster-growing wild-
type and heterozygous embryos in neighboring seeds reach maturity. In addition, 
microscopic analysis of the malformed p5cs2 embryos revealed various aberrations 
typically associated with a defective cell cycle, such as anomalous orientations of 
cellular division planes, indicating that low proline levels may similarly inhibit cell 
cycle progression in embryos as in the root meristem (Mattioli et al. 2009). In corn 
pro1 mutants, in which the independently evolved P5CS2 of corn is inactivated, 
storage compounds in the seed endosperm of homozygous mutant seeds were 
strongly reduced, but formation of viable embryos still occurred (Wang et al. 2017). 
However, without exogenous proline supply, pro1 homozygous mutants were seed-
ling lethal and successful propagation has not been reported.

Proline Metabolism and Its Functions in Development and Stress Tolerance



62

In addition to P5CS2, also P5CR, the enzyme involved in the second and final 
step of proline synthesis, is essential for embryogenesis as shown by Funck et al. 
(2012), who characterized two p5cr mutants, found in the Salk collection and anno-
tated as embryo lethal in the SeedGenes database (SeedGenes Project. http://seed-
genes.org). Intriguingly, any attempt to rescue homozygous p5cr embryos by 
proline supplementation was ineffective, differently from p5cs2 mutants. Expression 
of a P5CR-GFP fusion protein under control of the endogenous P5CR promoter, 
which is active in developing embryos, reverted the embryo-lethal phenotype, while 
CaMV-35S-driven overexpression of P5CR-GFP in vegetative tissues was ineffec-
tive (Funck et al. 2012). These results indicate that, similarly to the situation in the 
pollen, long-distance transport of proline cannot fully substitute for local biosynthe-
sis in tissues that critically depend on proline.

5.7  �Role of Proline Metabolism in Development Under Stress

The accumulation of proline both during certain developmental processes and in 
response to stress is frequently regarded as two different phenomena which, accord-
ingly, have been treated as separate chapters in this book. However, the large increase 
in proline content observed in reproductive tissues of most plant species is similar to 
that observed after many different types of stress, thus posing the question whether 
the function of proline may be similar in both cases. This seemingly simple question 
is particularly difficult to tackle because there are some hypotheses but no generally 
accepted idea of what the function of proline may be, neither under stress conditions 
nor during development. In addition, also the concept of stress is not as simple as it 
may seem. What is stress? According to Lichtenthaler (1998), any “unfavorable con-
dition or substance that affects or blocks a plant’s metabolism, growth, or develop-
ment is regarded as stress.” It may well be that many “normal” physiological 
conditions, such as seed and pollen maturation or high-intensity light, are more 
demanding for a plant than mild environmental stress, such as a transient period of 
drought or a moderate reduction of the average temperature. According to Chiang 
and Dandekar (1995), stronger proline accumulation was observed in tissues with 
low water content, such as embryos and pollen grains, which successfully entered a 
developmentally induced process of desiccation without loss of cellular and tissue 
viability. The most probable benefit of proline accumulation in these tissues is based 
on the kosmotropic properties of proline by which it helps to protect enzymes and 
membranes of plant cells with low water content (see Chap. 3). In contrast, the 
increase in proline concentration following osmotic stress may not be sufficient to 
protect cells because, as discussed in the following chapter, the amount of proline 
accumulated is typically not sufficient to counterbalance the decrease in the cellular 
osmotic potential. Another possibility is that proline in (some) reproductive tissues 
may be a precautionary measure in case of future adverse conditions in order to 
protect important plant organs and improve the fitness of the species. Consistent 
with this hypothesis is the observation that p5cs1 mutants have no aberrant 
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phenotype under normal conditions but exhibit hypersensitivity to salt and hyperos-
molarity stress (Sharma et  al. 2011; Székely et  al. 2008). On the other hand, as 
described in detail in the following chapter, regardless of proline accumulation 
being a response to stress or part of a developmental program, it remains still unclear 
if its beneficial effects are mediated by accumulation per se or by increased meta-
bolic turnover. As indicated above and discussed in more detail in the next chapter, 
biosynthesis and degradation of proline have the capacity to change the redox state 
of the cytosol and the mitochondria, respectively, and may additionally modulate the 
levels of reactive oxygen species. Since far less details are known about the regula-
tion of proline metabolism during normal development, it is at present difficult to 
predict downstream effects, although it is tempting to speculate that the accumula-
tion of proline under stress and its accumulation during development are two sides 
of the same coin. Further studies on proline-dependent signal transduction and 
actual flux rates of proline metabolism and of the exchange of proline between dif-
ferent tissues or cell types will be needed to fully understand how proline exerts its 
stress protective and developmental functions.
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