Error Estimates of Approximations )
for the Complex Valued Integral Qs
Transforms

Andrea Agli¢ Aljinovi¢

Abstract In this survey paper error estimates of approximations in complex domain
for the Laplace and Mellin transform are given for functions f which vanish beyond
a finite domain [a, b] C [0, oo) and whose derivative belongs to L, [a, b]. New
inequalities involving integral transform of f, integral mean of f and exponential
and logarithmic mean of the endpoints of the domain of f are presented. These
estimates enable us to obtain two associated numerical quadrature rules for each
transform and error bounds of their remainders.

1 Introduction

1.1 Laplace and Mellin Transform

The Laplace transform .Z (f) of Lebesgue integrable mapping f : [a, b] — R is
defined by

Z(f) ) =/0 f®edr )]

for every z € C for which the integral on the right-hand side of (1) exists, i.e.
|fo° f @) e dt| < oo.

The Mellin transform .7 ( f) of Lebesgue integrable mapping f : [0, co) — R
is defined by

M (f) () = /0 F @)
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for every z € C for which the integral on the right-hand side of (2) exists, i.e.
|7 f @7 1dt| < oo.

If f : [a, b] — Ris Lebesgue integrable mapping which vanishes beyond a finite
domain, where [a, b] C [0, co) instead of (1) and (2), we have the finite Laplace
and finite Mellin transform

b b
ZH@ = / foe™de A (f)(2) = / £,

The Laplace and Mellin transform not only are widely used in various branches
of mathematics (for instance, for solving boundary value problem or Laplace
equation, for summation of infinite series) but also have significant applications in
the field of physics and engineering, particularly in computer science (in image
recognition because of its scale invariance property). More about the Laplace,
Mellin, and other integral transforms can be found in [5].

1.2 Weighted Montgomery Identity for a Complex
Valued Weight Function

Montgomery identity states (see [6]):

1 b b
fw= [ 0w [ Pens o 3)
b—a /), a
where P (x, t) is the Peano kernel, defined by

t—a

b—a’ a S t S X,
P(x,1) =

t—b

H)C<t§b.

The weighted Montgomery identity states (given by Pecari¢ in [7])
1 b b
f(X)—,,—/ f(t)w(t)dIZ/ Py (x, 1) f' (1) dt “)
fa w(t)dr Ja a

where w : [a,b] — R is a weight function, i.e. integrable function such that
fab w(t)dr #0, W (x) = [ w(t)dt, x € [a,b] and P, (x, 1) the weighted Peano
kernel, defined by

Py (x,1) = &)
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Obviously, weighted Montgomery identity (4) for uniform normalized weight
function w (¢) = ﬁ,t € [a, b] reduces to the Montgomery identity (3).

It is easy to check that the weighted Montgomery identity holds also for a
complex valued weight function w : [a, b] — C such that f ab w (¢)dt # 0.

Let us check the last condition for the kernels w (1) = e % t € [a, b] and
w (1) = t*71, t € [a, b] of the Laplace and Mellin transform. Since fab e Hdt =

% (e_z" - e_Zb), by using notation z = x + iy we have

e~ (cos (—ya) + i sin (—ya)) = e ~*? (cos (—yb) + i sin (—yb))
a=>b

and obviously [ ab w (¢) dt # 0 holds for the kernel of the Laplace transform.

Also, it holds that %tl = zt°" ! forz € C and f: 7 ldr = bz;“z . Using notation

z = x + iy we have

b* =a*

ezlna — ezlnb

" (cos (ylna) + i sin (yIna)) = ¢ (cos (y Inb) + i sin (y Inb))
a=b.

For the kernel of the Mellin transform w (¢) = e [a, b] we can also conclude

[P w () dr #0.

1.3 Difference Between Two Weighted Integral Means

By subtracting two weighted Montgomery identities (4), one for the interval [a, b]
and the other for [¢, d] C [a, b], the next result is obtained (see [2, 3]).

Lemmal Ler f : [a, b] — R be an absolutely continuous function on [a, b], w :
[a,b] > Cand u : [c,d] — C some weight functions, such that fab w (1) dr #£ 0,
[ u @) dr # 0 and

0, t <a, 0, t <ec,
W= fw®d,a<t<b, U =1 [Tu@d c=<t=<d,

C

fa" w()dt, t>b, fcd u()de, t>d,
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and [c,d] C [a, b]. Then the next formula is valid

1 b 1 d b
_ t t)ydt — ——— t t)dr = K@ f @) de
fabw(t)dt/a W f 0 f;’u@)dtfc w®) £ o f 0 1 ®
6
where ©
—Vv“,/((}t,)), t€la,c],
K@) ={-wg+ o telcd, (7

l— g, teldbl.

Remark 1 The result of the previous lemma for real-valued weight functions has
been proved in [4].

2 Error Estimates of Approximations in Complex Domain
for the Laplace Transform

In this chapter error estimates of approximations complex domain for the Laplace
transform are given for functions which vanish beyond a finite domain [a, b] C
[0, 0o) and such that f/ € L p la, b]. New inequalities involving Laplace transform
of f, integral mean of f and exponential mean of the endpoints of the domain of f
are presented. In the next chapter these inequalities are used to obtain two associated
numerical rules and error bounds of their remainders in each case. These results are
published in [1].

Here and hereafter the symbol L, [a, b] (p > 1) denotes the space of p-power
integrable functions on the interval [a, b] equipped with the norm

b 7
Il = (/ If(t)l”dt)

and L, [a, b] denotes the space of essentially bounded functions on [a, b] with the
norm

[flloo = ess sup [f (1)].

t€la,b]
Exponential mean E (z, w) of z and w is given by

eZ_ew .
Tw fzFw,

E(z,w) = zweC (¥

e, if z=w.
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Definition 1 We say (p, ¢) is a pair of conjugate exponents if | < p,g < oo and
%—i-qi: lL;orif p=1landg =oc;orif p=occandqg = 1.

The next theorem was proved in [5]:

Theorem 1 Let g : [a,b] — R be an absolutely continuous mapping on [a, b].
Then for all x # 0 we have the inequality

b
F(g) (x) — E(—2mixa, —2m'xb)/ g(s)ds

l%(b—a)2 ||g/||ool, if & €Leola,bl,

<A —2—— - |g|,. ifgeLylabl,
[(g+1)(g+2)]14

b—a s, if ¢ €Lyla,b].

where F (g) (x) is Fourier transform

b
F (g) (x) = / g (1) e 2y,

and E (z, w) is given by (8).

Next, we apply identity for the difference of the two weighted integral means (6)
with two special weight functions: uniform weight function and kernel of the
Laplace transform. In such a way new generalizations of the previous results are
obtained.

Theorem 2 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] — R be
absolutely continuous, f' € Lyla,blandc,d € [a,b], c < d. Then for Rez > 0
and 1 < p < oo we have inequalities

d—c d
‘mf(f) (z) — E (—za, —zb)f f@)de

Q=

—aRez ;_ (G EDOG-a) :
e i@ c)( @FD )||f||,,
294 1) (b—a)\4
S(d_c)<w>q” ’”,

g+1D P

while for p = 1 we have

d—c d
'b_af(f)(Z)—E(—za,—zb)/ f@adr

<27 @ = |f], =2@ =],

where E (z, w) is exponential mean of z and w given by (8).
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Proof 1If we apply identity (6) with w (t) = e~ ', ¢ € [a, b] and u (t) = = c,t S
[c,d], we have W (t) = (t —a) E (—za, —zt),t € [a,b]; U (t) = d C, t € c,d]
and

1 1 d b )
aECa? DO [ rou= [ koros

Since [c, d] C [a, b] we use (7) so

~ W) t €la,c]
K0 =3 —jg+5 telcd),

Thus

d— d d—c b ,
rz(f)(z) E(—za,—zb)/ f(t)dt:mW(b)/ K (1) f' (¢)dt

and by taking the modulus and applying Holder inequality we obtain

d—c d
‘m.z(f) (2) — E (—za, —2b) f Fdi] <

171,
q

Now, for 1 < p < oo (for 1 < g < o0) we have

‘d—c _(/C d_CW(t)q
b— q . |b—a
dig—¢ t—c 9 bld—c¢ d—c 4
+ —W (@) — ——W(b)| dr + —W(@)— ——W ()| dr
c |b—a b—a d |b—a b—a

and since Rez > 0 we have |W (¢)] =

T —zs t | —zs|
< - =
2 € ds‘ Jo e | ds

fat |e_SR“|ds < (t —a)e Rz fort e [a, b], thus

th - /c <e—aRez (t _a)> _ paqRez <d —c)q (c —a)?™!
" Ja b—a (g+1)

q d d—c q
dl‘f/ dr
c b—

d

V/\: _
a b—
f
c

d —
b—a
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d q
d —
§e_“"R“/ (b C(t—a)+t—c) dr
¢ —a

e—aRez q d
=<b—a> / (b—a+d—-c)t—cb—a)—a(d—rc)lde.

If we denote
rAt)y=b—a+d—-c)t—cb—a)—a(d—-c)

wehave A (c) =(d —c)(c—a)and A (d) = (d — c) (b+d — 2a) so

e—aRez\1 rd
(b—a) / (b—a+d—c)yt—c—a)—a(d—c))ldt

B e—adsRez ()\ (d)q-H — A (c)qﬂ)
T b—a)¥ @+ D(b—-—a+d—c)
emaaRez (g — )1 ((b+d —2a)1F! — (c — )T e Rez2d (d — ) (b — a)
b-a) g+ —-a+d-o - g+1)
d—c

q b d— b
dt:/ C/ e ¥ds
b—a d |b—al;

b q q +1
5e—“qR“/ (d_c(b—t)) dt:e_“qReZ(d_c> (b—dy”
d b—a b—a (g+1)

Thus

Also

q
dt

d_
W(r)—bT:W(b)

dec
— Wb K (1)
b—a

q

1
ke (d—c)q (c —a)t! LY (d—c) (b—a) N (d—c)q (b—ad)yitt\*
- b—a g@+1) (g+1) b—a g@+1)

1
< g—4Rez (d—c)q (b—a)?! + 29(d—c)(b—a)\’
- b—a) (g+1D @+1

(2q+1)(ba))$

__ ,—aRez _
=t C’( @+
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and since e 9Rez < | inequalities in case 1 < p < oo are proved. For p = 1 we
have

d—c d—c
——W®)K (t) = max | sup W ()],
b—a 00 tela,c] |10 —a
—c t—c —c d—c
sup W (@) — ——W(b)|, sup W) — W (b)
teled] |10 —a b—a reld,b] |0 —a b—a
and
sup d_CW(t) S(ij_aReZ(a?—c)(c—a)’
tefa,c] 10 —a b-a)
d—c t—c d—c t—c
sup |——W (@) — ——W (b)| < sup W)+ |—W (D)
tele,d] 1B —a b—a rele,d] —a b—a
d— b+d—2
< e—aRez ¢ (d _a) +e—aRez (d —C) — e—aRez (d—c) + a’
b—a b—a
d— d— d—c)(b—d
sup ‘W) — L= w )| < eare: @O =d)
teld.p] 10— a b—a b—a)
Thus

Se—aReZd_cmax{(c—a),(b+d—20)»(b_d)}

H—d_cw bYK (t
P (b) K (1) P

e¢]

<e R (g _¢)

and since e “R¢Z < | the proof is completed.

Remark 2 The inequalities from the previous theorem hold for Re z > 0. Similarly
it can be proved that in case Rez < 0 and 1 < p < oo we have the inequality

d—c d
b_a.iﬂ(f) (z) — E (—za, —zb)/ f@)de

(2q+1><b—a))5”f,”
gre-d -

—bRez _
se C)< @+
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while for Rez < 0 and p = 1 we have

d— d
’ﬁf(f) (z)—E(—za,—zb)/ fdt| <ePRe2@d—o) | f],.

Theorem 3 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] — R be
absolutely continuous, f' € Lyla,blandc,d € [a,b], c < d. Then for Rez > 0
and 1 < p < oo, we have inequalities

d —

c b d
‘EE(—ZC, —zd)/ f(t)dt—/ e I f@)de

1
—cRez _ (2q+1)(b_a) 0 /
<R oo (BEDOZO) oy

1
I+ Bb—a)\e, .,
S(d—C)<W> ||f||p’

while for p = 1 we have

d—rc b d
‘EE(—ZC, —zd)/ f(t)dt—/ e I f()dt

e 2d-olfl,
=2@d=alr,.

where E (z, w) is exponential mean of z and w given by (8).

Proof By applying identity (6) with w (f) = ﬁ, t € [a,bland u () = e ¥,

t € [c, d] and proceeding in the similar manner as in the proof of the Theorem 2.

Remark 3 The inequalities from the previous theorem hold for Re z > 0. Similarly
it can be proved that in case Rez < 0 and 1 < p < oo we have the inequality

d—c b d
‘mE(—zc, —zd)/ f(t)dt—f e f@)de

Cdres (24+1><b—a>>5 ,
<e (d C)< @D 11,

while for Rez < 0 and p = 1 we have

d—c b d
'EE (—zc, —zd)/ f()de —/ e I f@)de

e 2@ -0,
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Corollary 1 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] — R be
absolutely continuous and f' € Lyla,b). Then for allRez > Oand 1 < p < oo,
we have the inequality

1 24+1ql ,
< (b—a)1+q (qT) Hf H[)’

b
‘E(—za, —zb)/ f@dt—Z(f) ()

while for p = 1 we have

b
’E (—za, —zb)/ f@dt —Z(f) (2

<20-0 7],

Proof By applying Theorem 2 or 3 in the special case when ¢ = a and d = b.

Corollary 2 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] — R be
absolutely continuous and f' € L [a, b]. Then for allRez > 0, for any ¢ € [a, b]
and 1 < p < oo, we have the inequality

|2 () (@) = (b —a) E (—za, —zb) [ ()]

1
]+l 2q+1 ?
<((®b-a) q(—q+l> Hf/Hp,

while for p = 1 we have

1L (f) (@) — (b—a)E (—za, —zb) f (@)l <2 —a) | '], -

Proof By applying the proof of the Theorem 2 in the special case when ¢ = d.
Since f is absolutely continuous, it is continuous, thus as a limit case we have

lime—q 75 [ f () dt = f (©).
3 Numerical Quadrature Rules for the Laplace Transform

In this section we use two previous corollaries to obtain two numerical quadrature
rules.

Letl,:a=1ty <t <---<t,_1 <t, = bbe adivision of the interval [a, b],
hy ==tiy1 —tr, k=0,1,...,n— 1 and v (h) := maxy {h;}. Define the sum
n—l lk41
E(filn2) =Y E(=ztr, —2ti41) f (@) ©)
k=0 i

where Rez > 0.
The following approximation theorem holds.
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Theorem 4 Assume (p, q) is a pair of conjugate exponents. Let f : [a,b] —
R be absolutely continuous function on [a,b], f' € L, [a,b]. Then we have the
quadrature rule

L)@ =E(fi1n,2) + R(f, In, 2)

where Rez > 0, & (f, I, 2) is given by (9) and for 1 < p < oo the reminder

R (f, I,, z) satisfies the estimate

|R(f,1n,z>|s< ) [Zh"“} 171,
while for p = 1
IR(f. LDl <20 | f'],-

Proof For 1 < p < oo by applying the Corollary 1 with a = #, b = t;+1 we have

Tk+1 Tk+1
f()dt —/ e f () dt

3

1 1
1 /29 +1\14 Tk+1 P
< (e —10)' " ( ) (/ |7 (t)|pdt>
q +1 17

Summing over k from 0 to n—1 and using generalized triangle inequality, we obtain

'E (—z2tk, —2tk+1)
Tk

IR (f, In, D =12 (f) @) = & (f, In, 2)

1
29 4 1 Bt G
<Z<hk>1+ (Y ([ 1rorw)

Using the Holder discrete inequality, we get

<2q i l)q i(hw“% (fw I (t)|pdt)p
=0 Uk

1
1

) 5 (60 )]; S((/:kﬂ|f/(f)|pdt);>p ,,

Lk=0 k=0

[n—1 %
2y [Swe] i,
Lk=0
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and the first inequality is proved. For p = 1 we have

n—1 4l
m<ﬁbhm|s§:yw(/+|f%nma
k=0 T
n-l Ik+1
smwm§:(/ |fanw)=2wmnfm
k=0 Tk

and the proof is completed.

Corollary 3 Suppose that all assumptions of Theorem 4 hold. Additionally suppose

at(k+1)-L2e

shna=[ " roa
a+k-224

g (—Z<a+k'b;a>,—z<a+(k+1)'b;a>>.

Then we have the quadrature rule

LN @=E(fi1n, D)+ R(f, In, 2)

where Rez > 0 and for 1 < p < oo the reminder R (f, I,,, z) satisfies the estimate

74 q b ]+*
|Mﬁmmw( +J ( 171,

while for p = 1 we have

R 0ol = 22D g

Proof If we apply Theorem 4 with equidistant partition of [a, b].

Now, define the sum

(10)

A (fiIn,2) = Z(nm — ) E (—ztk, —ztk11) f <fk+1 +rk)

2

where Rez > 0.
The following approximation theorem also holds.
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Theorem 5 Assume (p, q) is a pair of conjugate exponents. Let f : [a,b] —
R be absolutely continuous function on [a, b, f' € L pla, bl. Then we have the
quadrature rule

L)@ = (f,In,2) + R(f, In,2)
where Rez > 0, & (f, I, 2) is given by (10) and for 1 < p < oo the reminder
R (f, I,, z) satisfies the estimate

1
1 rn-1 q
29 41\« +1
ronons (25 S| 11,
q+1 k=0 !
while for p = 1

IR (f. In. )] < 2v () | '], -

Tk 141k
2

Proof By applying the Corollary 2 witha = #, b = t;41, ¢ = and then
summing over k from 0 to n — 1, we obtain results similarly as in the proof of the
Theorem 4.

Corollary 4 Suppose that all assumptions of Theorem 5 hold. Additionally suppose

ot = (0 MO0

2n
1

— b—a b—a
. E(—Z<a+k~—>,—z<a+(k+1)~ >>
= n n

Then we have the quadrature rule

LN @@= (f. In.2)+R(f, In,2)

where Rez > 0 and for 1 < p < oo the reminder R (f, I,,, z) satisfies the estimate

1
2q+1)$(b—af+q

IR (f, In, )| < <q+1

171, -

n
while for p = 1 we have

2@—a”

IR(g, I, 2)| < — |f/||1'

Proof By applying Theorem 5 with equidistant partition of [a, b].
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Remark 4 For both numerical quadrature formulae in case Rez < 0, for 1 < p <
o0, the reminder R (f, I, z) satisfies the estimate

1

1 rn-1 q
29 + 1Y\« ’
|R(f,1n,z)|se“”(—q+l) [Eﬁhi“} 171,

k=0
while for p = 1
IR(f. In.2)l < e R0 () | f7]) -

For equidistant partition of [a, b] and for 1 < p < oo we have

- 20 +1\7 (b—
|R<f,1n,z)|5e”R“<q+l)( 2 HfH

while for p = 1

7bRez2 (b

IR(f.I,.2)| <e Dy e

4 Error Estimates of Approximations in Complex
Domain for the Mellin Transform

In this chapter error estimates of approximations complex domain for the Laplace
transform are given for functions which vanish beyond a finite domain [a, b] C
[0, o) and such that ' € L p la, b]. New inequalities involving Laplace transform
of f, integral mean of f, exponential and logarithmic means of the endpoints of the
domain of f are presented. In the next section these inequalities are used to obtain
two associated numerical rules and error bounds of their remainders in each case.
These results are published in [3].
Logarithmic mean L (a, b) is given by

kg if a b,
L (a,b) = a,beR. (11

a, if a=>b,

Theorem 6 Assume (p, q) is a pair of conjugate exponents, that is % + % = L
Let f : [a, b] — R be absolutely continuous, [a, b] C (0, c0), f’ € Lyla,b]and
[c,d] C [a, b]. Then for Rez > 1 and 1 < p < oo the following inequality holds:
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E (z1 Inb
‘—///(f) @ — (ZL“(“ ;)“ ) f £dt

< pRe2)—1 d— o) ((Zq +1D® —a))q ”f,”p

(g+1)

while for p = 1 it holds

=™ d-o|f],.

d—c E (zlna,zlnb) (¢
St e - EEREED [T

Here E (z, w) is exponential mean given by (8) and L (a, b) is logarithmic mean
given by (11).

Proof Taking w (t) =t*~',t € [a, bl and u (1) = ﬁ, t € [c, d], we have

72— g% ezlnt _ ezlna

t
W (1) =/ 7l = =

< <

etnt _pzlna ny _ng (¢t —a)= E (zIna, zInt) ¢t —a)

T Zlnt—zlna f—a L(a,1)

forallz € [a,b]and U () = ;%CC for all ¢ € [c, d]. Now, we apply identity (6) with
these weight functions

L (a, b) | o /
(b—a)E(zlna,zlnb)///(f)(Z)__d_cfc f<f>dt—/a K@) f' (1) d.

Since [c, d] C [a, b] we use (7) so

—x((z)), t €la,c]
K(t)=1{ —wp + =5 t € (c.d)

Thus

d—c E (zlna,zlnb) (¢ _d-c b ,
m«///(f)(Z)—WK f(l‘)dt—mw(b)/a K@) f (t)de
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and by taking the modulus and applying Holder inequality we obtain

‘Z::///(f)(@ E (zlna, zlnb)f Fdl <

s 171,

Now, for 1 < p < oo (for 1 < g < o0) we have

d—c 4
—W@®)
a

q=<ch:

t—c 4 b
—W(t)——W(b)‘ dt—i—/
a b—a d

dig—¢
v
; _

b

d—c
b—

1
d— d— 4 N\
Wiy - wwy| dr) .
b—a b—a

Using notation x = Rez, y = slmgz, since x > 1 we have |W (¢)|] =
afe(x—1+iy)lnsds‘ < fal |e(x—l+iy)lns| ds = fat |e(x—1)lns| ds < (t —a) e(x—l)lnb

= (t —a)b*~V fort € [a, b), thus

c _ q _ q EPAV/E
/ d dr < / (b(r pd—c (t _ a)) df = paG=D (d c) (c —a) ’
o 10— ; b—a b—a) @+

b
d|g— q d/1d—c q
dr < W (¢ dr
ﬁ b—a —l Qb—a W)+ )
d q
d_
§b‘1("‘1>/ <b c(t—a)+t—c) dr
¢ —a

pa(x=1)
:<b )/((b—a+d—c)t—c(b—a)—a(d—c))th

C
!
a

t—c
—W (o
h_a ()

If we denote
AO)=b—a+d—-—c)t—cb—a)—a(d—rc) (12)

wehave A(¢c)=(d —c¢)(c—a)>0and A (d)=(d —c)(b+d —2a) >0so

b—
pa=1 (r ()7 — 1 (C)q+1)
T W-—alg+)—at+d—oc
PV d =)t (b +d - 2a)7T — (c —a)?T) - b1*=D24 (d — )4 (b — a)
b—a)y (g+1)(b—a+d—c) - (g+1

pax—=1
( )/((b—a+d—c)t—c(b—a)—a(d—c))"dt
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q
dt

Also
d— d— 7 b
CW(t)——CW(b)‘ dt:/
b—a d

b
/d b—a

<b‘1‘xl)/b O " = poen (22) 0=
- 4 \b—a b—a) (qg+1 °

Thus

b
d—c / e(xf]+iy)lnsds
b—a J;

“a’—c
—— W (D) K (¢)
b—a

q

1
< =D (d—c)q (c —a)i™! N 29 (d —¢)4 (b —a) N (d—c>‘1 (b—d)yitt\*
- b—a g+1 g+1) b—a g+1)

< D) (d_")q b-a™ 2d-0lb-a)
- b—a) (qg+1) (@+1)

1
— D (4 = ¢) <(2q + 1)(b—a)>‘1
g+D

and the first inequality is proved. For p = 1 we have

d—c d—c
H —W®»)K (1) =max 4 sup |——W (1)|,
b—a 00 t€la,c] —a
d—
sup W (t sup
tele,d] 1B —a " reld.b]
and
sup —d W ()| <"~ nd=-olc-a a)’
t€la,c] (b - a)
d—c t—c
sup W (1) — —W )| < sup W)+ | ——W (D)
tele,d] b—a tefe.d] b—a b—a

d— b+d-2
< b ”b Cd—ay+b D @ =) =pD (d—c)%,
—da

pen@=0b—d)

sup (b — a)

teld,b]

aW(t) - b—W(b)‘
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Thus

H—W(b)K(t) < pb- ”Z max {(c —a),(b+d —2a), (b —d)}

e¢]

<b" D2 —-0)

and the proof is completed.

Remark 5 The inequalities from the previous theorem hold for Re z > 1. Similarly
it can be proved that in case Rez < 1 and 1 < p < oo the following inequality
holds:

E (z1 Inb
‘—///(f)(z) (ZL“(“ o ) / £ () dr

. QU+ b—a)\i,
< a®e? 1(61—6)<W> 171,

while for Rez < 1 and p = 1 it holds

d
‘ ///(f)(z) E(Zlna,zlnb)/ Fyd

(Rez)—1 _ /
L (a, b) <2a (d—c) Hf ||l

Remark 6 Incasea = (0andRez > 1 proceedmg in the same way as in the previous

proof and using the fact that 0 = 0 and thus 2 . (b ‘Z) = b— we obtain
‘ - /d f@di| <p®97(d —c) (Qq . (b)); [
- z —o) =2
z Je a (g+1) P

=% d—-o|f],.

z—1 d
b [ rwa
z Je

Theorem 7 Assume (p, q) is a pair of conjugate exponents, that is + = =1
Let f : [a, b] — R be absolutely continuous, [a, b] C (0, 00), f' € L [a, b] and
c,d €la,bl,c <d ThenforRez > land1 < p < o0 thefollowmg inequality
holds:

d—c
‘T///(f)(Z)—

(d—c¢)E(zlnc, zInd) [? <
b Led /af(t)dt—/ct f(t)dt

_ Q14 1)(b—a)\i
(Rez)—1 _ l
=4 “ C)< (@+1) ) 1771,
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while for p = 1 we have

(d—c)E (zlnc,zInd) [ 4 1
b_—aLed /aJ‘(t)dt—/ct f(@)dt

< d(ReZ)712(d _ C) Hf/‘

1°

where E (z, w) is given by (8) and L (a, b) is logarithmic mean given by (11).

1

Proof If we apply identity (6) with w (1) = t € [a,b] and u () = ¥,

h—a
te[c,d],wehaveW(;):;;T‘;,re[a,b];U(r):W(r—cme[c,d]
and

: /bfmdr Lic.d) drz—‘fmdf—/bKa)f’(t)dz
b-a) l, (d—c)E (zlne, zInd) J, —J, ’

Since [c, d] C [a, b] we use (7) so

te[a7c]’

U _
K@) =1 g — 5% teled,

ot teld,b].

—a’

S

Thus

(d—c)E (zlnc, zInd)
(b—a)L (c,d)

b d b
/f(r)dt—f tz_lf(t)dt:U(d)f K@ f (t)dt

and by taking the modulus and applying Holder inequality we obtain

(d—c¢)E (zlnc, zInd) [? <
‘ booled /af(t)dt—/ct f(t)dt

Now, for 1 < p < oo (for 1 < g < o0) we have

|t —a 4
||U(d)1<<r)||q=(/ @) a
d _ q b _ q q
+/ U@ — =% @) dt—i—/ boty @ dt)q
c b—a 4 |b—a




40 A. Agli¢ Aljinovié

Using notation x = Rez, y = sImgz, we have x > 1. Since |U (t)|] =
fct e(xflJriy)]nsds‘ f; |e(xfl+iy)1ns} ds — ff |e(x71)lns| ds < (t — ¢) e—Dnd

=@ —c)d“ D forr € [c, d], we have

lt—a gl ) C(t—a 4 d—c\? (c —a)t!
—U dz<d<**‘>‘1/ d— dr = a4 :
/a b—a ()‘ - a b—a( ) b—a g+1)

/Cd ) a

< d()"l)q/ (t —c+ e —a)) dr
c b—a

46—Da
<
T (b-a)

IA

q

_ d _
U(z)—;f‘;U(cb drs/ (IU(z)|+‘%U(d)

d
/ (b—a+d—-cot—cb—a)—a(d—c)!dt
()\ (d)qul _)\(C)q+l)
b—a)¥@@+DHb—a+d-c)

d— o) (b +d—2a)7" — (c —a)?™) < gomng 2@ =07 (b —a)
b-a)¥ @+ (b—a+d—rc) - (@+1)

= d*—Dg

— g—a

’

where X (¢) is given by (12) and

b b +1
/ b;tu(d)qdmd("_”q/ b=t 4 o) dr=atva (1) LD
d a - da \b

b= —a b—a) @+ D
Thus
U (d) K (),
1
! 1\ 7
< gt (d—c>q (c—a)it +2‘1(d—c)‘1(b—a)+(d—c>q (b —d)T+
b—a) (qg+1) g+ b—a) (q+1)
1
< gD (d—C)q (b-a 2d-0 -0’
- b—a) (g+1) (@+1)
1
=d" D (d—¢) (M)q
(¢+1

and the first inequality is proved. For p = 1 we have

’

U (@) K (Do = max{ sup

t€la,c)

t__au(d)
—a
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t— b—
sup |U (¢t) — —aU (d)|, sup —U (d)‘
tele.d] b—a teld.b] 10—
and
sup < gt (c—a)(d— c)’
tela,c] b—a)
t—a I —a
sup (U (1) — —U(d)‘ = sup {IU(Z)I + ‘—U(d)‘}
rele.d] b—a refe.d] b—a
d— b+d—-2
<d® D sup ld—c+ %@ —¢)| =d" V(@ - o) phd-za
tele,d] b—a b—a
—t b—d)(d—
sup U ()| <d* l)u.
teld,b) 1D —a b—a)
Thus

IU (@) K (1)lloo < d™~ “Z amax{(c—a) ,(b+d—2a),(b—d)}) <d“ D2 o)

and the proof is completed.

Remark 7 The inequalities from the previous theorem hold for Re z > 1. Similarly
it can be proved that in case Rez < 1 and 1 < p < oo the following inequality
holds:

(d—c)E(zlnc,zInd) (? 4
‘ Ty ACE RS RAACL:

1
Rez—1 g 1+ b—-a)\, ,,
<@g (FED0=D)

while for Rez < 1 and p = 1 it holds

d c)E(zlnc,zlnd)/ f(t)d,_/ U (1) de

(Rez)—1 _ ’
b—a)L(c.d) <c 2d—o | f],-

Remark 8 In case a = ¢ = 0 and Rez > 1 all the inequalities from the

. z—1
Theorem 7 holds with a term dT instead of W
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Corollary 5 Assume (p, q) is a pair of conjugate exponents, that is % + ql = 1. Let
f :la, b] = R be absolutely continuous and [a, b] C (0, 00), f' € L, [a, b]. Then
forallRez > 1 and 1 < p < oo we have the inequality

b
‘%uwn—ﬂgyﬁf@ffmm

1
Ren)—1 5 141 (274 1>3 /
L (a,b) =b b-a) 1<q+1 HfHP

while for p = 1 we have

b
Lﬁqu—gggiiﬁﬁfmﬂnm

(Rez)—1 _ ’

Proof By applying the proof of the Theorem 6 or 7 in the special case when ¢ = a
andd = b.

Corollary 6 Assume (p, q) is a pair of conjugate exponents, that is % + ql = 1. Let

f : [a, b] = R be absolutely continuous and [a, b] C (0, o), f’ € Lyla,b]. Then
forallRez > 1, forany c € [a,b] and 1 < p < 0o we have the inequality

E (zlna,zInb)

‘(// NH@—-b-—a)————f ()

1
_ L /29+1\4
L(a,b) < bR~ (p —g)! T4 ( ) ”f/”p

q+1

while for p = 1 we have

E (zlna,zInb
L%uwm—w—m—gﬂﬁﬂlf@

(Rez)—1 _ /

Proof By applying the proof of the Theorem 6 in the special case when ¢ = d.
Since f is absolutely continuous, it is continuous, thus as a limit case we have

lime—.q 7 [ F @) dt = f ().

5 Numerical Quadrature Rules for the Mellin Transform

Since the exponents of the term (b — a)l+% in the inequalities from the last two
corollaries are greater than 1, these inequalities can be useful to obtain numerical
quadrature formulae. Using Corollaries 5 and 6 we obtain the following two
numerical rules.

Letl, :a=1t <t <---<ty,_1 <t, = b beadivision of the interval [a, b],
hy ==tgy1 —tx, k=0,1,...,n— 1 and v (h) := maxy {h;}. Define the sum
n—1
E (zInt, zIntgqy) [+
E(f In,2) = f (@) de (13)
" ,(2:(; L (tk, tkv1) f

where Rez > 1.
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The following approximation theorem holds.

Theorem 8 Assume (p, q) is a pair of conjugate exponents Let f :[a,b] — R be
absolutely continuous function on [a, b}, [a, b] C (0, 00), f’ € L, la,b). Then we
have the quadrature rule

M) @) =E(fiIn.2) + R(f, In, 2)

where Rez > 1, & (f, I,, z) is given by (13) and for 1 < p < oo the reminder
R (f, I,, z) satisfies the estimate

29 4+1
IR(fJn,z)ISb(ReZ)_l(q:I> [th“} 171, (14)

while for p = 1

IR (f, I, )] <26%2 oy || 7], - (15)

Proof For 1 < p < oo by applying the Corollary 5 with a = #;, b = t;+1 we have

E (Z In tk, Z 111 tk+1) Tk+1 f (t) dr \/UH»I
L (e, tk+1) f

@) de

Tk

1
29 4+ 1 T+ P
< () g — )" < ki ) (/+ |f/(t)|pdt>p
q—‘f_l 173
1
29 + 1 li+1 »
p1 / ! ”d)
< b (g — 10" <q+1) (u |f" @] dt

where x = Re z. Summing over k from 0 to n — 1 and using generalized triangle
inequality, we obtain

IR (f, I, D) = | A (f) (2) = & (f, I, 2)

| i

gl ; G

<yt (2 + 1> Z(h )1+ <f 1 |f/(t)|pdt>p
173

Using the Holder discrete inequality, we get

n—1 | trt1 3
Yo't (/ |/ (t)|pdt)p
k=0 Tk

1

n—1 q
_ [th“] 71,

k=0

<=

[Eer T [E(rors))]
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and the inequality (14) is proved. For p = 1 we have

n—1 4l
IR(fdn. )| <> 26" iy (/+ |f’(t)|dt)
k=0 Tk

n—1 Tk 1
S ([ o) =2t ),
k=0 Wk

and the proof is completed.

Corollary 7 Suppose that all assumptions of Theorem 8 hold. Additionally suppose

n=l gt (k1)
Efiln2) =) / f @ (16)

b—a
k=0 Yatk=

E(zln(a+k-Z%) zIn(a+ (k+1) - =2))
L((a+k-Z9), (a+k+1) -2=49))

Then we have the quadrature rule

M) @) =E(fi In.2) + R(f, 1n, 2)

where Rez > 1 and for 1 < p < oo the reminder R (f, I,,, 7) satisfies the estimate

20 +1\7 (b—a)'ta
|R<f,1n,z>|sb<R“>‘<q++l>( 2051, an

while for p = 1 we have

(Rez)—1 2 (b

IR(g. In.2)| < b Dy - (18)

Proof If we apply Theorem 8 with equidistant partition of [a, b], t; =a + j - b=a
j=0,1,...,n, we have (16) and h; = ]%,kzo, I,...,n—1.Forl < p<o0

we obtain
! 2 +1\7 (b—
) [Zhﬂ 11, = () =0y

while for p = 1, v (h) = =2 and the claim immediately follows.

IR (f, I, 2)] S(
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Now, define the sum

n—1

E (zInf, zIntgq1) (lk+1 + tk)
A(f, I,,2) = t —t 19
(fs In, 2) ;)(m 9 AT f > (19)

where Rez > 1.
Also the following approximation theorem holds.

Theorem 9 Assume (p, q) is a pair of conjugate exponents Let f : [a,b] —> R be
absolutely continuous function on [a, b], [a, b] C (0, 00), [’ € Ly la,b]. Then we
have the quadrature rule

///(f)(z):;zf(f, In,2) + R(f, Iy, 2)

where Rez > 1, & (f, I,, 2) is given by (19) and for 1 < p < oo the reminder
R (f, I, 2) satisfies the estimate

IR (f, I, 2)| < b®ReD~! (2 H) [Zh"“} L1, (20)

while for p = 1
IR (f, In, )] <26%2 oy || 7], - @21

Proof By applying the Corollary 6 with a = ¢, b = tyy1, ¢ = W and then

summing over k from O to n — 1, we obtain results similarly as in the proof of the
Theorem 8.

Corollary 8 Suppose that all assumptions of Theorem 9 hold. Additionally suppose

n—1
d(f,ln,n:Z”;“f(HM)

— 2n
CE(zin(a+k-250) zin(a+ (k+ 1) - B59))
L((a+k- 29 (a+*k+1)- “)) '

Then we have the quadrature rule

M) (@) = (f, In,2) + R(f, In, 2)

where Rez > 1 and for 1 < p < oo the reminder R (f, I,,, z) satisfies the estimate

29 +1 b —
|R(f,1n,z)|§b(ReZ)l<q:1>( 2N HfH @
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while for p = 1 we have

qzw

IR (g. I, 2)| < bRV Hf I (23)

Proof By applying Theorem 9 with equidistant partition of [a, b].

Remark 9 Both numerical quadrature formulae hold also in case a = 0 with the

term — instead of W in the first approximation sum (13) and the second

approx1mat10n sum (19).

Remark 10 For both numerical quadrature formulae in case Rez < 1, for 1 < p <
oo, the reminder R (f, I, z) satisfies the estimate

1

n—1 q

1
29 + 1\«
R (f. I, 2)] < a®e9™! (ﬁ) 2,
k=0

while for p = 1
IR (f. In. )l < 2a®D" v iy | £,

For equidistant partition of [a, b] and for 1 < p < oo we have

1771,

1
2 4+ 1\7 (b—a)'ti
q+1 n

IR (f, I,, 2)| < a(ReZ)—l <

while for p = 1

@w

IR (f, I, 2)| < a®eD~ ||f I -

Remark 11 1t is easy to see that in all these numerical rules estimate tends to zero
as n tends to infinity.
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