
Best Constants for Weighted
Poincaré-Type Inequalities

Alla Guessab

Abstract In this paper we will determine the best constant for a class of (weighted
and non-weighted) new Poincaré-type inequalities. In particular, we obtain sharp
inequalities under the concavity, convexity of the weight function. We also establish
a family of sharp Poincaré inequalities involving the second derivative.

1 Introduction

If Ω is a sufficiently regular bounded convex domain in R
d and f a smooth function

defined on Ω with vanishing mean value over Ω , then a well-known form of the
Poincaré inequality states that there is a constant cp,Ω independent of f such that

‖f ‖p ≤ cp,Ω ‖∇f ‖p , (1)

where 1 ≤ p < ∞ and ‖.‖p denotes the classical Lp(Ω)-norm, see, e.g., [12].
Poincaré-type inequalities are a key tool in the study of many problems of partial
differential equations and numerical analysis, see [3, 7, 10, 13]. In the estimate (1),
the constant cp,Ω is finite for any p and generally it is not explicitly known. For
practical purposes it is important to know an explicit expression for this constant
(see, e.g., [11]). The determination of analytical expression of the Poincaré constant
cp,Ω as function of p and Ω is a difficult task. Specific estimates related to
cp,Ω have been obtained only in very special cases. For example, for p = 2, by
some elementary considerations, Payne and Weinberger [9] showed that in order to
determine the best Poincaré constant c2,Ω in (1), it is basically enough to consider
weighted Poincaré inequalities in one dimension. In this way, the one-dimensional
case is essential since the case of several dimensions can be reduced to it. The main
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idea is to decompose the original domain into smaller subdomains, keeping the
same mean value of f on each subdomain, and then to apply sharp one-dimensional
weighted Poincaré inequalities. Payne and Weinberger have exploited this method
in [9] to prove that the optimal constant in (1) is d/π when the L2-norm is used.
For p = 1, this technique was also developed by Acosta and Durán in [1]. For
general p, Chua and Wheede [2] have successfully used this method for estimating
the constants cp,Ω.

Some simple generalizations of (1) are well known, see, e.g., [8, Theorems 8.11
and 8.12]. One involves replacing the condition

∫
Ω

f (x)dx = 0 by the α-weighted
average of f over Ω,

∫
Ω

α(x)f (x)dx = 0, where α is any weight function from
L1(Ω) satisfying

∫
Ω

α(x)dx = 1. We do not know the exact value of the best
possible constants appearing in such general inequalities. We must add at this
place that determining exact constants in inequalities between norms of functions
and their derivatives is a very difficult problem that usually requires delicate
considerations. Each case when exact constants are found is a great achievement.

In this paper, continuing the previous line of research we will discuss just the
1-dimensional case of the above. To be specific, we are interested in finding the
smallest constant which is admissible in the following Poincaré-type inequality:

∫ 1

0
|f (t)| dt ≤ c(α)

∫ 1

0

∣
∣f ′(t)

∣
∣ dt, (2)

where f is such that f is absolutely continuous, f, f ′ ∈ L1[0, 1] and

∫ 1

0
α(t)f (t)dt = 0, (3)

with α a weight function on [0, 1] whose integral over [0, 1] is one. Our first main
result provides an explicit expression for the best constant in (2). We will show that
c(α) = 1/2 is the best possible value. Moreover, we shall characterize all weight
functions α for which (2) holds with best possible value 1/2. In [1, Theorem 3.1],
Acosta and Durán showed that if, in addition, α is concave on [0, 1] then the
following weighted version of (2)

∫ 1

0
α(t) |f (t)| dt ≤ c(α)

∫ 1

0
α(t)

∣
∣f ′(t)

∣
∣ dt, (4)

holds true with the constant c(α) = 1/2. Moreover, they also showed that the
constant 1/2 cannot be improved in the case when α ≡ 1. We shall give a new proof
of this result, and, under specified conditions, prove that inequality (4) continues
to hold when concavity of the weight function α is replaced by convexity. It
is also shown, under suitable conditions on the weighted function, that Poincaré
inequality (4) still holds with the best constant c(α) = 1/2 for this general class
of functions. Sharp Poincaré inequalities involving the second derivative are also
considered.



Best Constants for weighted Poincaré-Type Inequalities 405

The present paper is organized as follows. In Sect. 2, we shall first determine the
best constant in (2), and characterize all weight functions α for which (2) holds
with best possible value. We then give a new proof of the Acosta and Durán’s
inequality (4) when the weight function is concave. Furthermore, under appropriate
assumptions on the weight function like convexity or monotonicity we generalize
it, showing that inequality (4) still holds with the best constant c(α) = 1/2 for this
class of functions. Finally, in Sect. 3 we show how our arguments can be used to
establish new sharp Poincaré inequality involving the second derivative.

2 Sharp Inequalities for the First Derivative

For the sake of clarity of our presentation, we shall first consider inequalities which
involve only the first derivative of a function and the function itself. We first discuss
optimal weight functions corresponding to the best constant in (2) with respect
to the choice to some large class of weight functions. We also establish several
weighted Poincaré-type inequalities under some appropriate assumptions on the
weight function α like concavity, convexity.

We now set down some of the notation which will be used throughout. Let
W 1,1[0, 1] denote the space of absolutely continuous functions on [0, 1] such that f

and f ′ ∈ L1 [0, 1] . Consider a linear functional of the form

Tα[f ] :=
∫ 1

0
α(t)f (t)dt (5)

where α is a weight on [0, 1] . Throughout this paper, by weight function we
mean a nonnegative integrable function on [0, 1]. We assume in addition that α

is normalized in the sense that its integral is equal to one:

∫ 1

0
α(t)dt = 1. (6)

To ease the notation let us denote by N the class of weight functions on [0, 1]
satisfying (6). This condition simply means that Tα[f ] = 1 for the constant function
f of value 1 on [0, 1]. In what follows, (.)0+ : R → R will denote the function
defined by

(x)0+ =
{

1 if x ≥ 0

0 if x < 0.

Applying integration by parts, we deduce

Tα[f ] = f (0) +
∫ 1

0

(∫ 1

0
(s − t)0+α(s)ds

)

f ′(t)dt.
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Hence if we denote

Kα(x, t) = (x − t)0+ −
∫ 1

0
(s − t)0+α(s)ds

then it follows from Taylor’s formula

f (x) = f (0) +
∫ 1

0
(x − t)0+f ′(t)dt

that

f (x) − Tα[f ] = ∫ 1
0 Kα(x, t)f ′(t)dt. (7)

Thus, if we assume that Tα[f ] = 0, we may use the representation formula (7) to
estimate L1-norm of f in terms of the L1-norm of f ′ as follows:

∫ 1
0 |f (x)| dx = ∫ 1

0

∣
∣
∣
∫ 1

0 Kα(x, t)f ′(t)dt

∣
∣
∣ dx

≤
(

sup
0≤t≤1

∫ 1
0 |Kα(x, t)| dx

)
∫ 1

0

∣
∣f ′(t)

∣
∣ dt.

(8)

Hence, denoting by

c(α) := sup
0≤t≤1

∫ 1

0
|Kα(x, t)| dx (9)

we get that for any function f ∈ W 1,1[0, 1] satisfying Tα[f ] = 0, the following
Poincaré inequality holds:

∫ 1

0
|f (t)| dt ≤ c(α)

∫ 1

0

∣
∣f ′(t)

∣
∣ dt. (10)

An interesting problem is to know the dependence of the constant c(α), where c(α)

is given by (9), on the weight function and, in particular, to find the best constant
cmin = minα∈N c(α). Therefore, there are two important questions that arise:

(1) What is the exact value of the best possible constant cmin?
(2) What are all the normalized weight functions α for which the best constant cmin

is achieved?
(3) What is the exact value of c(α) under the concavity or convexity of the weight

function α ?

Our first result will be fundamental for the remainder of this paper. Indeed, it permits
us to determine the exact value of the best possible constant cmin and also to establish
a complete characterization of the weight functions for which inequality (10) is



Best Constants for weighted Poincaré-Type Inequalities 407

satisfied with the best possible value cmin. More precisely, we have the following
characterization:

Lemma 1 For any weight function α ∈ N ,

c(α) ≥ 1/2.

The inequality c(α) = 1/2 holds if and only if α satisfies the additional condition

∫ 1/2

0
α(t)dt = 1/2. (11)

Moreover, if c(α) = 1/2, then the constant 1
2 in (10) is optimal.

Proof Let α be a weight function belonging to N . From the above considerations,
we know that inequality (10) holds with the constant

c(α) = sup
0≤t≤1

∫ 1

0
|Kα(x, t)| dx. (12)

But, the integral appearing in (12) is easily calculated. Indeed, we have

F(t) := ∫ 1
0 |Kα(x, t)| dx

= ∫ 1
0

∣
∣
∣(x − t)0+ − ∫ 1

0 (s − t)0+α(s)ds

∣
∣
∣ dx

=
(∫ 1

t
α(s)ds

)
t +

(
1 − ∫ 1

t
α(s)ds

)
(1 − t)

=
(

1 − ∫ t

0 α(s)ds
)

t +
(∫ t

0 α(s)ds
)

(1 − t)

=
(

1 − 2
∫ t

0 α(s)ds
)

t + ∫ t

0 α(s)ds.

Moreover, we clearly observe that

F(
1

2
) = 1

2
.

Therefore, by continuity of F on [0, 1] it becomes obvious that

c(α) = sup
0≤t≤1

F(t) ≥ 1

2
. (13)

This proves the first statement of the lemma.
We now prove the second part of this lemma. To this end, a simple calculation

shows that the derivative of F is given by

F ′(t) = 1 − 2
∫ t

0
α(s)ds + α(t)(1 − 2t). (14)
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To establish the “if” part, let us assume that c(α) = 1/2. Since F(1/2) = 1/2
then (13) implies F ′( 1

2 ) = 0. Hence, substituting t = 1/2 into Eq. (14) yields
condition (11).

For the “only if” part, let us assume that
∫ 1/2

0 α(x)dx = 1/2. Then for every
α ∈ N that satisfies the last condition, we clearly have, by Eq. (14),

F ′(t) > 0 on [0, 1/2) , and F ′(t) < 0 on (1/2, 1] ,

and thus sup
0≤t≤1

F(t) = F(1/2). Remembering that F(1/2) = 1/2 we easily get

c(α) = sup
0≤t≤1

F(t) = 1/2, as required. To see that the constant 1
2 is optimal in the

case where c(α) = 1/2, take f = fε, where ε > 0, and fε is defined by

fε(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if x ∈
[
0, 1

2 − ε
]

1
ε

(
x − 1

2

)
if x ∈

[
1
2 − ε, 1

2 + ε
]

1 if x ∈
[

1
2 + ε, 1

]
.

(15)

We clearly have

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0

(
− ∫ 1/2−ε

0 α(x)dx + ∫ 1
1/2+ε

α(x)dx
)

+ limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx

= − ∫ 1/2
0 α(x)dx + ∫ 1

1/2 α(x)dx

+ limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx.

Now since c(α) = 1
2 , we have that

∫ 1/2
0 α(x)dx = 1/2 which yields

−
∫ 1/2

0
α(x)dx +

∫ 1

1/2
α(x)dx = 0.

Hence, we get

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx

= 0.

Observe that in the case where α ≡ 1 condition
∫ 1

0 fε(x)α(x)dx = 0 is fulfilled for
arbitrary ε. On the other hand,

∫ 1
0 |fε(x)| dx = 1 − ε

∫ 1
0

∣
∣f ′

ε(x)
∣
∣ dx = 2.
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Then,we arrive at

∫ 1
0 |fε(x)| dx

∫ 1
0

∣
∣f ′

ε(x)
∣
∣ dx

= 1 − ε

2
→ 1

2
when ε → 0,

which concludes the proof.

Now we state our first result whose proof follows immediately from Lemma 1.

Theorem 1 If the weight function α from N satisfies (11), then

∫ 1
0 |f (t)| dt ≤ 1

2

∫ 1
0

∣
∣f ′(t)

∣
∣ dt (16)

for every function f ∈ W 1,1[0, 1] such that
∫ 1

0 α(x)f (x)dx = 0. Moreover, if α

does not satisfy (11), then the constant 1
2 is optimal.

Proof The first part of the theorem is a direct consequence of Lemma 1. For the
second part, without loss of generality, assume that

∫ 1/2
0 α(x)dx > 1/2. Take an

arbitrary ε ∈ (0, 1) and consider the sequence of functions

fε(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if x ∈
[
0, 1

2 − ε
]

l(x) if x ∈
[

1
2 − ε, 1

2 + ε
]

1 + 2δ if x ∈
[

1
2 + ε, 1

]
,

(17)

where l is the affine function

l(x) = −1 + 1 + δ

ε
(x − 1

2
+ ε) and δ = 2

∫ 1/2
0 α(x)dx − 1

2
∫ 1

1/2 α(x)dx
.

Observe that δ is positive and it satisfies

−
∫ 1/2

0
α(x)dx + (1 + 2δ)

∫ 1

1/2
α(x)dx = 0. (18)

A simple calculation shows that

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0

(
− ∫ 1/2−ε

0 α(x)dx + (1 + 2δ)
∫ 1

1/2+ε
α(x)dx

)

+ limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx

= − ∫ 1/2
0 α(x)dx + (1 + 2δ)

∫ 1
1/2 α(x)dx

+ limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx.
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Now using (18), we get

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0
∫ 1

2 +ε

1
2 −ε

fε(x)α(x)dx

= limε→0 εδ = 0.

As we have

∫ 1
0 |fε(x)| dx = 1 + δ − ε − δε

1+δ∫ 1
0

∣
∣f ′

ε(x)
∣
∣ dx = 2(1 + δ),

it follows

∫ 1
0 |fε(x)| dx

∫ 1
0

∣
∣f ′

ε(x)
∣
∣ dx

= 1 + δ − ε − δε
1+δ

2(1 + δ)
→ 1

2
when ε → 0.

This proves the theorem.

Remark 1 A scaling argument shows that for a general interval [a, b] the inequality
(16) takes the form

∫ b

a
|f (t)| dt ≤ (b−a)

2

∫ b

a

∣
∣f ′(t)

∣
∣ dt.

We have the following result as a corollary to Theorem 1.

Corollary 1 Suppose that α is any weight function from N . Then, for every
function f ∈ W 1,1[0, 1] satisfying

∫ 1
0 α(t)f (t)dt = 0 the following inequality

holds:

∫ 1
0 α(t) |f (t)| dt ≤ 1

2

∫ 1
0

∣
∣f ′(t)

∣
∣ dt. (19)

The constant 1
2 cannot be improved.

Proof For a given function α in N , we define

v(x) =
∫ x

0
α(s)ds, x ∈ [0, 1] .

Clearly v(0) = 0, v(1) = 1 and v is non-decreasing on [0, 1] . We associate with any
function f , belonging to the class W 1,1[0, 1] on [0, 1] and satisfying the condition∫ 1

0 α(x)f (x)dx = 0, the following function

f̃ (t) := f (v−1(t)), t ∈ [0, 1] ,

where v−1 is the inverse of v. Clearly f̃ ∈ W 1,1[0, 1] and it satisfies the condition
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∫ 1

0
f̃ (t)dt =

∫ 1

0
f̃ (v(x))v′(x)dx =

∫ 1

0
α(x)f (x)dx = 0.

Then, by Theorem 1, f̃ satisfies the inequality

∫ 1
0

∣
∣
∣f̃ (t)

∣
∣
∣ dt ≤ 1

2

∫ 1
0

∣
∣
∣f̃ ′(t)

∣
∣
∣ dt.

Now by making the change of variables t = v(x), we see that

∫ 1

0
α(x) |f (x)| dx ≤ 1

2

∫ 1

0

∣
∣
∣f̃ ′(v(x))

∣
∣
∣ v′(x)dx = 1

2

∫ 1

0

∣
∣f ′(x)

∣
∣ dx,

which is the announced statement.

We observe that the integral on the right-hand side in the estimate (19) is not
weighted. In view of this result the following question arises naturally:

• Does inequality (19) also hold with a weight function in the integral appearing
on the right-hand side?

Acosta and Durán, see [1, Theorem 3.1], provide a positive answer to this question
if the weight function is concave. We shall give a new and simpler proof of this
result, and generalize it to a wide class of weight functions. From now on, we would
like to consider the case when the weight function α is chosen in such a way that it
belongs to the special class M defined by:

M :=
{

α ∈ N :
∫ 1/2

0
α(t)dt = 1/2

}

. (20)

Recall that the best constant in the Poincaré inequality (2) is attained for this class
of weight functions. This subset is nonempty, since it clearly contains the following
two “broken” functions:

α2(x) =
{

2 − 4x if x ∈ [0, 1/2]

4x − 2 if x ∈ [1/2, 1] ,

α3(x) =
{

4x if x ∈ [0, 1/2]

4 − 4x if x ∈ [1/2, 1] .

Moreover, since M is convex it is an infinite set. Note that the function α2 is convex
on [0, 1], while α3 is concave on [0, 1].

Without concavity assumption on α the weighted Poincaré-type inequality (4)
does not hold true in general. The question we now want to address is that of
determining some appropriate assumptions on the weight function α like convexity,
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monotonicity, which ensure that (4) holds. To the best of our knowledge the problem
involving finding the weight functions that produce the best constant 1/2 in (4)
was not considered previously. In doing so, we shall provide a new version and a
different proof of the Acosta and Durán result for a general class of weight functions
belonging to M .

To this end we first make the following observation that gives a sufficient
condition on the weight functions for inequality (4) to hold.

Remark 2 Let us first observe that if Tα[f ] = 0 then multiplying (7) by α ∈ N
and applying Fubini’s theorem, we obtain

∫ 1

0
α(x) |f (x)| dx ≤ 2

∫ 1

0

((

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt

)
∣
∣f ′(x)

∣
∣ dx. (21)

As a consequence of the above inequality, the weighted Poincaré inequality (4)
obviously holds for all α ∈ N satisfying

(

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ α(x)

4
, x ∈ (0, 1) . (22)

Acosta and Durán have shown that the above inequality holds for every concave
weight function α ∈ N , see [1, Lemma 3.1].

In what follows we will show that large subclasses of weight functions in N satisfy
inequality (22). We now give a useful fact:

Remark 3 By using the identity ab ≤ (a+b)2

4 , when a, b ≥ 0, together with the fact
that, for all x in the interval (0, 1), 0 ≤ ∫ x

0 α(t)dt ≤ 1, we obtain that

(

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ 1

4
. (23)

Therefore, inequality (22) holds for every x on (0, 1) such that α(x) ≥ 1.

To prove our next weighted Poincaré-type inequality, we make use of two general
lemmas:

Lemma 2 Let α ∈ N be a non-decreasing weight function on I0, where I0 :=
(0, tα) is any nonempty sub-interval of (0, 1) , then (22) holds for all values x ∈
I0 ∩ (0, 1/2) satisfying

4x − 1

4x2
≤ α(x). (24)

If α does not satisfy (24), then there is a function from the described class for which
(22) does not hold.



Best Constants for weighted Poincaré-Type Inequalities 413

Proof We first observe that since α is a non-decreasing function on I0 we have

∫ x

0
α(t)dt ≤ xα(x), x ∈ I0 ∩ (0, 1/2) . (25)

According to Remark 3, it is enough to consider only those values of x ∈ I0 for
which 0 < α(x) < 1. Thus, under this condition, inequality (25) yields

∫ x

0
α(t)dt ≤ xα(x) ≤ 1/2, x ∈ I0 ∩ (0, 1/2) .

Therefore, since the function h(x) = x(1−x) is non-decreasing on [0, 1/2], we get

(

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ xα(x)(1 − xα(x)), x ∈ I0 ∩ (0, 1/2) ,

and so to prove inequality (22) for a given fixed x ∈ I0 ∩ (0, 1/2) it is enough to
show that x(1 − xα(x)) ≤ 1/4, which is in turn equivalent to 4x−1

4x2 ≤ α(x) as was
assumed. This proves the first part of the lemma.

For the second part, we may use a geometrically evident idea to construct,
through any fixed point t in (0, 1) such that

0 < α(t) <
4t − 1

4t2
,

the function

ft (x) =
{

α(t) if x ∈ [0, t]

l(x) if x ∈ [t, 1] ,

where l is the linear polynomial passing through the points

(t, α(t)) and (1,
2 − (1 + t)α(t)

1 − t
).

It is easy to see that ft is a non-decreasing weight function that belongs to N . Also,
we have

(

1 −
∫ t

0
ft (x)dx

) ∫ t

0
ft (x)dx = tα(t)(1 − tα(t)) >

ft (t)

4
(:= α(t)

4
).

This shows that (22) is not satisfied at the point t for the function ft and this
completes the proof of our lemma.

If the weight function α ∈ N and non-increasing, then we have the following:
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Lemma 3 Let α ∈ N be a non-increasing weight function on I1, where I1 :=
(tα, 1) is any nonempty sub-interval of (0, 1) , then (22) holds for all values x ∈
I1 ∩ (1/2, 1) satisfying

3 − 4x

4(1 − x)2 ≤ α(x). (26)

If α does not satisfy (26), then there is a function from the described class for which
(22) does not hold.

Proof We prove only the first statement since the proof of the second is essentially
the same as that of Lemma 2. We will show that this case can be reduced the one
treated in the previous lemma. Indeed, let us fix a non-increasing weight function α

from N . Define α̃ the function in the interval (0, 1) by α̃(t) = α(1 − t). Then, a
straightforward inspection shows that α̃ is a non-decreasing function belonging to
N . Hence the desired result follows by applying Lemma 2 to α̃. This completes the
proof of Lemma 3.

Now we make some comments, containing consequences of Lemmas 2 and 3.

Remark 4 Let α ∈ N . Since α is nonnegative function on the interval (0, 1) then
(24) is automatically satisfied on (0, 1/4] , and hence, by Lemma 2, inequality (22)
holds if α is a non-decreasing function on any interval I0 ⊂ (0, 1/4). The same is
true if α is a non-increasing function on any interval I1 ⊂ (3/4, 1).

Hence, we have the following weighted Poincaré inequality:

Theorem 2 Let α be any concave function belonging to M . Then, for every
function f ∈ W 1,1[0, 1] satisfying

∫ 1
0 α(t)f (t)dt = 0, the following weighted

Poincaré-type inequality holds

∫ 1

0
α(t) |f (t)| dt ≤ 1

2

∫ 1

0
α(t)

∣
∣f ′(t)

∣
∣ dt. (27)

The constant 1
2 cannot be improved.

In order to prove the above theorem, we shall apply the results of the previous two
lemmas, and some preliminary facts about concave functions on [0, 1] that will often
be used without explicit reference. A somewhat known result that we can use as a
starting point is the following form of the right-hand side of the Hermite–Hadamard
inequality. It says: If the function α is concave on [0, 1], then

∫ x

0
α(t)dt ≤ xα(x/2), x ∈ [0, 1] . (28)

In particular, for any concave weight function belonging to N , the following
inequality holds:

1 ≤ α(1/2).
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Moreover, if α is concave and α ∈ M , then substituting x = 1/2 in (28) and taking
account of the fact that

∫ 1/2
0 α(t)dt = 1/2, we have

1 ≤ α(1/4).

It is also easy to check that

1 ≤ α(3/4), (29)

in fact since α is concave the following inequality holds

∫ 1

x

α(t)dt ≤ (1 − x)α((1 + x)/2), x ∈ [0, 1] ,

and so (29) follows immediately by substituting x = 1/2 in the above equation.
Inequalities (28) have been extensively studied in the literature, see, e.g., [4–6].

We now turn to the proof of Theorem 2.

Proof Let us fix a function α from M . We begin the proof of Theorem 2 by noting
that since α is concave, then, there exists an tα in [0, 1] such that α is non-decreasing
on [0, tα] and non-increasing on [tα, 1] . We will distinguish the following two cases:

Case 1 tα ∈ (0, 1/2). If tα ∈ (0, 1/4], this case is easier to handle, indeed
by Remark 4, there is nothing to prove, since (24) is automatically satisfied on
(0, tα], and hence inequality (22) holds on (0, tα). We may therefore assume that
tα ∈ (1/4, 1/2). Let us denote I0 the sub-interval (0, tα). Then, since 1 ≤ α(1/4)

and α is non-decreasing function on (1/4, tα), it follows that 1 ≤ α(t) for all t

in (1/4, tα). Observe that for all x ∈ (1/4, tα), 4x−1
4x2 ≤ 1, then inequality (24) is

satisfied for all x ∈ (0, tα]. Hence, Lemma 2 applies, so inequality (22) holds on
(0, tα).

Now, we will use I1 to denote the sub-interval (1/2, 1). Then, since 1 ≤
α(1/2), 1 ≤ α(3/4), and α is non-increasing function on I1, it follows that 1 ≤ α(t)

for all t in (1/2, 3/4). Then, arguing as before, we see that (26) is satisfied for all
x ∈ I1. Lemma 3 applies, consequently, inequality (22) also holds on I1.

Finally, in the sub-interval (tα, 1/2) we have nothing to prove, since 1 ≤ α(t) for
all t in (tα, 1/2).

Case 2 tα ∈ [1/2, 1). The proof is similar to the proof of the above case and hence
is omitted.

So altogether, inequality (22) holds on (0, 1), then the weighted Poincaré
constant in (27) follows from Remark 2.

We note that our proof given in case α ∈ M is completely different from the
one given in [1]. We observe also that if (27) is unweighted and we allow α to very
freely over N , then Lemma 2 and Theorem 2 inform us that the value 1/2 of the
best weighted Poincaré constant in (27) and it is attained if and only if α ∈ M .
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We may now ask the following question:

• Do we get similar result to Theorem 2 if concavity is replaced by convexity
assumption?

We first make the following observation:

Remark 5 The inequality (27) cannot hold in Theorem 2 if concavity is replaced by
convexity. Indeed, if α is a non-decreasing convex function on [0, 1], then applying
the Hermite–Hadamard inequality on [0, 1], we have α(1/2) ≤ 1, and since α is
non-decreasing we deduce that α(0) ≤ 1. These two conditions together imply that∫ 1/2

0 α(t)dt = 1/2, which can only happen if α is the one constant weight. To
see this is quite simple and becomes obvious on drawing a figure. So the weighted
Poincaré inequality does not hold for non-constant weight convex functions, which
are non-decreasing.

Thus, our aim, of course, is to find some subclasses of convex functions for which
inequality (27) remains valid. The last observation motivates us to introduce the
subsets of weight functions of N (satisfying the Dirichlet conditions)

N0 = {α ∈ N : α(0) = 0}
N1 = {α ∈ N : α(1) = 0} .

A weighted Poincaré inequality with a nonnegative weight function in N0 or N1
is sometimes referred to as Poincaré–Friedrichs inequality. In order to state our
next theorem, we would like to point out that the Hermite–Hadamard inequality
for convex functions gives

(

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ x(1 − x)

α(1) + α(x)

2

α(0) + α(x)

2

≤ 1

4

α(1) + α(x)

2

α(0) + α(x)

2
.

By Remark 2 is enough to prove that (22) holds for x ∈ (0, 1) such that α(x) ≤ 1.

Therefore, we conclude that if α ∈ N0 with α(1) ≤ 3 or α ∈ N1 with α(0) ≤ 3
then we have

(

1 −
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ 1

4
α(x).

Hence, by exactly the same argument as before we can show our modest extension
of Theorem 2 when concavity is replaced by convexity.

Theorem 3 Let α be any convex function belonging to N0 with α(1) ≤ 3, or N1

with α(0) ≤ 3. Then, for every function f ∈ W 1,1[0, 1] such that
∫ 1

0 α(t)f (t)dt =
0, the following weighted Poincaré-type inequality holds

∫ 1
0 α(t) |f (t)| dt ≤ 1

2

∫ 1
0 α(t)

∣
∣f ′(t)

∣
∣ dt. (30)
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The constant 1
2 cannot be improved.

Conditions α(1) ≤ 3 or α(0) ≤ 3, required in Theorem 3, are not optimal. Indeed,
let us consider the weight function

αm(x) =
{

mx if x ∈ [0, 1/m] ,
mx+m(m−2)

(m−1)2 if x ∈ [1/m, 1] ,

where m ∈ (1, 2]. Then it is easy to see that αm is convex and that belongs to N0
for any m ∈ (1, 2]. Note also that αm(x) < 1 if x ∈ [0, 1/m), and αm(x) ≥ 1 if
x ∈ [1/m, 1]. According to Remark 3, it is sufficient to consider interval [0, 1/m).

Therefore, after performing the integration inequality (22) simplifies to

x

2

(
1 − m

2
x2

)
≤ 1

4
, (x ∈ (0, 1/m)).

But now we can check that the latter holds if m ≥ 32
27 . Hence, for any m ∈

[
32
27 , 2

]

the weighted Poincaré inequality (30) holds for αm. However, we have αm(1) > 3
for any m ∈ [ 32

27 , 3
2 ).

3 Sharp Inequalities for the Second Derivatives

In this section we discuss sharp weighted Poincaré inequality involving the second
derivative. More precisely, we want to take advantage of a possible second order
regularity of f and consider in this section estimates of the L1-norm of a function
f in terms of the L1-norm of its second-order derivative. To state our main result
we will use the following notation:

W 2,1[0, 1] =
{
f : f ′, f ′′ abs. cont., f ′′ ∈ L1[0, 1)

}
.

By applying twice inequality (16) for functions f ∈ W 2,1[0, 1] which satisfy the
conditions

∫ 1

0
f (t)dt =

∫ 1

0
f ′(t)dt = 0, (31)

we conclude that

∫ 1

0
|f (t)| dt ≤ 1

2

∫ 1

0

∣
∣f ′(t)

∣
∣ dt ≤ 1

4

∫ 1

0

∣
∣f ′′(t)

∣
∣ dt. (32)
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As the next result shows the constant 1/4, obtained by iteration from the Poincaré
inequality of first order, is far from being the best one. The following alternative
approach leads the optimal constant.

Theorem 4 For all f ∈ W 2,1[0, 1] satisfying (31) the following inequality holds

∫ 1

0
|f (t)| dt ≤ 1

16

∫ 1

0

∣
∣f ′′(t)

∣
∣ dt. (33)

The constant 1/16 is the smallest possible.

Proof It can be easily verified that the operator

l1 [f ] (x) :=
∫ 1

0
f (t)dt + (x − 1

2
)

∫ 1

0
f ′(t)dt

reproduces the linear polynomials, that is,

l1 [f ] (x) ≡ f (x) f or f (t) = 1 and f (t) = t, t ∈ [0, 1] .

Then, by Peano’s kernel theorem, each function in W 2,1[0, 1] satisfying (31) can be
represented in the form

f (x) =
∫ 1

0
[(x − t)+ − l1 [(. − t)+] (x)] f ′′(t)dt,

where x+ := 1
2 (x + |x|). From this, in a standard way we derive the inequality

∫ 1

0
|f (x)| dx ≤ max

0≤t≤1

∫ 1

0
|K1(x, t)| dx

∫ 1

0

∣
∣f ′′(t)

∣
∣ dt,

where the kernel K1(x, t) is defined by

K1(x, t) = (x − t)+ − l1 [(. − t)+] (x)

= (x − t)+ − ∫ 1
0 (s − t)+ds − (x − 1

2 )
∫ 1

0 (s − t)0+ds.

In order to compute the integral
∫ 1

0 |K1(x, t)| dx we first note that

lt (x) := ∫ 1
0 (s − t)+ds + (x − 1

2 )
∫ 1

0 (s − t)0+ds

= ∫ 1
t
(s − t)ds + (x − 1

2 )
∫ 1
t

ds

= (1−t)2

2 + (x − 1
2 )(1 − t)

= (1 − t)(x − t
2 ).
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Therefore the line lt crosses the x-axis at the point x1 = t
2 . We easily find also the

point x2 at which lt intersects the truncated power function (x − t)+. We should
have

x − t = lt (x) at x = x2.

This immediately implies that

x2 = 1 + t

2
> t.

It is seen that
∫ 1

0 |K1(x, t)| dx, which is the area between the functions lt and (. −
t)+, equals 2 times the area A , which satisfies the following equation

2A = (x2 − x1)(x2 − t) − (x2 − t)2

= 1
2

1−t
2 −

(
1−t

2

)2

= (1−t)t
4 .

Since (1 − t)t ≤ 1/4 for all t ∈ [0, 1] , we obtain

max
0≤t≤1

∫ 1

0
|K1(x, t)| dx = 1

16

and thus the desired inequality (33) holds.
It remains to show that the constant 1/16 cannot be improved. In order to see this

we consider the function

f0(x) :=
⎧
⎨

⎩

1
4 − x on x ∈

[
0, 1

2

]

x − 3
4 on x ∈

[
1
2 , 1

]
.

We have
∫ 1

0 |f0(x)| dx = 1
8 while the variation V (f ′

0) of f ′
0 on [0, 1] is equal to

2. Thus, a smoothing of f0 in a neighborhood [−ε, ε] of the zero will produce a
function fε from W 2,1[0, 1] for which

∫ 1

0
|fε(x)| dx ≥ 1

8
− ε, V (f ′

ε) =
∫ 1

0

∣
∣f ′′(x)

∣
∣ dx = 2.

Thus inequality (33) with a constant smaller that 1
16 does not hold true for ε > 0

sufficiently small. The proof is complete.

The common restrictions on f to estimate a certain norm of f in terms of a norm
of higher derivative are of the form
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f (i)(ξ) = 0, j = 0, 1, . . . , m,

with an appropriate m. Usually ξ is taken to be the middle of the interval considered.
We can see as we did in Theorem 4 that the conditions

f (a) = f ′(a) = 0 or f (b) = f ′(b) = 0

imply the estimate

∫ b

a

|f (t)| dt ≤ (b − a)2

2

∫ b

a

∣
∣f ′′(t)

∣
∣ dt.

Applying this inequality twice, on [0, 1/2] and [1/2, 1], we get under the conditions

f (
1

2
) = f ′(1

2
) = 0 (34)

that
∫ 1

0
|f (t)| dt ≤ 1

8

∫ 1

0

∣
∣f ′′(t)

∣
∣ dt.

Therefore the conditions we considered in Theorem 4 yield a better estimation of
‖f ‖1 than the standard ones (34).

This arises the following question:

• Are there other functionals that produce the smallest constant?

It is difficult to characterize all of them as we did in the case W 1,1[0, 1]. Even if we
restricted ourselves to the study of functionals of the form

∫ b

a

α(x)f (x)dx = 0,

∫ b

a

α(x)f ′(x)dx = 0,

with a certain weight function α on [0, 1], we would arrive at the problem of
investigation of the corresponding kernel

K(x, t) = (x − t)+ − l [(. − t)+] (x)

where

l [f ] (x) =
∫ 1

0
α(s)f (s)ds +

(

x −
∫ 1

0
sα(s)ds

) ∫ 1

0
α(s)f ′(s)ds.

In this situation the line lt [(. − t)+] intersects the truncated power function at the
points

x1(t) = j (t)/
∫ 1
t

α(s)ds

x2(t) = (t − j (t))/
∫ t

0 α(s)ds
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where

j (t) =
∫ t

0
α(s)ds

∫ 1

t

sα(s)ds −
∫ t

0
sα(s)ds

∫ 1

t

α(s)ds.

Unfortunately, these expressions are too complicated to hope to get a complete
characterization of the best weight functions, i. e., those that lead to

∫ 1

0
|K(x, t)| dx = 1/16.

4 Conclusion

With direct and simple proofs, we establish, under the concavity, convexity, or
monotonicity of the weight function, the best constants for a class of (weighted and
non-weighted) new Poincaré-type inequalities. Finally, an (unweighted) inequality
of a similar type involving the second derivative is studied. A sharp constant is
determined.
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