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Abstract By the use of the matrix geometric mean #, the matrix Cauchy–Schwarz
inequality is given as Y ∗X ≤ X∗X # U∗Y ∗YU for k × n matrices X and Y , where
Y ∗X = U |Y ∗X| is a polar decomposition of Y ∗X with unitary U . In this note,
we generalize Riccati equation as follows: X∗A†X = B for positive semidefinite
matrices, where A† is the Moore–Penrose generalized inverse of A. We consider
when the matrix geometric mean A # B is a positive semidefinite solution of
XA†X = B. For this, we discuss the case where the equality holds in the matrix
Cauchy–Schwarz inequality.
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1 Introduction

One of the most important inequalities in functional analysis is the Cauchy–Schwarz
inequality. It is originally an integral inequality, but is usually expressed as follows:
Let H be a Hilbert space with inner product 〈·, ·〉. Then

|〈x, y〉| ≤ 〈x, x〉1/2〈y, y〉1/2 for x, y ∈ H. (1.1)

Matrix versions of the Cauchy–Schwarz inequality have been discussed by Marshall
and Olkin [7], see also Bhatia and Davis [2] for operator versions.

Now we note that its right-hand side of (1.1) is the geometric mean of 〈x, x〉 and
〈y, y〉. From this viewpoint, Fujii [3] proposed a matrix Cauchy–Schwarz inequality
by the use of the matrix geometric mean #, see [5, Lemma 2.6]. Let X and Y be k×n
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matrices and Y ∗X = U |Y ∗X| a polar decomposition of an n × n matrix Y ∗X with
unitary U . Then

|Y ∗X| ≤ X∗X#U∗Y ∗YU,

where the matrix geometric mean # is defined by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

for positive definite matrices A and B, see [6].
On the other hand, the original definition of it for operators is given by Ando [1]

as follows: For A,B ≥ 0, it is defined by

A#B = max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}
.

Here a bounded linear operator A acting on a Hilbert space H is positive, denoted
by A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ H . It is obvious that a matrix A is positive
semidefinite if and only if A ≥ 0, and A is positive definite if and only if A > 0,
i.e., A is positive and invertible. It is known that if A > 0, then they coincide, that
is,

max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}
= A1/2(A−1/2BA−1/2)1/2A1/2

holds for any B ≥ 0.
Another approach of geometric mean is the Riccati equation. For A > 0 and

B ≥ 0, A#B is the unique solution of the Riccati equation

XA−1X = B.

This fact is easily checked by multiplying A−1/2 on both sides. For importance of
Riccati equation, we refer [8]. Throughout this paper, we restrict our attention to
positive semidefinite matrices, by which we can consider the generalized inverse
X† in the sense of Moore–Penrose even if they are not invertible. Among others, we
generalize the Riccati equation to

XA†X = B.

In this paper, we discuss order relations between A#B and A1/2((A1/2)†

B(A1/2)†)1/2A1/2 for positive semidefinite matrices A and B. As an application,
we discuss the case where the equality holds in matrix Cauchy–Schwarz inequality.
Finally we generalize some results in our previous paper [4] by the use of the
generalized inverse X†.
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2 A Generalization of Formula for Geometric Mean

Since A#B = A1/2(A−1/2BA−1/2)1/2A1/2 for invertible A, the geometric mean
A#B for positive semidefinite matrices A and B might be expected the same
formulae as for positive definite matrices, i.e.,

A#B = A1/2((A1/2)†B(A1/2)†)1/2A1/2.

As a matter of fact, the following result is mentioned by Fujimoto and Seo [5].
For convenience, we cite it as Theorem FS:

Theorem FS Let A and B be positive semidefinite matrices. Then

A#B ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2,

If the kernel inclusion kerA ⊂ kerB is assumed, then the equality holds in above.

We remark that the point of its proof is that A and B are expressed as A = A1 ⊕0
and B = B1 ⊕ 0 on ran A ⊕ kerA, respectively, and A† = (A1)

−1 ⊕ 0.
Now Theorem FS has an improvement in the following way. Below, let PA be

the projection onto ran A, the range of A.

Theorem 2.1 Let A and B be positive semidefinite matrices. Then

A#B ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2,

In particular, the equality holds in above if and only if PA = AA† commutes
with B.

To prove it, we cite the following lemma:

Lemma 2.2 If

(
A X

X∗ B

)
≥ 0, then X = AA†X = PAX and B ≥ XA†X.

Proof The assumption implies that
(
(A1/2)† 0

0 1

)(
A X

X∗ B

) (
(A1/2)† 0

0 1

)
=

(
PA (A1/2)†X

X∗(A1/2)† B

)
≥ 0.

Moreover, since

0 ≤
(

1 −(A1/2)†X

0 1

)∗ (
PA (A1/2)†X

X∗(A1/2)† B

) (
1 −(A1/2)†X

0 1

)

=
(
PA 0
0 B − X∗A†X

)
,

we have B ≥ X∗A†X.



344 M. Fujii

Next we show that X = PAX, which is equivalent to kerA ⊆ kerX∗. Suppose
that Ax = 0. Putting y = − 1

‖B‖X
∗x, we have

0 ≤
((

A X

X∗ B

) (
x

y

)
,

(
x

y

))

= (Xy, x) + (X∗x, y) + (By, y)

= − 2

‖B‖‖X∗x‖2 + 1

‖B‖2 (BX
∗x,X∗x)

≤ −‖X∗x‖2

‖B‖ ≤ 0.

Hence we have X∗x = 0, that is, kerA ⊆ kerX∗ is shown.

Proof of Theorem 2.1 For the first half, it suffices to show that if

(
A X

X B

)
≥ 0, then

X ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2

because of Ando’s definition of the geometric mean. We here use the facts that

(A1/2)† = (A†)1/2, and that if

(
A X

X B

)
≥ 0 for positive semidefinite X, then X =

AA†X = PAX and B ≥ XA†X by Lemma 2.2.
Now, since B ≥ XA†X, we have

(A1/2)†B(A1/2)† ≥ [(A1/2)†X(A1/2)†]2,

so that Löwner–Heinz inequality implies

[(A1/2)†B(A1/2)†]1/2 ≥ (A1/2)†X(A1/2)†.

Hence it follows from X = PAX that

A1/2[(A1/2)†B(A1/2)†]1/2A1/2 ≥ X.

Namely we have Y = A1/2[(A1/2)†B(A1/2)†]1/2A1/2 ≥ A#B.
Next suppose that kerA ⊂ kerB. Then we have ran B ⊂ ran A and so

A1/2(A1/2)†B(A1/2)†A1/2 = B.

Therefore, putting C = (A1/2)†B(A1/2)†, since

Y = A1/2((A1/2)†B(A1/2)†)1/2A1/2 = A1/2C1/2A1/2,
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we have

(
A Y

Y B

)
=

(
A1/2 0

0 A1/2

) (
I C1/2

C1/2 C

)(
A1/2 0

0 A1/2

)
≥ 0,

which implies that Y ≤ A#B and thus Y = A#B by combining the result Y ≥ A#B
in the first paragraph.

Now we show the second half. Notation as in above. If PA = AA†(=
A1/2(A1/2)†) commutes with B, we have PABPA ≤ B. Therefore we have

(
A Y

Y B

)
≥

(
A Y

Y PABPA

)
=

(
A1/2 0

0 A1/2

) (
I C1/2

C1/2 C

)(
A1/2 0

0 A1/2

)
≥ 0,

which implies that Y ≤ A#B and hence Y = A#B.

Conversely assume that the equality holds. Then

(
A Y

Y B

)
≥ 0. Hence we have

B ≥ YA†Y = A1/2CA1/2 = PABPA,

which means PA commutes with B, cf. Lemma 2.2.

3 Solutions of a Generalized Riccati Equation

Noting that A#B = A1/2(A−1/2BA−1/2)1/2A1/2 for invertible A, the geometric
mean A#B is the unique solution of the Riccati equation XA−1X = B if A > 0,
see [8] for an early work. So we consider it for positive semidefinite matrices by the
use of the Moore–Penrose generalized inverse, that is,

XA†X = B

for positive semidefinite matrices A,B.

Theorem 3.1 Let A and B be positive semidefinite matrices satisfying the kernel
inclusion kerA ⊂ kerB. Then A#B is a solution of a generalized Riccati equation

XA†X = B.

Moreover, the uniqueness of its solution is ensured under the additional assump-
tion kerA ⊂ kerX.
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Proof We first note that (A1/2)† = (A†)1/2 and PA = PA† . Putting X0 = A#B,
either Theorem FS or 2.1 says that

X0 = A1/2[(A1/2)†B(A1/2)†]1/2A1/2.

Therefore we have

X0A
†X0 = A1/2[(A1/2)†B(A1/2)†]1/2PA[(A1/2)†B(A1/2)†]1/2A1/2

= A1/2[(A1/2)†B(A1/2)†]A1/2

= PABPA = B

Since ran X0 ⊂ ran A1/2, X0 is a solution of the equation.
The second part is proved as follows: If X is a solution of XA†X = B, then

(A1/2)†XA†X(A1/2)† = (A1/2)†B(A1/2)†,

so that

(A1/2)†X(A1/2)† = [(A1/2)†B(A1/2)†]1/2.

Hence we have

PAXPA = A1/2[(A1/2)†B(A1/2)†]1/2A1/2 = X0.

Since PAXPA = X by the assumption, X = X0 is obtained.

As an application, we give a simple proof of the case where the equality holds in
matrix Cauchy–Schwarz inequality, see [5, Lemma 2.5].

Corollary 3.2 Let X and Y be k × n matrices and Y ∗X = U |Y ∗X| a polar
decomposition of an n × n matrix Y ∗X with unitary U . If kerX ⊂ ker YU , then

|Y ∗X| = X∗X#U∗Y ∗YU

if and only if Y = XW for some n × n matrix W .

Proof Since kerX∗X ⊂ kerU∗Y ∗YU , the preceding theorem implies that |Y ∗X| is
a solution of a generalized Riccati equation, i.e.,

U∗Y ∗YU = |Y ∗X|(X∗X)†|Y ∗X| = U∗Y ∗X(X∗X)†X∗YU,

or consequently

Y ∗Y = Y ∗X(X∗X)†X∗Y.
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Noting that X(X∗X)†X∗ is the projection PX, we have Y ∗Y = Y ∗PXY and hence

Y = PXY = X(X∗X)†X∗Y

by (Y − PXY)
∗(Y − PXY) = 0, so that Y = XW for W = (X∗X)†X∗Y .

4 Geometric Mean in Operator Cauchy–Schwarz Inequality

The origin of Corollary 3.2 is the operator Cauchy–Schwarz inequality due to
Fujii [3] as in below. Let B(H) be the C∗-algebra of all bounded linear operators
acting on a Hilbert space H .

OCS Inequality If X, Y ∈ B(H) and Y ∗X = U |Y ∗X| is a polar decomposition of
Y ∗X with a partial isometry U , then

|Y ∗X| ≤ X∗X#U∗Y ∗YU.

In his proof of it, the following well-known fact due to Ando [1] is used: For A,B ≥
0, the geometric mean A#B is given by

A#B = max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}

First of all, we discuss the case Y ∗X ≥ 0 in (OCS). That is,

Y ∗X ≤ X∗X#Y ∗Y

is shown: Noting that Y ∗X = X∗Y ≥ 0, we have

(
X∗X X∗Y
Y ∗X Y ∗Y

)
=

(
X Y

0 0

)∗ (
X Y

0 0

)
≥ 0,

which means Y ∗X ≤ X∗X#Y ∗Y .
The proof for a general case is presented by applying the above: Noting that

(YU)∗X = |Y ∗X| ≥ 0, it follows that

|Y ∗X| = (YU)∗X ≤ X∗X#(YU)∗YU.

Incidentally, we can give a direct proof to the general case as follows:

(
X∗X |Y ∗X|
|Y ∗X| U∗Y ∗YU

)
=

(
X YU

0 0

)∗ (
X YU

0 0

)
≥ 0.
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Related to matrix Cauchy–Schwarz inequality, the following result is obtained
by Fujimoto–Seo [5]:

Let A =
(
A C

C∗ B

)
be positive definite matrix. Then B ≥ C∗A−1C holds.

Furthermore it is known by them:

Theorem 4.1 Let A be as in above and C = U |C| a polar decomposition of C with
unitary U . Then

|C| ≤ U∗AU # C∗A−1C.

Proof It can be also proved as similar as in above: Since |C| = U∗C = C∗U , we
have

(
U∗AU |C|

|C| C∗A−1C

)
=

(
A1/2U A−1/2C

0 0

)∗ (
A1/2U A−1/2C

0 0

)
≥ 0.

The preceding result is generalized a bit by the use of the Moore–Penrose
generalized inverse, for which we note that (A1/2)† = (A†)1/2 for A ≥ 0:

Theorem 4.2 Let A be of form as in above and positive semidefinite, and C = U |C|
a polar decomposition of C with unitary U . If ran C ⊆ ran A, then

|C| ≤ U∗AU # C∗A†C.

Proof Let PA be the projection onto the range of A. Since PAC = C and C∗PA =
C∗, we have |C| = U∗PAC = C∗PAU . Hence it follows that

(
U∗AU |C|

|C| C∗A†C

)
=

(
A1/2U (A†)1/2C

0 0

)∗ (
A1/2U (A†)1/2C

0 0

)
≥ 0.

5 Solutions of Generalized Algebraic Riccati Equation

Following after [4], we discuss solutions of a generalized algebraic Riccati equation.
Incidentally PX means the projection onto the range of a matrix X.

Lemma 5.1 Let A and B be positive semidefinite matrices and T an arbitrary
matrix. Then W is a solution of a generalized Riccati equation

W ∗A†W = B + T ∗AT

if and only if X = W +AT is a solution of a generalized algebraic Riccati equation

X∗A†X − T ∗PAX − X∗PAT = B.



Cauchy–Schwarz Inequality and Riccati Equation for Positive Semidefinite Matrices 349

Proof Put X = W + AT . Then it follows that

X∗A†X − T ∗PAX − X∗PAT = W ∗A†W − T ∗AT,

so that we have the conclusion.

Theorem 5.2 Let A and B be positive semidefinite matrices. Then W is a solution
of a generalized Riccati equation

W ∗A†W = B with ran W ⊆ ran A

if and only if W = A1/2UB1/2 for some partial isometry U such that U∗U ≥ PB

and UU∗ ≤ PA.

Proof Suppose that W ∗A†W = B and ran W ⊆ ran A. Since ‖(A1/2)†Wx‖ =
‖B1/2x‖ for all vectors x, there exists a partial isometry U such that UB1/2 =
(A1/2)†W with U∗U = PB and UU∗ ≤ PA. Hence we have

A1/2UB1/2 = PAW = W.

The converse is easily checked: If W = A1/2UB1/2 for some partial isometry U

such that U∗U ≥ PB and UU∗ ≤ PA, then ran W ⊆ ran A and

W ∗A†W = B1/2U∗PAUB1/2 = B1/2U∗UB1/2 = B.

Corollary 5.3 Notation as in above. Then X is a solution of a generalized algebraic
Riccati equation

X∗A†X − T ∗X − X∗T = B

with ran X ⊆ ran A if and only if X = A1/2U(B+T ∗AT )1/2 +AT for some partial
isometry U such that U∗U ≥ PB+T ∗AT and UU∗ ≤ PA.

Proof By Lemma 5.1, X is a solution of a generalized algebraic Riccati equation
X∗A†X − T ∗PAX − X∗PAT = B if and only if W = X − AT is a solution of
W ∗A†W = B+T ∗AT . Since ran X ⊆ ran A if and only if ran W ⊆ ran A, we have
the conclusion by Theorem 5.2.
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