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Abstract This paper presents and discusses a number of inequalities in the area of
two distinct mathematical branches, with not that different line of thought: Statistics
and Mathematical Information, which apply different “measures” to analyze the
collected data. In principle, in these two fields, inequalities appear either as bounds
in different measures or when different measures are compared. We discuss both
and we prove new bounds for the Kullback–Leibler relative entropy measure, when
the Generalized Normal distribution is involved.

1 Introduction

Inequalities play an important role in Mathematical Sciences. Provides bounds to
the existing calculations, or even to the non-existing ones: we may not know the
exact closed expression of a mathematical expression, but it is often possible to
know the corresponding boundaries. Typical example is the bound of the n roots of
an n-th degree polynomial, say

Pn(x) = a0 + a1 x + a2 x2 + · · · + an xn, x ∈ C.

Then, for n > 4, it is well known that there are no closed algebraic forms describing
the root values, but we can have certain bounds for them. Indeed, if

A := max
{|a0|, |a1|, . . . , |an−1|

}
and B := {|an|, |an−1|, . . . , |a1|

}
,

C. P. Kitsos (�) · T. L. Toulias
University of West Attica, Egaleo, Athens, Greece
e-mail: xkitsos@uniwa.gr; th.toulias@uniwa.gr

© Springer Nature Switzerland AG 2019
D. Andrica, T. M. Rassias (eds.), Differential and Integral Inequalities,
Springer Optimization and Its Applications 151,
https://doi.org/10.1007/978-3-030-27407-8_16

481

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27407-8_16&domain=pdf
mailto:xkitsos@uniwa.gr
mailto:th.toulias@uniwa.gr
https://doi.org/10.1007/978-3-030-27407-8_16


482 C. P. Kitsos and T. L. Toulias

then for the k-th root xk , k = 1, 2, . . . , n, it holds that

r := 1

1 + B
|a0|

< |xk| < 1 + A

|an| =: R.

Therefore, the roots xk , k = 1, 2, . . . , n, lie within the set-difference of the circles
C(O,R) and C(O, r), i.e. xk ∈ C(O,R) \ C(O, r), k = 1, 2, . . . , n.

Moreover, if the highest-order coefficient of the polynomial Pn as above is non-
negative, i.e. an > 0, and δ := max

{|ak|, k ∈ {0, 1, . . . , n} : ak < 0
}
, then—

according to the Lagrange theory for the positive roots of Pn—it holds that

0 < xk ≤ 1 + p
√

δ/an, k ∈ K ⊆ {1, 2, . . . , n},

where p declares the position of the highest-order negative coefficient of Pn.
Inequalities appear in almost all the subject fields of Mathematics. The fol-

lowing Sect. 2 presents some classical inequalities in Mathematics, while Sect. 3
demonstrates the importance of inequalities in Statistics. Section 4 discusses certain
inequalities that appear in Probability Theory. Section 5 shows some of the most
important inequalities in Information Theory, while Sect. 6 briefly introduces the
generalized Normal distribution and its relation to a generalized form of the
logarithm Sobolev inequality, and to information measures in general. Finally,
Sect. 7 proves and discusses some inequalities derived from the study of the
information divergence between two generalized forms of the multivariate Normal
distribution.

2 Fundamental Inequalities in Mathematics

Some of the main, in our opinion, inequalities widely used in Mathematics are
presented in the following.

• The Cauchy–Schwarz inequality. Let f and g be two real functions defined on
the interval [a, b]. Then, their inner product is defined to be

〈f, g〉 :=
∫ b

a

f (x) g(x)w(x) dx, w(x) ≥ 0.

The well-known Cauchy–Schwarz inequality is then formulated as

〈f, g〉2 ≤ 〈f, f 〉 〈g, g〉, or 〈f, g〉 ≥ ‖f ‖ ‖g‖.

When f and g assumed to be n-dimensional vectors a := (ai), b := (bi) ∈ Rn

and w ≡ 1, their inner product is then given by the finite sum 〈a, b〉 = a1 b1 +



Inequalities in Statistics and Information Measures 483

a2 b2 + · · · + an bn. As a result, the corresponding Cauchy–Schwarz inequality
can then be written as

∣∣〈a, b〉∣∣/(‖a‖ ‖b‖) ≤ 1.
• The determinant inequality. From Linear Algebra, it is known that the determi-

nant of a square real matrix A ∈ Rn×n is bounded. Indeed,

n

tr(A−1)
≤ (det A)1/n ≤ 1

n
tr(A).

• The triangle inequality. In Euclidian Plane Geometry, for every three non-
collinear points A, B, and C, forming the triangle ABC, it holds that |AC| <

|AB| + |BC|, which is known as the triangle inequality. Considering now the
Euclidian p-dimensional space, equipped with the usual Euclidian metric/norm,
i.e. ‖a‖2 := a2

1 + a2
2 + · · · + a2

p, a = (ai) ∈ Rp, the triangle inequality holds,
formulated as ‖a + b‖ ≤ ‖a‖ + ‖b‖, a, b ∈ Rp. This is also one of the most
widely known inequalities in Analytic/Convex Geometry as well as in the study
of metric spaces.

• The Minkowski inequality. Triangle inequality can be considered as a special case
of the Minkowski inequality ‖f + g‖p ≤ ‖f ‖p + ‖g‖p, f, g ∈ L p(S), where
S is a metric space with measure μ with f + g ∈ L p(S), and where the p-norm
‖·‖p is defined as ‖f ‖p

p := ∫ |f |p dμ; see [30] among others. The equality holds
for f := λ g, λ ∈ R+, or when g ≡ 0. Finally, if we are considering vectors, the
Minkowski inequality is reduced to ‖a + b‖p ≤ ‖a‖p +‖b‖p, a, b ∈ Rp, for the
non-Euclidian p-norm ‖a‖p

p := |a1|p + |a2|p + · · · + |ap|p, a = (ai) ∈ Rp.
• Factorial bounds. Two interesting inequalities are known as the lower and upper

bounds for the factorial, i.e.

(
n
e

)n √
2π n ≤ n! ≤ e

(
n
e

)n √
n, n ∈ N, (1)

or, generalizing via the Gamma function,

(
x
e

)x √
2π x ≤ �(x + 1) ≤ e

(
x
e

)x √
x, x ∈ R+. (2)

Recall that the lower boundary of (1) is the well-known Stirling’s approximation

formula, n! asym.≈ (n/ e)n
√

2π n, meaning that the quantities n! and (n/ e)n
√

2π n

are asymptotically convergent. Historically speaking, the Stirling’s formula was
first introduced by Abraham de Moivre in the form of n! ∼ (const.) (n/ e)n

√
n,

and later James Stirling evaluated the constant to be
√

2π. Note that the bounds
in (1) shall be used later in Sect. 5. More precise bounds introduced by Robbins
in [39] were formulated as

e
1

12n+1
(

n
e

)n √
2π n < n! < e

1
12n

(
n
e

)n √
2π n, n ∈ N∗ := N \ {0}. (3)
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Finally, Srinivasa Ramanujan, in his lost notebook, [36] provided some alterna-
tive bounds for the Gamma function, in the form of

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
100 < �(x + 1) <

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 , x ∈ R+,

while Mortici proved in [33], some even stricter bounds for the Gamma function
when x ≥ 8, i.e.

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 − 11

240x
< �(x+1) <

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 − 1

24x
,

although the lower boundary actually holds for x ≥ 2.
• Rayleigh quotient. Consider the Rayleigh quotient

R(A) = R(A; x) := xH A x
xH x

, x ∈ Rn \ {0},

for the complex Hermitian (or self-adjoint) matrix A ∈ Cn×n, i.e. when A = AH,
where AH denotes the conjugate transpose of matrix/vector (aij ) = A ∈ Cm×n,

i.e. A = AH := AT = (aji). For the case of a Hermitian (or real symmetric)
matrix A ∈ Rn×n

sym , it holds A = AT (symmetricity), while λ1 = maxx
{
R(x)

}

and λn = minx
{
R(x)

}
, where λ1 ≥ λ2 ≥ · · · ≥ λn are the n real eigenvalues of

matrix A.
• Error bounds. In all the approximation problems, there are bounds for the

existing errors. Practically speaking, for the exact solution y(xk) at point xk ,
the total truncation error εk is then given by εk = yk − y(xk), where yk is the
exact value (corresponding to xk) which would be resulting from an algorithm.
We usually calculate some value, say y∗

k , which approximates the exact yk value,
and thus the corresponding rounding error ε∗

k is ε∗
k = y∗

k − yk . Therefore, the
total error rk is given by |rk| ≤ |εk|+ |ε∗

k |. Both the forms of truncation error and
the propagation error need particular inequalities; see [13, 17].

• Error control. When the simultaneous equations A x = b are asked to be solved,
where A ∈ Rm×n, det A �= 0, x, b ∈ Rn×1, errors may occur in both left- and
right-hand side. These equations can then be written as (A + δ A) (x + δ x) =
b + δ b. Froberg in [13] calculated the relative error εx of the solution x and
proved that it is bounded, i.e.

εx ≤ c

1 − cεmathbf A

(εA + εb),

where c := cond(A) = ‖A‖ ‖A−1‖ is the conditional number of matrix A, and
the corresponding relative errors of A, x, and b are given, respectively, by εA :=
‖δ A‖/‖A‖, εx := ‖δ x‖/‖x‖ and εb := ‖δ b‖/‖b‖. For a number of evaluated
bounds in Numerical Analysis, see [17] among others.
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• Stochastic approximation. For the numerical solution of an equation, there are
numerous methods in literature, with the most popular being the Newton–
Raphson (and its various forms) and, alternatively, the bisection method (in cases
where the differentiation is fairly complicated or not available). The stochastic
approximation method, [17], introduced by Robbins and Monro in [40] provides
a statistical iterative approach for the solution of M(x) = θ, and evaluates
maximum or minimum of a function, since the problem cannot adopt the line
of thought in [37]. If we assume that an experiment is performed with response y

at point x, i.e. y = Y (x), and probability H(y|x) := Pr(Y (x) ≤ y) with expected
value of random variable (r.v.) X (which measures x) of the form E(X) =∫
R y dH(y|x), it is then asked to solve the equation M(x) = θ. Under a certain

number of restrictions (i.e. inequalities), the sequence xn+1 = xn + an(b − yn)

converges to x∗, where x∗ is a solution of M(x∗) = θ, with an being an arbitrary
sequence of real numbers. Kitsos in [22] applied the method for non-linear
models. But why to adopt a Newton–Raphson framework in a statistical point
estimation problem, under certain restrictions, and not the bisection method. The
answer is that: The bisection approach leads to a (minimax) Decision Theory
reasoning, and not to the classical statistical way of thinking; see Theorem 4
in Appendix 2. Stochastic Approximation is a particular method concerning
statistical point estimation. Other methods were also developed; see, for example,
[32, 55] for methods related to epidemiological problems.

3 Main Inequalities in Statistics

As far as the Statistics is concerned, the inequalities are strongly related to the
development of the field. In the following, we present and discuss some widely
used inequalities.

• The Markov inequality. Let X be a non-negative random variable (r.v.) with finite
mean μ. Then, for every non-negative c, it holds

Pr(X ≥ c) ≤ μ
c .

The extra knowledge of variance results the following:
• The Chebyshev’s inequality. Let X be an r.v. with given both finite mean μ and

finite variance σ 2. Then, for every non-negative c, it holds that

Pr(|X − μ| ≥ c) ≤ (σ
c

)2
.

The well-known Jensen’s inequality relates the influence of a convex function
when acting on the expected value operator. In particular:
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• The Jensen’s inequality. Let g be a convex function on a convex subset � ⊆ Rk ,
and suppose that Pr(X ∈ �) = 1. If the expected value E(X) of an r.v. X is finite,
then g

(
E(X)

) ≤ E
(
g(X)

)
.

The Cauchy–Schwartz inequality, mentioned in Sect. 2, is transferred in
Statistics as:

• The Statistical form of the Cauchy–Schwartz inequality. Let X1 and X2 be two
random vectors of the same dimension such that E

(‖Xi‖2
)
, i = 1, 2, are finite.

Then,

E
(
XT

1 X2
) ≤

√
E
(‖X1‖2

)
E
(‖X2‖2

)
.

The Cauchy–Schwarz inequality provides food for thought on how Mathemat-
ics and Statistics communicate. In the following paragraph we discuss the sense
of distance from a probabilistic point of view.

• Distance in Probability Theory. Let (�,A , P ) be a probability space consisting
of the sample space �, the σ -algebra of “events” of �, and the probability

measure P that maps each event to the real interval [0, 1], i.e. A � A
P�→

P(A) ∈ [0, 1]. Recall that A = ⋃
i∈N Ai with Ai

⋂
Aj = ∅, i �= j ,

and
∑

i∈N P(Ai) = 1. The (probability) distance D between two probability
measures P and Q (of the same probability space) is denoted with D(P,Q) and
is defined as D(P,Q) := sup

{∣∣P(A) − Q(A)
∣∣}

A∈A . Note that the mapping D

that assigns a real non-negative number to every pair of probability measures of
� is—indeed—a distance metric. Furthermore, it is easy to see that D(P,Q) ∈
[0, 1] for every P and Q, and the following holds.

Proposition 1 The “exponentiated” distance D∗ of a given bounded distance 0 ≤
D ≤ 1, i.e. D∗(P,Q) := eD(P,Q) − 1, is also a distance metric.

See Appendix 1 for the proof, where the exponential inequality ex ≥ (1 + x/n)n,
x ∈ R, n ∈ N, was applied. We assume now that for every probability measure P

of �, i.e. P ∈ P(�), there is a σ -finite measure μ such that P < μ with P � μ,
i.e. P is absolutely continuous with respect to μ (assuming that P is countable,
μ always exists since μ can be considered as μ := ∑

i 2−iPi). Then, from the
Radon–Nikodym theorem, there exists an integrable function f : A → R such that
P(A) = ∫

A
f dμ, and thus f := dP/ dμ. Therefore, D(P,Q) = ∫

A
|f − g| dμ

with f := dP/ dμ and g := dQ/ dμ. It holds, also, that H 2(P,Q) < D(P,Q),
P,Q ∈ P(�), where H denotes the Hellinger distance defined by H(P,Q)2 :=∫ (√

f − √
g
)2 dμ = 2

[
1 − A(P,Q)

]
, with A(P,Q) := ∫ √

f g dμ being the
affinity between probability measures P and Q. This is true, since H(P,Q)2 <∫ (√

f −√
g
)(√

f +√
g
)

dμ ≤ ∫ |f −g| dμ ≤ D(P,Q) for every P,Q ∈ P(�).
For a study of the Hellinger distance between two generalized normal distributions,
see [25].

• Hypothesis testing for a mean. In principle, if x ∈ Rn×1 is the mean sample
of n observations from the multivariate Normal distribution with mean vector
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μ ∈ Rn×1 and variance–covariance matrix � ∈ Rn×n, the known region

n (x − μ0)
T �−1 (x − μ0) ≥ χ2

p,α,

is a critical region at the confidence level α for testing the hypothesis H : μ =
μ0. As far as the confidence intervals are concerned in a Biostatistics level,
there are different approaches for the Odds Ratio; see [32, 55]. As we have
already mentioned, Statistical Inference is based on point estimation (see [50] for
example) as well as on interval estimation. Note that the interval estimation by
itself introduces the use of inequalities. The Likelihood method is still valid when
the Maximum Likelihood Estimation (MLE), say θ̂, of the unknown parameter
vector θ = (θi) ∈ � ⊆ Rp, with � being the parameter space, is subject to
certain restrictions, say h(θ̂) = 0. The well-known Lagrangian method is then
applied, i.e.

∂

∂θi

[
(θ) − λ h(θ)

] = 0,

with (θ) being the log-Likelihood function with regard to θ, and λ ∈ R the
Lagrange multiplier. In such a case, still the estimate θ̂ follows the (multivariate)
Normal distribution with mean μ = θ and the asymptotic variance–covariance
matrix � = n I−1(θ), i.e. θ̂ ∼ N

(
θ, n I−1(θ)

)
, where I ∈ Rp×p denotes

the Fisher’s information matrix; see the early work of Silvey in [44] among
others. Moreover, Anderson in [1] discussed a number of confidence intervals
concerning Multivariate Statistics, Ferguson in [9] considered a Decision Theory
point of view, while Fortuin et al. in [11] focused on a particular inequality
problem.

Example 1 Let us consider the vector of n observations X = (x1, x2, . . . , xk) which
follows the k-th degree multinomial distribution, i.e.

p(x1, x2, . . . , xk) = n!
x1! x2! . . . xk!θ

x1
1 θ

x2
2 . . . θ

xk

k , with
k∑

i=1

xi = n and
k∑

i=1

θi = 1,

while θi , i = 1, 2, . . . , k, denote the involved parameters. Following, therefore,
the typical procedure for the evaluation of the log-Likelihood under the restriction
h(θ) := (∑

θi

) − 1 = 0, we can evaluate the expected value, variance, and
covariance as

E(xi) = n θi, Var(xi) = n θ1 (1 − θi), and Cov(xi, xj ) = −n θi θj , i �= j,

and hence, the inverse of the Fisher’s information matrix I−1(θ) is the variance–
covariance matrix with elements

(
I−1

)
ii
(θ) = n−1 θi(1 − θi), i = 1, 2, . . . , k, and(

I−1
)
ij
(θ) = n−1 θi θj , i �= j = 1, 2, . . . , k.
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Let c be now an appropriate constant vector for an approximate (1 − α) · 100%.
The confidence interval for cT θ̂ is defined to be the real interval CI

(
cT θ̂

) :=(
cT θ̂ − Kα/2

[
cT I−1

(
θ̂
)

c
]
, cTθ̂ + Kα/2

[
cT I−1

(
θ̂
)

c
])

with θ̂ being an estimate of

θ, and Kα/2 the appropriate value for either standard Normal or t-distribution.
Recalling the previous Example 1, notice that, although we assumed a multinomial
distribution, the common marginal distribution of two components, say xp and
xq , is a trinomial one with xp + xq ≤ n, 1 ≤ p, q ≤ k, p �= q, while the
probability distribution of xp + xq = ξ , ξ = 0, 1, . . . , n, is binomial, since it
is the probability distribution of xi , i = 1, 2, . . . , k, with different parameters;
see also [32] for a special case in epidemiology. Notice also that the components
of the corresponding Fisher’s information matrix, as in Example 1, are non-linear
functions of the unknown parameter vector θ. This creates a real problem regarding
the calculations.

• Sequential Probability Ratio Test (SPRT). The pioneering work of Wald in [52]
was based on changing the probability ratio test; see also [53]. The fundamental
difference is that now there are three regions testing two simple hypothesis H0 :
θ = θ0 vs. H1 : θ = θ1, θ0 �= θ1, there is a “continuation region” and the
sample size is not fixed anymore but a random variable, say n, such that Pr(n <

∞ | θ) = 1. Moreover, the expected value E(n; θ) exists and certain bounds
for this were derived; see [14] for details, while when the average sample size is
less than the appropriate sample size in a random sample see [54]. Usually, we
denote the Operating Character (OC) function as Q(θ) and the power function as
R(θ)

( := 1 − Q(θ), θ ∈ �
)
. For given confidence levels, say α and β, for the

above defined test, it is required that Q(θ0) ≥ 1 − α and Q(θ1) ≤ β. Then, the
logarithm of the probability ratio test at stage n is defined as

Zn := ln
fn(xn; θ1)

fn(xn; θ0)
, n ≥ 1, xn = (x1, x2, . . . , xn).

Based on the SPRT, when two given numbers act as stopping bounds (B,A) with
−∞ < B < A < +∞, these numbers are defined through the decision rule:

1. Accept H0 if Zn ≤ B,
2. Reject H0 if Zn ≥ A, and
3. Continue by examining xn+1, i.e. B < Zn+1 < A.

The inequality B < Zn+1 < A is known as the critical inequality and the test is
denoted by S(B,A). Following Ghosh in [14, Th. 3.2], the following is true.

Theorem 1 The risk errors α(θ0) and β(θ1) associated with the SPRT S(B,A) for
H : θ = θ0 vs. H : θ = θ1, with B < A being any choice of stopping bounds, then
the following inequalities hold:

ln
β(θ1)

1 − α(θ0)
≤ min{0, B}, ln

1 − β(θ1)

α(θ0)
≥ max{0, A}.
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However, the optimum bounds, say (B∗, A∗) have not evaluated and, therefore, the
pair (α, β), α+β < 1, the optimum bounds can be approximated by B∗ ≈ ln β/(1−
α) and A∗ ≈ ln(1 − β)/α.

Example 2 Let x1, x2, . . . be some Bernoulli variables regarding the SPRT with
p being the proportion of successes, i.e. H0 : p ≤ p0 vs. H1 : p ≥ p1, with
0 ≤ p0 < p1 ≤ 1. For each observation xi it is Zi = ln

{
(1 − p1)/(1 − p0)

} +
xi ln

{
p1 (1 − p0)

/[p0 (1 − p1)]
}
. As Zn = ∏n

i=1 zi and Xn = ∑n
i=1 xi then the

critical inequality for S(B∗, a∗) is reduced to K + �n < Xn < M + �n where

K := B∗

ln p1 (1−p0)
p0 (1−p1)

, � := ln 1−p0
1−p1

ln p1 (1−p0)
p0 (1−p1)

, and M := A∗

ln p1 (1−p0)
p0 (1−p1)

,

see [14]. Moreover, the value E(n; p) is also bounded. In particular, S ≤ E(n; p) ≤
T , where

S :=
Q(p)

(
ln 1−p1

1−p0
+ B − A

)
+ A

p ln p1 (1−p0)
p0 (1−p1)

+ ln 1−p1
1−p0

and T :=
Q(p)

(
ln p0

p1
+ B − A

)
+ ln p1

p0
+ A

p ln p1 (1−p0)
p0 (1−p1)

+ ln 1−p1
1−p0

.

• Sequential design methods. The sequential methods are the key for testing more
than two hypotheses. Moreover, they are related to decision problems; see [41].
The inequalities involved to the Decision Theory, their links to the Bayesian
Decision Theory and the evaluated risks are presented in a compact form by [41,
Ch. 3]. The sequential way of thinking has been adopted by Kitsos in [22, 23]
as well by Ford et al. in [10] with regard to optimal non-linear Design Theory.
Moreover, Kitsos proved in [23] that when the initial design is D-optimal, [43],
and a stochastic approximation scheme is used, then the limiting design is also
D-optimal (and hence G-optimal due to the Kiefer’s Equivalence Theorem).
The main results of Wynn in [57, 58] rule the sequential design approach.
The link between the optimal Design Theory and the moment inequalities was
investigated by Torsney in [48], where Hölder’s and Minkowski’s inequalities
were also discussed. If ξ denotes a design measure, [43], and M is the average-
per-observation information matrix M = n−1 I, then it can be written as M(ξ) =
n−1 I(ξ) for the linear case, and M(θ, ξ) = n−1 I(θ, ξ) for the non-linear case,
where matrix I is the Fisher’s information matrix; see [10]. In linear theory, it has
been proved in [56] that M(ξn) → M(ξ∗) when ξn → ξ∗, i.e. when a sequence
of design measures converges to the optimum design, then the corresponding
measures of information “follow” the scheme. That is, when we are not at the
limit, inequalities are hold. This result is similar to the Dominated converge
principle for a sequence of integrable functions, say un converging to u, provided
that an integrable function w such that |un| ≤ w exist, then u is also integrable
and E(un) → E(u). However, this is not true for the non-linear case: there is no
limiting result for M(ξn, θ) or M(ξn, θn). Moreover, in Design Theory there is not
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a similar to the Fatou’s Lemma that E(limn→∞ un) ≤ limn→∞ E(un), un ≥ 0.
In particular, E(u) ≤ limn→∞ E(un) when un → u.

• Linear programming. As far as the linear programming is concerned, the Simplex
method solves linear inequalities problems, such as: evaluate max

{
y = f (x)

}
,

x ∈ Rp, under A xT ≤ bT, where A ∈ Rp×p and b ∈ Rp are known.
Adding the so-called slack variables the inequalities are eventually transformed
into equalities.

4 Inequalities in Probability Theory

In this section we present some essential inequalities used in Probability Theory, in
order to clarify the importance of these inequalities to all the fields of Statistics.

• Renewal Theory. From the Renewal Theory [20], consider the elapsed number of
generation, say T (0), known also as a generation of equal components. Then for
a finite population of constant size N , it can be proved that E

(
T (0)

) ≤ NN .
• Doob’s martingale. Recall that a stochastic process {Xn}n∈N is called a martin-

gale with respect to {Yn}n∈N if E
{|Yn|

}
< ∞ and E

(
Xn+1(Y0, Y1, . . . , Yn)

) =
Xn, n ∈ N. In such a case, the “existing history” determines xn in terms that,
eventually, E(Xn) = E(Xn+1| Y0, Y1, . . . , Yn) = E(X0) for every n ∈ N. As
far as the Doob’s Martingale Process is concerned, the inequality is requested
in its definition, as well as for the Radon–Nikodym derivatives; see [8]. Indeed,
for a given r.v. X with E(|X|) < ∞, and for an ordinary sequence of r.v.-s,
say Y0, Y1, . . . , Yn, then from Xn := E(X | Y0, Y1, . . . , Yn), n ∈ N, a martingale
structure {Xn} with respect to {Yn}, is obtained when E(|Xn|) ≤ E(|X|) < ∞ and
E(Xn+1 | Y0, Y1, . . . , Yn) = Xn, known as Doob’s process. Suppose, now, that
U is a uniformly distributed r.v. on [0, 1]. We define Yn = k/2n, k = k(n,U),
unique such that k/2n ≤ U ≤ (k + 1)/2n. Then, process {Xn} defined as
Xn := 2n

[
g(Yn + 2−n) − g(Yn)

]
for g|[0, 1] bounded forms a martingale; see

[20]. Moreover, the sequence Xn is known as the Radon–Nikodym derivative of
g evaluated at U .

• Crossing inequality. One of the well-known inequalities in Stochastic Process
Theory, strongly related to Sequential Analysis, is the so-called Crossing Inequal-
ity. It counts the number of times a sub-martingale {Xn}, with respect to a
sequence {Yn}, crosses a given interval (a, b) ⊆ R. That is, the number of
crosses, say Na,b, from the level below a to a level above b. In fact, Na,b is
the number of pairs (i, j) such that Xi ≤ a and Xj ≥ b with a < Xk < b,
0 ≤ i < j ≤ Nj , i < k < j . For sub-martingales {Xn} with given T and T ′
Markov times and q ∈ Z with 0 ≤ T ≤ T ′ ≤ q, then E(XT ) ≤ E(XT ′). The
Crossing Inequality is then formulated by E(Na,b) ≤ (

E
[
(XN −a)+

]−E
[
(X0−

a)+
])

/(b − a). For the backward martingale {Xn}n=0,−1,−2,... with respect to a
σ -field Fn, n = 0,−1,−2, . . . (generated by some jointly distributed r.v.-s), the
Crossing Inequality is reduced to E(Na,b) ≤ E

[
(X0 − a)+

]
/(b − a) with the
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only new restriction N ≤ i < j ≤ 0. For a given martingale {Xn} satisfying
E
(|Xn|k

)
< ∞ for every k > 1 and n ∈ N, it can be proved that

E

(
max

0≤r≤n

{|Xr |
}) ≤ k

k−1 E
(|Xk|k

)1/k and E

(
max

0≤r≤n

{|Xr |k
}) ≤ (

k
k−1

)k E
(|Xn|k

)
,

see [20] for details. When restrictions are imposed to expected value and
variance, i.e. E(Xn) = 0 and hence σ 2 = E(X2

n) < ∞ for every n, then

Pr
(

max
0≤r≤n

{|Xr |
}

> k
)

≤ σ 2

σ 2+k
, k > 0.

• Chebyshev’s and Kolmogorov’s inequalities. Chebyshev’s Inequality provides
food for thought when an extension, known as the Kolmogorov’s Inequality, is
considered. For given two independent and identically distributed (i.i.e.) r.v-s
X1, X2, . . . , with mean μ = E(Xi) = 0 and variance σ 2 = E(X2

i ) < ∞,
i = 1, 2, . . . , we define Sn = X1 + X2 + · · · + Xn, n = 1, 2, . . . , and S0 = 0.
Then, Chebyshev’s Inequality is formulated by

ε2 Pr
(|Sn| > ε

) ≤ n σ 2 = Var(Sn),

while Kolmogorov’s Inequality is written as

ε2 Pr
(

max
k≤n

{|Sk|
}

> ε
)

≤ n σ 2 = Var(Sn).

• Maximal inequalities. A number of inequalities are based on Kolmogorov’s
Inequality for the (sub-)martingales, and are known as the Maximal Inequalities;
see [8, 20].

1. Let {Xn} be a martingale and k ≥ 0. Then, k Pr
(

max0≤r≤n

{|Xr |
}

> k
) ≤

E
({|Xn|

})
.

2. Let {Xn} be a sub-martingale with Xn ≥ 0, n ∈ N, and k ≥ 0. Then,
k Pr

(
max0≤r≤n{Xr} > k

) ≤ E
({Xn}

)
.

3. When {Xn}n=0,−1,−2,... is a backward martingale with respect to a σ -field,
say Fn, n = 0,−1,−1, . . . , generated by some jointly distributed r.v.-s
{Yn, Yn−1, . . . }, then k Pr

(
max0≤r≤n{Xr} > k

) ≤ E
({X0}

)
.

4. Let {Xn} be a martingale. Then, k Pr
(

min0≤r≤n{Xr} < −k
) ≤ E

({X+
n } −

E(X0)
)
.

5. Let {Xn} be a super-martingale with Xn ≥ 0, n ∈ N. In such a case,
k Pr

(
max0≤r≤n{Xr} ≥ k

) ≤ E(X0)
)
.

The above inequalities from the Probability Theory provide evidence of how
really useful inequalities can be, in terms of offering bounds, for most of the
involved “sequences,” such as martingales. In the next section, we present the
existence of certain bounds related to information measures.
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• Distance in navigation. Franceschetti and Meester in [12], working in similar line
of thought as in [42] and [35], consider the Euclidian distance between a source
point and a target, in navigation in random networks, and presented a number of
interesting inequalities for the ε-delivery time of a decentralized algorithm. This
refers to the number of steps required for the message, originating at point s to
reach an ε-neighborhood of point t . Moreover, working on network topology,
they introduced a new distance measure, the chemical distance between two
points x and y (and by considering the existence of a path connecting x with y),
with a number of inequalities obtained through Probability Theory: for a random
grid and given points x and y, probability assigned to be 1 if |x − y| = 1, and
1 − exp

( − β/|x − y|a) if |x − y| > 1, a, b > 0. Their results are related
to the percolation models; see [18, 31]. Although the evolution of ideas from
Shannon’s work in [42] to Navigation in Random Networks is important, it has
attracted the interest of Engineers rather than Mathematicians, as the former pay
more attention to the information flow in random networks; see [45]. We present
here an important—in our opinion—inequality related to the Phase Transition:
There is an interest to express positive correlations between increasing events,
say A and B, so that Pr(A∩B) ≥ Pr(A) Pr(B); see [18, 31]. Then, for increasing
events A1, A2, . . . , An, all having the same probability, it holds that

1 −
[

1 − Pr

(
n⋃

i=1

Ai

)]1/n

≤ Pr(A1).

Indeed, due to Pr(A ∩ B) ≥ Pr(A) Pr(B) and some set-theoretic algebra,

1 − Pr

(
n⋃

i=1

Ai

)

= Pr

(
n⋂

i=1

Ai

)

≥
n∏

i=1

Pr
(
Ac

i

) = [
Pr
(
Ac

i

)]n = [
1 − Pr(A1)

]n
,

since we assumed that Pr(Ai) = Pr(Aj ), i �= j = 1, 2, . . . , n.

5 Information Measures and Inequalities

In the following we shall try to investigate certain bounds concerning generalized
entropy type information measures from the Information Theory.

New entropy type information measures were introduced in [24], generalizing
the known Fisher’s entropy type information measure; see also [5, 26–29, 49]. The
introduced new entropy type measure of information Jα(X) is a function of the
density f of the p-variate random variable r.v. X defined as, [24],

Jα(X) := E
(∥∥∇ log f (X)

∥∥α
)

=
∫

Rp

f (x)
∥∥∇ log f (x)

∥∥α dx, α > 1, (4)
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where ‖ · ‖ is the usual two-norm of L 2(Rp). Notice that J2 = J , with J being the
known Fisher’s entropy type information measure.

In his pioneering work [42], Shannon introduced the notion of Entropy in an
Information Theory context giving a new perspective to the study of Information
Systems, Signal Processing and Cryptography among other fields of application.
Shannon entropy, or differential entropy, denoted by H(X), measures the average
uncertainty of an r.v. X and is given by

H(X) := − E
(

log f (X)
) = −

∫

Rp

f (x) log f (x) dx, (5)

with f being the probability density function (p.d.f.) of r.v. X; see [6, 42]. In
Information Theory, it is the minimum number of bits required, on the average,
to describe the value x of the r.v. X. In Cryptography, entropy gives the ultimately
achievable error-free compression in terms of the average codeword length symbol
per source; see [21] among others.

For the Shannon entropy H(X) of any multivariate r.v. X with zero mean vector
and covariance matrix �, an upper bound exists,

H(X) ≤ 1
2 log

{
(2π e)p| det �|}, (6)

where the equality holds if and only if X is a normally distributed r.v., i.e. X ∼
N (0,�); see [6]. Note that the Normal distribution is usually adopted as the
description variable for noise, and acts additively to the input variable when an
input–output discrete time channel is formed. The known entropy power, dented
by N(X), and defined through the Shannon entropy H(X), has been extended to

Nα(X) := να exp
{

α
p

H(X)
}
, (7)

where

να := (
α−1

e

)
π−α/2

⎡

⎣ �
(p

2 + 1
)

�
(
p α−1

α
+ 1

)

⎤

⎦

α
p

, α > 1, (8)

see [24] for details. Notice that ν2 = (2πe)−1 and hence N2 = N . It can be proved
that [24],

Jα(X)Nα(X) ≥ p, α > 1, (9)

which extends the well-known Information Inequality, i.e. J (X)N(X) ≥ p,
obtained from (9) by setting α := 2.
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The so-called Cramér–Rao Inequality, [6, Th. 11.10.1], is generalized due to the
introduced information measures, [24], and is given by

√
2π e
p

Var(X)
[

να

p
Jα(X)

]1/α ≥ 1, α > 1. (10)

When α := 2 we have Var(X) J2(X) ≥ p2, which is the known Cramér–Rao
inequality, Var(X) J (X) ≥ 1 for the univariate case. The lower boundary Bα for
the introduced generalized information Jα(X) is then

p
να

[
2π e
p

Var(X)
]−α/2 =: Bα ≤ Jα(X), α > 1. (11)

Finally, the classical Entropy Inequality,

Var(X) ≥ p N(X) = p
2π e exp

{
2
p

H(X)
}
, (12)

can be extended, adopting the extended entropy power as in (7), to the general form

Var(X) ≥ p
2π eν

−2/α
α N2/α

α (X), α > 1. (13)

Under the “normal” parameter value α := 2, inequality (13) is reduced to (12).
The Blachman–Stam Inequality [2, 3, 47] is generalized through the generalized

Jα measure. Indeed: For given two independent r.v.-s X and Y of the same
dimension, it holds

Jα

(
λ1/αX + (1 − λ)1/αY

)
≤ λJα(X) + (1 − λ)Jα(Y ), λ ∈ (0, 1),

where the equality holds for X and Y normally distributed r.v.-s with the same
covariance matrix; see [26] for the proof. For parameter value α := 2 we are reduced
to the well-known Blachman–Stam Inequality, since J2 = J .

Let now X1, X2, . . . , Xn be some n independent and identically distributed
(i.i.d.) univariate random variables with mean 0 and variance σ 2, having density
function f (x) satisfying Poincaré conditions with finite restricted Poincaré constant
c

P
. If φ(x) denotes the corresponding probability density of N

(
0, σ 2

)
, then the

Fisher’s information distance (or standardized information) of some univariate r.v.
X (with mean 0 and variance σ 2) is defined to be

Jφ(X) := σ 2 E
[

d
dx

log f (X) − d
dx

log φ(X)
]2 = σ 2 J (X) − 1,

with J being the known Fisher’s (entropy type) information. Notice that Jφ(λ X) =
Jφ(X), so Jφ is scale invariant and, moreover, provides a measure of distance
of “how far f (x) is from normality,” i.e. from φ(x). Then, for the sum Yn :=(√

nσ
)−1 ∑n

i=1 Xi , it can be proved that for every n
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J (Yn) = 2c
P

2c
P

+ (n − 1)σ 2 J (X1).

Moreover, if φ(x) represents the probability density of the standard Normal
distribution, then it holds that

sup
x∈R

{∣∣f (x)−φ(x)
∣∣} ≤ (

1+√
σ/π

)√
J (X),

∫

R

∣∣f (x)−φ(x)
∣∣ dx ≤ 2H(f, φ) ≤ √

2J (X),

with H 2(f, φ) :=
∫ ∣∣√f (x) − √

φ(x)
∣∣2 dx being the Hellinger distance between

densities f and φ; see [19] for details.

6 The Generalized Normal (GN) Distribution

The Logarithmic Sobolev Inequalities (LSI) attempt to estimate the lower-order
derivatives of a given function in terms of higher-order derivatives. The well-known
LSI was introduced in 1938 and translated in English 1963 as appeared in [46]; see
also [16, 26] for details. The introductory and well-known Sobolev Inequality (SI)
is of the form

( ∫

Rp

|f (x)| 2p
p−2 dx

) p−2
2p ≤ cS

( ∫

Rp

|∇f (x)|2 dx

) 1
2

, (14)

or, using the two-norm notation, ‖f ‖q ≤ cS‖∇f ‖2, with the constant cS > 0 is
known as the Sobolev constant.

Kitsos and Tavoularis [24] introduced and studied an exponential-power gener-
alized form of the multivariate Normal distribution, denoted as Nγ (μ,�), μ ∈ Rp

and � ∈ Rp×p, called the γ -order Generalized Normal (γ -GN) distribution; see
also [27, 28] for further reading. The derivation of this three-parameter extended
Normal distribution came up an extremal of a generalized Euclidian LSI introduced
by Del Pino et al. in [7], which can be written as

∫

Rp

|u|γ log |u| dx ≤ p

γ 2 log

{
Kγ

∫

Rp

|∇u|γ dx
}

, (15)

where u = u(x), x ∈ Rp, belongs to the Sobolev space H 1/2(Rp) with ‖u‖γ =∫
Rp |g(x)|γ dx = 1. The optimal constant Kγ is being equal to

Kγ := γ
p

( γ−1
e

)γ−1
π−γ /2

[
�(

p
2 + 1)

�
(
p

γ−1
γ

+ 1
)

]γ /p

. (16)
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The equality in (15) holds, [24], when u is considered to be the p.d.f. of an r.v. X

following γ -GN distribution as defined below.

Definition 1 The p-variate random variable X follows the γ -order generalized
Normal (γ -GN) distribution, i.e. X ∼ Nγ (μ,�), with location parameter vector
μ ∈ Rp, shape parameter γ ∈ R \ [0, 1], and positive definite scale parameter
matrix � ∈ Rp×p, when the density function fX of X is of the form

fX(x) = fX(x; μ,�, γ, p) := C(�) exp
{
− γ−1

γ
Q(x)

γ
2(γ−1)

}
, x ∈ Rp,

(17)
where Q is the p-quadratic form Q(x) = Q(x; μ,�) := (x − μ)�−1(x − μ)T,
x ∈ Rp, while the normalizing factor C is defined as

C(�) = C(�; γ, p) := �
(p

2 + 1
)

πp/2 �
(
p

γ−1
γ

+ 1
)√|�|

( γ−1
γ

)p γ−1
γ , (18)

where |�| denotes the determinant det � of the scale matric � ∈ Rp×p.

From the p.d.f. fX as above, notice that the location vector of X is essentially the
mean vector of X, i.e. μ = μX := E(X). Moreover, for the shape parameter value
γ = 2, N2(μ,�) is reduced to the well-known multivariate normal distribution,
where � is now the covariance of X, i.e. Cov X = �. Recall that

Cov(X) =
�
(
(p + 2)

γ−1
γ

)

p �3
(
p

γ−1
γ

)
( γ

γ−1

)2 γ−1
γ �, (19)

for the positive definite scale matrix �; see [28].
Note that there are several other exponential-power generalizations of the usual

Normal distribution, see [4, 15, 34], and [59] among others. Those generalizations
are technically obtained and, thus, they have no specific physical interpretation. On
the contrary, the γ -GN distribution has a strong information-theoretic background.
Indeed, the most significant fact about the γ -GN family is that—at least for the
spherically contoured case—acts to the generalized Information Inequality, the same
way as the usual Normal distribution acts (i.e. providing equality) to the usual
Information Inequality. In fact, the generalized form of the Information Inequality
in (9) is reduced to equality for every spherically contoured γ -order normally
distributed r.v., as it holds that Jα(X)Nα(X) = p for X ∼ Nα

(
μ, σ 2Ip

)
; see

[24, Cor. 3.2] for details. Moreover, the equality in the generalized Cramér–Rao
Inequality as in (10) is achieved for r.v. X following the γ -GN distribution as
above, i.e. it behaves the same way the usual Normal distribution does on the
usual Cramér–Rao inequality. Indeed, using the fact that Jα(X)Nα(X) = p holds
for X ∼ Nα

(
μ, σ 2Ip

)
, as well as the extended Entropy Inequality as in (13),

the equality of (10) can then be deduced, for the spherically contoured case; see
also [26].
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The family of multivariate γ -GN distributions, i.e. the family of the elliptically
contoured γ -order generalized Normals, provides a smooth bridging between some
important multivariate (and elliptically countered) distributions. Indeed:

1. Case γ := 0. For the limiting case when the shape parameter γ → 0−, the
degenerate Dirac distribution D(μ) with pole at point μ ∈ Rp is derived for
dimensions p := 1, 2, while for p ≥ 3 the corresponding p.d.f. “vanishes,” i.e.
fX ≡ 0 for X ∼ N0(μ,�).

2. Case γ := 1. For the limiting case when γ → 1+, the elliptically contoured
Uniform distribution U (μ,�) is obtained, which is defined over the p-ellipsoid
Q(x) ≤ 1, x ∈ Rp.

3. Case γ := 2. For the “normality” case of γ := 2 the usual p-variate Normal
distribution N (μ,�) is obtained.

4. Case γ := ±∞. For the limiting case when γ → ±∞ the elliptically contoured
Laplace distribution L (μ,�) is derived.

See [28] for details. Therefore, one of the merits of the γ -GN family is that it can
provide “heavy-” or “light-tailed” distributions as the change of shape parameter γ

influences the “amount” of probability at the tails.

7 Information Divergencies

The informational divergence between two r.v.-s is usually calculated through the
Kullback–Leibler (KL) divergence, which is acting as an “discrimination” measure
of information. Recall that the KL divergence (also known as relative entropy),
usually denoted by DKL(X‖Y ), of an r.v. X over an r.v. Y (of the same dimension),
measures the amount of information “gained” when r.v. Y is replaced by X (say in
an I/O system), and is defined by, [6],

DKL(X‖Y ) :=
∫

fX log
fX

fY

, (20)

where fX and fY denote the corresponding density functions of r.v.-s X and Y .
In this section, we shall investigate the KL divergence measure of the multivariate

γ -order normally distributed X ∼ Nγ (μ1,�1) over the multivariate tν-distributed
Y ∼ tν(μ2,�2); see [51] for the univariate case. Recall the p.d.f. fY of the
multivariate (and scaled) tν-distributed r.v. Y with ν ≥ 1 degrees of freedom, mean
vector μ2 ∈ Rp, and scale matrix �2 ∈ Rp×p, which is given by

fY (y) = fY (y; μ2,�2, ν) := C2

[
1 + 1

ν Q2(y)
]− ν+p

2
, y ∈ Rp, (21)
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with normalizing factor

C2 = C2(�2; ν, p) := (π ν)−p/2 �
( ν+p

2

)

�
(

v
2

)√|�2| , (22)

and p-quadratic form Q2(y) := (y − μ2)�−1
2 (y − μ2)

T, y ∈ Rp. Note that
parameter ν can be also a positive real R+ � ν ≥ 1.

The following theorem provides an upper bound for the “gained” information
when the tν-distribution is replaced by a γ -GN distribution. Note that we often
rely on inequalities when it comes to the calculation of information divergencies
(including KL) between certain r.v.-s, since the integrals involved cannot usually be
solved in a closed form.

Theorem 2 The KL divergence DKL := DKL(X‖Y ), of a multivariate spherically
contoured γ -order normally distributed r.v. X ∼ Nγ

(
μ, σ 2

1 Ip

)
over a tν-distributed

r.v. Y ∼ tν
(
μ, σ 2

2 Ip

)
, of the same mean μ ∈ Rp, has the following upper bound,

DKL ≤ log K + p
(

log σ2
σ1

− γ−1
γ

)
+ ν+p

2ν

(
σ1
σ2

)2 ( γ
γ−1

)2 γ−1
γ

�
(
(p + 2)

γ−1
γ

)

�
(
p

γ−1
γ

) ,

(23)
where

K = K(γ, ν, p) := νp/2 �
(p

2

)
�
(

ν
2

)

2 �
(
p

γ−1
γ

)
�
( ν+p

2

)
( γ−1

γ

)p γ−1
γ

−1
. (24)

Proof From the definition of the KL divergence (20) and the probability densities
fX and fY , as in (17) and (21), with K , C1, and C2 are defined as in (24), (18),
and (22), respectively, while Qi(x) := (x − μ)�−1

i (x − μ)T, x ∈ Rp, i = 1, 2,
with �1 := σ 2

1 Ip, �2 := σ 2
2 Ip, it holds

DKL = C1

[(
log K + p log σ2

σ1

)
I1 − g I2 + p+ν

2 I3

]
, (25)

where

I1 :=
∫

Rp

exp

{
−g

∥∥∥x − μ
σ1

∥∥∥
1/g

}
dx

I2 :=
∫

Rp

exp

{
−g

∥∥∥x − μ
σ1

∥∥∥
1/g

}∥∥∥x − μ
σ1

∥∥∥
1/g

dx, and

I3 :=
∫

Rp

exp

{
−g

∥∥∥x − μ
σ1

∥∥∥
1/g

}
log

(
1 + 1

ν

∥∥∥x − μ
σ2

∥∥∥
2
)

dx,
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and g = g(γ ) := (γ − 1)/γ . Applying the linear transformation z = z(x) :=
gg (x − μ)/σ1, x ∈ Rp, with dx = g−p g σ

p

1 dz, the above three multiple integrals
are then written as

I1 = g−p g σ
p

1

∫

Rp

e−‖z‖1/g

dz, (26a)

I2 = g−p gσ
p

1

∫

Rp

‖z‖1/g e−‖z‖1/g

dz, and (26b)

I3 = g−p g σ
p

1

∫

Rp

e−‖z‖1/g

log
(

1 + g−2g

ν

(σ1
σ2

)2‖z‖2
)

dz. (26c)

Applying then the known integrals

∫

Rp

e−‖z‖β

dz = 2πp/2 �
(p

β

)

β �
(p

2

) and
∫

Rp

‖z‖β e−‖z‖β

dz = p
β

∫

Rp

e−‖z‖β

dz,

(27)
with β ∈ R∗+ := R+ \ {0}, integrals (26a) and (26b) are then calculated as

I1 = g−p g σ
p

1
2πp/2

�(p/2)
g �(p g) and I2 = p g I1, (28)

, respectively. Thus, (25) is reduced to

DKL = C1

(
log K + p log σ2

σ1
− p g

)
I1 + p+ν

2 C1 I3.

Substituting I1 from (28) and using C1 from (18), and applying the Gamma function
additive identity, the above is reduced to

DKL = log K + p
(

log σ2
σ1

− g
)

+ p + ν

4
(√

π σ1
)p

�(p/2)

�(p g)
gp g−1 I3. (29)

Notice that the function in the integral of (26c) is positive, and so, using the known
logarithmic inequality log(x + 1) ≤ x, x > −1, relation (26c) implies

I3 ≤ g−(p+2) g σ
p+2
1

ν σ 2
2

∫

Rp

‖z‖2 e−‖z‖1/g

dz. (30)

We calculate now the first and the third integral of the above inequality by
switching to hyperspherical coordinates, while the second integral is calculated
using the relation first of (27). Recall the known hyperspherical transformation
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Hp : Sp → Rp, where Sp := R+ × [0, π)p−2 × [0, 2π), in which Sp �
(ρ, ϕ1, ϕ2, . . . , ϕp−1)

Hp�−→ (z1, z2, . . . , zp) ∈ Rp, is given by

z1 = ρ cos ϕ1, (31a)

zi = ρ sin ϕ1 sin ϕ2 · · · sin ϕi−1 cos ϕi, i = 2, 3, . . . , p − 1, (31b)

zp = ρ sin ϕ1 sin ϕ2 · · · sin ϕp−2 sin ϕp−1, (31c)

where ρ ∈ R+, ϕ1, ϕ2, . . . , ϕp−2 ∈ [0, π), and ϕp−1 ∈ [0, 2π). It holds that
‖z‖2 = z2

1 + z2
2 + · · · + z2

p = ρ2, z ∈ Rp, while the volume element dz =
dz1 dz2 · · · dzp of the p-dimensional Euclidean space is given in hyperspherical
coordinates as

dz = J(Hp) dρ dϕ1 · · · dϕp−1 = ρp−1

⎛

⎝
p−2∏

k=1

sinp−k−1 ϕk

⎞

⎠ dρ dϕ1 · · · dϕp−1,

(32)
where J(Hp) is the Jacobian determinant of the transformation Hp, i.e.

J(Hp) :=
∣∣∣∣det

∂(z1, z2, . . . , zp)

∂(ρ, ϕ1, . . . , ϕp−1)

∣∣∣∣ = ρp−1 sinp−2 ϕ1 sinp−3 ϕ2 · · · sin ϕp−2,

(33)
Moreover, the volume element of the (p − 1)-sphere is given by

dp−1V = sinp−2 ϕ1 sinp−3 ϕ2 · · · sin ϕp−2 dϕ1 dϕ2 · · · dϕp−1.

Thus the corresponding volume is then Vp−1 = 2πp/2/�(p/2). Therefore, the
multiple integral in (30) is transformed to

I :=
∫

Rp

‖z‖2 e−‖z‖1/g

dz = Vp−1

∫

R+
ρ2 ρp−1 e−ρ1/g

dρ. (34)

Applying the transformation u = u(ρ) := ρ1/g , ρ ∈ R+, with dρ = gug−1 du, the
integral (34) is then calculated, via the definition of the Gamma function, as

I = g Vp−1

∫

R+
u(p+2) g−1 e−u du = g Vp−1 �

(
(p + 2) g

)
, (35)

hence, the inequality (30) is then reduced to

I3 ≤ 2g1−(p+2) g πp/2 σ
p+2
1 �

(
(p + 2) g

)

ν σ 2
2 �(p/2)

. (36)

Applying (36) to (29) we finally derive the upper bound of DKL as in (23).
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Consider now the (multivariate) Normal distribution instead of the tν distribution.
Then, following Theorem 2, we can derive an exact form of the KL divergence of the
γ -GN over the usual Normal distribution, extending the corresponding univariate
result in [51]. Note that, in order to achieve this result, the inequality proved in
Theorem 2 is studied in limit, showing that the upper bounds in (23) increase along
with the degrees of freedom ν of the tν-distribution, until they reach a supremum.
Hence, when ν tends to infinity we are approaching normality as well as equality
for (23).

Theorem 3 The KL divergence of a p-variate r.v. X ∼ Nγ

(
μ, σ 2

1 Ip

)
, μ ∈ Rp,

σ > 0, over a p-variate normally distributed r.v. N ∼ N
(
μ, σ 2

2 Ip

)
, is given by

DKL(X‖N) = log

{
2p/2−1 �(p/2)

�
(
p

γ−1
γ

)
( γ−1

γ

)p γ−1
γ

−1

}

+ p
(

log σ2
σ1

− γ−1
γ

)
+

( γ
γ−1

)2 γ−1
γ
(σ1
σ2

)2 �
(
(p + 2)

γ−1
γ

)

2 �
(
p

γ−1
γ

) . (37)

Proof Firstly, by substituting of (26c) to (29), we obtain

DKL(X‖Yν) = log K + p
(

log σ1
σ2

− g
)

+ �(p/2)

4πp/2g �(pg)
I, (38)

where g := (γ − 1)/γ , Yν ∼ tν
(
μ, σ 2

2 Ip

)
, ν ∈ N∗, and

I :=
∫

Rp

e−‖z‖1/g

log

{
1 + 1

ν

(σ2
σ1

)2
g−2g‖z‖2

}p+ν

dz. (39)

For the KL divergence of X ∼ Nγ

(
μ, σ 2

1 Ip

)
over the p-variate normally distributed

r.v. N ∼ N
(
μ, σ 2

2 Ip

)
, it holds that DKL(X‖N) = limν→∞ DKL(X‖Yν), as

the scaled spherically contoured tν
(
μ, σ 2

2 Ip

)
distribution is, in limit, the normal

distribution N
(
μ, σ 2

2 Ip

)
when ν → ∞. As a result, the sequence

bν := νp/2 �(ν/2)

�
( ν+p

2

) , ν, p ∈ N∗, (40)

converges to 2p/2 as ν → ∞, since limν→∞ fYν = fN , where fYν and fN are the
probability densities of the tν-distributed r.v. Yν and the normally distributed r.v. N ,
respectively. Indeed, bν → 2p/2, as ν → ∞, due to the fact that the normalizing
factor C2(σ

2
2 Ip) of fYν converges to the normalizing factor C1(σ

2
2 Ip) of fN , i.e. (18)

and (22) yield π−p/2 limν→∞ b−1
ν = (2π)−p/2, or equivalently limν→∞ bν = 2p/2.

Therefore, substituting C2(σ
2
2 Np) from (18) into (38), and then computing the

limit for ν → ∞, we derive, using the limit in (40) as well as the well-known
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exponential limit limν→∞(1 + ν−1)ν = e, that

DKL(X‖N) = log

{
2(p/2)−1 �(p/2)

�(p g)
gp g−1

}
+p

(
log σ2

σ1
−g

)
+ �(p/2)

4πp/2 g �(p g)
I,

(41)
where

I = (σ1
σ2

)2
g−2g

∫

Rp

‖z‖2 e−‖z‖1/g

dz. (42)

Calculating the above integral (42) with the help of (27), we derive

I = 2πp/2

�(p/2)

(σ1
σ2

)2
g1−2g �

(
(p + 2)g

)
.

By substitution in (41), we finally obtain (37) using the known Gamma function
additive identity, i.e. �(x + 1) = x �(x), x ∈ R∗+.

The following investigates the order behavior of the upper bounds in (23).

Proposition 2 When the degrees of freedom ν ∈ N∗ rise, the upper bound value,
say Bγ,ν of (23) approximate better the KL divergence DKL for all parameters γ ∈
R\[0, 1]. Furthermore, for the univariate and the bivariate case, the corresponding
bounds Bγ,ν have a strict descending order converging to the DKL measure of r.v.
X ∼ Nγ

(
μ, σ 2

1 Ip

)
over the normally distributed r.v. N ∼ N

(
μ, σ 2

2 Ip

)
as v rises,

i.e. Bγ,1 < Bγ,2 < · · · < Bγ,∞ = DKL(X‖N) for p = 1, 2.

Proof Consider the sequence aν := (ν + 1)/ν, nu ∈ N∗. Then aν and bν , as
in (40), converge both to 1 as ν → ∞. Considering the bounds Bγ,ν as in (23)
when ν → ∞, it holds that Bγ,∞ approaches the KL divergence as in (37). Thus,
the equality in (23) is obtained in limit as ν → ∞, i.e. DKL(X‖N) = Bγ,∞, and
therefore the bounds Bγ,ν approximate better the KL divergence DKL(X‖Y ) as v

rises, until Bγ,ν coincides eventually with DKL of Theorem 3 for all parameter γ

values.
Especially for the bivariate case of p := 2, the sequence bν is constant, i.e.

bν = 2, ν ∈ N∗, while for univariate case of p := 1, sequence bν is descending
with bν ≥ limν→∞ bν = √

2. Indeed,

b2ν+1

b2ν

= 1
ν

√
2ν+1

2ν

�2
(
ν + 1

2

)

�2(ν)
, ν ∈ N∗.

By applying the known result of Gamma function,

�
(
k + 1

2

) = (2k−1)!!
2k

√
π = (2k)!

22k k!
√

π, k ∈ N, (43)

we obtain
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b2ν+1

b2ν

= π ν

√
2ν+1

2ν

[
(2ν)!

22ν (ν!)2

]2

. (44)

Finally, utilizing the known bounds for the factorial in (1), the ratio in (44) is less
than 1, as

b2ν+1

b2ν

≤ e2

4π

√
2ν+1

2ν
≤ e2

4π

√
3
2 ≈ 0.72015 < 1.

Therefore, for dimensions p = 1 and p = 2, and from the form of bounds in
Theorem 23, we derive that Bγ,1 < Bγ,2 < · · · < Bγ,∞. That is, as tv-distribution
approaches the Normal distribution (as ν → ∞), the bounds Bγ,ν have a strictly
descending order converging to Bγ,∞, i.e. to DKL(X‖N).

8 Discussion

Inequalities cover all the Mathematical disciplines, either as bounds to different
quantities or measures—with typical example being the error control, as described
in Sect. 2, or confidence intervals in Sect. 3—or as an attempt to compare different
measures, like the notion of distance in Probability Theory, the SPRT method in
Sect. 3, the various forms of triangle inequality given in Sect. 2, or in Information
Theory as discussed in Sects. 5, 6 and 7. There are cases were the inequalities are
involved either in definition, as in SPRT, or imposed as restriction to the developed
theory, as in Stochastic Approximation. In Statistics, inequalities are often related
with the interval estimation for the estimated parameters, usually through the
Maximum Likelihood methodology. Sequences under imposed assumptions create
different approaches in Statistics, with the main ones being the Sequential approach
and the Stochastic processes.

A number of inequalities were presented in this paper. For example, consider the
maximal inequalities in Sect. 4, or the Crossing Inequality that measures the times
we can exceed the imposed bounds in a stochastic process; in the SPRT case, if
this happens once, the method stops. Similar inequalities can also be considered
under different lines of thought, with typical example being the Cauchy–Schwarz
inequality in Sect. 2, which can be also be transferred and used in Statistics as shown
in Sect. 3.

The inequalities in Information theory are more “mathematically oriented” and
well-known bounds have been extended, with typical examples being the Informa-
tion Inequality, the Cramér–Rao Inequality, or the Blachman–Stam Inequality. The
upper bound of the Kullback–Leibler divergence, as proved in Sect. 7, is essential,
we believe in the sense that offers a way of approximating “how far” can be the
family of the generalized Normal distributions from the multivariate Student’s t-
distribution, since the involved integrals cannot be computed in a closed form.
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Moreover, Proposition 2 gives us an idea of how those bounds behave in relation
to the degrees of freedom of the considered t-distribution.

This paper can also be considered as an attempt to increase the existed inequality
problems, collected by Rassias in [38].

Appendix 1

Proof of Proposition 1 It is easy to see that D∗ satisfies the positive-definiteness and
symmetricity conditions, and therefore—in order to prove that D∗ is indeed a proper
distance metric—the triangle inequality (or subadditivity) must be fulfilled. For this
purpose, three arbitrary probability measures P,Q,R ∈ P(�) are considered.
Applying the exponential inequality ex ≥ (1 + x/n)n, x ∈ R, with n := 3, to
the definition of D∗, we get

D∗(P, Q)+D∗(Q, R) = eD(P,Q) + eD(Q,R) −2 ≥
[
1+ 1

3 D(P, Q)
]3 +

[
1+ 1

3 D(Q, R)
]3 −2,

and using the simplified notations a := D(P,Q), b := d(Q,R) and c := d(P,R),

D∗(P,Q) + D∗(Q,R) ≥ 1
27

(
a3 + b3) + 1

3

(
a2 + b2) + a + b

= 1
27 (a + b)3 − 1

9a b (a + b) + 1
3 (a + b)2 − 2

3a b + a + b

≥ 1
27 (a + b)3 − 1

36 (a + b)3 + 1
3 (a + b)2 − 1

6 (a + b)2 + a + b

≥ 1
3c3 + 1

6 c2 + c, (45)

where the triangle inequality of metric D was used as well as the inequality
√

ab ≤
1
2 (a +b), a, b ∈ R+. By expressing D in terms of D∗, through the definition of D∗,
relation (45) yields

D∗(P,Q)+D∗(Q,R) ≥ 1
3 log3(1+D∗(P,R)

)+ 1
6 log2(1+D∗(P,R)

)+log
(
1+D∗(P,R)

)
.

(46)
Consider now the function f (x) := 1

3 log3(1+x)+ 1
6 log2(1+x)+ log(1+x)−x,

x ∈ R+. Assuming that f ′ ≤ 0, i.e. log2(1 + x) + 1
3 log(1 + x) − x ≤ 0, the

logarithm identity log x ≥ (x −1)/x, x ∈ R∗+ := R+ \{0} gives 4x2 −2x −3 ≤ 0,
which holds for x ≥ x0 := 1

4

(
2+√

28
) ≈ 1.822. Therefore, f has a global maxima

at x0, and as x1 = 0 = f (0) is one of the two roots x1, x2 ∈ R+ of f , the fact
that 0 = x1 ≤ x0 means that f (x) ≥ 0 for x ∈ [0, x2], where x2 ≈ 3.5197
(numerically computed). Therefore, the fact that metric D ≤ 1 implies 0 ≤ D∗ ≤
e − 1 ≈ 1.718 < x2, resulting (from the above discussion) that f

(
D∗(P,Q)

) ≥ 0
which is equivalent, through (46), to the requested triangle inequality D∗(P,Q) +
D∗(Q,R) ≥ D∗(P,Q).
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Appendix 2

Some introductory definitions from the Statistical Decision Theory are needed.

Definition 2 (Decision Problem and Rules) A general decision problem is defined
to be a triplet (�,D, ) and a random variable X, known as data, following the
probability distribution F(x | θ), θ ∈ �, with � being a parameter space. Moreover,
θ is called as the state of nature with  = (θ, d) denoting the loss function, while
d is a decision from the decision space D. A non-randomized decision rule is a

function q(·) such that X � x
q�→ q(x) = d ∈ D, while a randomized decision rule

q(x) specifies a probability distribution according to which a member, say d, of D

is to be chosen.

Definition 3 (Risk Function) The risk function rθ (q) of a decision rule q, for a
decision problem (�,D, ), is defined by rθ (q) := E

(

(
θ, q(X)

))
, when θ is

referring to the true state of nature, as appeared in the expected (or average) loss in
the definition. To assign an order to decision rules, we assume that rθ (q1) > rθ (q2),
for every θ ∈ �, and say that q2 is more preferable than q1.

Now, let F be the class of monotone non-decreasing functions f with f (x) = 0
on I := [0, 1]. Let D∗ be a collection of sub-intervals of I , and Qn be the set of
decision rules q. We try to estimate q(f ) with f (x) = 0 and n observations, with the
final decision to be q(f ) ∈ d for a particular d ∈ D∗. Obviously, q(f ) = d ∈ D∗
defines a decision rule with n observations. We also consider the set, say Q∗

n, of all
procedures q ∈ Qn for which q(f ) ∈ D. An optimum procedure q∗

n is imposed as
a minimax decision procedure, depending on the length L(f, q) of d, with f ∈ F ,
q ∈ Q∗

n of the form

sup
f ∈F

L
(
f, q∗

n

) = inf
q∈Q∗

n

sup
f ∈F

L(f, q).

Theorem 4 The bisection method is a q∗
n minimax procedure.

Proof Consider the iterative procedure xk := (αk−1 + βk−1)/2, k = 2, 3, . . . ,
with initial value x1 := 1/2. We assume that the value αk−1 corresponds to the
largest previously observed value of x, with f (x) = 0 if there is no largest value
for x, and f (x) < 0 if x is the largest value. We assume also that the value βk−1
corresponds to the smallest value of x, for which f (x) = 1 if there is no such x,
and f (x) > 0 if x is the largest value. Let d = [αn, βn] be each time interval.
In such a procedure with n ≥ 1, any procedure q ∈ Q∗

n with x1 �= 1/2 shall
provide a larger supf ∈F L(f, q). By induction, if we accept that theorem holds
for ν = 1, 2, . . . , n − 1, we shall try to prove it for ν = n. Any procedure
q with n − 1 evaluations at (x1, x2, . . . , xn−1) does best to adopt the xν value
midway between αν−1 and βν−1, both evaluated via (x1, x2, . . . , xn−1). Hence, xν

reaches a minimax length of (αν−1 − βν−1)/2. However, by taking into account
the values x1, x2, . . . , xν−1, then we are in accordance with q∗

ν−1 which minimizes
βν−1 − αν−1.
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