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Abstract In this effort, we employ some of the linear differential inequalities to
achieve integral inequalities of the type Wiener–Hopf problems (WHP). We utilize
the concept of subordination and its applications to gain linear integral operators in
the open unit disk that preserve two classes of analytic functions with a positive real
part. Linear second-order differential inequalities play a significant role in the field
of complex differential equations. Our study is based on a neighborhood containing
the origin. Therefore, the Wiener–Hopf problem is decomposed around the origin
in the open unit disk using two different classes of analytic functions. Moreover,
we suggest a generalization for WHP by utilizing some classes of entire functions.
Special cases are given in the sequel as well. A necessary and sufficient condition
for WHP to be averaging operator on a convex domain (in the open unit disk) is
given by employing the subordination relation (inequality).

1 Introduction

The Wiener–Hopf problems (WHP) [1] is a mathematical method to solve systems
of integral equations extensively used in the field of applied mathematics [2],
specifically in optimization theory [3], control systems [4], electromagnetics [5],
image processing [6], and cloud computing system [7]. The technique acts by
developing the complex-holomorphic properties of transforming functions. The
Wiener operator of absolutely convergent Taylor series of a complex variable is
given by the formal

w(z) =
∑

n∈N
ωnz

n, with ‖w‖W =
∑

n∈N
|ωn| < ∞.
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It has been studied in many infinite spaces such as Hilbert spaces [8] and Banach
spaces [9]. The main stage in many WHP is to decompose an arbitrary function into
two functions. Overall, this can be done by putting

Ψ+(ζ ) = 1

2πi

∫

Ω1

Ψ (z)
dz

z − ζ
(1)

and

Ψ−(ζ ) = − 1

2πi

∫

Ω2

Ψ (z)
dz

z − ζ
, (2)

where the contours Ω1,Ω2 are parallel to the real line, but move above and below
the point z = ζ, respectively.

In this paper, we investigate some of the linear differential inequalities involving
WHP. Our discussion is based on the concept of subordination: φ(z) ≺ ψ(z), where
z ∈ U = {z ∈ C : |z| < 1} (the open unit disk), if there occurs a Schwartz function
σ(z), σ (0) = 0, |σ(z)| < 1 such that φ(z) = ψ(σ(z)) . We shall show that the
integrals (1) and (2) preserve analytic functions with a positive real part. Special
generalizations are provided involving entire functions. Moreover, we illustrate
a necessary and sufficient condition for some convex inequalities containing (1)
and (2).

Let H = H(U) indicate the class of analytic functions in U. For a positive integer
n and a complex number φ, let

H[φ, n] = {ϕ ∈ H : ϕ(z) = φ + φnz
n + φn+1z

n+1 + . . .}.

Define special classes of analytic functions

Pn = {ϕ ∈ H[1, n] : �(ϕ(z)) > 0, for z ∈ U}

H[0, n] = {ϕ ∈ H : ϕ(z) = φnz
n + φn+1z

n+1 + . . .},

and

An = {ϕ ∈ H : ϕ(z) = z + φnz
n + φn+1z

n+1 + . . .},

where A1 = A is called the normalized class satisfying the normalized condition
ϕ(0) = ϕ′(0) − 1 = 0 and taking the form

A = {ϕ ∈ H : ϕ(z) = z + φ2z
2 + . . .}.

Since our study is in the open unit disk, we need to define the following W-H
operator (WHO)
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Wζ (ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ − ζ
, (3)

where ϕ ∈ H[1, n] taking the expansion

ϕ(z) = 1 + φnz
n + φn+1z

n+1 + . . . , z ∈ U

Denote W0(ϕ)(z) = W(ϕ)(z).

Definition 1 The integral operator WHO is called averaging operator, if ϕ ∈ K (the
class of convex function) satisfies

W(ϕ)(0 = ϕ(0)), W(ϕ)(U) ⊂ coϕ(U).

Remark 1 For the function ϕ ∈ A which is starlike (S∗) on U, the operator WHO
is also starlike. This result comes from equation (2.5–28) [10] when α = 1.

2 Results

Our first result is that W(ϕ) is closed in the space H[1, n].
Proposition 1 For analytic function ϕ ∈ H[1, n], the operator W(ϕ) ∈ H[1, n].
Proof Let ϕ(z) = 1 + φnz

n + φn+1z
n+1 + . . .

W(ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ

= 1

2πi

∫ z

0
[1 + φnξ

n + φn+1ξ
n+1 + . . .]dξ

ξ

= 1

2πi

∫ z

0
[1

ξ
+ φnξ

n−1 + φn+1ξ
n + . . .]dξ.

Since dz/z is accurate in a cut plane, which means a plane eliminates some line
moving from the origin to ∂U , we have

∫ z

0

1

ξ
dξ =

∫

∂U

1

z
dz = 2πi.

Moreover, we have

∫ z

0
ξm−1dξ = ξm

m

∣∣∣
z

0
= zm

m
.
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Hence, we attain

W(ϕ)(z) = 1

2πi
[2πi +

∑

m≥n

φmzm

m
]

= 1 +
∑

m≥n

φm

2mπi
zm,

which proves that W(ϕ) is analytic in U. In other words W(ϕ) ∈ H[1, n] taking the
expansion

W(ϕ)(z) = 1 + ωnz
n + ωn+1z

n+1 + . . . , z ∈ U.

Proposition 2 Let λ �= 0 be a complex number with �(λ) > 0 and let n be a
positive integer. If ϕ ∈ Pn such that

∣∣∣∣�
(λ W(ϕ) + zW(ϕ)′

λ W(ϕ)

)∣∣∣∣ ≤ n�(
1

λ
).

Then W(ϕ) ∈ Pn.

Proof Set the following functions

B(z) = 1

λ
, C(z) = λ W(ϕ) + zW(ϕ)′

λ W(ϕ)
.

Now,

�
(
B(z) zW(ϕ)′ + C(z)W(ϕ)

)
= �

( 1

λ
zW(ϕ)′ + λW(ϕ) + zW(ϕ)′

λW(ϕ)
W(ϕ)

)

= �
(λW(ϕ) + 2zW(ϕ)′

λ

)

= �
(
W(ϕ)

)
+ 2�

( zW(ϕ)′

λ

)

= �
(

1 + ωnz
n + ωn+1z

n+1 + . . .
)

+ 2�
(nωn

λ
zn + (n + 1)ωn+1

λ
zn+1 + . . .

)

= 1 + �
(
(1 + 2n

λ
)ωnz

n + (1 + 2(n + 1)

λ
)ωn+1z

n+1 + . . .
)
.

By setting

λ = 2m

2π im − 1
, m ≥ n,
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we have

�
(
B(z) zW(ϕ)′ + C(z)W(ϕ)

)
= �(ϕ(z)) > 0.

Hence, in view of Corollary 4.1a.1 in [10], we obtain W(ϕ) ∈ Pn.

Proposition 3 Let λ �= 0 be a complex number with �(λ) > −n, where n is a
positive integer. Let ϕ ∈ An and

�
(
λ + n − zW(λϕ)′(z)

W(λϕ)(z)

)
> 0.

If |ϕ(z)| < M, M > 0, then W(λϕ) ∈ An and |W(λϕ)(z)| < N, N > 0.

Proof First, we show that W(ϕ) ∈ An. Let ϕ(z) = z + φnz
n + φn+1z

n+1 + . . .

W(λϕ)(z) = 1

2πi

∫ z

0
λϕ(ξ)

dξ

ξ

= λ

2πi

∫ z

0
[ξ + φnξ

n + φn+1ξ
n+1 + . . .]dξ

ξ

= λ

2πi

∫ z

0
[1 + φnξ

n−1 + φn+1ξ
n + . . .]dξ.

By letting λ = 2πi, we have

W(λϕ)(z) = z + ωnz
n + . . . ∈ An.

Assume the following functions:

B(z) = 1, C(z) = λW(λϕ)(z) − zW(λϕ)′(z)
W(λϕ)(z)

, D(z) = ϕ(z) − λW(λϕ)(z)

|B(z)zW(λϕ)′(z) + C(z)W(λϕ)(z) + D(z)|

=
∣∣∣zW(λϕ)′(z) + λW(λϕ)(z) − zW(λϕ)′(z)

W(λϕ)(z)
W(λϕ)(z) + ϕ(z) − λW(λϕ)(z)

∣∣∣

= |ϕ(z)| < M.

Hence, in view of Corollary 4.1b.1 in [10], we have

|W(λϕ)| < supz∈U

{ M + |D(z)|
|nB(z) + C(z)|

}
:= N.

This completes the proof.
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Proposition 4 Let n be a positive integer and let ϕ ∈ H[0, n] achieving

�
(
n − zW(ϕ)′(z)

W(ϕ)(z)

)
≥ 0.

If |ϕ(z)| < M, M > 0 and

∣∣∣n − zW(ϕ)′(z)
W(ϕ)(z)

∣∣∣ ≥ 2M

N

then W(ϕ) ∈ H[0, n] and |W(ϕ)(z)| < N, N > 0.

Proof First, we show that W(ϕ) ∈ H[0, n]. Let ϕ(z) = φnz
n + φn+1z

n+1 + . . .

W(ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ

= 1

2πi

∫ z

0
[φnξ

n + φn+1ξ
n+1 + . . .]dξ

ξ

= 1

2πi

∫ z

0
[φnξ

n−1 + φn+1ξ
n + . . .]dξ.

Thus, we obtain

W(ϕ)(z) = ωnz
n + . . . ∈ H[0, n].

Assume the following functions:

B(z) = 1, C(z) = −zW(ϕ)′(z)
W(ϕ)(z)

, D(z) = ϕ(z)

|B(z)zW(λϕ)′(z) + C(z)W(ϕ)(z) + D(z)|

=
∣∣∣zW(λϕ)′(z) − zW(ϕ)′(z)

W(ϕ)(z)
W(ϕ)(z) + ϕ(z)

∣∣∣

= |ϕ(z)| < M.

Hence, in view of Theorem 4.1b in [10], we have |W(ϕ)(z)| < N. This completes
the proof.

Proposition 5 Let M > 0, N > 0 and let ϕ ∈ H[0, 1] achieving

∣∣∣�(
zW(ϕ)′(z)
W(ϕ)(z)

)

∣∣∣ ≥ M

N
.

Then W(ϕ) ∈ H[0, 1] and |W(ϕ)(z)| < N.
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Proof It is clear that W(ϕ) ∈ H[0, 1]. Consider the following functions:

B(z) = 1, C(z) = −zW(ϕ)′(z)
W(ϕ)(z)

|B(z)zW(λϕ)′(z) + C(z)W(ϕ)(z)|

=
∣∣∣zW(λϕ)′(z) − zW(ϕ)′(z)

W(ϕ)(z)
W(ϕ)(z)

∣∣∣

= 0 < M.

Hence, in view of Theorem 4.1c in [10], we have

|W(ϕ)(z)| < N := sup
z∈U

{ M

|B(z).||�C(z)/B(z)| }.

This completes the proof.

Next, we discuss the upper bound of the WHO with respect to convex analytic
function, by using the second-order differential subordination.

Theorem 1 Let h be convex in U and let ϕ ∈ H[h(0), 1] satisfying the subordina-
tion

z2W(ϕ)′′(z) + zW(ϕ)′(z) + W(ϕ)(z) ≺ h(z)

then W(ϕ)(z) ≺ h(z).

Proof Since h is convex then it has the normalized property h(0) = 0 then we have
W(ϕ)(z) ∈ H[0, 1] (Proposition 5). Consider the following functions:

A = 1, B(z) = 1, D(z) = 0.

Since �(B(z)) = A = 1 then in view of Theorem 4.1f [10], we have W(ϕ)(z) ≺
h(z).

Theorem 2 Let ϕ ∈ H[0, 1] satisfying the subordination

z2W(ϕ)′′(z) + zW(ϕ)′(z) + W(ϕ)(z) ≺ z

then W(ϕ)(z) ≺ z

2
and z/2 is the best (0,1)-dominant.

Proof It is clear that W(ϕ)(z) ∈ H[0, 1] (Proposition 5). Consider the following
real numbers:

A = 1, B = 1, C = 1.
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Then in view of Theorem 4.1g [10], we have W(ϕ)(z) ≺ z

2
and z/2 is the best

(0,1)-dominant.

Theorem 3 Let n be a positive integer and ϕ ∈ H[1, n] satisfying the linear first
differential subordination

zW(ϕ)′(z) + W(ϕ)(z) ≺ [1 + z

1 − z
]α

then

W(ϕ)(z) ≺ [1 + z

1 − z
]β

where α := β + o(n) > 0.

Proof It is clear that W(ϕ)(z) ∈ H[1, n] (Proposition 1). According to Theo-
rem 3.1c [10], we have

W(ϕ)(z) ≺ [1 + z

1 − z
]β.

Theorem 4 Let λ be a real number with |λ| ≤ 1. If ϕ ∈ H[1, n] satisfying
�(ϕ(z)) > 0, then the generalized WHO achieves

�(Wλ(ϕ)(z)) = �(
1

2πieλzn

∫ z

0
ϕ(ξ)eλξn dξ

ξ
) > 0

such that

|�(
1

2πieλzn )′| ≤ n�(
1

2πiz eλzn ).

Proof According to the relation 4.2–6 [10], we have the desire inequality.

Note that W0(ϕ)(z)) = W(ϕ)(z)).

Theorem 5 Let λ be a real number with |λ| ≤ 1 and γ > 0. If ϕ ∈ H[1, n]
satisfying �(ϕ(z)) > 0 then the generalized WHO achieves

�(Wλ,γ (ϕ)(z)) = �(
1

2πizγ−1 eλzn

∫ z

0
ϕ(ξ)ξγ−1 eλξn dξ

ξ
) > 0.

Proof A direct application of the relation 4.2–4 [10], we have the desire inequality.

Note that W0,1(ϕ)(z)) = W(ϕ)(z)). Theorems 4 and 5 show that the generalized
WHO satisfies the relation
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ϕ(z) ∈ Pn ⇒ Wλ,γ (ϕ)(z)) ∈ Pn.

Theorem 6 Let ϕ be an analytic function in U with ϕ(0) = 1 (ϕ ∈ H[1, n]). If
either of the following three conditions is achieved:

•

1 + λ
zW(ϕ)(z)′

W(ϕ)(z)
≺ ez, λ > 1

•

1 + λ
zW(ϕ)(z)′

W(ϕ)(z)
≺ 1 + Az

1 + Bz

(
− 1 < B < A ≤ 1, |λ| ≥ A − B

1 − |B|
)

•

1 + λ
zW(ϕ)(z)′

W(ϕ)(z)
≺ √

1 + z, λ ≥ 1

then

W(ϕ)(z) ≺ ez.

Proof According to Proposition 1, we have W(ϕ)(z) ∈ H[1, n]. Let h(z) be the
convex univalent function defined by h(z) = ez . Then, obviously λ z (h(z))

′
is

starlike. The main aim of the proof reads on the information that if the subordination

1 + λ
zW(ϕ)(z)′

W(ϕ)(z)
≺ 1 + λ

z (h(z))
′

h(z)
= 1 + λz := Θ(z)

is achieved, then W(ϕ)(z) ≺ h(z) (see Corollary 3.4h.1, p. 135 [10]). By
Remark 2.1 in [11] and the first condition, we obtain

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

Now, let ψ(z) := 1 + Az

1 + Bz
then ψ−1(η) = η − 1

A − Bη
. But ψ(z) ≺ h(z) means

z ≺ ψ−1(Θ(z)) and

|ψ−1(Θ(eit )| = | λ eit

(A − B) − λ B eit
| ≥ λ

A − B + λ|B| ≥ 1
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for λ ≥ (A − B)(1 − |B|). Hence,

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

Finally, let Λ(z) = √
1 + z, where Λ(U) ⊂ Θ(U) then if λ ≥ 1, we attain

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

A direct application of Lemma 4.4b in [10], we get the following outcome:

Theorem 7 Let ϕ ∈ K such that ϕ(0) = 0 and h ∈ K such that ϕ(z) ≺ h(z). Then
the WHO is averaging operator on K satisfying W(ϕ)(z) ≺ h(z).

Next, we discuss the case ϕ is not convex.

Theorem 8 Let ϕ ∈ H(U) and h ∈ K such that ϕ(z) ≺ h(z) and

�
(

− W(ϕ)(z) − ϕ(z)

zW(ϕ)(z)′
)

> 0.

Then the WHO is averaging operator on K satisfying W(ϕ)(z) ≺ h(z).

Proof Since ϕ ∈ H(U) then we obtain W(ϕ) ∈ H(U). A computation leads to

W(ϕ)(z) − W(ϕ)(z) − ϕ(z)

zW(ϕ)(z)′
.zW(ϕ)(z)′ = ϕ(z) ≺ h(z).

In view of Theorem 3.1a in [10], we get

ϕ(z) ≺ h(z) �⇒ W(ϕ)(z) ≺ h(z),

which implies that WHO is averaging operator on K.

Theorem 9 Let ϕ ∈ H(U) and h is starlike on U. If ϕ(z) ≺ h(z), then

W(ϕ)(z) ≺ W(h)(z).

Proof By Remark 1, W(h)(z) is starlike on U. Suppose that W(ϕ)(z) ⊀ W(h)(z),

then there occur some points z0 ∈ U and η0 ∈ ∂U such that W(ϕ)(z0) = W(h)(η0)

and W(ϕ)(U0) ⊂ W(h)(U). Thus, by Lemma 2.2c [10], we obtain

z0 W(ϕ)(z0)
′ = kη0W(h)′(η0), k ≥ 1.

This implies that

ϕ(z0) = k h(η0) /∈ h(U),

which contradicts the assumption ϕ(z) ≺ h(z). Hence, W(ϕ)(z) ≺ W(h)(z).
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