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4.1 Introduction

Cardiovascular disease (CVD) is a class of diseases that encompasses heart diseases,
brain vascular diseases and blood vessel diseases. CVDs and their risk factors are a
leading cause of death and morbidity in the world [1–3]. According to World Health
Organization estimates, CVDs are responsible for 151,377 million disability-
adjusted life years (DALY). DALY is the number of years lost because of ill health,
disability or premature death. Coronary heart disease (CHD) accounts for 41.35%
(or 62,587 million) of these years, while cerebrovascular diseases account for
another 30.78% (or 46,591 million) of these years [1].

CVD is subdivided into two major groups: (1) CVD due to atherosclerosis and
(2) other CVDs. In atherosclerosis, fatty material and cholesterol are deposited inside
blood vessels, making it harder for blood to efficiently supply oxygen and nutrients
to cells. Such deposits are also known as atherosclerotic plaques. As a result, blood
vessels become less pliable. The build-up of atherosclerotic plaques is referred to as
coronary artery disease (CAD) (also known as CHD). Over time, the atherosclerotic
plaques can rupture, triggering the formation of a blood clot that deprives blood
flow. In acute cases, obstruction of the coronary artery to the heart will lead to a heart
attack (i.e. myocardial infarction, MI) [1, 4, 5].

Epidemiologic studies have revealed a variety of risk factors for CAD that can be
broadly subdivided into behavioural (e.g. sedentary lifestyle, smoking, unhealthy
diet), metabolic (e.g. hypertension, diabetes, cholesterol) and other factors (e.g. age,
gender, genetic disposition) [1, 5, 6]. The interplay between lifestyle and genetic risk
factors is characteristic of complex or multifactorial diseases, such as CAD
[5, 7]. This chapter focuses on disentangling the genetics of CAD.

4.2 The Role of Genetic Studies in Deciphering CAD
Mechanisms

As a complex trait, the mode of CAD inheritance follows Fisher’s 1918 ‘infinitesi-
mal model’ [8]. In this model, discrete and continuous traits are consistent if
quantitative trait variation is caused by a combination of many segregating genes,
each with a small (infinitesimal) effect on the trait. This mechanism leads to a normal
distribution of genetic values and, together with normally distributed environmental
effects, results in a normal distribution of phenotypes in the population. This theory
implies that the genetic and non-genetic sources of variation can be estimated by
quantifying the correlation between relatives, without any knowledge of specific
genes that potentially affect the trait [9]. In 1938, the first familial CAD risk was
described [10], followed by clinical observations in the 1950s and subsequent
familial and twin studies that supported this theory [11]. For example, the
Framingham Heart Study found that there was a 29% increased risk of CAD for
an individual with a family history of CAD [12, 13]. In addition, the first large-scale
prospective Swedish twin study (N ¼ 21,004 twins) [14] identified that the risk of
death from CHD was greater in monozygotic (MZ) twins than in dizygotic
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(DZ) twins in both men and women independent of CHD risk factors. A follow-up
study showed that CHD heritability was 0.57 (95% CI, 0.45–0.69) and 0.38
(0.26–0.50) for male and female twins, respectively, with heritable effects most
evident in younger individuals [15].

Such heritability estimates originate from family-based study designs. Briefly,
family studies can be subdivided into three main groups: (1) single affected family
member, (2) relative pairs and (3) extended families. Examples of study types with a
single affected family member are case-control studies, trios (case and both parents)
and case-only designs. However, the disadvantage of collecting single affected
family members is that for complex diseases, multiple affected individuals are
required to determine identity-by-descent (IBD) sharing. Therefore, relative pairs
and/or extended family study designs are used. Examples of relative (affected and
non-affected) pairs would be sib-pairs, twins or avuncular (e.g. aunt-nephew)
pedigrees. Finally, extended family groups are large families with multiple affected
individuals across many generations [16].

Heritability estimates are generally more precise using close relatives, whereas
distant relatives are less precise and less biased [9]. Therefore, the use of twin
(pedigree design) and full sibling (within-family design) data has been an important
starting point for understanding CAD/MI genetics. In the proceeding paragraphs, we
will briefly highlight a couple of studies that have paved the way for our understand-
ing of CAD/MI genetics.

4.2.1 Twin Studies

Twin studies are a special case of pedigree studies consisting of six different types
depending on the researcher’s aim [17]. The first evidence of a genetic basis of
CAD/MI was provided from a ‘classical’ twin design [18]. This study design used
the phenotypic resemblance of MZ (genetically identical as a result of the division of
a single fertilised egg) and DZ (non-identical twins that are formed from the separate
fertilisation of two eggs) twins to estimate the contribution of genetic and environ-
mental variation to phenotypic variation. As MZ and DZ twin pairs are exposed to
similar pre- and postnatal environmental factors, the genetic origin of a trait can be
determined [18].

The advantage of twin studies for complex or multifactorial traits such as CAD is
the distinct characteristics of a twin pair, i.e. twins are the same age and exhibit a
higher degree of shared family environment (e.g. lifestyle) compared to sib-pair,
thereby ‘controlling’ the influence of environmental risk factors into a study model
and attributing phenotypic differences to twin genetics. Furthermore, errors caused
by non-paternity (i.e. different fathers) are reduced or nullified in comparison to
sib-pair studies [18]. As previously mentioned, the twin pairs used to investigate the
genetic basis of CAD mortality [14, 15] were the first to highlight the utility of twin
studies in understanding CAD/MI genetics. In 2001, Wienk et al. used a Danish twin
study to report that heritability estimates of frailty in CHD were within the range of
0.53–0.58 for males and females, respectively [19]. Subsequently, in 2005, Wienk
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et al. reported heritability estimates of 0.45 for both sexes in an additive genetics-
unique environment (also known as AE, where A represents the additive genetic
factors and E the unique environmental factors) model without covariates [20]. The
lower heritability estimates and discrepancies between these twoWienk et al. studies
could be due to different sample selection methods and overall age differences
between the cohorts, as the Danish twin cohort is much older than the Swedish
twin cohort.

Over the last few decades, twin studies have emphasised the genetic component
of numerous CAD/MI risk factors such as smoking [21], plasma lipids, lipoproteins,
and apolipoproteins [22]. Although genetic methods and molecular technologies
continue to evolve more ‘sophisticated’ study designs (e.g. such as improved
genotype chips), twin studies remain an important resource considering the unique
features of this type of study design. For example, the advantage of studying the
effects of epigenetic factors through DNA methylation or histone modification
between twins with different lifestyles may help elucidate the environmental effect
of genome expression or within-pair epigenetic drift over time [23, 24]. These
epigenetic factors may help to explain why most identical twins do not contract
CHD and may die of different causes and hint towards a structural gene variant
mechanism. For example, Gordon and colleagues [25] investigated a cohort of
250 mothers and their newborn twins focusing on two cell types: human umbilical
vein endothelial cells and cord blood mononuclear cells. They found that
birthweight—a known predisposing factor for cardiovascular disease—was
associated with gene expression involved in cardiovascular function. Subsequent
studies using twin data will enhance our understanding of CAD pathomechanisms.

4.2.2 Full Sibling Studies

Similar to twin studies, full sibling study designs have been seminal in the ongoing
search for CAD-/MI-causing genes. Murabito and colleagues [26], using population-
based offspring cohort data from the Framingham Heart Study (N ¼ 2475), found
that middle-aged adult siblings display an increased risk for CVD events with an
odds ratio (OR) 1.55 (95% CI: 1.19–2.03). Moreover, the OR for sibling CVD risk
(OR ¼ 1.99, 95% CI: 1.32–3.00) exceeded that for the parental CVD (OR ¼ 1.45,
95% CI: 1.02–2.05). This implies that sibling CVD prevalence conferred an
increased risk of future CVD events beyond the established risk factors and parental
CVD. Interestingly, a 2003 review by the same authors reported that on average,
there is a two- to threefold increase in CAD risk in first-degree relatives of cases, and
having two or more first-degree relatives with CAD is associated with a three- to
sixfold increased risk in developing CAD [27].
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4.2.3 Linkage-Based Family Studies

Another type of genetic study design that is used to map the chromosomal locations
of genes is linkage analyses. Briefly, a family (or families) is genotyped with
polymorphic markers that span their genome, and the genotyping data is then
analysed. This technique results in a logarithm of odds (LOD) score for each marker.
A significant LOD score (LOD � 3.0) indicates that in the family there is
co-segregation with the disease and is identified as linkage.

There are two different types of linkage analyses that are used to map the
chromosomal locations of genes for CAD and MI: (1) a model-based linkage
analysis using large families in which the inheritance pattern in the families is clearly
defined and (2) a model-free analysis using hundreds of small nuclear families with
at least two affected siblings in each family [28]. Each of these types of linkage
analyses will be discussed in detail.

(1) Model-based linkage analysis
Wang and colleagues [29] carried out a genome-wide linkage scan of a large

Caucasian family (13 patients with CAD, of which nine were also affected with
MI) that showed an autosomal dominant pattern of CAD/MI. The authors
identified that there is a significant linkage score (LOD ¼ 4.19) on chromosome
15q26.3 that contained approximately 93 genes. Of the known genes, myocyte
enhancer factor 2 (MEF2A), which encodes a transcription factor, was a strong
candidate for CAD/MI susceptibility due to its role in vasculogenesis and its
potential role in controlling vascular morphogenesis [30, 31]. Subsequent
in vitro studies showed that mice deficient in MEF2A because of a seven
amino acid deletion had an effect on gene function [29]. A follow-up mutational
study found 3 new mutations in exon 7 of MEF2A in 4 of the 207 independent
CAD/MI patients [32]. However, follow-up efforts to re-sequence the coding
sequence and splice sites of MEF2A in 300 patients with premature CAD failed
to detect a MI-causing mutation or mutation co-segregation [30]. These negative
findings were echoed in a later study of Iranian families [33] and in a separate
Caucasian family with a history of CAD [34].

(2) Model-free linkage analysis
Using this linkage analysis approach, Helgadottir et al. [35] observed a

suggestive linkage on chromosome 13q12-13 that they successfully mapped to
arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene encoding a
5-lipoxygenase-activating protein (FLAP). This gene was associated with a
twofold increase in MI risk in 296 multiplex Icelandic families. Furthermore,
they observed that the gain-of-function mutation was largely attributed to male
carriers of the at-risk haplotype who also had the strongest associations with the
ALOX5AP haplotype. However, they did not find an association between an
at-risk haplotype called HapA and MI in a British cohort.

Some success with using linkage analysis to map chromosomal positions
associated with CAD and MI has been reported in other studies. Three chromo-
somal positions have been mapped for CAD, namely, 2q21.1-22 [36], 3q13 [37]
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and Xq23-26 [36]. Two chromosomal positions have been mapped for MI,
namely, 1p34-36 [38] and chromosome 14 (map position 123–130)
[39]. These types of studies have been both a success and failure. In some
circumstances, contradictory results may be due to the shortfall of analytical
tools used. Referring back to the previously mentioned role ofMEF2A variant in
CAD susceptibility, two studies [29, 32] identified a 21 bp deletion of MEF2A.
However, subsequent studies did not reach the same conclusion [33, 40]. In
2016, Xu et al. [41] conducted both exome and Sanger sequencing on a four-
generation Chinese Han family with familial CAD and found a novel deletion in
exon 11 of MEF2A that co-segregated with CAD/MI cases.

It is important to note that the downside of linkage analyses for complex traits
such as CAD is that the effect sizes (or penetrance) of the individual causal
variants may be too small to allow detection via co-segregation [42]. Therefore,
the power to detect genes may be minimal [43] and mapping resolution may be
low [44]. In this case, an alternative solution for gene identification may be to
use unrelated individuals in hypothesis and hypothesis-free-based association
studies.

4.2.4 Candidate Gene Studies

One strategy to identify risk variants associated with a particular disease is candidate
gene studies. Briefly, these studies test whether selected genes are related to a disease
based on prior knowledge about the gene function or pathophysiology of the disease.
Succinctly, the following steps are used: (1) select candidate genes based on prior
knowledge; (2) select the gene variant (also known as single nucleotide
polymorphisms, SNPs) that is tagged by affecting gene regulation and/or its protein
product; and then (3) confirm SNP association with a disease by detecting its
occurrence in random cases versus controls [45].

Since the early 1990s, almost 5000 studies have analysed candidate genes in
relation to CAD and MI with only 58% of variants showing consistent results in
replication studies. Possible explanations for this disparity could be small study
populations, false-positive associations and ethnic variations among studies
[46]. Other reasons could be due to the inherent disadvantage of using candidate
gene studies.

4.2.5 Genome-Wide Association Studies

There are three main disadvantages of the candidate gene approach: (1) the reliance
on prior knowledge of the function of the studied gene(s), (2) the inherent bias
towards choosing a candidate gene that is geared towards the researcher’s specific
study or interest and (3) causative variants outside the region of study that may be
missed [47]. Considering the limitations of candidate gene studies, in addition to the
improvement of genotyping chip designs, their continuous lowering of costs and the
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development of improved statistical methods (e.g. imputation and haplotype tag-
ging), there has been an increased popularity of genome-wide association studies
(GWAS).

One such imperative technological breakthrough that aided in GWAS rapid
success rate is the 2007 completion and public availability of the International
HapMap (short for haplotype map) Project [48], which allowed the mapping of
haplotype landscapes to SNPs in three continental populations. Several years later, in
2015, the 1000 Genome Project [49] took advantage of the development of sequenc-
ing technology and released freely available human genetic variation data based on
low-coverage whole-genome sequencing that reached its pinnacle with a reference
panel called 1000GP3. Recently, the Haplotype Reference Consortium (HRC) [50]
combined all whole-genome sequencing data sets into a single haplotype reference
panel to facilitate genotype imputation. Promisingly, the HRC reference panel has
been used in the imputation stage of an endophenotype of glaucoma meta-analysis
GWAS. This was shown to improve the concordance between assayed and imputed
genotypes, markedly in cases of low-frequency variants. In turn, this technique
significantly improved p-values, particularly for suggestive variants [51], thereby
outperforming 1000GP-based imputation concordance and final p-value results.

Unlike linkage studies, GWAS use unrelated subjects to detect associations
between genetic variants and disease/traits, making it easier to obtain large sample
sizes. The foundation of GWAS is the ‘common disease, common variant’ (CDCV)
hypothesis that was first put forward by Lander [52]. This hypothesis implies that
common genetic variants in the population with low penetrance (by common we
mean allelic variants present in more than 1–5% of the population [53]) contribute to
the genetic susceptibility to common complex traits and disease [52].

Exploiting GWAS analyses has led to significant progress in understanding the
genetics of CAD/MI. For CAD-GWAS studies, 2007 was an important year when
three independent GWAS studies discovered an association of variants on chromo-
some 9p21.3 and CAD in European ancestry population [54–56] and multiple races
[57–61], apart from African Americans [58]. This result may be consistent with the
‘Out Of Africa’ hypothesis which states that all present population groups of Homo
sapiens have evolved from a primitive African population [62] (Fig. 4.1).

Over the past decade, GWAS for CAD/MI has seen much success, which was
catapulted in 2007 with the discovery of 9p21, by independent research groups. By
2009, twelve other genetic risk variants were discovered through GWAS to be
associated with CAD [63]. Subsequently in 2013, with a larger sample size, the
CARDIoGRAMplusC4D Consortium reported 46 loci associated with CAD, both
confirming previously published and finding new variants [64]. This was followed
by the identification of ten additional new loci in 2015 [65]. Currently, in 2017 and
2018, CARDIoGRAMplusC4D data together with the UK Biobank [66] data have
been proven to be a wealthy resource of genetic data reflected by the increase in new
CAD-associated loci [67–69].

In spite of these new CAD loci findings, less focus has been given to the X- and
Y-chromosomes with fewer in studies on the X-chromosome [70]. It is common
knowledge that there exists sexual dimorphism regarding the incidence, prevalence,
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morbidity and mortality of CVD and/or MI with men having an increased risk
compared to age-matched women [71–75]. This is due to two barriers: (a) markers
on genotyping chips and (b) statistical methods [70]. These are acutely present when
analysing the X-chromosome, due to its unique properties such as X-inactivation,
and the presence of two X-chromosome copies in females compared to males
[70, 75, 76]. There are publications [76, 77] that do offer possible solutions and
recommendations for incorporating X-chromosome. However, the results have been
mixed with a 2016 meta-analysis study [78] reporting no association of CAD and
X-chromosome variants, compared to a recent 2017 American Heart Association/
American Stroke Association (AHA/ASA) conference abstract [79] which found
three novel CAD susceptibility loci on the X-chromosome. Much work remains for
the inclusion of the sex chromosomes. Nevertheless, we can say that for the autoso-
mal chromosomes, there are currently a total number of 163 loci associated
with CAD.

Using the CAD/MI GWAS results thus far, we can tentatively say (a) the majority
of common variants found show modest CAD risk increase; (b) most of the variants
found are situated outside protein-coding regions; and (c) we have improved our
understanding of CAD risk with the loci we have found so far [5] (Fig. 4.2).

4.3 9p21 Locus and Its Role in CAD/MI

Carried by 75% of the global population (excluding black Africans), 9p21 risk
alleles are associated with coronary atherosclerosis risk [81]. Moreover, a prior
study [82] showed that 9p21 is significantly associated with the risk of first CHD
events (1.19 hazard ratio of first event; 95% CI: 1.17–1.22) compared to subsequent
CHD events (1.01 hazard ratio of first event; 95% CI: 0.97–1.06). These
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observations suggest that 9p21.3 stimulates coronary atherosclerosis (i.e. CAD)
rather than MI [81, 83]. The 9p21.3 locus has been characterised as a ‘gene desert’
containing dispersed haplotype blocks [84]. It is thought that the CVD-associated
region is adjacent to the last exons of a long non-coding RNA (lncRNA), specifically
the antisense non-coding RNA in the INK4 locus (ANRIL; also known as
CDKN2BAS) [85]. The closest protein-coding (candidate) genes include the
cyclin-dependent kinase (CDK) inhibitors CDKN2A and CDKN2B [83]. Further-
more, Holdt et al. [86] reported that CDKN2A/B gene protein products (p16INK4a,
p14ARF and p15INK4b) that are expressed in smooth muscle cell layers in both normal
arteries and atherosclerotic plaques participate in atherosclerotic lesions. As covered
in a review by Hannou and colleagues [83], several studies have failed to decipher
the exact mechanism through which CDKN2A/B gene products work or which
pathways are involved. Using unbiased genomic techniques based on chromosome
conformation capture (3C) [87], Harismendy, O and colleagues [88] detected long-

Fig. 4.2 Circos plot [80] with 163 risk loci identified by January 2018. Figure provided by Syed
M. Ijlal Haider, Institute for Cardiogenetics
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distance interactions between the enhancer interval containing the CAD locus and
CDKN2A/B. Considering the effects of interactions across large distances, this
observation tentatively (and excitingly) points to the possibility that 9p21.3
disease-associated SNPs interact and modify other distant genes. Very recently,
Holdt and colleagues identified circANRIL as a prototype of a circRNA regulating
ribosome biogenesis and conferring atheroprotection, thereby showing that
circularisation of long non-coding RNAs may alter RNA function and in general
might protect from human disease [89].

Broadly summarising, there are seven categories with their respective identified
risk loci that underlie the pathways to CAD. Of the total number of loci (Fig. 4.3),
70% of loci are known to be involved in lipid metabolism (12%), blood pressure
(7%), cell cycle and gene regulation (12%), vascular remodelling (12%), angiogen-
esis (9%), inflammation (10%) and nitric oxide signalling (9%). Unsurprisingly, due
to the laborious and extensive experimental follow-up required, the vast majority
(30%) of identified loci pathways have yet to be explained.

4.4 Does Sample Size Matter to Identify CAD/MI Risk Loci?

To detect significant SNP contributions in GWAS, large numbers of cohort
participants are required, ranging from the tens to hundreds of thousands of subjects.
Large GWAS consortia are formed to reach such numbers, usually through meta-
analysis of GWAS. For example, a large Coronary ARtery DIsease Genome-wide
Replication and Meta-analysis (CARDIoGRAM) Consortium [90] (Ncases ¼ 22,233
and Ncontrols ¼ 64,762) was constituted and identified 13 new CAD loci by a meta-
analysis of GWAS (sometimes abbreviated to meta-GWAS). In parallel, the
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Fig. 4.3 Selection of CAD risk genes and their proven and/or predicted involvement in pathways
related to CAD and MI
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Coronary Artery Disease (C4D) Genetics Consortium [91] (Ntotal_cases ¼ 15,420 and
Ntotal_controls ¼ 15,062) found five newly associated CAD loci. In an effort to
increase sample size, these two consortiums merged and are now known as the
CARDIoGRAMplusC4D Consortium [64]. The merging, CARDIoGRAMplusC4D
Consortium achieved a sample size of 63,746 CAD cases and 130,681 controls and
identified an additional 15 loci to the already known CAD loci. Proceeding, the first
interim 150,000 genotyped individuals from the UK Biobank have recently been
made available [92] with the intention to release the remaining 350,000 participants
in the near future. This would mean a publically available health resource of an
unprecedented 500,000 individuals. Interestingly, this year, 3 studies [67, 68, 93]
each found 13, 14 and 15 new loci associated with CAD, of which 7 loci overlapped
between the 3 studies. Subtle differences in study design (e.g. phenome-wide
association scan [67] vs. false discovery rate approach [93]) and phenotype
definitions (e.g. CAD cases defined as multiple International Classification of
Disease (ICD) 10 code [68] vs. subdivision of ICD10-coded CAD cases with/
without angina [93]) could be a minor contributing reason as to why the loci overlap
between studies is low; however, further studies are merited. These three studies
exemplify the gain of a large sample size for GWASs within the last decade: from
�60 common genetic variants to >95 total number of CAD-associated loci [94].

A larger sample size could help low-frequency variant studies to reach the
required level of significance. A prior large-scale exome-wide study of more than
120,000 participants only had 80% power to detect an OR of �2.0 for
CAD-associated variants with a minor allele frequency (MAF) of 0.1% [95].

Even with relatively common genetic variants (MAF> 0.01%), large cohorts like
the CARDIoGRAMplusC4D [64] and the recent UK Biobank could facilitate the
identification of single variant statistical analyses for common variants across the
exome and thereby reach exome-wide significance, such as in the case of atheroscle-
rosis lesions in young participants [96].

4.5 Rare/Low-Frequency Variants of CAD: ‘Can
“In-Betweeners” Explain the Missing Heritability?’

In classical genetics, narrow-sense heritability represents the joint distribution of
allele frequency and effect sizes [97], meaning that dominant or epistatic effects are
not considered.

In GWASs (and the CDCV hypothesis), the quantification of the proportion of
additive genetic variance because of LD between the genotyped and imputed SNPs
with the unknown causal variants (i.e. ‘SNP heritability’) implies that genetic
variations can be tagged by common SNPs via LD [97]. It has been found that
between one-third and two-thirds of the additive genetic variation in a population is
tagged and is often referred to as the ‘missing heritability’ [42, 92, 97, 98]. This
‘missingness’ is clearly observed when comparing common variants (by common
we meanMAF,>0.05%) of small effects (i.e. GWAS) and very rare variants (by rare
we mean MAF � 0.05%) with large effects (i.e. whole exome studies), even after
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controlling for other effects such as environment [92]. One early example was the
haplotype association of a rare CAD variant and SLC2A-LPAL2-LPA gene cluster
[99]. More recently, the Myocardial Infarction Genetics and CARDIoGRAMExome
Consortia Investigators [95] investigated the effects of loss-of-function mutations in
72,868 CAD patients and 120,770 controls. They identified low-frequency loss-of-
function missense variants in ANGPTL4 gene (that was also associated with a
protection against CAD) and an association with increased CAD risk in
low-frequency coding variants in SVEP1 gene.

Challenges remain in the search for rare CAD variants. For example, there are
difficulties in detecting and replicating rare variants that are restricted to specific
population groups. To overcome this issue, it has been suggested that combining
summary GWAS association statistics by using ‘local SNP heritability’ could
provide replication at the locus level rather than the SNP variant level [92]. Another
issue for successful GWAS is the requirement for very large sample sizes. However,
using large cohorts such as the UK Biobank would overcome this particular issue
(Fig. 4.4).
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152 J. Erdmann and M. L. Muñoz Venegas



4.6 A Note: Missing Does Not Imply Absence

Considering that the current CAD-associated SNPs only explain 10.6% of CAD
variability and 40% heritability, it is natural to ask whether the ‘missing’ heritability
is actually absent. However, this is not the case with most complex traits that present
missing heritability. As we mentioned above, other explanations (e.g. rare SNPs that
present large effects) or new analytical approaches (e.g. Generalized Compound
Double Heterozygosity [GCDH] that can detect genetic associations by a relaxed
form of CH) help to explain this gap. Another proposed explanation for the missing
variability and heritability would be that some common risk alleles might have
(very) small effects that are too small to pass the traditional GWAS significance
level. This leads to a question of how many of these common risk alleles with small
effects would a study need to explain 100% of CAD heritability? During the peak of
GWAS studies, Wray and colleagues [100] addressed this question and reported that
causal risk variants can be estimated as a function of the disease heritability and
prevalence in the scenario that all risk alleles have the same relative risk and
frequency [100, 101]. Another enticing idea put forward to help explain CAD
‘missing heritability’ is that heritable risk for CAD and common complex diseases
could be partly attributed to interactions among diseases and traits [102, 103].Making
the case for the pleiotropic effect among complex disease, a recent publication by
Webb et al. [103] identified six new CAD loci. In addition, they showed that 47% of
the loci were association with another disease/trait with several loci showing multi-
ple associations.

4.7 Adding Biological Meaning to GWAS Findings

An inherent limitation of association studies, such as GWASs, is that they do not
provide biological meaning of the casual variants that were tagged via genome-wide
significant SNPs (tagSNPs). To translate GWAS results to biological function, post-
GWAS analysis is necessary. Usually, post-GWAS starts with inexpensive in silico
(bioinformatics) analysis of GWAS-found tagSNPs that is then followed up with
more time and costly in vitro and/or in vivo studies. There is an increasing number of
in silico tools and statistical techniques used to give meaning and prioritisation to the
resulting associated loci that are subsequently investigated with experiments. In the
following paragraphs, we will briefly cover some of the most popular or recent
methods.

4.8 Mendelian Randomisation

Although randomised controlled trial (RCT) studies are the optimum way to estab-
lish the causal relationship between risk factors, exposure and disease of interest
(in our case, CAD), sometimes this is not possible. An alternative is to use Mende-
lian randomisation (MR) analysis of GWAS data. The rationale is to use genetic
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variants as a proxy for a potentially modifiable exposure to identify causal effects for
risk of CAD [104], thus making MR analysis resistant to confounding factors, an
advantage over randomised control trials [105]. Other useful characteristics of MR
studies are that multiple genetic variants can be used to increase power and investi-
gate pleiotropic influence on the trait of interest, bidirectional MR studies can be
used to determine the direction of causal effects in more complex networks, gene-by-
environment interactions can be studied and epigenetic profiles can be used as an
intermediate phenotype [104] (Fig. 4.5).

One of the main utilities of MR results is their applicability in drug development.
For example, MR studies of loss-of-function mutations in proprotein convertase
subtilisin/kexin type 9 (PCSK9) have led to the development of several PCSK9
monoclonal antibodies. These antibodies are currently under study in four phase
3 trials to test whether such drugs reduce cardiovascular events. Various genetic
studies have reported that gain- and loss-of-function mutations in PCSK9 increase
low-density lipoprotein-cholesterol (LDL-C) concentration and premature athero-
sclerosis and reduce LDL-C with low rates of CHD, respectively. Succinctly, this is
achieved via hepatocyte endocytosis where circulating LDL-C is cleared from the
blood by the binding of LDL-C to low-density lipoprotein receptor (LDL-R) that is
situated on the hepatocyte cell membrane. PCSK9 regulates LDL-R metabolism by
binding to it, thus leading it to be destroyed by lysosomes and thereby decreasing its
recirculation [106].

(can be measured or
unmeasured)

SNP trait/disease

(i. e. intermediate
phenotype/ biomarker)

(i. e. gene�c variant)

e. g. rs964184 e. g. LDL cholesterol

Confounding factors

Outcome
trait/disease

Exposure

e. g. CAD

Fig. 4.5 Mendelian randomization basic principles used to find causal pathways. Compliance to
three MR assumptions regarding the genetic variant must be kept, namely, the genetic variant must
be robustly associated with the exposure variable (shown by the thick blue arrow) and should not be
directly related to the outcome or have any confounding factors (shown by the two pink lines)
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4.9 Next-Generation Sequencing (NGS) Approaches for CAD
and MI

We would be remiss if we didn’t concisely highlight next-generation sequencing
(NGS)—with whole-genome sequencing being the most widely used NGS technol-
ogy [107]—and also MR, studies in providing strong CAD pathophysiological
insight [108]. Following the lipoprotein example, Emdin et al. [109] used the NGS
approach (via LPA gene sequencing) to show that one standard deviation
(SD) genetically lowered lipoprotein(a) level is associated with a lower risk of
29% for CHD, of 31% for peripheral vascular disease, of 13% for stroke, of 17%
for heart failure and of 37% for aortic stenosis.

4.10 Expression Quantitative Trait Loci (eQTL): CAD/MI

EQTLs are SNPs, previously found to be associated with the phenotype of interest
(i.e. CAD), which have either a local effect (cis) from where the associated variant
was found or distant effect (trans; e.g. more than 5 Mb away) from the associated
variant [110, 111]. This method uses quantitative trait loci (QTLs) by looking at
mRNA levels—the primary genome product—and correlating gene/protein/methyl-
ation level (i.e. intermediate molecular quantitative traits) with the genetic variants
found [110, 112]. RNA samples from patients and healthy subjects are recruited and
converted into microarray data creating a RNA expression data set. Publicly avail-
able multi-tissue databases usually accompany association studies and are used to
add strong evidence that the associated SNP has a functional effect [113], in turn
adding a targeted approach of candidate genes to follow up with experimental work.
A variety of tissue disease-specific databases are available such as ENCODE [114],
GTEx [115], Epigenome RoadMap [116] and STARNET [117], some of which have
been used to focus on CAD-relevant tissues. For example, a study [118] using
STARNET showed that cis- and trans-genes could act as a mechanism for multiple
risk loci to contribute to cardiometabolic diseases (precursors of CAD) heritability
(Fig. 4.6).

4.11 Network Analysis

There are a few tools [119–122] available that either prioritise variants found during
association analysis or perform tissue enrichment analysis. An interesting study
published last year [123] used various tissue-specific regulatory networks and
protein-protein interaction networks that do not solely rely on a priori knowledge.
They were able to detect well-implicated CAD genes in the prevalence of CAD and
also unravelled novel key regulators (LUM,HGD, F2, ANXA3 and STAT3) for CAD.
Recently, Vilne et al. demonstrated how hypercholesterolaemia can hinder mito-
chondrial activity during atherosclerosis progression and identified oestrogen-related
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receptor-α and its cofactors PGC1-α and PGC1-β as potential therapeutic targets to
counteract these processes using a network approach [124].

4.12 The ‘Omics Era’

One of the fields that has seen an almost exponentially rapid rise in popularity due to
lowered cost and high-throughput analysis has been the ‘-omics’ studies (namely,
genomics, epigenomics, transcriptomics, proteomics, metabolomics and
microbiomics), with a vital participatory role of cloud [125] and/or Web [126]
computing that facilitates the handling of huge ‘-omics’ study data volumes. As
we become more aware that (1) identified CAD loci only explain a small percentage
of heritability; (2) common diseases, such as CAD, tend to occur because of gene
regulation changes; and (3) similar genetic variants contribute to different final
outcomes, it may come as no surprise that systems genetics evolved to integrate
the various ‘-omics’ studies. In our case, this enabled the methodology to help
explain the complexity of the underlying molecular patterns that are associated
with CAD.

4.13 Systems Genetics Approaches in CAD/MI

As defined by Björkegren et al. [111], systems genetics uses molecular mechanisms
to define disease-driving molecular processes that underlie GWAS, whole exome
sequencing (WES) or whole-genome sequencing (WGS) and to integrate such
processes with functional genomic data. One such example of associated SNPs
exerting a tissue-dependent effect on gene expression is exemplified by Musunuru
et al. [127]. They integrated eQTL and protein QTL (pQTL) information and found
that a MI risk variant alters the expression of SORT1 gene in the liver (via a
lipoprotein metabolism-regulated pathway) and not in the blood. This observation
is dissimilar to prior GWASs that identified a strong association between 1p13 locus
and plasma LDL-C levels in MI patients and, moreover, that this locus influenced the
risk of MI by conferring changes to plasma LDL-C. Another recent study [128] used
a systems genetics approach to integrate DNA genotypes and gene expression
profiles from seven CAD-relevant tissues with CAD CARDIoGRAM GWAS infor-
mation. With this analytical perspective, they showed that RNA-processing genes
play a pivotal role in causing CAD and furthermore identify several strongly
inherited, evolutionarily conserved, risk-enriched CAD genes that cause regulatory
gene network changes across vascular and metabolic tissues.
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4.14 Multi-omics Approaches

Compared to looking at an individualised -omics approach, multi-omics provides a
greater understanding of the flow of information from the disease initiator to its
functional consequence or interaction. Multifactorial diseases, such as CAD, prove
to be extremely entangled, which may be a contributing factor as to the lack of multi-
omics studies of CAD. However, a preprint study by Santolini et al. [129] used>100
genetically diverse mice strains to investigate a multi-omics approach to cardiac
hypertrophy and heart failure. Interestingly, they developed a personalised strategy
to investigate stressor-induced heart failure and identified 36-fold change genes that
were enriched in human cardiac disease genes and hypertrophic pathways and were
missed by the traditional population-wide differentially expressed gene method.
Additionally, the genes that they found were linked to both upstream regulators
and signalling networks, providing insight into cardiac hypertrophy severity and
resistance. Finally, they validated Hes1 as a novel regulator of cardiac hypertrophy
(Fig. 4.7).

4.15 Exciting Times Ahead

4.15.1 Reverse Genetics

An interesting topic that has appeared in the literature recently is the concept of
‘human knockouts’. It is based on the idea that the accumulation of rare homozygous
mutations is most likely in highly consanguineous populations, as is the case with
the Pakistan Risk of Myocardial Infarction Study (PROMIS) [130]. It is known that
heterozygous deficiency of the APOC3 gene confers protection against CHD.
PROMIS participants who were homozygous for APOC3 loss-of-function mutations
were challenged with an oral fat load. These same individuals were then compared
with family members lacking the mutation, and they showed significantly improved
clearance of the usual post-prandial rise in plasma triglycerides from their circula-
tion. This study highlights the potential and impact of reverse genetics and functional
research and the relevance of drug targets prior to their costly development.

4.15.2 Leveraging Genomic Data to Identify Novel CAD/MI Drug
Targets

As has been published [131] and commented [132], looking at these naturally
occurring ‘human knockout’ population groups, researchers can directly (and
non-invasively) see what would happen when a protein’s function or regulatory
mechanism is completely removed thereafter derive subsequent dose-response
curves in drug development, for example, if we follow the starting path of the
GUCY1A3 and CCT7 genes. Prior GWAS studies [90, 133] had found a CAD/MI
association with a common variant on chromosome 4q32.1 which overlapped with
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the GUCY1A3 gene. Subsequently in 2013, Erdmann and colleagues [134] studied
two German families and unrelated MI/CAD cases and found two rare variants (both
heterozygous mutations) in the GUCY1A3 and CCT7 genes. With confirmation
through in vitro/in vivo experimental work, they evidenced that mutations in the
soluble guanylyl cyclase-dependent nitric oxide signalling pathway could be linked
to MI. Moving on to today, Kessler et al. [135] elucidated via human samples and
cell lines (vascular smooth muscle cell migration and platelet function experiments)
that GUCY1A3 affects the expression of soluble guanylyl cyclase, smooth muscle
cell migration and platelet function. Further studies are merited to bring this pathway
to its destination, which would hopefully be drug targets for individuals carrying the
GUCY1A3 risk allele (Table 4.1).

4.16 Precision Medicine

GWAS data has been used as a stepping stone to identify risk genes and, with
subsequent post-GWAS analysis strategies, may help to elucidate disease-associated
pathways that would then be used in drug development or selection. This is the case
with PCSK9 (mentioned previously). Although GWAS studies have been useful, it
must be emphasised that these studies do not provide the necessary information
required to stratify individuals according to severity, prognosis and responsiveness
that is required for drug development and/or selection. To obtain such information,
Morita and Komuro [143] suggested stratifying large-scale prospective studies
according to clinically affected subphenotypes in patients with similar clinical
presentations and then adding a second layer independent of the variant associated
with the disease onset that would look for a variant associated (or driving pathways)
with the subphenotype within the disease [143, 144]. One example of such stratifi-
cation would be to discriminate between dyslipidemic patients with CAD and
patients without CAD. In this example, a subpopulation analysis to identify genetic
variants associated with CAD susceptibility could help in the selection of individuals
susceptible to CAD who should receive proactive, perhaps intensive,
cardiometabolic abnormality management to prevent CAD [143]. On a macro
level, current pharmacogenomics research is following these lines. Contrary to the
subphenotype method, some argue that in CAD patients, it is more useful to
highlight the blend of genetic and environmental causal factors (or pathways) that
underlie CAD patients in large-population-scale cohorts [144]. Such discussion can
only promote this type of research approach and can be used as a thoroughfare
towards a future of individualised precision medicine.

4.17 Closing Remarks

Indeed, much has happened since the journey towards unravelling the genetics
underlying CAD/MI began. It will most likely be decades before we fully grasp
the pathomechanisms that result in CAD/MI. However, considering the global
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burden that is CAD/MI, we owe it to ourselves to continue our efforts in unravelling
the genetic basis of these diseases. Luckily, we have allies in the continued lowering
of genetic sequencing costs, increased computational facilities and strategies (such
as machine learning and data mining) that can handle the influx of large data and new
research approaches. Exciting times lie ahead of us.
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