
241© Springer Nature Switzerland AG 2019
M. A. Hossain et al. (eds.), Osmoprotectant-Mediated Abiotic Stress Tolerance 
in Plants, https://doi.org/10.1007/978-3-030-27423-8_11

The Role of Proline, Glycinebetaine, 
and Trehalose in Stress-Responsive Gene 
Expression

Merve Kahraman, Gulcin Sevim, and Melike Bor

1  �Introduction

Biosynthesis of osmoprotectant molecules such as proline, glycinebetaine, treha-
lose, polyols, poliamines, and sugars are among the most common protective mech-
anisms against stresses which affect the osmotic potential of the cells. Introducing 
or increasing the expression of genes related to the biosynthesis of osmoprotectant 
molecules was reported to be promising for accelerating stress tolerance in plants. 
There has been a huge amount of information regarding the contribution of these 
solutes to tolerance against drought and any other types of stress that cause osmotic 
effect; however, we still lack the knowledge on their exact mode of action. For 
instance, since the first resurrection plant was discovered, high concentration and 
rapid accumulation of trehalose were demonstrated to be a unique feature of these 
plants. However, drought-sensitive Selaginella sp. accumulated more trehalose than 
drought-tolerant Selaginella sp. (Pampurova and Van Dijck 2014; Bledsoe et  al. 
2017) which indicated that even in the drought-tolerant plants, the role and contri-
bution of trehalose or other osmoprotectant molecules to stress tolerance was not 
completely deciphered.

Protective function of proline, glycinebetaine, and trehalose has been known 
since the 1990s with confirmation from transgenic studies in A. thaliana, tobacco, 
rice, and wheat (Liu and Zhu 1997; Sakamoto and Murata 1998, Bor and Ozdemir 
2018). Several crop plants have been genetically engineered for proline-, glycinebe-
taine-, and trehalose-related genes which were reported to have improved tolerance 
to several environmental constraints. Among the pioneer investigations, overexpres-
sion of proline biosynthetic geneΔ-pyrroline-5-carboxylate synthase in A. thaliana 
and tobacco plants (Liu and Zhu 1997) and overexpression of choline oxidase 
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(glycinebetaine biosynthesis-related gene) in rice (Sakamoto and Murata 1998) 
might be given as examples of which resulted in increased salinity tolerance in rela-
tion to proline and glycinebetaine accumulation, respectively. A more recent trans-
genic approach was reported by Nuccio et al. (2015). Maize plants overexpressing 
a rice trehalose-6-phosphate phosphatase gene had better yield performance under 
drought stress conditions at field trials (Nuccio et al. 2015).

The amino acid proline, is reported to be accumulated to high levels when 
plants encounter different type of stress conditions. Besides its function in growth 
and development, it acts as an osmoprotectant and redox-buffering agent with an 
antioxidant characteristic under abiotic stresses (Kishor and Sreenivasulu 2014). 
On the other hand, high levels of proline have detrimental effects in plant cells 
leading to cell death; therefore, keeping cellular proline content in balance was 
reported to be critical for plant survival (Szabados and Savoure 2010; Kishor and 
Sreenivasulu 2014). The second well-known osmoprotectant molecule, glycinebe-
taine (GB), is an N-methyl-substituted glycine derivative found in microorgan-
isms, animals, and plants such as sugar beet, wheat, and spinach (Sakamoto and 
Murata 2002; Ahmad et al. 2013). Besides osmotic adjustment capacity, stabiliza-
tion of macromolecules, protection of membrane integrity, and contribution to 
regulating reactive oxygen species (ROS) are among the major roles for GB under 
stress conditions (Chen and Murata 2011; Ahmad et al. 2013). The third and most 
studied osmoprotectant molecule, trehalose, is a non-reducing sugar which was 
reported to be responsible for osmoregulation and protection against environmen-
tal stresses in different organisms including plants (Houtte et  al. 2013). Unlike 
other osmotic solutes, trehalose concentrations in wild-type and genetically engi-
neered plants were reported to be low, and cellular compartmentalization was 
important. Therefore, trehalose-mediated improvement in abiotic stress responses 
was suggested to be related to the activation of stress-responsive genes and tran-
scription factors rather than being as an osmoprotectant molecule (Lunn et  al. 
2006; Zhang et al. 2009; Houtte et al. 2013).

Contribution of proline, glycinebetaine, and trehalose to stress-responsive gene 
expression for increased tolerance has been investigated extensively (Table  1). 
Understanding which genes and especially which transcription factors are up- or 
downregulated by these molecules would be important not only for a better under-
standing of stress-coping mechanisms in plants but also for maintenance of better 
crop performance and yield through manipulation of these genes in cultivated 
plants. In this chapter, we summarized the latest information regarding the effects of 
proline, glycinebetaine, and trehalose on the expression of stress-responsive genes 
in plants. Among these three molecules, only glycinebetaine was reported to be 
compatible which had no toxic effects even at high levels. Keeping the balance in 
proline and trehalose contents of the cells need to be tightly regulated. Therefore, 
for these two molecules, we have given information both for the genes that they 
regulate and the genes which are related to their biosynthesis and hydrolysis.
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Table 1  Proline-, glycinebetaine-, and trehalose-induced transcription factors and their roles in 
plant development and stress responses

Transcription Factors Function in Plants

Proline bZIP11
bZIP53
bZIP44
bZIP2
MYBCORE
WRKY
MYC2
AP2/ERF
TSRF1
JERF1
JERF3
SpERF1
DREB21
ERF71

ProDH-related sugar signaling (Verslues and Sharma 
2010)
Proline catabolism (Satoh et al. 2004)
Upregulation of P5CS1 and P5CS2 (Su et al. 2011)
Regulation of P5CS (Gao et al.2008; Zhang et al. 
2013; Yang et al. 2016)
ABA and proline signaling (Li et al. 2018)

Glycinebetaine DREB2A
NAC5
WRKY
bZIP53
IAA9
bHLH-FRO2
NDPK2

CMO gene expression (Khattab et al. 2014)
BADH gene expression (Liang et al. 2017).
Chilling tolerance (Einset et al. 2007)
Fruit development (Zhang et al. 2019)
Dehydration response (Ahmad et al. 2013)

Trehalose bZIP11
bZIP12
bZIP53
bZIP44
bZIP2
WRINKL1
HY5
ABI5
EEL
KNOTTED1
LEAFY
WUSCHEL
ATAF1
MYBS1
CIPK15
SUSIBA2
WRYK6
AGL4
RNA polymerase σ 
70-type initiation 
factor
JUMANJI

Fine-tuning of carbon and nitrogen metabolism 
(Garapati et al. 2015; Chen et al. 2016; Laser and 
Weiste 2018)
Development and growth responses (Garapati et al. 
2015; Tsai and Gazzattini 2014; Chen et al. 2016; 
Laser and Weiste 2018)
Low energy signaling (Garapati et al. 2015; Laser and 
Weiste 2018)
Sugar signaling (Sun et al. 2003; Bae et al. 2005; 
Kretzshmer et al. 2015; Zhai et al. 2018)
Fatty acid signaling (Zhai et al. 2018)
ABA signaling (Bae et al. 2005; Tsai and Gazzattini 
2014)
Meristem identity function (Tsai and Gazzattini 2014; 
Coelho et al. 2018)
Autophagy (Garapati et al. 2015)
Anaerobic germination tolerance (Kretzschmer et al. 
2015)
Starch mobilization (Kretzschmer et al. 2015)
Leaf senescence (Bae et al. 2005)
Floral morphogenesis (Bae et al. 2005; Coelho et al. 
2018)
Plastid genome transcription, chromatin modification, 
transcriptional repression (Kondrak et al. 2012)
Floral transition and shoot development (Coelho et al. 
2018)
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2  �Proline

Proline is an amino acid which serves as an osmoprotectant and protective molecule 
at drought, salt, and other stress conditions. Although the accumulation of proline is 
a well-known response in stress-tolerant plants, the mode of action is still unclear 
(Ghars et al. 2012). Different roles have been attributed to proline such as scaveng-
ing of the hydroxyl radical, interacting with enzymes responsible for stress toler-
ance, protecting protein structure and enzyme activity, maintaining pH and redox 
balance, and supplementation of carbon, nitrogen, and energy (Hare et  al. 1999; 
Szabados and Savoure 2010; Ghars et al. 2012). Biosynthesis of proline occurs in 
two different pathways which include glutamate and ornithine. Glutamate pathway 
is the predominant route with two steps: first, glutamate is phosphorylated and 
reduced to Δ-pyrroline-5-carboxylate (P5C) by PC5 synthase enzyme (P5CS), and 
then it is reduced to proline by P5C reductase (P5CR) enzyme (Kim and Nam 
2013). The second pathway is related to the activity of ornithine δ-aminotransferase 
(OAT) which also produces P5C that contributes to proline (Szabados and Savoure 
2010; Liang et al. 2013).

Recent findings have proved that proline has a significant role in osmotic adjust-
ment, stabilization of cellular structures, and protection of photosynthetic appara-
tus. The translation start site of proline metabolism-related genes has putative 
cis-regulatory elements (CREs) site which interacts with several general transcrip-
tion factors such as HD-HOX, AP2/EREBP, MYB, WRKY, and bZIP (Fichman 
et al. 2015). Therefore, regulation of proline content might be important not only for 
proline biosynthesis and catabolism but also for the control of the expression of dif-
ferent stress-responsive transcription factors and genes (Table 1). Accordingly, pro-
line inhibited stomatal closure while promoted Ca+2 uptake in contrast to other 
amino acids such as histidine, methionine, aspartic acid, glutamic acid, and alanine 
(Rai and Sharma.1991; Rana and Rai 1996; Hayat et al. 2012). However, high levels 
of proline lead to impairment in the destabilization of DNA helix and susceptibility 
to S1 nuclease activity (Rajendrakumar et al. 1997; Szabados and Savoure 2010).

To date, all of the defined stress response and tolerance processes in plants are 
regulated by complex signaling networks and have multigenic characteristics. 
Since proline is a common stress-responsive and adaptive molecule, it would be a 
good candidate for manipulating stress responses and tolerance mechanisms. 
Understanding which genes and especially which transcription factors are induced 
by proline will be beneficial for providing solutions to agricultural practices under 
changing environmental conditions. Enhanced proline accumulation at stress con-
ditions was reported to be parallel to increased transcriptional activation of P5CS 
and P5CR genes while ornithine route seemed to have a less impact (Fig. 1). There 
are two P5CS enzymes in A. thaliana; one is chloroplastic and the other is cytosolic 
(Liang et al. 2013). P5CS1 is reported to be responsible for stress-induced proline 
biosynthesis, while the second one is required for developmental processes 
(Strizhov et al. 1997; Mattioli et al. 2009). P5CS1 transcription and proline accu-
mulation are induced by cooperation of Ca+2-dependent calmodulin with MYB2 
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transcription factor (Yoo et al. 2005). P5CS2 affected development of reproductive 
organs, and this was proposed to be related to flowering regulator CONSTANS 
genes (Samach et al. 2000).

Expression level of P5CS, which encodes the enzyme that catalyzes the rate-
limiting step in proline biosynthesis, was increased in response to salinity and 
drought. In addition, transcript level of P5CR encoding gene was also found out to 
be upregulated in the leaves of A. thaliana and in the roots of soybean and pea under 
osmotic stress (Delauney and Verma 1990; Williamson and Slocum 1992; 
Verbruggen et al. 1993; Liang et al. 2013). Transcription of P5CS is tightly regu-
lated by proline levels by feedback inhibition (Zhang et al. 1995; Liang et al. 2013). 
On the other hand, proline levels are determined by the activities of proline dehy-
drogenase (proDH), P5CR, and pyrroline-5-carboxylate dehydrogenase (P5CDH) 
which are transcriptionally regulated and alter ROS-mediated signaling processes 
(Liang et al. 2013).

The analyses of the promoter regions of several stress marker genes by bioinfor-
matics tools have revealed that many of them had at least one proline-responsive 
element (PRE) in their promoter regions although their expressions were not 
affected by proline (Sharma and Verslues 2010). For example, a bZIP transcription 
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factor which has a proline binding element was related to the induction of proDH by 
exogenous proline treatment. However, at stress conditions, the presence of neither 
proline nor ABA did not alter proDH expression (Sharma and Verslues 2010). 
Accordingly, bHLH-related two G-BOX motifs were found at Oryza sativa P5CS 
promoters. Overexpression of bHLH leads to enhanced osmotic and cold stress tol-
erance with increased proline levels (Liu et al. 2014, 2015; Jin et al. 2016). Similarly, 
OsP5CS2 and OsP5CR promoters had CACG NAC-core motif in their promoter 
regions, and overexpression of NAC genes increased drought and salt tolerance in 
relation to proline accumulation (Liu et  al. 2013; Hong et  al. 2016). Moreover, 
P5CS expression can be negatively regulated by different proteins such as annexins. 
These proteins are light-dependent Ca+2 and phospholipid binding proteins, and 
annexin mutants have increased P5CS expression which leads to drought and salt 
tolerance (Huh et al. 2010).

Exogenous treatment of plants with proline or proline precursors affected the 
expression of different stress-related genes which resulted in tolerance against not 
only to abiotic stresses but to biotic stress. A recent confirmation was reported by 
Wang et al. (2017). Amino acid permease 1 (AAP1)-mediated proline uptake has 
improved salt stress tolerance in A. thaliana (Wang et al. 2017). When treated with 
the precursor of proline, P5C increased HR-like responses against pathogens by the 
activation of AvrB and AvrRpt2 genes (Funck et  al. 2008). Chen et  al. (2011) 
reported that proline affected calcium-mediated production of H2O2 and increased 
NDR1 expression-activated SA signaling pathway which lead to pathogenesis-
related (PR) gene expression. In abiotic stress responses, exogenous proline was 
reported to be also responsible for protection of plants; however, there are contro-
versial results which indicated the negative impact of proline on growth and meta-
bolic processes. A. thaliana plants treated with proline at salt stress conditions had 
growth inhibition and accelerated senescence (Yamada et  al. 2005). Antioxidant 
enzymes Cu/ZnSOD and MnSOD encoding genes were upregulated in rice plants 
when treated with proline under salinity; however, in the absence of NaCl, the 
expression of these genes was suppressed (Nounjan et al. 2012). In the light of these 
findings, regulation of biosynthesis and catabolism of proline within the plant cells 
seemed to be more effective than exogenous proline treatment.

3  �Glycinebetaine

Glycinebetaine (GB) is the most common and best-known compatible solute that is 
found in several organisms including bacteria and plants (Castiglioni et al. 2018). 
GB is biosynthesized by two pathways; the most common route is via the oxidation 
of choline, while the other one is a bacteria-specific glycine methylation pathway 
(Fig. 2). In plants, choline is oxidized to betaine aldehyde by a ferredoxin-dependent 
choline monooxygenase (CMO) which is then converted to GB by the activity of 
betaine aldehyde dehydrogenase (BADH) (Nuccio et al. 1998; Ahmad et al. 2013). 
Plants are divided into two classes: GB accumulators and non-accumulators 
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according to their ability for GB biosynthesis. Accumulator plants such as sugar 
beet, spinach, and mangrove have the ability to well-adapt to drought and salinity 
conditions (Bor et  al. 2003; Ahmad et  al. 2013). Under osmotic stress-imposing 
conditions, even exogenous GB treatment was found out to have a protective role in 
plants; therefore, engineering non-accumulator plants for genes related to GB bio-
synthesis was proposed to be important for increasing yield of crop plants 
(Castiglioni et al. 2018; Bor and Ozdemir 2018).

Crop plants such as rice, carrot, tomato, and potato are non-accumulators of GB, 
and in the recent years, transgenic studies for GB were accelerated for increasing 
crop biomass and yield (Ahmad et al. 2013). In GB-synthesizing transgenic rice 
plants, more than 165 genes were upregulated and 76 genes were downregulated 
(Kathuria et al. 2009; Ahmad et al. 2013). Within the upregulated genes, 50 of them 
were related to the alleviation of various stress effects, and 115 of them were 
involved in regulation of gene expression, membrane transport, growth and devel-
opment, signal transduction, and metabolism (Kathuria et al. 2009). GB functions at 
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important processes such as osmoprotection, destabilization of DNA, refolding and 
thermal stabilization of proteins, maintenance of membrane integrity, and protec-
tion of enzymes (rubisco, rubisco activase, malate dehydrogenase, etc.) which are 
all remarkable components of plant tolerance to abiotic stresses (Chen and Murata 
2011; Ahmad et al. 2013). Wei et al. (2017) reported that the activity of ion channels 
and transporters was regulated by GB which provided high potassium and low 
sodium levels conferring to salt tolerance in transgenic tomato plants. On the other 
hand, codA-and BADH-transgenic tomato plants had differential regulation of cell 
wall invertase, protein kinase, sucrose transporter, cyclin-dependent kinase, auxin 
transcription factor, and miniature zinc-finger protein (IMA) encoding genes which 
might be responsible for flower and fruit development (Wei et al. 2017). A general-
ized scheme for the processes and contribution of these genes to overall plant 
metabolism and stress responses was given in Fig. 3.

In the case of stress-coping mechanisms, the possibility of different interactions 
between GB and stress-related metabolites was proposed (Fig.  3). For instance, 
maize plants treated with a nitric oxide (NO) inhibitor (Nω-nitro-L-arginine methyl 
ester; L-NAME) had reduced BADH gene expression which leads to low GB levels 
(Phillips et al. 2018). NO is known to contribute to ROS detoxification, regulation 
of antioxidant enzymes, and compatible solutes during abiotic and biotic stresses 

Inhibition 
of LOX and 
PLD levels 

APX
CAT
SOD

PSII PSI

PQ

PC

CYT 
COMPLEX

LIGHT

e-

H2 O2

O2

ROS

Synthesis of 
antioxidant 

enzymes

Repairing process 
of

PSII

IMPROVING 
PLANT GROWTH

*Biomass
*Yield

*Growth of 
reproductive 

organs 

DEFENSE MECHANISM

Calvin
Cycle

RUBİSCO

CO2

Protecting 
of 

CO2 Assimilation

OSMOPROTECTION
Proline

Trehalose
Carotenoids

GLYCINE BETAIN

CMO

BADH

COD
2O2

H2O2

CHOLINE

Chaperon-mediate 
protein 

disaggregation

Interaction with 
chaperon-like ASR1

TRANSCRIPTIONAL CHANGES
Synergistic Effect 

Stress-related 
TFs

Choline availibility

Transgenic plants

*Ethylene
*ABA

*Salicylic Acid

D1

Fig. 3  The direct and indirect contribution of glycinebetaine metabolism to stress-coping pro-
cesses in plants. SOD superoxide dismutase, CAT catalase, APX ascorbate peroxidase, CMO cho-
line monooxygenase, COD choline oxidase, BADH betaine aldehyde dehydrogenase, ABA 
abscisic acid, PLD phospholipase D, LOX lipoxygenase

M. Kahraman et al.



249

(Uchida et al. 2002; Zhang et al. 2006; Guo et al. 2009; Phillips et al. 2018). Several 
metabolic routes are affected by GB accumulation and/or exogenous GB treatment. 
As indicated before, GB served not only by protecting proteins and enzymes but 
also by triggering transcription of stress-responsive genes or their transcription fac-
tors. Antioxidant enzymes, fatty acid metabolism-related enzymes such as lipoxy-
genase (LOX) and phospholipase-D (PLD) are among the most important enzymes 
which are regulated by GB levels.

4  �Trehalose

Trehalose is synthesized from uridine diphosphate glucose (UDP-Glc) and glucose-
6-phosphate (G6P) via trehalose-6-phosphate synthase (TPS) enzyme which 
dephosphorylated to a more effective form, trehalose-6-phosphate (T6P) by the 
activity of trehalose-6-phosphate phosphatase (Figueroa et al. 2016). In A. thaliana, 
T6P proposed to act as a signaling molecule in the regulation of sucrose level in 
order to provide optimal level of sucrose within the cell (Fig. 4). Oryza sativa TPS 
overexpressing lines, trehalose, and proline levels were highly induced with or with-
out stress treatment. Expression of stress-related genes such as ELIP, HSP70, CRP, 
DHN6, LEA14A, and WS118 were increased up to twofold in these plants as com-
pared to wild-type plants (Li et al. 2011). Increased level of T6P was related to the 
activation of nitrate reductase (NR) and phosphoenolpyruvate carboxylase (PEPC) 
through posttranslational modifications (Figueroa et al. 2016). Protein kinases, pro-
tein phosphatases, and other enzymes involved in these modifications were pro-
posed to be the potential targets of T6P (Fig. 4).

Trehalose was reported to serve as a compatible solute for the stabilization of 
membranes and biomolecules (Fernandez et al. 2010). In plant cells, trehalose is 
synthesized at low levels as compared to other compatible solutes such as proline, 
glycinebetaine, mannitol, etc. Hence, its being a common compatible solute is still 
under debate. High levels of trehalose were detected only in resurrection plants and 
in specific organs upon stress exposure (Avonce et  al. 2004; Schluepmann et  al. 
2003; Grennan 2007; El-Bashiti et al. 2005; Garg et al. 2002; Fernandez et al. 2010). 
Since trehalose and T6P levels are usually very low in plants, they were proposed to 
have regulatory or sensing roles for source-sink relationship. Trehalose pathway 
might be a facilitator between the cellular compartments via regulation of different 
transcription factors under different environmental stresses (Table  1 and Fig.  5). 
T6P was thought to be a negative-feedback regulator for the adjustment of sucrose 
levels by interaction with SnRK1 (Bledsoe et al. 2017). T6P-sucrose interaction is 
adjusted according to developmental stage, tissue and cell type, and various envi-
ronmental factors such as low temperature stress (Figueroa et al. 2016).

Various studies indicated the importance of trehalose metabolism at transcrip-
tional, translational, and posttranslational levels for controlling and regulating stress 
responses in plants (Table  1). In plant cells, sucrose:T6P ratio affects important 
metabolic processes in multiple ways via induction or repression of several 
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stress-responsive transcription factors (Fig. 4). For instance, increased T6P levels 
resulted in the repression of SnRK1 which is a key transcriptional regulator that 
responds to carbon and energy supply (Nuccio et al. 2015). Therefore, T6P influ-
ences SnRK1-upregulated genes negatively and SnRK1-downregulated genes posi-
tively. Another transcription factor bZIP11 which affects the regulation of 
carbohydrate metabolism is also regulated by T6P. The developmental phase transi-
tions, carbohydrate, and amino acid metabolisms are regulated by bZIPs (Tsai and 
Gazzarini 2014). Accordingly, it has been suggested that OsTPP7 contributes to 
anaerobic germination tolerance by modulating local T6P:sucrose ratios in germi-
nating tissues which lead to upregulation of MYBS1 and CIPK15 genes for regulat-
ing amylase activation for increased starch mobilization (Kretzshmer et al. 2015).

Trehalase catalyzes the hydrolysis of trehalose into two glucose monomers 
which was reported to be important for osmotic regulation and stress responses 
(Lunn 2007; Avonce et al. 2010; Houtte et al. 2013). A. thaliana had one trehalase 
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encoding gene, TRE1, that has a MYB4 binding site in its promoter region (Lunn 
2007; Avonce et al. 2010; Houtte et al. 2013). Besides this, a W-box promoter motif 
was identified in the AtTRE1 promoter for MYB102 and WRKY transcription fac-
tors which are known to be involved in ABA signaling at dehydration and osmotic 
stress conditions (Houtte et al. 2013). Since both MYB4 and MYB102 are mem-
bers of the R2R3-type MYB family, these transcription factors can induce AtTRE1 
expression during developmental processes such as guard cell differentiation 
(Houtte et al. 2013). Genetic control of trehalase would be a good tool for adjusting 
endogenous trehalose levels; therefore, drought tolerance might be manipulated by 
regulation of AtTRE1 (Houtte et al. 2013). Increased trehalase activity affected the 
sensitivity of guard cells to exogenous ABA treatments; thus, AtTRE1 may be 
essential for the ABA-induced stoma closure. One confirmation was reported from 
a study with Attre1-1 and Attre1-2 mutants which were unable to close their sto-
mata in response to the ABA treatments (Houtte et al. 2013). On the other hand, 
hydrolysis of trehalose would be essential for different developmental processes. 
AtTRE1 was strongly upregulated during senescence in A. thaliana which indi-
cated the contribution of trehalose degradation during programmed cell death 
(Yamada et al. 2005).
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phosphate, SnRK sucrose non-fermenting receptor kinase, ABA abscisic acid, PEPC 
phosphoenolpyruvate carboxylase, NR nitrate reductase, SUC1 sucrose transporter 1
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Although upregulation of trehalose biosynthesis and exogenous trehalose treat-
ments both have protective and regulatory functions in various plants such as 
tomato, tobacco, and rice under drought, salt, and cold stresses, we are still far from 
explaining the exact mode of action of trehalose in plants. Despite increasing stress 
tolerance in plants, overexpression of trehalose pathway-related genes has fre-
quently resulted in dwarfism, delay in flowering, and abnormalities in leaf and root 
morphologies (Li et  al. 2011). Exogenous trehalose treatment in rice resulted in 
reduced damage under salinity which was proposed to be related to preservation of 
root integrity, decreased Na+ accumulation, and regulation of the genes responsible 
for osmotic adjustment (Garcia et al. 1997; Bae et al. 2005; Fernandez et al. 2010).

5  �Conclusion

Understanding stress-coping mechanisms is among the hot topics of plant science 
not only for basic scientific curiosity but also for improving agricultural yield and 
performance. Plants have evolved sophisticated stress tolerance mechanisms against 
abiotic and biotic stresses of which can be introduced to crop plants by transgenic 
approaches. Stress tolerance is a complex network of gene activation and signaling 
transduction routes; therefore, manipulation of one metabolic process may lead to 
undesired or unsufficient effects. Among these mechanisms, accumulation of osmo-
protectant solutes was found out to be the most effective and compatible one since 
most of the crop plants have at least one type of these molecules or their precursors. 
Studies presented in this chapter might give an idea for how the biosynthetic and 
catabolic routes of these three molecules might be manipulated by genetic approach 
for improvement of stress responses in plants. Different characteristics and features 
of these molecules and how they affected transcription of stress-responsive and 
stress-related genes were discussed in detail. All of these molecules have an impact 
and ameliorative effect on stress tolerance in plants, and one might consider care-
fully for choosing the best candidate. Proline, for being a component of free amino 
acid; glycinebetaine, for being the most compatible solute among these molecules; 
and trehalose, for being an unusual sugar molecule with ability to preserve water, 
are all promising for regulating and controlling stress tolerance processes in plants.
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