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Abstract

Long QT syndrome (LQTS) is an inherited cardiac disease characterized by
prolongation of QT interval at surface ECG, T-wave abnormalities, and high
risk of life-threatening arrhythmias in otherwise healthy young individuals.
Currently the LQTS diagnosis is genetically confirmed in nearly 75-85% of
LQTS patients, revealing a good knowledge of the genetic bases of the disease.
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The main LQTS genes are KCNQ1, KCNH2, and SCN5A encoding potassium
and sodium cardiac ion channels responsible of the cardiac action potential
duration. Minor contributors of LQTS genetic background include genes
encoding other cardiac ion channels, ancillary subunits, and protein components
forming channels’ macromolecular complexes.

Fetal and neonatal forms of LQTS are the most aggressive form of the disease,
frequently associated with typical ECG features as very prolonged QTc, 2:1
functional atrioventricular block, T-wave alternans, and life-threatening
arrhythmias. The genetic basis of these early-onset cases is peculiar. Indeed,
while potassium channel mutations are the most commonly observed causes of
adult LQTS, fetal and neonatal forms of the disease are mainly due to aggressive
sodium channel mutations or to mutations affecting calcium channel activity, as
in Timothy syndrome, triadin knockout syndrome, and calmodulin-LQTS.
Aggressive forms of LQTS can also cause sudden infant death syndrome
(SIDS) or intrauterine fetal death.

1.1 Introduction

Long QT syndrome (LQTS) is an inherited cardiac disease characterized by
prolongation of QT interval at surface ECG, T-wave abnormalities (biphasic or
notched T waves), and high risk of life-threatening arrhythmias. The typical ventric-
ular tachyarrhythmia that underlies cardiac events in LQTS is the torsades de pointes
(TdP). This type of ventricular tachycardia can produce transient syncope, when it is
self-limited, or can degenerate into ventricular fibrillation and cardiac arrest, mainly
precipitated by emotional or physical stress. A sign of major electrical instability in
LQTS patients is represented by T-wave alternans, a beat-to-beat alteration in
polarity, and amplitude of the T wave [1]. Long QT syndrome is considered one
of the leading causes of sudden death in young (<35 years) [2]. Unfortunately, the
disease can remain clinically silent for a long time, and sudden cardiac death (SCD)
may be the first manifestation in some cases.

The congenital form of the disease has been largely studied over the years and
includes two main hereditary variants. The Romano-Ward (RW) variant, described
for the first time in 1964 [3], represents the autosomal dominant form of the disease,
and it is relatively common, with a prevalence of 1:2000 live births [4]. The Jervell
and Lange-Nielsen (JLN) syndrome is an extremely severe form of the disease,
associated with congenital deafness and higher mortality [5, 6]. The JLN has an
autosomal recessive mode of inheritance, more frequently associated with homozy-
gous and rarely compound heterozygous mutations. This syndrome is very rare and
affects around 2-3 out of 1000 individuals with congenital deafness [6].

Since the main feature of LQTS is the prolongation of QT interval, it is not
surprising that cardiac ion channels responsible for action potential (AP) duration are
the main molecular players of the syndrome.

In particular, three genes (KCNQ1, KCNH2, SCN5A), encoding cardiac sodium
and potassium channels, are the major genetic contributors underlying LQTS.
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However, many other genes, detailed in Table 1.1, have been so far associated with
the disease and will be described in Sects. 1.2 and 1.3.

Besides congenital LQTS, an acquired form of the disease (aLQTS) has been
described as well [7] and refers to patients in which QT prolongation is secondary to
hypokalemia or QT-prolonging drugs (www.azcert.org). A genetic basis of aLQTS
is recognized as well. Indeed, a third of these patients carries rare variants in the three
main congenital LQTS-associated genes, with KCNH2 being the gene most fre-
quently involved [8]. Furthermore, a sum of common polymorphisms, known to
modulate QT interval in the general population [9], has been shown to predict the
degree of drug-induced QT prolongation in acquired LQTS patients [10].

The therapy of choice in congenital LQTS is represented by beta-blockers (BBs),
which are effective in preventing life-threatening arrhythmias in the vast majority of
patients, with the highest efficacy obtained with propranolol and nadolol [11]. When-
ever a failure of BB therapy is observed, left cardiac sympathetic denervation
(LCSD) offers additional protection with a 91% reduction in cardiac events
[12]. ICD therapy is rarely indicated in LQTS, as available therapies are highly
effective [13]. A subgroup of LQTS patients that represent an exception at what
previously stated are those patients with cardiac events in the first year of life. These
patients represent a small subgroup of LQTS cohorts, 2% in the LQTS International
Registry [14], but they are at very high risk to have a subsequent cardiac arrest/
sudden cardiac death in the following 10 years of life and are poor responders to
beta-blocker therapy [14]. The genetic basis of these most severe forms of the
disease will be treated in details in Sect. 1.3.

1.2  Part |: Genetics of Adult Forms of Long QT Syndrome
1.2.1 Major LQTS Genes

The three main genes responsible for LQTS (KCNQI, KCNH2, SCN5A) were
identified between 1995 and 1996 [15—17]. They encode the Na, 1.5 sodium channel
(SCNS5A) and the two alpha subunits of the delayed-rectifier potassium channels
(KCNQI, KCNH2), respectively, involved in the depolarization (Na,1.5) and repo-
larization (K™ channels) phases of AP. They represent the major genes responsible
for LQTS as they account for approximately 90% of all genotype-positive cases [18].

The KCNQI gene, located on chromosome 11, encodes the a-subunit of the slow
delayed-rectifier potassium channel (K,7.1) responsible for the depolarizing I,
current, which is essential for QT adaptation when heart rate increases [15]. Four
alpha subunits encoded by KCNQ1I co-assemble with two beta subunits to form the
functional K* channel. The typical effect of KCNQI mutations is a decrease of the
outward potassium current (loss of function), leading to ventricular repolarization
delay and QT prolongation. Since Ik, current is the major determinant of QT
adaptation during heart rate increase, when I, is diminished or dysfunctional, the
QTec fails to adequately shorten during sympathetic activation, and this creates a
potential arrhythmogenic substrate. Heterozygous KCNQI mutations cause the
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dominant Romano-Ward LQT1 syndrome, while KCNQI homozygous or com-
pound heterozygous mutations cause the recessive JLN variant, characterized also
by deafness due to the reduced Ik in the inner ear.

The gene responsible for LQTS type 2 (LQT2) is KCNH2 [16], encoding the
a-subunit of the rapid delayed-rectifier potassium channel (K,11.1, hERG), which
conduces Iy, current. Similar to the slow rectifier potassium channel, four alpha
subunits, each encoded by KCNH2 gene, co-assemble to form a functional channel.
Mutations in KCNH?2 gene mainly cause a rapid closure of potassium channels and
Ik, decrease (loss of function), resulting in delayed ventricular repolarization and QT
prolongation.

There are different mechanisms through which mutations in KCNQ/ and KCNH?2
can cause reduction or complete loss of the Ix current, the major determinant of the
phase 3 of the cardiac AP. The first two mechanisms described, haploinsufficiency
and dominant negative effect, are relevant to both KCNQI and KCNH2.
Haploinsufficiency is a mechanism causing a ~50% reduction of current density
due to an overall decreased production of functional channels into the cell mem-
brane, whereas dominant negative effect is elicited by the negative interaction of
mutated subunits with the wild-type ones and can cause more than 50% reduction of
current density [19]. More recently, mutations in KCNH2 have been classified into
four types on the basis of the channel biophysical property that was impaired.
Specifically, class 1 mutations disrupt the synthesis or the translation of K,11.1
a-subunits, class 2 mutations reduce the intracellular transport or trafficking of
K,11.1 proteins to the cell membrane, and class 3 and 4 mutations affect K,11.1
channel gating and permeation [20].

The third major LQTS gene is SCN5A [17], encoding the a-subunit of the cardiac
sodium channel (Na,1.5) involved in the genesis of depolarizing sodium inward
current (In,) and responsible for the phase 0 of AP. In vitro expression studies
showed that SCN5A mutations lead to LQTS phenotype (LQT3 variant type) through
a gain-of-function mechanism, by increasing the delayed Na® inward current,
resulting in the prolongation of AP duration and QT interval.

Alterations in the sodium channel are also associated with other genetic disorders
like Brugada syndrome, atrial fibrillation, sick sinus node syndrome, and the
Lev-Lenegre disease. As a further complexity, some SCN5A mutations can show a
pleiotropic behavior, i.e., the same mutation may associate with more than one
phenotype, leading to the so-called overlap syndromes [21, 22].

Overall, the yield of genetic testing for the three main genes in clinically definite
LQTS patients is approximately 75% [23], while the prevalence of LQTS variant
types among genotype-positive patients is estimated to be 43% for LQT1 (KCNQ1),
32% for LQT2 (KCNH2), and 13% for LQT3 (SCN5A) [18].

These three major LQTS variant types have been associated with specific arrhyth-
mic triggers [24]. LQT1 patients are at higher risk during physical or emotional
stress, with swimming being particularly dangerous and specific [24]. Indeed, the
majority of patients (99%) that experienced cardiac events while swimming were
LQT1. By contrast, LQT2 and LQT3 patients, who have a normal level of Ik, are at
low risk during physical exercise and sport activity. LQT2 patients are more
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sensitive to sudden noises, such as alarm clocks or telephone ringing, especially
during sleep, whereas LQT?3 patients tend to have their events at rest or while asleep,
when the heart rate decreases [24].

The clinical manifestations of LQTS may also vary according to the different
genetic background. The first large study suggesting interactions between genotype,
QTc, and gender reported that the risk of cardiac events was higher for LQT2
females and LQT3 males and further increases in the presence of marked QT
prolongation (QTc > 500 ms) [25]. LQT1 patients experienced less frequently
cardiac events, probably because a very high percentage of them has a QTc < 440 ms
[25]. These findings were confirmed some years later, in another study that showed
that female gender, QTc interval > 500 ms, and syncopal events were associated
with significantly increased risk of life-threatening cardiac events in adulthood
[26]. However, the severity of the disease and the relative risk of cardiac events
are also influenced by the type of mutation, the location of the mutation in the
protein, and the effect produced on cellular function [19, 27, 28].

1.2.2 Minor LQTS Genes

After the identification of the three main LQTS genes, several others have been
associated with the disease. They collectively account for a small portion of LQTS
(nearly 5%); thereby they are considered as minor genes [23].

Some of the minor LQTS genes concern auxiliary beta subunits that co-assemble
with alpha channel subunits encoded by KCNQ1, KCNH2, and SCN5A, to recapitu-
late sodium and potassium currents. These genes are KCNE1, KCNE2, and SCN4B.

KCNEI encoding MinK is the single-transmembrane f-subunit of KCNQI
potassium channel, which contributes as well to generate Ik, current [29]. Mutations
in KCNE] gene may cause either the dominant RW syndrome (LQTS) when present
in heterozygosity or the recessive JLN syndrome if present in homozygosity or
compound heterozygosity [30].

KCNE?2 gene encodes MiRP1 (MinK-related peptide 1), a small peptide that
co-assembles with hERG alpha subunits to form I, channel. Mutations in this gene
are responsible for the LQT6 variant type and have been associated both with
congenital [31] and acquired LQTS [32].

The SCN4B gene, underlying LQT10 variant type, encodes the beta auxiliary
subunit of Na, 1.5 channel and contributes to modulate Iy, current. The first mutation
identified in this gene (SCN4B-p.Leul 79Phe) segregated in a family whose proband
presented with intermittent 2:1 atrioventricular (AV) block and a corrected QT
interval of 712 ms, while other two members died for SCD [33]. The mutation
showed in vitro to increase the Iy, current, resembling LQT3 phenotype [33].

Other minor genes associated with LQTS encode some components of the
sodium channel macromolecular complex, such as CAV3 and SNTAI, and represent
LQT9 and LQT12 variant types. Mutations in these genes almost mimic the LQT3
phenotype.
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The gene CAV3 encodes caveolin-3, a small protein that localizes on caveolae,
small microdomains of the plasmalemma involved in vesicular trafficking and in the
regulation of signal transduction pathways. Mutations in this gene were first
described in adult patients, and it was hypothesized that caveolin proteins associated
with sodium channel may influence the Iy, depolarizing current [34].

The al-syntrophin, belonging to dystrophin-associated protein family, is part of
the sodium channel macromolecular complex, together with neuronal nitric oxide
synthase (nNOS) and the nNOS inhibitor Ca®* ATPase PMCA4b. The gene SNTAI
was firstly implicated in the disease in 2008, with the identification of the p.
Ala390Val mutation in a LQTS subject symptomatic for cardiac events, with a
QTc of 529 ms [35]. This mutation localizes in the PMCA4b binding domain,
resulting in Na, 1.5 channel function impairment and Iy, current increasing [35].

Additional genes associated with LQTS cases were AKAP9 (LQT11), KCNJ5
(LQT13), KCNJ2 (LQT7), and ANKB (LQT4).

The A-kinase anchor protein 9, also known as yotiao, is involved in the phos-
phorylation of KCNQ1 via PKA and is responsible for the LQT11 variant type
[36]. The first AKAP9 mutation (p.Ser1570Leu) identified in a LQTS patient was
predicted to weaken the interaction between PKA and KCNQ1, making the channel
not responsive to AMPc, lastly causing QT prolongation [36].

More recently another potassium channel, Kir3.4, encoded by KCNJ5 gene, was
implicated in LQTS type 13. The Kir3.4 is a G protein-coupled inwardly rectifying
potassium channel, with a greater tendency to allow potassium to flow into the cell
rather than out of the cell. The gene was identified through a genome-wide linkage
analysis performed in a family with autosomal dominant LQTS [37]. Heterologous
expression studies of Kir3.4-p.Gly387Arg mutation revealed a loss-of-function
phenotype resulting from reduced plasma membrane expression [37].

Long QT syndrome types 4 and 7 refer to ANKB and KCNJ2 genes. Mutations in
these genes were associated with complex disorders, in which the QT interval
prolongation is a minor feature of the heterogeneous patients’ phenotype; therefore
they are atypical forms of LQTS. The ANKB gene encodes a membrane adapter,
anchoring different proteins and ion channels to plasmatic membrane. The ANKB-p.
Glu1425Gly mutation was identified in a large family with modest QT prolongation
associated with severe sinus bradycardia and episodes of atrial fibrillation [38].

KCNJ2 gene, encoding Kir2.1 channel, is referred like LQT7. However,
mutations in this gene result in Andersen-Tawil syndrome, a multisystem disease
that includes modest QT interval prolongation secondary to reduction of the potas-
sium repolarization currents (Ix;), and polymorphic tachycardia [39]. This current
contributes both to the repolarization phase 3 of AP and to the maintenance of resting
membrane potential; therefore, channel dysfunctions may lead to a reduction of I
with consequent QT prolongation.

Finally, the role of different proteins involved in Ca®* transport, signalling, and
homeostasis is currently emerging. Most of the Ca**-related forms are characterized
by extremely severe phenotypes, manifesting in perinatal period or during infancy.
Therefore, they will be presented in details in Sect. 1.3.2. The following paragraphs
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describe in brief the gene function and the first studies that demonstrated an associa-
tion with LQTS disease.

The main gene regulating Ca®* cellular load is CACNAIC, coding the L-type
voltage-dependent Ca®* calcium channel Cay1.2. This gene refers specifically to a
malignant form of LQTS known as Timothy syndrome (TS) (LQTS), described for
the first time in 1992 as a novel arrhythmia syndrome associated with syndactyly
(webbing of fingers and toes) [40, 41]. The molecular basis of the syndrome was
described in 2004 by Splawski’s group, who identified mutations in CACNAIC
affecting a single amino acid (p.Gly406Arg), co-segregating with TS phenotype in
several families [42]. They also provided exhaustive clinical characterization of the
syndrome, including long QT syndrome, life-threatening arrhythmias, congenital
cardiac defects, syndactyly, variable penetrance of autism features, craniofacial
abnormalities, and hypoglycemia [42]. The spectrum of mutations associated with
TS has been enlarged during the following years [43]; however, for some of them,
functional evidences supporting their causative role are less clear.

Calmodulin (CaM) is a multifunctional Ca** binding protein (Fig. 1.1, panel a)
essential for intracellular signalling processes in eukaryotic cells [50] that has been
recently identified as an additional causative factor for LQTS. It is a ubiquitous
protein which transduces Ca* signals in excitable tissues such heart and brain and
therefore influences the activity of ion channels, kinases, and other target proteins
[51]. Human calmodulin is highly conserved among vertebrates and is encoded by
three separate genes (CALMI, CALM2, and CALM3), producing proteins with
identical amino acid sequence [52]. CALM genes, when mutated, can cause LQTS
(LQT14-16, Table 1.1), cathecolaminergic polymorphic ventricular tachycardia
(CPVT) [53], idiopathic ventricular fibrillation, and sudden cardiac death. CALM-
LQTS [44] is characterized by very severe forms of the disease with early-onset
presentation and recurrent life-threatening arrhythmias [44, 49]. Calmodulinopathy
will be discussed in details in Sect. 1.3.2.2.

TRDN is another gene encoding a protein (triadin) implicated in Ca®* channel
regulation that was associated to both CPVT [54] and LQTS [55]. Triadin syndrome
will be discussed in Sect. 1.3.2.3.

1.2.3 Genetic Modifiers of Long QT Syndrome

Long QT syndrome is a Mendelian disorder, in which the phenotype is primarily
explained by a single mutation in one of the main cardiac ion channel genes.
However, the disease is also characterized by high clinical heterogeneity within
families and among carriers of the same disease-causing mutation. This phenome-
non, usually attributed to incomplete penetrance and variable expressivity [56],
could be partially due to genetic modifiers. Genetic modifiers are genes or loci,
distinct from the primary disease-causing mutation, associated with arrhythmia
susceptibility. They act as fine regulators of the arrhythmic risk modulating the
effect of the primary disease-causing mutation in a protective or detrimental way.
The role of genetic modifiers in LQTS has been largely studied in the last years, and



Genetics of Adult and Fetal Forms of Long QT Syndrome

1

Al puey-13

Il puey-13

Il puey-13

1 puey-43




10 L. Crotti et al.

for few of them, application in clinical practice for risk stratification should be
carefully evaluated.

The first genetic modifiers of LQTS identified are single nucleotide
polymorphisms (SNPs) located in genes already associated with LQTS and gener-
ally detected in a specific genetic context. For example, the role of the common
variant KCNH2-p.Lys897Thr was initially assessed in a LQT2 family which
segregates the KCNH2-p.Alal116Val mutation. In vitro functional studies
demonstrated that the reduction of potassium current (loss of function) caused by
the KCNH2-Alal116Val mutation was further exaggerated by the co-expression of
the mutation with the Lys897Thr common variant [57]. This could explain why the
proband, carrying both variants, had a severe phenotype, while the rest of
Alal116Val carriers were asymptomatic with borderline/normal QTc. Interestingly,
the deleterious effect conferred by the KCNH2-Lys897Thr variant in combination
with a KCNH2 mutation was subsequently confirmed by another group in a single
family [58]. Furthermore, the presence of KCNH2-Lys897Thr was associated with a
longer QT interval during maximal exercise in a group of Finnish LQTS patients
carrying the KCNQ1-G589D mutation [59]. The aforementioned observations sug-
gest that KCNH2-Lys897Thr may impair repolarization reserve in the setting of
LQT1 or LQT2 mutations. However, the impact of this common variant in the
general population may be more complex. Indeed, data from genome-wide associa-
tion studies conducted in the general population showed that Thr897 is associated
with a decreased QTc interval [60—62], and a functional study performed by Bezzina
et al. reported that Thr897 channel displayed a shift in voltage dependence of
activation and increased rates of current activation and deactivation, expected to
increase Ik, [63]. Similar studies have identified functional interactions between a
common SCN5A variant (p.His558 Arg) and LQTS-associated mutations in the same
gene [64, 65]. A novel finding concerns the KCNQI-p.Leu353Leu synonymous
variant, able to impact splicing efficiency resulting in the generation of alternatively
spliced transcripts (25% of the total) in which exon 8 is missing, ultimately decreas-
ing functional tetramer formation [66]. Although the variant by itself is unlikely to

Fig. 1.1 (Panel a) Calmodulin secondary structure refined at 1.7 A resolution, stoichiometry
A. Image from the RCSB PDB (www.rcsb.org; Berman HM, Westbrook J, Feng Z, Gilliland G,
Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000
Jan 1;28(1):235-42) of PDB ID ICLL (Chattopadhyaya R, Meador WE, Means AR, Quiocho
FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992;228(4):1177-92). The four
binding domains and pockets correspond to coiled segments, with small marbles representing
ligands: 4 Ca®* at structure extremes, 1 EtOH in the middle. The C-terminal region of the protein
corresponds to the upper part. (Panel b) Schematic model of calmodulin protein showing Ca>*
binding loops (EF hand I-IV). Amino acids directly involved in the binding of Ca®* ions are
identified with a dotted line. Dark substituted amino acids represent mutations so far identified in
LQTS patients with perinatal manifestation of the disease [44—49], whereas light substituted amino
acids represent the rest of published mutations associated with different arrhythmic phenotypes
and/or identified in patients more than 1 year age [49]. Amino acid substitutions in Ca®* binding
loops are identified with circles and those in linker/N-terminal/C-terminal regions with squares
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result in a LQTS phenotype, it may act as a modifier and have a synergistic effect on
the QTc when inherited with other variants, such as the KCNQ1-p.Val205Met [66].

Even though observations within a single family may occasionally provide
important clues, as it was for the modifiers previously described, a structured
approach more likely to yield interesting returns is that of searching modifier
genes in patients carrying the same disease-causing mutation, to avoid the
confounding effect of different mutations (each of which with its own impact on
arrhythmic risk). Therefore, founder populations, that are group of patients derived
from a common ancestor and sharing the same disease-causing mutation, are ideal
population to search for genetic modifiers. In the Finnish founder population
segregating the KCNQ-p.Gly589Asp, the variant KCNEI-p.Asp85Asn, previously
associated both with acquired and congenital LQTS [67, 68], was described as a
gender-specific genetic modifier of the QT interval with an increased risk for male
carriers [69]. The same variant was later associated with longer QT interval and
higher risk of cardiac events in LQT2 patients [70]. Several other meaningful
findings have been obtained through the study of the South African founder popula-
tion, segregating the KCNQI-p.Ala341Val mutation [71]. Indeed, this was the first
population in which the role of NOSIAP as a genetic modifier of LQTS was
demonstrated [72]. NOSIAP is a gene originally identified through GWAS as
affecting the QT interval in the general population [73]. This observation was
confirmed in all GWAS performed to search for common SNPs influencing QT
duration in the general population, including the most recent one on more than
70,000 individuals [9]. NOSIAP is probably the strongest modifier so far identified.
Specifically, two common variants in NOSIAP (rs4657139, rs16847548) were
associated with an increased QT interval duration and a greater probability of cardiac
arrest or SCD in LQTS patients carrying the KCNQI-p.Ala341Val mutation
[72]. The results of our original study were subsequently validated in two indepen-
dent LQTS populations [70, 74]. From a mechanistic point of view, NOSIAP,
encoding a nitric oxide synthase adaptor protein, appears as a potential interesting
new player in the regulation of cardiac contractility [75]. In addition, nitric oxide
signalling may be an important effector of cardiac repolarization, with a role in
balancing nitric oxide and superoxide production [76]. Although the specific molec-
ular mechanism through which NOSIAP may confer arrthythmic risk has not yet
elucidated, all these findings indicate that NOSIAP can be regarded as a strong
modifier of clinical severity in LQTS.

The South African founder population helped in the identification of other four
common variants with a modifying effect on LQT1 phenotype in AKAP9 gene
encoding yotiao, a protein involved in the regulation of KCNQI1-KCNEI channel
[77]; two variants (rs11772585, rs7808587) were associated with an increased risk
of cardiac events, one variant (rs2961024) was associated with QT interval
prolongation, and one variant (rs2282972) seemed to have a protective effect and
was associated with a decreased risk of cardiac events [77].

Finally, it has been recently postulated that some variants in the 3" UTR of
KCNQI may have a modifier role and may be able to influence QT duration and
the risk of cardiac events when located in trans to the LQTS-causing allele
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[78]. Unfortunately, this finding was not replicated in any of three LQT1 founder
populations [79].

Another approach used to identify genetic modifiers was a matched case-control
study including 112 patient duos with LQTS, tested for polymorphisms previously
associated with QTc duration in healthy populations or potentially involved in the
modulation of adrenergic responses [80]. The results obtained in duos, including one
symptomatic and one asymptomatic patient sharing the same mutation either in
KCNQI or KCNH?2 gene, were then validated in two independent LQT1 founder
population cohorts (South African KCNQI-p.Ala341Val and Finnish KCNQI-p.
Gly589Asp). The study provided evidence that the KCNQI rs2074238 polymor-
phism was an independent risk modifier of LQTS, with the minor T-allele conferring
protection against cardiac events [80].

Recently, a novel strategy combining the most up-to-date genetic and cellular
technologies has proven to be successful for the identification of modifier genes in a
LQT2 large family with variable disease expression among mutation carriers
[81]. Electrophysiological studies in patient-derived iPSC-CMs highlighted the
presence of a larger L-type calcium current (Ic,;) probably contributing to AP
prolongation in subjects with more severe phenotypes despite all cells had lower
levels of rapid delayed-rectifier current (Ix,) consistent with a loss-of-function
mutation in KCNH2. In parallel, whole exome sequencing (WES) allowed to
identify two variants with opposite modifier effect in KCNK17, a two-pore domain
potassium channel gene, and in a GTP-binding protein encoded by REM2, a
suspected physiological modulator of I, . The protective variant in KCNKI17 was
absent in all severely affected individuals, carrying indeed the REM2 aggravating
variant [81].

In conclusion, all the aforementioned genetic studies, despite carried on through
different approaches, gave strong support to the role of modifiers as potential inter-
players of the phenotypic variability in patients with long QT syndrome [82]. Genetic
modifiers of long QT syndrome so far discovered are listed in Table 1.2, with details
about genes, modifier alleles, and related effects. While most of the variants so far
identified as modifiers are able to directly interact with the main disease-causing
mutation increasing or reducing its effect [57, 64, 66, 79, 81], other variants, as
NOSIAP, are acting through a mechanism not yet fully elucidated.

1.3 Part ll: Genetics of Perinatal Forms of Long QT Syndrome

The diagnosis of long QT syndrome can be easily performed even very early in life,
through a basal ECG, and the European Society of Cardiology has published
guidelines to support the interpretation of the neonatal electrocardiogram [83]. Our
group has always supported the role of an ECG screening program performed in the
first month of life in order to identify early neonates affected by LQTS and establish
preventive therapeutic strategies [4, 84].

By contrast, the diagnosis of LQTS during fetal life is more complicated, mainly
because of the rarity of symptoms, the poor availability of instruments for detection,
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and the incomplete knowledge in the field. Prenatal signs of LQTS could be sinus or
intermittent bradycardia <110 beats/min, fetal heart rate < third percentile for
gestational age, atrioventricular (AV) block, tachyarrhythmias, or pleural effusion
and exceptionally fetal hydrops [85, 86]. Currently, LQTS was estimated to account
for 15-17% of fetal bradycardias among fetuses with a normally structured hearts
[85]. However, in the last few years, many progresses have been made in the field of
prenatal LQTS diagnosis as well as in management of pregnancy in the context of
LQTS. Several methods that can be used to detect fetal arrhythmias have been
described, as fetal ultrasound, fetal echocardiography, cardiotocography, fetal elec-
trocardiography, and fetal magnetocardiography, albeit not all are widely available
for physicians [87]. In particular, the advent of fetal magnetocardiography, currently
a technique with full regulatory approval [88], has demonstrated to allow an accurate
diagnosis of LQTS in utero [89]; however, only in few centers it is available. To
study and better understand the fetal presentation of LQTS, an International Registry
has been recently established, and our research group is involved as a partner.
Through this International Registry, we also aim to create a communication network
among scientists to improve the management of these vulnerable little patients and to
create a platform to allow families to gain more information about the disease and its
management.

1.3.1 Sodium and Potassium Channels

Few studies have been published so far with a specific focus on LQTS diagnosed
during fetal, perinatal, and neonatal periods [90, 91]. A Japanese study collected
58 LQTS cases in which the diagnosis was made in fetal (» = 18) and neonatal
(n = 31) periods or within the first year of life (n = 9) [90]. The genetic analysis of
the three main LQTS genes (KCNQI, KCNH2, SCN5A) plus CACNAIC gene
identified mutations in 29/41 cases, with a majority of variants in potassium channel
genes. The clinical phenotype observed in LQT2 and LQT3 patients was more
severe than in LQT1 patients. The first group is composed of patients presenting
aggressive clinical phenotypes, with ventricular tachycardia/TdP and AV block,
while the main clues of the latter group were sinus bradycardia or family history
for LQTS [90]. The group presenting life-threatening arrhythmias required the use of
more aggressive therapies to effectively reduce the frequency of arrhythmic events.
A second study aimed to describe fetal manifestation of LQTS and took advantage of
in utero recording of arrhythmias characteristic of LQTS [91]. The genetic analysis
performed in 43 subjects just after birth was positive in 95% of cases, with a majority
of mutations in KCNQI gene; SCN5A mutations were identified much more fre-
quently in fetuses with TdP and second AV block, while KCNQI mutations were
identified more often in fetuses presenting with persistent sinus bradycardia [91].
Although the distribution of genotypes among the three main LQTS genes was
slightly different in the two cohorts, few observations were common:
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1. Sinus bradycardia was more frequently observed in LQT1, while life-threatening
arrhythmias in LQT2/LQT3 fetuses/neonates.

2. LQT3 patients carrying mutations in SCN5A have the most severe phenotype and
are at high risk of life-threatening events.

In addition to these two studies, reports on single or few cases manifesting LQTS
across the perinatal period or within the first year of life have been published and are
summarized in Table 1.3. Interestingly, while adult LQTS patients most frequently
carry genetic variants in KCNQI and KCNH?2 [18], in perinatal/neonatal LQTS
cases, mutations were almost equally distributed among the three main genes:
KCNQI (n = 38 mutation carriers (MCs), SCN5A (n = 26 MCs), and KCNH?2
(n = 23 MCs).

Among the cases so far described and reported in Table 1.3, major arrhythmic
events (VT, TdP, VF, CA, SCD) are more frequently observed in LQT3 and LQT2
(85% of SCN5A and 83% of KCNH2 MCs) compared to LQT1 patients (2.6% of
KCNQ1 MCs). Furthermore, while in adult LQT3 patients response to beta-blocker
therapy is reasonably good [94], in LQT3 patients with events in the first year of life,
response to beta-blocker therapy is poor, and there is a very high incidence of cardiac
arrest/sudden cardiac death despite beta-blocker therapy [115].

LQT3 patients with early and severe presentation more frequently carry variants
located in the transmembrane, linker, and C-terminal regions of SCN5A (81% of
SCN5A MCs), where variants are less frequently observed in controls [116]; simi-
larly, at variance with controls, in LQT1 and LQT?2 patients with an early-onset
presentation, variants are more frequently observed in the transmembrane, linker,
pore-forming, and C-terminal regions of KCNQ1 and KCNH2 potassium channels
(97% of KCNQ1I and 91% of KCNH2 MCs) [116].

Among the different mutations identified, two appear to be more frequently
associated with malignant perinatal LQTS, i.e., the SCN5A-p.Arg1623GIn mutation
[90, 91, 100, 101] and the KCNH2-Thr613Met [90, 110-112], both located in key
functional domain of cardiac channels (SCN5A transmembrane S4 voltage sensor of
repeat IV and KCNH2 intramembrane pore-forming region). The SCNSA-p.
Argl1623GIn mutation showed a particularly severe channel dysfunction through
in vitro electrophysiological study [117] that could explain the severe phenotype
consistently observed in all mutation carriers described [90, 91, 100, 101]. Another
mechanism that could explain the early occurrence of severe clinical manifestation in
some SCN5A mutations was provided by Murphy et al. [93], that studied the
mutation SCN5A-p.Leud09Pro, identified in a fetus with life-threatening
arrhythmias, who was also carrying the SCN5A-p.Arg558 common variant
[93]. The sodium channel dysfunction, observed in vitro with the co-expression of
the two variants, was further potentiated when the variants were expressed in a fetal
SCNS5A splice isoform, providing a plausible mechanism for the severe fetal presen-
tation of the disease [93].
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1.3.2 Calcium Channel Complex

1.3.2.1 Timothy Syndrome

Timothy syndrome (TS) is a multisystem disorder, caused by mutations in
CACNAIC, the gene encoding the alpha subunit of the calcium channel Ca,1.2.
Patients are characterized by extremely prolonged QT, 2:1 AV blocks, T-wave
alternans, and life-threatening arrhythmias occurring very early in life. Congenital
heart defects are present in 70% of the patients, and also extra-cardiac disorders are
typically observed. Hand and foot syndactyly is present in almost 90% of cases;
developmental delays, autism spectrum disorder, seizures, and intermittent hypogly-
cemia have been reported as well as frequent infections secondary to altered immune
responses [42]. In most of the cases identified within the first year of life, the disease-
causing mutation arises de novo or was inherited from an asymptomatic parent with
mosaicism, and interestingly, in all studies [90, 118—127] but four [119, 124, 125,
127], the identified mutation conferring the TS phenotype was always the same, p.
Gly406Arg in the alternatively spliced exon 8A of CACNAIC gene. This finding
shows that the p.Gly406Arg mutation has a strong and reproducible effect across a
number of unrelated patients detected early in life, as well as in children belonging to
different families [42]. This observation further suggests the importance of this
amino acid residue in maintaining the correct biophysical properties of the L-type
calcium channel and supports the causality of the mutation for the syndromic
presentation. The p.Gly406Arg mutation is located at the end of the IS6 transmem-
brane segment, just upstream the calcium channel beta subunit binding site. This
region forms a rigid alpha-helix that helps properly orient the auxiliary beta subunit.
The hypothesized underlying mechanism led by the p.Gly406Arg mutation is the
perturbation of the voltage-dependent inactivation (VDI) of the channel, due to the
reorientation of the beta subunit secondary to the disruption of the alpha-helix
segment [128]. A subsequent study showed that VDI is not the only L-type Ca**
channel inactivation regulatory system impaired by the mutation that may impact
also on Ca”*/CaM-dependent inactivation (CDI) [129]. Therefore, p.Gly406Arg
gain-of-function mutation is able to cause the loss of both channel inactivation
mechanisms: as a consequence, calcium channels fail to close during the plateau
phase of AP, leading to an increase of the depolarizing inward calcium current and to
amarked delay of repolarization [42, 129]. In addition, TS mouse model showed that
low levels of Ca,1.2-mutated channels are sufficient to create a Ca”* overload in the
cytosol, favoring spontaneous sarcoplasmic Ca”* release, able to increase excitation-
contraction (EC) coupling and arrhytmogenesis [130]. Figure 1.2 provides a sche-
matic model of Ca®>* macromolecular complexes that activate sequentially and
contribute to different phases of EC coupling in cardiomyocytes.

Four different mutations were so far identified in TS patients diagnosed within the
first year of life: the CACNA1C-p.Alal473Gly [119], located at the end of the IVS6
of Ca,1.2 channel, the p.Gly406Arg identified in exon 8 of a different splicing
isoform of the protein [124, 125], the p.Gly402Ser and the p.Lys1211Glu, reported
in a recent clinical study on TS [127]. Mutations in exon 8, mutually exclusive to
exon 8A but encoding the same region, have been initially associated with a subtype
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Fig. 1.2 Schematic model of calcium handling in cardiomyocytes and excitation-contraction
coupling protein players. The calcium flux across three main Ca** macromolecular complexes is
displayed. Calcium ions enter into the cell through Cav, , channel, located in transverse T tubules of
plasmalemma invaginations and acting in the plateau phase of cardiac action potential. The [Ca*]i
increase triggers the activation of RyR2 channel responsible of a much larger Ca®* release from
sarcoplasmic reticulum to cytosol. Once [Ca*l]i reaches the highest concentration level, the
excitation phase finishes and starts the myofilament contraction mediated by Ca”* binding to
troponin C. Later on, NCX and SERCAZ2a contribute to [Ca2+]i decrease through extrusion of
Ca”* excess from cytoplasm to extracellular space (NCX) and Ca** sequestration into sarcoplasmic
reticulum (SERCA2a), reporting [Ca”*1i in the cytoplasm to basic level. NCX Na*/Ca”* exchanger,
ANK ankyrin B, CAV3 caveolin-3, RyR2 ryanodine receptor type 2, CaM calmodulin, TRDN triadin,
JCTN junction, CASQ?2 calsequestrin 2, SERCA2a Ca**-ATPase type 2a, Cavl.2 L-type Ca**
channel (LTCC) with pore-forming alpha subunit and accessory alpha 2, beta, delta subunits

of the disease characterized by extremely severe cardiac features and a milder extra-
cardiac phenotype, named Timothy syndrome type 2 [124]. The clinical study by
Dufendach et al. provided data from a novel large cohort of TS cases showing
heterogeneous combination of cardiac and extra-cardiac features [127]. Interestingly,
70% of them (12/17) have been diagnosed within the first year of life, and the p.
Gly406Arg mutation remained the most frequent, present in 10/12 TS patients. The
two cases carrying different variants showed, respectively, a complex phenotype (p.
Gly402Ser) or solely QT prolongation and 2:1 AV block in the case of p.
Lys1211Glu carrier [127].

1.3.2.2 Calmodulinopathies

Calmodulinopathy is a term conferred to the novel clinical entity of arrhythmia
diseases due to calmodulin genetic defects. Calmodulin is able to interact and
modulate the activity of different cardiac ion channels, such as the L-type calcium
channel, the ryanodine receptor, and the sodium and potassium channels
[131]. Therefore, it is not surprising that CaM protein alterations can explain a
wide range of cardiac arrhythmia phenotypes as LQTS [44, 132], CPVT [53, 132],
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and IVF [133]. Most of the calmodulin variants so far described were associated with
LQTS and the majority of patients manifest the disease very early in life
[45, 49]. This observation supports the emerging concept that calmodulinopathies
are mainly diseases of the perinatal/pediatric period with less impact on adulthood.

The first description of perinatal forms of LQTS due to CaM mutations was
published by our group in 2013 [44]. Two unrelated neonates with recurrent cardiac
arrest and dramatically prolonged QT interval (>600 ms), born by healthy parents,
underwent a WES parent-child analysis to find a potential genetic cause. Two
missense mutations altering amino acid residues in the C-terminal protein domain,
important for calcium binding (CALM2-p.Asp96Val, CALMI-p.Asp130Gly), were
identified in the two probands. Biochemical studies demonstrated several-fold reduc-
tion of Ca>* binding affinity for the CaM-mutated proteins with respect to wild type;
therefore, it was hypothesized that mutated CaM might disrupt Ca®* signalling in
heart cells [44]. During the following years, other CALM-linked LQTS cases have
been described, with severe phenotypes and early arrhythmia onset detected during
fetal life or just after birth [45-49]. Table 1.4 and Fig. 1.1 (panel b) show CaM
mutations so far described in LQTS cases with a perinatal diagnosis. It is interesting to
note that all mutations but one (p.Phe142Leu) are located in the two C-terminal Ca**
binding domains of the protein and involve amino acid residues directly implicated in
Ca** binding. The mutation p.Phel42Leu, however, resides in the first amino acid
just downstream the fourth C-terminal Ca** binding loop and is one of the most
recurrent among perinatal LQTS subjects together with the p.Asp130Gly.

A recent study conducted through WES on 38 genetically elusive LQTS patients
of different ages identified CaM mutations in five cases: four with a previously
described mutation (p.Asp130Gly, p.Asp130Val, p.Phel42Leu in two patients), one
with a novel mutation (p.Glu141Gly) [45]. Interestingly, all the five CaM-positive
patients had a more severe phenotype than other patients in the cohort, with an
average age of onset of 10 months, an average corrected QT interval of 676 ms, and a
high prevalence of cardiac arrest [45]. This finding suggests again that CaM
mutations cause particularly severe forms of LQTS, characterized by very early
onset and extreme phenotype severity, with life-threatening arrhythmias, cardiac
arrest, or sudden cardiac death occurring within the first year of life.

Given the high number of CaM molecular interactions, in vitro studies tried to
elucidate molecular mechanisms leading to arrhythmogenesis in patients with CaM
mutations. The first studies, performed in heterologous expression systems or in
mammalian ventricular myocytes, showed that Ca**/CaM-dependent inactivation
(CDI) was the main mechanism impaired in LQTS patients with CaM mutations
[45, 134, 135]. The slow of L-type Ca®* channel inactivation and the consequent
boost of Ca** influx during the plateau phase of AP would likely result in a
repolarization delay and arrhythmogenesis (Fig. 1.2). Comparable results were
obtained using the cellular model of human cardiomyocytes differentiated from
induced pluripotent stem cells (iPS-derived CMCs) [47, 136, 137]. This type of
in vitro model, developed in the last years, allows to functionally characterize a
mutation in the patient-specific cellular environment and appears particularly suit-
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Table 1.4 Calmodulin mutations identified so far in LQTS patients with a first manifestation in
perinatal period or within the first year of life

Functional
Major effect on
Protein Number | Age at arrthythmic LQTS-
sequence of first events/ associated Reference
variant Gene carriers symptoms | outcome ion channels | study
p. CALM2 |2 Prenatal CA Cavl.2 gain | [44, 91,
Asp96Val of function; 134, 135]
no effect on
Navl.5
CALM?2 Prenatal Death due to [49]
heart failure
and infection
(6 months)
p- CALM3 |2 Prenatal None NA [48, 49]
Asp96His
p- CALM2 |1 Prenatal None NA [49]
Asp96Gly
p- CALM1 |7 6 months CA Cavl.2 gain | [44, 134,
Asp130Gly of function; 135]
fetal Nav1.5
gain of
function
CALM1 1 month CA [44, 134,
135]
CALM?2 Birth ICD shock [45, 136]
for VF
CALM3 Birth None [46]
CALM3 Birth Electrical [49]
storms; SCD
at 4.5 years
CALM3 Neonatal Neonatal [49]
death due to
ICD
complication
CALM3 Birth SCD at 45 [49]
dd
p- CALM2 |1 Prenatal TdP, ICD NA [45]
Aspl30Val shocks for
VF
p- CALM2 |1 Prenatal None Cavl.2 gain | [47]
Aspl32His of function
p- CALM2 |1 Prenatal CA, ICD [49]
Aspl134His shocks
p- CALMI1 |1 Neonatal VT/VF, ICD [49]
Glul41Val shock
p- CALM2 |1 Prenatal SCD at 20 [49]
Glul41Gly months

(continued)
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Table 1.4 (continued)

Functional
Major effect on
Protein Number | Age at arrthythmic LQTS-
sequence of first events/ associated Reference
variant Gene carriers symptoms | outcome ion channels | study
p- CALM3 |1 Prenatale CA, ICD [49]
Glul41Lys shocks for
VF
p. CALMI |4 Birth VF Cavl.2 gain | [44, 134,
Phel42Leu of function; 135, 137]
no effect on
Navl1.5 and
Kv7.1
CALM1 Birth CA, SCD at [45]
2 years
CALM1 Birth SCD at 1 [45]
year
CALM3 Prenatal None [48]

The number of carriers as well as the age at manifestation and major events are reported for each
patient. References concern the first study in which the mutation was identified and associated with
LQTS and/or the in vitro functional studies of the variant. Ca, .2 L-type voltage-dependent Ca*
calcium channel, NayI.5 a-subunit of the cardiac sodium channel, CA cardiac arrest, TdP torsades
de pointes, VF ventricular fibrillation, SCD sudden cardiac death

able to study molecular mechanisms underlying arrhythmogenesis [136—
138]. Regarding calmodulin, it is important to point out that this model allows the
study of CaM mutations in the context of native allelic balance. This is quite
important for calmodulin as there are three genes encoding the same calmodulin
product; therefore, there is only one mutated allele with five wild-type ones, and
obviously overexpression studies are not ideal in such an allelic ratio. Since it is
known that CaM modulates also sodium and potassium channels [139-142], both
implicated in the genesis of LQTS, it has been attempted also to determine the
potential impact of CaM mutations on Ix, and Iy, currents. However, the first three
CaM mutations tested (p.Asp96Val, p.Asp130Gly, p.Phe142Leu) did not affect late
sodium and potassium currents [135, 137]. Further studies are needed to better
understand CaM influence on different type of cardiac ion channels and the specific
effects carried on by different mutations.

Given the need to better define this novel CaM-mediated arrhythmogenic disease,
our group has established an International Calmodulinopathy Registry [143], with
the aim to collect an adequate number of cases, define the spectrum of the clinical
features associated with CaM mutations, identify risk factors for life-threatening
events, promote among physicians discussion on patients’ management, and poten-
tially come up with therapeutic guidelines. The first results of this large consortium
have been recently published, with the collection of clinical and genetic data on 74
subjects carrying a variant in CALM1 (n = 36), CALM2 (n = 23), or CALM3
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(n = 15) genes [49]. Among CALM mutation carriers, LQTS is the most prevalent
phenotype, accounting for 49% of the cohort. CALM-LQTS patients exhibited
extremely prolonged QTc intervals (594 £ 73 ms) and a high prevalence (78%) of
life-threatening arrhythmias occurring very early in life; 58% of patients have a
perinatal presentation, consisting in a variable combination of striking QT
prolongation (QTc 628 + 62 ms), sinus bradycardia, 2:1 atrioventricular block, T
wave alternans, and/or MAEs [49]. Additionally, the early onset is almost exclusive
of the LQTS phenotype (91%) with respect to the rest of the cohort. The LQTS
patients have also poor response to the available therapies, therefore a combination
therapy with drugs, sympathectomy, and devices should be considered.

1.3.2.3 Triadin Knockout Syndromes

Triadin (TRDN) is an important component of the cell macromolecular calcium
releasing complex, with the specific function to anchor calsequestrin 2 (CASQ2) to
ryanodine receptor (RyR2) at the terminal cisternae of the sarcoplasmic reticulum
(SR). The protein isoform mainly expressed in cardiac muscle is Trisk32. The first
translational study focusing on TRDN highlighted the role of the gene in CPVT
[54]. In particular, TRDN gene is considered responsible for a recessive form of the
disease, since all the genotype-positive patients described in this first study were
homozygous or compound heterozygous TRDN mutation carriers. In vitro and
in vivo studies showed that all the mutations tested lead to protein instability and
subsequent degradation [54]. The CPVT subjects are effectively triadin knockout
cases, characterized by the absence of TRDN protein Ca”* release units.

Since the calcium releasing complex is primarily responsible for the EC coupling
via L-type calcium and RyR2 channels (Fig. 1.2), it is quite obvious that TRDN
mutations impairing the Ca”* release units resemble in part the CPVT phenotype
[144]. This concept has been clearly proven with the aid of mouse models, showing
TRDN mutations contribute both to create a cellular Ca®* overload and a destabili-
zation of CASQ?2 anchoring [145]. The mechanism by which TRDN mutations lead
to LQTS phenotype is less clear. Indeed, triadin knockout syndrome has also been
associated more recently with autosomal recessive LQTS phenotype [55]. So far,
only two isolated descriptions of TRDN-mutated subjects with early disease mani-
festation are present in literature.

The first patient is a girl of 10 years who experienced syncope at 1 and 2 years of
age combined with a QTc of 500 ms, extensive T-wave inversions in precordial leads
V1 through V4, and severe disease expression of exercise-induced cardiac arrest in
early childhood [55]. A child-parent trio WES analysis was performed, and the
TRDN-p.D18fs*13 frameshift mutation was identified in the proband in homozygous
state [55]. Both unaffected parents were heterozygous for the mutation. Surprisingly,
the mutation identified in this LQTS proband was identical to the one detected in the
first CPVT cohort [54], and the two patients effectively share some common
phenotypic features. This specific mutation was further identified in two siblings
who had an out-of-hospital cardiac arrest at 2 years of age and subsequent recurrent
episodes of ventricular fibrillation with documented QT prolongation [146]. The two
siblings are both compound heterozygous carriers of the previously reported TRDN-
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p.D18fs*13 nonsense mutation and the novel p.Glul68™ mutation. The authors
concluded that the combination of the two mutations is the likely explanation of
the particularly malignant phenotype, with cardiac arrest occurring at a very young
age and recurrent episodes of VF despite beta-blocker therapy [146]. None of the
parents, carrying either one or the other mutation in isolation, was symptomatic.

These first reports showed that TRDN mutations may be associated both with
LQTS and CPVT phenotypes. A possible explanation could be found in the
hypothesized arrhythmic mechanism induced by TRDN loss, which seems to
involve L-type calcium channel inactivation regulation rather than SR Ca®* leak
and triggered beats typical of CPVT mutations in RYR2 and CASQ2
[144]. According to this hypothesis, the main consequence of TRDN loss would
be the reduction of the negative feedback on the L-type calcium channel, resulting in
Ca** overload and increasing SR Ca®* release (Fig. 1.2).

1.3.3 Sudden Infant Death Syndrome (SIDS) and Intrauterine Fetal
Death (IUFD): Role of Long QT Syndrome

Sudden unexpected death of an infant occurring within the first year of life, and
without identification of a possible cause despite extensive postmortem examination,
is classified as SIDS (sudden infant death syndrome), while intrauterine fetal death
(IUFD) refers to fetal losses occurred after the 14th week of gestation and includes
late miscarriages and stillbirths. The two phenomena are very complex and have
been extensively studied over the years with the aim to identify the most common
causes of death, the main underlying diseases, and the maternal or environmental
risk factors [147, 148].

Sudden infant death syndrome is actually considered the leading cause of mortal-
ity in the first year of life, with a prevalence of 0.5 per 1000 live births [149]. The
hypothesis that a fraction of SIDS could be due to cardiac causes was advanced in
1976 by Schwartz, who suggested that LQTS could be responsible for some of these
cases [150]. The proof of concept came some years later with the description of an
infant resuscitated from ventricular fibrillation that would have been a typical SIDS
case without prompt intervention. Molecular screening identified a mutation in
SCN5A, one of the main genes associated with LQTS [95]. It is now well known
that cardiac channelopathies and LQTS in particular may account for 10-15% of
SIDS cases [151-154]. Most of the functional variants identified in population-based
SIDS cohorts are related to sodium channel macromolecular complex [155]. How-
ever, SCN5A genetic variants identified in SIDS cases have different features (i.e.,
topological distribution in the Na* channel and prevalence in the general population)
compared to SCN5A variants observed in LQT3 patients with documented perinatal
arrhythmias. Specifically, almost all LQT3 variants were absent in the general
population and were located in the most important functional regions of the channel
(transmembrane and linker regions), while nearly 50% of SIDS variants were also
present in the general population and spanned across N-terminal and linker regions
of the protein where variants present in controls are more frequently observed
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[155]. This difference points out the possibility that LQT3 variants identified in
perinatal LQTS cases may be able per se to cause a severe LQTS phenotype
manifesting early in life (in line with data presented in Sect. 1.3.1), while SCN5A
variants identified in SIDS may more likely be considered as favoring factors
contributing to SCD according to the triple risk hypothesis [156].

More recently, other population-based studies aimed to determine the prevalence
of LQTS mutations in SIDS have been published [157, 158]. The first collected a
large multi-ethnic population of sudden unexplained deaths, part of which are SIDS
(n = 141). The screening of the main channelopathies genes brought results that are
in line with previous studies: nearly 13.5% of SIDS were genotype-positive, with a
majority of favoring variants in SCN5A gene [157]. The second study reported the
same percentage of genotype-positives (around 10%) only for a subgroup of SIDS
cases previously selected for genetic testing by an expert cardiac team [158]. The
LQTS molecular autopsy has not proven to be useful in the rest of the cohort
(unselected cases), where more common risk factors have been reported as potential
causes of SIDS [158].

A third population-based study attempted to highlight the role of different
cardiovascular disease in SIDS [159]:155 European SIDS cases were analyzed
through WES with a focus on 192 genes associated with cardiovascular and meta-
bolic diseases. Among SIDS infants with likely causative variants, 9% carried
variants in channelopathies genes, 7% in cardiomyopathies genes, and 2.5% in
genes associated with mitral valve prolapse, aortic valve disease, Marfan syndrome,
or Ehlers-Danlos syndrome [159]. This comprehensive study confirmed the role of
channelopathies as an underlying cause of SIDS and pointed out the potential
contribution of cardiomyopathies to the phenomenon.

Finally, the role of genetic heart diseases in SIDS pathogenesis was explored
through WES in the largest SIDS cohort published to date (n = 419) [160]; 12.6% of
SIDS cases hosted at least one potentially informative variant in genetic heart
disease-associated genes (n = 90). The percentage reduced to 4.3% of cases
(18/419) considering only carriers of clinically actionable variants, i.e., pathogenic
or likely pathogenic variants according to the American College of Medical Genetics
and Genomics guidelines. This stringent approach allowed to recognize SIDS cases
that may be safely attributed to genetic heart disease as monogenic cause of SIDS
and to discriminate clinically actionable variants from those with questionable
pathogenicity [161, 162]. However, the study included also an additional analysis
showing the overrepresentation of ultra-rare channelopathies-associated variants in
European SIDS cases versus European control subjects [160]. Although the percent-
age of SIDS that may now be attributed to channelopathies may be lower than
previously assumed, the ultra-rare variant burden observed in SIDS population
suggests that variants with milder effect may act synergistically with other factors
to contribute to SIDS and still represent the underlying pathological basis for some
of SIDS cases [163]. Overall, genetic factors able to modulate arrhythmia suscepti-
bility and cardiovascular impairment should be regarded as a possible explanation in
SIDS cases that remain elusive despite extensive postmortem investigations.
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Sudden cardiac death during fetal life is more difficult to be investigated; there-
fore genetic studies supporting the cardiac theory are very few, and all focused on
stillbirths. Stillbirth, defined as a fetal death occurring in the late gestational period
after 20 weeks of gestation, has an incidence of 5.96 per 1000 live births [164]. A
possible cause of the demise can be currently identified in 70% of cases [148]. The
genetic studies aimed to find a possible contribution of arrhythmogenic diseases in
stillbirth focusing on the 30% of IUFDs that remains without an explanation.

The first descriptions available in literature concerned anecdotal stillbirth cases, in
which a mutation in one of the three main LQTS genes was identified [101, 108,
165]. The first stillbirth case, described by Hoorntje et al., carried a homozygous
nonsense mutation in KCNH?2 gene, also identified in the sister born premature in
distress due to ventricular arrhythmia in the presence of severe QT prolongation
[108]. The second report concerned three siblings, two died before birth and one
presenting a malignant perinatal LQTS form due to SCN5A-p.Arg1623Gln mutation,
also carried by the mother who did not manifest the disease because of mosaicism
[101]. The third description presented a family with recurrent fetal losses due to a
homozygous nonsense mutation (p.GIn1070%) in KCNH2 gene [165]. More recently,
another isolate stillbirth case has been described: a woman was referred for genetic
testing after the death of her 2-day-old infant and spontaneous abortion of a second
baby in the first trimester [58]. The newborn infant had incessant ventricular
tachycardia while in utero and a prolonged QTc (560 ms), whereas the mother was
asymptomatic but displayed a prolonged QTc. The genetic analysis identified a
nonsense heterozygous KCNH2 mutation in the mother and a common KCNH2
polymorphism with a demonstrated modifier role in the father, both inherited by the
newborn and the fetus. The stronger impairment of the channel (loss of function)
shown in vitro with the co-expression of both variants was retained the most likely
explanation for the severe phenotype observed in children versus the mother [58].

The major study so far designed to evaluate the prevalence of LQTS mutations in
a population-based IUFD cohort was published by our group in collaboration with
Mayo Clinic in 2013 [166]. The study demonstrated that nearly 9% of IUFD cases
(8/91) carried functional variants in the main 3 LQTS genes (KCNQI, KCNH2,
SCNS5A) [166]. Three variants in KCNQI and KCNH2 have been classified as
putative LQTS susceptibility mutations, on the basis of in vitro studies showing a
loss-of-function effect consistent with LQT1 and LQT2 phenotypes, and a hetero-
zygous frequency in publicly available databases of general population less than
LQTS disease prevalence (0.05%); additionally, other five variants in SCN5A have
been considered as predisposing factors [166]. Interestingly, the fact that two out of
three putative LQTS susceptibility mutations with a demonstrated functional effect
are still absent (KCNQ1-p.Ala283Thr) or identified in a few over 100,000 subjects
(KCNH2[1b]-p.Arg25Trp) in online exome and whole-genome database including
thousands of individuals (gnomAD browser, Broad Institute, November 2018
accessed) further supports their pathogenic role. Moreover, the impact of KCNH2
[1b]-p.Arg25Trp mutation on cardiac Iy, current and AP behavior has been further
explored by another group [167]: they first confirmed our previous electrophysio-
logical findings in HEK293 cells, and then they demonstrated for the first time that
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the dominant-negative effect of p.Arg25Trp was reproduced in iPS-CMCs,
reflecting cellular manifestations of pro-arrhythmia [167].

1.4 Conclusions

The long QT syndrome is a channelopathy caused by different mutations in ion
channel genes. Clinical manifestation can be very different ranging from no
symptoms to sudden cardiac death. Such a clinical variability can be observed
even among family members carrying the same disease-causing mutation, and
genetic modifiers may play a role, influencing the arrhythmic risk. However, there
are some subtypes of LQTS, mainly due mutations in genes encoding the calcium
channel (i.e., Timothy syndrome) or protein modulating calcium channel activity
(i.e., CaM and TRDN) in which the phenotype is consistently severe, with life-
threatening arrhythmias occurring very early in life and a high incidence of SCD. In
these cases, mutations are frequently de novo, and the role of genetic modifiers is
probably less relevant.
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Abstract

Insights into genetic causes of cardiomyopathies have tremendously contributed
to the understanding of the molecular basis and pathophysiology of hypertrophic,
dilated, arrhythmogenic, restrictive and left ventricular noncompaction cardio-
myopathy. More than thousand mutations in approximately 100 genes encoding
proteins involved in many different subcellular systems have been identified
indicating the diversity of pathways contributing to pathological cardiac
remodeling. Moreover, the classical view based on morphology and physiology
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has been shifted toward genetic and molecular patterns defining the etiology of
cardiomyopathies. Today, novel high-throughput genetic technologies provide an
opportunity to diagnose individuals based on their genetic findings, sometimes
before clinical signs of the disease occur. However, the challenge remains that
rapid research developments and the complexity of genetic information are
getting introduced into the clinical practice, which requires dedicated guidance
in genetic counselling and interpretation of genetic test results for the manage-
ment of families with inherited cardiomyopathies.

2.1 Introduction

Over the last three decades, genetic research has significantly contributed to the
etiology of cardiomyopathies. In fact, most primary cardiomyopathies are influenced
by genetic factors predisposing to the development of heart failure, one of the most
common causes of death in industrialized countries. Cardiomyopathies (CMPs) are
commonly grouped by their morphological signs leading to subtypes called hyper-
trophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), left ventricular
noncompaction (LVNC), arrhythmogenic cardiomyopathy (ACM), and restrictive
cardiomyopathy (RCM) (Fig. 2.1) [1].

Since, in 1990, the sarcomere gene beta-myosin heavy chain (MYH7) was
identified as the first disease gene for HCM, it turned out that the sarcomere plays
a major role in the genetic etiology of HCM but also of other CMPs [2, 3]. HCM can
primarily be defined as a disease of the sarcomere, but the genetic basis for CMPs
has evolved to be diverse. Genetic causes of ACM have been unraveled with disease
genes involved in cell-cell contacts called desmosomes [4, 5]. But, in fact, today
there are about hundred known disease genes associated with different subtypes of
CMPs, which are expressed in various subcellular systems responsible for transcrip-
tion, cardiac development, energy utilization, electrolyte imbalances, and others.
The diversity is making it difficult to define a final common pathway leading from
disturbed gene function to the disease phenotype.

Despite the genetic complexity, with the application of high-throughput genetic
technology, we are able to analyze large amounts of data in a cost-effective and
timely manner which makes it possible to use this technology not only for research
but also for comprehensive cardiomyopathy diagnostics [6-8]. However, there are
challenges that clinicians and their team of health-care providers face in translating
research results and comprehensive data sets into the clinic in order to improve
patient management. A major challenge is still the classification of variants into
pathogenic or disease-causing versus benign. Often variants are defined as “uncer-
tain,” which makes the application for clinical purposes even more difficult
[9]. Additionally, when a pathogenic variant has been identified, there can be
substantial variation in penetrance, age of onset, and clinical expression of the
phenotype, also within the same family. Here, modifying factors such as lifestyle,
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Fig. 2.1 Examples of cardiac magnetic resonance imaging (MRI) pictures of cardiomyopathy
subtypes. (a) Short-axis two-chamber view of hypertrophic cardiomyopathy (HCM). Note the thick
septal wall of the left ventricle (LV) (white arrow). (b) Long-axis four-chamber view of dilated
cardiomyopathy (DCM). Note the enlarged left ventricle. (¢) Long-axis four-chamber view of left
ventricular noncompaction (LVNC). Note the noncompacted, trabeculated layer of the LV (white
arrow). (d) Long-axis four-chamber view of arrhythmogenic cardiomyopathy (ACM). Note the
enlarged right ventricle (RV). (e) Long-axis four-chamber view of restrictive cardiomyopathy
(RCM). Note the massively enlarged left atrium (LA) (white arrow)

other genetic and epigenetic factors, pregnancy, and many still unknown entities are
playing a role—an ongoing field of research. Moreover, different mutations in the
same genes can cause variable clinical entities and even lead to the opposite
phenotype (dilated vs. hypertrophic cardiomyopathy). Given the complexity, today
the question arises how much a particular genetic diagnosis may help guiding
diagnosis and clinical management? There are potential benefits such as
differentiating a genetic etiology from other causes of CMPs or allowing the
identification of at-risk individuals early, in a preclinical stage. But more impor-
tantly, the understanding of the molecular pathways in a translational setting will
help to further understand these diseases and dissect more complex disease pathways
toward targeted therapies.

This chapter summarizes current knowledge about clinical and molecular genet-
ics of the five main subtypes of inherited cardiomyopathies in a bench-to-bedside
approach.



48 B. Gerull et al.

2.2  Hypertrophic Cardiomyopathy (HCM)

Definition Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder
affecting clinically about 1 in 500 individuals [10]. The pathological sign is an
unexplained left ventricular hypertrophy which is not caused by abnormal loading
conditions (Fig. 2.1a). Classically, HCM is characterized by asymmetric septal
hypertrophy; however there can be any pattern of left ventricular hypertrophy
associated with the disease [11-13].

Clinical Manifestations Clinically, the disease is highly variable in presentation
and includes diastolic dysfunction, left ventricular outflow tract obstruction (in about
25%), ischemia, and atrial fibrillation. In about 5% of cases, end-stage HCM shows
progression to systolic impairments. Many patients are asymptomatic and are
diagnosed incidentally, and others may manifest shortness of breath, chest pain,
palpitations, or syncope [11]. Disease-related mortality is most often attributable to
sudden cardiac death, heart failure, and embolic stroke. However, early data about
high mortality rates from tertiary centers from the 1970s and early 1980s, with
annual death rates of 2—4% in adults and 4.2-5.9% in children, have been revised.
Disease-related mortality in adults is today about 0.5% similar to that of the general
population. Decreased mortality is an achievement of more effective risk stratifica-
tion and the use of the implantable cardioverter-defibrillator for primary prevention
of sudden death [14-16].

Inheritance HCM is mainly inherited as an autosomal dominant trait with incom-
plete penetrance and variable expression of the clinical phenotype. Some cases are
explained by de novo mutations, and other apparently sporadic cases can arise due to
autosomal recessive, compound heterozygous, or digenic mode of inheritance [17—
19]. Furthermore, genetic modifiers and environmental and epigenetic factors are
likely to influence the phenotype. Consequently, even identical mutations may show
distinct degrees and morphology of hypertrophy, pattern of fibrosis, age of onset,
and risk for arrhythmias and sudden death [20, 21]. On the other hand, population-
based studies looking for variants in HCM-associated sarcomere genes indicated that
changes in cardiac morphology and function may also occur without causing overt
or typical HCM [22].

Disease Genes HCM was the first primary cardiomyopathy for which a genetic
cause was identified back in 1990. Ever since over thousand mutations in numerous
genes have been described. The most common eight genes encoding sarcomere
proteins of the thick and thin filaments are beta-myosin heavy chain (MYH?) [2],
alpha-tropomyosin (TPM1), cardiac troponin T (TNNT2) [23, 24], cardiac myosin-
binding protein C (MYBPC3) [25], myosin regulatory light chain (MYL2), myosin
essential light chain (MYL3) [26], cardiac troponin I (TNNI3) [27], and cardiac
a-actin (ACTC1) [28]. Two major genes, MYH7 and MYBPC3, account together
for up to 75% of all identified mutations, whereas other genes including TNNT2,
TNNI3, TPM1, MYL2, MYL3, and ACTC1 each account for a small proportion of
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cases (1-5%) [29, 30]. Furthermore, rare variants have been described in additional
genes encoding proteins of the sarcomere apparatus (MYH6, TNNC1, TTN) and the
adjacent Z-disc (ACTN2, CSRP3, TCAP, VCL, NEXN, LDB3, MYOZ2, FLNC,
MYPN, ANKRDI) or are involved in calcium homeostasis pathways (PLN,
CASQ2, JPH2, CALR3). Some of these genes are less evident for direct pathoge-
nicity and may function as modifiers (Table 2.1, Fig. 2.2a) [31-33].

Genotype-Phenotype Correlation The penetrance of expressing the phenotype
when carrying a mutation appears to be highly variable and can be delayed or
incomplete. Often left ventricular hypertrophy (LVH) does not develop until the
third decade of life or even after. In addition, penetrance may also differ according to
gender with males showing earlier clinical signs than females [21, 34]. Early
genotype-phenotype studies described some genes (or particular mutations) with a
higher degree of sudden cardiac death (TNNT12, MYH7 p.Arg403Gln) and other
genes (MYBPC3) with milder LVH and later age of onset [20, 24]. More recently,
reports from the UK suggest a higher risk of sudden death in TNNT2 vs. MYBPC3
families (0.93% vs. 0.46% per year). Overall, currently available phenotypic data
could not show clear correlations for specific genes and most of the mutations.
Therefore, genotype data have only minor influence on current risk stratification
[21, 35, 36].

Despite inherited as an autosomal dominant disease, complex phenotypes with
patients carrying more than one mutation or variant exist, and they usually show
more severe or earlier phenotypic expression. Such complexity has been reported in
5-7% of cases by Sanger sequencing and is even higher using next-generation
sequencing (8-9%). Here, different scenarios have been seen including compound
heterozygosity (different heterozygous mutation in each allele of the same gene),
digenic cases (heterozygous mutations in two different genes), and also rare homo-
zygosity [37, 38].

Lastly, mutations in classical HCM genes can result in divergent clinical features,
also mimicking other forms of cardiomyopathy, in particular LVNC or RCM.
Sometimes in the same family, different clinical manifestations may occur [39].

Genetic Counselling and Testing As indicated above, the majority of HCM cases
is inherited as an autosomal dominant trait with a 50% risk for first-degree relatives.
Current guidelines of the European Society of Cardiology (ESC) recommend genetic
counselling for all patients with HCM, unless an acquired cause is demonstrated.
Counselling should be performed by trained health-care professionals working
within multidisciplinary teams to help patients understand and manage the psycho-
logical, social, professional, ethical, and legal implications of genetic disease [11].
If genetic testing is considered, genetic counselling should be performed to fully
inform patients about the benefits and limitations of genetic testing and
consequences for them and their families. In patients fulfilling the diagnostic criteria
for HCM, genetic testing identifies a pathogenic mutation in up to 65% of cases.
Although, nowadays, there is no direct benefit in most of the clinically affected cases
having a genetic diagnosis in regard to treatment options and a dedicated prognosis,
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Table 2.1 Overview about genes associated with HCM
Gene Subcellular location/ Frequency | First
symbol Encoded protein function (%) description
Main disease-causing genes®
MYBPC3 | Cardiac myosin-binding | Sarcomere, thick filament | 30-40 1995
protein C associated
MYH7 B-myosin heavy chain Sarcomere, thick filament | 20-30 1990
MYL2 Regulatory myosin light | Sarcomere, thick filament | 2—4 1996
chain
MYL3 Essential myosin light Sarcomere, thick filament | 1-2 1996
chain
TNNI3 Cardiac troponin | Sarcomere, thin filament 5-7 1997
TNNT2 Cardiac troponin T Sarcomere, thin filament 5-10 1994
TPM1 a-tropomyosin Sarcomere, thin filament <1 1994
ACTC1 Cardiac a-actin Sarcomere, thin filament <1 1999
Rare potentially associated genes™”
ACTN2 a-Actinin 2 Z-disc Rare 2010
MYOZ2 Myozenin 2 Z-disc Rare 2007
CSRP3 Cardiac LIM protein Z-disc Rare 2003
MYPN Myopalladin Z-disc Rare 2012
FLNC Filamin C Z-disc Rare 2014
TTN Titin Sarcomere Rare 1999
TNNCI Cardiac troponin C Sarcomere, thin filament Rare 2001
MYH6 a-Myosin heavy chain Sarcomere, thick filament | Rare 2005
NEXN Nexilin Z-disc Rare 2010
TCAP Telethonin Z-disc Rare 2004
ANKRDI | Cardiac ankyrin repeat Z-disc Rare 2009
protein
LDB3 LIM domain-binding Z-disc Rare 2006
protein 3
VCL Vinculin Z-disc, intercalated disc, Rare 2006
sarcolemma
JPH2 Junctophilin 2 Sarcolemma, Ca** Rare 2007
handling
CAV3 Caveolin-3 Sarcolemma, repair Rare 2004
PLN Phospholamban SR, Ca** handling Rare 2007
CALR3 Calreticulin 3 SR, Ca* handling Rare 2007
CASQ2 Calsequestrin SR, Ca* handling Rare 2007

#Autosomal dominant inheritance
"Evidence for pathogenicity unclear

SR sarcoplas

mic reticulum

it is more important for pre-symptomatic testing in the family and reproductive
advice. Generally speaking, predictive genetic testing can be performed in asymp-
tomatic relatives of a patient with HCM when a definitive disease-causing mutation
has been determined to initiate cascade family screening.
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Fig. 2.2 Genes associated with different subtypes of cardiomyopathies according to the year of
discovery. Colors indicate the subcellular location and/or functional association. (a) Hypertrophic
cardiomyopathy. (b) Dilated cardiomyopathy. (c) Left ventricular noncompaction. (d)
Arrhythmogenic cardiomyopathy. (e) Restrictive cardiomyopathy
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However, in situations where predictive genetic testing is either not available or
not considered, first-degree relatives should be offered clinical screening with an
ECG and echocardiogram starting at an age of 10 years [40]. Individuals who have
nondiagnostic clinical features that are consistent with early disease should be seen
initially at intervals of 6-12 months and potentially less frequent depending on
progression. As indicated above, age-dependent penetrance requires repeat screen-
ing even in individuals with no clinical features, unless a predictive genetic test has
been performed and was “negative” for a proven disease-causing mutation [3, 11,
41].

Today, new high-throughput sequencing technologies are more and more used
for genetic testing in diseases such as HCM by analyzing the whole exome with the
potential identification of a large number of variants of unknown clinical signifi-
cance (VUS). In contrast to other cardiomyopathies, broader genetic testing has
shown only a modest increase in the diagnostic yield in HCM (45-72%) while
producing more uncertainty. No matter what sequencing technology is used, for
clinical practice, genetic testing should include the eight most commonly implicated
sarcomere genes and may also consider genes of potential phenocopies of
sarcomeric HCM, in particular when additional or atypical phenotypic signs are
present [42, 43].

Other Genetic Etiologies There are phenocopies of HCM which can mimic
sarcomeric HCM on the basis of cardiac imaging (Table 2.2). In adults, the main
non-sarcomeric etiologies are metabolic storage disease such as Danon disease
(LAMP2), LVH and Wolff-Parkinson-White syndrome (PRKAG?2), Anderson-
Fabry disease (GLA), familial TTR amyloidosis (TTR), and some mitochondrial
cardiomyopathies. Others are more prevalent in children such as Pompe disease
(GAA), Noonan syndrome and Leopard syndrome (PTPN11), or Friedreich ataxia
(FXN). To distinguish these diseases from sarcomeric HCM is quite important as an
early diagnosis ensures an appropriate management in particular in metabolic
diseases [44, 45].

Functional Consequences Although the genetic basis for HCM is well established,
the biochemical and biophysical mechanisms how sarcomere mutations lead to
disease remain only partially understood. The majority of mutations described are
missense mutations that result in mutant dominant-negative acting “poison”
peptides, which are incorporated into the sarcomere and potentially have an adverse
effect on sarcomere function [46]. The exception for the “poison” protein thesis is
mutations in MYBPC3, which often result in truncated proteins. Here, mutant
proteins are often cleared by cell surveillance mechanisms, which leads to a reduced
amount of full-length protein resulting in haploinsufficiency and consequently an
inadequate amount of functional proteins [47, 48].

Mechanistically, there is substantial evidence that myofilament mutations
increase calcium sensitivity and Ca”* affinity and thereby actin-dependent ATPase
activity [49, 50]. Enhanced Ca”* sensitivity and subsequent defects in calcium
homeostasis such as intracellular calcium cycling, sarcoplasmic reticulum
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Table 2.2 Other rare genes associated with cardiac hypertrophy

Subcellular Associated
Gene location/ First phenotypes/
symbol Encoded protein function description | disease Inheritance
GLA a-Galactosidase Lysosomes 1989 Fabry disease X-linked
A
LAMP2 Lysosome- Lysosomes 2000 Danon disease X-linked
associated
membrane
protein 2
PRKAG2 | AMP-activated Energy 2001 PRKAG2 AD
protein kinase, sensor, cardiomyopathy
y2-subunit cellular
(noncatalytic) energy
metabolism
GAA a-Glucosidase Lysosomes, 1991 Pompe disease AR
extracellular
TTR Transthyretin Lysosomes, 1989 Amyloidosis AD
extracellular
PTPNI11 | Protein tyrosine Cytosolic, 2001 Noonan AD
phosphatase, nucleus, syndrome
non-receptor 11 signaling
molecule
FXN Frataxin Mitochondria | 1996 Friedreich AR
ataxia

AD autosomal dominant, AR autosomal recessive

[SR] Ca”* reuptake, and CaMKII-mediated phosphorylation of proteins, including
phospholamban, are likely to contribute to the pathogenesis of HCM [51]. A conse-
quence of increased sarcomeric Ca®* sensitivity is also an enhanced cross-bridge
turnover and higher actin-activated ATPase activity. Subsequently, this generates
higher energy need to produce a given tension. In accordance with this explanation,
several studies have shown mitochondrial abnormalities and an impaired myocardial
energy metabolism. Altered Ca®* handling and energy deficiency appear to be major
pathways leading to pathological changes such as hypertrophy and myofibrillar
disarray as well as functional features such as impaired relaxation [52, 53].

More recently, understanding of fundamental mechanisms arises hope of more
specific, substrate-modulating therapy ranging from metabolic modulators to small
molecule effectors and gene therapy rescuing HCM at the mechanistic and biochem-
ical level. Targets are energy utilization and oxidative stress, increased calcium
sensitivity, sarcomere function (hypercontractility), and the action potential of the
myocytes. However, the challenge exists that different mutations even at the same
locus can lead to opposite functional consequences. For example, different
mutations in MYH7 exert opposing effects on myofilament calcium sensitivity and
contractility [54]. In silico models, such as motility assays using purified recombi-
nant sarcomeric protein constructs containing dedicated mutations, are a way to
investigate individual mutations [53]. Mutations in the myosin head region domain
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lead to hypercontractility and impaired relaxation by assessing the chemo-
mechanical cycle in ex vivo preparations of mutated sarcomeric proteins. A small
molecule, MYK-461, that decreases sarcomeric power due to inhibition of the
myosin adenosine triphosphatase (ATPase) counteracts the effects of the mutation.
In mice with hypercontractile mutations in myosin heavy chain, early chronic
administration of MYK-461 prevented the development of LVH, myocyte disarray,
and fibrosis and normalized expression of profibrotic and mitochondrial genes
involved in energy utilization [55].

23 Dilated Cardiomyopathy (DCM)

Definition Dilated cardiomyopathy (DCM) is characterized by left or biventricular
dilatation and systolic dysfunction that are not explained by abnormal loading
conditions or coronary artery disease (Fig. 2.1b). The disease is a common cause
of heart failure leading to heart transplantation and sudden death [1]. Causes of DCM
can be genetic, estimated as high as 35-50% [56, 57]; however even non-genetic
etiologies may predisposed by genetic factors and interact with extrinsic and envi-
ronmental factors. Lately, there are suggestions for an updated definition of DCM
recognizing a broader clinical spectrum of the disease, in particular in the setting of
familial disease and before overt clinical manifestations are present. This includes
criteria defining preclinical phases of the disease that may occur in mutation carriers
without clinical expression, cases with isolated ventricular dilation, arrhythmic
cardiomyopathy, or hypokinetic non-dilated cardiomyopathy [58].

Prevalence data based on echocardiography estimated unexplained DCM at
1:2500; more recently epidemiological and next-generation sequencing data suggest
a much higher prevalence, possibly as high as 1:250. The disease incidence is 7 per
100,000, and males are more frequently affected than females (3:1) [59, 60].

Clinical Manifestations DCM can present as a clinical syndrome of systolic heart
failure with reduced ejection fraction (HFrEF) but also with arrhythmias that may
lead to sudden death or thromboembolic events. Management of HFrEF should be
performed according to current heart failure guidelines; however, despite optimal
therapy, the prognosis remains poor for patients showing heart failure symptoms
with a 5-year mortality of up to 20%. Cardiac transplantation or other advanced
therapies should be considered with progressive DCM, advanced heart failure, or
otherwise refractory disease [61-63].

Another spectrum of the disease represents unidentified cases without clinical
symptoms in early phases of the disease. Genetic approaches offer the possibility to
identify individuals at risk in the setting of familial disease. Although not proven by
placebo-controlled trials, early medical management may be beneficial, even in
symptom-free mutation carriers with only minor cardiac abnormalities [58, 64, 65].
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Inheritance DCM can be inherited as an autosomal dominant, recessive, or
X-linked trait; however chromosomal abnormalities or even matrilineal inheritance
may also be present.

Most cases of isolated DCM follow autosomal dominant inheritance with
age-dependent penetrance and variable clinical expression, which can be delayed
until the fifth or sixth decade. This indicates a role for potential modifying genetic,
epigenetic, and environmental factors [66, 67]. However, these factors also contrib-
ute to the fact that familial DCM is often not recognized, as other more common
etiologies are attributed. When compared to other cardiomyopathies, the genetic
etiology of DCM is even more heterogenous, which became more obvious since the
introduction of next-generation sequencing [68]. To date, more than 50 disease-
related genes have been reported, although relatively few are supported by robust
segregation analyses or experimental data (Table 2.3; Fig. 2.2b).

Genes Involved in DCM Pathogenic variants have been reported for a heteroge-
nous group of genes encoding proteins with different functions involved in sarco-
mere integrity and force transmission, cytoskeletal architecture, cell-cell contacts,
nuclear organization, transcription, and ion channel activity. Although extensive
genetic heterogeneity is present, titin (77N) is the most common disease gene
accounting for 20-25% of the genetic causes [69—71]. The second most prevalent
gene is lamin A/C (LMNA) with about 6%, followed by beta-myosin heavy chain
(MYH?7) [72-74]. Several other genes account for 1-2% of familial cases, while
many others are less frequent or even reported once. Alterations, such as copy
number variations (CNVs), have been reported in association with DCM but also
with a low frequency. The most important genes and their role in subcellular systems
will be discussed in more detail.

Titin and the Sarcomere Mutations in the titin gene (T7N) are the main cause of
DCM accounting for about 20-25% in familial cases and even up to 18% of sporadic
DCM cases. In particular, mutations that truncate the protein have been found to
cause disease, although such variants have been also found in 1-2% of the control
population [69-71]. Titin, the biggest protein in nature, provides the external
scaffold interacting with the thin and thick filaments. It is important for sarcomere
assembly and provides passive force and elasticity to maintain diastolic and systolic
function, respectively. TTN is composed of different domains according to the
sarcomere structure (Z-disc, I-band, A-band, M-band). In addition, 77N undergoes
extensive alternative splicing and therefore produces many isoforms. Current data
suggest that truncating variants in exons that are incorporated into all expressed
isoforms, and are part of the final transcript in the heart, are more likely to cause
disease (90%), whereas exons, e.g., of the I-band, which are not included in the
mature transcript, may not be disease-causing and have been found more frequently
in the control population [75].

Mutations in other proteins of the sarcomere are also associated with autosomal
dominant DCM such as ACTC1, MYBPC3, MYH6, MYH7, TNNC1, TNNI3,
TNNT2, and TPM1, with MYH?7 as the most common one [73]. The frequency of
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sarcomere gene mutations to be associated with DCM is much lower compared to
HCM and LVNC. Mechanistically, and in contrast to HCM, mutations are suggested
to decrease Ca”* sensitivity causing a hypocontractile state that leads to systolic
dysfunction. For example, mice carrying a HCM-associated mutation (delGlu160) in
TNNT2 showed increased Ca’* sensitivity, whereas a DCM-associated mutation
(delLys210) in the same gene showed the opposite, decreased Ca®* sensitivity [53].

Nuclear Envelope Proteins DCM-associated mutations are also involving proteins
of the nuclear envelope such as lamin A/C (LMNA) located in the nuclear lamina
and emerin (EMD), a protein of the inner nuclear membrane. Dominant LMNA
mutations account for 6-10% of genetic causes and are frequently associated with
arrhythmias and conduction system disturbances [72]. In addition, limb-girdle
myopathies are a variable feature. Lamins are involved in nuclear structure support,
DNA repair, cell signaling pathway mediation, and chromatin organization. There
are two major hypotheses how mutations in LMNA may lead to cardiac dysfunction:
(1) disruption and uncoupling of structural proteins at the nuclear lamina that lead to
mechanical instability and to an increased susceptibility to mechanical stress and
(2) disrupted chromatin organization that impacts directly on gene transcription
[76, 77].

EMD is a LEM-domain protein located in the nuclear lamina and has a role in
assembly of the nuclear lamina and structural organization of the nuclear envelope.
EMD mutations are X-linked and often associated with a skeletal muscle phenotype
of Emery-Dreifuss muscular dystrophy [78].

Gene Expression Genes regulating transcription are also important in the patho-
genesis of DCM. Rare mutations have been described in TBX20, NKX2-5, GATAA4,
GATA6, FOXD4, PRDM16, EYA4, GATADI, and RBM?20. Other associated
phenotypes such as congenital heart defects, hearing loss, or more complex
syndromic features are often observed (Table 2.3). Variants in most of those genes
lead to decreased transcriptional activity influencing a set of genes important for
cardiac development and structural remodeling [79-83].

A very interesting gene is RBM20, which encodes a spliceosome protein that
regulates pre-mRNA splicing for many genes, including TTN. Interestingly, a
mutational hotspot causing highly penetrant DCM alters an arginine-serine-rich
region of RBM20, which influences binding with other splicing factors and changes
transcript processing [84, 85].

Calcium Handling and Ion Imbalances Mutations in phospholamban (PLN) are
predicted to alter Ca?* homeostasis. The protein regulates Ca** uptake by the SR Ca>*
ATPase (SERCA2a) and inhibits Ca** cycling when dephosphorylated [86]. In its
phosphorylated state by protein kinase A (PKA), muscle relaxation is enhanced, and
beta-agonist activates PKA and enhances relaxation. Mutations in PLN blunt beta-
adrenergic activation of PKA and control of Ca** cycling leading to decreased
contractility [87].
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Another important gene is the voltage-gated, type V alpha-subunit of the cardiac
sodium channel (SCN5A) which is involved in the cardiac action potential. The
channel is responsible for rapid depolarization of the myocardium and the mainte-
nance of impulse conduction. Mutations lead to a variety of arrhythmic disease and
also DCM by modifying electrical excitability of the channel leading to disturbances
of currents and different ions which are also involved in contraction [88].

The ABCC9 protein is predicted to form ATP-sensitive potassium channels in
cardiac and other muscles. Variants in this gene have been also associated with
DCM [89].

Z-Disc-Associated Proteins The sarcomeric Z-disc defines the lateral borders of the
sarcomere and consists of actin filaments coming from adjacent sarcomeres which
are cross-linked by a-actinin molecules. The Z-disc serves as a nodal point with
multiple functions such as intracellular signaling, mechanosensation and
mechanotransduction. The Z-disc also links to the T-tubular system and the sarco-
plasmic reticulum; moreover, several E3 ubiquitin ligases localized to the Z-disc link
this structure to protein turnover and autophagy [32]. To date, mutations in multiple
Z-disc proteins or Z-disc-related proteins have been reported to be associated with
DCM including ACTN2, ANKRD1, BAG3, CRYAB, CSRP3, LDB3, MYPN,
NEBL, NEXN, TCAP, FLH2, FLNC, and DES; however the evidence for clear
pathogenicity is variable (Table 2.3) [90]. A typical sarcomeric Z-disc protein is
a-actinin 2 (ACTN2), which is important for actin filament localization. The cardiac
LIM protein CSRP3 is a protein with multiple interaction partners and is involved in
various signal transduction cascades, including mechanosensation and
mechanotransduction, calcium metabolism, and myofibrillogenesis. Mutations in
CSRP3 can either cause DCM or HCM (91, 92].

A protein, which is present at the sarcomeric Z-disc but also as an intermediate
filament, is desmin (DES). It provides the link to the desmosomes and to other
compartments such as the nucleus [93].

An interesting protein is the co-chaperone BAG3 (Bcl2-associated athanogene 3),
which acts as a multifunctional adaptor protein responsible for cell survival, apopto-
sis, migration, proliferation, macro-autophagy, and proteasomal processes.
Mutations causing DCM may influence BAG3-interacting proteins such as HSP70
responsible for protein folding and quality control of newly synthetized
proteins [94].

Overall, the Z-disc-associated proteins are diverse and are becoming a “hotspot”
for cardiomyopathy-causing mutations; however the spectrum of functional
disturbances is various and depending on their specific location and behavior.

Desmosomes Desmosomes are located at the intercalated discs and part of a
junctional structure called “area composita.” Mutations in desmosomal proteins
can cause DCM-like phenotypes but are more frequently involved in ACM (see
chapter ACM). There is a substantial overlap, in particular in phenotypic features of
more left-sided ACM phenotypes and DCM with pronounced arrhythmic features,
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as seen mainly with mutations in desmoplakin (DSP), but also in other desmosomal
proteins [95, 96].

DCM Associated with Other Pathologies As indicated in Table 2.3, DCM is
sometimes associated with other non-cardiac phenotypic features, in particular
myopathies. In addition, DCM can also occur as part of a syndrome that often
affects children.

Interestingly, there are frequent associations of DCM with either myofibrillar
myopathy (MFM), Emery-Dreifuss muscular dystrophy (EDMD), or limb-girdle
muscular dystrophy (LGMD). Genetic variations in the same genes can cause
isolated DCM and associations with those types of skeletal muscle diseases. Often,
but not always, isolated DCM is inherited as an autosomal dominant disease,
whereas associated myopathies are X-linked or autosomal recessive.

MFMs are chronic neuromuscular disorders. The morphologic changes in skeletal
muscle and sometimes in cardiac muscle result from disintegration of the sarcomeric
Z-disc and the myofibrils, followed by abnormal ectopic accumulation of multiple
proteins (myofibrillar cytoplasmic inclusions). Mutations in genes encoding desmin
(DES), alpha-B-crystallin (CRYAB), dystrophin (DMD), filamin C (FLNC), LIM
domain-binding protein 3 (LDB3), and BAG3 [97] are causing MFM and/or DCM.

The two other common myopathies are limb-girdle muscular dystrophy (LGMD)
and Emery-Dreifuss muscular dystrophy (EDMD), which are mainly inherited as
recessive disorders. EDMD is characterized by myopathic changes in certain skeletal
muscles and early contractures at the neck, elbows, and Achilles tendons, as well as
cardiac conduction defects. Disease genes for EDMD are emerin (EMD), lamin A/C
(LMNA), and nesprin-1 (SYNEI) [98]. Autosomal recessive LGMDs are a heterog-
enous group of disorders affecting primarily skeletal muscle in various forms; in
some, DCM is part of the clinical spectrum such as in LGMD2F, LGMD?2E,
LGMD2D, and LGMD2G, whereas dominant mutations in LMNA can cause
LGMDIB [99].

DCM is an important part of the disease spectrum in Duchenne and Becker
muscular dystrophies caused by mainly truncating mutations in the dystrophin
gene (DMD). In Duchenne or Becker with a later onset, cardiac features are present
in about 95% of cases by the last years of life. Also, female carriers of these X-linked
diseases develop DCM in about 15% of cases [100].

Lastly, DCM is also part of inherited syndromes. Some of them are listed in
Table 2.3. They are usually associated with a congenital onset, inherited as a
recessive or X-linked trait, and affect proteins that play a role in the heart and
other tissues.

Genetic Testing and Counselling The increasing understanding of the genetic
basis of DCM and the availability of comprehensive and cost-effective next-genera-
tion sequencing technologies have highlighted the importance of considering genetic
testing in all patients with DCM, not just those with an obvious family history or a
particular phenotype. Today, cardiomyopathy multi-gene panels or even whole-
exome sequencing (WES) is available to perform genetic testing. In clinical settings,
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as opposed to research testing, the focus should be on known genes associated with
DCM [101]. The major challenge occurs in interpreting genetic test results to be used
in a clinical setting.

Moreover, not only the interpretation of genetic test results but also proper
communication to the patients and their families require a clinician specifically
trained in medical genetics and cardiology, who is embedded in a team of experts
including genetic counsellors, psychologists, and specialized cardiologists. Expert
knowledge of advances in testing, emerging data on newly identified variants and
clinical correlations, and an understanding of the complex allelic heterogeneity and
complicated scenarios such as multiple variants that may influence the disease are
particularly important in DCM.

In the scenario that genetic testing results in a pathogenic/likely pathogenic
mutation, the mutation can be considered to be tested in relatives at risk for cascade
screening in order to facilitate prompt diagnosis, surveillance, and in selected cases
preventative treatment. Furthermore, relatives who do not carry the mutation may be
discharged from clinical surveillance which has long-range consequences for
families and requires a correct review and classification of genetic variants identified
by genetic testing.

Strict variant classification according to the ACMG criteria [9] can facilitate a
highly accurate diagnostic yield in DCM, with a pathogenic/likely pathogenic
variant detection rate of 35.2%, with 47.6% in familial DCM and 25.6% in sporadic
cases [102]. However, even with these restrictions, many variants of uncertain
significance (VUSs) are identified mainly in genes with weak evidence of being
associated with DCM. For example, the interpretation of TTN variants is a big
challenge, and pathogenicity depends on additional information and resources, as
TTN truncating variants are apparently also present in healthy individuals. There are
additional online tools available indicating details in the exon composition of the
major TTN transcripts; information whether an exon is constitutively expressed, and
other structural features for each exon; as well as the distribution of TTN variants in
large published studies of cohorts of DCM patients and controls [71, 75].

Overall, genetic testing is challenging and takes an expert panel to draw the right
conclusions. Likewise, there is no doubt about the importance of genetic counselling
and clinical surveillance of first-degree relatives of individuals with DCM.

Genotype-Phenotype Correlation DCM is characterized by marked genetic het-
erogeneity and variable disease penetrance, which make direct applications to
clinical management difficult. Additionally, clinical variability in the phenotype
development with the influence of other contributing factors impedes the prediction
for a certain genotype [8]. Only few genes such as T7TN and LMNA as well as some
founder mutations in PLN or MYBPC3 are more common for comprehensive
investigations to allow genotype-phenotype studies.

Mutations in LMNA are highly suggestive for progressive conduction disease and
ventricular arrhythmias with an increased risk for sudden death. Risk assessment
also involves a gender-specific risk with a higher mortality in men compared to
women. LMNA-associated DCM demonstrates an age-related penetrance with onset
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in the third and fourth decades, so that by the seventh decade, penetrance is
considered greater than 90-95%. Management implications are to assess for pro-
phylactic implantable cardioverter-defibrillator placement to treat malignant ventric-
ular arrhythmias for patients receiving a pacemaker for LMNA-associated
conduction system disease, independent of ejection fraction [76, 103—105].

More recently, genotype-phenotype studies for 77N truncation variants suggested
a milder phenotype compared to non-77N-related cardiomyopathies, although the
comparison was driven by a direct comparison to LMNA cardiomyopathy which has,
as indicated above, a severe phenotype [106, 107]. First findings also suggest a
gender-specific difference with regard to median age of onset and prognosis which
was more preferable for woman compared to man. In terms of age-dependent
penetrance, current data suggest a late age of onset, ranging between about 30%
and 50% at the age of 50 and between 80% and 100% at the age of 70 [102, 106].

Severe phenotypes may also appear when additive genetic effects appear, for
example, in cases carrying compound heterozygous variants [108].

24 Left Ventricular Noncompaction (LVNC)

Definition and Classification Left ventricular noncompaction (LVNC) is a rare
disorder characterized by hypertrophic segments that consist of a thin compacted
epicardial layer and a thick noncompacted endocardial layer. The noncompacted
layer contains numerous prominent trabeculations and deep intertrabecular recesses
[109, 110]. LVNC may be an isolated finding in the absence of any coexisting
cardiac anomaly (isolated LVNC) or may be associated with other congenital heart
anomalies such as complex congenital heart disease (non-isolated LVNC).

LVNC is a relatively new clinicopathologic condition, first described as such by
Chin et al. in 1990 [109]. Based on the predominant myocardial involvement and
genetic etiology, LVNC was classified by the American Heart Association (AHA) as
a distinct primary cardiomyopathy [1]. The European Society of Cardiology (ESC)
recognizes LVNC as an unclassified cardiomyopathy [41]. The ESC questions
whether LVNC is a distinct cardiomyopathy or merely a congenital or acquired
morphological trait shared by many phenotypically distinct cardiomyopathies
[111,112].

Clinical Manifestation LVNC presents with a unique congenital cardiac morphol-
ogy, variable clinical features, and a diverse natural history. The heterogeneity of the
clinical features includes both asymptomatic and symptomatic patients with progres-
sive deterioration in cardiac function resulting in congestive heart failure,
arrhythmias, thromboembolic events, and sudden cardiac death [113—-115].

There was a prevalence of 0.014% in patients referred to an echocardiography
laboratory in a tertiary referral center [115]. Lately, due to improved imaging
techniques, increased awareness, and family screening, the rare entity LVNC is
recognized with growing frequency [116, 117]. A substantial proportion of
individuals is asymptomatic, suggesting that the true prevalence of LVNC may be
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higher. Greater extent of, and even excessive, LV trabeculation measured in
end-diastole in asymptomatic population-representative individuals by cardiac mag-
netic resonance imaging (MRI) appeared benign and was not associated with
deterioration in LV volumes or function during an almost 10-year period [MESA
(Multi-Ethnic Study of Atherosclerosis)] [118]. LVNC was identified as the most
frequent cardiomyopathy after DCM and HCM in childhood, with an estimated
prevalence of 9% [119] in an Australian cohort and 5% in the US Pediatric
Cardiomyopathy Registry [120].

The clinical diagnosis is performed with two-dimensional echocardiography
and/or cardiac MRI on the basis of the prominent appearance of LV trabeculae
and the ratio between the compacted and noncompacted LV wall (Fig. 2.1c). The
diagnosis of LVNC in the symptomatic patient is made at any age, ranging from
fetus to old age. Heart failure symptoms are the most common reason for hospital
admission. Both systolic and diastolic cardiac dysfunctions have been described.
Ventricular tachycardia with a significant risk of cardiac sudden death is frequently
found (20-40%). The formation of thrombi in the extensive intertrabecular recesses
leading to systemic thromboembolic events is another, although less common,
presentation of patients with LVNC. The natural history of LVNC is largely
unresolved. As in other cardiomyopathies, index cases represent the most severe
spectrum of the disease [114]. LVNC has a high mortality rate and is strongly
associated with arrhythmias in children. Preceding cardiac dysfunction or ventricular
arrhythmias are associated with increased mortality. Children with normal cardiac
dimensions and normal function are at low risk for sudden death [121].

Morphology and Pathogenesis The noncompacted endocardial layer of the myo-
cardium comprises numerous, excessively prominent ventricular trabeculations with
deep intertrabecular recesses. The recesses extend deeply into the trabecular mesh-
work and end at the thin compacted outer layer. In contrast to “persisting myocardial
sinusoids” which were first observed in patients with left or right ventricular outflow
tract obstruction, recesses in LVNC have no connection with the coronary circula-
tion and are covered by endocardium throughout the ventricular cavity. The most
widely used method for the morphologic diagnosis of LVNC is two-dimensional
echocardiography and was established by Jenni et al. [110]. The diagnosis of LVNC
is made irrespective of the presence of left ventricular systolic dysfunction or
dilatation (DCM) due to hypokinetic segments in the altered LV myocardium.
Given the common localization of the noncompacted areas in the apex and the
common localization of septal hypertrophy in HCM, the two diagnoses of HCM
and LVNC can coexist. LV dilation/dysfunction and LV hypertrophy can therefore
be present or absent and do not influence LVNC diagnosis. There may be
biventricular noncompaction, but criteria for the diagnosis of noncompacted myo-
cardium involving the right ventricle have not been established. Imaging criteria for
the assessment of LVNC are still evolving. A significant proportion of an asymp-
tomatic population free from CVD satisfy all currently used cardiac magnetic
resonance imaging diagnostic criteria for LVNC, suggesting that those criteria
have poor specificity for LVNC [112].
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There is evidence that LVNC can originate during embryonic development or be
acquired later in life. The de novo LV trabeculations in a significant proportion
(>25%) of pregnant women suggest that these may occur as a consequence of
increased LV loading conditions or other physiological adaptation mechanisms
related to pregnancy. Moreover, the general assumption that LVNC is caused by
incomplete myocardial compaction during embryogenesis has been questioned
[122, 123]. During fetal development, compaction of the ventricular myocardium
normally progresses from epicardium to endocardium, from the base to the apex, and
from the septum to the lateral wall. An arrest in this process of myocardial morpho-
genesis would explain the predominant localization of noncompacted myocardium
in LVNC. If not reflecting compaction of pre-existing trabeculations, it is certainly
possible that noncompaction relates to defects of proliferation of the compacted
myocardium. Mutation of PRDM116 causes LVNC in patients, and PRDM16
zebrafish mutants show impaired cardiomyocyte proliferation [79]. Genome editing
of PRDM16 leads to proliferation defects in iPSC-CMs, and abnormal TGF-f
signaling was suggested as pathological mechanism [124]. Mouse embryos lacking
Notchl, systemically or in the endocardium, show defective trabeculation. Molecu-
lar analysis of these mutants reveals that expression of endocardial and myocardial
trabecular differentiation markers is impaired and ventricular cardiomyocyte prolif-
eration is inhibited. These findings imply that endocardial Notchl signaling is
required for proliferation and differentiation of trabecular myocardium [125].

Disease Genes and Inheritance Among many sporadic cases, familial recurrence
has already been observed in the first reports of isolated LVNC. In familial cases,
autosomal dominant inheritance is more common than X-linked inheritance
[126]. LVNC has been associated with mutations in almost 20 different genes
(Table 2.4 and Fig. 2.2c). Defects in sarcomere genes are the most prevalent genetic
cause occurring in 30% of adult patients with isolated LVNC. MYH7 is the most
frequent LVNC-associated gene in adult patients with isolated LVNC
[127]. Mutations in the sarcomere genes encoding thick (MYH7) [128-131], inter-
mediate/thick filament associated (MYBPC3) [127, 129, 132], and thin filaments
(TNNT2, TPM1, ACTC1) [127, 129, 130, 133] have been described. TTN, encoding
for the giant protein Titin that serves as a molecular spring of the sarcomere, has
recently been added to the list of sarcomere genes in LVNC [134].

However, mutations in other genes are only rare causes of LVNC in single
families. TAZ was the first gene shown to be associated with isolated LVNC by
genetic linkage analysis in a family with X-linked inheritance [135]. TAZ encodes
for taffazin, a protein involved in the biosynthesis of cardiolipin, an essential
component of the inner mitochondrial membrane. A small proportion of familial
autosomal dominant LVNC can be explained by mutations in genes encoding
proteins of the Z line of the sarcomere, LDB3/ZASP [129, 136] and
ACTN2/o-actinin 2 [137]. Two cardiac ion channels HCN4/hyperpolarization-
activated cyclic nucleotide-gated potassium channel 4 [138, 139] and SCN5A/car-
diac sodium channel alpha-subunit gene [140] lead to LVNC with sinus node
dysfunction and arrhythmias, respectively. A component of the nuclear lamina,
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lamin A/C (LMNA) [141] causes LVNC with cardiac conduction disease. Mutations
in the gene MIB1 segregated with autosomal dominant LVNC in two families, and a
conditional loss-of-function allele in a mouse model, also led to LVNC [142]. The
hypertrabeculation and noncompaction seen in the MIb1l mouse was mimicked in a
mouse with inactivation of Jaggedl in the myocardium or Notchl in the endocar-
dium, suggesting that the Notchl signaling pathway was involved.

Genetic Syndromes and/or Other Disorders LVNC is present in a number of
neuromuscular disorders, metabolic and mitochondrial disease, congenital
malformations, and chromosomal syndromes. Some of these disorders may share
pathogenetic mechanisms with LVNC. Alternatively, LVNC might be secondary to
other cardiac malformations or even vice versa.

LVNC can occur as part of a syndrome in combination with dysmorphic features
and other congenital malformations. Chromosomal deletions have been found on
chromosomes 1p36, 1q43, and 5q35 [79]. Left ventricular noncompaction is known
to be a part of various syndromes, including the Barth, Noonan, Roifman, Melnick-
Needles, Nail-Patella, Toriello-Carey, and other uncommon syndromes [143]. TAZ
mutation typically results in Barth syndrome, which is characterized by cardiomy-
opathy (frequently LVNC), skeletal myopathy, cyclic neutropenia, and
3-methylglutaconic aciduria (a marker of mitochondrial dysfunction) [144]. DSP,
encoding for desmoplakin, a gene known for the first recessive human mutation that
causes a generalized striate keratoderma particularly affecting the palmoplantar
epidermis, woolly hair, and dilated left ventricular cardiomyopathy (Carvajal syn-
drome), also leads to LVNC with acantholytic palmoplantar keratoderma with
autosomal recessive inheritance [145].

The co-occurrence of congenital heart defects (CHD) and noncompaction is seen
in children and in adults [144, 146]. DTNA, encoding for a-dystrobrevin, a cytoskel-
etal component responsible for force transduction, is mutated in patients with
hypoplastic left heart syndrome and LVNC [144]. Septal defects and Ebstein
anomaly are the most prevalent congenital heart defects in LVNC. Mutations in
the cardiac transcription factor NKX2-5 were identified in children with LVNC and
atrial septal defects [147]. Noncompaction associated with Ebstein anomaly, a rare
type of CHD, has been shown to result from mutations in MYH7 [131]. The associa-
tion of sarcomere gene defects, cardiomyopathy, and structural CHD still requires
further investigation. Very much like HCM and DCM, LVNC has been linked to
neuromuscular disorders such as dystrophinopathies and with mitochondrial disease.
In a number of muscular dystrophies, “left ventricular hypertrabeculation” was
identified [148]. In a study of 113 pediatric patients with mitochondrial disease,
LVNC was identified in 13% [149].

Genetic Counselling and Testing Since extensive family studies showed that the
majority of affected relatives are asymptomatic, cardiologic evaluation should
include all first-degree relatives irrespective of medical history. Other
cardiomyopathies may co-occur within families, like HCM and DCM, so cardiac
screening should aim at identifying all cardiomyopathies. Cardiac screening of
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relatives may show minor abnormalities not fulfilling LVNC criteria. Genetic
testing, preferably with a targeted cardiomyopathy gene panel, may lead to the
identification of a molecular defect in over 40% of isolated LVNC patients [129].

Molecular studies of LVNC have thus far shown that there are few recurrent
mutations. Therefore, it is difficult to establish genotype-phenotype correlations.
Additionally, intrafamilial phenotypic variability complicates predictions based on
an identified mutation. Compound heterozygous or homozygous truncating sarco-
mere gene mutations appear to result in a more severe phenotype with childhood
onset [132]. Whereas TAZ mutations have been reported in pediatric patients often
diagnosed with LVNC during infancy, heterozygous mutations in autosomal domi-
nant LVNC were mainly identified in adult patients.

Probst et al. [127] reported a cohort of 63 LVNC probands, previously studied by
Klaassen et al. [130], in which 8 sarcomere genes were analyzed and heterozygous
mutations found in 18 (29%) of the probands: 8 mutations were in the MYH7 gene,
5in MYBPC3, 2 in ACTC1, 2 in TPM1, and 1 in TNNT2. There were no significant
differences between mutation-positive and mutation-negative probands in terms of
average age, myocardial function, or presence of heart failure or tachyarrhythmias at
initial presentation or at follow-up. Probst et al. [127] noted that although 8 of the
15 distinct mutations were novel in this cohort, they were likely not specific to
LVNC, because the other 7 mutations had previously been described in patients with
other forms of cardiomyopathy, including hypertrophic and dilated forms. In con-
clusion, molecular analyses of LVNC support the concept of a shared molecular
etiology of the different cardiomyopathic phenotypes.

For further reading: Left Ventricular Noncompaction [143] in Clinical
Cardiogenetics, Springer International Publishing, H.F. Baars et al. (eds), 2016.

2,5 Arrhythmogenic Cardiomyopathy (ACM)

Definition Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary
cardiomyopathy characterized by progressive fibro-fatty replacement of the right and
left ventricular myocardium (Fig. 2.1d) [150]. In the early eighteenth century, the
clinical phenotype of ARVC was first reported by Giovanni Maria Lancisi in a four-
generation family, where patients presented with right ventricular dilation or
aneurysms and suffered from sudden cardiac death, both typical signs of the disease
[151]. During the 1980s, clinical features were systematically described by Marcus
and colleagues [152]. Particularly, the central involvement of the right ventricle was
described. However, today there is growing evidence that the left ventricle is also
affected leading to the term “arrhythmogenic cardiomyopathy” (ACM), which will
be also used in this chapter. The estimated disease prevalence ranges from 1:2000 to
1:5000 considering ACM as a rare disease [153].

Clinical Manifestation Clinical features of the disease are highly variable ranging
from unaffected mutation carriers to patients suffering from sudden cardiac death or
requiring heart transplantation. Classical symptoms include palpitations, cardiac
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syncope, and aborted cardiac arrest due to ventricular arrthythmias. Heart failure is
rare and may develop in later stages. ACM is a progressive disease which typically
manifests in the second to fourth life decade. However, about 20% of cases develop
the disease after the age of 50 [154]. Penetrance is age and gender dependent, and
clinical manifestations and progression of the disease are highly variable. Men are
clinically more often affected than women. The influence of sex hormones and
higher physical activity of men may contribute to the disease expression. The clinical
diagnosis is challenging, because of the lack of a specific diagnostic test. Hence, the
diagnosis is based on fulfilling a set of major and minor criteria proposed by an
international task force initially in 1994 [155]. This set of Task Force Criteria (TFC)
was highly specific but lacked sensitivity for early forms of ACM and has been
revised in 2010 to incorporate new findings and diagnostic modalities [150]. The
TFC include evaluation of findings from six different diagnostic categories including
cardiac imaging, assessment of electrical alterations, and family history. Manage-
ment is individualized and focused on prevention of sudden death through use of
antiarrhythmic medication and implantable cardioverter-defibrillators and rarely
heart transplantation.

Inheritance An autosomal dominant trait is the most common inheritance pattern
for non-syndromic forms of the disease. Today about 40-60% of the genetic causes
are known, and plakophilin 2 (PKP2) is the most prevalent disease gene [4]. How-
ever, there have been reports of autosomal recessive patterns of almost all desmo-
somal disease genes; with and without additional syndromic features. For example,
mutations in genes like plakoglobin (JUP) and desmoplakin (DSP) lead to ACM,
palmoplantar keratoderma, and abnormalities of the hair structure. Carriers with
homozygous mutations in desmocollin 2 (DSC2) show an isolated cardiac pheno-
type (Table 2.5). As seen in other cardiomyopathies, incomplete penetrance and
variable clinical expression are also common; even in the same family, the severity
of phenotypes demonstrates a wide range. In some cases, different family members
develop DCM or ACM [156]. Besides cases with one mutation, there are several
reports about compound heterozygous mutations or two or more variants in different
genes [157]. Of note, there are also rare cases of de novo mutations [158]. Besides
the main genetic drivers, also modifiers such as environmental (e.g., athletic activity)
and epigenetic factors might influence the phenotype.

Disease Genes At the beginning of the 2000s, it was recognized that about 50% of
ACM patients carry mutations in five different genes encoding desmosomal
proteins: JUP [5], DSP [159], PKP2 [4], DSC2 [160, 161], and DSG2
[162]. Desmosomes are cell-cell junctions, which have important functions for the
nano-mechanical coupling of cells [96]. In organs exposed to high mechanical stress
like the skin or the heart, cells are connected by these multi-protein complexes.
Desmosomes are linked to the intermediate filament system, which is mainly formed
in the heart by desmin (DES). Besides cardiac desmosomes, also adhering junctions
are important for mechanical coupling of cardiomyocytes. Adhering junctions are
linked to actin filaments [163]. Interestingly, ACM-associated mutations were also
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Table 2.5 Overview about genes associated with ACM
Gene Subcellular Frequency | First
symbol Encoded protein location (%) description | Inheritance
PKP2 Plakophilin 2 Desmosomes, 20-40 2004 AD, AR
intercalated disc,
cell adhesion
DSP Desmoplakin Desmosomes, 5-10 2002 AR?® AD
intercalated disc,
cell adhesion
DSC2 Desmocollin 2 Desmosomes, 5-10 2006 AR, AD
intercalated disc,
cell adhesion
DSG2 Desmoglein 2 Desmosomes, 5-10 2006 AD; AR
intercalated disc,
cell adhesion
JUP Plakoglobin Desmosomes, <5 2000 ARP
intercalated disc,
cell adhesion
RYR2 Ryanodine SR, Ca** channel | Rare 2001 AD
receptor 2
TGFB3 Transforming Cytokine Rare 2005 AD
growth factor 3
TMEM43 | Luma Nuclear envelope, | Rare 2008 AD
endoplasmic
reticulum
DES Desmin IF protein, Rare 2009 AD®
intercalated disc,
Z-disc,
TTN Titin Sarcomere, Rare 2011 AD
molecular spring
PLN Phospholamban SR, Ca** handling | Rare 2012 AD
LMNA Lamin A/C IF protein, nuclear | Rare 2012 AD
lamina
SCNS5A Voltage-gated Intercalated disc, Rare 2008 AD
sodium channel, T-tubules system,
type V, a-subunit | sodium channel
CTNNA3 | oT-Catenin Intercalated disc, Rare 2013 AD
cell adhesion
LDB3 LIM domain- Z-disc, structural Rare 2014 AD
binding protein 3 | integrity
KCNQ1 Voltage-gated T-tubules system, | Rare 2014 AD
potassium potassium
channel Q1 channel
CDH?2 N-Cadherin Intercalated disc, Rare 2017 AD
cell adhesion

Carvajal syndrome

®Naxos disease

“Skeletal myopathy

AD autosomal dominant, AR autosomal recessive, SR sarcoplasmic reticulum, /F intermediate
filament
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identified in CTNNA3 and CDH2, which encode two structural proteins of adhering
junctions [164, 165]. Therefore, it is suggested that ACM is mainly a disease of the
cardiac intercalated disc, as both desmosomes and adhering junctions are located
there. In 40-60% of ACM patients, one or more mutations in genes encoding
proteins involved in cell adhesion could be identified (Table 2.5; Fig. 2.2d)
[158, 166]. In addition to genes, encoding structural proteins involved in cell
adhesion of cardiomyocytes, there are some reports about mutations in other genes
like RYR2 [167], TGFB3 [168], TMEM43 [169], SCN5A [170], TTN (M [171]), PLN
[156], LMNA [172], LDB3 [173], and KCNQ1 [174]. However, mutations in those
genes are rare and account for less than 10% (Fig. 2.2d; Table 2.5).

Cell-Cell Adhesion McKoy et al. identified the first homozygous 2 bp deletion
mutation in JUP in families from the Greek island Naxos [5]. Patients developed
ACM in combination with keratosis and woolly hair. The typical triad of features is
known in the literature as “Naxos disease” [175]. JUP encodes plakoglobin, a
member of the armadillo protein family, which is a structural cytoplasmic compo-
nent of the desmosome. Nonsense-mediated mRNA decay (NMD) is linked to the
pre-mRNA splicing process, and the exon-junction complexes are necessary for the
degradation of mRNA carrying a premature termination codon (PTC) [176]. Zhang
et al. generated two Jup knock-in mouse models with the same deletion mutation. In
one of them, the authors deleted additionally the introns to block NMD. Remarkably,
the knock-in mice without the introns were completely healthy [177]. Those findings
suggest that potentially “loss of function” mediated by NMD may explain the
mechanism due to JUP mutations.

Similar to Naxos disease, Carvajal syndrome is characterized by striate
keratoderma, woolly hair, and left ventricular arrhythmic cardiomyopathy. It is
caused by mutations in DSP [178]. Rampazzo et al. described the first DSP mutation
in dominant ACM [159]. Desmoplakin is a cytolinker protein and connects the
cardiac desmosomes with the desmin intermediate filaments. The C-terminal tail
domain is responsible for this protein-protein interaction. Desmoplakin forms dimers
by the formation of a coiled coil of the Rod domains [179]. Autosomal recessive as
well as autosomal dominant DSP mutations were reported in 5-10% of ACM
patients (Table 2.5).

In 2004, Gerull et al. identified PKP2 mutations in a large cohort of ACM patients
[4]. PKP2 is the most common gene for autosomal dominant ACM, and it accounts
for about 20—40% of the known mutations. Most mutations are small deletions,
insertions, nonsense, or splice site changes leading to the truncation of the protein.
PKP2 encodes plakophilin 2, which is also a member of the Armadillo protein
family. Plakophilin 2 binds to the desmosomal cadherins and mediates the molecular
interaction with the cytolinker protein desmoplakin [180]. Plakophilin 2 is necessary
for the vesicle transport of the desmosomal cadherin desmocollin 2 to the plasma
membrane [181]. It is suggested that haploinsufficiency could be the main genetic
mode of action. Presumably, NMD and protein degradation pathways are involved
in PKP2 haploinsufficiency [182].
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Different groups described also mutations in the genes DSC2 [160, 161] and
DSG?2 [162] encoding for desmosomal cadherins. The extracellular domains of both
cadherins mediate the protein-protein interactions in a Ca®*-dependent way by
homophilic and presumably also by heterophilic trans-interaction [183]. Besides
the description of heterozygous missense and nonsense variants in DSC2 with, so
far, lack of clear pathogenicity, there have also been homozygous truncation
mutations reported causing a severe biventricular form of ACM without skin and
hair features [184, 185]. Interestingly, Wong et al. investigated the clinical pheno-
type of a founder population with 28 heterozygous and 11 homozygous DSC2-p.
Q554X mutation carriers. Almost all of the heterozygous carriers were healthy or
presented only with mild clinical symptoms, whereas all homozygous mutation
carriers developed ACM [186].

Besides the desmosomal genes, ACM-related mutations were also identified in
desmin (DES) [158, 187]. Desmin is the major component of the intermediate
filaments in cardiomyocytes, which provides the connection to different cellular
organelles like the desmosomes and the costameres. Interestingly, ACM-associated
DES mutations disturb the intermediate filament assembly [188].

Recently, mutations in oT-Catenin (CTNNA3) and in N-cadherin (CDH?2) have
been described [164, 165, 189]. Both proteins are structural components of the
adhering junctions. Adhering junctions are cell-cell junctions which are connected
to F-actin filaments. However, further studies are required to investigate the fre-
quency and the pathogenic impact of variants/mutations in those genes.

Other Genetic Contributors Besides mutations affecting cell-cell adhesion
proteins, there are also rare mutations reported in genes involved in Ca** handling
like the RYR2 [167] or PLN [156]. RYR2 encodes the cardiac ryanodine receptor
2 which is mediating the Ca®" release from the sarcoplasmic reticulum [190],
whereas phospholamban (PLN) is a regulator of the sarco(endo)plasmic reticulum
Ca®* ATPase (SERCA), which transports Ca®* into the sarcoplasmic reticulum
[191]. Rare variants were also identified in the 5'- and 3’-untranslated regions of
TGFB3, a cytokine from the transforming growth factor family [168]. TGF-f
cytokines are involved in fibrotic remodeling process by upregulation of expression
of extracellular matrix proteins like different collagens [192]. Merner et al. identified
a missense mutation in TMEM43 in a founder population from Newfoundland
[169]. Remarkably, this specific mutation leads to nearly complete penetrance
[169] and was also identified in ACM patients from different other countries
[193]. TMEM43 encodes the nuclear envelope protein luma [194]. The exact bio-
chemical functions and the molecular structure of luma are widely unknown.
Additionally, mutations were also identified in LMNA [172], which encodes the
nuclear intermediate filament lamin A/C involved in the structural stabilization of the
nuclei. Other rare variants were identified in SCN5A [170], encoding the a-subunit of
the voltage-gated sodium channel 5, and in KCNQ/I [174], encoding the voltage-
gated potassium channel Q1. Mutations in both genes cause inherited arrhythmias
like Brugada syndrome or long and short QT syndrome, indicating a genetic overlap
of ACM with channelopathies.
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Genetic Counselling and Testing Clinical genetic testing in ACM is in particular
challenging and requires to be performed in dedicated cardio-genetic centers, with
pre- and post-counselling possibilities. As indicated above, the inheritance pattern of
ACM is more complex than previously thought, with frequent requirement for more
than one “hit” for fully penetrant disease. More frequent than in other CMPs, patients
carry homozygous or compound heterozygous variants in the same gene or digenic/
oligogenic variants in a cluster of desmosomal genes. The broad use of large gene
panels or whole-exome sequencing often results in a high number of variants of
unknown clinical significance (VUSs), which should be carefully classified
according to guidelines as suggested by the ACMG [9]. Additionally, genetic testing
should be performed with the consideration that even a positive genetic test result
assigned as a pathogenic or likely pathogenic mutation may not be the only genetic
contributor to the phenotype in the patient and/or family.

However, genetic counselling should be done in all families with a confirmed
case of ACM, and first-degree relatives should be screened according to the TFC by
ECG, echocardiography, Holter ECG, and signal-averaged ECG starting at the age
of 10 years, and this should be regularly repeated [40]. In case there is a reliable
genetic test result (pathogenic or likely pathogenic mutation) available, this may be
used for cascade family screening, although cardiologic evaluation may still con-
tinue at a lower level as a negative genetic result may not exclude any genetic
predisposition. Lifestyle advice and reproductive counselling on the risk of trans-
mission to offspring should be also provided. Restriction from competitive sports
activity and strenuous physical exercise is strongly recommended to prevent disease
onset and progression.

Despite some progress in the understanding of the functional impact of certain
mutations, there is still a gap of knowledge of all contributing factors resulting in the
clinical picture of ACM. Hopefully, the increasing genetic knowledge will also lead
to more profound biochemical and cellular understanding of the pathomechanisms
toward the development of more efficient molecular therapies.

2,6 Restrictive Cardiomyopathy (RCM)

Definition Restrictive cardiomyopathy (RCM) is characterized by an abnormal left
ventricular filling pattern, diastolic dysfunction but normal wall thickness, and
usually preserved systolic function. The restrictive filling pattern is caused by an
increased muscle stiffness leading to atrial enlargement and an increase of ventricu-
lar end-diastolic blood pressure (Fig. 2.1e). RCM can be classified as a rare primary
cardiomyopathy, often affecting children but also adults. However, there are also
secondary causes known, such as storage or infiltrative disorders [41, 195].

Clinical Manifestation and Inheritance Patients typically develop heart failure
symptoms such as dyspnea and fatigue [196]. Preserved LV ejection fraction, normal
or mildly increased left and right ventricular wall thicknesses, restrictive diastolic
filling patterns and severe atrial enlargement are common echocardiographic
findings. The general prognosis is poor, patients often requiring heart
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Table 2.6 Overview about genes associated with RCM

Gene First
symbol* Encoded protein Subcellular location description
TNNI3 Cardiac troponin I Sarcomere, thin filament 2003
TNNT2 Cardiac troponin T Sarcomere, thin filament 2006
DES Desmin IF protein, intercalated disc, 2006
Z-disc
ACTCI Cardiac actin Sarcomere, thin filament 2008
MYH7 -Myosin heavy chain Sarcomere, thick filament 2008
TTN Titin Sarcomere 2014
MYPN Myopalladin Sarcomere, Z-band 2012
MYBPC3 Cardiac myosin-binding Sarcomere, thick filament 2015
protein C associated
TNNC1 Cardiac troponin C Sarcomere, thin filament 2016
FLNC Filamin C Cytoskeleton, intercalated disc 2016
TMEMS87B Transmembrane protein 87 B | Membrane 2016
ACTN2 a-Actinin 2 Z-disc 2016
CRYAB aB-Crystallin IF protein, intercalated disc, 2017°
Z-disc,

#Autosomal dominant inheritance
Phenotype associated with skeletal myopathy
IF intermediate filament

transplantation. Clinically, the differentiation between RCM and constrictive peri-
carditis imposed by external pericardial constraint can be challenging. Secondary
RCM can be part of systemic diseases, e.g., a mineralization disorder called
pseudoxanthoma elasticum (PXE), caused by ABCC6 mutations [197] or of cardiac
amyloidosis associated with TTR mutations [198]. Additionally, metabolic diseases
such as Pompe, Fabry, and Danon disease as well as Friedreich ataxia can be
associated with LVH (Table 2.2) but can also present as RCM. Primary RCM is
mainly a familial disease and inherited as an autosomal dominant trait (Table 2.6).

Disease Genes RCM is a rare disease and the proportion of genetic etiology
remains unknown. However, Kostareva et al. investigated 24 non-related index
patients using broad next-generation sequencing panels and identified in about
54% of them a pathogenic or likely pathogenic mutation [199]. Overall, mutations
in 13 different genes have been reported (Fig. 2.2e, Table 2.6). Most of those genes
encode for sarcomeric or cytoskeletal proteins. Of note, there is also a genetic
overlap with other primary cardiomyopathies, in particular with HCM.

Sarcomeric Proteins Sarcomeres are the essential contracting units of striated
muscle cells consisting of thick and thin filaments, which are connected by
Z-bands. First mutations associated with familial RCM were identified in the
TNNI3 gene, encoding cardiac troponin I (cTnl) [200]. c¢Tnl inhibits the ATPase
function of the actin-myosin complex during the contraction cycle [201]. Mutations
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in cardiac troponin C (TNNC1, cTnC) and troponin T (TNNT2, cTnT), encoding the
two other cardiac components of the troponin complex, were also identified in RCM
patients [202, 203]. ¢TnC is the Ca®*-binding and cTnT is the tropomyosin-binding
subunit of the troponin complex, mediating the molecular interaction of thin and
thick filaments during the contraction cycles [204]. Other sarcomeric disease genes
are ACTCI and MYH?7 [205, 206]. Recently, Wu et al. identified a family with three
affected patients carrying a nonsense mutation in MYBPC3, which encodes the
myosin-binding protein C and binds to the thick filaments [207]. Peled and
colleagues identified a de novo missense mutation (p.Y7621C) in titin (77N) causing
RCM [208]. Furthermore, other RCM-associated mutations were found in genes
encoding myopalladin (MYPN) and a-actinin 2 (ACTN2) [199, 209]. a-Actinin 2 is
the major structural component of the Z-bands, and myopalladin is a binding partner.
Myopalladin is involved in the regulation and maintenance of sarcomeres close to
the Z-disc [210].

Cytoskeletal Proteins The second group of RCM-associated disease genes includes
different cytoskeletal structural proteins like desmin (DES) [211], filamin C (FLNC)
[212], and aB-Crystallin (CRYAB) [213]. DES mutations cause besides RCM a wide
spectrum of different other cardiac and skeletal myopathies including myofibrillar
myopathy (MFM). Desmin is the major component of the cardiac intermediate
filaments and connects different cell organelles like desmosomes, Z-bands,
costameres, and presumably also the nuclei with the cytoskeleton [214]. aB-
Crystallin is a member of the small heat-shock protein family and binds directly to
the intermediate filaments suggesting a stabilizing function, and filamin C is an actin
cross-linking protein, which is involved in the integrin-mediated cell-extracellular
matrix adhesion [215]. Interestingly, mutations in those three genes cause also
myofibrillar myopathy (MFM), characterized by toxic protein aggregation within
the skeletal myocytes [216]. There is some evidence that an abnormal protein
aggregation and accumulation in the myocardial tissue might contribute to the
increased stiffness of the ventricular walls in RCM.

Genetic Counselling and Testing Because RCM is less common than other
primary cardiomyopathies, the knowledge about prevalence and genetic associations
are currently limited or even missing. Most reports about disease genes are based on
single families or patients. As indicated above, there is substantial overlap in the
genetic etiology, but also clinical presentation with other cardiomyopathies. More-
over, some genes are also involved in skeletal muscle disease, in particular MFM.
Formal genetic counselling should be performed in all familial cases, and repeated
clinical screenings of first-degree relatives are recommended using ECG, Holter
ECG, and echocardiogram [40]. Secondary forms of RCM and constrictive pericar-
ditis should be considered as a differential diagnosis as some metabolic and systemic
diseases may lead to instituting specific therapy. As indicated for other
cardiomyopathies, genetic testing should be performed for clinical purposes using
NGS panels focusing on known genes. Broader approaches such as whole-exome
analysis should be considered for research studies. However, in single patients, the
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classification of novel variants will be challenging and often leading to VUS. Over
time more genetic and phenotypic data on bigger cohorts, genotype-phenotype
studies, and further functional validation are required to provide more certain
recommendations.

2.7 Translational Perspectives

Classical genetic approaches such as linkage analysis and positional cloning in
combination with newer technologies such as next-generation sequencing have
provided dramatic progress in unraveling the genetic causes of cardiomyopathies
but have also demonstrated the complexity of human disease. What we previously
thought are monogenic diseases are now much more complex diseases where the
primary mutation appears to be a “more or less” important contributor. Despite
making some progress in the understanding of disease mechanisms and the gain of
knowledge about molecular changes of specific genes and mutations, there are still a
lot of unknowns in the pathogenesis of cardiomyopathies—to understand how a
mutated gene leads to clinical expression. Prospectively, this inspiring field of
research provides remarkable opportunities to dissect what are the genetic and
non-genetic contributors in the early and late disease process, how does different
disease expression develop, and how to disrupt disease progression or even prevent
full clinical expression.

From the clinical and translational perspective, many more questions should be
answered to translate research findings to the benefit of patient care. We still have a
“genetic gap”—overall about 50% of the genetic causes of CMPs remain unknown.
How do we handle the increasing number of variants of unknown significance? Is
there a way to translate research information about specific mutations and how they
alter protein function directly to the benefit of patients to improve health care, rather
than identifying just family members at risk?

Last but not least, someday there is the hope that genetic cardiomyopathies are
not only treated but may also be cured. Given the current advances in genome editing
technologies and other personalized genetic and molecular approaches, also outlined
in other chapters, this day may be not so far away.

Compliance with Ethical Standards

Conflict of Interest Brenda Gerull declares that she has no conflict of interest. Sabine Klaassen
declares that she has no conflict of interest. Andreas Brodehl declares that he has no conflict of
interest.

Ethical Approval This article does not contain any studies with human participants or animals
performed by any of the authors.



78

B. Gerull et al.

References

—_

12.

. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary

definitions and classification of the cardiomyopathies: an American Heart Association Scien-
tific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation
Committee; Quality of Care and Outcomes Research and Functional Genomics and Transla-
tional Biology Interdisciplinary Working Groups; and Council on Epidemiology and Preven-
tion. Circulation. 2006;113(14):1807-16. https://doi.org/10.1161/CIRCULATIONAHA.106.
174287.

. Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W, Seidman CE,

Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a § cardiac myosin
heavy chain gene missense mutation. Cell. 1990;62(5):999-1006. https://doi.org/10.1016/
0092-8674(90)90274-1.

. Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck-Zwarts KY, Pinto Y. Genetic

advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res. 2015;105
(4):397-408. https://doi.org/10.1093/cvr/cvv025.

. Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, et al. Mutations in the

desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomy-
opathy. Nat Genet. 2004;36(11):1162—4. https://doi.org/10.1038/ng1461.

. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al.

Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy
with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet (London, England).
2000;355(9221):2119-24.

. Genomes Project, C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A

map of human genome variation from population-scale sequencing. Nature. 2010;467
(7319):1061-73. https://doi.org/10.1038/nature09534.

. Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V, Pesce LL,

et al. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy.
Circ Cardiovasc Genet. 2014;7(6):751-9. https://doi.org/10.1161/CIRCGENETICS.113.
000578.

. Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB, et al. Genotype-

phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000
individuals. Clin Res Cardiol. 2017;106(2):127-39. https://doi.org/10.1007/s00392-016-
1033-6.

. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for

the interpretation of sequence variants: a joint consensus recommendation of the American
College of Medical Genetics and Genomics and the Association for Molecular Pathology.
Genet Med. 2015;17(5):405-23. https://doi.org/10.1038/gim.2015.30.

. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertro-

phic cardiomyopathy in a general population of young adults. Echocardiographic Analysis of
4111 Subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults.
Circulation. 1995;92(4):785-9. https://doi.org/10.1161/01.¢ir.92.4.785.

. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC

Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for
the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of
Cardiology (ESC). Eur Heart J. 2014;35(39):2733-79. https://doi.org/10.1093/eurheartj/
ehu284.

Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA
Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A Report of
the American College of Cardiology Foundation/American Heart Association Task Force on
Practice Guidelines Developed in Collaboration With the American Association for Thoracic
Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology,
Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular


https://doi.org/10.1161/CIRCULATIONAHA.106.174287
https://doi.org/10.1161/CIRCULATIONAHA.106.174287
https://doi.org/10.1016/0092-8674(90)90274-I
https://doi.org/10.1016/0092-8674(90)90274-I
https://doi.org/10.1093/cvr/cvv025
https://doi.org/10.1038/ng1461
https://doi.org/10.1038/nature09534
https://doi.org/10.1161/CIRCGENETICS.113.000578
https://doi.org/10.1161/CIRCGENETICS.113.000578
https://doi.org/10.1007/s00392-016-1033-6
https://doi.org/10.1007/s00392-016-1033-6
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1161/01.cir.92.4.785
https://doi.org/10.1093/eurheartj/ehu284
https://doi.org/10.1093/eurheartj/ehu284

2 The Genetic Landscape of Cardiomyopathies 79

14.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol.
2011;58(25):¢212-60. https://doi.org/10.1016/j.jacc.2011.06.011.

. Nagueh SF, Mahmarian JJ. Noninvasive cardiac imaging in patients with hypertrophic

cardiomyopathy. J Am Coll Cardiol. 2006;48(12):2410-22. https://doi.org/10.1016/j.jacc.
2006.07.065.

Maron BJ, Rowin EJ, Casey SA, Garberich RF, Maron MS. What do patients with hypertro-
phic cardiomyopathy die from? Am J Cardiol. 2016a;117(3):434-5. https://doi.org/10.1016/j.
amjcard.2015.11.013.

.Maron BJ, Rowin EJ, Casey SA, Lesser JR, Garberich RF, McGriff DM, Maron

MS. Hypertrophic cardiomyopathy in children, adolescents, and young adults associated
with low cardiovascular mortality with contemporary management strategies. Circulation.
2016b;133(1):62-73. https://doi.org/10.1161/circulationaha.115.017633.

. Maron BJ, Rowin EJ, Casey SA, Link MS, Lesser JR, Chan RH, et al. Hypertrophic

cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary
management strategies. J Am Coll Cardiol. 2015;65(18):1915-28. https://doi.org/10.1016/j.
jacc.2015.02.061.

. Charron P, Carrier L, Dubourg O, Tesson F, Desnos M, Richard P, et al. Penetrance of familial

hypertrophic cardiomyopathy. Genet Couns. 1997;8(2):107-14.

. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double

mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and
counselling. J Med Genet. 2005;42(10):e59. https://doi.org/10.1136/jmg.2005.033886.
Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287
(10):1308-20.

Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, et al.
Mutations in the gene for cardiac myosin-binding protein ¢ and late-onset familial hypertro-
phic cardiomyopathy. N Engl J Med. 1998;338(18):1248-57. https://doi.org/10.1056/
nejm199804303381802.

Page SP, Kounas S, Syrris P, Christiansen M, Frank-Hansen R, Andersen PS, et al. Cardiac
myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease
expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012;5
(2):156-66. https://doi.org/10.1161/circgenetics.111.960831.

Golbus JR, Puckelwartz MJ, Fahrenbach JP, Dellefave-Castillo LM, Wolfgeher D, McNally
EM. Population-based variation in cardiomyopathy genes. Circ Cardiovasc Genet. 2012;5
(4):391-9. https://doi.org/10.1161/CIRCGENETICS.112.962928.

Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, et al.
a-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy:
a disease of the sarcomere. Cell. 1994;77(5):701-12. https://doi.org/10.1016/0092-8674(94)
90054-X.

Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna W], et al. Mutations in
the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic
cardiomyopathy. Nat Genet. 1995;11(4):434-7.

Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, et al. Cardiac myosin
binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic
cardiomyopathy. Nat Genet. 1995;11(4):438-40.

Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in
either the essential or regulatory light chains of myosin are associated with a rare myopathy in
human heart and skeletal muscle. Nat Genet. 1996;13(1):63-9.

Kimura A, Harada H, Park J-E, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac
troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379-82.
Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, et al. a-cardiac actin is
a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103(10):
R39-43. https://doi.org/10.1172/JC16460.


https://doi.org/10.1016/j.jacc.2011.06.011
https://doi.org/10.1016/j.jacc.2006.07.065
https://doi.org/10.1016/j.jacc.2006.07.065
https://doi.org/10.1016/j.amjcard.2015.11.013
https://doi.org/10.1016/j.amjcard.2015.11.013
https://doi.org/10.1161/circulationaha.115.017633
https://doi.org/10.1016/j.jacc.2015.02.061
https://doi.org/10.1016/j.jacc.2015.02.061
https://doi.org/10.1136/jmg.2005.033886
https://doi.org/10.1056/nejm199804303381802
https://doi.org/10.1056/nejm199804303381802
https://doi.org/10.1161/circgenetics.111.960831
https://doi.org/10.1161/CIRCGENETICS.112.962928
https://doi.org/10.1016/0092-8674(94)90054-X
https://doi.org/10.1016/0092-8674(94)90054-X
https://doi.org/10.1172/JCI6460

80

29

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42

43.

B. Gerull et al.

. Andersen PS, Havndrup O, Hougs L, Sgrensen KM, Jensen M, Larsen LA, et al. Diagnostic
yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in
Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat. 2009;30(3):363-70.
https://doi.org/10.1002/humu.20862.

Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic
cardiomyopathy. Distribution of disease genes, spectrum of mutations, and implications for
a molecular diagnosis strategy. Circulation. 2003;107(17):2227-32. https://doi.org/10.1161/
01.¢ir.0000066323.15244.54.

. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the
genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871-86. https://doi.org/10.
1016/j.jacc.2016.08.079.

Knoll R, Buyandelger B, Lab M. The sarcomeric Z-disc and Z-discopathies. J Biomed
Biotechnol. 2011;2011:569628. https://doi.org/10.1155/2011/569628.

Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic
cardiomyopathy-associated mutations in genes that encode calcium-handling proteins. Curr
Mol Med. 2012;12(5):507-18.

Millat G, Bouvagnet P, Chevalier P, Dauphin C, Simon Jouk P, Da Costa A, et al. Prevalence
and spectrum of mutations in a cohort of 192 unrelated patients with hypertrophic cardiomy-
opathy. Eur J Med Genet. 2010;53(5):261-7. https://doi.org/10.1016/j.ejmg.2010.07.007.
Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, et al. Prognostic
implications of novel beta cardiac myosin heavy chain gene mutations that cause familial
hypertrophic cardiomyopathy. J Clin Invest. 1994;93(1):280-5. https://doi.org/10.1172/
JCI116957.

Pasquale F, Syrris P, Kaski JP, Mogensen J, McKenna W1, Elliott P. Long-term outcomes in
hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ
Cardiovasc Genet. 2012;5(1):10-7. https://doi.org/10.1161/circgenetics.111.959973.

Alpert NR, Mohiddin SA, Tripodi D, Jacobson-Hatzell J, Vaughn-Whitley K, Brosseau C,
et al. Molecular and phenotypic effects of heterozygous, homozygous, and compound hetero-
zygote myosin heavy-chain mutations. Am J Physiol Heart Circ Physiol. 2005;288(3):
H1097-102. https://doi.org/10.1152/ajpheart.00650.2004.

Fourey D, Care M, Siminovitch KA, Weissler-Snir A, Hindieh W, Chan RH, et al. Prevalence
and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the
gene-dose effect. Circ Cardiovasc Genet. 2017;10(2):e001685. https://doi.org/10.1161/
circgenetics.116.001685.

Olivotto I, d’Amati G, Basso C, Van Rossum A, Patten M, Emdin M, et al. Defining
phenotypes and disease progression in sarcomeric cardiomyopathies: contemporary role of
clinical investigations. Cardiovasc Res. 2015;105(4):409-23. https://doi.org/10.1093/cvr/
cvv024.

Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, et al. Genetic counselling and
testing in cardiomyopathies: a position statement of the European Society of Cardiology
Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010;31(22):2715-26.
https://doi.org/10.1093/eurheartj/ehq271.

Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the
cardiomyopathies: a position statement from the European Society of Cardiology Working
Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270-6. https://doi.org/
10.1093/eurheartj/ehm342.

. Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, et al. New
population-based exome data are questioning the pathogenicity of previously
cardiomyopathy-associated genetic variants. Eur J Hum Genet. 2013;21(9):918-28. https:/
doi.org/10.1038/ejhg.2012.283.

Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, et al. Genetic
complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med
Genet. 2013;50(4):228-39. https://doi.org/10.1136/jmedgenet-2012-101270.


https://doi.org/10.1002/humu.20862
https://doi.org/10.1161/01.cir.0000066323.15244.54
https://doi.org/10.1161/01.cir.0000066323.15244.54
https://doi.org/10.1016/j.jacc.2016.08.079
https://doi.org/10.1016/j.jacc.2016.08.079
https://doi.org/10.1155/2011/569628
https://doi.org/10.1016/j.ejmg.2010.07.007
https://doi.org/10.1172/JCI116957
https://doi.org/10.1172/JCI116957
https://doi.org/10.1161/circgenetics.111.959973
https://doi.org/10.1152/ajpheart.00650.2004
https://doi.org/10.1161/circgenetics.116.001685
https://doi.org/10.1161/circgenetics.116.001685
https://doi.org/10.1093/cvr/cvv024
https://doi.org/10.1093/cvr/cvv024
https://doi.org/10.1093/eurheartj/ehq271
https://doi.org/10.1093/eurheartj/ehm342
https://doi.org/10.1093/eurheartj/ehm342
https://doi.org/10.1038/ejhg.2012.283
https://doi.org/10.1038/ejhg.2012.283
https://doi.org/10.1136/jmedgenet-2012-101270

2 The Genetic Landscape of Cardiomyopathies 81

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, et al. Epidemiology and
cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediat-
ric Cardiomyopathy Registry. Circulation. 2007;115(6):773-81. https://doi.org/10.1161/
circulationaha.106.621185.

Rapezzi C, Arbustini E, Caforio AL, Charron P, Gimeno-Blanes J, Helio T, et al. Diagnostic
work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagno-
sis. A position statement from the ESC Working Group on Myocardial and Pericardial
Diseases. Eur Heart J. 2013;34(19):1448-58. https://doi.org/10.1093/eurheartj/ehs397.

Sata M, Ikebe M. Functional analysis of the mutations in the human cardiac beta-myosin that
are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical out-
come. J Clin Invest. 1996;98(12):2866—73. https://doi.org/10.1172/jcil 19115.

Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin
binding proteins of the thick filament. Circ Res. 2011;108(6):751-64. https://doi.org/10.1161/
circresaha.110.231670.

van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JMJ, Winegrad S, et al. Cardiac
myosin-binding protein C mutations and hypertrophic cardiomyopathy. Haploinsufficiency,
deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009;119
(11):1473-83. https://doi.org/10.1161/circulationaha.108.838672.

Robinson P, Griffiths PJ, Watkins H, Redwood CS. Dilated and hypertrophic cardiomyopathy
mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of
cardiac thin filaments. Circ Res. 2007;101(12):1266-73. https://doi.org/10.1161/circresaha.
107.156380.

Robinson P, Mirza M, Knott A, Abdulrazzak H, Willott R, Marston S, et al. Alterations in thin
filament regulation induced by a human cardiac troponin T mutant that causes dilated
cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic
cardiomyopathy. J Biol Chem. 2002;277(43):40710-6. https://doi.org/10.1074/jbc.
M203446200.

Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC. Temporal and mutation-
specific alterations in Ca2+ homeostasis differentially determine the progression of ¢TnT-
related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol. 2009;297(2):
H614-26. https://doi.org/10.1152/ajpheart.01143.2008.

Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in
hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86-96. https://doi.org/10.1161/
circresaha.111.242974.

Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on
muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys
J. 2014;106(6):1236-49. https://doi.org/10.1016/j.bpj.2014.02.011.

Kirschner SE, Becker E, Antognozzi M, Kubis HP, Francino A, Navarro-Lopez F, et al.
Hypertrophic cardiomyopathy-related beta-myosin mutations cause highly variable calcium
sensitivity with functional imbalances among individual muscle cells. Am J Physiol Heart Circ
Physiol. 2005;288(3):H1242-51. https://doi.org/10.1152/ajpheart.00686.2004.

Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, et al. A
small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy
in mice. Science. 2016;351(6273):617-21. https://doi.org/10.1126/science.aad3456.

Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA. Frequency and
phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31(1):186-94.
Petretta M, Pirozzi F, Sasso L, Paglia A, Bonaduce D. Review and metaanalysis of the
frequency of familial dilated cardiomyopathy. Am J Cardiol. 2011;108(8):1171-6. https://
doi.org/10.1016/j.amjcard.2011.06.022.

Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, et al. Proposal for a
revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its
implications for clinical practice: a position statement of the ESC working group on


https://doi.org/10.1161/circulationaha.106.621185
https://doi.org/10.1161/circulationaha.106.621185
https://doi.org/10.1093/eurheartj/ehs397
https://doi.org/10.1172/jci119115
https://doi.org/10.1161/circresaha.110.231670
https://doi.org/10.1161/circresaha.110.231670
https://doi.org/10.1161/circulationaha.108.838672
https://doi.org/10.1161/circresaha.107.156380
https://doi.org/10.1161/circresaha.107.156380
https://doi.org/10.1074/jbc.M203446200
https://doi.org/10.1074/jbc.M203446200
https://doi.org/10.1152/ajpheart.01143.2008
https://doi.org/10.1161/circresaha.111.242974
https://doi.org/10.1161/circresaha.111.242974
https://doi.org/10.1016/j.bpj.2014.02.011
https://doi.org/10.1152/ajpheart.00686.2004
https://doi.org/10.1126/science.aad3456
https://doi.org/10.1016/j.amjcard.2011.06.022
https://doi.org/10.1016/j.amjcard.2011.06.022

82

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

B. Gerull et al.

myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850-8. https://doi.org/10.
1093/eurheartj/ehv727.

Codd MB, Sugrue DD, Gersh BJ, Melton LJ. Epidemiology of idiopathic dilated and hyper-
trophic cardiomyopathy. A population-based study in Olmsted County, Minnesota,
1975-1984. Circulation. 1989;80(3):564—-72. https://doi.org/10.1161/01.cir.80.3.564.
Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B, Khin E, et al. Titin-truncating variants
affect heart function in disease cohorts and the general population. Nat Genet. 2017;49
(1):46-53. https://doi.org/10.1038/ng.3719.. http://www.nature.com/ng/journal/v49/n1/abs/
ng.3719.html#supplementary-information

Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with
mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy.
JAMA. 2013;309(9):896-908. https://doi.org/10.1001/jama.2013.1363.

Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, et al. Defibrillator implanta-
tion in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375(13):1221-30.
https://doi.org/10.1056/NEJMoal608029.

McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC
guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task
Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the
European Society of Cardiology. Developed in collaboration with the Heart Failure Associa-
tion (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803—69. https://doi.org/10.1093/eurjht/
hfs105.

Duboc D, Meune C, Pierre B, Wahbi K, Eymard B, Toutain A, et al. Perindopril preventive
treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart
J. 2007;154(3):596-602. https://doi.org/10.1016/j.ahj.2007.05.014.

Mahon NG, Murphy RT, MacRae CA, Caforio AL, Elliott PM, McKenna
WI. Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardio-
myopathy reveals preclinical disease. Ann Intern Med. 2005;143(2):108-15.

Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse
genetic architecture. Nat Rev Cardiol. 2013;10(9):531-47. https://doi.org/10.1038/nrcardio.
2013.105.

Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MR. Genetic causes of dilated
cardiomyopathy. Prog Pediatr Cardiol. 2014;37(1-2):13-8. https://doi.org/10.1016/j.
ppedcard.2014.10.003.

Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical genetics of
human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123-35. https://doi.org/10.1093/
eurheartj/ehu301.

Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, et al.
Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomy-
opathy. Nat Genet. 2002;30(2):201-4. https://doi.org/10.1038/ng815.

Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations
of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619-28. https://doi.org/
10.1056/NEJMoal110186.

Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic,
transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and
disease. Sci Transl Med. 2015;7(270):270ra276. https://doi.org/10.1126/scitranslmed.
3010134.

Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, et al. Missense mutations
in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-
system disease. N Engl J Med. 1999;341(23):1715-24. https://doi.org/10.1056/
nejm199912023412302.

Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, et al.
Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med.
2000;343(23):1688-96. https://doi.org/10.1056/nejm200012073432304.


https://doi.org/10.1093/eurheartj/ehv727
https://doi.org/10.1093/eurheartj/ehv727
https://doi.org/10.1161/01.cir.80.3.564
https://doi.org/10.1038/ng.3719
http://www.nature.com/ng/journal/v49/n1/abs/ng.3719.html#supplementary-information
http://www.nature.com/ng/journal/v49/n1/abs/ng.3719.html#supplementary-information
https://doi.org/10.1001/jama.2013.1363
https://doi.org/10.1056/NEJMoa1608029
https://doi.org/10.1093/eurjhf/hfs105
https://doi.org/10.1093/eurjhf/hfs105
https://doi.org/10.1016/j.ahj.2007.05.014
https://doi.org/10.1038/nrcardio.2013.105
https://doi.org/10.1038/nrcardio.2013.105
https://doi.org/10.1016/j.ppedcard.2014.10.003
https://doi.org/10.1016/j.ppedcard.2014.10.003
https://doi.org/10.1093/eurheartj/ehu301
https://doi.org/10.1093/eurheartj/ehu301
https://doi.org/10.1038/ng815
https://doi.org/10.1056/NEJMoa1110186
https://doi.org/10.1056/NEJMoa1110186
https://doi.org/10.1126/scitranslmed.3010134
https://doi.org/10.1126/scitranslmed.3010134
https://doi.org/10.1056/nejm199912023412302
https://doi.org/10.1056/nejm199912023412302
https://doi.org/10.1056/nejm200012073432304

2 The Genetic Landscape of Cardiomyopathies 83

74

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

. McNally EM, Puckelwartz MJ. Genetic variation in cardiomyopathy and cardiovascular
disorders. Circ J. 2015;79(7):1409-15. https://doi.org/10.1253/circj.CJ-15-0536.

Akinrinade O, Alastalo TP, Koskenvuo JW. Relevance of truncating titin mutations in dilated
cardiomyopathy. Clin Genet. 2016;90(1):49-54. https://doi.org/10.1111/cge.12741.

Brayson D, Shanahan CM. Current insights into LMNA cardiomyopathies: existing models
and missing LINCs. Nucleus. 2017;8(1):17-33. https://doi.org/10.1080/19491034.2016.
1260798.

Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, et al. Defects in nuclear
structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin
Invest. 2004;113(3):357-69. https://doi.org/10.1172/JC119448.

Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a
novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8
(4):323-7. https://doi.org/10.1038/ng1294-323.

Arndt AK, Schafer S, Drenckhahn JD, Sabeh MK, Plovie ER, Caliebe A, et al. Fine mapping
of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.
Am J Hum Genet. 2013;93(1):67-77. https://doi.org/10.1016/j.ajhg.2013.05.015.

Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, et al. Mutations in cardiac
T-box factor gene <em>TBX20</em> are associated with diverse cardiac pathologies,
including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet.
2007;81(2):280-91. https://doi.org/10.1086/519530.

Williams T, Hundertmark M, Nordbeck P, Voll S, Arias-Loza PA, Oppelt D, et al. Eya4
induces hypertrophy via regulation of p27kipl. Circ Cardiovasc Genet. 2015;8(6):752—64.
https://doi.org/10.1161/circgenetics.115.001134.

Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, et al. GATAG6 loss-of-function mutations
contribute to familial dilated cardiomyopathy. Int J Mol Med. 2014;34(5):1315-22. https://doi.
org/10.3892/ijmm.2014.1896.

Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, et al. A novel NKX2-5 loss-of-function
mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J] Mol Med.
2015;35(2):478-86. https://doi.org/10.3892/ijmm.2014.2029.

Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, et al. RBM20, a gene for
hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766-73. https://doi.
org/10.1038/nm.2693.

Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, et al. RNA-binding protein
RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Invest.
2014;124(8):3419-30. https://doi.org/10.1172/jci74523.

Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, et al. Dilated cardiomyopathy
and heart failure caused by a mutation in phospholamban. Science. 2003;299(5611):1410-3.
https://doi.org/10.1126/science.1081578.

Abrol N, de Tombe PP, Robia SL. Acute inotropic and lusitropic effects of cardiomyopathic
RI9C mutation of phospholamban. J Biol Chem. 2015;290(11):7130—-40. https://doi.org/10.
1074/jbc.M114.630319.

McNair WP, Sinagra G, Taylor MRG, Di Lenarda A, Ferguson DA, Salcedo EE, et al. SCN5A
mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the
voltage-sensing mechanism. J] Am Coll Cardiol. 2011;57(21):2160-8. https://doi.org/10.1016/
jJjacc.2010.09.084.

Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, et al.
ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP chan-
nel gating. Nat Genet. 2004;36(4):382-7.

Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S. Coding sequence mutations
identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with
familial or idiopathic dilated cardiomyopathy. Clin Transl Sci. 2008;1:21-6. https://doi.org/
10.1111/5.1752-8062.2008.00017 .x.


https://doi.org/10.1253/circj.CJ-15-0536
https://doi.org/10.1111/cge.12741
https://doi.org/10.1080/19491034.2016.1260798
https://doi.org/10.1080/19491034.2016.1260798
https://doi.org/10.1172/JCI19448
https://doi.org/10.1038/ng1294-323
https://doi.org/10.1016/j.ajhg.2013.05.015
https://doi.org/10.1086/519530
https://doi.org/10.1161/circgenetics.115.001134
https://doi.org/10.3892/ijmm.2014.1896
https://doi.org/10.3892/ijmm.2014.1896
https://doi.org/10.3892/ijmm.2014.2029
https://doi.org/10.1038/nm.2693
https://doi.org/10.1038/nm.2693
https://doi.org/10.1172/jci74523
https://doi.org/10.1126/science.1081578
https://doi.org/10.1074/jbc.M114.630319
https://doi.org/10.1074/jbc.M114.630319
https://doi.org/10.1016/j.jacc.2010.09.084
https://doi.org/10.1016/j.jacc.2010.09.084
https://doi.org/10.1111/j.1752-8062.2008.00017.x
https://doi.org/10.1111/j.1752-8062.2008.00017.x

84

9

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

B. Gerull et al.

. Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, et al. Beyond the sarcomere:

CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17
(18):2753-65. https://doi.org/10.1093/hmg/ddn160.

Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, et al. Mutations in the
muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial
fibroelastosis. Mol Genet Metab. 2003;80(1-2):207-15.

Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin
myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin
gene. N Engl J Med. 2000;342(11):770-80. https://doi.org/10.1056/nejm200003163421104.
Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A. Dilated cardiomyopathy-associated
BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in
cardiomyocytes. Hum Mutat. 2011;32(12):1481-91. https://doi.org/10.1002/humu.21603.
Garcia-Pavia P, Syrris P, Salas C, Evans A, Mirelis JG, Cobo-Marcos M, et al. Desmosomal
protein gene mutations in patients with idiopathic dilated cardiomyopathy undergoing cardiac
transplantation: a clinicopathological study. Heart. 2011;97(21):1744-52. https://doi.org/10.
1136/hrt.2011.227967.

Patel DM, Green KJ. Desmosomes in the heart: a review of clinical and mechanistic analyses.
Cell Commun Adhes. 2014;21(3):109-28. https://doi.org/10.3109/15419061.2014.906533.
Behin A, Salort-Campana E, Wahbi K, Richard P, Carlier RY, Carlier P, et al. Myofibrillar
myopathies: state of the art, present and future challenges. Rev Neurol (Paris). 2015;171
(10):715-29. https://doi.org/10.1016/j.neurol.2015.06.002.

Sommerville RB, Vincenti MG, Winborn K, Casey A, Stitziel NO, Connolly AM, Mann
DL. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: a model
for the multidisciplinary care of complex genetic disorders. Trends Cardiovasc Med. 2017;27
(1):51-8. https://doi.org/10.1016/j.tcm.2016.06.005.

Worman HJ, Bonne G. “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res.
2007;313(10):2121-33. https://doi.org/10.1016/j.yexcr.2007.03.028.

Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67
(21):2533-46. https://doi.org/10.1016/j.jacc.2016.02.081.

Pua CJ, Bhalshankar J, Miao K, Walsh R, John S, Lim SQ, et al. Development of a
comprehensive sequencing assay for inherited cardiac condition genes. J Cardiovasc Transl
Res. 2016;9(1):3-11. https://doi.org/10.1007/s12265-016-9673-5.

Akinrinade O, Ollila L, Vattulainen S, Tallila J, Gentile M, Salmenpera P, et al. Genetics and
genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart
J. 2015;36(34):2327-37. https://doi.org/10.1093/eurheartj/ehv253.

Hershberger RE, Morales A. LMNA-related dilated cardiomyopathy. In: Pagon RA, Adam
MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC,
Smith RJH, Stephens K, editors. GeneReviews(R). Seattle (WA): University of Washington,
Seattle; 1993.

Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, et al. Long-term outcome
and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008;52
(15):1250-60. https://doi.org/10.1016/j.jacc.2008.06.044.

van Rijsingen IAW, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi
AJ, et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: a
European Cohort Study. J Am Coll Cardiol. 2012;59(5):493-500. https://doi.org/10.1016/j.
jacc.2011.08.078.

Franaszczyk M, Chmielewski P, Truszkowska G, Stawinski P, Michalak E, Rydzanicz M,
et al. Titin truncating variants in dilated cardiomyopathy — prevalence and genotype-
phenotype correlations. PLoS One. 2017;12(1):e0169007. https://doi.org/10.1371/journal.
pone.0169007.

Taylor MR, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E, et al. Natural history
of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41
(5):771-80.


https://doi.org/10.1093/hmg/ddn160
https://doi.org/10.1056/nejm200003163421104
https://doi.org/10.1002/humu.21603
https://doi.org/10.1136/hrt.2011.227967
https://doi.org/10.1136/hrt.2011.227967
https://doi.org/10.3109/15419061.2014.906533
https://doi.org/10.1016/j.neurol.2015.06.002
https://doi.org/10.1016/j.tcm.2016.06.005
https://doi.org/10.1016/j.yexcr.2007.03.028
https://doi.org/10.1016/j.jacc.2016.02.081
https://doi.org/10.1007/s12265-016-9673-5
https://doi.org/10.1093/eurheartj/ehv253
https://doi.org/10.1016/j.jacc.2008.06.044
https://doi.org/10.1016/j.jacc.2011.08.078
https://doi.org/10.1016/j.jacc.2011.08.078
https://doi.org/10.1371/journal.pone.0169007
https://doi.org/10.1371/journal.pone.0169007

2 The Genetic Landscape of Cardiomyopathies 85

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Roncarati R, Viviani Anselmi C, Krawitz P, Lattanzi G, von Kodolitsch Y, Perrot A, et al.
Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe
form of dilated cardiomyopathy. Eur J Hum Genet. 2013;21(10):1105-11. https://doi.org/10.
1038/ejhg.2013.16.

Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left
ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507-13.

Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and
pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards
classification as a distinct cardiomyopathy. Heart. 2001;86(6):666—71.

Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with
genetic heterogeneity? Eur Heart J. 2011;32(12):1446-56. https://doi.org/10.1093/eurheartj/
ehq508.

Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, et al. Left
ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll
Cardiol. 2016;68(20):2157-65. https://doi.org/10.1016/j.jacc.2016.08.054.

Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T, et al. Clinical features of
isolated noncompaction of the ventricular myocardium: long-term clinical course, hemody-
namic properties, and genetic background. ] Am Coll Cardiol. 1999;34(1):233—40.

Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, et al. Natural history and
familial characteristics of isolated left ventricular non-compaction. Eur Heart J. 2005;26
(2):187-92. https://doi.org/10.1093/eurheartj/ehi025.

Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of
34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor
prognosis. J Am Coll Cardiol. 2000;36(2):493-500.

Belanger AR, Miller MA, Donthireddi UR, Najovits AJ, Goldman ME. New classification
scheme of left ventricular noncompaction and correlation with ventricular performance. Am J
Cardiol. 2008;102(1):92-6. https://doi.org/10.1016/j.amjcard.2008.02.107.

Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, et al. Diagnosis of
left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for
a reappraisal of diagnostic criteria? Eur Heart J. 2008;29(1):89-95. https://doi.org/10.1093/
eurheartj/ehm481.

Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, et al. The
relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-
year follow-up: the MESA study. J] Am Coll Cardiol. 2014;64(19):1971-80. https://doi.org/10.
1016/j.jacc.2014.08.035.

Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, et al. The
epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348
(17):1639-46. https://doi.org/10.1056/NEJMoa021737.

Jefteries JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy
phenotypes and outcomes for children with left ventricular myocardial noncompaction: results
from the pediatric cardiomyopathy registry. J Card Fail. 2015;21(11):877-84. https://doi.org/
10.1016/j.cardfail.2015.06.381.

Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, Decker JA, et al. Mortality and
sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circula-
tion. 2013;127(22):2202-8. https://doi.org/10.1161/CIRCULATIONAHA.113.002511.
Anderson RH, Jensen B, Mohun TJ, Petersen SE, Aung N, Zemrak F, et al. Key questions
relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any
clothes? Can J Cardiol. 2017;33(6):747-57. https://doi.org/10.1016/j.cjca.2017.01.017.
Freedom RM, Yoo SJ, Perrin D, Taylor G, Petersen S, Anderson RH. The morphological
spectrum of ventricular noncompaction. Cardiol Young. 2005;15(4):345-64. https://doi.org/
10.1017/S1047951105000752.

Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, et al. iPSC-
derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular


https://doi.org/10.1038/ejhg.2013.16
https://doi.org/10.1038/ejhg.2013.16
https://doi.org/10.1093/eurheartj/ehq508
https://doi.org/10.1093/eurheartj/ehq508
https://doi.org/10.1016/j.jacc.2016.08.054
https://doi.org/10.1093/eurheartj/ehi025
https://doi.org/10.1016/j.amjcard.2008.02.107
https://doi.org/10.1093/eurheartj/ehm481
https://doi.org/10.1093/eurheartj/ehm481
https://doi.org/10.1016/j.jacc.2014.08.035
https://doi.org/10.1016/j.jacc.2014.08.035
https://doi.org/10.1056/NEJMoa021737
https://doi.org/10.1016/j.cardfail.2015.06.381
https://doi.org/10.1016/j.cardfail.2015.06.381
https://doi.org/10.1161/CIRCULATIONAHA.113.002511
https://doi.org/10.1016/j.cjca.2017.01.017
https://doi.org/10.1017/S1047951105000752
https://doi.org/10.1017/S1047951105000752

86

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

B. Gerull et al.

non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031-42. https://doi.org/10.
1038/ncb3411.

Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A, et al. Notch
signaling is essential for ventricular chamber development. Dev Cell. 2007;12(3):415-29.
https://doi.org/10.1016/j.devcel.2006.12.011.

Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L. Isolated noncompaction of the
left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of
patients. Am J Med Genet A. 2003;119A(2):162-7. https://doi.org/10.1002/ajmg.a.20075.
Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, et al. Sarcomere gene
mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical
phenotype. Circ  Cardiovasc  Genet. 2011;4(4):367-74.  https://doi.org/10.1161/
CIRCGENETICS.110.959270.

Budde BS, Binner P, Waldmuller S, Hohne W, Blankenfeldt W, Hassfeld S, et al.
Noncompaction of the ventricular myocardium is associated with a de novo mutation in the
beta-myosin heavy chain gene. PLoS One. 2007;2(12):e1362. https://doi.org/10.1371/journal.
pone.0001362.

Hoedemaekers YM, Caliskan K, Michels M, Frohn-Mulder I, van der Smagt JJ, Phefferkorn
JE, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family
screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet. 2010;3
(3):232-9. https://doi.org/10.1161/CIRCGENETICS.109.903898.

Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, et al. Mutations in sarcomere
protein genes in left ventricular noncompaction. Circulation. 2008;117(22):2893-901. https://
doi.org/10.1161/CIRCULATIONAHA.107.746164.

Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ, et al.
Mutations in the sarcomere gene MYH?7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4
(1):43-50. https://doi.org/10.1161/CIRCGENETICS.110.957985.

Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A, de Krijger
RR, et al. Compound heterozygous or homozygous truncating MYBPC3 mutations cause
lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet.
2015;23(7):922-8. https://doi.org/10.1038/ejhg.2014.211.

Monserrat L, Hermida-Prieto M, Fernandez X, Rodriguez I, Dumont C, Cazon L, et al.
Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy,
left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28(16):1953-61. https://
doi.org/10.1093/eurheartj/ehm239.

Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, et al. Combina-
tion of whole genome sequencing, linkage, and functional studies implicates a missense
mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left
ventricular noncompaction. Circ Cardiovasc Genet. 2016;9(5):426-35. https://doi.org/10.
1161/CIRCGENETICS.116.001431.

Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, Chin TK, Ward K. Neonatal,
lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. AmJ
Hum Genet. 1997;61(4):868-72. https://doi.org/10.1086/514879.

Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, et al. Mutations in
Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J
Am Coll Cardiol. 2003;42(11):2014-27.

Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation
in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular
noncompaction, and sudden death. BMC Med Genet. 2014;15:99. https://doi.org/10.1186/
s12881-014-0099-0.

Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, et al. HCN4 mutations
in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J
Am Coll Cardiol. 2014;64(8):745-56. https://doi.org/10.1016/j.jacc.2014.05.045.


https://doi.org/10.1038/ncb3411
https://doi.org/10.1038/ncb3411
https://doi.org/10.1016/j.devcel.2006.12.011
https://doi.org/10.1002/ajmg.a.20075
https://doi.org/10.1161/CIRCGENETICS.110.959270
https://doi.org/10.1161/CIRCGENETICS.110.959270
https://doi.org/10.1371/journal.pone.0001362
https://doi.org/10.1371/journal.pone.0001362
https://doi.org/10.1161/CIRCGENETICS.109.903898
https://doi.org/10.1161/CIRCULATIONAHA.107.746164
https://doi.org/10.1161/CIRCULATIONAHA.107.746164
https://doi.org/10.1161/CIRCGENETICS.110.957985
https://doi.org/10.1038/ejhg.2014.211
https://doi.org/10.1093/eurheartj/ehm239
https://doi.org/10.1093/eurheartj/ehm239
https://doi.org/10.1161/CIRCGENETICS.116.001431
https://doi.org/10.1161/CIRCGENETICS.116.001431
https://doi.org/10.1086/514879
https://doi.org/10.1186/s12881-014-0099-0
https://doi.org/10.1186/s12881-014-0099-0
https://doi.org/10.1016/j.jacc.2014.05.045

2 The Genetic Landscape of Cardiomyopathies 87

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151

153.

154.

155.

Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P, Mereles D, et al. The symptom
complex of familial sinus node dysfunction and myocardial noncompaction is associated with
mutations in the HCN4 channel. J] Am Coll Cardiol. 2014;64(8):757-67. https://doi.org/10.
1016/j.jacc.2014.06.1155.

Shan L, Makita N, Xing Y, Watanabe S, Futatani T, Ye F, et al. SCN5A variants in Japanese
patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab. 2008;93
(4):468-74.

Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R, Peteiro J, et al. Familial
dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C
gene mutations. Am J Cardiol. 2004;94(1):50—4. https://doi.org/10.1016/j.amjcard.2004.03.
029.

Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D'Amato G, MacGrogan D, et al.
Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction
cardiomyopathy. Nat Med. 2013;19(2):193-201. https://doi.org/10.1038/nm.3046.
Hoedemaekers YM, Klaassen S. Left ventricular noncompaction. In: Baars HF, Doevendans
PAFM, Houweling A, Tintelen JP, editors. Clinical cardiogenetics. Berlin: Springer; 2016.
p. 113-35. https://doi.org/10.1007/978-3-319-44203-7.

Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, et al. Novel gene mutations
in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103
(9):1256-63.

Williams T, Machann W, Kuhler L, Hamm H, Muller-Hocker J, Zimmer M, et al. Novel
desmoplakin mutation: juvenile biventricular cardiomyopathy with left ventricular
non-compaction and acantholytic palmoplantar keratoderma. Clin Res Cardiol. 2011;100
(12):1087-93. https://doi.org/10.1007/s00392-011-0345-9.

Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH,
et al. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol.
2013;167(6):2477-81. https://doi.org/10.1016/j.ijcard.2012.05.095.

Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, et al. A de novo mutation in NKX2.5
associated with atrial septal defects, ventricular noncompaction, syncope and sudden death.
Clin Chim Acta. 2011;412(1-2):170-5. https://doi.org/10.1016/j.cca.2010.09.035.

Finsterer J, Stollberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy:
cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017;14(4):224-37. https:/
doi.org/10.1038/nrcardio.2016.207.

Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, et al. Clinical
spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease.
Pediatrics. 2004;114(4):925-31. https://doi.org/10.1542/peds.2004-0718.

Marcus FI, McKenna WIJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of
arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task
force criteria. Circulation. 2010;121(13):1533-41. https://doi.org/10.1161/
CIRCULATIONAHA.108.840827.

. Lancisi GM. De motu cordis et aneurysmatibus opus postumum. 1740.
152.

Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, Grosgogeat
Y. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65(2):384-98.
Romero J, Mejia-Lopez E, Manrique C, Lucariello R. Arrhythmogenic right ventricular
cardiomyopathy (ARVC/D): a systematic literature review. Clin Med Insights Cardiol.
2013;7:97-114. https://doi.org/10.4137/CMC.S10940.

Bhonsale A, Te Riele A, Sawant AC, Groeneweg JA, James CA, Murray B, et al. Cardiac
phenotype and long-term prognosis of arrhythmogenic right ventricular cardiomyopathy/
dysplasia patients with late presentation. Heart Rhythm. 2017;14(6):883-91. https://doi.org/
10.1016/j.hrthm.2017.02.013.

McKenna WIJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G,
Camerini F. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task
Force of the Working Group Myocardial and Pericardial Disease of the European Society of


https://doi.org/10.1016/j.jacc.2014.06.1155
https://doi.org/10.1016/j.jacc.2014.06.1155
https://doi.org/10.1016/j.amjcard.2004.03.029
https://doi.org/10.1016/j.amjcard.2004.03.029
https://doi.org/10.1038/nm.3046
https://doi.org/10.1007/978-3-319-44203-7
https://doi.org/10.1007/s00392-011-0345-9
https://doi.org/10.1016/j.ijcard.2012.05.095
https://doi.org/10.1016/j.cca.2010.09.035
https://doi.org/10.1038/nrcardio.2016.207
https://doi.org/10.1038/nrcardio.2016.207
https://doi.org/10.1542/peds.2004-0718
https://doi.org/10.1161/CIRCULATIONAHA.108.840827
https://doi.org/10.1161/CIRCULATIONAHA.108.840827
https://doi.org/10.4137/CMC.S10940
https://doi.org/10.1016/j.hrthm.2017.02.013
https://doi.org/10.1016/j.hrthm.2017.02.013

88

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

B. Gerull et al.

Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and
Federation of Cardiology. Br Heart J. 1994;71(3):215-8.

van der Zwaag PA, van Rijsingen IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiesfeld
AC, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy
or arrthythmogenic right ventricular cardiomyopathy: evidence supporting the concept of
arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14(11):1199-207. https://doi.org/
10.1093/eurjhf/hfs119.

Xu T, Yang Z, Vatta M, Rampazzo A, Beffagna G, Pilichou K, et al. Compound and digenic
heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll
Cardiol. 2010;55(6):587-97. https://doi.org/10.1016/j.jacc.2009.11.020.

Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, et al. De novo desmin-
mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum
Mol Genet. 2010;19(23):4595-607. https://doi.org/10.1093/hmg/ddq387.

Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, et al. Mutation in human
desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right
ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200-6. https://doi.org/10.1086/
344208.

Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, et al. Mutant
desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet.
2006;79(6):1081-8. https://doi.org/10.1086/509044.

Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna
WI. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations
in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79(5):978-84. https://doi.org/
10.1086/509122.

Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, et al. Mutations in
desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy.
Circulation. 2006;113(9):1171-9. https://doi.org/10.1161/CIRCULATIONAHA.105.583674.
Vermij SH, Abriel H, van Veen TA. Refining the molecular organization of the cardiac
intercalated disc. Cardiovasc Res. 2017;113(3):259-75. https://doi.org/10.1093/cvr/cvw259.
Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, et al. Identification
of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ
Cardiovasc  Genet. 2017;10(2):e001605. https://doi.org/10.1161/CIRCGENETICS.116.
001605.

van Hengel J, Calore M, Bauce B, Dazzo E, Mazzotti E, De Bortoli M, et al. Mutations in the
area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular
cardiomyopathy. Eur Heart J. 2013;34(3):201-10. https://doi.org/10.1093/eurheartj/ehs373.
Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P, et al. Desmosomal gene
analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations
and clinical impact in practice. Europace. 2010;12(6):861-8. https://doi.org/10.1093/
europace/euq104.

Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, et al. Identification of
mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic
right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10(3):189-94.
Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C, et al. Regulatory mutations in
transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopa-
thy type 1. Cardiovasc Res. 2005;65(2):366-73. https://doi.org/10.1016/j.cardiores.2004.10.
005.

Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD, et al.
Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic
disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82
(4):809-21. https://doi.org/10.1016/j.ajhg.2008.01.010.


https://doi.org/10.1093/eurjhf/hfs119
https://doi.org/10.1093/eurjhf/hfs119
https://doi.org/10.1016/j.jacc.2009.11.020
https://doi.org/10.1093/hmg/ddq387
https://doi.org/10.1086/344208
https://doi.org/10.1086/344208
https://doi.org/10.1086/509044
https://doi.org/10.1086/509122
https://doi.org/10.1086/509122
https://doi.org/10.1161/CIRCULATIONAHA.105.583674
https://doi.org/10.1093/cvr/cvw259
https://doi.org/10.1161/CIRCGENETICS.116.001605
https://doi.org/10.1161/CIRCGENETICS.116.001605
https://doi.org/10.1093/eurheartj/ehs373
https://doi.org/10.1093/europace/euq104
https://doi.org/10.1093/europace/euq104
https://doi.org/10.1016/j.cardiores.2004.10.005
https://doi.org/10.1016/j.cardiores.2004.10.005
https://doi.org/10.1016/j.ajhg.2008.01.010

2 The Genetic Landscape of Cardiomyopathies 89

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

Erkapic D, Neumann T, Schmitt J, Sperzel J, Berkowitsch A, Kuniss M, et al. Electrical storm
in a patient with arrhythmogenic right ventricular cardiomyopathy and SCN5A mutation.
Europace. 2008;10(7):884—7. https://doi.org/10.1093/europace/eun065.
Taylor M, Graw S, Sinagra G, Barnes C, Slavov D, Brun F, et al. Genetic variation in titin in
arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation. 2011;124
(8):876-85. https://doi.org/10.1161/CIRCULATIONAHA.110.005405.
Quarta G, Syrris P, Ashworth M, Jenkins S, Zuborne Alapi K, Morgan J, et al. Mutations in the
Lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur Heart
J. 2012;33(9):1128-36. https://doi.org/10.1093/eurheartj/ehr451.
Lopez-Ayala JM, Ortiz-Genga M, Gomez-Milanes I, Lopez-Cuenca D, Ruiz-Espejo F,
Sanchez-Munoz JJ, et al. A mutation in the Z-line Cypher/ZASP protein is associated with
arrhythmogenic right ventricular cardiomyopathy. Clin Genet. 2015;88(2):172-6. https://doi.
org/10.1111/cge.12458.
Xiong Q, Cao Q, Zhou Q, Xie J, Shen Y, Wan R, et al. Arrhythmogenic cardiomyopathy in a
patient with a rare loss-of-function KCNQ1 mutation. ] Am Heart Assoc. 2015;4(1):e001526.
https://doi.org/10.1161/JAHA.114.001526.
Protonotarios N, Tsatsopoulou A. Naxos disease: cardiocutaneous syndrome due to cell
adhesion defect. Orphanet J Rare Dis. 2006;1:4. https://doi.org/10.1186/1750-1172-1-4.
Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol
Biol. 2009;16(2):107-13. https://doi.org/10.1038/nsmb.1550.
Zhang Z, Stroud MJ, Zhang J, Fang X, Ouyang K, Kimura K, et al. Normalization of Naxos
plakoglobin levels restores cardiac function in mice. J Clin Invest. 2015;125(4):1708-12.
https://doi.org/10.1172/JCI80335.
Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, et al. Recessive
mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes
dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9(18):2761-6.
Green KJ, Stappenbeck TS, Parry DA, Virata ML. Structure of desmoplakin and its associa-
tion with intermediate filaments. J Dermatol. 1992;19(11):765-9.
Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ. Protein binding and functional
characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-
catenin signaling. J Biol Chem. 2002;277(12):10512-22. https://doi.org/10.1074/jbc.
M108765200.
Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal
cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol. 2011;195
(7):1185-203. https://doi.org/10.1083/jcb.201106057.
Kirchner F, Schuetz A, Boldt LH, Martens K, Dittmar G, Haverkamp W, et al. Molecular
insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2-
missense mutations. Circ Cardiovasc Genet. 2012;5(4):400-11. https://doi.org/10.1161/
CIRCGENETICS.111.961854.
Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, Shapiro L. Structural basis
of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci USA. 2016;113
(26):7160-5. https://doi.org/10.1073/pnas.1606272113.
Gerull B, Kirchner F, Chong JX, Tagoe J, Chandrasekharan K, Strohm O, et al. Homozygous
founder mutation in desmocollin-2 (DSC2) causes arrhythmogenic cardiomyopathy in the
Hutterite population. Circ Cardiovasc Genet. 2013;6(4):327-36. https://doi.org/10.1161/
CIRCGENETICS.113.000097.
Simpson MA, Mansour S, Ahnood D, Kalidas K, Patton MA, McKenna WJ, et al. Homozy-
gous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild
palmoplantar keratoderma and woolly hair. Cardiology. 2009;113(1):28-34. https://doi.org/
10.1159/000165696.
Wong JA, Duff HJ, Yuen T, Kolman L, Exner DV, Weeks SG, Gerull B. Phenotypic analysis
of arrhythmogenic cardiomyopathy in the Hutterite population: role of electrocardiogram in


https://doi.org/10.1093/europace/eun065
https://doi.org/10.1161/CIRCULATIONAHA.110.005405
https://doi.org/10.1093/eurheartj/ehr451
https://doi.org/10.1111/cge.12458
https://doi.org/10.1111/cge.12458
https://doi.org/10.1161/JAHA.114.001526
https://doi.org/10.1186/1750-1172-1-4
https://doi.org/10.1038/nsmb.1550
https://doi.org/10.1172/JCI80335
https://doi.org/10.1074/jbc.M108765200
https://doi.org/10.1074/jbc.M108765200
https://doi.org/10.1083/jcb.201106057
https://doi.org/10.1161/CIRCGENETICS.111.961854
https://doi.org/10.1161/CIRCGENETICS.111.961854
https://doi.org/10.1073/pnas.1606272113
https://doi.org/10.1161/CIRCGENETICS.113.000097
https://doi.org/10.1161/CIRCGENETICS.113.000097
https://doi.org/10.1159/000165696
https://doi.org/10.1159/000165696

90

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

B. Gerull et al.

identifying high-risk desmocollin-2 carriers. ] Am Heart Assoc. 2014;3(6):e001407. https://
doi.org/10.1161/JAHA.114.001407.

van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, et al.
Severe cardiac phenotype with right ventricular predominance in a large cohort of patients
with a single missense mutation in the DES gene. Heart Rhythm. 2009;6(11):1574-83. https:/
doi.org/10.1016/j.hrthm.2009.07.041.

Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, et al. Dual color
photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J
Biol Chem. 2012;287(19):16047-57. https://doi.org/10.1074/jbc.M111.313841.

Turkowski KL, Tester DJ, Bos JM, Haugaa KH, Ackerman MJ. Whole exome sequencing
with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic
substrate for arrhythmogenic cardiomyopathy. Congenit Heart Dis. 2017;12(2):226-35.
https://doi.org/10.1111/chd.12462.

Bers DM, Perez-Reyes E. Ca channels in cardiac myocytes: structure and function in Ca influx
and intracellular Ca release. Cardiovasc Res. 1999;42(2):339-60.

Kranias EG, Bers DM. Calcium and cardiomyopathies. Subcell Biochem. 2007;45:523-37.
Ma Y, Zou H, Zhu XX, Pang J, Xu Q, Jin QY, et al. Transforming growth factor beta: a
potential biomarker and therapeutic target of ventricular remodeling. Oncotarget. 2017;8
(32):53780-90. https://doi.org/10.18632/oncotarget.17255.

Milting H, Klauke B, Christensen AH, Musebeck J, Walhorn V, Grannemann S, et al. The
TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and
increases the stiffness of the cell nucleus. Eur Heart J. 2015;36(14):872-81. https://doi.org/10.
1093/eurheartj/ehu077.

Bengtsson L, Otto H. LUMA interacts with emerin and influences its distribution at the inner
nuclear membrane. J Cell Sci. 2008;121(Pt 4):536-48. https://doi.org/10.1242/jcs.019281.
Garcia MJ. Constrictive pericarditis versus restrictive cardiomyopathy? J Am Coll Cardiol.
2016;67(17):2061-76. https://doi.org/10.1016/j.jacc.2016.01.076.

Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J] Med. 1997;336
(4):267-76. https://doi.org/10.1056/NEIM199701233360407.

Schulz V, Hendig D, Szliska C, Gotting C, Kleesiek K. Novel mutations in the ABCC6 gene
of German patients with pseudoxanthoma elasticum. Hum Biol. 2005;77(3):367-84.

Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126
(10):1286-300. https://doi.org/10.1161/CIRCULATIONAHA.111.078915.

Kostareva A, Kiselev A, Gudkova A, Frishman G, Ruepp A, Frishman D, et al. Genetic
spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing.
PLoS One. 2016;11(9):e0163362. https://doi.org/10.1371/journal.pone.0163362.

Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, et al. Idiopathic restrictive
cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest.
2003;111(2):209-16. https://doi.org/10.1172/JCI116336.

Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and
mechanism of functioning. Biochemistry (Mosc). 1999;64(9):969-85.

Peddy SB, Vricella LA, Crosson JE, Oswald GL, Cohn RD, Cameron DE, et al. Infantile
restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediat-
rics. 2006;117(5):1830-3. https://doi.org/10.1542/peds.2005-2301.

Ploski R, Rydzanicz M, Ksiazczyk TM, Franaszczyk M, Pollak A, Kosinska J, et al. Evidence
for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with
fatal outcome in infancy. Am J Med Genet A. 2016;170(12):3241-8. https://doi.org/10.1002/
ajmg.a.37860.

Marques MA, de Oliveira GA. Cardiac troponin and tropomyosin: structural and cellular
perspectives to unveil the hypertrophic cardiomyopathy phenotype. Front Physiol.
2016;7:429. https://doi.org/10.3389/fphys.2016.00429.

Karam S, Raboisson MJ, Ducreux C, Chalabreysse L, Millat G, Bozio A, Bouvagnet P. A de
novo mutation of the beta cardiac myosin heavy chain gene in an infantile restrictive


https://doi.org/10.1161/JAHA.114.001407
https://doi.org/10.1161/JAHA.114.001407
https://doi.org/10.1016/j.hrthm.2009.07.041
https://doi.org/10.1016/j.hrthm.2009.07.041
https://doi.org/10.1074/jbc.M111.313841
https://doi.org/10.1111/chd.12462
https://doi.org/10.18632/oncotarget.17255
https://doi.org/10.1093/eurheartj/ehu077
https://doi.org/10.1093/eurheartj/ehu077
https://doi.org/10.1242/jcs.019281
https://doi.org/10.1016/j.jacc.2016.01.076
https://doi.org/10.1056/NEJM199701233360407
https://doi.org/10.1161/CIRCULATIONAHA.111.078915
https://doi.org/10.1371/journal.pone.0163362
https://doi.org/10.1172/JCI16336
https://doi.org/10.1542/peds.2005-2301
https://doi.org/10.1002/ajmg.a.37860
https://doi.org/10.1002/ajmg.a.37860
https://doi.org/10.3389/fphys.2016.00429

2 The Genetic Landscape of Cardiomyopathies 91

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

cardiomyopathy. Congenit Heart Dis. 2008;3(2):138—43. https://doi.org/10.1111/j.1747-0803.
2008.00165.x.

Kaski JP, Syrris P, Burch M, Tome-Esteban MT, Fenton M, Christiansen M, et al. Idiopathic
restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein
genes. Heart. 2008;94(11):1478-84. https://doi.org/10.1136/hrt.2007.134684.

Wu W, Lu CX, Wang YN, Liu F, Chen W, Liu YT, et al. Novel phenotype-genotype
correlations of restrictive cardiomyopathy with myosin-binding protein C (MYBPC3) gene
mutations tested by next-generation sequencing. J Am Heart Assoc. 2015;4(7):e001879.
https://doi.org/10.1161/JAHA.115.001879.

Peled Y, Gramlich M, Yoskovitz G, Feinberg MS, Afek A, Polak-Charcon S, et al. Titin
mutation in familial restrictive cardiomyopathy. Int J Cardiol. 2014;171(1):24-30. https://doi.
org/10.1016/j.ijcard.2013.11.037.

Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, et al. Molecular basis for
clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol
Genet. 2012;21(9):2039-53. https://doi.org/10.1093/hmg/dds022.

Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, et al.
Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and
I-band protein assemblies. J Cell Biol. 2001;153(2):413-27.

Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, et al. Desmin accumu-
lation restrictive cardiomyopathy and atrioventricular block associated with desmin gene
defects. Eur J Heart Fail. 2006;8(5):477-83. https://doi.org/10.1016/j.ejheart.2005.11.003.
Brodehl A, Ferrier RA, Hamilton SJ, Greenway SC, Brundler MA, Yu W, et al. Mutations in
FLNC are associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37
(3):269-79. https://doi.org/10.1002/humu.22942.

Brodehl A, Gaertner-Rommel A, Klauke B, Grewe SA, Schirmer I, Peterschroder A, et al. The
novel alphaB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum
Mutat. 2017;38(8):947-52. https://doi.org/10.1002/humu.23248.

Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and
cardiac muscle disease. J Clin Invest. 2009;119(7):1806—-13. https://doi.org/10.1172/
JCI38027.

Jahed Z, Shams H, Mehrbod M, Mofrad MR. Mechanotransduction pathways linking the
extracellular matrix to the nucleus. Int Rev Cell Mol Biol. 2014;310:171-220. https://doi.org/
10.1016/B978-0-12-800180-6.00005-0.

Olive M, Kley RA, Goldfarb LG. Myofibrillar myopathies: new developments. Curr Opin
Neurol. 2013;26(5):527-35. https://doi.org/10.1097/WCO.0b013e328364d6b1.


https://doi.org/10.1111/j.1747-0803.2008.00165.x
https://doi.org/10.1111/j.1747-0803.2008.00165.x
https://doi.org/10.1136/hrt.2007.134684
https://doi.org/10.1161/JAHA.115.001879
https://doi.org/10.1016/j.ijcard.2013.11.037
https://doi.org/10.1016/j.ijcard.2013.11.037
https://doi.org/10.1093/hmg/dds022
https://doi.org/10.1016/j.ejheart.2005.11.003
https://doi.org/10.1002/humu.22942
https://doi.org/10.1002/humu.23248
https://doi.org/10.1172/JCI38027
https://doi.org/10.1172/JCI38027
https://doi.org/10.1016/B978-0-12-800180-6.00005-0
https://doi.org/10.1016/B978-0-12-800180-6.00005-0
https://doi.org/10.1097/WCO.0b013e328364d6b1

Check for
updates

Genetic Basis of Mitochondrial 3
Cardiomyopathy

Elisa Mastantuono, Cordula Maria Wolf, and Holger Prokisch

Contents
1S T8 R 515 0 e L1 () & 94
3.2 Cardiac Manifestation in Mitochondrial Disorders ................ccovieiiiiiiieeiininn... 96
3.3 Genetic Causes of Mitochondrial Cardiac Manifestation .................ooevineeenn.. 111
3.3.1 OXPHOS Subunits and Their Assembling Factors .............................. 111
3.3.2 Defects of Mitochondrial DNA, RNA, and Protein Synthesis ................... 115
3.3.3 Defects in the Substrate-Generating Upstream Reactions of OXPHOS ......... 115
3.3.4 Defects in Relevant Cofactors .........oveeeertiiiiiiiiineeeeeeiiiiiiaaaaaaanns 116
3.3.5 Defects in Mitochondrial HOMEOStaSIS . .......vueiiuieetiiieeiiiieeeineaiiinnns 116
3.3.6 Defects in Relevant Inhibitors ............ooiiiiiiiiiiiii i 117
3.3.7 Mitochondrial Syndromes ...............ooiiiiiiiiiiiiii i 117
3.4 Characterization of the Cardiac Involvement .....................ooiiiiiiiiiiiiinnns 118
3.5 Diagnosis of Potential Mitochondrial Cardiac Disease ................ccooiiiiiinio.. 122
3.6 Management of Patients with Mitochondrial Cardiomyopathy .......................... 123
3.7 Conclusion and Perspectives .........ouuuuiitiitiii e 124
2SS (5 ()3 Lo 125

E. Mastantuono
Institute of Human Genetics, Technische Universitit Miinchen, Munich, Germany

Institute of Human Genetics, Helmholtz Zentrum Miinchen, Munich, Germany

DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich,
Germany

C. M. Wolf
Department of Pediatric Cardiology and Congenital Heart Defects, German Heart Center Munich,
Technical University Munich, Munich, Germany

H. Prokisch (D<)
Institute of Human Genetics, Technische Universitidt Miinchen, Munich, Germany

Institute of Human Genetics, Helmholtz Zentrum Miinchen, Munich, Germany
e-mail: prokisch@helmholtz-muenchen.de

© Springer Nature Switzerland AG 2019 93
J. Erdmann, A. Moretti (eds.), Genetic Causes of Cardiac Disease, Cardiac and
Vascular Biology 7, https://doi.org/10.1007/978-3-030-27371-2_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27371-2_3&domain=pdf
mailto:prokisch@helmholtz-muenchen.de

94 E. Mastantuono et al.

Abstract

Mitochondrial disorders are a clinically heterogeneous group of disorders that
arise as a result of dysfunction of the mitochondrial energy metabolism, and they
represent one of the largest groups of inborn errors of metabolism. Mitochondrial
disorders can be caused by mutation of genes encoded by either nuclear DNA or
mitochondrial DNA (mtDNA), with more than 300 disease-associated genes
identified to date. Among these genes, around 100 have so far been associated
with cardiac manifestations. Cardiomyopathy is estimated to occur in 20—40% of
children with mitochondrial disorders. Genetic defects can affect a vast range of
different mitochondrial functions including electron transport chain complex
subunits and their assembly factors, mitochondrial transfer or ribosomal RNAs,
factors involved in translation or mtDNA maintenance, and cofactor metabolism
such as coenzyme Q10 synthesis. With collectively more than 1000 described
cases, the most frequent mitochondrial cardiac diseases include Barth syndrome,
Sengers syndrome, ACAD9- or TMEM?70-related mitochondrial complex I or V
deficiency, and Friedreich ataxia. Hypertrophic cardiomyopathy is the most
common type of cardiomyopathy, but mitochondrial cardiomyopathies might
also present as dilated, restrictive, left ventricular non-compaction, and
histiocytoid cardiomyopathies. Mitochondrial cardiomyopathy can vary in sever-
ity from asymptomatic to severe manifestations including heart failure and
sudden cardiac death. Congenital arrhythmias and congenital heart defects
(CHDs) are also part of the clinical spectrum of mitochondrial disorders. In this
chapter, we provide an overview of the constantly growing number of mitochon-
drial cardiac disorders and comment on the current practice in the diagnosis and
treatment of patients with mitochondrial cardiomyopathy, including optimal
therapeutic management and long-term monitoring.

3.1 Introduction

Mitochondrial disorders are a heterogeneous group of inborn errors of metabolism
encompassing a wide range of clinical presentations, with > 300 disease-associated
genes identified to date [1, 192]. Mitochondria are largely known as the powerhouse
of the cell due to their crucial function in the generation of cellular energy. They
exploit the energy stored in fats, carbohydrates, and proteins to produce ATP in a
process called oxidative phosphorylation (OXPHOS). OXPHOS requires the trans-
port of electrons to molecular oxygen via the mitochondrial respiratory chain, which
involves four multi-subunit complexes (complex I-complex IV) and two mobile
electron carriers, coenzyme Q10 (CoQ10) and cytochrome c. The respiratory chain
generates a transmembrane proton gradient that is used by complex V (also known
as ATP synthase) to synthesize ATP.
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Major metabolic consequences of OXPHOS impairment include accumulation of
intermediary metabolic products, increased generation of reactive oxygen species,
and decreased energy production. As a consequence of energy deficiency, high-
energy demand tissues such as muscle, brain, and liver can be impaired, with
resulting multi-organ disease, often with a progression of symptoms developing
over time. The variable and frequently systemic nature of mitochondrial disorders
make molecular diagnosis difficult. Many different medical specialties are often
involved in patient care (with individual physicians often becoming discouraged
from solving such complex phenotypes). On the other hand, its very systemic nature
aids in raising suspicion for the diagnosis of mitochondrial disorders. Specific
combinations of the clinical features associated with mitochondrial disorders can
subsequently be grouped into specific syndromes [2].

With an estimated prevalence of 1 in 5000 live births, mitochondrial disorders
represent one of the largest groups of inborn errors of metabolism [3]. The onset of
mitochondrial disorders has an apparent peak in early childhood (first 3 years of life)
and a second broad peak beginning toward the second and the fourth decade of life
(adult-onset diseases) [3]. Childhood-onset mitochondrial disorders are generally
more severe, especially when clinical manifestation occurs in infancy (<1 year of
age) or if they include cardiac involvement (mortality of 71% vs 26% without
cardiac phenotype) [4].

Cardiac involvement, specifically cardiomyopathy and arrhythmias, are common
features associated with both early- and late-onset forms of mitochondriopathy.
Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial
disorders [4, 5]. However, screening for cardiac involvement is not always
performed, and this figure is therefore possibly underestimated. The most common
form of cardiomyopathy is hypertrophic; however dilated cardiomyopathy and left
ventricular (LV) non-compaction also occur relatively frequently [6, 7]. Conduction
system and bradyarrhythmias, in addition to WPW syndrome and tachyarrhythmias,
are the most commonly encountered arrhythmias in mitochondrial disorders [8, 9].

On the other hand, when a mitochondrial condition affects at the initial stage
selectively the heart, the mitochondrial cardiomyopathy may be clinically indistin-
guishable from other genetic determined cardiomyopathies [147]. Hence, mitochon-
drial disorders should be suspected in idiopathic isolated forms of cardiomyopathies.
Conventional cardiomyopathy gene panels often do not include all the mitochondrial
cardiomyopathy-associated genes, and only the increasing use of whole-exome
sequencing (WES) has led to unmasking of such cases. In general, the introduction
of next-generation sequencing (NGS) has dramatically improved diagnostic yield for
mitochondrial disorders and shifted the focus from mtDNA to the nuclear genome.
Indeed, both mtDNA and nuclear genomes can be analyzed for pathogenic variants
within a single experiment. Consequently, NGS has enabled the identification of a
constantly growing list of new disease genes, thereby setting the foundation to
uncover an increasing variety of pathophysiologic disease mechanisms [10-13].

Defects of the mitochondrial energy metabolism can be caused by mutations in a
number of mitochondrial pathways and functions, including the ATP producing
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chain from pyruvate dehydrogenase via Krebs cycle to OXPHOS by affecting
replication of mtDNA or transcription and translation of mitochondrially encoded
OXPHOS subunits. Furthermore, there are numerous additional functions involved
in the mitochondrial energy metabolism, such as transport processes of proteins and
substrates through the mitochondrial membranes, quality control systems, essential
cofactors, motility of the organelle, and membrane integrity.

Mitochondrial genetics is complex, as the workhorse of mitochondria, the mito-
chondrial proteome (around 1500 proteins), is under the control of two genomes, the
nuclear genome and the mitochondrial genome (mtDNA). Although only a small
fraction of their proteins are encoded by mtDNA, abnormalities in mtDNA affect
more than half of the adult cases, whereas nuclear DNA defects account for up to
80% of mitochondrial disorders in children [14]. Therefore, the most common mode
of inheritance of mitochondrial disorders in children is autosomal recessive. For
mtDNA variants, the number of wild-type copies is a key factor that determines
whether a cell expresses a biochemical defect. This is usually determined by the
proportion of mutated copies versus wild-type copies of mtDNA. Homoplasmy
describes the setting in which all mtDNA copies have the same mutation, while
heteroplasmy, on the other hand, occurs if a mixture of different genotypes, e.g.,
wild-type and mutant mtDNA, coexist. Variants in mtDNA causing mitochondrial
disorders can be further classified into three types: (a) mutations in genes encoding
structural proteins or in genes involved in protein synthesis, (b) single or multiple
mtDNA deletions, and (c) mtDNA depletion. Multiple mtDNA deletions and
mtDNA depletion are caused by nuclear gene defects. Screening the literature, we
found an cassociated cardiac phenotype in around 100 genes (n = 1855 cases)
among the 300 mitochondrial disease-associated genes described to date. However,
concerning the number of patients per gene defect, a non-equal long tail distribution
was observed. There are disorders like Friedreich ataxia for which more than 1200
patients have a reported cardiac involvement, Barth syndrome with more than
200 patients, and ACAD9 with over 50 patients, while there are around 70 disease
entities with less than 10 published cases with cardiac involvement (Table 3.1).
Many individuals display a cluster of clinical features which fall into defined
mitochondrial ~ syndromes. Among  them,  MELAS (mitochondrial
encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myo-
clonic epilepsy with ragged red fibers) represent the syndromes most frequently
associated with cardiac manifestations.

3.2 Cardiac Manifestation in Mitochondrial Disorders

Cardiomyopathies represent a significant clinical manifestation associated with
mitochondrial disorders that can result in sudden cardiac death. Neonatal
cardiomyopathies are often characterized by hypertrophy of one (mostly left) or
both ventricles [147]. Ventricular dysfunction may be progressive in utero and after
birth. Neonatal cardiomyopathy is often followed by fatal heart failure or, in other
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cases, can progress into a dilated form, non-compaction of the left ventricle,
improve, or even regress completely [147].

Hypertrophic cardiomyopathy (HCM) is the most frequent manifestation in
mitochondrial disorders. HCM is characterized by progressive myocardial
thickening; diastolic and systolic ventricular dysfunction; histopathologic changes,
such as myocyte disarray and fibrosis; and arrhythmias which may cause sudden
cardiac death. In adulthood, hypertrophic cardiomyopathy has a prevalence of 1 in
500 and is typically caused by mutations in sarcomere genes [148]. Pediatric HCM is
most frequently associated with Noonan syndrome (1 in 10,000), but it is also
frequently found with inborn errors of metabolism, including mitochondrial disorder
[149]. HCM was reported to be associated with about 90 mitochondrial disease
genes out of 100 with a cardiac phenotype (Table 3.1).

Dilated cardiomyopathy (DCM) is characterized by progressive myocardial dila-
tation and thinning. Both diastolic and systolic ventricular dysfunctions can occur,
and DCM is often associated with the occurrence of cardiac conduction system
diseases, arrhythmias, and sudden arrhythmic death. DCM as a sequela of myocar-
ditis is the most common cardiomyopathy in childhood, but it can also be inherited
or part of systemic diseases, such as a mitochondrial disorder [150]. In mitochondrial
disorders, DCM is often a consequence of a progressed HCM. It has been found in
association with 30 disease genes, most frequently with Barth and DCMA
syndromes [151].

Mitochondrial disorders can present with cardiac conduction defects typically
involving sinus node dysfunction, atrioventricular block, ventricular conduction
delay, or WPW syndrome. Progression in intraventricular conduction defect is
unpredictable and responsible for sudden cardiac death. Overall, 17 mitochondrial
disease genes were found in association with arrhythmias. Prevalence of Wolff-
Parkinson-White syndrome among patients with mtDNA mutations is high (up to
15%), specifically in patients with MELAS and MERREF [152]. Also in the clinical
presentation of Kearns-Sayre syndrome are cardiac conduction defects, together
with progressive external ophthalmoplegia and pigmentary retinopathy [153].

Congenital heart defects (CHDs) are rarely recognized to be linked to mitochon-
drial disorders. CHDs have been identified in patients with mitochondrial disorders
due to 16 different genetic defects; however the pathomechanism remains largely
unknown (Table 3.1). The CHDs include patent ductus arteriosus (PDA), ventricular
and septal defects (VSD and ASD), or more complex CHD defects (tetralogy of
Fallot, transpositions of great arteries). Among them, if we consider three of the most
frequent causes of cardiac disorder, we found CHDs to be reported in 30% of
TMEM70 cases and 10% of ACAD9 and TAZ cases ([34, 53]; https://www.
barthsyndrome.org;). This figure is clearly above the 1% of cases with CHDs
identified in the general population. The observation of CHD is present in only a
fraction of patients with the clinical presentation of mitochondrial disorders. Usually
not all patients with a certain gene defect develop a cardiac phenotype, but the
mitochondrial dysfunction predisposes patients to cardiac abnormalities
[154]. Sengers syndrome or ELAC?2 patients seemed to be an exception, but for
most gene defects which were tightly linked to cardiac manifestations, NGS
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diagnostics extended the clinical spectrum to patients without cardiac phenotypes
[59, 79, 80, 125].

Left ventricular non-compaction (LVNC) is a morphological abnormality of
excessive trabeculation of the left ventricular myocardium, which is often compli-
cated by ventricular dysfunction, arrhythmias, and cardioembolism. LVNC can be
part of a structural heart disease. Additionally, mutations in a variety of genes, such
as transcription factors, structural, nuclear, or ion channel genes, may cause LVNC.
In general, the etiology of this disease entity is still poorly understood and object of
current investigations. In mitochondrial disorders, Barth syndrome is most often
associated with LVNC, but it is also typical for DNAJC19 defects and reported in a
total of 11 mitochondrial genes [62, 153, 155].

3.3 Genetic Causes of Mitochondrial Cardiac Manifestation

With about 300 gene defects reported in association with human mitochondrial
disorders, the spectrum of respiratory chain defects is rather intricate. To break
down the complexity, we have grouped the genes here into (1) disorders of oxidative
phosphorylation (OXPHOS) subunits and their assembly factors; (2) defects of
mitochondrial DNA, RNA, and protein synthesis; (3) defects in the substrate-
generating upstream reactions of OXPHOS; (4) defects in cofactor metabolism;
(5) defects in mitochondrial homeostasis; and (6) defects in relevant inhibitors
(Fig. 3.1). In the following text, we will describe these groups in more details.

3.3.1 OXPHOS Subunits and Their Assembling Factors

Complex I deficiency is the most common biochemical phenotype observed in
individuals with mitochondrial disorder and is responsible for approximately 30% of
childhood-onset cases [156]. Complex I is composed of 44 subunits (7 encoded by
mtDNA and 37 by nDNA), with genetic defects identified in 28 structural genes, in
11 assembly factors, and in a number of factors involved in mitochondrial translation
(Fig. 3.1) [154].

Complex I deficiency is clinically heterogeneous, with a diverse spectrum of
clinical presentations, such as Leigh syndrome, fatal infantile lactic acidosis
(FILA), leukoencephalopathy, MELAS, or also hypertrophic cardiomyopathy.
HCM, in particular, can be isolated or associated with multi-organ disease. Isolated
HCM has been reported with mutations in nuclear-encoded subunits (NDUFS2,
NDUFV2) and assembly factors (ACADY, and less commonly NDUFAFI). Less
frequently patients manifest with dilated cardiomyopathy, left ventricle
non-compaction, or conduction defects (such as Wolff-Parkinson-White)
[157]. Among 95 cases with complex I deficiency and cardiac manifestations
described in the literature (Table 3.1), ACAD9 deficiency, with 56 cases, represents
the most frequent genetic cause observed [34]. Considering the number of ACAD9
patients and the minor allele frequency of deleterious variants described so far, an
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Fig. 3.1 Known disease genes (n = 309) in different parts of the mitochondrial energy metabo-
lism. Q (coenzyme Q10), IS (iron-sulfur clusters), B (biotin), T (thiamine pyrophosphate), L (lipoic
acid), H (heme), A (coenzyme A), F (riboflavin/EMN/FAD), Fe (iron), Cu (copper), M (s-adenosyl
methionine), N (NADH/NADPH). Summary of mitochondrial genes with cardiac manifestations: in
red are highlighted genes in which the cardiac involvement represents a major symptom among the
other clinical features associated with the gene defect; in green are highlighted genes in which the
cardiac involvement represents a minor symptom among the other clinical features associated with
the gene defect

incidence of 59 new ACAD9 patients born every year in Europe has been recently
estimated [34]. The clinical spectrum of ACAD9 deficiency is characterized by
predominant heart involvement. Other clinical recurrent symptoms include lactic
acidosis and muscular weakness [158]. Age of onset, severity of the disease, and
progression can vary significantly [34]. On a biochemical level, residual ACAD9
enzyme activity, and not complex I activity, seems to correlate with the severity of
clinical symptoms in ACAD9-deficient patients [159]. Regarding the clinical pre-
sentation, the typical age of onset of patients with ACAD9 deficiency is in the
neonatal period or in early childhood, with the majority of the patients presenting
in the first year of life. Looking at the survival data, for this subgroup with early
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onset, the survival was poor (50% not surviving the first 2 years) and the outcome
extremely severe compared to patients with a later presentation (more than 90%
surviving 10 years) [34]. The patients with severe developmental delay or intellec-
tual disability also showed an early disease onset; however neurological
manifestations seem to be a rare presentation of the disease [34]. Furthermore,
most patients currently alive are able to perform routine activities of daily living.
This aspect could also influence the management of ACAD9 patients, for example,
for the decision of performing a cardiac transplant. Four patients with ACAD9
defects underwent a cardiac transplant. Unfortunately, the two patients who
presented within the first year died despite all efforts. In contrast, the two patients
presenting after the age of 1 year developed normally, and their clinical status
remains stable after years of follow-up (currently aged 15 and 35 years, respec-
tively). However, additional longitudinal studies are warranted to better identify
which patients with ACAD9 deficiency are appropriate heart transplant candidates
[160]. Supplementation with riboflavin showed improvement in complex I activity
in the majority of patient-derived fibroblasts, and most patients similarly were
reported to have clinical benefit with treatment. Most notably, patients presenting
within the first year of life show a significantly better survival when treated with
riboflavin [34]. However, detailed data about the starting point of riboflavin treat-
ment, the dosage, etc. in large cohorts are needed [34, 161].

Isolated complex II deficiency is a rare cause of mitochondrial disorder. Com-
plex II, or succinate dehydrogenase, is formed of four subunits, and it is the only
respiratory chain complex entirely encoded by nDNA. Genetic defects were
identified in four structural genes and two assembly factors. Clinically, neurological
symptoms represent the most common presentation (especially Leigh syndrome or
leukoencephalopathy), but hypertrophic and dilated cardiomyopathy, as well as left
ventricular non-compaction, were identified in six of the reported cases [162]. In
particular, early-onset hypertrophic cardiomyopathy with left ventricular
non-compaction and severe complex II deficiency has been observed in association
with SDHD defects [40]. Isolated and severe neonatal dilated cardiomyopathy has
been associated with SDHA mutations [163]. Conduction abnormalities were present
in the same patients and thus should be investigated in patients with complex II
deficiency [162].

Complex III (coenzyme Q or cytochrome reductase) is a multi-subunit trans-
membrane protein encoded by both the mitochondrial (cytochrome b) and the
nuclear genomes (ten subunits). Gene defects have been identified in five structural
genes and five assembly factors [164]. Complex III or combined complex I and III
deficiency typically manifests in infancy as a severe, multisystem disorder that
includes features such as hypotonia, seizures, lactic acidosis, hypoglycemia, and
intellectual disability. Variants in BCSIL can result in Bjornstad syndrome and
GRACILE syndrome, severe neonatal syndromes with multisystem and neurological
manifestations. However, milder cases with survival into adulthood have also been
described. In such cases, HCM has been reported in two patients [41]. In addition,
different forms of cardiomyopathy (hypertrophic, dilated, and histiocytoid cardio-
myopathy), either isolated or accompanied by multisystem mitochondrial disorder,
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have been described in three patients with complex III deficiency associated with
mutations in mitochondrial DNA-encoded cytochrome b (MT-CYB) [42, 165].

Complex IV—also called cytochrome ¢ oxidase—is the terminal enzyme of the
respiratory chain and consists of 14 subunits, 3 of which (named COX1, COX2, and
COX3) are encoded by mitochondrial DNA. Complex IV deficiency has been
associated with mutations in 11 structural genes and 8 assembly factors.

There are four types of complex IV deficiency differentiated by symptoms and
age of onset: benign infantile mitochondrial type, French-Canadian type, infantile
mitochondrial myopathy type, and Leigh syndrome. The clinical spectrum can vary
among affected individuals, even within the same family. In mildly affected
individuals can occur muscle weakness and hypotonia. Whereas in more severely
affected individuals neurological dysfunction, heart and liver manifestations, lactic
acidosis, and/or Leigh syndrome may also be present [166]. Cardiac involvement
has been described in 16 published patients with complex IV deficiency (Table 3.1).
Isolated dilated cardiomyopathy has been reported in individuals with complex IV
deficiency and carrying MT-CO2 and MT-CO3 variants [167]. SURF1, a nuclear
gene encoding a complex IV assembly factor, represents the most common cause of
Leigh syndrome due to complex IV deficiency and is sometimes accompanied by
cardiomyopathy [48]. In addition, there are a number of cofactor deficiencies which
result in complex IV deficiency with cardiac manifestations (see Sect. 3.4 and
Table 3.1).

Mitochondrial ATP synthase (complex V) synthesizes ATP from ADP and
inorganic phosphate using the energy provided by the proton electrochemical gradi-
ent (proton-motive force) across the inner mitochondrial membrane. It consists of
two functional domains, F1 and Fo. F1 comprises five different subunits, while the
Fo region includes three main subunits a, b, and c, and six additional subunits. Gene
defects have been identified in six structural genes and two assembly factors.

Most cases present with neonatal-onset hypotonia, lactic acidosis,
hyperammonemia, hypertrophic cardiomyopathy, and 3-methylglutaconic aciduria.
Among 55 cases with cardiac manifestations and complex V deficiency present in
literature, 49 have been associated with variants in TMEM70. TMEM?70 deficiency is
the most common genetic defect affecting the ATP synthase [51]. Frequent
symptoms at onset are poor feeding, hypotonia, lethargy, and respiratory and heart
failure, accompanied by lactic acidosis, 3-methylglutaconic aciduria, and
hyperammonemia. In children with TMEM70 deficiency, the most common heart
problem is non-obstructive concentric HCM with preserved systolic function
[52, 54]. With the exception of neonates with heart failure, the prognosis of
cardiomyopathy in TMEM70 patients is favorable, because HCM is mostly
non-progressive or even regressive during long-term follow-up. Conduction defects
(Wolff-Parkinson-White syndrome) have been found in 13% of TMEM?70 patients.
Cardiomyopathy associated with systemic mitochondrial disorder has also been
described with mutations in mitochondrial genes encoding complex V subunits,
including MT-ATP6 [191] and MT-ATPS [57, 168, 169].
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3.3.2 Defects of Mitochondrial DNA, RNA, and Protein Synthesis

Mitochondrial protein translation defects typically cause multiple OXPHOS
abnormalities and severe mitochondrial disorder. Gene defects have been identified
in genes encoding elongation factors, aminoacyl-tRNA synthetases, tRNA-
modifying enzymes, a mitochondrial peptide release factor, and an RNase that
processes mitochondrial RNA. Mitochondrial disorders linked to protein translation
defects manifest with neurological involvement and hypertrophic cardiomyopathy,
as well as other multisystem abnormalities. Conditions with cardiac manifestations
include defects in mitochondrial ribosomal proteins (MRPS22, MRPL3, MRPLA4),
mitochondrial tyrosine (YARS2) or alanine (AARS2) tRNA aminoacylation, and
other enzymes involved in mitochondrial RNA metabolism [186, 188]. Cardiomy-
opathy resulting from mutations in ELAC?2 are usually associated with early severe
forms of hypertrophic cardiomyopathy in the context of a multisystem disorder.
However, isolated forms of hypertrophic and dilated cardiomyopathy may also be
present.

Posttranscriptional modification of mitochondrial tRNAs is necessary for their
stability and function. Abnormalities in these processes are illustrative of recently
identified protein translation disorders that lead to cardiomyopathy. Hypertrophic
cardiomyopathy and cardiac conduction defects in combination with psychomotor
delay, encephalopathy, hypotonia, and lactic acidosis were found in children with
variants in MTO1 [86]. Mutations in GTPBP3 have been described in association
with neonatal hypertrophic or dilated cardiomyopathy and conduction defects.
Again, most of the patients also showed extra-cardiac symptoms, such as encepha-
lopathy, lactic acidemia, hypoglycemia, and hyperammonemia [84]. Another post-
transcriptional modification defect of mitochondrial tRNAs was found in tRNA
methyltransferase 5 (TRMTS) deficiency. Mutations in TRMTS5 have been described
in association with hypertrophic cardiomyopathy, exercise intolerance, global devel-
opmental delay, hypotonia, peripheral neuropathy, renal tubulopathy, and lactic
acidosis [88].

3.3.3 Defects in the Substrate-Generating Upstream Reactions
of OXPHOS

Deficiencies of the mitochondrial phosphate carrier (SLC25A3) have been described
in cases with hypertrophic cardiomyopathy accompanied by myopathy and lactic
acidosis [137]. Lahrouchi et al. have recently reported a loss of function of the
carnitine transport SLC22AS5 in a family with history of pediatric cardiomyopathy
and sudden cardiac death. The patients showed a reduction in the degree of cardiac
hypertrophy, and her exercise tolerance improved markedly after L-carnitine supple-
mentation [144]. Biallelic missense variants in the nuclear-encoded mitochondrial
inorganic pyrophosphatase (PPA2) were identified in 17 individuals from 7 unrelated
pedigrees presenting with seizures, lactic acidosis, cardiac arrhythmia, and exquisite
sensitivity to alcohol, leading to sudden cardiac death [146].
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3.3.4 Defects in Relevant Cofactors

Many cofactors have a key role in mitochondrial energy metabolism. Among them,
some are required for the respiratory chain enzymes like coenzyme Q, iron-sulfur
clusters, riboflavin, and heme. Their deficiency typically results in defects of more
than one respiratory enzyme. Primary CoQ10 deficiency is a phenotypically and
genetically heterogeneous condition, with various clinical presentations including
encephalomyopathy, myopathy, cerebellar ataxia, nephrotic syndrome, and severe
infantile multisystem mitochondrial disorder. Hypertrophic cardiomyopathy has
been reported in cases with mutations in COQ2, COQ4, and COQ9 [118, 119,
170, 187]. Fatal infantile cardioencephalomyopathy due to cytochrome c oxidase
(COX) deficiency 1 is caused by biallelic variants in the SCO2 gene. SCO2 is a
mitochondrial copper-binding protein involved in the biogenesis of the Cu(A) site in
the cytochrome c oxidase (CcO) subunit Cox2 and in the maintenance of cellular
copper homeostasis. Mutations in both SCO/ and SCO2 are associated with distinct
clinical phenotypes in addition to tissue-specific cytochrome ¢ oxidase deficiency.
SCO?2 is highly expressed in the muscle, whereas SCO1 is expressed at higher levels
in the liver. This reflects the different clinical presentation of SCOI, mostly
associated with hepatic liver failure, and SCO2, predominantly associated with
severe early-onset cardiac failure. The onset of cardiomyopathy is either in utero
or in the first days of life [132]. Copper-histidine supplementation in cell culture, and
also the treatment in one patient, was reported to be beneficial for the cardiac
phenotype [131].

3.3.5 Defects in Mitochondrial Homeostasis

Mitochondrial homeostasis involves several essential aspects of mitochondrial bio-
genesis, lipid synthesis, protein import, fission and fusion, quality control, and
targeted degradation.

Barth syndrome is due to mutations in the X-linked TAZ gene, which codes for
Tafazzin, a phospholipid transacylase involved in the remodelling of cardiolipin.
Barth syndrome is characterized by cardiomyopathy, skeletal myopathy, distinctive
facial features, developmental delay, neutropenia, and increased urinary levels of
3-methylglutaconic acid. Cardiomyopathy is the presenting manifestation in more
than 70% of affected males and usually appears in infancy. Interestingly, in these
patients, left ventricular non-compaction and dilated cardiomyopathies are more
frequent cardiological findings than hypertrophic cardiomyopathy [171]. Patients
can manifest with supraventricular and ventricular arrhythmias, sometimes related to
sudden cardiac death [172]. Recently, a systematic mutation screening of TAZ in a
large cohort of pediatric patients with primary cardiomyopathy identified pathogenic
variants in 3.5% of the male patients [173]. In a mouse model of Barth syndrome,
cardiac-specific loss of succinate dehydrogenase (complex II) activity has been
described as a key event in the pathogenesis of cardiomyopathy [174]. Sengers
syndrome is caused by the deficiency of the acylglycerol kinase (AGK) which is also
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involved in the mitochondrial protein import. The clinical spectrum is characterized
by the presence of hypertrophic cardiomyopathy, cataracts, myopathy, exercise
intolerance, and lactic acidosis [60]. 3-Methylglutaconic aciduria associated with
DNAJC19 mutations (DCMA syndrome) is mainly associated with dilated cardio-
myopathy or left ventricular non-compaction and non-progressive cerebellar ataxia
[63]. Variants in CIQBP, encoding a complement component 1 Q subcomponent-
binding protein, have been recently associated with severe forms of neonatal or later-
onset cardiomyopathy associated with combined respiratory chain deficiencies [66].

3.3.6 Defects in Relevant Inhibitors

Mitochondrial short-chain enoyl-CoA hydratase-1 deficiency (ECHS1) is an autoso-
mal recessive inborn error of metabolism caused by compound heterozygous
mutations in the ECHSI gene and characterized by severely delayed psychomotor
development, neurodegeneration, increased lactic acid, and cardiomyopathy due to
the accumulation of toxic metabolites. Usually these patients are affected by hyper-
trophic cardiomyopathy and, more rarely, by the dilated form [136, 189].

3.3.7 Mitochondrial Syndromes

Mitochondrial syndromes represent a spectrum of symptoms typically associated
with specific abnormalities of mitochondrial DNA (Table 3.2). They can be
associated with cardiomyopathy, conduction abnormalities, or both. Kearns-Sayre
syndrome is characterized by extra-cardiac manifestations such as pigmentary reti-
nopathy, progressive external ophthalmoplegia, increased cerebrospinal fluid protein
concentration, and cerebellar ataxia. Cardiac conduction block is one of the cardinal
manifestations; however hypertrophic cardiomyopathy may also be observed. Sud-
den cardiac death occurs in up to 20% of cases [175].

Cardiomyopathy and/or conduction abnormalities may also accompany MELAS,
MERRF, and mtDNA-associated Leigh syndrome/NARP (neuropathy, ataxia, and
retinitis pigmentosa) syndromes. Cardiomyopathy occurs in 18-30% of individuals
with MELAS syndrome [176]. Both dilated and hypertrophic cardiomyopathies
have been observed in MELAS syndrome; however, more typical is
non-obstructive concentric hypertrophy [177]. Cardiac conduction abnormalities
including Wolff-Parkinson-White syndrome has been reported in 13-27% of
individuals with MELAS syndrome [176]. Cardiomyopathy has been identified in
30% of MERREF cases and Wolff-Parkinson-White in 22% [178]. In NARP syn-
drome, the cardiological manifestations described thus far are hypertrophic cardio-
myopathy and atrioventricular block [179].
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Table 3.2 Genetic defects and clinical manifestations of mitochondrial syndromes

Mitochondrial
syndrome

Kearns-Sayre

MELAS

MERRF

NARP/
mtDNA-
associated LS

Genetic defect
mtDNA deletion

mtDNA mut.: MT-TL1
enc. tRNALeu
(m.3243A > G (80%),
m.3271T > C (7.5%)),
also MD-ND1 and others

mtDNA mut.: MT-TK
enc. tRNALYys

(m.8344A > G) also
MT-TF, MT-TL1, MT-TI,
MT-TP

mtDNA mut.: LS,
MT-ATP6, MT-TL1,
MT-TK, MTTW, MT-TV,
MT-ND1, MT-ND2,
MT-ND3, MT-ND4,
MT-NDS5, MT-ND6,
MT-CO3; NARP,
MT-ATP6(m.8993T > G,
m.8993T > G)

Cardiac
manifestation

A/C (heart
block); DCM,
HCM, PMVT

HCM, DCM,
LVNC, RCM;
A/C (heart block,
WPW syndrome)

HCM, DCM,
HICM; A/C
(WPW
syndrome,
others)

HCM; A/C (heart
block)

Extra-cardiac
manifestation

Progressive external
ophthalmoplegia,
pigmentary retinopathy,
cerebellar ataxia, short
stature, deafness,
dementia, limb weakness,
diabetes mellitus, renal
tubulopathy
Encephalomyopathy,
lactic acidosis, stroke-like
episodes, deafness,
myopathy

Myoclonic epilepsy,
ataxia, myopathy,
intellectual disability,
deafness, short stature,
optic atrophy

Leigh syndrome,
neuropathy, ataxia,
pigmentary retinopathy

DCM dilated cardiomyopathy, HCM hypertrophic cardiomyopathy, HICM histiocytoid cardiomy-
opathy, LVNC left ventricular non-compaction, MELAS mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes, MERRF myoclonic epilepsy with ragged red fibers, PMVT
polymorphic ventricular tachycardia, RCM restrictive cardiomyopathy, WPW Wolff-Parkinson-
White syndrome

3.4  Characterization of the Cardiac Involvement

The clinical presentation in patients with cardiomyopathy varies from asymptomatic
to severe heart failure with asphyxia. In some cases, a sudden cardiac death can even
be the first manifestation of the underlying cardiac dysfunction in an apparently
healthy individual. Therefore, the assessment of the cardiac status represents a
fundamental step for the management, follow-up, and prognosis of these patients.
History and physical examination might reveal multisystem involvement, such as
failure to thrive, global developmental delay, muscle weakness, respiratory
abnormalities, epilepsy, vision problems, and others [180]. Family history might
be positive for the occurrence of multisystem disorders in ancestors (Fig. 3.2). If a
significant ventricular dysfunction is present, the cardiac examination might show
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Patient with cardiomyopathy

d cardiomyopathy C yopathy with multisyst
Differential diagnosis: Differential diagnosis:
HCM - Myocarditis - Genelic syndrome
DCM - Arhythmias - Neuromuscular disease
LNVC - Structural heart defects = Inbom error of metabolism
ARVCID - Coronary artery abnormalities - Storage disease
- Mitochondrial disease
Family history: Family history:
- SIDs - Multisystem diseases
Spontaneous abortion - SIDS
Familial cardiomyopathy - Spontaneous abortion
Sudden cardiac death - Cardiomyopathies
Personal history: - Sudden cardiac death
Age of onset Personal history:
Disease progression = Ageof onset
Functional status - Disease progression
Physical exam: - Development, growth, vision, hearing, seizures
Murmursigallop/rub Physical exam:
Arrhythmia = Murmurs/gallop/rub
-  Signs of heart failure = Armhythmia
Clinical work-up: = Signs of heart failure
- on TTE, exclud disease = Other organ involvement
Ventricular function on TTE Clinical work-up:
Fibrosis on CMR - Morphology on TTE
- Amhythmias on ECG / Holter | CPET = Ventricular function on TTE
Laboratory testing: - Fibrosis on CMR
Routine labs = Amhythmias and cardiac conduction system disease on ECG / Holter
NT-ProBNP - Other organs
Genetics: Laboratory testing:
Whale exome sequencing (WES) - Routine labs and blood gas analysis with serum lactate and pyruvate
Biopsy: - Metabolism labs: serum and urine organic acids, amino acids,
Fibroblasts or tissue for validation it i 3
Genetics:
For typical syndromes (ex. MELAS, Barth): miDNA or candidate
ise whole exome ing (WES)

Biopsy:
- _ Fibroblasts or tissue for validation

Fig. 3.2 Clinical work-up of patient with suspected mitochondrial cardiomyopathy

signs of heart failure, such as dyspnea, sweating, failure to thrive, bilateral lung
crackles, pitting edema, hepatomegaly, and signs of hypoperfusion. Severe cardiac
manifestations including heart failure, ventricular tachyarrhythmias, and sudden
cardiac death can occur during a metabolic crisis often precipitated by physiologic
stressors such as febrile illness or surgery. The cardiac investigation should include
chest X-ray, transthoracic echocardiography (TTE), electrocardiography (ECG),
Holter ECG, cardiac magnetic resonance (CMR), and, in older children, cardiopul-
monary exercise testing (CPET) (Fig. 3.2). TTE is performed to assess ventricular
chamber sizes, myocardial thickness, and systolic and diastolic function [181]. If
hypertrophy is present, it is mostly concentric [182] (Fig. 3.3), but asymmetric septal
hypertrophy with or without left ventricular outflow obstruction has been described.
ECG and Holter recordings are performed to screen for the presence of arrhythmias
and cardiac conduction system disorders, such as sinus node dysfunction, atrioven-
tricular block, WPW syndrome, or intraventricular conduction delay
[181] (Fig. 3.3e-f). CPET is performed to assess exercise capacity as reflected by
the maximum rate of oxygen consumption (peak VO2) [181] and to evaluate the risk
for exercise-triggered arrhythmias or conduction system disease. CMR should be
performed to fully evaluate cardiac morphology and ventricular function, to screen
for storage diseases, and to assess the presence of interstitial or focal fibrosis. The
indication for cardiac catheterization is on an individual basis and should be
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performed if ventricular function is very poor in order to assess hemodynamics for
possible heart transplantation or if the underlying diagnosis is not clear, so that
endomyocardial biopsy results are made available. The conventional clinical
approach of patients with mitochondrial cardiomyopathy includes detailed family
and personal history and a clinical work-up to evaluate the cardiac defect, followed
by histologic, enzymologic, molecular, and metabolic findings [153] (Fig. 3.2). If the
cardiac phenotype is suspected to be based on a mitochondrial disorder, laboratory
tests should include basic measurements, as well as detailed metabolic tests includ-
ing ammonia, serum pyruvate, serum lactate, creatine kinase, quantitative amino
acids, plasma acyl carnitine profile, and quantitative urine organic acids [153]. Care
should be taken for proper processing of blood samples, as many metabolic tests
require specific handling for accurate results. However, in clinical practice can
frequently occur a mitochondrial cardiomyopathy without alteration of such classical
metabolic findings.

3.5 Diagnosis of Potential Mitochondrial Cardiac Disease

The clinical spectrum of mitochondrial disorders often overlaps with common
cardiological and extra-cardiac diseases. The diagnostic approach of these disorders
is complex, time-consuming, and expensive. As mentioned above, although a
positive biochemical result can substantiate a clinical diagnosis, the results are
often inconclusive [11]. In this scenario, today’s use of genetic testing represents a
fundamental step in the diagnosis of mitochondrial disorders [12, 13] (Fig. 3.2).
Whole-exome sequencing enables rapid, cost-effective, genome-wide screening and
dramatically increases the diagnostic yield to greater than 60%, revealing a remark-
able heterogeneity of underlying gene defects [11, 192]. With a genome-wide
approach, missing genotype-phenotype correlations are revealed, and subsequently
the list of new disease genes is ever growing. Indeed, in clinical practice, many
mitochondrial cardiomyopathies would have been clinically misdiagnosed without
the identification of the causal gene defects by NGS techniques. On the other hand,
early-onset forms of hypertrophic cardiomyopathy related to specific disorders, such
as Noonan syndrome, could also be erroneously suspected to be due to mitochon-
drial defects without a genetic confirmation. In case of identification of variants of
uncertain significance (VUS), a further valuable diagnostic step to validate the
genetic finding is represented by a targeted biochemical analysis in fibroblasts or
tissue biopsies (endomyocardial biopsy) (Fig. 3.2). Fibroblasts should be stored in
parallel to be available for functional confirmation without further delaying diagno-
sis [193].
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3.6 Management of Patients with Mitochondrial
Cardiomyopathy

During the past 6 years, more than 100 novel mitochondrial disorders have been
identified, affecting diverse mitochondrial pathways. The application of NGS
technologies facilitates our understanding of the pathophysiology of mitochondrial
disorders in general and potentially treatable disease subgroups; but the clinical
management of affected individuals is challenging, and diagnostic strategies are in
flux [102]. Unfortunately, in current clinical practice, therapeutic options for the
majority of classical mitochondrial syndromes are limited to supportive care. Nev-
ertheless, there are several mitochondrial defects, especially related to cofactor
metabolism, that can be corrected by specific treatment strategies [102]. If the patient
is severely and progressively ill (e.g., neonatal lactic acidosis), a more rapid diag-
nostic procedure is important, and a muscle biopsy with functional investigations is
necessitated in parallel with starting genetic testing. This holds true especially if the
suspected diagnosis influences the disease management (e.g., PDHc deficiency:
initiation of ketogenic diet) or if it can guide the end of life decisions (e.g., Leigh
syndrome). In this regard, empirical therapy with thiamine (20 mg/kg/day), biotin
(5 mg/kg/day), riboflavin (20 mg/kg/day), and coenzyme Q10 (15 mg/kg/day) might
be considered in patients with rapidly progressive or potential life-threatening course
of disease. The treatment effect depends on the underlying mitochondrial disorders,
for example, L-carnitine supplementation is highly effective in patients who have
dilated cardiomyopathy secondary to primary systemic carnitine deficiency and in
Barth syndrome. On the other hand, it has low effect on other types of mitochondrial
cardiomyopathy. L-Arginine is effective in MELAS syndrome. Riboflavin is highly
effective in complex I deficiencies and in particular in ACAD9 patients [34]. A
low-fat, high-protein diet is important for long-chain fatty acid metabolism disorders
[102]. Patients with mitochondrial disorders should avoid certain medications that
interfere with mitochondrial function and can precipitate a crisis state, such as
metformin, propofol, statins, valproic acid, macrolide antibiotics, or tetracyclines
[153]. Regular clinical checkups of all organs affected are necessitated depending on
the severity of multisystem involvement. Cardiac involvement is treated by conven-
tional heart failure therapy which includes diuretics, angiotensin-converting enzyme
inhibitors, beta-blockers, and calcium antagonists. Oral anticoagulation may be
indicated with poor systolic ventricular function according to the clinical guidelines.
Implantation of a pacemaker might be necessary in severe cardiac conduction system
disease. An implantable cardioverter-defibrillator device might be indicated if there
is a significant risk for sudden arrhythmic death or for secondary prevention after
survived sudden death. Prophylactic cardiac pacing device implantation is thus
generally proposed to prevent cardiac death. In the absence of consistent data
regarding the incidence of ventricular arrhythmia in patients with mitochondrial
cardiomyopathy, an implantable cardiac defibrillator should be proposed according
to current clinical guidelines. A metabolic crisis with acute or subacute multi-organ
failure secondary to physiologic stressors, such as infection, toxic triggers,
medications, psychological stress, heat, or dehydration, is an emergency and needs
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to be managed appropriately. Cardiac complications during a crisis include cardio-
genic shock, arrhythmias, and sudden cardiac death. Management should be focused
to the underlying cause of the crisis and on treatment that can improve mitochondrial
function. Fever needs to be treated and empiric antibiotics administered if an
infection is suspected. Mechanical ventilation is required in case of respiratory
failure and care needs to be taken with oxygenation, as it worsens the crisis by
increasing free radical production. Correction of acid-base and -electrolyte
disturbances should be gradual. Continuous infusion of 10% arginine and
dextrose-containing intravenous fluids should be best administered via central
venous access given the risk for phlebitis and necrosis. Hemodialysis might be
necessary for treatment-resistant hyperammonemia, hyperkalemia, or lactic acidosis
[183, 184].

3.7 Conclusion and Perspectives

Cardiomyopathy and conduction defects are the most frequent manifestations of
mitochondrial cardiac disease. Mitochondrial cardiomyopathy is associated with an
ever-growing list of genes, currently around 100. This list outmatches the number of
non-mitochondrial cardiomyopathy genes. Therefore, screening for cardiomyopathy
should be a routine part of the management of individuals with known or suspected
mitochondrial disorders. The diagnosis of mitochondrial disorders, however,
remains challenging in many cases due to the myriad of different symptoms in
overlap with other clinical conditions. NGS techniques of leukocyte-derived DNA
are the state-of-the-art tool to diagnose mitochondrial disorders, enabling rapid, cost-
effective, genome-wide screening with a diagnostic yield of greater than 60% [12,
13, 191]. During the past 6 years, more than 100 novel mitochondrial disorders have
been identified and have facilitated our understanding of the pathophysiology of
mitochondrial disorders. For the remaining undiagnosed cases, the role of comple-
mentary NGS approaches, such as genome sequencing and RNA sequencing, is
gaining importance [185, 193]. These genomic approaches are still used on a
research-oriented base, but we predict that in the future, they will become a valuable
tool also in a diagnostic setting. Despite the scientific progress discussed thus far, it
is important to underline the fact that most of these disorders do not have a treatment.
This is with the exception of the group of cofactor metabolism deficiencies for which
there are promising treatment options, highlighting the need for molecular
diagnostics. There are still more than 70 diseases with less than 10 patients
described. With the increasing number of patients, we will better understand the
genotype-phenotype correlations which will help in counseling families. The better
we understand the pathomechanism, the greater the chance we will identify new
treatment options.
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4.1 Introduction

Cardiovascular disease (CVD) is a class of diseases that encompasses heart diseases,
brain vascular diseases and blood vessel diseases. CVDs and their risk factors are a
leading cause of death and morbidity in the world [1-3]. According to World Health
Organization estimates, CVDs are responsible for 151,377 million disability-
adjusted life years (DALY). DALY is the number of years lost because of ill health,
disability or premature death. Coronary heart disease (CHD) accounts for 41.35%
(or 62,587 million) of these years, while cerebrovascular diseases account for
another 30.78% (or 46,591 million) of these years [1].

CVD is subdivided into two major groups: (1) CVD due to atherosclerosis and
(2) other CVDs. In atherosclerosis, fatty material and cholesterol are deposited inside
blood vessels, making it harder for blood to efficiently supply oxygen and nutrients
to cells. Such deposits are also known as atherosclerotic plaques. As a result, blood
vessels become less pliable. The build-up of atherosclerotic plaques is referred to as
coronary artery disease (CAD) (also known as CHD). Over time, the atherosclerotic
plaques can rupture, triggering the formation of a blood clot that deprives blood
flow. In acute cases, obstruction of the coronary artery to the heart will lead to a heart
attack (i.e. myocardial infarction, MI) [1, 4, 5].

Epidemiologic studies have revealed a variety of risk factors for CAD that can be
broadly subdivided into behavioural (e.g. sedentary lifestyle, smoking, unhealthy
diet), metabolic (e.g. hypertension, diabetes, cholesterol) and other factors (e.g. age,
gender, genetic disposition) [1, 5, 6]. The interplay between lifestyle and genetic risk
factors is characteristic of complex or multifactorial diseases, such as CAD
[5, 7]. This chapter focuses on disentangling the genetics of CAD.

4.2  The Role of Genetic Studies in Deciphering CAD
Mechanisms

As a complex trait, the mode of CAD inheritance follows Fisher’s 1918 ‘infinitesi-
mal model’ [8]. In this model, discrete and continuous traits are consistent if
quantitative trait variation is caused by a combination of many segregating genes,
each with a small (infinitesimal) effect on the trait. This mechanism leads to a normal
distribution of genetic values and, together with normally distributed environmental
effects, results in a normal distribution of phenotypes in the population. This theory
implies that the genetic and non-genetic sources of variation can be estimated by
quantifying the correlation between relatives, without any knowledge of specific
genes that potentially affect the trait [9]. In 1938, the first familial CAD risk was
described [10], followed by clinical observations in the 1950s and subsequent
familial and twin studies that supported this theory [11]. For example, the
Framingham Heart Study found that there was a 29% increased risk of CAD for
an individual with a family history of CAD [12, 13]. In addition, the first large-scale
prospective Swedish twin study (N = 21,004 twins) [14] identified that the risk of
death from CHD was greater in monozygotic (MZ) twins than in dizygotic
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(DZ) twins in both men and women independent of CHD risk factors. A follow-up
study showed that CHD heritability was 0.57 (95% CI, 0.45-0.69) and 0.38
(0.26-0.50) for male and female twins, respectively, with heritable effects most
evident in younger individuals [15].

Such heritability estimates originate from family-based study designs. Briefly,
family studies can be subdivided into three main groups: (1) single affected family
member, (2) relative pairs and (3) extended families. Examples of study types with a
single affected family member are case-control studies, trios (case and both parents)
and case-only designs. However, the disadvantage of collecting single affected
family members is that for complex diseases, multiple affected individuals are
required to determine identity-by-descent (IBD) sharing. Therefore, relative pairs
and/or extended family study designs are used. Examples of relative (affected and
non-affected) pairs would be sib-pairs, twins or avuncular (e.g. aunt-nephew)
pedigrees. Finally, extended family groups are large families with multiple affected
individuals across many generations [16].

Heritability estimates are generally more precise using close relatives, whereas
distant relatives are less precise and less biased [9]. Therefore, the use of twin
(pedigree design) and full sibling (within-family design) data has been an important
starting point for understanding CAD/MI genetics. In the proceeding paragraphs, we
will briefly highlight a couple of studies that have paved the way for our understand-
ing of CAD/MI genetics.

4.2.1 Twin Studies

Twin studies are a special case of pedigree studies consisting of six different types
depending on the researcher’s aim [17]. The first evidence of a genetic basis of
CAD/MI was provided from a ‘classical’ twin design [18]. This study design used
the phenotypic resemblance of MZ (genetically identical as a result of the division of
a single fertilised egg) and DZ (non-identical twins that are formed from the separate
fertilisation of two eggs) twins to estimate the contribution of genetic and environ-
mental variation to phenotypic variation. As MZ and DZ twin pairs are exposed to
similar pre- and postnatal environmental factors, the genetic origin of a trait can be
determined [18].

The advantage of twin studies for complex or multifactorial traits such as CAD is
the distinct characteristics of a twin pair, i.e. twins are the same age and exhibit a
higher degree of shared family environment (e.g. lifestyle) compared to sib-pair,
thereby ‘controlling’ the influence of environmental risk factors into a study model
and attributing phenotypic differences to twin genetics. Furthermore, errors caused
by non-paternity (i.e. different fathers) are reduced or nullified in comparison to
sib-pair studies [18]. As previously mentioned, the twin pairs used to investigate the
genetic basis of CAD mortality [14, 15] were the first to highlight the utility of twin
studies in understanding CAD/MI genetics. In 2001, Wienk et al. used a Danish twin
study to report that heritability estimates of frailty in CHD were within the range of
0.53-0.58 for males and females, respectively [19]. Subsequently, in 2005, Wienk
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et al. reported heritability estimates of 0.45 for both sexes in an additive genetics-
unique environment (also known as AE, where A represents the additive genetic
factors and E the unique environmental factors) model without covariates [20]. The
lower heritability estimates and discrepancies between these two Wienk et al. studies
could be due to different sample selection methods and overall age differences
between the cohorts, as the Danish twin cohort is much older than the Swedish
twin cohort.

Over the last few decades, twin studies have emphasised the genetic component
of numerous CAD/MI risk factors such as smoking [21], plasma lipids, lipoproteins,
and apolipoproteins [22]. Although genetic methods and molecular technologies
continue to evolve more ‘sophisticated’ study designs (e.g. such as improved
genotype chips), twin studies remain an important resource considering the unique
features of this type of study design. For example, the advantage of studying the
effects of epigenetic factors through DNA methylation or histone modification
between twins with different lifestyles may help elucidate the environmental effect
of genome expression or within-pair epigenetic drift over time [23, 24]. These
epigenetic factors may help to explain why most identical twins do not contract
CHD and may die of different causes and hint towards a structural gene variant
mechanism. For example, Gordon and colleagues [25] investigated a cohort of
250 mothers and their newborn twins focusing on two cell types: human umbilical
vein endothelial cells and cord blood mononuclear cells. They found that
birthweight—a known predisposing factor for cardiovascular disease—was
associated with gene expression involved in cardiovascular function. Subsequent
studies using twin data will enhance our understanding of CAD pathomechanisms.

4.2.2 Full Sibling Studies

Similar to twin studies, full sibling study designs have been seminal in the ongoing
search for CAD-/MI-causing genes. Murabito and colleagues [26], using population-
based offspring cohort data from the Framingham Heart Study (N = 2475), found
that middle-aged adult siblings display an increased risk for CVD events with an
odds ratio (OR) 1.55 (95% CI: 1.19-2.03). Moreover, the OR for sibling CVD risk
(OR = 1.99, 95% CI: 1.32-3.00) exceeded that for the parental CVD (OR = 1.45,
95% CI. 1.02-2.05). This implies that sibling CVD prevalence conferred an
increased risk of future CVD events beyond the established risk factors and parental
CVD. Interestingly, a 2003 review by the same authors reported that on average,
there is a two- to threefold increase in CAD risk in first-degree relatives of cases, and
having two or more first-degree relatives with CAD is associated with a three- to
sixfold increased risk in developing CAD [27].
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4.2.3 Linkage-Based Family Studies

Another type of genetic study design that is used to map the chromosomal locations
of genes is linkage analyses. Briefly, a family (or families) is genotyped with
polymorphic markers that span their genome, and the genotyping data is then
analysed. This technique results in a logarithm of odds (LOD) score for each marker.
A significant LOD score (LOD > 3.0) indicates that in the family there is
co-segregation with the disease and is identified as linkage.

There are two different types of linkage analyses that are used to map the
chromosomal locations of genes for CAD and MI: (1) a model-based linkage
analysis using large families in which the inheritance pattern in the families is clearly
defined and (2) a model-free analysis using hundreds of small nuclear families with
at least two affected siblings in each family [28]. Each of these types of linkage
analyses will be discussed in detail.

(1) Model-based linkage analysis

Wang and colleagues [29] carried out a genome-wide linkage scan of a large
Caucasian family (13 patients with CAD, of which nine were also affected with
MI) that showed an autosomal dominant pattern of CAD/MI. The authors
identified that there is a significant linkage score (LOD = 4.19) on chromosome
15926.3 that contained approximately 93 genes. Of the known genes, myocyte
enhancer factor 2 (MEF2A), which encodes a transcription factor, was a strong
candidate for CAD/MI susceptibility due to its role in vasculogenesis and its
potential role in controlling vascular morphogenesis [30, 31]. Subsequent
in vitro studies showed that mice deficient in MEF2A because of a seven
amino acid deletion had an effect on gene function [29]. A follow-up mutational
study found 3 new mutations in exon 7 of MEF2A in 4 of the 207 independent
CAD/MI patients [32]. However, follow-up efforts to re-sequence the coding
sequence and splice sites of MEF2A in 300 patients with premature CAD failed
to detect a MI-causing mutation or mutation co-segregation [30]. These negative
findings were echoed in a later study of Iranian families [33] and in a separate
Caucasian family with a history of CAD [34].

(2) Model-free linkage analysis

Using this linkage analysis approach, Helgadottir et al. [35] observed a
suggestive linkage on chromosome 13q12-13 that they successfully mapped to
arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene encoding a
5-lipoxygenase-activating protein (FLAP). This gene was associated with a
twofold increase in MI risk in 296 multiplex Icelandic families. Furthermore,
they observed that the gain-of-function mutation was largely attributed to male
carriers of the at-risk haplotype who also had the strongest associations with the
ALOXSAP haplotype. However, they did not find an association between an
at-risk haplotype called HapA and MI in a British cohort.

Some success with using linkage analysis to map chromosomal positions
associated with CAD and MI has been reported in other studies. Three chromo-
somal positions have been mapped for CAD, namely, 2q21.1-22 [36], 3q13 [37]
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and Xq23-26 [36]. Two chromosomal positions have been mapped for MI,
namely, 1p34-36 [38] and chromosome 14 (map position 123-130)
[39]. These types of studies have been both a success and failure. In some
circumstances, contradictory results may be due to the shortfall of analytical
tools used. Referring back to the previously mentioned role of MEF2A variant in
CAD susceptibility, two studies [29, 32] identified a 21 bp deletion of MEF2A.
However, subsequent studies did not reach the same conclusion [33, 40]. In
2016, Xu et al. [41] conducted both exome and Sanger sequencing on a four-
generation Chinese Han family with familial CAD and found a novel deletion in
exon 11 of MEF2A that co-segregated with CAD/MI cases.

It is important to note that the downside of linkage analyses for complex traits
such as CAD is that the effect sizes (or penetrance) of the individual causal
variants may be too small to allow detection via co-segregation [42]. Therefore,
the power to detect genes may be minimal [43] and mapping resolution may be
low [44]. In this case, an alternative solution for gene identification may be to
use unrelated individuals in hypothesis and hypothesis-free-based association
studies.

4.2.4 Candidate Gene Studies

One strategy to identify risk variants associated with a particular disease is candidate
gene studies. Briefly, these studies test whether selected genes are related to a disease
based on prior knowledge about the gene function or pathophysiology of the disease.
Succinctly, the following steps are used: (1) select candidate genes based on prior
knowledge; (2) select the gene variant (also known as single nucleotide
polymorphisms, SNPs) that is tagged by affecting gene regulation and/or its protein
product; and then (3) confirm SNP association with a disease by detecting its
occurrence in random cases versus controls [45].

Since the early 1990s, almost 5000 studies have analysed candidate genes in
relation to CAD and MI with only 58% of variants showing consistent results in
replication studies. Possible explanations for this disparity could be small study
populations, false-positive associations and ethnic variations among studies
[46]. Other reasons could be due to the inherent disadvantage of using candidate
gene studies.

4.2.5 Genome-Wide Association Studies

There are three main disadvantages of the candidate gene approach: (1) the reliance
on prior knowledge of the function of the studied gene(s), (2) the inherent bias
towards choosing a candidate gene that is geared towards the researcher’s specific
study or interest and (3) causative variants outside the region of study that may be
missed [47]. Considering the limitations of candidate gene studies, in addition to the
improvement of genotyping chip designs, their continuous lowering of costs and the
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development of improved statistical methods (e.g. imputation and haplotype tag-
ging), there has been an increased popularity of genome-wide association studies
(GWAS).

One such imperative technological breakthrough that aided in GWAS rapid
success rate is the 2007 completion and public availability of the International
HapMap (short for haplotype map) Project [48], which allowed the mapping of
haplotype landscapes to SNPs in three continental populations. Several years later, in
2015, the 1000 Genome Project [49] took advantage of the development of sequenc-
ing technology and released freely available human genetic variation data based on
low-coverage whole-genome sequencing that reached its pinnacle with a reference
panel called 1000GP3. Recently, the Haplotype Reference Consortium (HRC) [50]
combined all whole-genome sequencing data sets into a single haplotype reference
panel to facilitate genotype imputation. Promisingly, the HRC reference panel has
been used in the imputation stage of an endophenotype of glaucoma meta-analysis
GWAS. This was shown to improve the concordance between assayed and imputed
genotypes, markedly in cases of low-frequency variants. In turn, this technique
significantly improved p-values, particularly for suggestive variants [51], thereby
outperforming 1000GP-based imputation concordance and final p-value results.

Unlike linkage studies, GWAS use unrelated subjects to detect associations
between genetic variants and disease/traits, making it easier to obtain large sample
sizes. The foundation of GWAS is the ‘common disease, common variant’ (CDCV)
hypothesis that was first put forward by Lander [52]. This hypothesis implies that
common genetic variants in the population with low penetrance (by common we
mean allelic variants present in more than 1-5% of the population [53]) contribute to
the genetic susceptibility to common complex traits and disease [52].

Exploiting GWAS analyses has led to significant progress in understanding the
genetics of CAD/MI. For CAD-GWAS studies, 2007 was an important year when
three independent GWAS studies discovered an association of variants on chromo-
some 9p21.3 and CAD in European ancestry population [54-56] and multiple races
[57-61], apart from African Americans [58]. This result may be consistent with the
‘Out Of Africa’ hypothesis which states that all present population groups of Homo
sapiens have evolved from a primitive African population [62] (Fig. 4.1).

Over the past decade, GWAS for CAD/MI has seen much success, which was
catapulted in 2007 with the discovery of 9p21, by independent research groups. By
2009, twelve other genetic risk variants were discovered through GWAS to be
associated with CAD [63]. Subsequently in 2013, with a larger sample size, the
CARDIoGRAMplusC4D Consortium reported 46 loci associated with CAD, both
confirming previously published and finding new variants [64]. This was followed
by the identification of ten additional new loci in 2015 [65]. Currently, in 2017 and
2018, CARDIoGRAMplusC4D data together with the UK Biobank [66] data have
been proven to be a wealthy resource of genetic data reflected by the increase in new
CAD-associated loci [67-69].

In spite of these new CAD loci findings, less focus has been given to the X- and
Y-chromosomes with fewer in studies on the X-chromosome [70]. It is common
knowledge that there exists sexual dimorphism regarding the incidence, prevalence,
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Fig. 4.1 Milestones in cardiovascular genetics from 2007 and beyond

morbidity and mortality of CVD and/or MI with men having an increased risk
compared to age-matched women [71-75]. This is due to two barriers: (a) markers
on genotyping chips and (b) statistical methods [70]. These are acutely present when
analysing the X-chromosome, due to its unique properties such as X-inactivation,
and the presence of two X-chromosome copies in females compared to males
[70, 75, 76]. There are publications [76, 77] that do offer possible solutions and
recommendations for incorporating X-chromosome. However, the results have been
mixed with a 2016 meta-analysis study [78] reporting no association of CAD and
X-chromosome variants, compared to a recent 2017 American Heart Association/
American Stroke Association (AHA/ASA) conference abstract [79] which found
three novel CAD susceptibility loci on the X-chromosome. Much work remains for
the inclusion of the sex chromosomes. Nevertheless, we can say that for the autoso-
mal chromosomes, there are currently a total number of 163 loci associated
with CAD.

Using the CAD/MI GW AS results thus far, we can tentatively say (a) the majority
of common variants found show modest CAD risk increase; (b) most of the variants
found are situated outside protein-coding regions; and (c) we have improved our
understanding of CAD risk with the loci we have found so far [5] (Fig. 4.2).

4.3 9p21 Locus and Its Role in CAD/MI

Carried by 75% of the global population (excluding black Africans), 9p21 risk
alleles are associated with coronary atherosclerosis risk [81]. Moreover, a prior
study [82] showed that 9p21 is significantly associated with the risk of first CHD
events (1.19 hazard ratio of first event; 95% CI: 1.17—-1.22) compared to subsequent
CHD events (1.01 hazard ratio of first event; 95% CI. 0.97-1.06). These
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Fig. 4.2 Circos plot [80] with 163 risk loci identified by January 2018. Figure provided by Syed
M. Ijlal Haider, Institute for Cardiogenetics

observations suggest that 9p21.3 stimulates coronary atherosclerosis (i.e. CAD)
rather than MI [81, 83]. The 9p21.3 locus has been characterised as a ‘gene desert’
containing dispersed haplotype blocks [84]. It is thought that the CVD-associated
region is adjacent to the last exons of a long non-coding RNA (IncRNA), specifically
the antisense non-coding RNA in the INK4 locus (ANRIL; also known as
CDKN2BAS) [85]. The closest protein-coding (candidate) genes include the
cyclin-dependent kinase (CDK) inhibitors CDKN2A and CDKN2B [83]. Further-
more, Holdt et al. [86] reported that CDKN2A/B gene protein products (p16™<4,
p14°RF and p15™K4?) that are expressed in smooth muscle cell layers in both normal
arteries and atherosclerotic plaques participate in atherosclerotic lesions. As covered
in a review by Hannou and colleagues [83], several studies have failed to decipher
the exact mechanism through which CDKN2A/B gene products work or which
pathways are involved. Using unbiased genomic techniques based on chromosome
conformation capture (3C) [87], Harismendy, O and colleagues [88] detected long-



150 J. Erdmann and M. L. Mufoz Venegas

Cell-cycle &
gene
regulation

Lipid Blood
metabolism pressure

Angio- NO-signalling
genesis
APOE NOS3 ze3Hcl DAB2IP GUCY1AL
LDLR SH283 CDKN2A SMAD3 EDNRA
PCSko cyp17A1 RHOA FGD6 NOS3
APOB GUY1AL MAD2L1 ANKSIA EDN-1
APOAS Furin MAD1L1 BCAS3 PDE5A
APOC3 AGT cFDP1 VEGFA PDE3A
LPL ARHGAPA42 BCAS3 TGFB1 TBXAS1
ANGPTL4 MRAS ccm2 ARHGAP42
ABCG5/8 1 2FPM2 MRVIL
TRIB1 Foxct TRIM22
SORT1 MAP3K1
LPA KLFa

ATP1B1 TEX41 CDKNIA CORO6 UNCSC
NME7 NBEALL PRIM2 Unknown ANKRD13B DDX5 ALS2CL
DDX59 IRS1 PLEKHG1 NDUFA12 MC4R RTP3

CAMSAP2 PLCG1 PEMT relevance for CAD  wmap3k7cL ARHGEF26 GIP

LMOD1 ZNF827 GOSR2 RAC1 KCNJ13 TEX2

Fig. 4.3 Selection of CAD risk genes and their proven and/or predicted involvement in pathways
related to CAD and MI

distance interactions between the enhancer interval containing the CAD locus and
CDKN2A/B. Considering the effects of interactions across large distances, this
observation tentatively (and excitingly) points to the possibility that 9p21.3
disease-associated SNPs interact and modify other distant genes. Very recently,
Holdt and colleagues identified circANRIL as a prototype of a circRNA regulating
ribosome biogenesis and conferring atheroprotection, thereby showing that
circularisation of long non-coding RNAs may alter RNA function and in general
might protect from human disease [89].

Broadly summarising, there are seven categories with their respective identified
risk loci that underlie the pathways to CAD. Of the total number of loci (Fig. 4.3),
70% of loci are known to be involved in lipid metabolism (12%), blood pressure
(7%), cell cycle and gene regulation (12%), vascular remodelling (12%), angiogen-
esis (9%), inflammation (10%) and nitric oxide signalling (9%). Unsurprisingly, due
to the laborious and extensive experimental follow-up required, the vast majority
(30%) of identified loci pathways have yet to be explained.

4.4 Does Sample Size Matter to Identify CAD/MI Risk Loci?

To detect significant SNP contributions in GWAS, large numbers of cohort
participants are required, ranging from the tens to hundreds of thousands of subjects.
Large GWAS consortia are formed to reach such numbers, usually through meta-
analysis of GWAS. For example, a large Coronary ARtery DIsease Genome-wide
Replication and Meta-analysis (CARDIoGRAM) Consortium [90] (Nses = 22,233
and N onrors = 64,762) was constituted and identified 13 new CAD loci by a meta-
analysis of GWAS (sometimes abbreviated to meta-GWAS). In parallel, the
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Coronary Artery Disease (C4D) Genetics Consortium [91] (Notal_cases = 15,420 and
Niotal_contrors = 15,062) found five newly associated CAD loci. In an effort to
increase sample size, these two consortiums merged and are now known as the
CARDIoGRAMplusC4D Consortium [64]. The merging, CARDIoGRAMplusC4D
Consortium achieved a sample size of 63,746 CAD cases and 130,681 controls and
identified an additional 15 loci to the already known CAD loci. Proceeding, the first
interim 150,000 genotyped individuals from the UK Biobank have recently been
made available [92] with the intention to release the remaining 350,000 participants
in the near future. This would mean a publically available health resource of an
unprecedented 500,000 individuals. Interestingly, this year, 3 studies [67, 68, 93]
each found 13, 14 and 15 new loci associated with CAD, of which 7 loci overlapped
between the 3 studies. Subtle differences in study design (e.g. phenome-wide
association scan [67] vs. false discovery rate approach [93]) and phenotype
definitions (e.g. CAD cases defined as multiple International Classification of
Disease (ICD) 10 code [68] vs. subdivision of ICD10-coded CAD cases with/
without angina [93]) could be a minor contributing reason as to why the loci overlap
between studies is low; however, further studies are merited. These three studies
exemplify the gain of a large sample size for GWASs within the last decade: from
~60 common genetic variants to >95 total number of CAD-associated loci [94].

A larger sample size could help low-frequency variant studies to reach the
required level of significance. A prior large-scale exome-wide study of more than
120,000 participants only had 80% power to detect an OR of +2.0 for
CAD-associated variants with a minor allele frequency (MAF) of 0.1% [95].

Even with relatively common genetic variants (MAF > 0.01%), large cohorts like
the CARDIoGRAMplusC4D [64] and the recent UK Biobank could facilitate the
identification of single variant statistical analyses for common variants across the
exome and thereby reach exome-wide significance, such as in the case of atheroscle-
rosis lesions in young participants [96].

4.5 Rare/Low-Frequency Variants of CAD: ‘Can
“In-Betweeners” Explain the Missing Heritability?’

In classical genetics, narrow-sense heritability represents the joint distribution of
allele frequency and effect sizes [97], meaning that dominant or epistatic effects are
not considered.

In GWAS:s (and the CDCV hypothesis), the quantification of the proportion of
additive genetic variance because of LD between the genotyped and imputed SNPs
with the unknown causal variants (i.e. ‘SNP heritability’) implies that genetic
variations can be tagged by common SNPs via LD [97]. It has been found that
between one-third and two-thirds of the additive genetic variation in a population is
tagged and is often referred to as the ‘missing heritability’ [42, 92, 97, 98]. This
‘missingness’ is clearly observed when comparing common variants (by common
we mean MAF, >0.05%) of small effects (i.e. GWAS) and very rare variants (by rare
we mean MAF < 0.05%) with large effects (i.e. whole exome studies), even after
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Fig. 4.4 Allelic spectrum of CAD ranging from private variants with monogenic effect on disease
to common variants conferring only low disease risk (adapted from Manolio et al. 2009)

controlling for other effects such as environment [92]. One early example was the
haplotype association of a rare CAD variant and SLC2A-LPAL2-LPA gene cluster
[99]. More recently, the Myocardial Infarction Genetics and CARDIoOGRAM Exome
Consortia Investigators [95] investigated the effects of loss-of-function mutations in
72,868 CAD patients and 120,770 controls. They identified low-frequency loss-of-
function missense variants in ANGPTL4 gene (that was also associated with a
protection against CAD) and an association with increased CAD risk in
low-frequency coding variants in SVEPI gene.

Challenges remain in the search for rare CAD variants. For example, there are
difficulties in detecting and replicating rare variants that are restricted to specific
population groups. To overcome this issue, it has been suggested that combining
summary GWAS association statistics by using ‘local SNP heritability’ could
provide replication at the locus level rather than the SNP variant level [92]. Another
issue for successful GWAS is the requirement for very large sample sizes. However,
using large cohorts such as the UK Biobank would overcome this particular issue
(Fig. 4.4).
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4.6 A Note: Missing Does Not Imply Absence

Considering that the current CAD-associated SNPs only explain 10.6% of CAD
variability and 40% heritability, it is natural to ask whether the ‘missing’ heritability
is actually absent. However, this is not the case with most complex traits that present
missing heritability. As we mentioned above, other explanations (e.g. rare SNPs that
present large effects) or new analytical approaches (e.g. Generalized Compound
Double Heterozygosity [GCDH] that can detect genetic associations by a relaxed
form of CH) help to explain this gap. Another proposed explanation for the missing
variability and heritability would be that some common risk alleles might have
(very) small effects that are too small to pass the traditional GWAS significance
level. This leads to a question of how many of these common risk alleles with small
effects would a study need to explain 100% of CAD heritability? During the peak of
GWAS studies, Wray and colleagues [100] addressed this question and reported that
causal risk variants can be estimated as a function of the disease heritability and
prevalence in the scenario that all risk alleles have the same relative risk and
frequency [100, 101]. Another enticing idea put forward to help explain CAD
‘missing heritability’ is that heritable risk for CAD and common complex diseases
could be partly attributed to interactions among diseases and traits [102, 103]. Making
the case for the pleiotropic effect among complex disease, a recent publication by
Webb et al. [103] identified six new CAD loci. In addition, they showed that 47% of
the loci were association with another disease/trait with several loci showing multi-
ple associations.

4.7 Adding Biological Meaning to GWAS Findings

An inherent limitation of association studies, such as GWASs, is that they do not
provide biological meaning of the casual variants that were tagged via genome-wide
significant SNPs (tagSNPs). To translate GWAS results to biological function, post-
GWAS analysis is necessary. Usually, post-GWAS starts with inexpensive in silico
(bioinformatics) analysis of GWAS-found tagSNPs that is then followed up with
more time and costly in vitro and/or in vivo studies. There is an increasing number of
in silico tools and statistical techniques used to give meaning and prioritisation to the
resulting associated loci that are subsequently investigated with experiments. In the
following paragraphs, we will briefly cover some of the most popular or recent
methods.

4.8 Mendelian Randomisation

Although randomised controlled trial (RCT) studies are the optimum way to estab-
lish the causal relationship between risk factors, exposure and disease of interest
(in our case, CAD), sometimes this is not possible. An alternative is to use Mende-
lian randomisation (MR) analysis of GWAS data. The rationale is to use genetic
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variants as a proxy for a potentially modifiable exposure to identify causal effects for
risk of CAD [104], thus making MR analysis resistant to confounding factors, an
advantage over randomised control trials [105]. Other useful characteristics of MR
studies are that multiple genetic variants can be used to increase power and investi-
gate pleiotropic influence on the trait of interest, bidirectional MR studies can be
used to determine the direction of causal effects in more complex networks, gene-by-
environment interactions can be studied and epigenetic profiles can be used as an
intermediate phenotype [104] (Fig. 4.5).

One of the main utilities of MR results is their applicability in drug development.
For example, MR studies of loss-of-function mutations in proprotein convertase
subtilisin/kexin type 9 (PCSK9) have led to the development of several PCSK9
monoclonal antibodies. These antibodies are currently under study in four phase
3 trials to test whether such drugs reduce cardiovascular events. Various genetic
studies have reported that gain- and loss-of-function mutations in PCSK9 increase
low-density lipoprotein-cholesterol (LDL-C) concentration and premature athero-
sclerosis and reduce LDL-C with low rates of CHD, respectively. Succinctly, this is
achieved via hepatocyte endocytosis where circulating LDL-C is cleared from the
blood by the binding of LDL-C to low-density lipoprotein receptor (LDL-R) that is
situated on the hepatocyte cell membrane. PCSKO regulates LDL-R metabolism by
binding to it, thus leading it to be destroyed by lysosomes and thereby decreasing its
recirculation [106].
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4.9 Next-Generation Sequencing (NGS) Approaches for CAD
and Mi

We would be remiss if we didn’t concisely highlight next-generation sequencing
(NGS)—with whole-genome sequencing being the most widely used NGS technol-
ogy [107]—and also MR, studies in providing strong CAD pathophysiological
insight [108]. Following the lipoprotein example, Emdin et al. [109] used the NGS
approach (via LPA gene sequencing) to show that one standard deviation
(SD) genetically lowered lipoprotein(a) level is associated with a lower risk of
29% for CHD, of 31% for peripheral vascular disease, of 13% for stroke, of 17%
for heart failure and of 37% for aortic stenosis.

4.10 Expression Quantitative Trait Loci (eQTL): CAD/MI

EQTLs are SNPs, previously found to be associated with the phenotype of interest
(i.e. CAD), which have either a local effect (cis) from where the associated variant
was found or distant effect (¢rans; e.g. more than 5 Mb away) from the associated
variant [110, 111]. This method uses quantitative trait loci (QTLs) by looking at
mRNA levels—the primary genome product—and correlating gene/protein/methyl-
ation level (i.e. intermediate molecular quantitative traits) with the genetic variants
found [110, 112]. RNA samples from patients and healthy subjects are recruited and
converted into microarray data creating a RNA expression data set. Publicly avail-
able multi-tissue databases usually accompany association studies and are used to
add strong evidence that the associated SNP has a functional effect [113], in turn
adding a targeted approach of candidate genes to follow up with experimental work.
A variety of tissue disease-specific databases are available such as ENCODE [114],
GTEXx [115], Epigenome RoadMap [116] and STARNET [117], some of which have
been used to focus on CAD-relevant tissues. For example, a study [118] using
STARNET showed that cis- and trans-genes could act as a mechanism for multiple
risk loci to contribute to cardiometabolic diseases (precursors of CAD) heritability
(Fig. 4.6).

4.11 Network Analysis

There are a few tools [119-122] available that either prioritise variants found during
association analysis or perform tissue enrichment analysis. An interesting study
published last year [123] used various tissue-specific regulatory networks and
protein-protein interaction networks that do not solely rely on a priori knowledge.
They were able to detect well-implicated CAD genes in the prevalence of CAD and
also unravelled novel key regulators (LUM, HGD, F2, ANXA3 and STAT3) for CAD.
Recently, Vilne et al. demonstrated how hypercholesterolaemia can hinder mito-
chondrial activity during atherosclerosis progression and identified oestrogen-related
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receptor-a and its cofactors PGC1-a and PGC1-f as potential therapeutic targets to
counteract these processes using a network approach [124].

4.12 The ‘Omics Era’

One of the fields that has seen an almost exponentially rapid rise in popularity due to
lowered cost and high-throughput analysis has been the ‘-omics’ studies (namely,
genomics, epigenomics, transcriptomics, proteomics, metabolomics and
microbiomics), with a vital participatory role of cloud [125] and/or Web [126]
computing that facilitates the handling of huge ‘-omics’ study data volumes. As
we become more aware that (1) identified CAD loci only explain a small percentage
of heritability; (2) common diseases, such as CAD, tend to occur because of gene
regulation changes; and (3) similar genetic variants contribute to different final
outcomes, it may come as no surprise that systems genetics evolved to integrate
the various ‘-omics’ studies. In our case, this enabled the methodology to help
explain the complexity of the underlying molecular patterns that are associated
with CAD.

4,13 Systems Genetics Approaches in CAD/MI

As defined by Bjorkegren et al. [111], systems genetics uses molecular mechanisms
to define disease-driving molecular processes that underlie GWAS, whole exome
sequencing (WES) or whole-genome sequencing (WGS) and to integrate such
processes with functional genomic data. One such example of associated SNPs
exerting a tissue-dependent effect on gene expression is exemplified by Musunuru
et al. [127]. They integrated eQTL and protein QTL (pQTL) information and found
that a MI risk variant alters the expression of SORT/ gene in the liver (via a
lipoprotein metabolism-regulated pathway) and not in the blood. This observation
is dissimilar to prior GWASs that identified a strong association between 1p13 locus
and plasma LDL-C levels in MI patients and, moreover, that this locus influenced the
risk of MI by conferring changes to plasma LDL-C. Another recent study [128] used
a systems genetics approach to integrate DNA genotypes and gene expression
profiles from seven CAD-relevant tissues with CAD CARDIOGRAM GWAS infor-
mation. With this analytical perspective, they showed that RNA-processing genes
play a pivotal role in causing CAD and furthermore identify several strongly
inherited, evolutionarily conserved, risk-enriched CAD genes that cause regulatory
gene network changes across vascular and metabolic tissues.
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4.14 Multi-omics Approaches

Compared to looking at an individualised -omics approach, multi-omics provides a
greater understanding of the flow of information from the disease initiator to its
functional consequence or interaction. Multifactorial diseases, such as CAD, prove
to be extremely entangled, which may be a contributing factor as to the lack of multi-
omics studies of CAD. However, a preprint study by Santolini et al. [129] used >100
genetically diverse mice strains to investigate a multi-omics approach to cardiac
hypertrophy and heart failure. Interestingly, they developed a personalised strategy
to investigate stressor-induced heart failure and identified 36-fold change genes that
were enriched in human cardiac disease genes and hypertrophic pathways and were
missed by the traditional population-wide differentially expressed gene method.
Additionally, the genes that they found were linked to both upstream regulators
and signalling networks, providing insight into cardiac hypertrophy severity and
resistance. Finally, they validated Hes! as a novel regulator of cardiac hypertrophy
(Fig. 4.7).

4.15 Exciting Times Ahead
4.15.1 Reverse Genetics

An interesting topic that has appeared in the literature recently is the concept of
‘human knockouts’. It is based on the idea that the accumulation of rare homozygous
mutations is most likely in highly consanguineous populations, as is the case with
the Pakistan Risk of Myocardial Infarction Study (PROMIS) [130]. It is known that
heterozygous deficiency of the APOC3 gene confers protection against CHD.
PROMIIS participants who were homozygous for APOC3 loss-of-function mutations
were challenged with an oral fat load. These same individuals were then compared
with family members lacking the mutation, and they showed significantly improved
clearance of the usual post-prandial rise in plasma triglycerides from their circula-
tion. This study highlights the potential and impact of reverse genetics and functional
research and the relevance of drug targets prior to their costly development.

4.15.2 Leveraging Genomic Data to Identify Novel CAD/MI Drug
Targets

As has been published [131] and commented [132], looking at these naturally
occurring ‘human knockout’ population groups, researchers can directly (and
non-invasively) see what would happen when a protein’s function or regulatory
mechanism is completely removed thereafter derive subsequent dose-response
curves in drug development, for example, if we follow the starting path of the
GUCYIA3 and CCT7 genes. Prior GWAS studies [90, 133] had found a CAD/MI
association with a common variant on chromosome 4q32.1 which overlapped with
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the GUCYIA3 gene. Subsequently in 2013, Erdmann and colleagues [134] studied
two German families and unrelated MI/CAD cases and found two rare variants (both
heterozygous mutations) in the GUCYIA3 and CCT7 genes. With confirmation
through in vitro/in vivo experimental work, they evidenced that mutations in the
soluble guanylyl cyclase-dependent nitric oxide signalling pathway could be linked
to MI. Moving on to today, Kessler et al. [135] elucidated via human samples and
cell lines (vascular smooth muscle cell migration and platelet function experiments)
that GUCY1A3 affects the expression of soluble guanylyl cyclase, smooth muscle
cell migration and platelet function. Further studies are merited to bring this pathway
to its destination, which would hopefully be drug targets for individuals carrying the
GUCYI1AS3 risk allele (Table 4.1).

4.16 Precision Medicine

GWAS data has been used as a stepping stone to identify risk genes and, with
subsequent post-GWAS analysis strategies, may help to elucidate disease-associated
pathways that would then be used in drug development or selection. This is the case
with PCSK9 (mentioned previously). Although GWAS studies have been useful, it
must be emphasised that these studies do not provide the necessary information
required to stratify individuals according to severity, prognosis and responsiveness
that is required for drug development and/or selection. To obtain such information,
Morita and Komuro [143] suggested stratifying large-scale prospective studies
according to clinically affected subphenotypes in patients with similar clinical
presentations and then adding a second layer independent of the variant associated
with the disease onset that would look for a variant associated (or driving pathways)
with the subphenotype within the disease [143, 144]. One example of such stratifi-
cation would be to discriminate between dyslipidemic patients with CAD and
patients without CAD. In this example, a subpopulation analysis to identify genetic
variants associated with CAD susceptibility could help in the selection of individuals
susceptible to CAD who should receive proactive, perhaps intensive,
cardiometabolic abnormality management to prevent CAD [143]. On a macro
level, current pharmacogenomics research is following these lines. Contrary to the
subphenotype method, some argue that in CAD patients, it is more useful to
highlight the blend of genetic and environmental causal factors (or pathways) that
underlie CAD patients in large-population-scale cohorts [144]. Such discussion can
only promote this type of research approach and can be used as a thoroughfare
towards a future of individualised precision medicine.

4.17 Closing Remarks

Indeed, much has happened since the journey towards unravelling the genetics
underlying CAD/MI began. It will most likely be decades before we fully grasp
the pathomechanisms that result in CAD/MI. However, considering the global
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burden that is CAD/MI, we owe it to ourselves to continue our efforts in unravelling
the genetic basis of these diseases. Luckily, we have allies in the continued lowering
of genetic sequencing costs, increased computational facilities and strategies (such
as machine learning and data mining) that can handle the influx of large data and new
research approaches. Exciting times lie ahead of us.

Disclosure Statement The authors have nothing to disclose.
Conflict of Interest None declared.

Funding This work was supported by a grant from the Fondation Leducq [PlagOmics], the
German Federal Ministry of Education and Research (BMBF) within the framework of
ERA-NET on Cardiovascular Disease, Joint Transnational Call 2017 [ERA-CVD: ENDLESS].
This work was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 22167-390884018.

References

—

. Mendis S, Puska P, Norrving B, editors. Global atlas on cardiovascular disease prevention and
control. Geneva: World Health Organization (WHO) in collaboration with World Heart
Foundation and the World Stroke Organization; 2011.

2. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014:
epidemiological update. Eur Heart J. 2014;35:2950-9.

3. Mozaffarian D, et al. Heart disease and stroke statistics—2016 update. Circulation. 2015;133:
€38-e360.

4. Buja LM. Coronary artery disease: pathological anatomy and pathogenesis. In: Willerson JT,
Holmes Jr DR, editors. Coronary artery disease. London: Springer; 2015.

5. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical
translation. Nat Rev Genet. 2017;18(6):331-44.

6. Ozaki K, Tanaka T. Molecular genetics of coronary artery disease. J Hum Genet.
2016;61:71-7.

7. Khera AV, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J
Med. 2016;375:2349-58.

8. Fisher RA. The correlation between relatives on the supposition of mendelian inheritance.
Philos Trans R Soc Edinb. 1918;52:399-433.

9. Vinkhuyzen AAE, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partitioning
of heritability in human populations using whole genome analysis methods. Annu Rev Genet.
2013;47:75-95.

10. Miiller C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med Scand. 1938;95
(S89):75-84.

11. Gertler MM, Garn SM, White PD. Young candidates for coronary heart disease. ] Am Med
Assoc. 1951;147(7):621-5.

12. Schildkraut JM, Myers RH, Cupples LA, Kiely DK, Kannel WB. Coronary risk associated
with age and sex of parental heart disease in the Framingham Study. Am J Cardiol. 1989;64
(10):555-9.

13. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is independent risk factor for
coronary artery disease: The Framingham Study. Am Heart J. 1990;120(4):963-9.

14. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death

from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041-6.



4 The Genetics of Coronary Heart Disease 163

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin Al, de Faire U. Heritability of
death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med.
2002;252:247-54.

Banerjee A. A review of family history of cardiovascular disease: risk factor and research tool.
Int J Clin Pract. 2012;66(6):536-43.

Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet.
2002;3:872-82.

Mangino M, Spector T. Understanding coronary artery disease using twin studies. Heart.
2013;99(6):373-5.

Wienke A, Holm N, Skytthe A, Yashin Al The heritability of mortality due to heart disease: a
correlated frailty model applied to Danish twins. Twin Res. 2001;4(4):266-74.

Wienke A, Herskind AM, Christensen K, Skytthe A, Yashin Al The heritability of CHD
mortality in Danish Twins after controlling for smoking and BMI. Twin Res Hum Genet.
2005;8(1):53-9.

Koopmans JR, Slutske WS, Heath AC. The genetics of smoking initiation and quantity
smoked in Dutch adolescent and young adult twins. Behav Genet. 1999;29(6):383-93.
Snieder H, van Doornen LJP, Boomsma DI. The age dependency of gene expression for
plasma lipids, lipoproteins, and apolipoproteins. Am J Hum Genet. 1997;60(3):638-50.
Tamoki AD, Tamoki DL, Molnar AA. Past, present and future of cardiovascular twin studies.
Cor Vasa. 2014;56(6):e486-93.

Fraga MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc
Natl Acad Sci USA. 2005;102(30):10604-9.

Gordon L, et al. Expression discordance of monozygotic twins at birth: Effect of intrauterine
environment and a possible mechanism for fetal programming. Epigenetics. 2011;6:579-92.
Murabito JM, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in
middle-aged adults. ] Am Med Assoc. 2005;294(24):3117-23.

Scheuner MT. Genetic evaluation for coronary artery disease. Genet Med. 2003;5(4):269-85.
Wang Q. Advances in the genetic basis of coronary artery disease. Curr Atheroscler Rep.
2005;7(3):235-41.

Wang L, Fan C, Topol SE, Topol EJ, Wang Q. Mutation of MEF2A in an inherited disorder
with features of coronary artery disease. Science. 2003;302(5650):1578-81.

Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac
and skeletal muscle lineage during mouse embryogenesis. Development. 1994;120:1251-63.
Subramanian SV, Nadal-Ginard B. Early expression of the different isoforms of the myocyte
enhancer factor-2 (MEF2) protein in myogenic as well as non-myogenic cell lineages during
mouse embryogenesis. Mech Dev. 1996;57(1):103—12.

Bhagavatula MRK, et al. Transcription factor MEF2A mutations in patients with coronary
artery disease. Hum Mol Genet. 2004;13(24):3181-8.

Inanloo Rahatloo K, Davaran S, Elahi E. Lack of association between the MEF2A gene and
coronary artery disease in Iranian families. Iran J Basic Med Sci. 2013;16(8):950-4.

Lieb W, et al. Lack of association between the MEF2A gene and myocardial infarction.
Circulation. 2008;117:185-91.

Helgadottir A, et al. The gene encoding 5-lipoxygenase activating protein confers risk of
myocardial infarction and stroke. Nat Genet. 2004;36(3):233-9.

Pajukanta P, et al. Two loci on chromosome 2 and X for premature coronary heart disease
identified in early- and late-settlement populations of Finland. Am J Hum Genet. 2000;67
(6):1481-93.

Hauser ER, et al. A genome-wide scan for early-onset coronary artery disease in 438 families:
the GENECARD study. Am J Hum Genet. 2004;75(3):436-47.

Wang Q, et al. Premature myocardial infarction novel susceptibility locus on chromosome
1P34-36 identified by genomewide linkage analysis. Am J Hum Genet. 2004;74:262-71.
Broeckel U, et al. A comprehensive linkage analysis for myocardial infarction and its related
risk factors. Nat Genet. 2002;30(2):210-4.



164

40

41

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

J. Erdmann and M. L. Mufoz Venegas

. Weng L, et al. Lack of MEF2A mutations in coronary artery disease. J Clin Invest. 2005;115
(4):1016-20.

. Xu D-L, et al. Novel 6-bp deletion in MEF2A linked to premature coronary artery disease in a

large Chinese family. Mol Med Rep. 2016;14(1):649-54.

Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum

Genet. 2012;90(1):7-24.

Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science.
1996;273:1516-7.

Wang X, Prins BP, Siim S, Laan M, Snieder H. Beyond genome-wide association studies: new

strategies for identifying genetic determinants of hypertension. Curr Hypertens Rep.

2011;13:442-51.

Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to

useful in silico tools. BMC Genet. 2013;14:39.

Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and

myocardial infarction. Clin Res Cardiol. 2007;96(1):1-7.

Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol

Sci. 2007;3:420-7.

International HapMap Consortium. The international HapMap project. Nature. 2003;426

(6968):789-96.

The 1000 Genomes Project Consortium. A global reference for human genetic variation.

Nature. 2015;526(7571):68-74.

McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet.

2016;48:1279-83.

Iglesias Al, et al. Haplotype reference consortium panel: practical implications of imputations

with large reference panels. Hum Mutat. 2017;38(8):1025-32.

Lander ES. The new genomics: global views of biology. Science. 1996;274:536-9.

Manolio TA. Genomewide association studies and assessment for the risk of disease. N Engl J

Med. 2010;363:166-1676.

Helgadottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial

infarction. Science. 2007;316(5830):1491-3.

McPherson R, et al. A common allele on chromosome 9 associated with coronary heart

disease. Science. 2007;316(5830):1488-91.

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000

cases of seven common diseases and 3 000 shared controls. Nature. 2007;447:661-78.

Hinohara K, et al. Replication of the association between a chromosome 9p21 polymorphism

and coronary artery disease in Japanese and Korean populations. J Hum Genet.

2008;53:357-9.

Assimes TL, et al. Susceptibility locus for clinical and subclinical coronary artery disease at

chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. 2008;17

(15):2320-8.

Ding H, et al. 9p21 is a shared susceptibility locus strongly for coronary artery disease and

weakly for ischemic stroke in Chinese Han population. Circ Cardiovasc Genet.

2009;2:338-46.

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on

protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073-81.

Pignataro P, et al. Association study between coronary artery disease and rs1333049 polymor-

phism at 9p21.3 locus in Italian population. J Cardiovasc Transl Res. 2017;10(5-6):455-8.

Tattersall I. Human origin: out of Africa. Proc Natl Acad Sci USA. 2009;106(38):16018-21.

Roberts R. A genetic basis for coronary artery disease. Trends Cardiovasc Med. 2015;25

(3):171-8.

CARDIoGRAMplusC4D Consortium, et al. Large-scale association analysis identifies new

risk loci for coronary artery disease. Nat Genet. 2013;45:25-33.



4 The Genetics of Coronary Heart Disease 165

65

66.

67.

68.

69.

70.
71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

. the CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes—based genome-
wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121.
Bycroft C, et al. Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv.
2017.

Klarin D, et al. Genetic analysis in UK Biobank links insulin resistance and transendothelial
migration pathways to coronary artery disease. Nat Genet. 2017;49(9):1392-7.

Verweij N, Eppinga RN, Hagemeijer Y, van der Harst P. Identification of 15 novel risk loci for
coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure.
Sci Rep. 2017;7:2761.

van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view
on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433-43.
Editorial. Accounting for sex in the genome. Nat Med. 2017;23:1243.

Miller VM. Family matters: sexual dimorphism in cardiovascular disease. Lancet. 2012;379
(9819):873-5.

Charchar FJ, et al. Inheritance of coronary artery disease in men: an analysis of the role of the
Y chromosome. Lancet. 2012;379(9819):915-22.

Papakonstantinou NA, Stamou MI, Baikoussis NG, Goudevenos J, Apostolakis E. Sex differ-
entiation with regard to coronary artery disease. J Cardiol. 2013;62(1):4—11.

Chiha J, Mitchell P, Gopinath B, Plant AJH, Kovoor P, Thiagalingam A. Gender differences in
the severity and extent of coronary artery disease. IJC Heart Vasc. 2015;8:161-6.

Winham SJ, de Andrade M, Miller VM. Genetics of cardiovascular disease: Importance of sex
and ethnicity. Atherosclerosis. 2015;241(1):219-28.

Konig IR, Loley C, Erdmann J, Ziegler A. How to include chromosome X in your genome-
wide association study. Genet Epidemiol. 2014;38(2):97-103.

Gao F, et al. XWAS: a software toolset for genetic data analysis and association studies of the
X chromosome. J Hered. 2015;106(5):666-71.

Loley C, et al. No association of coronary artery disease with X-chromosomal variants in
comprehensive international meta-analysis. Sci Rep. 2016;6:35278.

Assimes TL, et al. Abstract 16167: A GWAS of EHR-Defined CAD Identifies Multiple Novel
Loci Including the First 3 Loci on the X-Chromosome: The Million Veteran Program.
Circulation. 2017;136(Suppl 1):A16167.

Krzywinski MI, et al. Circos: an information aesthetic for comparative genomics. Genome
Res. 2009;19(9):1639-45.

Chen H-H, Almontashiri NAM, Antoine D, Stewart AFR. Functional genomics of the 9p21.3
locus for atherosclerosis: clarity or confusion? Curr Cardiol Rep. 2014;16(7):502.

Patel RS, et al. Genetic variants at chromosome 9p21 and risk of first versus subsequent
coronary heart disease events. J] Am Coll Cardiol. 2014;63(21):2234-45.

Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus
in cardiovascular and metabolic disease: what have we learned from GWASs? Trends
Endocrinol Metab. 2015;26(4):176-84.

Paquette M, Chong M, Luna Saavedra YG, Pare G, Dufour R, Baass A. The 9p21.3 locus and
cardiovascular risk in familial hypercholesterolemia. J Clin Lipidol. 2017;11:406—12.
Congrains A, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through
modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449-55.

Holdt LM, Sass K, Gibel G, Bergert H, Thiery J, Tuepser D. Expression of Chr9p21genes
CDKN2B (p15INK4b), CDKN2A (p16INK4a, pl4ARF) and MTAP in human atherosclerotic
plaque. Atherosclerosis. 2011;214:264-70.

Nagano T, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
Nature. 2013;502(7469):59-64.

Harismendy O, et al. 9p21 DNA variants associated with coronary artery disease impair
interferon-y signalling response. Nature. 2011;470(7333):264-8.

Holdt LM, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and
atherosclerosis in humans. Nat Commun. 2016;7:12429.



166

90

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

J. Erdmann and M. L. Mufoz Venegas

. Schunkert H, et al. Large-scale association analysis identifies 13 new susceptibility loci for
coronary artery disease. Nat Genet. 2011;43(4):333-8.

The Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study
in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet.
2011;43(4):339-44.

Haley CS. Ten years of the genomics of common diseases: ‘The end of the beginning’.
Genome Biol. 2016;17(1):254.

Nelson CP, et al. Association analyses based on false discovery rate implicate new loci for
coronary artery disease. Nat Genet. 2017;49:1385-91.

van der Harst P, Verweij N. The identification of 64 novel genetic loci provides an expanded
view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433-43.
Myocardial Infarction Genetics and CARDIoOGRAM Exome Consortia Investigators. Coding
variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med.
2016;374:1134-44.

Hixson JE, et al. Whole exome sequencing to identify genetic variants associated with raised
atherosclerotic lesions in young persons. Sci Rep. 2017;7(4091):2045-322.

Visscher PM, et al. 10 years of GWAS discover: biology, function, and translation. Am J Hum
Genet. 2017;101(1):5-22.

Manolio TA, et al. Finding the missing heritability of complex diseases. Nature. 2009;461
(7265):747-53.

Tregouet D-A, et al. Genome-wide haplotype association study identifies the SLC22A3-
LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41
(3):283-5.

Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from
genome-wide association studies. Genome Res. 2007;17(10):1520-8.

Prins BP, Lagou V, Asselbergs FW, Snieder H, Fu J. Genetics of coronary artery disease:
genome-wide association studies and beyond. Atherosclerosis. 2012;225:1-10.

Kovacic JC. Unraveling the complex genetics of coronary artery disease. J Am Coll Cardiol.
2017;69(7):837-40.

Webb TR, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with
coronary artery disease. J Am Coll Cardiol. 2017;69(7):823-36.

Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we
now and where are we going? Int J Epidemiol. 2015;44(2):379-88.

Jansen H, Lieb W, Schunkert H. Mendelian randomization for the identification of causal
pathways in atherosclerotic vascular disease. Cardiovasc Drugs Ther. 2016;30(1):41-9.
Giugliano RP, Sabatine MS. Are PCSK9 inhibitors the next breakthrough in the cardiovascu-
lar field? J Am Coll Cardiol. 2015;65(24):2638-51.

Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation
sequencing technologies. Nat Rev Genet. 2016;17(6):333-51.

Domenico G, Chiara P, Martinelli N, Corrocher R, Olivieri O. A decade of progress on the
genetic basis of coronary artery disease. Practical insights for the internist. Eur J Intern Med.
2017;41:10-7.

Emdin CA, et al. Phenotypic characterization of genetically lowered human lipoprotein
(a) levels. J Am Coll Cardiol. 2016;68(25):2761-72.

Westra H-J, Franke L. From genome to function by studying eQTLs. Biochim Biophys Acta.
2014;1842(10):1896-902.

Bjorkegren JL, Kovacic JC, Dudley JT, Schadt EE. Genome-wide significant loci: How
important are they?: Systems genetics to understand heritability of coronary artery disease
and other common complex disorders. J Am Coll Cardiol. 2015;65(8):830-45.

Jansen RC, Nap J-P. Genetical genomics: the added value from segregation. Trends Genet.
2001;17(7):388-91.



4 The Genetics of Coronary Heart Disease 167

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

Hartiala J, Schwarzman WS, Gabbay J, Ghayalpour A, Bennett BJ, Allayee H. The genetic
architecture of coronary artery disease: current knowledge and future opportunities. Curr
Atheroscler Rep. 2017;19(2):6.

The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the
human genome. Nature. 2012;489(7414):57-74.

Lonsdale J, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45
(6):580-5.

Roadmap Epigenomics Consortium, et al. Integrative analysis of 111 reference human
epigenomes. Nature. 2015;518(7539):317-30.

Higg S, et al. Multi-organ expression profiling uncovers a gene module in coronary artery
disease involving transendothelial migration of leukocytes and LIM domain binding 2: The
Stockholm Atherosclerosis Gene Expression (STAGE) Study. PLOS Genet. 2009;5(12):
€1000754.

Franzén O, et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation
across tissues and diseases. Science. 2016;353(6301):827-30.

Tranchevent L-C, et al. Endeavour update: a web resource for gene prioritization in multiple
species. Nucleic Acids Res. 2008;36:W377-84.

Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis
and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305-11.

Pers TH, Dworzynski P, Thomas CE, Lage K, Brunak S. MetaRanker 2.0: a web server for
prioritization of genetic variation data. Nucleic Acids Res. 2013;41:W104-38.

Pers TH, et al. Biological interpretation of genome-wide association studies using predicted
gene functions. Nat Commun. 2014;6:5890.

Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-based identification
and prioritization of key regulators of coronary artery disease loci. Arterioscler Thromb Vasc
Biol. 2016;36:928-41.

Vilne B, et al. Network analysis reveals a causal role of mitochondrial gene activity in
atherosclerotic lesion formation. Atherosclerosis. 2017;267:39-48.

Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ. Cloud computing for
comparative genomics. BMC Bioinformatics. 2010;11:259.

Pavlovich M. Computing in biotechnology: omics and beyond. Trends Biotechnol. 2017;35
(6):479-80.

Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol
locus. Nature. 2010;466:714-9.

Talukdar HA, et al. Cross-tissue regulatory gene networks in coronary artery disease. Cell
Syst. 2016;2(3):196-208.

Santolini M, et al. A personalized, multi-omics approach identifies genes involved in cardiac
hypertrophy and heart failure. bioRxiv. 2017.

Saleheen D, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of
consanguinity. Nature. 2017;544(7649):235-9.

Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics.
Nat Rev Drug Discov. 2013;12(8):581-94.

Mullard A. Calls grow to tap the gold mine of human genetic knockouts. Nat Rev Drug
Discov. 2017;16(8):515-8.

Lu X, et al. Genome-wide association study in Han Chinese identifies four new susceptibility
loci for coronary artery disease. Nat Genet. 2012;44(8):890—4.

Erdmann J, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.
Nature. 2013;504(7480):432-6.

Kessler T, et al. Functional characterization of the GUCY1A3 coronary artery disease risk
locus. Circulation. 2017;136(5):476.

Kathiresan S. A PCSK9 missense variant associated with a reduced risk of early-onset
myocardial infarction. N Engl J Med. 2008;358(21):2299-300.



168

137.

138.

139.

140.

141

143.

144.

J. Erdmann and M. L. Mufoz Venegas

Inactivating Mutations in NPCIL1 and Protection from Coronary Heart Disease. N Engl J
Med. 2014;371(22):2072-82.

The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung,
and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary dis-
ease. N Engl J Med. 2014;371(1):22-31.

Dewey FE, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N
Engl J Med. 2016;374(12):1123-33.

Ajufo E, Rader DJ. New therapeutic approaches for familial hypercholesterolemia. Annu Rev
Med. 2018;69(1):113-31.

. Callaway E. Protective gene offers hope for next blockbuster heart drug. Nat News. 2016.
142.

Deaton AM, et al. A rare missense variant in NR1H4 associates with lower cholesterol levels.
Commun Biol. 2018;1(1):14.

Morita H, Komuro I. A strategy for genomic research on common cardiovascular diseases
aiming at the realization of precision medicine. Circ Res. 2016;119:900-9003.

Khera AV, Sekar K. Is coronary atherosclerosis one disease or many? Setting realistic
expectations for precision medicine. Circulation. 2017;135(11):1005-7.



®

Check for

updates

Complex Genetics and the Etiology 5
of Human Congenital Heart Disease
Richard W. Kim and Peter J. Gruber
Contents
5.1 INtrOdUCHION oottt 170
5.2 ComMMON VATIANES ...\ttt t e ettt ettt e ettt e ettt e e e e e et iae e e einaas 170
5.3 Common Variants as Genetic Modifiers ...t 176
5.4 Rare de novo Variants and Whole Exome Sequencing ........................oooa. 177
5.5 Copy NUMDEr VATTANLS .. ...ttt e e e 180
I 071163 L1 1) 1613 P 181
2SS (5 ()31 181

Abstract

The genetic architecture of human congenital heart disease (CHD) is as complex
as the phenotypes it produces. The objective of this chapter is to review recent
findings on the genetic basis and inheritance patterns of CHD. Rather than
provide lists of identified genes, instead we offer a conceptual framework to
understand the relationship between genetic variation and CHD. We review
recent studies utilizing contemporary techniques, some of which may be difficult
to interpret for the nonspecialist. This overview aims to educate students and
clinicians, providing a background to understand pertinent genetic literature as it
relates to human CHD.
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5.1 Introduction

Despite the fact that congenital heart disease is the most common birth defect, the
genetic architecture is incompletely understood. The initial sequencing of a reference
human genome was completed in 2004, facilitating a period of unprecedented growth
in our understanding of the genetic underpinnings of human disease [1-3]. Recent
advances have improved our knowledge of the genetic architecture of congenital
heart disease (CHD). Importantly, the genetic loci newly associated with CHD have
accelerated mechanistic studies, allowing deep understanding and the development
of rational diagnostics and therapies [4—6]. The wealth of new putatively causative
genes has had important implications for cardiac development [7, 8]. However, with
these new discoveries came the growing realization of the enormous complexity of
the human genome, especially as it relates to human congenital heart disease [9—-11],
emphasizing the importance of incorporating nuanced genetic features beyond cod-
ing sequence alterations in analyses [12—14]. Much of what has been reported focuses
on alterations in DNA sequence data that can be categorized and understood in terms
of the size, character, location, or frequency of sequence variants. Given what we
know of the extreme phenotypic (both anatomic and physiologic) variability of CHD,
even within narrow CHD anatomic subtypes, it is not surprising that the genetic
underpinnings of congenital heart disease are complex and incompletely understood.
This overview aims to educate students and clinicians providing a background to
understand pertinent genetic literature. An updated list of commonly associated
chromosomal aneuploidies, copy number variants, and putative causative genes are
presented separately in Tables 5.1, 5.2, and 5.3, but will not be discussed individually
in significant depth.

5.2 Common Variants

A single, reference genome exists only in theory as the 6 billion base diploid genome
is characterized by tremendous diversity and ongoing polymorphic variation through
each generation. Typically, any two unrelated genomes vary at millions of loci
(a genetic position) totaling more than 25 million base pairs of DNA (1000 Genomes
Project Consortium, 2015) [15, 16]. These genetic differences can be categorized as
either small-scale, intermediate-scale, or large-scale structural variants (Tables 5.1,
5.2, and 5.3). Small-scale structural variants are composed of single-nucleotide
changes and short insertions or deletions, called “indels.” Intermediate-scale
sequence variants refer to copy number variants (with gain or loss) that impact
hundreds of thousands to millions of base pairs. Large-scale structural variants refer
to chromosomal abnormalities that can sometimes be evaluated microscopically.
Each of these types of genetic variation will be described in turn below. It is in this
genetic variation that lies the key to both individuality as well as disease
pathogenesis.
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Table 5.2 Copy number variants associated with nonsyndromic CHD

Locus
1q21.1
3p25.1

3q22.1-
3q26.1

4q22.1
5q14.1-
ql4.3
5q35.3

7q11.23

8p23.1

9q34.3
11p15.5
13q14.11

15q11.2

16p13.11

18q11.1

18q11.2
19p13.3

Xp22.2

Size
(Kbp)
418-
3981

175-
12,380

680—
32,134

45
4937-
5454
264—
1777

330-
348
67—
12,000

190—
263

256-
271

555-
1430
238-
2285

1414
2903
308—
6118

52—
805
509-
615

CNV
Gain,
loss

Gain

Gain,
loss

Gain
Gain

Gain

Gain

Gain,
loss

Loss

Gain

Gain

Loss

Gain

Gain

Gain,

Loss
Gain

No of
genes

345

0-300

1
41,103

19-38

11-14

1-28

Genes

PRKAB2, FMO05, CHDIL,
BCL9, ACP6, GJAS5, CDI60,
PDZKI, NBPF11, FMOS5, GJAS

RAF J, TMEM40

FOXL2, NPHP3, FAM62C,
CEP70, FAIM, PIK3CB,
FOXL2, BPESCI

PPMIK

EDIL3, VCAN, SSBP2,
TMEM167A

CNOT6, GFPT2, FLT4,
ZNF879, ZNF345C, ADAMTS?2,
NSDI

FKBP6

GATA4, NEIL2, FDFTI, CSTB,
SOX7

NOTCHI, EHMT]I

HRAS

TNFSF11

TUBGCPS, CYFIPI, NIPA2,
NIPAI

MYHI]

GATA6

MIER2, CNN2, FSTL3, PTBPI,
WDRI8, GNA11, S1PR4

MID]

173

Phenotype

TOF, AS, CoA,
PA, VSD

TOF

DORYV,
TAPVR, AVSD

TOF
TOF

TOF

HLHS,
Ebstein’s

AVSD, VSD,
TOF, ASD,
BAV

TOF, CoA,
HLHS

DILV, AS

TOF, TAPVR,
VSD, BAV

CoA, ASD,
VSD, TAPVD,
Complex left-
sided

Malformations
HLHS

VSD

TOF

TOF, AVSD

Nearly all genetic discovery in the past decade is based upon the simple concept
of identifying the genetic differences between patients and controls. One searches for
either sequence or structural variation, identifying candidate genes to examine or
comparing to the entire genome. Classically, two types of approaches are described:
“forward” and “reverse.” The “forward genetic” approach begins with the identifi-
cation of a phenotype, followed by various molecular and genetic techniques to map
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Table 5.3 Single genes associated with CHD

Gene Protein Phenotypes
ANKRDI1 Ankyrin repeat domain TAPVR
CITED2 c-AMP responsive element- ASD; VSD
binding protein
FOG2/ Friend of GATA TOF, DORV
ZFPM?2
GATA4 GATAA4 transcription factor | ASD, PS, VSD, TOF, AVSD, PAPVR
GATA6 GATAG transcription factor ASD, TOF, PS, AVSD, PDA, OFT defects, VSD
HAND2 Helix-loop-helix TOF
transcription factor
IRX4 Iroquois homeobox 4 VSD
MEDI3L Mediator complex subunit TGA
13-like
NKX2-5/ Homeobox-containing ASD, VSD, TOF, HLH, CoA, TGA, DORYV, IAA,
NKX2.5 transcription factor OFT defects
NKX2-6 Homeobox-containing PTA
transcription factor
TBX1 T-Box 1 transcription factor | TOF, (22q11 deletion syndromes)
TBX5 T-Box 5 transcription factor | AVSD, ASD, VSD, (Holt Oram syndrome)
TBX20 T-Box 20 transcription ASD, MS, VSD
factor
TFAP2B Transcription factor AP-2 PDA, (Char syndrome)
beta
ZIC3 Zinc finger transcription TGA, PS, DORV, TAPVR, ASD, HLH, VSD,
factor Dextrocardia, L-R axis defects
ACVRI/ BMP receptor AVSD
ALK2
ACVR2B Activin receptor PS, DORYV, TGA, Dextrocardia,
ALDHIA?2 | Retinaldehyde TOF
dehydrogenase
CFCl/ Cryptic protein TOF; TGA; AVSD; ASD; VSD; IAA; DORV
CRYPTIC
CRELDI Epidermal growth factor- ASD; AVSD
related proteins
FOXHI Forkhead activin signal TOF, TGA
transducer
GDF1 Growth differentiation Heterotaxy, TOF, TGA, DORV
factor-1
GJAI Connexin 43 ASD, HLH, TAPVR, (Oculodentodigital
dysplasia)
JAGI Jagged-1 ligand PAS, TOF, (Alagille syndrome)
LEFTY?2 Left-right determination TGA, AVSD, IAA, CoA, L-R axis defects, IVC
factor defects
NODAL Nodal homolog (TGF-beta TGA, PA, TOF, DORYV, Dextrocardia, IVC defect,
superfamily) TAPVR, AVSD
NOTCHI NOTCHI (ligand of JAG1) BAV, AS, CoA, HLH

(continued)
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Table 5.3 (continued)

Gene Protein Phenotypes
PDGFRA | Platelet-derived growth TAPVR
factor receptor alpha
SMAD6 MAD-related protein BAYV, CoA, AS
TAB2 TGF-beta activated kinase OFT defects
TDGF1 Teratocarcinoma-derived TOF, VSD
growth factor 1
VEGF Vascular endothelial growth | CoA, OFT defects
factor
ACTC Alpha-cardiac actin ASD
ELN Elastin SVAS, PAS, PS, AS, (Williams-Beuren
syndrome)
MYHI1 Myosin heavy chain 11 PDA, aortic neurysm
MYH6 Alpha-myosin heavy chain ASD, TA, AS, PFO, TGA
MYH7 Beta-myosin heavy chain Ebstein anomaly, ASD, NVM

associated genetic loci. “Reverse genetics” takes the opposite approach, in which a
gene of interest is mutated, and the associated phenotype is interrogated. Both
techniques provide insight into causality—both have limitations. Most prominently,
forward genetic approaches rely on statistical associations that fail to provide
mechanistic insights. Reverse genetic approaches provide a more robust association
of gene function and phenotype, but until recently, were not experiments that could
be performed in humans, and therefore lacked the complexity of other approaches. In
general, if one wants to understand humans, it is necessary to study humans.

Prior to the sequencing of the human genome and the subsequent development of
the International HapMap project, very little was known about the underlying
contribution of genetic variation to CHD [17]. Although associations between
large chromosomal aneuploidies such as Trisomy 21 and CHD were well described
(Table 5.1), the pedigrees of multigenerational families necessary to determine
genetic linkage were simply not available for CHD. As explained in more depth
below, except for relatively minor phenotypes such as atrial septal defects and
familial patent ductus arteriosus, cardiac-related complications invariably led to
death during childhood, preventing the accumulation of affected individuals in
families [18, 19]. When data from the HapMap project became available in 2005,
for the first time, scientists had the tools to begin to understand the underlying
genetic architecture of CHD.

The HapMap was the first attempt to categorize the genetic diversity of man using
the millions of single-nucleotide variants found throughout the human genome
[17]. At the time, sequencing technology was limited to microarrays, so maps of
genetic variants could only be based on sequence variation found commonly
throughout the human population—resolution was limited. These single-nucleotide
polymorphisms (SNPs) were usually found at a population frequency of at least 5%.
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Although 5% may seem infrequent, in genetic language, it was the operational
definition of a common variant at the time; now common variants are more often
defined as >1%. Genome-wide association studies (GWAYS) identified the associa-
tion of common variation to complex traits or diseases and were the first significant
validation of the human genome project [20]. GWAS specifically refer to studies
involving common variants in contrast to the study of rare variants which at the time
were technologically limited. SNPs and common single-nucleotide variants are one
in the same, whereas rare single-nucleotide variants that occur at very low
frequencies, usually well below 1%, are considered mutations rather than
polymorphisms or SNPs. In both candidate gene association studies and in
GWAS, the association of common variants and CHD is not strongly associated
with CHD [21-24].

53 Common Variants as Genetic Modifiers

The 1000 Genomes Project is a further iteration of the HapMap, and confirmed that
>95% of variation within an individual genome is common. This does not mean
individual genomes are overwhelmingly similar, but rather that most human genetic
variants are repeated. Population frequency has important implications for the effects
of the variant on human health. Unlike rare and highly detrimental genetic variants
that likely reduce reproductive fitness, benign polymorphisms survive through
generations and can accumulate within a population, becoming “common.” If a
gene mutation leads to a serious congenital abnormality, as are many CHD
phenotypes, the affected individual is unlikely to live long enough to reproduce
and pass the mutation on to his or her offspring. Only genetic variants that permit an
individual to live long enough to reproduce or are otherwise advantageous are likely
to accumulate within human populations. Thus, although they contribute >95% of
the variability between individual genomes, the majority of common polymorphisms
are unlikely to directly lead to or contribute strongly to CHD.

Though common variants are unlikely to be a major cause of CHD phenotypes,
background common variation is still relevant to CHD. Both human and animal
studies suggest that common variants are important modifiers of CHD phenotype
expression. They are critical contributors to the variable expressivity and incomplete
penetrance that are hallmarks of CHD [5, 25]. Variable expression occurs when
identical genetic variants are associated with different disease phenotypes. Incom-
plete penetrance is a form of the carrier state, or the extreme version of expressivity
in which there is no overt phenotype despite the presence of the causative mutation
[26, 27]. One example of variable expression are inactivating mutations of the highly
conserved cardiac transcription factor NKX2-5. Identical mutations can result in
highly pleomorphic phenotypes including a spectrum of left ventricular outflow
tract obstruction (interrupted aortic arch vs. hypoplastic aortic arch), while at other
times carriers display structurally normal hearts. Other examples exist where a
variety of disparate heart defects including complete heart block, atrial septal defects
(ASD), ventricular septal defects (VSD), and tetralogy of Fallot (TOF) are all
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associated with mutations in NKX2-5 [28, 29]. Polymorphic alleles within individual
genetic backgrounds likely modified the phenotypic expression of the causative
mutant. Experimental work in transgenic mouse models further corroborate this
observation as NKX2-5 mutations may harbor distinct anatomic phenotypes when
bred into different inbred mouse backgrounds [25, 30].

Although genetic variants that cause CHD are necessarily held to low frequency,
the same does not hold true for noncausative alleles against which there is no strong
selection. One example is the family of cytochrome P450 enzymes important in drug
metabolism. Unlike the modest effects that common polymorphisms often have on
complex trait susceptibility, polymorphic alleles of the cytochrome P450 2D6
enzyme can result in large differences in the ability to metabolize medications
[31, 32]. More than 25% of all known clinically utilized drugs are affected, including
up to a five-fold change in dosing requirements for common cardiac medications
such as metoprolol and procainamide [33, 34]. Another study utilizing this common
variant approach focused on polymorphic alleles of the Alzheimer’s disease-
associated gene Apolipoprotein E (ApoE). An association of the ApoE €2 allele
was correlated with a reduction in neurodevelopmental testing scores following
complex congenital cardiac surgery [35, 36]. Although the effect was modest, it
served as an important proof of principle experiment that common polymorphism
may impact disease outcome by modifying biologic systems important in treatment
strategies for CHD. Other work has demonstrated that genotypes common to CHD
populations impacting the renin angiotensin aldosterone system are associated with
adverse ventricular remodeling. Following second-stage single-ventricle palliation,
infants homozygous for two SNPs, rs833069 in VEGFA and rs2758331 in SOD2
allele, have a combined 16-fold increased risk of death or heart transplant after
cardiac surgery [37, 38]. As clinical outcomes for repair of CHD have improved
dramatically over the past 20 years, these comorbidities have become as an impor-
tant a focus as the pathogenesis of the disease itself.

5.4 Rare de novo Variants and Whole Exome Sequencing

By 2010, capacity for whole-exome sequencing technology matured sufficiently to
permit cost-effective, genome-wide discovery of rare sequence variants [39]. Unlike
prior candidate gene approaches in which potential gene targets need to be identified
a priori, all ~20,000 expressed genes that comprise the human exome could be
evaluated for sequence variability and tested agnostically for disease association.
Prior whole genome approaches such as GWAS did not directly evaluate gene
sequence but rather identified variants through polymorphic markers scattered
throughout genome, using linkage for association. Although the exome only
represents 1% of the human genome, it is critically important. By 2018, sequencing
methods for examining the genome outside of the exome, or whole genome
sequencing (WGS), have become commonplace [40, 41]. Although there are many
advantages, including the identification of important gene regulatory sites, WGS
approach has yet to be used extensively for CHD [42].
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To account for the benign and noncausative variability between individual
genomes, investigators in the NIH/NHLBI-supported Pediatric Cardiac Genomics
Consortium (PCGC) sequenced proband trio exomes that consists the affected
proband and his or her unaffected parents. De novo mutations found in the affected
child but absent from the parental genomes are candidates for disease causality. After
further restricting candidate genes to those that were both predicted to be damaging
and highly expressed in the developing heart, the PCGC demonstrated a 7.5-fold
excess of damaging, rare de novo mutations in CHD cohorts. They further estimated
that these rare sequence mutations account for ~10% of CHD, predicting ~400 likely
pathogenic CHD genes [8]. Among the newly identified mutations, chromatin
remodeling genes related to histone H3K4 were overrepresented. Chromatin
remodeling genes regulate the transcription of many developmental genes and are
hypothesized to serve as intermediaries between environmental stimuli and gene
expression. These candidates were similar to genes found in previous genome-wide
studies, previous candidate gene studies, and early animal knockout studies and
highlight two general principles of the genetic architecture of CHD [43, 44].

First, CHD mutations commonly impact transcriptional regulatory proteins and
cell-signaling pathways [26, 45, 46]. This finding is in contrast to CHD-related
conditions such as inherited cardiomyopathies, inherited arrhythmias, and thoracic
vascular disease for which structural, rather than regulatory protein, mutations
appear to predominate. As signaling cascades are not only dependent upon multiple
component proteins but are themselves intertwined with multiple other development
systems, it becomes readily understandable why CHD is genetically heterogeneous:
disparate gene mutations result in phenotypically similar CHD. The biologic redun-
dancy of these cell-signaling pathways and the shared use of common transcription
factors throughout the development of multiple organ systems, such as the heart, the
brain, and the gastrointestinal tract, may also help explain the frequent occurrence of
extracardiac features in CHD patients [47-49].

Second, mutations in CHD genes usually result in altered gene dosage or
haploinsufficiency of the affected gene. Unlike oncologic conditions where
mechanisms of uncontrolled growth or gene expression predominate, in CHD,
mutations that result in increased gene expression are rare. Instead, CHD mutations
are more commonly associated with loss of gene function, analogous to the hetero-
zygous knockdown of a single disease allele in mutant mouse models [30]. Not yet
extensively evaluated is the contribution of mosaicism and somatic mutations to the
architecture of CHD [50, 51].

The architectural of the genetic variants appear independent of the affected gene,
predicting that de novo CHD may occur as a random event. Supporting this
hypothesis is the observation that essentially equal numbers of de novo mutations
exists between CHD patients and controls, with both groups accumulating slightly
more than one exonic mutation per patient per generation. This suggests CHD
genomes are not inherently more unstable or prone to mutation than the normal
population. There is no evidence that pathogenic genes have an intrinsically higher
mutation rate. Genes associated with CHD are not hypermutatable, prone to DNA
injury, or found in areas prone to mutation. Last, despite epidemiological evidence
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suggesting a higher incidence of CHD in Asia, there is no robust evidence of racial or
anatomic clustering of identified variants [52]. Taken together, it appears that 1 de
novo mutation occurs randomly in the exome every generation and CHD occurs
when that mutation occurs in a gene or gene pathway critical to heart development
by chance alone.

The contribution of de novo mutations to CHD is significant, yet these mutations
represent only a fraction of the observed cases of CHD. Enabled by the technological
advances described above, only recently have rare, inherited variants been amenable
to study. One recent study used a candidate gene sequencing approach in
610 syndromic and 1281 nonsyndromic CHD patients to determine if inherited
rare damaging mutations with presumed incomplete penetrance could account for
additional heritability. Despite finding a significantly increased burden of inherited
rare damaging variants in nonsyndromic patients, these variants only accounted for
disease in just over 1% of nonsyndromic CHD patients [53]. As an extension of their
earlier studies, the PCGC recently completed a more comprehensive analysis,
examining the effect of recessive inherited variants. In this study of 2871 CHD
probands, including 2645 parent-offspring trios, whole exome sequencing identified
rare, inherited mutations in 1.8% of patients. As in their prior study, the PCGC found
de novo mutations in 8% of cases, including 28% with both neurodevelopmental and
extracardiac congenital anomalies. The significant overlap between genes with
damaging de novo mutations in probands with CHD and autism suggests shared
developmental mechanisms [7].

Syndromes are commonly described as diseases with more than one identifying
feature or symptom. For several CHD phenotypes, there are situations where the
CHD phenotype may be associated either with a syndrome (e.g., Down syndrome) or
simply seen in isolation: this is the difference between what is referred to as
syndromic or nonsyndromic CHD. One example is atrioventricular septal defect,
that can be seen either in isolation, or in children with Trisomy 21. While several
syndromic forms of CHDs have been characterized and causative genes identified,
multiple studies screening nonsyndromic CHD patients for mutations in these genes
have been unrewarding. It is likely the approach of screening coding regions of
syndromic CHD genes for causative mutations in isolated CHDs is fundamentally
flawed. One would predict that mutations in the coding region would be present in all
cells of the organism and expressed in all tissues where the gene is expressed. More
likely, in nonsyndromic patients, mutations would be found in regulatory elements
that control expression of these genes in the developing heart. Alterations in
regulatory elements of genes involved in syndromic forms of congenital heart
defects will likely result in isolated congenital heart defects through cardiac-specific,
disruption of expression. For most genes, the region immediately upstream of the
minimal promoter contains the most important transcription factor-binding sites.
However, for many genes, multiple cis-acting distal elements (enhancers, repressors,
and insulators) are required for correct spatiotemporal expression [54, 55]. These
regulatory elements may be located upstream, downstream, or within introns and can
reside greater than 1 Mb from the target gene [56]. Disruption of these long-range
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regulatory interactions can result in human disease phenotypes either through global
or partial tissue-specific loss or gain of expression. Distal regulatory elements have
been shown to be key tissue-specific regulators of cardiac development in animal
models, and are often evolutionarily conserved in humans [57, 58].

5.5 Copy Number Variants

De novo, single-nucleotide variants are an important form of sequence variation
contributing to human disease. Larger, structural variations resulting from aberrant
meiotic recombination are called copy number variants (CNVs). Although com-
monly defined as exceeding 1000 base pairs in size, most CNVs are substantially
larger, with some containing millions of bases coding over 150 genes. CNVs are the
dominant form of intermediate structural variation known to significantly impact
human disease. Multiple studies demonstrate the association of damaging CNVs
with ~10% of CHD cases [59-61]. Notably, CNVs comprise well-recognized
deletion syndromes including DiGeorge and Williams syndromes and 7q11.23
deletion syndrome. When 22q11.2 deletion patients are included, up to ~15% of
CHD patients are associated with pathogenic CNVs. As with individual genes with
SNVs, there are significant differences between the pathogenicity of intermediate
structural variants that impact disease inheritance and phenotypic expression. This
observation suggests hypotheses regarding the nature CHD independent of specific
anatomic classification.

In CHD patients with isolated (without the presence of extracardiac defects)
disease, the most frequent detectable genetic abnormality is a copy number variant.
Approximately 8% of isolated CHD patients have an identifiable CNV, of which the
majority is likely to be de novo; half may have recessive inheritance. Although
inherited (recessive) SN'Vs are mildly enriched in isolated CHD patients, damaging
de novo SNVs demonstrate no significant enrichment in nonsyndromic proband
cohorts [62]. This data suggests that despite increasingly aggressive clinical genetic
screening for CHD, sequencing for isolated CHD is likely to be low yield [63—65].

In CHD patients with extracardiac anomalies and/or neurodevelopmental delay,
~20-30% of syndromic CHD patients harbor a damaging de novo SNV. Inherited
(recessive) SNVs are not enriched in syndromic CHD patient cohorts. An additional
~2-3% of CHD patients may harbor a damaging CNV of which half may be
inherited. Del 22q11.2 may comprise an additional ~5% of patients of which the
majority are overwhelming likely to be de novo. Syndromic CHD patients may
benefit from chromosomal microarray testing for the detection of 22q11, and appear
to be the target population that would most benefit from clinical whole exome
sequencing. Due to the high proportion of de novo mutations, sibling recurrence is
likely to be low, although the risk of an affected offspring may be considerable due
to the high transmission rate of de novo mutations [66, 67].

The clinical implications of this genetic landscape are now becoming evident.
The presence of a pathologic CNV is often associated with serious adverse clinical
consequences, including reduced somatic growth, neurodevelopmental delay, and a
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2.5-fold increase in death following cardiac surgery [37, 68]. This unanticipated
result implies that CNV burden results in shared adverse effects independent of the
causative gene sets within the affected segment. Alternatively, the mechanisms that
underlie these disparate clinical outcomes may overlap in ways not currently under-
stood. Pathologic CNVs specific to CHD have been found throughout the genome in
association with a wide variety of anatomically diverse CHD. For example, it is not
intuitive that a CNV resulting in common arterial trunk and a CNV located else-
where in the genome associated with heterotaxy would share a common adverse
impact on survival [42, 69].

5.6 Conclusions

Over the last decade, there has been exponential growth in our ability to decipher the
genetic underpinnings of congenital heart disease. Enabled by significant advances
in sequencing technology, and the dramatic reduction in sequencing costs, the
genetic landscape that underlies CHD is now becoming more clear. However,
even with existing technologies, fully 60-70% of CHD cannot be currently
explained with a genetic focus. Understanding noncoding variants with combinato-
rial and recessive gene effects may further elucidate the genetic and epigenetic
landscape CHD, with the remainder due to nongenetic etiologies.

In summary, well-described chromosomal aneuploidies such as Trisomy 21 com-
prise ~10% of CHD. Other genetic forms of CHD result from different classes of
genomic alterations and involve a common set of ~400 causative genes that play
roles in transcriptional regulation or cell-signaling pathways. The majority of known
mutations are rare de novo SNVs (~10%) and CNVs (~10%) that lead to
haploinsufficiency or altered gene dosage. An additional small percentage of
SNVs are inherited from incompletely penetrant parents, as well as a higher percent-
age of CN'Vs. Common sequence polymorphisms or SNPs do not contribute strongly
to CHD risk, but likely modify the penetrance of causative rare mutations playing a
significant accessory role in CHD pathogenesis and clinical outcomes. Finally,
patients with isolated CHD are less likely to harbor a de novo SNV than patients
with associated neurodevelopmental delay and extracardiac anomalies than
syndromic patients.
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6.1 Introduction

Familial Hypercholesterolemia (FH) is one of the most common inherited lipid
disorders, with recent studies estimating a prevalence as high as 1 in 200 people
[1-3]. Inherited in an autosomal-dominant fashion, it is associated with lifelong,
severe elevations in low-density lipoprotein-cholesterol (LDL-c) levels. Individuals
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with FH have a markedly elevated risk of premature ischemic heart disease, 5-20-
fold higher than the general population [4-6]. Mutations in the genes for the LDL
receptor (LDLR), apolipoprotein B-100 (APOB), as well as gain of function
mutations in the proprotein convertase subtulisin/kexin type 9 protein (PCSK9)
have all been associated with the pathogenesis of FH [6]. Appropriate management
can dramatically improve the life expectancy of those with FH [6]; however, many
patients experience delayed diagnosis and inadequate cholesterol lowering [1],
underscoring the need for increased awareness, recognition, and timely treatment
of this disorder in the general community.

6.2  Inheritance and Family Screening

Familial hypercholesterolemia is generally considered to be autosomal dominant,
and thus, those with one pathologic gene variant can have the FH phenotype.
Patients can present as either heterozygous FH (HeFH) or homozygous FH
(HoFH) [7]. HoFH is a rare (1 in 250,000—one million individuals) but particularly
severe form of FH where LDL-c levels usually exceed 400 milligrams per deciliter,
mg/dl (in contrast, the average LDL-c in HeFH adults is approximately 200 mg/dl).

For those diagnosed with HeFH, each child (as well as each full sibling) has a
50% chance of inheriting the pathogenic FH variant, and thus, having FH [7]. Fam-
ily-based screening will usually identify a single affected parent as de novo
mutations are rare.

For those with HoFH, each of their parents carry at least one pathogenic variant
and therefore will have HeFH. All children of those with HoFH will also have FH,
since they will inherit a pathogenic variant from the index patient. Given that parents
of HoFH patients are obligate heterozygotes, siblings will have a 50% chance of
HeFH and 25% chance of HoFH [7].

Of note, individuals that inherit a large number of common, LDL-c raising alleles
(i.e., those with a high genetic risk score for LDL-c variants identified in genome-
wide association studies) can present with a phenotype largely indistinguishable
from Mendelian forms of FH [8]. In fact, up to 40% of individuals with a phenotypic
diagnosis of FH may have this multigenic form of the condition [7]. This has some
implications for the use of genetic testing and family screening. However, the
attendant CVD risk in such individuals remains high (2-5-fold that of the general
population), and so treatment of these individuals is essentially the same as for those
with Mendelian forms of FH.

Another clinical mimic of FH is very elevated lipoprotein (a) levels, Lp
(a) [9, 10]. Lp(a) particles also carry cholesterol esters, and so individuals with
very elevated Lp(a) particle number can also have very elevated LDL-c plasma
concentrations. Work from Denmark indicates that in up to 25% of individuals with
phenotypic FH, it may be due to Lp(a) [9]. This distinction is important for a number
of reasons including family screening. In addition, treatment strategies may also
differ as while Lp(a) is a causal risk factor for CVD, there are not yet specific Lp(a)-
lowering therapies.
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An autosomal-recessive form of severe hypercholesterolemia also deserves men-
tion [11]. Individuals with biallelic mutations in LDLRAPI can present with a
phenotype that is clinically indistinguishable from FH caused by LDLR mutations
including presence of xanthomas, severe LDL-c elevations, and early-onset coronary
disease. However, in this case, heterozygote carriers are unaffected.

6.3 Cascade Screening (Family-Based Screening)

After identification of a proband, initiation of cascade screening to assess family
members is critical [6]. First-degree family members should be approached promptly
with the assistance of the proband and/or the clinic team, and assessed for FH with
plasma lipid screening and (potentially) genetic testing, particularly if the index
mutation is known. Screening should be extended to second- and third-degree
relatives as well. Genetic counseling should be part of the initial treatment plan to
help the proband (and family) understand FH, their pedigree (including at-risk
relatives), the inheritance of the disease, and health implications. All genetic testing
should include pretest genetic counseling that addresses financial considerations of
testing, interpretation of genetic tests, and limitations of testing. Counseling may
also help in situations involving a proband requesting nondisclosure of test results to
family to help understand balancing personal preferences regarding disclosure with
potential benefit to family members [6].

6.4  Population Screening

An existing challenge in the management of FH is determining the optimal popula-
tion screening approach to identify index FH patients, particularly in children.
During childhood, the American Academy of Pediatrics recommends universal
screening for FH with serum lipid measurements [12]. These recommendations are
not universal as the United States Preventive Services Task Force (USPSTF) notes
that there is insufficient evidence to assess the balance of risks and harms of lipid
screening in children [13]. A recent study from the United Kingdom (UK), in which
10,095 children were screened with lipid levels and gene sequencing during routine
immunization visits between 1 and 2 years of age, demonstrated that for every 1000
children screened, 4 adults and 4 children (8 persons total) were diagnosed with
FH. The authors estimated a cost of $2900 per person identified as having positive
screening results based on their screening protocol, assuming that lipid testing costs
$7 and DNA sequencing costs $300 per sample. For adults, universal screening for
FH is not current practice. However, the USPSTF does recommend lipid screening
in men over 35 and women over 45 and even earlier for those with a family history of
coronary heart disease [14].
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Table 6.1 Known genetic variants associated with FH [6, 7]
Estimated proportion of FH
Gene Mechanism leading to FH phenotype attributed to genetic variant

LDLR Loss-of-function mutations lead to absent or 60-80%
impaired LDLR function, leading to decreased
LDL-c uptake by hepatocytes and thus elevated
circulating LDL-c levels

APOB Mutations lead to impaired binding between 1-5%
lipoproteins and LDLR, leading to decreased LDL-c
uptake by the liver and increased circulating LDL-c
levels

PCSK9 | Gain-of-function mutations cause increased LDLR 0-3%
degradation and, thus, decreased LDLR function and
increased circulating LDL-c levels

6.5  Genetics and Pathophysiology

The most common pathogenic genetic variants associated with FH are mutations of
LDLR, which accounts for >80% of FH cases. Mutations of APOB and PCSK9
genes have been described as well, though are less common (Table 6.1).
Low-density lipoprotein (LDL) particles are major carriers of cholesterol in the
body and contain a single apolipoprotein B molecule which mediates clearance of
these LDL particles by binding to LDL receptors (LDLR) on liver cells. Upon
binding the ApoB-containing lipoprotein, the LDLR/lipoprotein complex is
internalized via endocytosis and directed to the lysosome where the cholesterol is
degraded and the LDLR subsequently recycled to the surface of the hepatocyte.
Normally circulating PCSK9 (proprotein convertase subtulisin/kexin type 9 protein)
binds to the LDLR which ultimately targets the LDLR for degradation, preventing
recycling to the surface of the hepatocyte [6]. Thus, mutations of LDLR and APOB
that prevent LDL uptake, along with mutations of PCSK9 that promote LDLR
degradation, cause severely elevated LDL-c levels, creating the FH phenotype.

6.5.1 LDL Receptor

While investigating the genetic basis for FH, Goldstein and Brown identified the
LDL receptor (LDLR), work for which they were awarded the Nobel Prize in
Physiology or Medicine in 1985 [15]. LDLR is a transmembrane glycoprotein
containing 839 amino acids, with six functional domains: signal peptide, ligand-
binding domain, epidermal growth factor precursor (EGFP) like, O-linked sugar,
transmembrane, and cytoplasmic domain [16]. The LDLR gene is located on chro-
mosome 19p13.1-13.3 [6, 16] and contains 18 exons and 17 introns with a length of
45,000 base pairs. The transcription of the LDLR gene is controlled through a
negative feedback mechanism mediated by intracellular cholesterol content.
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LDLR mutations are the most common genetic variants associated with FH
[17]. There have been over 1500 characterized mutations of LDLR resulting in FH
in the University College London and ClinVar databases [18], with the majority
being exonic substitutions. Most variants appear to fall within the EGFP-like and
ligand-binding domains [7]. Based on their cellular site of impact, LDLR mutations
have been previously classified into 6 types: Class 1—absence of synthesis of
receptor or precursor protein; Class 2—absent or impaired formation of receptor
protein; Class 3—abnormal LDL binding with normal receptor protein synthesis;
Class 4—absence of internalization of the receptor complex and clustering in coated
pits; Class 5—impaired recycling of receptors, with rapid degradation; and Class
6—impaired targeting of receptors to basolateral membrane [6, 19, 20]. There is
increasing evidence that there is a generally graded relationship between the severity
of mutation and the severity of the disease presentation (genotype/phenotype corre-
lation) with more severe (i.e., loss of function) LDLR mutations conveying higher
risk compared to amino acid substitutions [21]. However, because LDL-c levels are
also controlled by other genetic and environmental influences, we currently do not
specifically tailor therapeutic decisions based solely on mutation status.

6.5.2 Apolipoprotein B-100

Apolipoprotein B-100 (APOB) is the specific ligand responsible for binding to
LDLR during LDL-c uptake by liver cells. Mutations of APOB that result in
impaired binding to LDLR have been associated with autosomal-dominant FH
phenotypes similar to those associated with LDLR mutations [22, 23]. This has
sometimes been referred to as familial defective apolipoprotein B (FDB). APOB
mutations have been reported to have a milder phenotype compared to those from
severe LDLR mutations [7].

APOB is a protein with 4560 amino acids with four functional domains. The
APOB gene spans 42,216 base pairs, with 29 exons and 28 introns. The majority of
APOB mutations resulting in FH have been described in exon 26 [22], although
mutations in other regions have also been reported recently, such as in exon
3 [23]. Exon 26 is responsible for more than half the APOB protein, spanning
over 7000 base pairs [7]. Certain founder populations, such as Amish, have been
found to have higher prevalence of APOB mutations [24]. By far the most common
pathologic mutation in APOB is a single amino acid substitution (Arg3500GlIn)
which affects binding to the LDLR [25, 26]. Of note, other mutations of APOB
can result in very low LDL-c levels, associated with a condition termed familial
hypobetalipoproteinemia [27].

6.5.3 Proprotein Convertase Subtulisin/Kexin Type 9

PCSKO is a circulating peptide that targets the LDLR for lysosomal degradation
within liver cells. The PCSK9 protein consists of 692 amino acids and three
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domains, with a gene spanning 25,378 base pairs and 12 exons [7]. PCSK9
mutations associated with FH were initially described in 2003 in French families
with autosomal-dominant hypercholesterolemia in whom LDLR and APOB
mutations were ruled out [28]. Gain-of-function PCKS9 mutations have been
associated with FH, as increased PCSK9 activity leads to reduced LDLR function,
resulting in high circulating LDL-c levels [17]. Compared to LDLR mutations,
PCSK9 mutations are thought to be much rarer genetic causes of FH. Of interest,
loss-of-function mutations of PCSK9 can lead to low LDL-c levels and a subsequent
reduction in coronary events [29].

6.6 Clinical Presentation

6.6.1 HeFH

Given a lifetime of severely elevated LDL-c levels, HeFH patients are at significant
risk for premature coronary disease and mortality compared to the general popula-
tion. In the prestatin era, the risk of coronary events in those with FH aged
20-39 years was 125-fold higher in women and 48-fold higher in men compared
to those with normal lipid levels [4, 30]. Men with untreated FH have a 50% risk of a
coronary event by age 50, and women with untreated FH carry a 30% risk of a
coronary event by age 60 [7]. Diagnosis in childhood is usually reliant on highly
elevated LDL-c measurements (such as those greater than 190 mg/dl) [31]. HeFH
can present as angina and myocardial infarctions in adults as early as during the third
decade of life [6]. Physical examination findings include stigmata of lifelong
severely elevated LDL-c levels, such as arcus cornealis and tendon xanthomas.
The presentation of HeFH can be variable, with some patients presenting late in
adulthood and others presenting earlier [6]. For reasons that are not clear, the risk of
stroke in HeFH patients is not appreciably higher than in the general population.

6.6.2 HoFH

Homozygous FH patients have LDL-c levels usually in excess of 400 mg/dl in early
childhood and thus can present as early as the first or second decade of life with
coronary heart disease [6]. Presentations range from the presence of striking physical
examination findings such as cutaneous xanthomas during childhood, to myocardial
infarctions and sudden death during the first decade of life. Interdigital xanthomas,
particularly between the thumb and index finger, are considered pathognomonic for
HoFH [32]. Clinical diagnosis of HoFH is based on the presence of cutaneous or
tendon xanthomas at an early age (<10 years) together with untreated LDL-c greater
than 500 mg/dl, treated LDL-c greater than or equal to 300 mg/dl, or a nonhigh
density lipoprotein cholesterol level greater than or equal to 300 mg/dl [32]. Because
cholesterol can be deposited in multiple areas (including coronary arteries, aortic
valve cusps, aortic root, other major arteries, tendons, and cutaneous tissues), aortic
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Table 6.2 MEDPED criteria for the diagnosis of FH [33]

191

General
population First-degree Second degree Third degree
(mg/dl; mmol/ | relative with FH relative with FH relative with FH
Age L) (mg/dl; mmol/L) (mg/dl; mmol/L) (mg/dl; mmol/L)
Less 270; 7.0 220; 5.7 230; 5.9 240; 6.2
than
20
20-29 1 290;7.5 240; 6.2 250; 6.5 260; 6.7
30-39 | 340;8.8 270; 7.0 280; 7.2 290; 7.5
40 or 360; 9.3 290; 7.5 300; 7.8 310; 8.0
greater

The diagnosis is made if total cholesterol level exceeds the relevant threshold, expressed below in
mg/dl and millimoles per liter (mmol/L)

Table 6.3 Simon-Broome registry criteria for diagnosis of FH [30]

Definite FH

Total cholesterol >290 mg/dl or LDL-c > 190 mg/dl in adults, OR

Total cholesterol >260 mg/dl or LDL-c > 155 mg/dl in a child under 16 years of age
PLUS

Tendon xanthomas in patient or first- or second-degree relative, OR

DNA-based evidence of functional LDLR, APOB, or PCSK9 mutation

Possible FH

Total cholesterol >290 mg/dl or LDL-c > 190 mg/dl in an adult, OR

Total cholesterol >260 mg/dl or LDL-c > 155 mg/dl in a child under 16 years of age
PLUS

Family history of MI before 50 years of age in a second-degree relative or 60 years of age in a first-
degree relative, OR

Family history of total cholesterol >290 mg/dl in adult first- or second-degree relative,

or > 260 mg/dl in a child or sibling under 16 years of age

A diagnosis of either definite FH or possible FH can be made based on the criteria met by the
proband

valve disease—including aortic and supravalvular stenosis—is an important consid-
eration in these patients in addition to coronary disease. Early recognition and
treatment is critical, as untreated HoFH can quickly lead to clinically significant
coronary artery and aortic valve disease [6].

6.7  Diagnosis

There are three widely known country-specific criteria for the diagnosis of FH: The
US Make Early Diagnosis to Prevent Early Deaths (MEDPED) criteria (Table 6.2)
[33], the UK Simon Broome register criteria (Table 6.3) [30], and the Dutch Lipid
Clinic Network criteria (Table 6.4) [34]. Detailed history, physical examination, and
appropriate laboratory testing—including genetic testing—are all key components
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Table 6.4 Dutch Lipid Clinic Network scoring criteria for diagnosis of FH [34]

Score
(points)
Family history
First-degree relative with premature coronary and/or vascular disease (men 1
<55 years, woman <60 years), OR
First-degree relative with known LDL-c > 95th percentile for age and sex
First-degree relative with tendon xanthoma and/or arcus cornealis, OR 2
Children 18 years of age or younger with LDL-c > 95th percentile for age and sex
Clinical history
Patient with premature coronary artery disease (as defined above) 2
Patient with premature cerebral or peripheral vascular disease 1
Physical examination
Tendon xanthomas on exam 6
Arcus cornealis at age 45 or younger 4
LDL-c in mg/dl (mmol/L)
330 (8.5) or greater 8
250-329 (6.5-8.4) 5
190-249 (5.0-6.4) 3
155-189 (4.04.9) 1

Genetic testing
Functional LDLR, APOB, or PCSK9 mutation 8

Based on the total score, the diagnosis of definite FH (8 or more points), probable FH (6-7 points),
possible FH (3-5 points), or unlikely FH (less than 3 points) is made

of establishing a clinical diagnosis of FH [35]. The relevance of these criteria may be
limited, however, due to improved anticholesterol therapies and recent secular trends
in the United States. For example, the prevalence of physical examination findings
such as xanthomas appears much lower than before, from the Spanish Familial
Hypercholesterolemia Longitudinal Cohort Study or SAFEHEART registry [36—
38], and there is concern that accurate family histories are becoming more challeng-
ing to obtain based on data from the Cascade Screening for Awareness and Detection
of FH or CASCADE FH registry [1, 36].

6.8 Management

The mainstay of FH therapy is cholesterol lowering through lifestyle modification
and pharmacotherapy.

6.8.1 HeFH

Statins are the first-line therapy for FH and should be used in all adults with FH and
sometimes in children [39]. The addition of nonstatin lipid-lowering therapies such
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as ezetimibe, bile acid sequestrants, and newer therapeutics including PCSK9
inhibitors is often required. In fact, data from national and international registries
(SAFEHEART, CASCADE FH, and The Netherlands) suggest that less than half of
FH patients can achieve optimal LDL-c on statins alone [1, 37].

HeFH patients experience a notable reduction in morbidity and mortality with the
use of appropriate cholesterol-lowering therapy. Statin-based therapy is the mainstay
for treatment and was associated with a 37% reduction in coronary heart disease-
related mortality in a prospective cohort study of 3382 HeFH patients [40]. It has
also been shown that the risk of MlIs in a cohort of statin-treated FH patients (treated
relatively early in life) was not significantly different from that of the general
population [41]. In addition to pharmacotherapy, dietary modification is
recommended as well for HeFH patients, though not likely to achieve adequate
cholesterol lowering by itself [6].

In adults with HeFH for primary prevention, the recommended general treatment
goal with cholesterol-lowering therapy is a reduction in LDL-c levels by at least 50%
[6] though many guidelines suggest targeting an LDL-c of 100 mg/dl. The preferred
cholesterol-lowering agents are statins. A recommended approach to pharmacother-
apy intensification based on the American Heart Association (AHA) Scientific
Statement on FH is to start with a high-intensity statin, such as rosuvastatin or
atorvastatin. If adequate lowering is not achieved with monotherapy after 3 months,
a second agent, ezetimibe may be added. A third agent is indicated if LDL-c
lowering does not reach the target after 3 months of dual therapy, with options
including bile acid sequestrants such as colesevelam and PCSK®9 inhibitors such as
alirocumab or evolocumab which are favored given the much more potent effect on
LDL-c and the decrease in CVD events when added to statins in the FOURIER trial.
It should be noted that randomized controlled trials examining hard endpoints such
as mortality are lacking for adults with FH [42].

With regard to children with HeFH, pravastatin has been approved for use starting
at age 8, and other statins have been approved for children as young as 10 years old
[6]. Randomized controlled trials have confirmed the lipid-lowering efficacy of
statins in children with FH, and statin therapy has also been associated with
favorable changes in markers of atherosclerosis such as flow-mediated dilatation
of the brachial artery and carotid intima media thickness [43, 44]. However,
randomized controlled trials exploring “hard” outcomes such as cardiovascular
mortality or addressing long-term safety profiles of statin use in children are lacking.
Baseline creatinine, creatine kinase, and hepatic enzyme levels are obtained prior to
initiation of treatment [39]. Recommended goal LDL-c levels are <130 mg/dl for
those 10 years or older and a 50% reduction of pretreatment LDL-c levels for
children 8-10 years of age. Hepatic enzymes should be periodically monitored,
and other tests should be performed if there is clinical concern for adverse effects,
such as creatine kinase for myopathy, and fasting glucose levels for diabetes.
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6.8.2 HoFH

Patients with HoFH should generally be referred to a specialist given the severity of
their phenotype. Consensus guidelines have noted LDL-c lowering targets of
<100 mg/dl (<135 mg/dl in children), or <70 mg/dl in adults with atherosclerotic
cardiovascular disease (ASCVD) [45].

Therapies such as statins or ezetimibe, however, have had relatively modest lipid-
lowering impact in HoFH patients especially in those with null mutations in the LDL
receptor. Statins are estimated to reduce LDL-c by only 10-25% in most HoFH
patients [6], albeit still associated with significant reduction in mortality [46]. The
addition of ezetimibe has been estimated to provide only an additional 10-15%
LDL-c reduction [6]. PCSK9 inhibitors may be beneficial for HoFH patients with
defective (rather than null) LDLR activity given that impaired PCSK9 activity may
lead to decreased LDLR degradation and increased LDLR function [4, 47].

Lipoprotein apheresis—removal of lipoproteins from the circulation—is an
option for those who are unable to achieve treatment goals with pharmacotherapy
[31] (generally reserved for HoFH). Guidelines recommend that apheresis be con-
sidered for all patients with HoFH, particularly children and no later than age 8, and
often as soon as possible [39]. The AHA Scientific Statement on FH outlines certain
indications for initiation of apheresis including LDL-c reduction of less than 50%
with other pharmacotherapy and a residual LDL-c greater than 200 mg/dl with
cardiovascular disease, or greater than 300 mg/dl [6].

In addition, novel therapeutics, such as PCSK9 inhibitors, mipomersen, and
microsomal triglyceride transfer protein (MTTP) inhibitors such as lomitapide,
have shown promise as additional LDL-c-lowering agents in HoFH, although their
precise role in conjunction with traditional lipid-lowering agents and apheresis is still
being elucidated [4, 6]. Lomitapide is an oral MTTP inhibitor approved by the FDA
in 2012 for adult HoFH patients requiring additional lipid lowering [4, 48,
49]. Mipomersen is another novel first-in-class medication. It is an injectable
synthetic single-strand antisense oligonucleotide analog that binds mRNA encoding
for APOB [49]. Multiple randomized controlled trials have demonstrated the lipid-
lowering efficacy of mipomersen in those with FH [49-51]. Finally, orthotopic liver
transplantation may be a consideration for HoFH children and adults with rapidly
progressive atherosclerosis, those intolerant of other therapies, or those with inade-
quate LDL-c-lowering despite other therapies. While there is an absence of trial
evidence addressing the role of transplantation, case reports have noted favorable
outcomes such as rapid normalization of LDL-c levels [6, 52, 53].

6.9 Summary of Key Points

¢ Familial hypercholesterolemia is an autosomal-dominant condition resulting in
severely elevated levels of total cholesterol and LDL-c associated with premature
coronary artery disease, myocardial infarctions, and aortic valve disease
manifesting in childhood or early adulthood.
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* Pathogenic variants of the gene associated with the LDL receptor (LDLR) are the
most common genetic mutations associated with the FH phenotype.

e Mutations of the genes encoding for apolipoprotein B-100 (APOB) and the
proprotein convertase subtulisin/kexin type 9 protein (PCSK9) have been
associated with FH as well.

* Patients with clinical FH who are negative for pathogenic LDLR, APOB, and
PCSK9 variants may have multiple mutations in various LDL-c lowering genes,
i.e., a polygenic cause. Elevated lipoprotein (a) levels may also mimic the FH
phenotype.

* Clinical criteria for the diagnosis of FH include the US MEDPED criteria, the UK
Simon Broome registry criteria, and the Dutch Lipid Clinic Network criteria.

* Genetic testing for culprit mutations of LDLR, APOB, and/or PCSK9 is an
important part of the diagnosis of FH.

* Once a diagnosis is made, cascade screening and genetic counseling should be
promptly initiated.

e Heterozygous FH should be treated with early lifestyle modification and
cholesterol-lowering therapy starting with statins (pravastatin starting at age
8 and other statins starting at age 10) and often require additional nonstatin
lipid-lowering therapies to achieve adequate LDL-c lowering. Lipoprotein aphe-
resis—the removal of lipoproteins from circulation—should be considered if
traditional lipid-lowering therapies are not tolerated or are not efficacious or not
tolerated.

* Homozygous FH can be recalcitrant to traditional lipid-lowering therapies, and
these patients may require early consideration of lipoprotein apheresis, along with
novel therapeutics such as mipomersen, lomitapide, and PCSK9 inhibitors.

¢ Orthotopic liver transplantation has shown favorable results in case reports of
patients with FH.
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Abstract

Recent advances in high-throughput sequencing of nucleic acids have led to the
fascinating insight that the majority of the human genome is transcribed. This
includes tens of thousands of RNAs sized larger than 200 nucleotides that are not
translated into proteins and are referred to as long noncoding RNAs (IncRNAs).
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Until now, only a few of these IncRNAs have been functionally characterized. Here
we highlight IncRNAs related to cardiovascular physiology and disease (CVD).
We start with an overview of IncRNA classification schemes and of molecular
functions of IncRNAs, giving examples of IncRNAs with cardiovascular function
in each class. The main focus then is to systematically review 57 IncRNAs
implicated in atherosclerosis, myocardial infarction, aortic aneurysm, cardiomyop-
athy, angiogenesis, arrthythmia, and stroke. We discuss the evidence how these
IncRNAs partake in the regulation of cell lineage specification, differentiation
potential, cell proliferation, and cell survival in the cardiovascular cell lineages.
Specific emphasis is put on recently published IncRNA knockout approaches, and
on IncRNAs that have been implicated as important regulators in animal in vivo
models of cardiovascular diseases and/or identified in human patient cohorts.

7.1 Introduction

For a long time, proteins have been considered the main functionally active
molecules in mammalian cells. Yet, in a few selected cases, functionally important
non-protein-coding cellular RNAs had been identified. Most prominently, the long
noncoding RNA (IncRNA) XIST has been known for decades to be essential for
establishing X-chromosome inactivation in female mammals, and studies on XIST
have become blueprints for approaches in studying IncRNA function (see [1] for
review). Similarly, several noncoding RNAs have been identified early on in several
important imprinted gene clusters, among them RNAs with relevance for cardiovas-
cular disease, like H19, Meg3, or Kcnglotl. Their study has inspired more recent
investigations on how IncRNAs interact with chromatin regulators and affect tran-
scription. But only with the advent of high-throughput nucleic acid sequencing
analyses in the 2000s, and soon after the detection of the large class of regulatory
small interfering RNAs and microRNAs, IncRNAs have entered the focus of the
investigation on a genome-wide scale. It is becoming clear by work of the ENCODE
or FANTOM consortia that protein-coding genes account for only as little as 1.5% of
the genome. In recent years, thousands of IncRNAs have been identified. LncRNAs
are transcribed from thousands of previously unannotated non-protein-coding
genes in our genomes [2—5]. This raises the question if and to what extent the many
thousands of IncRNA transcripts are functional. Whether only few or many of these
IncRNA transcripts carry cellular functions is a matter of currently ongoing research.

Overall, on a molecular level, it seems that IncRNAs do not have catalytic
ribozyme functions. Only ribosomal RNAs (rRNA) and small nuclear RNAs
(snRNA) function as catalytic entities in ribosomes and the spliceosome, respec-
tively. Rather, IncRNAs serve as regulators of other molecules by binding to them.
In this function, and as will be reviewed in detail in this book chapter, IncRNAs
guide protein complexes to specific DNA sequences, or scaffold multiprotein
complexes, or increase or inhibit the activity of enzymes, or affect mRNA
stability and translation capacity. In functional terms, a growing number of
IncRNAs are being found to impact the development of cardiovascular cell types
and organs in the vertebrate embryo. To name a few, Braveheart [6] Fendrr [7],
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Upperhand [8], and HoxBlinc [9] are important recently identified IncRNAs in this
class. Other IncRNAs, in some cases first identified in independent systems like in
cancer models or in generic cellular screens, were then also found to be misexpressed
in diseases of the heart or vasculature and to causally contribute to cardiovascular
disease. ANRIL [10-12], MALATI [13, 14], Myheart [15], Chaer [16], lincRNA-p21
[17], CARL [18], CARMEN [19], Rffl-Incl [20], and ROR [21] are prominent
examples of this latter class. Extending the compendium of IncRNAs, recent
experiments have documented that besides the thousands of linear IncRNAs,
thousands of genes also express circular RNAs (circRNAs), most of which are
noncoding [22]. circRNAs emerge from unconventional backsplicing (tail-to-head
splicing) of a downstream exon to a more upstream-located exon, resulting in
covalent linkage of RNA in cis by a covalent 3'-5" phosphodiester bonding. Com-
pared to linear IncRNAs, an even smaller number of circRNAs has been functionally
studied. But from the little existing insight it has become clear that also some
circRNAs, though not encoding proteins, can carry regulatory functions and con-
tribute to cardiovascular disease when misregulated, such as circRNAs emerging
from the ANRIL locus on the well-known cardiovascular risk region on chromosome
9p21 [23, 24].

7.2 General Characteristics and Classification of IncRNAs

Here we describe the molecular characteristics of IncRNAs, linear and circular
(Sects. 7.2.1-7.2.2.8), and their well-known molecular functions (Sects. 7.3.1—
7.3.10), always by focusing on the description of those IncRNAs that have been
implicated in cardiovascular physiology and disease. Their specific roles in physiol-
ogy and cardiovascular disease are described later (Sects. 7.4.1-7.4.2.7) following
the introductory parts on classification and molecular function.

7.2.1 Characteristics of IncRNAs

IncRNAs have been defined rather arbitrarily by a length >200 nucleotides (nts), a
threshold rooting in cutoffs during biochemical separation from shorter RNAs like
microRNAs using a commercial DNA/RNA isolation kit [25, 26]. Earlier function-
ally annotated noncoding RNAs, such as ribosomal RNA, transfer RNAs, small
nuclear RNAs, small nucleolar RNAs, microRNAs, endogenous small interfering
RNAs, or Piwi-associated RNAs, even when >200 nts, are not classified as
IncRNAs [27] (see Box 7.1 for a list of general characteristics of IncRNAs). The
key criterion for being a IncRNA is that, firstly, IncRNAs do not carry prominent
open reading frames for protein translation. Secondly, IncRNAs are unlikely to be
translated into proteins even when carrying open reading frames. In fact, although a
significant number (50%) of IncRNAs do associate with ribosomes, this association
is not productive, and no translation ensues [28]. Over 27,000 IncRNA genes are
predicted to exist in humans, leading to over 100,000 different IncRNA transcripts
(https://Incipedia.org) [29]. This number rivals the number of protein-coding genes
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in our genomes (19,817; www.ensembl.org), feeding the hypothesis that much of
our organismic complexity as higher metazoans may be related to the function of
noncoding RNAs [30]. A common question is whether IncRNAs are more likely to
act in the nucleus or in the cytoplasm. When assessing the transcript abundance of
1339 robustly expressed IncRNAs and of 13,933 mRNAs on a genome-wide scale,
17% of the tested IncRNAs were found to be exclusively localized to the nucleus, a
ratio that is slightly but significantly larger than the ratio of exclusively nuclear
protein-coding mRNAs among all mRNAs (15%). In contrast, the frequency of
exclusively cytoplasmic IncRNAs is small (4%) compared to mRNAs (26%). Still a
majority of IncRNAs and mRNAs are present in both nucleus and cytoplasm [31-
34]. One exception is the class of circular IncRNAs (circRNAs, see below), which
are mainly cytoplasmatic [22, 35]. Overall, the cellular localization patterns do not
indicate a preferred subcellular compartment of function for the class of IncRNAs.
Instead IncRNA function appears to be highly diverse. Also, on average, IncRNAs
are similarly stable compared to coding mRNAs, and only specific classes of
IncRNAs, few in the overall IncRNA number, qualify as being specifically unstable,
as specified below [36].

Box 7.1 Characteristics of IncRNAs
* Up to 93% of the human genome is transcribed [2-5]
e >200 nucleotides in length [25, 26]
* LncRNAs are a heterogeneous class of tens of thousands of noncoding
transcripts [29, 37]
» Similarity to protein-coding mRNAs [37]:
— RNA polymerase II transcripts
— Expressed from genes and organized in exons that are defined by
chromatin states alike protein-coding mRNAs
— Carrying 5'cap (depending on class)
— Spliced and displaying 3’ polyA tails (depending on class)
* Unique features:
— Unlikely to carry open reading frames >300 nucleotides (see text for
details) [38, 39].
— Shorter than mRNAs on average, with fewer but longer exons [31].
— Expressed at lower levels [40].
— Faster primary sequence evolution than mRNAs, but still often with
orthologs in other species [41].
— Less efficient splicing compared to mRNAs [42].
— 95% of IncRNAs do not productively associate with translating
ribosomes [28].
— Prominent tissue-specificity [31] and potential to regulate gene expres-
sion in cis and in trans [37, 43—46].
— Sometimes specialized 3’ ends (polyA-independent; triple helices,
tRNA/snoRNA-like ends) [47].
— A large class of IncRNAs can be circular (5’ and 3’ ends are covalently
linked; circRNAs do not have 5’ cap or polyA tail) [22].
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7.2.2 C(Classification of IncRNAs

An important approach in trying to grasp the diversity of IncRNA function is to
classify IncRNAs according to the location of their gene bodies in the genome.
This relates to the observation that in many cases the relative positioning of IncRNA
genes to other functional elements nearby is important. For example, a common
function of IncRNAs is to affect the transcription of nearby genes, either directly or
indirectly, by influencing enhancers or the local chromatin state at promoters. How-
ever, there is more than one classification scheme, and IncRNAs may also be grouped
according to their molecular biogenesis, or their type of functionality, and the group
affiliation changes depending on the grouping principle (see Box 7.2 for different
classification schemes). In the following paragraphs we present the major classifica-
tion scheme for IncRNAs that roots in the genomic organization of genes encoding
these noncoding RNAs relative to neighboring protein-coding gene elements.

7.2.2.1 Large Intergenic Noncoding RNAs (lincRNAs)

The genetic loci of lincRNAs do not overlap with protein-coding genes. lincRNAs
are on average 1 kb long, contain exons, and are polyadenylated and spliced.
Compared to mRNAs, lincRNAs are not as efficiently co-transcriptionally spliced
and not so well polyadenylated [40, 48]. As a consequence, without efficient
end-processing and when still carrying introns, such types of lincRNAs can be
unstable and become subject to early degradation by the nuclear exosome, the
major RNA degradation complex [48]. The degradation process can become active
even before lincRNA transcription is terminated. However, a number of lincRNAs,
even when lacking a polyA tail can become stabilized by unconventional molecular
features, such as structured RNA folds at their 3’ ends. For example, backfolding into
RNA triple helices, tRNA-like or snoRNA-like folds, can stabilize certain lincRNAs
[47, 49-51]. Several noncoding RNAs have been identified as lincRNAs and have
later been implicated in cardiovascular disease, such as MALATI [13, 14, 47],
lincRNA-p21 [17], Chaer [16], ROR [21], HOTAIR [52], Rncr3 [53], Gas5 [54],
Mirtl [55], UCAI [55], linc00305 [56], and lincRNA-DYNLRB2-2 [57]. Among
these, MALATI is an especially well studied case where unconventional 3’ end
processing determines the 3’ end: MALAT] is not polyadenylated after endonucleo-
lytic cleavage as the vast majority of long RNA polymerase II transcripts, but it is
end-processed by RNase P, which cleaves off a tRNA-like RNA-fold from the 3’
end. After that cut, an A/U-rich sequence is exposed that stabilizes MALATI RNA
by folding into a triple helical RNA structure that stabilizes MALAT]I in the absence
of a polyA tail [47].

7.2.2.2 Natural Antisense Transcripts (NATs, asRNAs)

A large majority of transcripts in our genomes represent natural antisense transcripts
(NATs, asRNAs) relative to neighboring transcripts. NATs are encoded on the
strand opposite to the strand transcribed in the primary locus. Mostly on the
edges of the host gene, NATs can either overlap the promoter or the terminator of a
neighboring primary locus. NATS are less frequently spliced or polyadenylated than
mRNAs or lincRNAs [58-65]. Examples with relevance to cardiovascular
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physiology and disease are ANRIL [66], SENCR [67], MALATI [68] MANTIS [69],
Mpyheart [15], HOXC-AS1 [70], HIF1aAS1 [71], KCNQI1OTI [72], and FosDT [73].

7.2.2.3 Promoter Upstream Antisense Transcripts (PROMPTS, uaRNAs)
There is a rather diverse class of IncRNA emerging from regions 5’ to promoters of
established genes, and specifically in antisense orientation to these. These RNAs are
termed promoter upstream transcripts (PROMPTS), and are also known as upstream
antisense RNAs (uaRNAs) [74-76]. They are expressed in an antisense direction
because mammalian RNAP II transcription initiation sites, both at promoters and at
enhancers, typically contain oppositely oriented core promoter elements within a
single nucleosome-depleted region that defines these transcription start sites. These
transcripts are diverse in size and are 5’ capped. Transcription upstream of promoters
likely occurs because many gene promoters consist of two separate core promoter
elements, which drive divergent transcription events. Often, only the major direction
of transcription leads to productive elongation and to stable RNAs. PROMPTS/
uaRNAs are rather unstable due to the absence of transcription start site (TSS)-
proximal 5 splice sites in sequences upstream of promoters. They are also unstable
because of the premature occurrence of TSS-proximal polyA sites. As a conse-
quence, they are degraded rapidly by the nuclear exosome [74]. Before the class of
uaRNAs was identified and coined in vertebrate genomes, similar unstable upstream
RNAs had been found in yeast and named differently: Yeast has two major types of
these transcripts. First, there are cryptic unstable transcripts (CUTs). CUTs are
expressed in the opposite direction from nonoverlapping bidirectional promoters
and their ends can lie in the starts of other genes [61, 77]. The expression of CUTs is
limited by rapid degradation [78]. Secondly, hundreds of stable unannotated
transcripts (SUTs) exist in yeast [79]. As such, CUTs and SUTs also belong to the
previously mentioned class of antisense RNAs [44, 80]. PROMPTs and uaRNAs
occur in all gene classes, in principle, and thus have not been specifically studied in
the context of cardiovascular disease or cardiovascular genes or IncRNAs. An
exception is the IncRNA Upperhand, whose expression from a bidirectional pro-
moter, shared with the cardiac transcription factor Hand?2, is involved in its role in
cardiac development [8]. Also ANRIL shares a bidirectional promoter with p/4, but
no conclusive insight into the relevance of this positioning has yet been
published [66].

7.2.2.4 Enhancer RNAs (eRNA) and Activating Noncoding RNAs
with Enhancer Function (ncRNA-a)

As the fourth class of IncRNAs, enhancers of genes have been found to be transcribed.
As a consequence, enhancer elements in the genome express enhancer eRNAs in 5’
and 3’ direction [81-84]. eRNAs are 50-2000 nts long and do not carry 5’ cap or
polyA tail [85]. The classification of eRNAs is at the moment not satisfactorily
resolved, as many eRNAs do not appear in IncRNA databases like GENCODE
[31, 85]. This could be due to the fact that eRNAs are rather unstable and often present
at even lower levels than other IncRNAs [85]. In fact, eRNA analysis requires
different, more sensitive and specialized biochemical preparation methods (CAGE
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[86, 87], GRO-seq [82], or PRO-seq [88, 89]). Apart from true eRNAs, a number of
IncRNAs have been found, called ncRNA-a, that are not classified as eRNAs, but,
similar to enhancers, stimulate targets genes in their vicinity [89]. Up to 3000 bona fide
IncRNAs from ENCODE databases exist, whose initiation sites overlap predicted
enhancers, as determined by the H3K4mel and H3K27 acetylation during chromatin
profiling approaches [90]. With relevance to the cardiovascular system, Carmen [19],
Wisper [91], and Upperhand [8] have been proposed to function by enhancing
transcription as enhancer RNAs. Also, HOTTIP [92], linc-HOXAI [93], and SMILR
[94] activate genes in their immediate neighborhood, but it is not clear whether as
eRNA or ncRNA-a or by another mechanism.

7.2.2.5 Long Intronic ncRNAs

The fifth class of IncRNAs is encoded within introns of some multi-exon genes and
these are called long intronic ncRNAs [4, 95]. Overall, their expression is not a
passive bystander to the expression of their parental gene, but they display a
differential expression. A subclass of intronic ncRNAs is stable intronic sequences
(sisRNAs), which is a broad class of noncoding RNAs that comprises both linear as
well as circular RNAs [96, 97].

7.2.2.6 Transcribed Pseudogenes

The sixth class of IncRNAs can be defined as transcripts of a subset (2-20%) of
pseudogenes [4]. Pseudogenes have originated in evolutionary history through
tandem duplication of a parental gene or retrotransposition of an mRNA of a
protein-coding gene. Without the selective pressure of encoding a protein, the rate
by which mutations were retained in them increased. As a consequence, most
pseudogenes have been inactivated and are not expressed anymore. The best-studied
example is the Xist RNA, which also has a function in the cardiovascular system, and
has emerged through a complex process from a pseudogenized protein-coding gene
[98]. On the other hand, when expressed, transcribed pseudogenes can exert
regulatory functions as IncRNAs and possibly affect their coding host genes [99].

7.2.2.7 Circular RNAs

Based on advances in RNA/DNA sequencing and in bioinformatics tools to map
transcriptomes onto genomes, it has been revealed that thousands of genes express
circular circRNAs [22]. As much as 20% of all genes expressed at any point in cells
produced circRNAs [100-102]. These are produced by spliceosomal action from
multiexon host genes: Instead of conventional colinear splicing of exons in their
genomic 5 — 3’ order, where introns are excised and later degraded as intronic
lariats, an atypical form of splicing (backsplicing) occurs during the biogenesis of
circRNAs: A downstream exon is ligated to a more upstream exon, causing a
covalent 3' — 5’ linkage of exonic sequences (see [103] for review). circRNA
molecules are rather stable because they are not accessible anymore by cellular RNA
degradation machineries, which are primarily exonuclease based (see [104] for
review). circRNAs vary in size, but are >500 nucleotides on average [100], and
thus classify as IncRNAs, though not usually reviewed together. In contrast to linear
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IncRNAs, circRNAs are mostly cytoplasmic [22]. One important function of
circRNAs is to control transcriptional initiation and splicing in the nucleus, but
also cytoplasmic functions have been documented (see in detail below). So far, only
a few circRNAs have been part of studies that explored functions in the cardiovas-
cular system in vivo, and these include circANRIL [23, 24], HRCR [105], and
MFACR [106].

7.2.2.8 IncRNAs with Translated Small Open Reading Frames (sORFs)
Though generally not encoding classical protein-coding open reading frames (ORFs)
much longer than 300 nts, small ORFs do occur by chance in any sufficiently long
RNA transcript, and even in the most classical IncRNA, Xisz [39]. Only the develop-
ment of ribosome release profiling technology has since firmly documented that
IncRNAs may associate with ribosomes, but that 95% of IncRNAs are indeed not
functionally translated [28]. This means also, however, that hundreds of IncRNAs
are potentially protein-coding or at least encoding small peptides. Recent studies
revealed that several hundred micropeptide-encoding short sORFs are potentially
translated from our genomes. Functionally active regulatory and signaling molecules
encoded as true micropeptides have already been found in animals [107-112] and
plants [113]. Together, a continuum seems to exist between noncoding and coding
sequence content in RNA messages [114], but the number of functional translated
sORFs in bona fide IncRNAs is considered rather small overall [115]. Some of the best
understood micropeptide-generating IncRNAs have indeed a function in the cardio-
vascular system, namely, in regulating heart muscle contractility [110, 112, 116].

Since different IncRNA classification schemes are used in the literature, key
concepts in IncRNA classification are summarized in Box 7.2.

Box 7.2 Classification of IncRNAs
» Classification based on neighborhood to protein-coding genes:
— Linear intergenic IncRNAs originating from enhancers (bidirectionally
transcribed and unstable)
— Linear IncRNAs originating from host gene promoters (transcribed
opposite to host mRNAs, unstable)
— Linear IncRNAs as stand-alone genes (more stable, longer)
— Long intronic ncRNAs
— Circular IncRNAs (stable, produced from internal exonic and intronic
sequences of expressed multiexonic genes)
* C(lassification based on molecular biogenesis (see text for explanation of
acronyms):
— lincRNAs
— NATS, asRNAs
— PROMPTS, uaRNAs, CUTs, SUTs
— eRNAs, ncRNA-a

(continued)
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Box 7.2 (continued)
* C(lassification based on function (majority of IncRNAs are functional; see
Fig. 7.1):
— IncRNAs with functions as RNA molecules
— IncRNAs for which transcriptional act executes functionality
— Small minority of IncRNAs that are translated to polypeptides
— Transcription noise

7.3 Molecular Functions of IncRNAs

Here we review IncRNA functions that have been studied in the specific context of
cardiovascular disease (Fig. 7.1). We start with functions in the nucleus (Fig. 7.1a—e)
and then describe functions in the cytoplasm (Fig. 7.1f—j). A majority of IncRNAs
can also directly affect transcriptional initiation and elongation by RNA polymerase
II at promoters of protein-coding genes by scaffolding, tethering, and regulating the
activity of enzyme complexes that modify histone tails or reposition nucleosomes
(Fig. 7.1a). Related to this function, IncRNAs that interact with chromatin regulators
can regulate large-scale chromatin fiber folding and influence repositioning of fibers
relative to heterochromatic subnuclear domains (Fig. 7.1b). Another large fraction of
IncRNAs emerge from enhancer regions of protein-coding genes and determine
enhancer-dependent activation of the promoter of protein-coding genes (Fig. 7.1c¢).
Many other IncRNAs are positioned in the genome in antisense to protein-coding
genes and thereby affect their transcription (Fig. 7.1d). Yet other IncRNAs, but much
fewer in number, are known to participate in splicing regulation (Fig. 7.1e). In the
cytoplasm, some IncRNAs sequester and inactivate mRNA-regulating microRNAs
(Fig. 7.11). Likely for technical reasons in the experimental assessment, much fewer
IncRNAs are known to bind mRNAs and thereby affect mRNA stability (Fig. 7.1g)
or translation potential of mRNAs (Fig. 7.1h). IncRNAs can also bind protein
complexes in the cytoplasm and affect their function, as shown in the example of
circANRIL in inhibiting rRNA and ribosome maturation (Fig. 7.11). Finally, a small
minority of linear and circular IncRNAs actually encode small ORFs and are
translated to micropeptides or larger parts of proteins, depending on the size of the
ORF (Fig. 7.1j). Since no dedicated studies have been performed on the specific
cardiovascular role of IncRNAs functioning as regulators of centromeres or of
telomeres, or in DNA repair, even if important for general cell functionality, we
will not specifically review these latter IncRNAs. In Sects. 7.3.1-7.3.10, we review
each functional IncRNA class in detail. We list cardiovascular IncRNAs in each
functional class (Fig. 7.1), and refer to these classes also in the following paragraphs
on the roles of IncRNAs in cardiovascular physiology and diseases (Sects. 7.4.1—
7.4.2.7; Tables 7.1, 7.2, and 7.3).
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7.3.1 Tethering/Scaffolding/Regulating Chromatin Modifiers

One of the most intensively studied function of IncRNAs is their interaction with
chromatin regulatory proteins during the control of gene transcription (Fig. 7.1a).
This includes interactions with proteins involved in chromatin fiber regulation by
DNA methylation systems or histone tail-modifications, in nucleosome-remodeling,
and in chromatin fiber folding and long-range looping in the 3D architecture of the
nucleus.

The interaction with chromatin regulators is one of the best-understood function
of nuclear IncRNAs. Some of the best-known IncRNAs have been shown to tether
chromatin-regulating complexes to specific sites in the genome, and thereby to
promote or repress transcription of protein-coding genes at selected target genes
(Fig. 7.1a). Besides tethering, another central task in this interaction is the ability of
IncRNAs to scaffold (link together) chromatin-regulating factors, for example, to
link several different chromatin readers and writers to specific genomic loci
[221-226]. Recent experiments show, however, that the picture is more complex
than that: IncRNAs not only specifically activate chromatin regulators, but can also
inhibit them. The hypothesis has formed that at least some of the long noncoding
transcripts in our genome are used to inhibit the activity of chromatin regulators. The
aim is to inhibit aberrant, low-affinity misassociation of chromatin regulators on the
genome. With such a strategy, many nascent RNA transcripts from many types of
genes are employed as noncoding RNAs in making gene expression more
accurate [227].

Examples for IncRNAs that bind chromatin-regulating complexes at protein-
coding gene promoters, and where relevance to cardiovascular pathophysiology
has been established, are: Fendrr binding to both the repressive PRC2 and the
activating TrxG/MLL complexes [7]; Braveheart binding to the repressive PRC2
[6]; Malatl binding the activating MLL, LSDI1, BAF57, and unmethylated
Polycomb 2 proteins in their complexes [206] and indirectly binding to nascent
transcripts of active genes [228]; HoxBlinc binding to the activating Setdla/MLL1
[9]; Xist to at least 10 repressive chromatin-binding and chromatin-regulating protein
complexes including hnRNPK/U, noncanonical repressive PRC1, SHARP/Spen,
SAF-A, and LBR [229, 230]; HI9 binding the repressive MBD1 [200]; ANRIL
binding to activating as well as repressive PRC1 and PRCR2 complexes [191, 192];
lincRNA-p21 binding to repressive hnRNPK [17]; Meg3 binding to repressive
JARID2-PRC2 complexes [204]; Tugl binding to repressive PRC2, RIZI, Sin3A,
and JARIDIA [206]; Kcnglotl binding to repressive PRC2 [210]; MANTIS binding
an activating BRG1-containing SWI/SNF chromatin remodeling complex [69];
HOTTIP binding activating WDRS5/MLL complexes [92]; Carmen binding PRC2
complexes with unclear outcome [19]; Myheart binding and inhibiting the BRG1-
containing SWI/SNF chromatin remodeling complex [15]; Chaer binding and
inhibiting PRC2 [16]; and HOTAIR binding the repressive PRC2 [208]. By
interacting with these chromatin regulators, such IncRNAs can scaffold multiprotein
complexes, tether them to specific genomic sites, serve as decoys during target site
association, and change their activity. In the example of the study of HOTAIR it
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becomes obvious, however, that a careful follow-up analysis is required to confirm
the functional relevance of a previously observed physical interaction with a chro-
matin regulator: While the HOTAIR IncRNA does bind the repressive PRC2 com-
plex without doubt, and while there is a correlation between the presence of HOTAIR
at a genetic locus and the repression of this locus, later decisive experiments
challenged the simple picture that HOTAIR silenced target genes through PRC2.
In fact, it was revealed that PRC2 was not primarily required for HOTAIR-mediated
target gene repression and that PRC2:HOTAIR binding was likely a consequence of
later PRC2 recruitment to an already silenced locus [209]. Therefore, care is advised
in drawing conclusions on effector mechanisms from the many studies that report a
binding of a IncRNA to Polycomb or Trithorax complexes, which are often recruited
to loci to maintain but not to induce chromatin states.

What decides if a IncRNAs acts only in cis on few neighboring genes, and/or also
in trans (on loci on other chromosomes on many targets in the genome)? This
question has begun to be addressed also by studying IncRNAs with cardiovascular
relevance. For example, MALATI, representing one class of IncRNAs, binds with
high affinity to hundreds of target genes [228, 231], as opposed to a different class of
IncRNAs that bind only to a single locus in the genome [232]. It is thought that the
local concentration of a IncRNA on chromatin is decisive for this differential
behavior: Low-abundance IncRNAs interact rather with few genes in close proxim-
ity (like HOTTIP) (Fig. 7.1a), while XIST with 100 copies/cell can spread further
using low-affinity sites, and MALATI with thousands of stable RNA copies can
diffuse also in trans throughout the nucleus and gain access to hundreds of targets
[233]. The presented studies offer blueprints for thinking about how any novel
IncRNAs may dynamically interact with chromatin.

7.3.2 IncRNAs Regulate Long-Range Chromosomal Looping
in the Nuclear Space

How IncRNAs first bind to selected focal genomic points and then spread over larger
domains on the genome to impose long-range gene expression control is currently
being investigated (Fig. 7.1b). The Xist RNA has been instructive to understand
IncRNA spreading over large chromosomal domains, which coincides with
establishing a unique chromatin state over the domain, and with affecting the
three-dimensional folding of the chromosome fiber. Through these processes, the
IncRNA transduces a repressed or active chromatin state over large domains also by
repositioning the chromosomal domain to preexisting repressive or activating
nuclear subdomains. Intranuclear domains of relevance are different repressive
domains (Polycomb bodies, heterochromatic regions close to the nuclear membrane,
etc.) and active domains (interchromatin granules, transcription factories, etc.). How
IncRNAs mediate chromosome fiber folding is a matter of current research, and this
topic is probably best understood for Xist-dependent X-chromosome inactivation.
There, unexpectedly, a small number of only 50 Xist RNA/PRC2 complexes are at
work to compact the nucleosomes over the > 150 megabases long X-chromosome. It
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has been concluded that IncRNA-chromatin interaction is highly dynamic, and a
dynamic hit-and-run model has been invoked to explain spreading and coincident
compaction of long chromosomal domains [233-235]. For spreading over such long
distances, Xist RNA is initially locally stabilized by co-transcriptional binding to
proteins at a nucleation within its own gene body [236]. Only after that it can start
spreading on chromatin in cis. Xist uses the 3D architecture of the chromosome to
spread to noncontiguous loci [237]. In the course of spreading, Xist changes chro-
matin loop structures through evicting cohesin rings which entrap fibers [238]
(Fig. 7.1b).

Conceptually similarly, at least three other cardiovascular IncRNAs affect gene
activity of target genes by determining looping of chromosomal domains
encompassing the target genes. MALATI was found to reposition target genes in
the 3D nuclear space. In particular, MALATI associated with the Polycomb com-
plex member Pc2, inhibited its preferred binding of repressive chromatin marks
inside heterochromatic Polycomb bodies, and thereby led to looping of target genes
into more active interchromatin granules in the nucleus [206]. Kcnglotl is involved
in regulating chromatin loops, in particular by binding two distinct sequences that
are 200 kb apart from each in the Kcngl imprinting locus, an interaction that may
contribute to imprinted monoallelic repression of the Kcngl promoter
[211]. HOTTIP expression and long-range chromosomal looping between the
HOTTIP locus and the 5 HOXA sites correlate with the recruitment of the activating
WDRS5/MLL complexes and expression of the 5 HOXA cluster. Thus, IncRNA
function can involve aspects that apply to single loci as well as to large chromosomal
domains.

Paramount for interacting with chromatin regulatory proteins, for example, dur-
ing folding chromatin fibers, IncRNAs use short conserved and functional
subsegments or secondary RNA structure folds [41, 230, 239-241] (Fig. 7.1a).
As a second general feature, IncRNAs biophysically have more flexible joints than
proteins linkers [242, 243]. Thirdly, IncRNAs can often be highly modular,
exhibiting a number of RNA folds in order to scaffold multiple effectors at once.
The cardiovascular ANRIL IncRNA is such a case, and it can interact with different
repressive Polycomb complexes [192], while using other RNA domains to bind and
regulate other effector proteins [24], or to interact with specific genomic regions
[191]. In an exemplary case that may be generally instructive for the study of
IncRNAs, Xist has been found to be able to interact with an unexpectedly large
(80-250) number of proteins [238]. In these interactions, Xist uses a dozen different
RNA segments that separately recruit, for example, histone deacetylases [229],
methyltransferases [244], ubiquitin ligase complexes [245], and corepressors
[117, 230, 246] and tie the RNA to the nuclear lamina [247], all of which contributes
to the heterochromatinization of Xist RNA-painted chromosomal regions. In the near
future it can be anticipated that some of the recently identified cardiovascular
IncRNAs will be biochemically studied in more detail, and one can expect that the
number of interacting factors and possible effector mechanisms will significantly
increase for each noncoding RNA.
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7.3.3 Regulation of the RNAP Il Preinitiation Complex at Gene
Promoters

The regulation of transcriptional initiation is a multidimensional problem, and
involves DNA, RNA, and chromatin-dependent regulation, all of which are mutually
influencing each other [248, 249]. A major role of IncRNAs in this context is to
regulate the activation of the promoter-bound RNA polymerase II preinitiation
complex. In this context, IncRNAs can contribute to RNAP II regulation at several
levels (Fig. 7.1c): (1) eRNAs stimulate enhancer function, (2) cheRNAs and
ncRNA-a promote enhancer:promoter looping, (3) specialized circular RNAs
(EIciRNAs and ciRNAs) activate the RNAP II holocomplex at promoters, and
(4) other IncRNAs control transcription factor activity.

7.3.3.1 Activation of Promoters by Noncoding Transcription
of Enhancers

Enhancers are known to loop over large distances to allow contact with promoter
regions for specifying spatial and temporal or signal-dependent control of gene
activation [248]. IncRNAs have taken a central role in how enhancers become active
(Fig. 7.1b). The major finding in this respect was that enhancers are transcribed
and express specific enhancer RNAs (eRNAs) [46, 81-83, 250-255]. Functionally,
these eRNAs have been found to function, for example, as decoys for the NELF
complex, a known repressor of the core RNAP II complex, thus promoting tran-
scription [251]. Secondly, eRNAs bind and activate the Mediator complex, the
central protein connector between enhancers and promoters, which also results in
activating the RNAP II preinitiation complex at the promoter [256]. One has to be
cautious, however, because whether enhancer transcription is a cause or conse-
quence of promoter activation needs to be carefully tested in each case [257]. Finally,
it may be the transcriptional act over an enhancer that activates a nearby gene
[250, 258]. To understand this phenomenon, one must consider that during tran-
scription, DNA is partly unwrapped from nucleosomes [259] and such chromatin
opening can affect neighboring genes [43, 250]. As such, much remains to be
learned about how eRNA-like IncRNAs affect looping between enhancers and
promoters. Recent work has revealed how DNA-interacting proteins like CTCF
and cohesin contribute to organizing chromosomes into 1-5 megabase-sized
domains, so-called topologically associated domains (TAD), within which specific
enhancer-promoter interactions can occur. But details of how specificity in the
interaction between enhancer and promoter are constrained, and where IncRNAs
can become active, are not yet fully understood (see [260] for a recent review
on TADs).

7.3.3.2 cheRNAs and ncRNA-a Exert Enhancer-Like Functions

Surprisingly, also conventional genes, either coding or noncoding, can behave as
enhancers [89]. For example, a group of IncRNA genes have been identified by
virtue of the encoded IncRNA to reach out to about 3 kb to their neighborhood by
acting as eRNA-like molecule (called ncRNA-a). In a similar way, but identified in a
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separate study, a class of chromatin-enriched cheRNAs have been identified as
eRNA-like RNAs that associate with the chromatin fraction [261, 262] (Fig. 7.1c¢).
In fact, many well-known IncRNAs with cardiovascular relevance like HOTTIP
[92], Kcnglotl [263], or linc-HOXAI [93] activate genes in their immediate neigh-
borhood [92, 264, 265], and it is not always clear whether as classical eRNA or as
ncRNA-a or as cheRNA.

7.3.3.3 Circular EIciRNAs and ciRNAs Activate the RNAP Il Holoxomplex
IncRNAs can also rather directly stimulate the RNAP II complex at promoters,
and two classes of circular RNAs have been implicated: 3'-5-linked circular intronic
RNAs (ciRNAs) and Exon-Intron-containing circular RNAs (EIciRNAs)
[103, 104]. Both co-immunoprecipitate with RNAP II and stimulate its activity
[266, 267]. The molecular details of how RNAP II is activated in each case are
mostly unclear, but in the case of EIciRNAs the activation depends on the small
nuclear Ul snRNA and leads to the activation of TFIIH and P-TEFb within the
RNAP II preinitiation complex (Fig. 7.1c).

7.3.3.4 Transcriptional Regulation Through IncRNA:DNA R-Loop
Formation

Compared to proteins, RNAs exhibit efficient and easily evolvable modes to both
interact with other nucleic acids, as well as be a template for nucleic acid synthesis.
Single-stranded RNAs, including nascent IncRNAs and circRNAs, can hybridize
with base-complementary DNA sequences by threading in and partially opening
the DNA helix through complementary base pairing. This can form an R-loop in the
form of a rigid A-type-like RNA:DNA double helix [268]. Firstly, R-loops affect
transcription: they can decompact nucleosome arrays and stimulate the formation of
histone modifications conducive to transcription [268]. Secondly, R-loops cause
RNAP II stalling, and associated with this an enhancer looping, or they can affect
any type of chromatin-dependent process, such as splicing [269]. In fact, some
IncRNAs induce genes in trans by establishing R-loops by threading into actively
transcribed genes that already offer partially single-stranded DNA regions
[231, 270]. Conversely, also the opposite can happen: degradation of R-loop-
forming eRNAs on enhancer regions has been found to activate enhancers
[252]. The functions of R-loops are still intensively studied, and the role of R-loop
formation as a IncRNA effector mechanism is novel. No relevant studies have
explored this effector mechanism for cardiovascular IncRNAs yet.

7.3.3.5 Transcriptional Regulation Through Binding Transcription
Factors

Finally, different IncRNAs can also directly modulate transcription by binding to
certain transcription factors and thereby modulating their binding ability. For exam-
ple, IncRNA RMST was found to interact with the SOX2 transcription factor and to
be important for its binding to SOX2 target gene promoters [271]. Similar
interactions allow other IncRNAs to co-activate steroid hormone receptor targets
or SP1 targets. Not all IncRNAs stimulate transcription though. For example, GasJ,
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a IncRNA with cardiovascular relevance, was found to bind and inhibit SMAD3
during TGF signaling [272], and the cardiovascular Braveheart IncRNA bound and
inhibited the nucleic-acid-binding ZNF9, a factor previously implicated in dilated
cardiomyopathy [273].

7.3.4 Antisense Transcription

Genome sequencing of many eukaryotes has shown that as much as 30% of human
genes have antisense noncoding transcription partner genes that can overlap in part
with the sense gene (Fig. 7.1d). These NATSs or asRNAs are a rather diverse class of
IncRNAs that function through different effector mechanisms and affect partner
genes depending on the relative positioning of their gene bodies.

Transcriptomic analyses indicated that an antisense transcript is often orders of
magnitude less abundant than its partner and remains nuclear [274]. Historically,
after focusing on selected candidate NATs, a number of studies have begun to
address the function of asRNAs on a global scale. Initial studies indicated that
repression of the sense coding partner gene was a common function [80]
(Fig. 7.1d). Subsequent genome-wide tests suggested, however, that only a minor-
ity (one quarter) of stable asRNAs was functional in competitively silencing
their sense gene, and that many asRNAs may not be functional, at least under
standard conditions [44]. Mechanistically, silencing via asRNAs can occur through
two principal mechanisms: direct transcriptional interference modes and DNA
methylation, or chromatin compaction, or combinations thereof (see [80] for
review). Generally, the grade of asRNA-dependent silencing was found to be more
pronounced when asRNA transcription reached over the start of the sense gene
[61, 80, 208, 275-277]. Most recent experiments suggest that many IncRNAs only
weakly affect the magnitude of expression of their sense partners, but that they rather
reduce noisy spurious transcription events [44].

7.3.5 Regulation of mRNA Splicing

Several IncRNAs are known to be nuclear, and some of these have been shown to
play important regulatory roles in splicing regulation (Fig. 7.1e). As a best under-
stood example with cardiovascular relevance, MALATI was found to localize in
nuclear speckles, sites of coordinated transcription and splicing. This IncRNA binds
splicing regulators of the SR splicing factor family and is essential for their
localization in nuclear speckles and for alternative splicing of specific target genes
therein [126, 127, 217, 218]. The exact regulatory mechanism has recently been
investigated in detail: MALAT]I interacts with the 3’ ends of actively expressed and
alternatively spliced pre-mRNAs, likely the RNA-binding SR splicing factors. Other
cardiovascular IncRNAS implicated in regulating splicing are Miat [195] and,
possibly, Wisper [91]. By affection splicing indirectly by influencing chromatin
structure at gene loci, or as transcriptional regulators of splicing factors, many
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IncRNAs are expected to be involved in splicing regulation, but only a few mam-
malian IncRNAs have been identified as clear splicing regulators, and the details of
their effector mechanism are still investigated [278-280]. Also, circRNAs have been
implicated in regulating splicing. In fact, several independent studies suggest that
co-transcriptional generation of circRNAs by the spliceosome, termed backsplicing,
competes with linear splicing of mRNAs inside protein-coding genes. The picture
emerges that on a genome-wide level, the function of most circRNAs might be to
fine-tune the expression of their host mRNA. Underlying this mutual inhibition,
several scenarios have been suggested: First, co-transcriptional backsplicing is
thought to block the progression of the elongating RNAP II, which affects alternative
exon skipping in mRNAs. Secondly, co-transcriptional backsplicing causes an
intramolecular covalent linkage in the linear mRNA molecule, an internal junction
with a single-strand RNA overhang. This may be the entry site for RNA
exonucleases that degrade such mRNA molecules. For a detailed description of
the different models that try to explain how backsplicing negatively affects
coinciding linear splicing of mRNAs, see a recent review [104].

7.3.6 microRNA Sponging

An intensely studied and highly discussed function of IncRNAs is their capacity to
regulate the stability of coding mRNAs by sequestering microRNAs that would
usually target mRNAs for destruction (Fig. 7.1f). During sequestering, IncRNAs
bind microRNAs only over limited stretches of 6-8 nucleotides in length, and
therefore IncRNA sponges are spared from degradation [214, 215]. IncRNAs that
sponge microRNAs are also called competing endogenous RNAs (ceRNAs). Spong-
ing can occur in all classes of IncRNAs, in linear IncRNAs, in transcribed
pseudogenes, and in circRNAs [99, 281-283]. Regarding cardiovascular-relevant
IncRNAs, this relates to H19, LINC00305, Meg3, Tugl, CHRF, ROR, CARL, Rncr,
and TCONS_00075467 as well as to the circRNAs HRCR and CDRI-as. Since
microRNA-binding regions are short and abundant, theoretically many microRNA
sponging events may occur simultaneously on one IncRNA, and this greatly expands
gene regulatory complexity [281]. Yet, given the comparatively low abundance of a
given single IncRNA, and the relatively high abundances of miRNA and/or target
mRNA(s), there is still some controversy about details if and when sponging actually
occurs as a sufficiently potent gene-regulator mechanism in vivo [284-288]. A large
fraction of IncRNAs, and therefore also of IncRNAs with cardiovascular function,
have been implicated in microRNA sponging. We list sponging as a potential
effector mechanism in Tables 7.1 and 7.3, but note that experimental evidence on
sponging is not equally conclusive in each report. In particular, regarding circRNAs,
CDRI-as may be one of the very few circRNAs that are actually effective as
microRNA sponge in vivo [103].
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7.3.7 Regulating mRNA Stability or RNA/DNA Editing

Certain noncoding RNAs pair with target RNA molecules. Thereby, IncRNAs can
promote or impair the stability of mRNAs in the cytoplasm. This can be due to
direct IncRNA:mRNA binding or by influencing the stability of protein:mRNA
complexes (Fig. 7.1g). For example, the well-known Staufen 1 protein leads to
nonsense-mediated RNA decay when it binds to double-stranded RNA regions in the
3’ UTR of mRNAs [289]. IncRNAs were found to bind such stability-determining
sequences in a target mRNA and protect from decay [289, 290]. Currently, the first
mapping approaches by sequencing explore the entirety of all RNA:RNA duplex
interactions in the transcriptome, including IncRNA:mRNA interactions [228, 291,
292]. More than 8000 intermolecular RNA interactions have been described therein,
>3000 duplex structures are shared between human and mouse, and >100 IncRNA:
mRNA interaction exist in single-cell types, indicating a potentially huge regulatory
space [292]. As RNAs with cardiovascular relevance, H/9 has been described to
bind the RNA-binding protein KSRP, and thereby promote KSRP-dependent target
mRNA decay [201].

Secondly, IncRNAs bind to other mRNAs to promote posttranslational
modifications at double-strand RNA regions (Fig. 7.1g). For example, hydrolytic
deamination of adenosine leads to the production of the base inosine, referred to as
A-to-I editing. Causal for this editing, ADAR, the responsible enzyme, requires
double-stranded RNA folds as substrate. A-to-I editing has roles in many cellular
processes, and first insights also showed a role in vascular smooth muscle cells [293]
and misregulation in atherosclerosis [294]. Conceptually related, special noncoding
RNAs have been identified that serve as guides for posttranscriptional modification
of DNA bases by other enzymes in cells of the immune system [295].

7.3.8 Translational Regulation of mRNAs

In the cytoplasm, both linear and circular IncRNAs exhibit a number of regulatory
roles relating to the activity of protein complexes as well as to the translation
capacity of coding mRNAs (Fig. 7.1h).

A number of regulatory mechanisms have been identified for how IncRNAs
impact the protein translation machinery. For example, some IncRNA are thought
to positively stimulate the association of protein-coding mRNAs with translating
ribosomes under conditions of translation stress [296]. Regarding IncRNAs with
cardiovascular relevance, lincRNA-p21 has been found to bind specific mRNAs and
to impair their translation by interacting with the mRNAs and translation factors
inside polysomes [202].
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7.3.9 Protein Activity Control

Concerning circRNAs with cardiovascular relevance, two circRNAs have been
suggested to interact with proteins in the cytosol, and, thereby, to impact central
cellular functions (Fig. 7.11). First, circANRIL has been found to bind to the protein
PES1 and inhibit its function in a dominant-negative way [24]. PES1 is a member of
the evolutionarily conserved PeBoW complex, consisting of Pes1 (Pescadillo), Bop1
(block of proliferation) and WDR12 (WD-repeat protein). This complex is essential
from yeast to mammals to instruct the endonucleolytic excision of the internal and
external transcribed spacer elements from the pre-rRNA and the formation of
mature 28S and 5.8S rRNAs, failure of which denies the formation of a functional
60S large ribosomal subunit and, consequently, the proper translation of any kind of
protein. circANRIL stems from the ANRIL locus at chromosome 9p21, the most
prominent genetic factor of atherosclerotic cardiovascular disease identified by
genome-wide association studies [12, 23, 129, 191]. ANRIL is transcribed as a linear
and a circular IncRNA (linANRIL and circANRIL, respectively). While linANRIL is
thought to be a major effector of CVD risk, circ ANRIL appears to be protective. The
function of linANRIL will be described in detail separately below, but it is not
involved in translational regulation, as far as known. In contrast, circANRIL-depen-
dent PeBoW complex regulation impairs cellular protein translation capacity, and
this function has been suggested to underlie circANRIL’s protection from athero-
sclerosis [24] (Fig. 7.1i). In a different type of effector mechanism, a second
circRNA, circPABPNI, is thought to function as a decoy for the HuR protein. By
sequestering HuR, circPABPNI1 has been suggested to inhibit the translation of a
subset of mMRNAs that depended on this RNA-binding protein [297]. In fact, HuR is
known to promote the stability of many mRNAs and noncoding RNAs [298]. As a
direct or indirect consequence of sponging HuR, the protein translation from HuR
target mRNAs is affected.

7.3.10 Translation Potential of IncRNAs

Linear IncRNAs do not contain open reading frames (ORFs) that are longer than
300 nucleotides (encoding for more than 100 amino acids), which is the central
definition of their character [38, 299]. The distinction between noncoding and
coding is not so clear after all in RNAs, and this for several reasons: First, many
IncRNAs do contain small ORFs just by chance, and more sensitive mass-
spectroscopic analyses and genetic screens revealed that some of these are translated
to micropeptides that are as small as 24 amino acids in length on average (Fig. 7.1j).
A relatively well-studied class of micropeptides is the family of structurally
conserved sarcolamban peptides. These are 34—46 amino acids in length, and are
encoded on classically defined IncRNAs. They are functionally important because
they bind and regulate the activity of the sarcoplasmic Ca®* pump SERCA and
regulate its activity. SERCA is an ATPase important for contraction-relaxation
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coupling in myocytes by pumping Ca®* from the cytosol into the lumen of the
sarcoplamatic reticulum, which is important also in the heart muscle [112]).

On the other hand, circRNAs do stem from protein-coding genes, and thus
contain one or several exons. Consequently, circRNAs can contain longer open
reading frames. A number of independent ribosome profiling studies have concurred
that the large majority of the many thousands of circRNAs are not translated
[35, 100, 300]. From the thousands of circRNAs only a few dozen had the potential
to encode a polypeptide [301] (Fig. 7.1j), and so far, translation of only two circRNA
molecules, circMbl [301] and circZNF609, have been documented with confidence
[302]. Paramount for their translation was that RNA circularization led to the
inclusion of the endogenous start codon, as well as of 5’ untranslated regions
(UTRs) that folded into specific secondary RNA structures with internal ribosome
entry site (IRES)-like properties [301, 302]. Translation from circRNAs can usually
not happen, as the circularization that occurs in the internal regions of the gene is
likely a consequence of circularization from internal portions of genes and, conse-
quently, the absence of a 5’ Cap, of linear ends, and of the Kozak sequence for
ribosome entry and translation initiation in linear 5" capped mRNAs (see [303] for
review). In the rare case of translation from circRNAs, usually the protein produced
suffers from premature truncation compared to the native full-length protein of the
endogenous linear host mRNA. Whether truncated proteins translated from
circRNAs are functional is still unknown.

Summarizing, as heterogeneous as their biogenesis are the functions exerted by
IncRNAs. But a common overarching feature is that many IncRNAs participate in
the expression control of protein-coding genes. For this, IncRNAs can act in cis and
in trans and affect gene expression on multiple levels, such as by regulating
transcription, or affecting pre-mRNA splicing, mRNA stability, and mRNA transla-
tional control. As such, many IncRNAs function because of engaging in molecular
interactions of the IncRNA with proteins or mRNAs directly, but also the transcrip-
tional act over a IncRNA gene body can per se have functional consequences on
neighboring genes, while the IncRNA product formed in this case may be a side
product without any function [43, 52, 304]. Lastly, IncRNA genes may even be
functional because the length of their gene bodies determines the relative distance
between the left and right neighboring genes or regulatory DNA sequences, as
learned, for example, by multiple knockout experiments in the complex Hox gene
cluster [305]. Thus, functional studies of IncRNAs have to be carefully designed to
take account of all possible levels of functions of a IncRNA.

7.4 LncRNAs in Cardiovascular Health and Disease

Compared to protein-coding genes, the function of IncRNAs is less well studied.
This is especially true for IncRNAs implicated in cardiovascular diseases because
many disease-relevant IncRNAs have only been identified within the recent
1-5 years. Consequently, only a few knockout studies on IncRNAs have been
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reported, and most of these were performed on IncRNAs that had been studied
already before in more general cellular functions or in cancer biology.

In the following we first review developmental roles of IncRNAs at the organ
level in the context of the embryonic cardiovascular system. These studies used
classical knockouts and transgenic overexpression, and assessed the embryonic
development of the heart, angiogenesis, or more specifically, lineage specification
of the cardiovascular system, for example, from early mesoderm precursor cells.
Table 7.1 summarizes the 17 IncRNAs studied by knockout analysis, which were
found to have a function in cardiovascular physiology. We then continue by
highlighting IncRNAs that have been linked to cardiovascular disease in rodent
disease models in vivo (Table 7.2). For a good part of these IncRNAs, evidence
exists on differential gene expression of the orthologous human IncRNAs in patients.
For only a very few, additional genome-wide association studies (GWAS) in humans
have determined single nucleotide polymorphisms (SNPs) in the IncRNA genes,
which are associated with disease risk and with differential IncRNA expression
(Table 7.2). In Table 7.3, we summarize the evidence on cellular and molecular
functions of IncRNAs from Table 7.2.

7.4.1 IncRNAs Regulating Cardiovascular Development
in the Embryo

For the heart to form, and be induced by signaling cues, pluripotent embryonic stem
cells progressively differentiate into mesodermal and cardiac precursor cells that
subsequently terminally differentiate [306]. Transcriptional networks are directed
to control lineage commitment and cardiac cell specification [307]. By participating
in gene expression regulation, IncRNAs are an intricate part of heart development.
A large number of IncRNAs (>200) were found to be differentially expressed in
different steps of cardiac commitment during in vitro differentiation from embry-
onic stem cells [308]. Moreover, hundreds of IncRNAs are known to be differen-
tially abundant at different points in fetal heart development in vivo based on
whole-tissue profiling [309]. Also, about 300 IncRNAs are cardiac-specific in the
adult heart. Based on coexpression analysis and considering which known protein-
coding genes were the closest neighbors of the relevant IncRNAs, some IncRNAs
were prioritized as candidates in regulating key developmental determinants of
heart development [310].

As a first example of a IncRNA studied by knockout analysis, the mouse IncRNA
Fendrr has been found to be rather specifically enriched in the lateral plate mesoderm
during mid-gestation, and its deletion by insertion of polyA signals, known to cause a
transcriptional stop, disrupted the development of ventral structures, including the
heart and body wall [7]. As a consequence of myocardial dysfunction, the mutant
embryos died. A mere depletion down to 40% of IncRNA levels by RNA interference
caused no mutant phenotype in this case, which may be an important consideration
for similar developmental studies of other IncRNAs [7]. Mechanistically, Fendrr was
found to scaffold a repressive Polycomb group complex and, separately, also an
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activating Trithorax-MLL complex, and to tether it to gene promoters by triple helix
formation. This coincided with a long-term effect on target gene expression in the
descendants of cells of the cardiac mesoderm [7]. Likely in this function Fendrr
affected the transcriptional regulators of heart development, such as Gata6, and
lateral plate mesoderm control genes like Foxfl, Irx3, and Pitx2. Some of the many
target genes were regulated in cis, some in trans [7]. When studied in an independent
knockout where internal IncRNA sequence was replaced by a lacZ cassette, a slightly
delayed perinatal mutant phenotype was observed, and these Fendrr mutants showed
lung defects [311]. Together, the discrepancy in mutant phenotypes between different
knockouts is not without precedence and may even be expected given that both the
RNA transcript and transcription through the IncRNA locus may be relevant
[304, 312].

Similar to Fendrr, the mouse IncRNA Braveheart (Bvht) interacts with a chro-
matin regulator. Bvht binds and inhibits the repressive Polycomb complex [6]. Bvht
also binds and inhibits the transcription factor ZNF9 [273]. Thereby, Bvht regulates
an entire cardiac transcription factor network to promote early cardiac cell fate
[6]. This network is upstream of master cardiac transcription factors, like MesP1,
at least in an in vitro model of cardiomyocyte differentiation from embryonic stem
cells (ESCs) [6] [273]. MesP1 activity is known to be essential for the specification
of all different cardiac cell types, cardiomyocytes, vascular smooth muscle cells
(VSMC:s), and endothelial cells (ECs). Consistent with the proposed function in
cultured cells, in vivo, Bvht is essential for early heart development and for mainte-
nance of neonatal cardiac cell fate [6]. No clear Bvht ortholog was found in humans,
but the possibility exists that different IncRNAs have taken over a conserved role in
establishing a cardiogenic transcription factor network also in other vertebrate
species.

HoxBlinc is a lincRNA residing in the Hoxb gene locus and has been associated
with lineage commitment during cardiovascular development by knockout studies
[9]. HoxBlinc tethers the activating trithorax Setdla/MLLI1 histone methylating
complex to HoxB. Loss of function experiments showed that HoxBlinc is required
to activate HoxB during embryogenesis when precursor cells initiate mesoderm
formation in the primitive streak. In the mutant, cardiogenic and hemangiogenic
mesoderm cell fates are not specified.

Based on high-throughput RNA sequencing of cells differentiating from human
ESCs to cardiovascular progenitors and finally to terminally differentiated fetal-like
vascular endothelial cells in culture, two independent studies established that several
hundred IncRNAs were specific for each investigated stage [118, 119]. From each
stage-specific set, one IncRNA was randomly chosen to be functionally analyzed in
more detail. Corresponding to their expression during EC differentiation, in vivo
expression analysis in both mouse and zebrafish embryos confirmed that Terminator
was specifically expressed early after fertilization, DEANR1/Alien only later in the
lateral plate mesoderm and Pumisher only when the vasculature had formed
[118]. Injection of antisense morpholinos binding and degrading these IncRNAs in
zebrafish showed stage-specific requirements consistent with the roles inferred from
cell culture profiling: Terminator was important for gastrulation, with survivors
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showing defects in the vasculature. Alien was important for mesoderm specification,
including subsequent vascular patterning, dorsal and intersegmental blood vessel
and cardiac chamber formation. And Punisher was important for vascular vessel
formation, extension, and branching as well as for cardiac development [118]. The
molecular effector mechanisms of Terminator and Punisher remain unknown.
DEANRI/Alien was also the focus of another study that investigated stage-specific
IncRNA expression during definitive endoderm and pancreatic cell specification
from hESCs [119]. DEANRI1/Alien was shown to be encoded close to FOXA2, an
endoderm marker gene, and to stimulate FOXA2 expression. It was at the same time
also important for endoderm specification. The latter function was at least in part due
to FOXA2 regulation by DEANR1/Alien, as confirmed by genetic rescue experiments
in cells [119]. While the mechanism of regulation remains to be confirmed, the first
experiments suggested that in the forming endoderm, DEANR1/Alien may be impor-
tant to recruit or stabilize SMAD2/3 at the FOXA2 locus [119].

Tie-1AS is a NAT that binds and downregulates the sense mRNA of its host gene,
Tie-1. Based on overexpression of Tie-/AS and on inhibition of Tie-I in zebrafish,
the IncRNAs was suggested to have a mild impact on the proper organization of cell-
cell junction markers in vivo, including those between vascular endothelial cells
[121]. Corroborating these data, the human orthologous IncRNA inhibited human
Tie-1 and was important for tube formation of HUVECs in collagen gels in vitro
[121]. These observations are relevant because an earlier mouse knockout for Tie-1
had documented that this gene was required for vessel integrity [120]. Also,
mutations in the related T/E2/TEK are known in humans to lead to different defects
in venous morphogenesis based on a role of TIE2 in EC:VSMC (vascular smooth
muscle cell) interaction [122].

Upperhand (Uph) is a IncRNA gene that has been found to be important for heart
morphogenesis in a mouse knockout study. The mouse Uph has a human orthologue,
called HAND2-AS1, and both mouse and human Uph/UPH share a bidirectional
promoter with Hand2/HAND?2, a well-known and important transcription regulator
of heart development [8]. Experiments on the mouse Uph locus revealed that Uph
functioned as an enhancer for Hand2 in embryonic heart tissue and was essential for
Hand2 activation. TALEN-mediated insertion of premature polyA signals that
stopped Uph transcription led to the embryonic death of knockout mice. Uph KO
death was ascribed to a failure in forming a right ventricular chamber, a phenotype
identical to the Hand2 KO, and corroborating that Uph functioned through
activating Hand?2 in vivo [8]. For its enhancer activity towards Hand2, the IncRNA
transcribed from the Uph locus was not essential. Instead it was the transcriptional
act over the heart enhancers in the Uph locus that seemed to make these enhancer
elements active.

Xist is the central regulator of dosage compensation (X-inactivation), which is
inherently essential for female survival, and will not be discussed here (see [1] for a
review). A recent conditional Xist knockout using Sox2-Cre drivers allowed some
Xist mutant females to survive to adulthood. Surprisingly, the survivors showed
rather specific organ defects, and these included defects in heart and spleen matura-
tion [123]. Specifically, perinatal heart growth was delayed and mutants had smaller
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hearts, as cardiomyocytes did not sufficiently mature by cytoplasmic enlargement
[123]. Separately, another study had deleted Xist in the fetal hematopoietic lineage
and had also found a rather specific phenotype. Xist mutant hematopoietic stem cells
(HSCs) in females were impaired in differentiating to all lineages [124]. The latter
manifested in multilineage blood cell defects, and in adulthood, mutants eventually
died from aggressive blood cancers, especially in the myeloid lineage
[124]. Together, although the available evidence is skewed by which drivers have
been used for Xist deletion in the two knockout studies [123, 124], it is surprising
that such a general pathway like Xist-dependent X-inactivation is somewhat selec-
tive for regulating blood stem cells, cardiac, and spleen development. There is a
tangible explanation at least for why HSCs are affected: Hematopoietic precursor
cells are special among other cell types because they selectively regain the capacity
to initiate de novo X-inactivation, while other cell types at this advanced stage of
embryogenesis lack the silencing factors [125].

Bioinformatics screens had initially identified muscle-specific human LINC00948
and mouse AK009351. These were later found to encode small protein-coding ORFs
that were translated to myoregulin (MLN), a micropeptide that bound and activated
the sarcoplasmic Ca>* pump SERCA [112]). SERCA is an ATPase important for
contraction-relaxation coupling in myocytes by pumping Ca®* from the cytosol into
the lumen of the sarcoplamatic reticulum. These micropeptides belong to the larger
family of structurally conserved sarcolamban peptides. LncRNAs of this class have
been studied by knockout approaches in vivo. It has been found that micropeptides in
this family, like MLN, phospholamban (PLN), or sarcolipin (SLN), can repress the
activity of SERCA to terminate muscle contraction [110, 112]. In contrast, the related
micropeptide DWORF, which is encoded on human LOC100507537 and mouse
NONMMUGO026737 IncRNAs, displaces these SERCA repressors and thereby
enhances contraction [116]. SERCA regulation is of relevance also for heart muscle
function, due to its regulation of cardiomyocyte contractility.

The Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALATI) is
one of the molecularly best-studied IncRNAs. Based on assays in standard cell lines,
MALATI has been implicated in regulating alternative splicing [217] and in promot-
ing selective transcriptional activation of target genes. The latter involves binding of
MALATI to Pc2, a central member of the Polycomb group silencing complex. Upon
binding to MALATI, Pc2 loses its preference for reading heterochromatic histone
modifications and gains preference for binding to active chromatin, causing reacti-
vation of Pc2-marked cell-cycle stimulating genes [206]. Beyond that, MALATI
interacts with dozens of other proteins [313] and is even the origin of functional
small RNAs excised from its 3’ end during maturation (mascRNAs) [51], indicating
a possibly wide range of still elusive functions. In the face of all this knowledge, it
was surprising that three independent knockouts of the IncRNA MALATI in mouse
showed that MALATI was not essential for survival or for organ development and
function under normal growth conditions in embryos or adults [126—128]. Neither
was global transcription or splicing affected in these mice, which could be due to
redundancy with yet unknown different IncRNAs. Only a selective role in regulating
genes encoded close to the MALATI locus was found [126, 127]. In contrast to the
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lack of clear in vivo phenotypes, in vitro MALATI had some functions under stress
conditions: MALATI was upregulated under hypoxia, and exerted proangiogenic
effects, as will be described in detail in Sect. 7.4.2.3.

Human MIAT, also known as Gomafu/MIAT/Rncr2, has been linked to cardio-
vascular disease as will be summarized in the following section on IncRNAs in
disease [314]. Separate studies showed that it binds to several splicing regulators and
regulates a relatively small number of genes. MIAT was implicated before in stem
cell, neuronal, and retinal cell differentiation [195]. A recent mouse knockout was
established for Miat but did not reveal any obvious anatomical defects. Only
selective behavioral defects were observed, and only a small number of splicing
alterations were documented in primary neuron cultures from these mutant mice
[219]. How the IncRNA regulates selective neuronal functions in specific brain parts,
and by which molecular mechanisms, is still unknown.

Among 150 IncRNAs deregulated by pressure overload after transaortic constric-
tion in a mouse model, Chaer, cardiac hypertrophy associated epigenetic regulator,
is a mouse IncRNA conserved also in humans, which shows enriched expression in
the heart [16]. It will be described in detail in the context of IncRNAs with roles in
cardiovascular diseases in Sect. 7.4.2.1. In the course of studying Chaer, a genomic
deletion was inserted into the Chaer IncRNA locus. The mutant mice did not show
obvious morphological organ deficits or functional heart problems in normal
conditions. Only in experimental pressure-overload models in the mouse was a
function in cardiomyocyte growth control revealed [16].

Rncr3, retinal noncoding RNA 3, also known as LINC00599, is a IncRNA with
cardiovascular relevance as will be described in detail in the description of IncRNAs
involved in atherosclerosis in Sect. 7.4.2.1. A knockout of the Rncr3 locus exists, but
the mutants did not show any morphological or functional abnormalities of the heart
or of the vasculature, as far as reported [205]. Instead, the initially viable Rncr3-
deficient mice become debilitated and later die, likely because of defects observed in
multiple types of neurons in the central nervous system.

CDR1I-as, cerebellar degeneration-related protein 1 antisense RNA, is a circular
IncRNA. It was the first circRNA that was found to have a dedicated function in
eukaryotes [214, 215]. It will be described in detail in Sect. 7.4.2.1 because reports
exist that suggest this circRNA to be misregulated and misfunctioning in cardiovas-
cular disease. Inconsistent with these reports, loss-of-function studies have been
performed in mouse and in zebrafish in vivo, but CDRI-as showed no obvious
function in hearts of the vasculature. Instead, and consistent with the expression
pattern in vivo, a requirement for neuronal functions was revealed. Recently, the
CDRI-as circRNA was knocked out in mouse, which was technically possible,
because of the peculiarity of this locus to only express a circRNA but no linear
RNA. The CDRI-as circRNA knockout did not show anatomical alterations, and
also no heart defects, but defects in central nervous system function [213].

The H19 IncRNA is located in the H19/Igf2 imprinted locus, where H19 and Igf2
are reciprocally imprinted, such that the two genes are expressed from maternal and
paternal chromosomes, respectively, but not from both alleles in a cell. Relevant for
the cardiovascular system, H19 and Igf2 are known to be expressed in muscle and
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other mesodermal organs in the embryo. Igf2 has been studied in the context of
embryonic heart development, where it was found to be an epicardial mitogen that
was important for ventricular wall proliferation. Heart-specific functions of HI/9
remain unknown, but it is peculiar that H19 is downregulated in adult tissues except
in skeletal muscle and heart and that H79 is reactivated in the cardiovascular system
during stress signaling, as will be described in Sect. 7.4.2.1. H19’s major function
has been found to be limiting for the growth of the placenta and to inhibit cell
proliferation, for example, during tumorigenesis. One major effector mechanism is
the production of microRNAs from the H19 sequence. In this function, H19 was the
parent molecule for a microRNA that repressed an /GF receptor for maintaining
quiescence in long-term quiescent hematopoietic stem cells (HSCs) [198], and for
another microRNA that promoted muscle differentiation from myoblasts and muscle
regeneration.

7.4.2 Cardiovascular Disease-Associated IncRNAs

There are three principal approaches to how IncRNAs have been implicated in
cardiovascular disease. First, IncRNAs may reside in genomic regions, which have
been associated with cardiovascular disease (CVD) in genome-wide association
studies (GWAS). This approach has so far been reported in only a few cases because
genetic variants identified through GWAS are often found in regulatory sequences in
some distance to genes, and it is far from trivial to establish causal links in the
functionality (expression, splicing, and sequence) of a IncRNA. Secondly, and
following a different rationale, a number of IncRNAs have been linked to CVD
because they were found to be differentially regulated in disease conditions through
genome-wide RNA expression profiling. In a third strategy, IncRNAs were
investigated in candidate gene approaches because they regulated disease-relevant
processes or resided in or close to protein-coding genes with already established
disease relevance. Accordingly, here we will highlight IncRNAs implicated in vivo
as causal effectors of the following seven disease entities: atherosclerosis,
myocardial infarction, aortic aneurysm, cardiomyopathies and congenital
heart disease, vascularization and angiogenesis, arrhythmia, and stroke and
cerebrovascular aneurysms. Especially for the more established and better-studied
IncRNAs, in vivo functions in more than one disease entity have emerged, all of
which will be discussed in separate sections. Table 7.2 summarizes all IncRNAs,
their change in expression in disease (up/down), and whether their normal function is
to protect from disease (protective) or to exacerbate disease (detrimental), as far as
determined from genetic knockdown or overexpression in animal disease models.
Table 7.3 lists the cellular and molecular functions of all IncRNAs from Table 7.2, as
determined from accompanying experiments in relevant cell culture systems.

7.4.2.1 Atherosclerosis and Myocardial Infarction
Briefly, atherosclerosis is characterized by the formation of fibro-fatty lesions
(plaques) in arteries, whereby vascular wall cells (SMCs, fibroblasts, ECs) and
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diverse immune cells (neutrophils, macrophages, T cells, B cells) aberrantly prolif-
erate, undergo cell death, change cell fate, and trigger nonresolving immune
reactions. The lesions accumulate cells and lipoprotein material and are covered
by a fibrous cap. Upon necrosis in the lesions, and extracellular matrix (ECM)
remodeling, the cap thins, plaques can rupture, and plaque material ends up in the
bloodstream and trigger luminal thrombosis also at distant sites, leading to
myocardial infarction (MI, heart attack) or stroke in brain tissue. In this book chapter
we are reviewing IncRNAs that have been linked by functional analysis to the onset
and severity of atherosclerosis, and to myocardial infarction, which occurs as
acconsequence of atherosclerotic processes. Here we will not review IncRNAs
associated with CAD risk factors such as dyslipidemia, diabetes, obesity, metabolic
syndrome, or systemic blood pressure regulation. So far, 16 IncRNAs have been
implicated in the pathogenesis of atherosclerosis in animal disease models in vivo, of
which 3 were also found to play a role when tested in myocardial infarction models
in vivo. Among CAD-related IncRNAs, as of date, only five IncRNAs emerging
from GWAS have been functionally studied in the context of CAD. There are,
however, dozens of other known CAD risk loci from GWAS datasets, which contain
noncoding RNAs and have not yet been explored in the same way. How IncRNAs
determine risk at GWAS loci will be interesting to explore. In our review, nine
different IncRNAs have been associated only with myocardial infarction in relevant
models, without being implicated in atherosclerosis through in vivo evidence. We
start out with describing the CAD-related IncRNAs: First, a number of tightly
clustering SNPs have been found on the Chr9p21 locus in several independent
genome-wide association studies testing the susceptibility for coronary artery dis-
ease (CAD) [130, 131], peripheral artery disease [136], and myocardial infarction
(MI) [135]. A separate haplotype block associated with type II diabetes risk is
encoded nearby [315-317]. Regarding CAD/MI, the dosage of the risk SNPs was
found to be associated with atherosclerosis severity. Also, homozygosity for the risk
SNPs correlated with a twofold increased risk for CAD/MI, which was relevant for
approximately 20% of the population [131, 318]. As explained before, the major
effector of this locus is not a protein-coding gene but a long noncoding RNA, human
ANRIL. ANRIL expression levels are increased in more severe atherosclerosis
phenotypes [10, 12, 129, 131-134]. Its molecular effector mechanism is under
intensive investigation, not least because this IncRNA is tightly linked also to
different diseases, including cancer. Relevant for one proposed effector mechanism,
ANRIL is expressed adjacent to the human INK4-ARF tumor suppressor gene locus
on chromosome 9p21, which encompasses pl 6[NK4“, PI14°RF and PlSINK4b,
whereby transcription of ANRIL overlaps in antisense with transcription of
P15™K% ‘hence its name Antisense noncoding RNA in the INK4 locus.

ANRIL has become a paradigm for physiological control of cell proliferation and
survival by a IncRNA. For example, by binding to the PRC1 and PRC2 complex,
ANRIL has been suggested to impose selective repressive histone modifications at
the INK4-ARF locus, a central tumor suppressor locus whose repression is known to
result in a cell cycle GO-G1 entry in specific contexts [192, 319, 320]. Such a cell-
cycle stimulating role may hypothetically be relevant for ANRIL’s described roles in



240 L. M. Holdt et al.

activating atherosclerosis [321]. Indeed overexpression of ANRIL in several cell
types, including PBMCs as well as cells of the vessel wall, was found to be
proproliferative [191]. On the other hand, ANRIL can also interact with transcrip-
tional coactivators to alter the transcription of target genes in trans and, thereby,
affect cell adhesion and apoptosis in ways that stimulate atherosclerotic plaque
formation [191, 322]. Although the ANRIL sequence is primate specific, the structure
of the 9p21 locus is conserved in mice, where this locus is also a gene desert with a
IncRNA. AK148321, the mouse IncRNA in this locus, has a conserved exon
structure. Corroborating the importance of the locus for disease, deletion of the
entire region led to cardiac-specific misregulation of the INK4-ARF orthologs
Cdkn2a/b, to the misregulated proliferation of mutant aortic VSMCs [323], and to
increased vascular aneurysm formation [324]. However, the knockout was not
associated with altered atherosclerosis plaque formation, thus raising the question
whether the mouse locus is a IncRNA-dependent atherosclerosis risk factor in vivo.
In any case, the noncoding region of human Chr9p21, and likely its transcription, is
important for CAD susceptibility in humans.

Making the regulation even more complex, the ANRIL locus also expresses
circular ANRIL (circANRIL) RNA isoforms [23, 24]. circANRIL abundance was
decreased, while linear ANRIL levels were increased, in carriers of CAD/MI risk
alleles in an association study of 1000-2000 patients with suspected coronary artery
disease in PBMCs and whole blood. These findings were recapitulated also in more
than 200 human carotid endarterectomy tissue specimens [24]. Moreover,
circANRIL was decreased in CAD patients also in blood T-lymphocytes [23]. The
notion emerged that circANRIL protects from CAD [24]. Specifically, circANRIL
impairs rRNA processing in cells by inhibiting the rRNA-processing PeBoW protein
complex [24]. This results in nucleolar stress, pS3 activation, and reduced translation
capacity, functions that are antiproliferative and, conceptually, would antagonize the
proproliferative functions of linear ANRIL. Indeed, in cultured cells circANRIL
functions independently of linear ANRIL and impairs proliferation and sensitizes
for apoptosis [24], functions that have been associated as to be anti-atherogenic
[24]. Together, the ANRIL locus highlights a situation, where both the linear and the
circular RNA products are functional, and where linear and circular RNA may have
antagonistic functional outputs (pro- and antiproliferative, respectively).

GASS5, growth arrest-specific 5, has been known as a noncoding transcript
before genome-wide detection of IncRNAs became routine. GAS5 is conserved in
mouse and human and was found to be upregulated during conditions of cell growth
arrest, and contribute to cell cycle arrest and apoptosis when induced in lymphocytes
and many other cell types. GAS5 also harbors 10 snRNAs in its introns, some of
which give further rise to small piRNAs that induce activating chromatin remodeling
at the locus encoding the proapototic TRAIL gene. Beyond GAS’s role as tumor
suppressor in cancers, GAS5 has also been studied in atherosclerosis. GASS was
found to be more abundant in atherosclerotic plaques in patients, and in a rat CAD
model [144]. Consistent with its role in other cell types, GASS5 contributed to
apoptosis in cultured macrophages and SMCs [325]. In which cells and at which
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stage of plaque development GAS5 contributes to atherosclerosis will be important
to test in the future.

Another IncRNA has been associated with cardiovascular disease in a GWAS
case-control study of over 3000 patients: six SNPs in a previously unknown IncRNA
on human Chr22q12.1were found to be associated with myocardial infarction, and
the IncRNA was, therefore, named Gomafu, MIAT, myocardial infarction
associated transcript, later also designated as Rncr2. Of these SNPs, one was linked
to increased MIAT transcription [314]. MIAT is also known to be upregulated in
atherosclerotic plaques [145]. The mouse MIAT orthologous IncRNA was found to
be aberrantly upregulated in the myocardium shortly after MI in a mouse model for
induced infarction [146]. MIAT knockdown reduced cardiac fibrosis and improved
cardiac function, which indicated that overactivation of MIAT was detrimental and
contributed to heart fibrosis [146]. The underlying molecular mechanisms remained
unknown in this study. Molecular effector functions of mouse Miat have, however,
been delineated in a number of unrelated mouse models, which give an idea of how
Miat might function in organs in general: For example, mouse Miat was found to be
one of the few highly conserved noncoding targets of Oct4, and it was required for
mouse embryonic stem cell maintenance. Conversely, increased levels promoted
mesodermal and ectodermal lineage specification [196]. This may be of relevance
also for the heart and progenitor cells therein. Also in other cell lineages, this
proposed role in switching from progenitor to differentiated cell state was
corroborated: It could be shown that Miat was involved in prosurvival signaling of
differentiated neuronal cell progeny in mouse [195]. Apart from binding and poten-
tially sponging microRNAs, in all these studies its only other described molecular
function was in splicing regulation, possibly in guiding splicing of cell fate
determinants [195]. How this function in progenitor cell differentiation relates to
the function of progenitor cells in damaged tissues and organs remains to be tested.

H19, an imprinted maternally expressed transcript, is a IncRNA known as a
model for studying the regulation of an imprinted locus, and for how imprinted
growth-regulating loci are implicated in tumorigenesis. Two SNPs in H/9 on human
Chrl1pl15.5 have been associated with CAD in a GWAS of 700 individuals
[149]. Increased H19 levels have been found in the plasma of atherosclerosis patients
[150, 151]. It is also known already for long that H19 is low expressed but that it can
be reinduced in the aorta or VSMCs upon stress signaling or in atherosclerotic
plaques. Also, when tested in cultured macrophages upon treatment with oxidized
LDL, H19 contributed to the inflammatory transcription response [151]. How H19
contributes to cardiovascular diseases on a molecular level is still to be determined.

HAS2-AS1, HAS2 antisense RNA 1, is located at the HAS2 gene locus
[155]. This locus is interesting, because it is neighboring another cardiovascular
IncRNA, SMILR (smooth muscle—induced IncRNA enhances replication, also
known as RP11-94a24.1). SMILR and HAS2 were transcribed from the same strand
and in the same direction, while HAS2-AS1 is transcribed as antisense RNA. HAS2-
AS1 expression has been found to be stimulated by inflammatory signaling and to
activate HAS2 expression. HAS2 shows increased levels in human plaque tissue as
compared to healthy controls. Thereby, HAS2, a hyaluronan synthetase, is thought to
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promote atherosclerotic neointima formation. On the other hand, also SMILR has
been found to be increased in human plaque tissue. Additionally, HAS2, but not
HAS2-AS1 levels dropped after SMILR siRNA-mediated knockdown. Together, by a
still elusive molecular mechanism, SMILR is thought to be required for the full
transcriptional stimulation of HAS2 by opening the chromatin compaction state of
the HAS2 locus [155]. Thus two IncRNAs may independently relay the detrimental
overactivation of HAS2.

Some members of the evolutionarily conserved HOX gene family have been
specifically associated with regulatory roles in the cardiovascular system. For
example, several selected HOX genes are involved in cardiac progenitor prolifera-
tion and differentiation; others must be repressed for angiogenesis to proceed. Two
human HOX gene-regulating IncRNAs have been studied: HOTTIP and HOXC-
AS1. HOTTIP, HOXA distal transcript antisense RNA, is a well-studied IncRNA
that had originally been found as a cis-regulator of the HOXA locus from where it is
transcribed, particularly as an activator that recruited stimulating histone-modifying
WDRS/MLL complexes for long-range chromatin activation. HOTTIP has recently
also been found to be increased in arterial tissues samples of CAD patients
[156]. Overexpression and knockdown experiments showed that HOTTIP levels
regulated EC proliferative activity. HOTTIP also affected migration capacity, as
determined by experiments in cell culture. Whether and how HOTTIP contributed to
atherosclerotic plaque formation, however, remained unclear. A more general role of
HOTTIP is likely, since overactivation of HOTTIP has also been found in cancers,
and was implicated in prostate cancer hormone-independent growth, likely in large
parts via HOX gene activation.

The second relevant IncRNA is HOXC-AS1, HOXC cluster antisense RNA.
Microarray RNA profiling of carotid atherosclerosis revealed an antisense IncRNA
in the human HOXC cluster, HOXC-ASI, HOXC cluster antisense RNA, as
downregulated compared to normal arterial intimal tissue [70]. Investigating how
this downregulation might occur, the authors turned to cultured monocytes and
found that administration of oxidized LDL to cultures decreased HOXC-ASI expres-
sion. In these conditions, overexpression of HOXC-ASI abolished the accumulation
of cholesterol in monocytes as well as the inhibitory effect of ox-LDL on the
expression of the nearby HOXC6 gene. The authors suggested that the HOXC-ASI
antisense IncRNA might somehow regulate cholesterol metabolism, and that the
possibility existed that this occurred via transcriptionally affecting HOX genes in the
HOXC cluster [70]. This finding is of particular importance because independent
work on HOXC9 has revealed that this HOX gene can promote EC quiescence and
vascular vessel morphogenesis [70]. Therefore, HOX-regulating IncRNAs have
been studied with a particular focus on angiogenesis, as described in Sect. 7.4.2.4.

By searching the GWASdb database for SNPs already previously linked to
atherosclerosis by GWAS but which are less significant (P < 1.0 x 107) and
were manually curated from the literature [326], one group focused on one such
SNP that resided in the intron of a IncRNA on Chr18q22.1: This IncRNA,
LINC00305, had so far not been characterized and its expression was found to be
enriched in atherosclerotic plaque samples as well as in blood monocytes of
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atherosclerosis patients, showing that the SNP associated with IncRNA expression
[56]. To study the function of LINC00305, gene expression profiling was performed
upon IncRNAs overexpression in THP-1 monocyte cell lines, as well as in human
aortic smooth muscle cells cocultured with these. LINC0O0305 promoted the expres-
sion of inflammatory genes by activating NF-kB signaling in monocytes, which
translated to shifting SMCs from a contractile to a pathological synthetic state
[56]. Using immunoprecipitation experiments and mass spectrometry to screen for
IncRNA-interacting proteins, the authors found that LINC00305 bound to
membrane-resident lipocalin-interacting membrane receptor and increased its inter-
action with the aryl hydrocarbon receptor repressor (AHRR). This interaction altered
downstream AHRR signaling, such that more nuclear AHRR and increased NF-kB
signaling were observed after LINC00305 overexpression. Whether and how AHRR
regulated NF-kB signaling components is not yet clear [56].

A recent RNA expression analysis of foam cell formation upon oxLDL adminis-
tration to cultured human macrophages revealed induction of lincRNA-DYNLRB2-
2 [157]. This IncRNA was further studied because it was found that it induced
expression of the evolutionarily conserved GPR119. This regulation potentially is of
relevance for CAD because GPR119 is a G protein-coupled receptor that is known
from earlier work to be involved in metabolic homeostasis by suppressing food
intake and reducing body weight gain in rat models [327]. In the study on lincRNA-
DYNLRB2-2, it was found that both lincRNA and GPR119 also promoted choles-
terol efflux from human foam cells. The efflux driven by lincRNA-DYNLRB2-
2 depended on GPR119 [157]. Conversely, lincRNA-DYNLRB2-2 repressed TLR2,
a well-known upstream Nf-kB signaling stimulator, and this repression was neces-
sary for cholesterol efflux [57]. These findings were substantiated by the finding that
GPR119 overexpression in apoEf/ ~ mice conferred antiatherosclerotic effects,
while TLR2 overexpression conferred proatherosclerotic effects [157]. lincRNA-
DYNLRB2-2 was not tested in this in vivo context.

Another IncRNA is lincRNA-p21, located on mouse Chrl7, 15 kb upstream of
the tumor suppressor p21 (cyclin-dependent kinase inhibitor 1A), but transcribed
from the opposite strand and in the opposite direction. lincRNA-p21 was not
primarily identified by GWAS studies in humans, but by a genomic study of
mouse lincRNAs that were direct transcriptional targets of p53 and that were induced
by p53 [17]. Only later studies focused on lincRNA-p21’s role in atherosclerosis.
Four SNPs were found in human lincRNA-21 on Chr9p21.2, locating in a single
haplotype block and correlating with reduced risk for CAD and MI in over
600 patients in a case-control study [158]. The effect of risk alleles on lincRNA-
p21 expression was not reported in this study, and the molecular function of
lincRNA-p21 not explored. In another study, lincRNA-p21 was also found to be
downregulated in atherosclerotic plaques in arteries in an apoE "~ mouse model for
CAD, as well as in arterial tissue and in PBMCs of human CAD patients
[159]. Knocking-down lincRNA-p21 locally in injured mouse carotid arteries with
siRNA technology caused hyperplasia of the neointima in the lesion, coinciding with
increased proliferation and reduced apoptosis levels in cells of the vessel [159]. How
does this relate to p5S3? Through decades of earlier research on p53, it has become



244 L. M. Holdt et al.

clear that p53 affects many cellular facets, most notably the switch between cell
survival and apoptosis, cell proliferation, and DNA repair. The majority of studies
have focused on p53’s role in tumorigenesis, but some studies on its role in
atherosclerosis exist: In atherosclerotic tissue, p53 is not mutated, but in mouse
models of atherosclerosis, p53 knockouts showed increased disease severity, and
VSMCs and macrophages were thought to be affected [328]. This shows that
lincRNA-p2 1 phenocopies p53’s roles, consistent with the notion that this lincRNA
was a p53 effector also in the process of atherogenesis [17, 159]. In fact, earlier
functional tests had shown that mouse lincRNA-p21 served a function as a corepres-
sor for p53 in its second known function as a transcriptional repressor of a set of
target genes, including p2/ [17]. It could, thus, be that normally lincRNA-p21
repressed antiproliferation genes like p21 to induce apoptosis and reduce prolifera-
tion in an atheroprotective function.

Meg3, maternally expressed gene 3, has been well studied. It is known to inhibit
proliferation and migration, in part via inhibiting TGFp signaling, and promote
apoptosis in the context of cancer studies. In a cardiovascular context, a study
reported that human MEG3 was downregulated in tissues of CAD patients and
that overexpression of MEG3 in endothelial cells suppressed EC proliferation
in vitro [160]. It is important to mention in this context that MEG3 is expressed
from the conserved DLK-MEG3 imprinted domain. Studies of this imprinted locus
in mouse showed that Meg3 function as a repressor by tethering the Polycomb PRC2
complex at target genes in trans [204]. This is relevant as mouse DIkI has been
independently linked to atherosclerosis: The suppression of DIkl protected from
atherosclerosis through promoting regenerative EC division for EC turnover in
injured arteries, while disturbed blood flow inhibited this pathway [329]. Thus,
MEG3/Meg3 may have several cell-type-specific roles in the cardiovascular system,
and EC-related functions may be particularly interesting to study in the future.

RNCR3, retinal noncoding RNA 3, also known as LINC00599, is a lincRNA
that is a source of the microRNA miR-124a. RNCR3 was found to be induced in
mouse and human aorta atherosclerotic lesions, and specifically also by ox-LDL
treatment of ECs and VSMCs [53]. In a mouse model of atherosclerosis, systemic
injection of shRNA for RNCR3 increased lesion size. This proceeded with EC
apoptosis, reduced VSCM proliferation and migration, and with increased choles-
terol levels and higher levels of TNF-a and IL-6 in the circulation [53]. Though the
exact underlying mechanism is still unknown, these data suggest that RNCR3 is an
atheroprotective factor. Possibly RNCR3 exerts a role in protecting from apoptosis
because an earlier independent knockout of RNCR3 had shown a phenotype in the
central nervous system, with defects in brain development, axonal morphogenesis of
dentate gyrus granule cells, and retinal cone cell death.

SENCR, smooth muscle and endothelial cell-enriched migration/differentia-
tion-associated long noncoding RNA, is a IncRNA that is encoded as NAT of the
FLII gene. FLII is a transcription factor known to regulate EC and blood cell
formation. SENCR has described pleiotropic functions in ECs and VSMCs, making
it difficult to propose how it specifically functions in CAD [67]. Directed tests
revealed that SENCR was downregulated in ECs from vessels of patients with
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premature CAD, as well as in patients suffering from occlusive peripheral artery
disease [163]. Whether any of the cellular roles of SENCR contributed to disease was
not further functionally investigated. Although being a NAT, SENCR functions
independent of FLII regulation, at least while regulating VSMC contractility. How
SENCR functions is unclear, but it has been shown that SENCR is cytoplasmic [67].

SMILR, smooth muscle—induced IncRNA enhances replication, also known as
RP11-94a24.1, has already been mentioned above in the context of HAS2 locus
regulation. SMILR has, however, also been studied on its own: While profiling RNA
expression following stimulation of human VSMCs with the inflammatory interleu-
kin-1a and the mitogen and chemoattractant PDGF, 200-300 noncoding transcripts
were found to be differentially regulated [94]. SMILR was among the top differen-
tially abundant IncRNAs. SMILR also became the focus of interest for this study
because IL-1a and PDGF treatment did not change its abundance in other vascular
cell types such as ECs [94]. SMILR was shown to be more abundant in unstable
human atherosclerotic plaques, as compared to healthy adjacent vessel tissue and
prospectively defined by positron emission tomography imaging. SMILR knock-
down in cultured VSMCs reduced VSMC proliferation, while overexpression
enhanced it [94]. When investigating how SMILR functioned on a molecular level,
the authors found that genes in the genomic neighborhood of SMILR were coordi-
nately upregulated together with SMILR in their cell culture model.

Tugl, taurine upregulated gene 1, is another well-studied IncRNA. It had
originally been found in studies of the developing retina, but subsequent studies
revealed a multitude of functions in diverse cell types: Overarching some functions,
it has been proposed that Tug!l repressed growth control genes though scaffolding
and promoting their intranuclear association with repressive Polycomb group
complexes in heterochromatic Polycomb bodies in the nucleus [206]. Since Tugl
is also expressed in ECs, and the role of PcG members is of general importance for
many cell types, Tugl’s function also in the cardiovascular system was investigated.
Here, it was found in cell culture studies that Tug/ activated the enzymatic activity of
the PcG member Ezh? in methylating a-actin as a nonhistone target in the cytoplasm
of VSMC:s. This type of regulation has been found in earlier independent studies and
correlates with increased actin polymerization. Also, Tugl was shown to regulate EC
tight junctions. Lastly, Tugl was found to be upregulated in an ApoE~"~ mouse
model of atherosclerosis, and to be less upregulated when these mice were fed the
anti-atherosclerotic and antianginal compound Tanshinol, a carbocyclic catechol
compound in herbal extracts of sage in traditional Chinese medicine [165]. Whether
the human TUG/ orthologue was also differentially expressed in human atheroscle-
rotic lesions was not tested. Nevertheless, Tanshinol was found to repress the
induction of mouse Tugl/ and of human TUG! by ox-LDL in mouse and human
ECs, in cell culture, respectively. Conversely, TUGI overexpression inhibited the
antiapoptotic effect of Tanshinol in ox-LDL-treated human ECs [165]. This
suggested that human TUGI may be a therapeutically interesting IncRNA in
human CAD.

In the following section we highlight IncRNAs that have been implicated in
myocardial infarction through the analysis of relevant animal models of MI, but
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which have not been specifically studied in atherosclerosis models. Data mainly
derive from mouse MI models, in many cases experimentally triggered by transverse
aortic constriction (TAC). In some cases, differential IncRNA expression data have
been obtained from orthologous IncRNAs in humans myocardial infarction.

Among 150 IncRNAs deregulated by pressure overload after transaortic constric-
tion in a mouse model, Chaer, cardiac hypertrophy associated epigenetic regulator,
showed enriched expression in hearts and was studied carefully [16]. A human
CHAER ortholog exists that is also expressed in the human heart. There is at least
a trend for Chaer to be induced in hearts from patients with dilated cardiomyopathy.
The Chaer locus was inactivated by deleting exon 2, but the knockout mice did not
show obvious morphological organ deficits or heart problems. Yet, under pressure
overload, cardiac hypertrophy and pathological fibrosis were reduced in the absence
of Chaer [16]. The knockouts also showed overall increased heart function in this
model. Molecularly, Chaer was found to interact with Ezh2, the central histone
methyltransferase of the PRC2 polycomb complex. Further analyses suggested that
Chaer competed with other IncRNAs such as Hotair or Fendrr in binding to PRC2,
while leaving the enzymatic activity of Ezh2 intact. This interaction of Chaer and
the PRC2 complex seemed to negatively impact the association of PRC2 with
selected target genes and thus their repression [16]. The human CHAER ortholog
shows similar interactions with the human PRC2 complex and stimulated the
expression of hypertrophic genes in human cardiomyocytes. Why Chaer/CHAER
gained access to PRC2 over Hotair during a hypertrophic growth phase in
cardiomyocytes is not yet fully clear, but a modification of the PRC2 complex by
the growth-promoting mTOR complex was indicated in the first analysis. Targeting
this switch is of specific interest also from a therapeutic aspect.

While screening for IncRNAs differentially expressed in conditions of
cardiomyocyte hypertrophy upon transverse aortic constriction in mice, Chast,
cardiac hypertrophy-associated transcript, was identified [167]. This IncRNAs
was also upregulated in human hypertrophic hearts when analyzing heart tissue of
aortic stenosis patients. Systemic overexpression of Chast ameliorated heart pathol-
ogy in TAC-operated mice, indicating that it might be exploited as a protective factor
in the future.

CHRF, cardiac hypertrophy related factor, was identified in a study on the
microRNA-dependent regulation of cardiac hypertrophy. Among other microRNAs,
the conserved miR-489 was recently shown to be downregulated in pressure-
overload models following transverse aortic constriction (TAC) in mice, as well as
in human heart failure samples, and in cultured cardiomyocytes upon treatment with
angiotensin II [168]. Ang-II is a vasorestrictive peptide binding to its membrane
receptors, known for a long time to promote cardiomyocyte hypertrophy also
in vitro. Apart from many other important physiological functions in the kidney
and other organs, Ang-II is known to be released upon hemodynamic overload and
can stimulate cardiac hypertrophy. Ang-II treatment of cardiomyocytes is an in vitro
model to study aspects of the downstream effects. Interestingly, miR-489 depletion
by RNAi caused hypertrophy, and further promoted hypertrophy upon Ang-II
treatment in vitro [168]. Conversely, the cardiac-specific overexpression of miR-
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489 in conditional transgenic mice did not show anatomical aberrations, but
displayed a reduced hypertrophic response in the heart after in vivo Ang-II treat-
ment. This effect was ascribed, at least in part, to micro-RNA-dependent inhibition
of translation of Myd88, an adaptor protein for Nf-kB signaling that was already
previously involved in regulation of hypertrophy. CHRF, on the other hand, acted
upstream, was induced by Ang-II and in TAC mouse models, sequestered miR-489,
and when overexpressed impaired miR-489. Together, CHRF was suggested to
promote cardiac hypertrophy and caused apoptosis [168].

Hotair, Hox transcript antisense intergenic RNA, is another famous IncRNA
studied in the context of embryonic development as well as in cancer. In a recent
study, Hotair was found to be decreased after TAC surgery in mouse hearts
[169, 170]. There is also a human HOTAIR IncRNA, and it is known to be
downregulated in left heart ventricle biopsies as well as in PBMCS in dilated
ischemic cardiomyopathy patients [170]. Overexpression of mouse Hotair in
cultured cardiomyocytes reduced angiotensin Il-triggered hypertrophic growth
in vitro [169]. The authors suggested that for this function Hotair sequestered
miR-19 to derepress PTEN [169], a pair of factors implicated directly and indirectly
before in other cells in growth-dependent DNA replication control [330]. Whether
this is the effector mechanism in vivo is open, also because Hotair has been
previously implicated in Hox gene regulation. A number of studies put forward
evidence that Hotair repressed transcription of posterior Hox (Hoxd) genes in trans,
through tethering several independent repressive chromatin-modifying complexes.
Most recently, dedicated knockout analyses of the entire Hotair locus in vivo
challenged the trans-regulation model that based on near-complete or partial exonic
knockouts of Hotair. The knockouts showed that Hotair only had a very subtle role,
and this was in cis-regulation of nearby Hoxc genes [52].

KCNQ10T1, KCNQI opposite strand/antisense transcript 1, is known as a
classical example of a IncRNA expressed at an imprinted growth regulating locus.
In a recent study, human KCNQIOTI levels were also found to be increased in
neutrophils and monocytes in whole blood preparations in patients with myocardial
infarction (MI), where it was associated with hypertension, and not so much with
inflammation markers [171]. This study showed that KCNQIOTI together with
ANRIL might be useful in prediction of left ventricular dysfunction after
MI. Extending this study, a recent report tested the role of KCNQ1OT] in infarcted
tissue. Silencing of KCNQIOT! antagonized cell death in myocardial cells upon
oxygen/glucose deprivation in vitro [172]. Thus, KCNQIOT]I has heart-specific
functions, and may not only be a marker of MI, but also actively promote injury in
ischemic hearts when overacted [172]. The effector mechanisms of KCNQI1OT]I
during MI are still unknown. KCNQIOTI’s molecular roles are only known from
unrelated studies in other organ systems. Knockout analyses showed that
dysregulation of mouse Kcnglotl correlated with embryonic overgrowth
phenotypes and mental disabilities but also with some cancers. In these studies it
became clear that Kcnglotlis paternally expressed and recruits the repressive PRC2
and the G9a histone methyltransferase for silencing Kcngl and other protein-coding
genes in the locus in cis. In the heart, Kcnglotl represses Kcngl during cardiac
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development, but whether this is the causal determinant for becoming detrimental
during MI remains open.

Mirtl, myocardial infarction-associated transcript 1 or NR_028427,) and Mirt2
(ENSMUST00000100512) were identified in a group of 30 IncRNAs that were
differentially expressed in a mouse model of myocardial infarction based on coro-
nary ligation [55]. Within the 24 h after permanent occlusion of the anterior
interventricular artery, Mirtl and Mirt2 were upregulated 10-20-fold. Mirtl levels
then decreased to baseline levels by 48 h. Mirt] located in fibroblasts more than in
cardiomyocytes. When Mirt] was depleted by injecting shRNA-expressing
constructs into the myocardium before MI, cardiac functions were ameliorated
after MI and the infarction size slightly reduced, suggesting that Mirt] upregulation
contributed to pathological changes in the infarcted heart [173]. Similarly, in vitro,
hypoxia-induced Mirtl expressed in cultured mouse cardiac fibroblasts, and Mirt!
contributed to their apoptosis, to Nf-kB activation, and to the expression of inflam-
matory cytokines [173].

Myheart (Mhrt), is a NAT conserved in mouse and humans, and is expressed
antisense to the Myosin Heavy Chain 7 RNA transcript, a molecular motor protein
allowing heart muscles to contract. Mhrt is a myocardial-specific IncRNA and
expressed with several isoforms in nuclei of cardiomyocytes [15]. Mouse Mhrt
IncRNAs were found to be downregulated in a mouse TAC-induced heart pressure
overload model, which was used as a trigger for cardiac hypertrophy and fibrosis and
impairing hearts functionally. Likewise, human MHRT levels were downregulated in
heart tissue of patients suffering from left ventricular hypertrophy, or from ischemic
cardiomyopathy or from idiopathic dilated cardiomyopathy. Conditional forced
transgenic expression of mouse Mhrt in cardiomyocytes of adult mouse hearts
in vivo reduced stress-induced cardiac hypertrophy and fibrosis, as well as left
ventricular dilation and fractional shortening [15]. This offered evidence for the
notion that Mhrt is a IncRNA that protects from hypertrophy-induced heart injury.
Mechanistically, mouse Mhrt was shown to bind SWI/SNF chromatin remodeling
complex, which is well known to regulate a number of target genes by modulating
nucleosome positioning and occupancy at genetic loci. The binding of Mhrt to Brgl
was found to repress Brgl activity, since Mhrt was shown to compete with binding
of Brgl to chromatinized DNA. Since Brgl was additionally found to repress Mhrtl
IncRNA expression, a feedback loop was suggested that may fine-tune Mhrt RNA
levels and Brgl activity levels to protect hearts from hypertrophy of cardiomyocytes
[15]. Given its pronounced therapeutic effects in the mouse model, Myheart may
become one of the first IncRNAs that might be used for therapeutic purposes in
humans in the future.

ROR, regulator of reprogramming, or previously known as lincRNA-ST8SIA3,
has been identified in unrelated work as lincRNA that is upregulated during deriva-
tion of human-induced pluripotent stem cells from fibroblasts and contributed to
gaining an undifferentiated proliferative cellular phenotype in pluripotent cells
[21]. At least part of this role was ascribed to functioning as a sponge for miR-
145, miR-181, and miR-99 [212]. This allowed the core pluripotency transcription
factors OCT4, SOX2, and NANOG, which were otherwise targeted by these three
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microRNAs, to become more stably expressed, especially to withstand low-level
aberrant differentiation signals. Since these transcription factors also stimulated ROR
expression, a feed-forward regulatory loop had been proposed that stabilized stem
cell self-renewal, but also made differentiation progress more robust since ROR
levels decreased during programmed progenitor cell differentiation [212]. These
findings were noticeable because they placed, for the first time, a IncRNA in the
core pluripotency transcription factor network. ROR has more recently also been
found to be upregulated in a mouse heart injury model following transverse aortic
constriction, as well as in models of cardiomyocytes hypertrophy in cell culture
[174]. siRNA-mediated depletion of ROR impaired hypertrophic growth in vitro.
Since ROR could be depleted by miR-133, aknown antihypertrophic microRNA, the
authors suggested a pathological role of ROR in promoting hypertrophic growth
downstream of this microRNA [174]. How the stimulation of hypertrophy in
cardiomyocytes of the diseased heart relate to the hypothetical reactivation of
pluripotency-related genes, as suggested from the previous unrelated studies,
remains to be addressed.

The authors of a recent study focused on a set of IncRNAs that were heart-
enriched, conserved also in human and differentially induced after myocardial
infarction in mouse and human [331]. Five percent of these IncRNAs could be
mapped to heart-selective super-enhancers [91]. Super-enhancers, also known as
stretch-enhancers, represent a subgroup of enhancers that have been identified by a
body of recently published work, particularly influential enhancer elements in the
genome: Super-enhancers have a high multiplicity and density of enhancer elements,
and locate close to genes that encode for important cell-fate-determining factors,
master microRNAs, and for central signaling pathway components with relevance
for development and disease (see a recent publication for characteristics of super-
enhancers [332]). Among the top induced IncRNAs in the class of heart-enriched
IncRNAs, a recent study found the mouse Wisper IncRNA, named after the location
close to the protein-coding gene Wisp2, a nonstructural signaling protein in the ECM
[91]. Wisper was shown to be present in cardiac fibroblasts and to peak in expression
two weeks after MI in mice in an LAD mouse MI Model, as well as in the
proliferative fibrotic phase in hearts in a model of cardiac fibrosis induced by
hypertension due to left renal artery clipping. Depletion of Wisper upregulated
Wisp2, decreased proliferation and migration, impaired the transdifferentiation of
cardiac fibroblasts to myofibroblasts, at least based on marker gene expression
profiling in vitro, and induced proapoptotic genes. Since Wisp2 depletion alone
did not trigger all these effects, [91] must have additional effectors. Among many
possible mechanisms, the authors found four RNA-processing factors and splicing
regulators, TIAR, PTB3, DIS3L2, and CELF2, to specifically bind the IncRNA
Wisper [91]. The relevance of these interactions is not yet clear, but using GapmeRs
to deplete Wisper in vivo reduced the extent of cardiac fibrosis and the infarction
size. A human ortholog of Wisper exists, and shows fibrosis-associated induction in
AOS (Adams Oliver syndrome) patients, who characteristically show myocardial
fibrosis and LV dysfunction. These data suggest that Wisper/WISPER has a
conserved detrimental function in MI [91]. It is interesting to note that Wisper is
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not the only example of a IncRNA residing at a super-enhancer locus. Also Carmen
and Upperhand (see above) may be super-enhancer RNAs, and have been
investigated in relation to the cardiovascular system.

7.4.2.2 Aortic Aneurysms

Aortic aneurysms are focal asymmetrical dilations of the vessel. They occur most
commonly in the infrarenal abdominal aorta, but can also be found elsewhere, for
example in the chest. The biomechanical integrity of the vessel is in large parts
determined by fibers, such as collagen and elastin fibers, in the ECM, and the ECM
of the vessel depends in large parts on the VSMCs. An SNP in ANRIL has been
linked not only to abdominal aortic aneurysms, but also to sporadic and familial
intracranial aneurysm [136, 333, 334]. A nearby SNP in ANRIL that associated with
diabetes did not associate with aneurysms in this context. How ANRIL molecular
contributes to changes in the extracellular matrix or in the contractility of VSMCS
has not been tested in the context of aneurysm formation. Yet, in studies of
cancerous cells, ANRIL was implicated in promoting metastasis, which may point
to an underlying role in promoting ECM remodeling, a hypothesis that remains to be
tested in more detail [335-338].

Also HIF1aAS1, HIF 1A antisense RNA 1, became the focus of interest because
it was found to be differentially abundant in the serum of patients with
thoracoabdominal aortic aneurysms (TAA) [71]. HIF1aAS was more abundant in
TAA. The authors tested its role in affecting the survival of vascular cell types in
culture. Knockdown of HIF1aAS1 partially protected from experimentally induced
apoptosis in VSCMs and ECs in vitro. Whether and how this function in VSMCS
and ECs related to aneurysm formation was not further tested [71].

7.4.2.3 Cardiomyopathies and Congenital Heart Disease

So far, knockout analyses have shown that 10 IncRNAs have roles in embryonic
heart development, and that a further 6 IncRNAs do not show any obvious morpho-
logical or functional abnormalities in the embryo but develop dysfunction under
stress conditions in the adult (Table 7.1). These latter IncRNAs are part of the group
that will be described in the following: In this section we review 12 IncRNAs linked
to cardiomyopathies and heart diseases, some of which are genetically inherited
(congenital). LncRNAs in this group have often been experimentally studied in
rodent ischemia-reperfusion (I/R) heart injury models, and specifically in the context
of hypertrophic overgrow of cardiomyocytes, which is triggered thereby. When
cardiomyocyte hypertrophy is sustained it may eventually increase the risk of
heart failure. So, the functional separation of this class from the class of
Ml-related IncRNAs (see above) is not always clear-cut. Beyond the IncRNAs that
have been functionally studied and are reported here, many more IncRNAs have
been found to be differentially expressed in human heart diseases but have so far not
been functionally explored. For these we refer to the relevant studies that profiled
IncRNA expression in dilated cardiomyopathy [170, 339], ischemic heart failure,
inherited hypertrophic cardiomyopathy [340], and congenital heart defects that range
from ventricular septal defects over atrial septal defects to tetralogy of Fallot
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[341, 342]. The following IncRNAs have, however, been studied in functional terms
and we present them in alphabetical order:

Apf, the IncRNA autophagy promoting factor, was found to be induced in
infarcted hearts in ischemia-reperfusion (I/R)-mediated mouse models of heart injury
[175]. Apf was found to overactivate autophagy by sequestering miR-188-3p and,
thus, inhibiting miR-188-3p-dependent repression of ATG7 [175]. A balanced
repression of ATG7 seems, however, important, as ATG7 is one of the central
known components in forming the autophagosome vesicle. Consistent with this
idea, Apf RNAI resulted in a reduced size of infarcted heart tissue in the I/R model
and ATG7 overexpression rescued this effect. Therefore, the model was proposed
that Apfinduction led to a detrimental overactivation of autophagy that mediated cell
death in the infarcted heart, possibly in cardiomyocytes [175]. Autophagy is nor-
mally operating in physiology for the homeostasis of cells’ molecular building.
During metabolic stresses like starvation or hypoxia, autophagy is especially impor-
tant, also to remove dysfunctional molecules and organelles. Both overactivation
and blockage of autophagy have been linked by multiple earlier studies to many
diseases and contribute to cancer, aging, degenerative diseases, and cardiovascular
diseases (see [343] for review). Although Apf-dependent autophagy was detrimental
in the current study in the I/R model [175], the proposed mechanism should not be
generalized to other cardiovascular diseases, where autophagy also plays a role. For
example, autophagosome number was found to be increased in macrophages of
atherosclerotic plaques, but there autophagy is thought to curb plaque necrosis and to
stabilize plaques by reducing macrophage apoptosis [344].

Carl, cardiac apoptosis-related IncRNA, is a IncRNA that has come to attention
in the context of studying the regulation of mitochondrial energy production in
energetically active cardiomyocytes. Carl is a mouse IncRNA that is expressed in the
heart, and is repressed by hypoxia in cultured mouse cardiomyocytes. The authors
showed that Carl sequestered miR-539, while miR-539 was found to represses PHB2
[18]. PHB2 is a mitochondrial protein belonging to the class of prohibitins and its
function is to limit mitochondrial fission in anoxic conditions. Limiting fission is a
proproliferative adaptation necessary to survive anoxia. Since Carl expression is,
however, downregulated in hypoxia, and miR-539-dependent PHB2 inhibition
begins to prevail, the end result is myocardial death. In vivo, overexpressing
mouse Carl in the aortic root in a mouse ischemia/reperfusion model reduced
myocardial death and limited heart infarction size [18]. Carl, thus, seems to ensure
sufficiently high levels of PHB2, which has protective consequences in the post-
infarcted heart and is due to ensuring a correctly balanced level of mitochondrial
energy production [345]. How the situation is in the human heart is not known.
Conceptually, the regulation of the mitochondrial fission-fusion cycle for balancing
energy production is involved in a number of diseases, and in particular also in
cardiovascular diseases, since the heart is the most metabolically active organ,
carries the highest content of mitochondria, and since mitochondrial capacity is
impaired, for example, in heart failure (see [346] for review).

Carmen, cardiac mesoderm enhancer-associated noncoding RNA, is a IncRNA
that is required for the specification of the cardiac lineage [19]. It was found upon
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profiling IncRNAs that were induced upon differentiation of fetal human cardiac
precursor cells in culture. Carmen’s gene body overlapped with a previously
characterized fetal and adult human heart enhancer that had been determined by
chromatin-IP experiments. RNAi experiments showed a requirement for Carmen in
the specification to cardiac SMCs and differentiation to cardiomyocytes in a differ-
entiation model of mouse embryonic stem cells in culture [19]. The authors
suggested that Carmen functioned as an enhancer RNA to potentiate enhanced
expression of genes close to the IncRNA locus in cis. But genetic rescue experiments
showed that additional effectors had to exist elsewhere, and that Carmen, maybe,
also had a trans-acting role on still unknown target genes. Since Carmen bound the
PRC2 complex, its trans-repressive function may be tethering this repressive chro-
matin regulator to target loci, but whether this was indeed the case and how this
related to its eRNA function remains to be shown [19]. How Carmen impacts human
heart diseases is less clear. Specific isoforms of Carmen were found to be induced in
hearts after myocardial infarction, in human hearts of dilated cardiomyopathy
(DCM), and aortic stenosis patients [19]. Since RNAi-mediated depletion of Carmen
led to a reduction of structural heart proteins and of heart transcription factors Gata4
and Nkx2-5 in neonatal murine cardiomyocytes, a role in maintaining the
differentiated fate of cardiomyocytes has been proposed [19].

The evidence that misregulated levels of these two circRNAs contribute to heart
disease is rather solid, at least in the experimental mouse models. The effector
mechanism is, however, disputed. microRNA sponging by circRNA is not consid-
ered to be a physiological function for the vast majority of circRNAs. Only a few
circRNAs are expressed at such high levels and with such a large amount of
microRNA binding seed regions that microRNA binding could possibly occur at
relevant rates. CDR1-as, cerebellar degeneration-related protein 1 antisense RNA,
is a classic example of a microRNA-sponging circRNA, but likely also the excep-
tion. It contains 74 microRNA seed regions for the miR-7 microRNA. Since CDRI-
as lacks full sequence complementarity with this microRNA, CDRI-as degradation
is thought to be avoided [214, 215]. Indeed, CDRI-as does form stabilized
microRNA:AGO2 endonuclease complexes, as would be expected for a microRNA
sponge [215]. That sponging was indeed a biological function for CDRI-as was
concluded from genetic experiments [213, 214]. Due to its expression domain, and
as evidenced by the loss of function studies in mouse and zebrafish in vivo, CDRI-as
had a neuronal function in the CNS. A knockout exists in mouse, but it does not
show anatomical alterations, and also no heart defects [213]. Despite this evidence,
CDRI-as has also been studied in the cardiovascular context. CDRI-as circRNA
was found to be upregulated in infarcted heart tissue in a mouse model for
myocardial infarction. Following the previously proposed model that CDRI-as
served as a sponge for miR-7a, they suggested that in this function CDRI-as
inhibited the antiapoptotic effects of miR-7a in cardiomyocytes in vitro [176]. Further
experiments have to substantiate the proposed model in the disease model in vivo.

The well-known H19 IncRNA was found to be induced after chemical induction
of dilated cardiomyopathy in rats. Depletion of H/9 by intracoronary injection of
shRNA-expressing constructs improved heart function and reduced cardiomyocyte



7 Long Noncoding RNAs in Cardiovascular Disease 253

apoptosis [197]. Induction of HI19 seems to be also involved in calcific aortic valve
disease (CAVD) in humans [152]. This disease is characterized by the abnormal
mineralization of the aortic valve, which leads to its thickening, impaired leaflet
motion and stenosis. In this case, H/9 was pathologically upregulated and this
induction promoted cultured human valve interstitial cells to start expressing
genes, like osteocalcin, BGLAP, BMP2, or RUNX2, which are normally only
expressed during osteogenesis [152]. HI9-depended repression of NOTCH]I expres-
sion was implicated in the upstream regulation of these genes because H/9 was
found to inhibit NOTCHI, and NOTCHI was known from earlier studies to repress
the osteogenic genes. The authors offered further evidence for a SNP in the H/9
promoter of CAVD patients, which did not cause loss of imprinting as in other H19-
dependent diseases, but which correlated with reduced DNA methylation and, thus,
increased H19 expression [152].

The Heartbrake IncRNA 1 (HBLI) is a special case of a human-specific cardiac
regulator that is highly conserved in primates but not in other vertebrates. Human
HBLI became the focus of interest because if is a cardiovascular lineage-specific
IncRNA, as determined by expression profiling in differentiating human pluripotent
stem cells in culture [177]. HBLI was shown to become deactivated after cells exited
from pluripotency during the onset of cardiomyocyte differentiation. HBLI was
found to sequester miR-1, a microRNA known from before to be important for
cardiomyocyte development. The authors of the current study showed that HBLI
restrained miR-1’s ability in promoting ventricular cardiomyocyte expansion. This is
likely of relevance also for humans because one target of mouse miR-I is the
cardiogenic transcription factor Hand2 [347], and a heterozygous missense mutation
in human HAND?2 has been linked to tetralogy of Fallot syndrome, a disease showing
ventricular heart septal defects and ventricular heart hypertrophy [348]. This con-
nection indirectly implicates HBLI as a mediator of congenital heart defects in
humans, possibly in a function in undifferentiated cardiomyocyte progenitors and
at the onset of cardiomyocyte cell fate differentiation [177].

Also, some circRNAs have been implicated in hypertrophic growth control in the
heart. mm9-circ-012559 is a 5'-3'-linked circRNA in the mouse. Based on its role it
has later been renamed HRCR, heart-related circular RNA [105]. HRCR was
identified through a circRNA profiling upon TAC-induced cardiac hypertrophy
and heart failure, and in parallel also in a heart injury model based on the infusion
of isoproterenol. In these models HRCR abundance was reduced compared to
controls. Since seed regions for the microRNA miR-223 were found on HRCR,
experiments were performed to test HCRC’s role in sequestering this microRNA.
miR-223 is relevant for heart physiology because it serves a role as an inhibitor of the
known apoptosis repressor with Card domain (ARC), which is known to protect
from hypertrophic effects in injured hearts. Since overexpression of HRCR reduced
the degree of cardiac hypertrophy depending on ARC, the authors concluded that
reducing the levels of HRCR contributed to heart failure because miR-223 became
active to deplete ARC, and ARC could, thus, no longer protect against heart
hypertrophy [105].
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The function of Malatl, metastasis-associated lung adenocarcinoma transcript
1, in cardiomyopathy was recently tested in a rat model. Malatl was found to be
induced in cardiac tissue in diseased hearts of diabetic rats. Depleting Malatl by
intracoronary injected shRNA-expressing constructs improved heart function as
measured in left ventricular function [349].

Specific isoforms of the mouse Meg3 IncRNA were among the most abundant
IncRNAs specific to cardiac fibroblasts. Meg3 was further enriched after
TAC-induced heart injury. Silencing Meg3 systemically by injecting inhibiting
oligonucleotides in mice ameliorated cardiac fibrosis and diastolic dysfunction,
and reduced cardiomyocyte hypertrophy in the TAC-injury model [161]. Thus,
Meg3 is cardioprotective. There is a human MEG3 ortholog, and we have described
its functions in CAD. The role and regulation of human MEG3 in cardiomyopathies,
and independent of CAD, have so far not been studied.

MFACR, mitochondrial fission and apoptosis-related circRNA, is another 5'-3-
'-linked circRNA in the mouse. Its levels were found to be upregulated in a heart
ischemia/reperfusion injury model in mouse [106]. In this study it was suggested that
miR-652-3p was sequestered by MFACR. miR-652-3p had the deleterious capacity to
repress MTP18, a factor important for cellular viability by facilitating mitochondrial
fission. In the injury model in vivo, and following systemic manipulation of MFACR
levels, the authors showed that MFACR activation derepressed MTP18, mitochon-
drial fission, and that the unbalanced overshooting of mitochondrial apoptosis led to
heart dysfunction [106].

MIAT has been described in the sections on CAD-related IncRNAs and will be
described also for problems in angiogenesis. MIAT has also been linked to cardiac
hypertrophy, and the underlying roles are not necessarily the same. First, MIAT one
was found to be induced in heart ventricle samples of patients suffering from
noninflammatory dilated cardiomyopathy (DCM), and even more so in Chagas
disease patients [147]. This disease typically is triggered by infection with
Trypanosomes and develops a form of aggressive inflammatory (DCM) with myo-
carditis, hypertrophy, and fibrosis. MIAT upregulation was corroborated in a mouse
model of Chagas disease [147], as well as in Angiotensin II-triggered cardiac
hypertrophy models in mice [180] and in a rat diabetic cardiomyopathy model
[181]. In the latter model, depleting MIAT by shRNAs in vivo ameliorated heart
function in diabetic mouse cardiomyopathy and antagonized high glucose-mediated
apoptosis in cultured cardiomyocytes. How MIAT upregulation affected cardiac
hypertrophy in each case is unclear, and whether the different diseases share a
common function of MIAT has so far not been addressed.

UCALI, urothelial cancer associated 1, is a IncRNA that is the top induced
noncoding RNA in the heart in a rat model of partial cardiac ischemia/reperfusion.
Overexpression increased proliferation and depletion decreased viability in cultured
cardiomyocytes [179]. Thus, UCAI has antiapoptotic, proliferative functions. The
relevance for humans has not been tested.
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7.4.2.4 Vascularization and Angiogenesis

Also in this section on IncRNAs linked to vascularization and angiogenesis we will
only review IncRNAs that have been implicated through evidence from animal
models in vivo. Depending on IncRNA, additional evidence may exist that a
IncRNAs is differentially expressed in diseased human tissue under hypoxic
conditions or in animal cell culture models of vascularization. On a cellular level,
these IncRNAs are involved in aspects of endothelial cell biology, to vessel forma-
tion and branching in normal conditions, or in ischemic conditions such as during
atherosclerosis or heart infarction. LncRNAs implicated in cerebrovascular stroke,
where vasculariziation plays a role, will be presented in Sect. 7.4.2.6. Relevant
IncRNAs in section encompass HOTTIP, Malatl, MANTIS, and SENCR. Secondly,
and although we do not consider IncRNAs linked to CAD risk factors like diabetes
or high blood pressure per se, in this section we also consider reports on IncRNAs
related to studies of ECs during vascularization in diabetic retinopathy (Miat,
Malatl) or in end-stage renal disease (Myoslid). The IncRNAs are discussed in
alphabetical order.

Given the role of some HOX genes in EC biology, HOTTIP has been
investigated in the context of angiogenesis. Overexpression of HOTTIP was found
to promote EC proliferation and migration in vitro, while siRNA-mediated knock-
down had the opposite effects [156]. This proliferative and migrative function
resembled the role of HOTTIP in other previously tested cells. With relevance to
the cardiovascular system, so far it is also known that Hoxal3 is important for
endothelial cell specification in the vasculature connecting embryo and placenta.
Thus, whether HOTTIP would be also functioning in ECs in the adult vascular wall,
or be misregulated in disease, remains to be seen.

Malatl has a number of molecular functions as far as studied in cultured cells, but
no obvious anatomical defect when the gene was knocked out in mice in vivo (see
the previous section). Human MALATI was, however, found to be specifically
upregulated in stress conditions, such as in cultured human umbilical vein endothe-
lial cells (HUVECS) exposed to hypoxia, which is a pro-angiogenic condition.
Malatl, MEG3, TUGI, and SNHGS5 were among the top induced IncRNAs. In this
condition Malatl knockdown by siRNAs or GapmeRs decreased hypoxic EC
proliferation, and impaired EC migration and sprouting in spheroid and scratch
assay in vitro [13]. Based on these results, the mouse Malatl knockouts were
reinvestigated and a specific deficit in vascularization was found also in vivo, and
specifically in the neonatal retina [13]. Stress-specific roles may also underlie
Malatl’s roles in cancer cells, where Malatl is upregulated in tumors, while
knockout impaired cancer cell migration and metastasis, as well as alternative
splicing in mammary tumor models [216]. The relevance of MALATI/Malatl has
since been studied also in ischemic disease models in vivo. When GapmeRs directed
against Malatl were intraperitoneally injected into mice during experimentally
triggered hindlimb ischemia, blood flow recovery was found to be reduced
[13]. Thus, Malat]l was suggested to be required for vascular growth also in this
context, and its role in stimulating EC proliferation and sprouting, as determined in
cultured cells, may underlie vascularization. In contrast to its beneficial
proangiogenic role in CAD models, during diabetic retinopathy, retinal vessels
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growth instructed by Malatl can also be detrimental when uncontrolled: Malatl was
found to be induced in hypoxic and in diabetic conditions, as shown, for example, in
rat and mouse models. In the context of diabetic retinal pathology, Malatl
contributed to pathological vascular retinal pathology [14]. MALAT]I is also induced
in ischemic conditions in cerebrovascular stroke models and will be treated in Sect.
7.4.2.6 in more detail.

A IncRNA encoded in antisense within an intron of Annexin A4 was recently
investigated in some more detail and named MANTIS, n342419 [69]. So far,
MANTIS expression has been observed in endothelial cells, and was tested in several
cardiovascular diseases. MANTIS was found to be downregulated in lung tissue of
idiopathic pulmonary arterial hypertension in humans, a small-vessel disease
characterized by endothelial apoptosis and proliferation. Secondly, MANTIS was
found to be upregulated in vessel tissue in atherosclerosis regression in a monkey
CAD disease model, which could be due to a hypothetical role of MANTIS in
promoting vascular regeneration [69]. Though not specifically expressed only in
endothelial cells (ECs), a recent study focused on ECs and studied functions of
human MANTIS based on a CRISPR/Cas9-mediated knockout in human umbilical
vein endothelial cells (HUVECsS) or depletion by siRNA in other endothelial cell
lines [69]. Molecularly, MANTIS localized to the nucleus, where it bound BRGI,
known as the catalytic subunit of the SWI/SNF ATP-dependent chromatin
remodeling complex [69]. MANTIS was suggested to contribute to BRG1 helicase
activity and, thus, to the chromatin-remodeling activity of BRGI-containing
complexes. For this function it was suggested that MANTIS stabilized the interaction
of BRG1 with selected members of the SWI/SNF chromatin remodeling complex. In
this function, MANTIS might activate BRG1-dependent target genes, but this model
remains to be experimentally corroborated. In ECs, human MANTIS was shown to be
pleiotropically important for proper vascular tube formation in matrigel assays,
growth factor-dependent spheroid outgrowth, and cell migration of ECs in vitro
[69]. Together, MANTIS is a trans-acting IncRNA that activates angiogenic genes
like SOX18 or SMAD6 by nucleosome remodeling.

MIAT, myocardial infarction-associated transcript, is a IncRNA that is
involved in pathological angiogenesis. MIAT is upregulated in retinas and in the
diseased fibrovascular membranes of type 2 diabetes patients. This induction was
confirmed in cell culture in a number of different endothelial cell types, including in
HUVECs under glucose stress. In a hyperglycemic rat model in vivo, Miat knock-
down ameliorated retinal function in the disease state, for example, by reducing
apoptosis of retinal cells [148]. On a cellular level, Miat was implicated in promoting
cell death triggered by hyperglycemic stress and in stimulating proliferation and
migration of ECs, and on a tissue level in advancing vessel leakage. It is likely that
multiple molecular roles underlie these diverse functions. As tested in macaque
retinal endothelial cells, one attractive model is that Miat de-represses VEGF by
microRNA sponging, which may account for Miat’s role in ECs, and, therein, in
angiogenesis and neovascularization [148].

SENCR which has already been described during in vivo studies in the context of
CAD (see above) was also found to be relevant for angiogenesis. In limb muscle
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samples of human critical limb ischemia patients, and in vessel wall ECs of patients
with premature CAD, SENCR levels were shown to be reduced [164]. In this study it
was also found that human SENCR promoted endothelial commitment and differen-
tiation and angiogenesis-related cell functions, like proliferation migration and tube
formation, in a differentiation model of human embryonic stem cells in vitro. This
suggested that SENCR’s functions are more complex and potentially cell type
specific [164].

The differentiation of vascular smooth muscle cells is known to require the
transcription factor serum response factor (SRF) and its coactivator Myocardin. In
a sequencing approach, dozens of IncRNAs were found to be induced after
overexpression of Myocardin in MYOCD in human coronary artery SMCs
[184]. Among them, Myoslid, myocardin-induced smooth muscle IncRNA, was
identified, a cytoplasmically enriched IncRNA. Myoslid is VSMC-specific,
expressed in blood vessels and bladder, is encoded in overlapping patterns with
three other uncharacterized IncRNAs, and is a NAT of at least one of them.
Knockdown experiments suggested a role in promoting the contractile,
antiproliferative, and antimigrative phenotype of VSMCs, which is consistent with
arole in promoting Myocardin-dependent differentiation [184]. Myoslid was subse-
quently found to be downregulated in arteriovenous tissue samples from patients
with end-stage renal disease. Therein, a hyperplastic and stenotic response has been
associated with disease. This suggests that reduction of Myoslid in vascular disease
may contribute to the disease-promoting de-differentiation of VSMCs.

7.4.2.5 Arrhythmia

In the fifth functional class we summarize IncRNAs linked to heart electrophysiol-
ogy, heartbeat, and rhythm. Compared to other cardiovascular disease entities, few
IncRNAs have been associated with this disease type and the depth of functional
insight is limited. Cardiac arrhythmias can be, but do not need to be, associated with
structural heart diseases, with defects involving aspects of the conductions system.
Heart structures relevant for rhythm include the sinus node, the specialized atrial
tracts, the atrioventricular node, and the bundle of His. Characteristically shaped
electrical currents reach the myocytes of the heart via ion channels, specialized
proteins and gap junctions. Most SNPs associated with arrhythmias through
GWAS affect one of the multiple ion channel subunits. Also structural heart defects
can lead to heart arrhythmias. In this case it is most often cardiac fibrosis or
hypertrophy that impairs proper conduction in the heart. In the following paragraphs,
we only focus on those IncRNAs that have been functionally investigated in relation
to heart thythm by in vivo models.

One study investigated IncRNAs differentially expressed in patients with atrial
fibrillation when comparing two left atrial regions, one being the region of the
pulmonary vein and the surrounding left atrial area (LA-PV), and the other being
the area of the left atrial appendage (LAA) [185]. The reason for comparing these
two regions lies in the earlier observations that the LA-PV junction is implicated as
most important for arrhythmogenicity based on catheter ablation experiments, while
the LAA is involved in other functions, it is, for example, a site of thrombus
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formation. Among more than 90 such IncRNAs, AK055347 was found to be
enriched in the LA-PV, and was the most significantly altered IncRNA there. In
cultured rat cardiomyocyte cell lines, AK055347 knockdown decreased viability
[185]. Whether and how the proproliferative function of AK055347 related to
arrhythmia remained, however, open.

A recent study performed quantitative trait locus (QTL) mapping in two rat
strains that differed in how their blood pressure was affected by salt levels with
the aim to identify genes regulating blood pressure. The researchers identified a QTL
responsible for high blood pressure, which was, coincidently, also responsible for
shortening the cardiac QT-interval [20]. It was mapped to the Rffl locus, and
specifically the noncoding RNA therein, Rffl-Incl. Interestingly, these two
phenotypes have also been co-associated within the synthetic genomic region in
humans, as shown by data from human GWAS studies [350]. A pathologically
shortened Q-wave/T-wave interval, as recorded in the electrocardiogram, often
associates with mutations in cardiac ion channels, and even without involving
structural changes in the heart tissue is known to correlate with an increased risk
for atrial and ventricular arrhythmia in humans. In the QTL study in the rat, the
researchers found that 19 bp indel in a previously undescribed IncRNA, Rffl-Inci,
was responsible for the mutant phenotype in the rat. Rffl-incl locates in the 5’ UTR
of the single protein-coding gene in this region, and Rffl is a ring finger and FYVE-
like domain containing E3 ubiquitin protein ligase [20]. Deletion of the Rffl-Incl
and, independently, CRISPR/Cas9-mediated reintroduction of the missing
19 nucleotides into the mutant rat strain showed that Rffl-Incl indeed was the
causative gene [20]. Together, how Rffl-Incl polymorphisms partake in the control
of cardiac features will be interesting to investigate. At the moment it is thought that
Rffl-Incl may either directly regulate the cardiac conduction system or the neural
autonomic pathways in the heart, or it may indirectly affect heart rhythm through the
regulation of cardiomyocyte hypertrophy in the context of increased blood
pressure [20].

Another study performed IncRNA expression profiling at sites of enervation on
the surface of the heart, where collections of autonomous nerves form ganglia
plexus, mainly in island-like fat pad structures or in the adipose tissue below the
epicardial membrane [186]. Autonomic nervous system remodeling (ANR) at such
sites is known to contribute to arrhythmia. Canine models have been traditionally
used to study this aspect. After receiving heart tachypacing via electrodes, dogs
developed ANR, and TCONS_00032546 and TCONS_00026102 were found to be
downregulated [186]. Injecting knockdown constructs for the two lincRNAs into the
relevant fat pads in dogs was sufficient to slightly shorten, or prolong, respectively,
the atrial effective refractory period and increase, or inhibit, respectively, the onset of
tachycardia and atrial fibrillation [186]. How these two IncRNAs differentially
impact neuronal remodeling in the onset of arrhythmia remained unknown, as well
as whether human orthologs existed that carried conserved functions.

In conceptually similar experiments in a rabbit model for studying conduction
remodeling in atrial fibrillation, IncRNA expression profiling was performed in right
atrial tissue samples [187]. The authors then used coexpression network analysis to
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focus on pathologically potentially interesting IncRNAs, such as the downregulated
TCONS_00075467. A human sequence with 70% conservation exists, opening the
possibility that the IncRNA was conserved. Depleting TCONS_00075467 in the
right atrium in the rabbit model shortened the atrial effective refractory period and
increased the frequency of fibrillation onset in the animal model [187]. The authors
suggested that this IncRNA functioned as a protector by inducing the expression of
the calcium voltage-gated CACNAIC ion channel as a microRNA sponge. Thereby,
this work related to earlier published insight on the role of CACNAIC
downregulation by microRNAs in human patients with fibrillation [351] and to the
earlier identification of a loss-of-function mutation in CACNAIC in Brugada syn-
drome patients, a disease with characteristic ST-segment elevation [352].

7.4.2.6 Stroke and Cerebrovascular Aneurysms

In the sixth functional class, IncRINAs related to brain stroke are reviewed. This class
is not treated separately to indicate a separation in terms of atherosclerosis pathways
leading to thrombus and ischemia formation, but because brain neurons are the cell
type hit most by ischemia, and because specialized pathogenic mechanisms occur in
the brain involving distinct sets of IncRNAs. The occlusion of the middle cerebral
artery is the most common route to cerebral stroke, and lack of oxygen and glucose
rapidly inflicts neurons during hypoxia-ischemia. Depolarization and impaired neu-
rotransmitter uptake subsequently cause toxic amounts of extracellular glutamate to
accumulate, which further contributes to mitochondrial dysfunction and oxidative
stress. Finally, ischemia also triggers inflammatory signaling, which can further
increase brain tissue damage. To date, nine IncRNAs have been associated with
stroke. For two of them there is some evidence that the relevant IncRNAs were also
important in human stroke patients. Of the nine IncRNAs, two had protective
functions in stroke-induced brain damage, while seven aggravated neuronal
problems after brain stroke.

Chr9p21 is well known as a major CAD risk locus. Different risk genotypes in the
human Chr9p21 locus have been found to associate with different cardiovascular
disease entities. Initial analyses offered conflicting evidence whether Chr9p21
genotypes were also associated with stroke, with some studies reporting an associa-
tion [137-139], and some studies showing no significant association [136, 353,
354]. A meta-analysis of relevant GWAS explored the association and did document
a robust but relatively weak association [140]. The investigation also suggested a
subtype-specific association of Chr9p21 with ischemic stroke, namely, with large
artery stroke [140]. Also, a more recent study corroborated this notion by showing
that specific SNPs in ANRIL IncRNA associated with susceptibility and recurrence
rate of atherothrombotic and hemorrhagic cerebrovascular stroke even in those
patients that did not have a history of heart disease [141]. Most recently, another
study performed an eQTL analysis of five previously identified risk SNPs in ANRIL
[12], and identified genes whose expressions associated with at least one of the five
risk SNPs. Among 87 of such potential eQTL hits, CARDS was selected as a
potential ANRIL effector, which was further substantiated as CARDS expression
also dropped when ANRIL was knocked down in cultured cells [142]. Since an
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inactivating mutation in CARDS was associated with ischemic stroke, and since
CARDS is known from before as negative regulator of NF-kB signaling, the possi-
bility exists that ANRIL impacts ischemic stroke also via CARDS8-dependent NF-kB
regulation [142]. While this hypothetical pathway remains to be rigorously tested, an
implication of ANRIL in stroke is rather well documented by multiple studies.
Studies investigating a direct role of ANRIL in stroke are so far limited: In a single
study, the role of ANRIL was studied in a model for type 2 diabetes in rats under a
high-fat diet and after middle cerebral artery occlusion to trigger stroke [143]. ANRIL
was found to be increased in brain tissue in this context. Overexpression and
knockdown of ANRIL systemically in the rat model showed that ANRIL augmented
endothelial microvessel density, which correlated with increased VEGF and NF-xB
expression levels. Since neuronal functionality post stroke was not tested after
ANRIL overexpression or knockdown, one can yet only speculate whether the
observed ANRIL-promoted angiogenesis aggravated complications of a stroke in
this disease model.

AK153573 is a predominantly nuclear IncRNA that partially overlaps in sense
the CaMKII5 gene. Renamed C2datl, CaMKIId-associated transcript I, this
IncRNA was found to be induced in neurons surrounding ischemic regions in a
stroke model of middle cerebral artery occlusion in mouse and rat in vivo [188].
C2datl was also upregulated after experimental oxygen-glucose-deprivation/reoxy-
genation (OGD/R) in neuronal cells in vitro. CaMKII$ levels did decrease in the
ischemic core, but were induced, similar to C2datl, in the periphery of the lesion.
Knocking down C2datl in cultured neurons reduced CaMKII6 expression and
stress-dependent induction of NF-kB signaling and, while neuronal survival was
increased. These findings are consistent with the large body of earlier evidence that
acute inhibition of CaMKII is neuroprotective [188]. C2dat! may, thus, likely
function via acute CaMKIIS locus stimulation after stroke, and this pathway may
exacerbate apoptosis during stroke.

FosDT, Fos downstream transcript, has been identified as IncRNA that was
induced in the rat cerebral cortex after transient middle cerebral artery occlusion
[73]. Further, FosDT bound Sin3 and coREST, which are members of the repressive
REST chromatin regulating complex, whereby REST is known from independent
work to become active and to be necessary for neuronal apoptosis during stroke. In
the present work, it was found that FosDT contributed to the repressive function of
REST, and that silencing FosDT reduced brain infarction size and ameliorated
neurological functions after infarction, as determined after intracerebral injection
of siRNAs [73]. One possibility, thus, is that FosDT scaffolds REST to repress
selected target genes that are otherwise necessary for their survival.

Beyond the involvement in CAD and in cardiomyopathies, HI19 also plays a role
in cerebral stroke. The first insight into this association was obtained in rodent
models. When focal cerebral ischemia was induced by middle cerebral artery
occlusion/reperfusion in mice or rats, H19 levels rose in blood plasma, and also in
infarcted brain tissue [153, 154]. Corroborating this finding, H/9 was also
upregulated in human patients within hours after a stroke [153]. Thereby, HI/9
expression was higher in plasma, neutrophils, and lymphocytes. Since an
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intraventricular injection of siRNAs targeting H79 reduced brain infarct volume and
ameliorated neurological functions in the mouse stroke model, it can be deduced that
H]I9 induction usually exerts a detrimental function during stroke. How HI9 is
detrimental is less clear. Current insights into this question base on work with
cultured cells: For example, H19 was found to promote neuroinflammatory TNFa
and interleukin expression. Secondly, H/9 was shown to impair the formation of
neuroprotective M2 microglia. Microglial cells are the major cell type in mounting
stroke-induced inflammation [153]. And third, albeit only tested in a human neuro-
blastoma cell line, and not necessarily related, H/9 contributed to apoptosis in an
OGD/reperfusion model in vitro [154]. H19 has not appeared in GWAS studies on
stroke, but selected SNPs in HI9 were still found associated to some degree with
stroke [154].

Consistent with its antiproliferative functions in many cell types, Meg3 was
recently found to be proapoptotic in the context of cerebral stroke in mouse
[162]. While mouse Meg3 is known to be downregulated in CAD-affected vessels,
it was, however, upregulated in ischemic brain tissue. Meg3 promoted neuronal cell
death, and the authors suggested that Meg3 bound to p53’s DNA binding domain.
Whether and how such an interaction would activate p53 in a proapoptotic pathway
is of interest not only for the cardiovascular field [162]. However, whether Meg3
indeed functioned in neurons in vivo, or also affected angiogenesis in the infarcted
brain, as shown in before in CAD model, or both, is still not clear.

NILR, also known as MRAKO051854, was identified by microarray-based tran-
scriptional profiling of ischemic brain tissue after intraluminal middle cerebral artery
occlusion to induce a stroke in the rat model system. Based on coexpression network
and pathway analysis, NILR became the focus of interest as a highly connected
upregulated IncRNA [189]. Also, this IncRNA was upregulated in a mouse stroke
model. Overexpressing NILR after injection into the mouse cortex reduced the
infarct volume and neuronal cell death, while siRNA against N/LR enhanced the
lesions, suggestive of protective functions of this IncRNA. The molecular effector
mechanism still remains to be interrogated.

In another approach, IncRNAs were bioinformatically screened for harboring
seeds for miR-145-5p, a microRNA whose induction had been previously associated
with ischemia in the heart. Specifically, SNHG14, also known as small nucleolar
RNA host gene 1 or UBE3A-ATS, was such a IncRNA. It is expressed in antisense
to the ubiquitin protein ligase E3A gene, and was found to be induced during the first
days after stroke in a middle cerebral artery occlusion model in mice, while miR-145-
5p levels correspondingly dropped [190]. In cultured microglial cell lines, SNHG 14
stimulated expression of inflammatory factors, while it reduced miR-145-5p levels.
The inflammatory phenotype was rescued by adding miR-145-5p mimics, consistent
with the interpretation that SNHG 14 impaired the protective function of miR-145-5p
by keeping its levels low [190].

A role in promoting neuronal cell death was ascribed to the IncRNA Tug! during
stroke [166]. Tug! levels increased in a middle cerebral artery occlusion model in the
rat in vivo, as well as in cultured neurons after oxygen/glucose deprivation. Tug/
knockdown reduced apoptosis under OGD conditions in vitro, and this effect



262 L. M. Holdt et al.

correlated with upregulation of miR-9 levels, suggesting a detrimental role in stroke
[166]. Tugl has been linked to apoptosis, but also to other roles in other cellular
contexts before, particularly in tumorigenesis. Given the intense research on miR-9
in neurogenesis, it will be interesting to dissect how Tug! connects to the rather well-
understood functions of miR-9 in the CNS, and whether the regulation of apoptosis is
indeed the central function of interest. For example, miR-9 is known from earlier
work to be expressed in self-renewing neural progenitors and is required for
neurogenesis by promoting the timely cell cycle exit of differentiating neurons. At
the same time miR-9 has also previously been found to promote angiogenesis to
proceed in concordance with neurogenesis by curbing premature neuronal VEGF
expression [355]. Thus, the region- and time-specific coordination of neurogenesis
and angiogenesis may be how Tugl determines the manifestation of stroke.

Together, a number of studies have described RNA expression profiles in brain
tissue after stroke, and lists of relevant IncRNAs residing close to known stroke risk
loci have been compiled as well [356]. Compared to CAD and MI models, the level
of mechanistic in vivo insight is, however, still limited. Questions, like in which cell
types and via which effector mechanisms IncRNAs function during stroke are still
open. Nevertheless, there is a rich literature on transcriptional regulation of neuronal
cell types, and fast advances may be possible if relevant IncRNAs can be convinc-
ingly linked to already known and well-studied transcriptional effectors.

7.4.2.7 IncRNAs in Basic Cellular Processes that Overarch CVD Entities
Finally, an important set of IncRNAs has been implicated in the regulation of
inflammatory signaling, and derailing immune signaling is a central factor in all
entities of cardiovascular diseases. We are not reviewing this inflammation-related
set of IncRNAs in depth though, as we are not reviewing IncRNAs implicated in
generic proliferation control either. Excellent recent reviews have been published on
IncRNAs in immune control [357] and in cell cycle and growth control [358]. Also,
as of yet, most of the IncRNAs in these two broad classes have not been specifically
studied in the context of cardiovascular disease. This has, in part, also to do with the
fact that there is limited knowledge about the exact cell lineage transitions
contributing to cell fate changes that underlie atherosclerosis.

Box 7.3 Reading Highlights
1. Reports on linear cardiovascular IncRNAs:
(a) Klattenhoff, C. A. et al., (2013) Braveheart, a long noncoding RNA
required for cardiovascular lineage commitment, Cell. 152, 570-83.
(b) Han, P. et al., (2014) A long noncoding RNA protects the heart from
pathological hypertrophy, Nature. 514, 102-6.
(c) Anderson, K. M., et al., (2016) Transcription of the non-coding RNA
Upperhand controls Hand2 expression and heart development, Nature.
539, 433-436.

(continued)
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Box 7.3 (continued)

(d) Wang, Z et al., (2016) The long noncoding RNA Chaer defines an
epigenetic checkpoint in cardiac hypertrophy, Nat Med.
22, 1131-1139.

(e) Liu, J. et al., (2017) HBL1 Is a Human Long Noncoding RNA that
Modulates Cardiomyocyte Development from Pluripotent Stem Cells
by Counteracting MIR1, Dev Cell. 42, 333-348 e5.

(f) Hon, C. C. et al., (2017) CRISPRi-based genome-scale identification
of functional long noncoding RNA loci in human cells, Science. 355.

2. Reports on cardiovascular circRNAs:

(a) Holdt, L. M. et al.,, (2016) Circular non-coding RNA ANRIL
modulates ribosomal RNA maturation and atherosclerosis in humans,
Nat Commun. 7, 12,429.

(b) Wang et al., (2016) A circular RNA protects the heart from pathologi-
cal hypertrophy and heart failure by targeting miR-223, Eur Heart
J. 37, 2602-11.

(c) review: Barrett, S. P. & Salzman, J. (2016) Circular RNAs: analysis,
expression and potential functions, Development. 143, 1838—-47.

3. Reports addressing generally important concepts in IncRNA biology:

(a) Wide-spread role of IncRNAs as enhancers of transcription: Engreitz,
J. M. et al.,, (2016) Local regulation of gene expression by IncRNA
promoters, transcription and splicing, Nature. 539, 452—455.

(b) The relevance of RNA:PRC?2 interaction is under scrutiny: Kaneko, S
etal., (2014) Nascent RNA interaction keeps PRC2 activity poised and
in check, Genes Dev. 28, 1983-8.

(c) LncRNAs can be functional despite lack of sequence conservation
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P.
(2011) Conserved function of lincRNAs in vertebrate embryonic
development despite rapid sequence evolution, Cell. 147, 1537-50.

(d) Widespread role antisense transcription of IncRNA genes: Huber,
F. et al., (2016) Protein Abundance Control by Non-coding Antisense
Transcription, Cell Rep. 15, 2625-36.

(e) Translation of micropeptides from IncRNAs: Micropeptides encoded
on IncRNAs: Anderson, D. M. et al., (2015) A micropeptide encoded
by a putative long noncoding RNA regulates muscle performance,
Cell. 160, 595-606.

(f) microRNA sponging may be less common than thought: Denzler, R.,
et al., (2016) Impact of MicroRNA Levels, Target-Site Complemen-
tarity, and Cooperativity on Competing Endogenous RNA-Regulated
Gene Expression, Mol Cell. 64, 565-579.
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7.5 Summary and Outlook

So far 57 IncRNAs have been functionally investigated in the context of cardiovas-
cular physiology and disease. Many more IncRNAs are differentially expressed, but
have not yet been functionally assessed. Therefore, and given the number of
different cell types and processes implicated in development, homeostasis and
regulation of the heart, vasculature, and vascularized tissue, it is expected that
many more IncRNAs will be linked to some aspect of coronary artery physiology
and disease in the future. As can be seen already from the work presented in this
book chapter, a single IncRNA can exhibit different functions in different contexts,
and in extreme cases, can engage with dozens of different binding partners through
specialized interaction domains. Therefore, although IncRNAs sometimes show low
copy numbers, a limited stability, and a low level of evolutionary selection in
sequence, thousands of IncRNAs are expressed with high confidence, with a high
degree of cell type specificity, and with functional consequences.

The question of how many of the thousands of IncRNAs are indeed functional
genetic elements has until recently not been possible to address. Yet, with the
emergence of CRISPR/Cas9-based genetic loss of function experiments, genome-
wide genetic screens have begun to explore this question experimentally. When
testing 16,000 IncRNAs for effects on cell proliferation capacity in cultured cells,
nearly 500 individual IncRNA transcripts (or 3% of all IncRNAs) were found to be
important for cell division [359]. This number is unexpectedly large when compared
to equivalent genetic tests on the overall functionality of protein-coding genes, of
which 10-12% are essential for optimal cell proliferation [360, 361]. Since only a
few types of cells and only a single functional readout were assayed in this screen,
one can project that a large percentage of IncRNAs will be annotated as functional,
when carefully tested [29, 362]. Since every single IncRNA may further produce
several spliced isoforms, and since ribonucleotides can additionally be modified
posttranscriptionally, for example, by methylation [363], there is a huge regulatory
space how IncRNAs can affect physiology and disease.

In a study with genome-wide relevance, the evolutionarily conserved
coexpression of IncRNAs was measured relative to other transcripts, and
colocalization with eQTL-associated SNPs was taken into consideration. Also, this
type of approach suggested that more IncRNAs than previously thought (up to 40%)
appear to be potentially functional because they associate with at least one known
trait [29]. Future experimental approaches will have to take into account IncRNAs
and their time- and location-specific transcription as an integral part of gene-
regulatory networks.

Based on the already known important roles of IncRNAs in the cardiovascular
system as well as in other physiological processes and diseases, linear and circular
noncoding RNAs become a medically interesting target molecule in different
respects: First, to IncRNAs and circRNAs as biomarkers for pathophysiological
states, both in tissue samples, as well in cell-free form in the circulating blood. In
the blood, cell-free noncoding RNAs are found inside exosomes or other membrane-
contained vesicles, or in association with proteins, and reporting on cellular states in
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remote internal organs. To date, most technologies to sequence cell-free nucleic
acids in preclinical settings focus on DNA and on finding mutations therein.
Combined DNA and RNA sequencing from blood may show increased power in
monitoring early disease onset, or therapy success and recurrence of disease after
therapy. Second, IncRNAs may be directly used to alter cell physiology in situ:
Delivering synthetically produced topically applied IncRNAs to diseased organs
may be just one option. Especially if technologies are advanced that stabilize
IncRNA half-lives, for example, exchanging the phosphodiester linkage by
phosphorothioate bonds in the RNA backbone, or that allow to more reliably target
diseased cells in a body, RNA therapeutic agents may become a reasonable option
for treatment of some conditions [364]. Editing IncRNA transcripts with modified
CRISPR-Cas variants directly, instead of editing the genomic template, is another
novel therapeutic approach that will gain importance [364, 365]. In an alternative
approach, although it is early days in our understanding of noncoding RNAs, the
elaborate secondary structures of a IncRNA may allow us to find or design specific
inhibitory drugs that enhance or inhibit the function of a specific IncRNA in its
interaction with a protein complex.

In any case, already today, the study of IncRNAs in CAD entities has proven
highly valuable, especially because it has yielded a major shift in our understanding
of genetic networks that regulate cell fate, and because it has helped to functionally
annotate disease-associated genetic loci from GWAS, which often reside in the
noncoding DNA sequence space. To conclude, the picture emerges that transcription
of noncoding RNAs, linear or circular, is in most cases not a failure in our gene
expression program, but an integrated regulatory feature that affects all levels of cell
function.
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Abstract

Cardiovascular diseases, including cardiomyopathy and associated heart failure,
are the number one cause of death worldwide, but our ability to interfere with
these devastating diseases is limited. Cardiomyopathies, which are mainly due to
genetic causes, make a significant portion of heart failure. Current pharmacologi-
cal treatment of cardiovascular diseases focuses on symptoms rather than the
underlying cellular mechanisms, and the gaps in our understanding of cellular
mechanisms of the disease are profound. Elucidation of these mechanisms is a
central issue in cardiovascular biology and important for designing new treatment
for cardiovascular diseases. While significant progress has been made in using
in vitro systems in deciphering the mechanisms and finding innovative solutions
for cardiovascular disease treatment, including the use of induced pluripotent
stem cell (iPSC) derivatives, suitable in vivo models are more difficult to develop.
Among several different species, mouse models are rather inexpensive, easily
manipulatable, reproducible, physiologically representative of human disease,
and ethically acceptable. This chapter will provide a brief overview of genetics
of heart failure, largely focusing on genetically altered mouse models and experi-
mental approaches applicable to cardiovascular research.

List of Abbreviations

AD Autosomal dominant

AR Autosomal recessive

ARVC Arrhythmogenic right ventricular cardiomyopathy

BNP Brain natriuretic peptide

cKO Conditional knockout

CPVT Catecholaminergic polymorphic ventricular
tachycardia

CRISPR Clustered regularly interspaced short palindromic

CSRP3/Csrp3 (or MLP/Mlp)
CVD

repeats
Cysteine-rich protein 3
Cardiovascular disease

DCM Dilated cardiomyopathy
ECM Extracellular matrix

HCM Hypertrophic cardiomyopathy
KI Knock in

KO Knockout

LV Left ventricle

LVNC Left ventricular noncompaction
PGE Precision genetic engineering
PKA Protein kinase A

PLN/PIn Phospholamban

RCM Restrictive cardiomyopathy
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SR Sarcoplasmic reticulum

SRF Serum response factor

TALEN Transcription activator-like effector nucleases
ZFN Zinc finger nuclease

8.1 Introduction

According to the World Health Organization (WHO), cardiovascular disease (CVD)
is considered as the major cause of morbidity and mortality [1]. During the course of
the last decades, impressive achievements have been made in diagnosis and treat-
ment of cardiovascular disease, relying to a large extent on the use of experimental
animal models. Despite this, no permanent cures exist for the overwhelming major-
ity of cardiovascular diseases. As such, heart failure can only be treated by heart
transplantation, but only a very limited number of donor hearts are available and its
therapeutic potential is limited by the complications of long-term allograft
vasculopathy. Innovative therapies can be developed by tissue engineering, autolo-
gous and allogenic cell therapies, gene therapy and genome editing—but their
development depends to a large extent on extensive animal experimentation.

Human heart samples, either non-transplantable or end-stage failing, usually
obtained at the time of transplantation, are valuable for identifying underlying
disease causing molecular pathways, but their number is limited and they exhibit
significant variability due to differences in genetics, epigenetics, environment, and
different therapeutic regimens. Therefore, we need to develop preclinical testing for
relevant CVD models, including heart failure. The closer the heart or body weight of
the animal is in comparison to humans, the more similar are the hearts. Therefore,
large animal models, like nonhuman primates and dogs, are much more relevant, but
experimentations with these animals require extensive ethical considerations and are
expensive to perform, which limits their widespread use.

Rodent models, especially mice, are often used in CVD research since they are
easy to handle, have a short gestation time, are genetically manipulatable, and have
relatively low maintenance costs—making them much more suitable for high-
throughput screening. Despite phylogenetically quite distant from humans and
some pathophysiological features of disease, including electrophysiology, and
their response to pharmacological interventions being significantly different,
mouse models have become the method of choice in biomedical research during
the last decades.

8.2 Inherited Cardiomyopathies

Cardiomyopathies are a heterogenous group of myocardial diseases associated with
mechanical or electrical dysfunction that usually exhibit inappropriate ventricular
hypertrophy or dilation [2]. Primary cardiomyopathies are predominantly confined
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to the myocardium, while secondary cardiomyopathies result from systemic diseases
associated with heart failure. Major types of cardiomyopathy includes hypertrophic
cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic right
ventricular cardiomyopathy (ARVC), and restrictive cardiomyopathy (RCM).
Genetic mutations have been reported to account for a significant percentage of all
cardiomyopathies, and it is likely that a genetic component exists for all (figure).

* Hypertrophic cardiomyopathy (HCM) is characterized morphologically and
defined by a hypertrophied, nondilated left ventricle (LV) in the absence of
other systemic or cardiac diseases that are capable of producing the magnitude
of wall thickening evident (e.g., systemic hypertension, aortic valve stenosis).
About 60% of all HCM cases are due to mutations in genes encoding sarcomeric
proteins. The MYH7:p.R403Q mutation in the cardiac f-myosin heavy chain was
the first mutation shown to cause cardiomyopathy [3, 4].

¢ Dilated forms of cardiomyopathy (DCM) are characterized by ventricular cham-
ber enlargement and systolic dysfunction with normal LV wall thickness. About
35% of all DCM patients carry mutations in genes encoding sarcomeric or
cytoskeletal components.

* Arrhythmogenic right ventricular cardiomyopathy (ARVC) involves the right
ventricle predominantly with progressive loss of myocytes and fatty or fibrofatty
tissue replacement, resulting in regional (segmental) or global abnormalities.
About 50% of all ARVC cases can be traced back to mutations, especially in
genes encoding desmosomal components.

* Primary restrictive cardiomyopathy (RCM) is a rare form of heart disease and a
cause of heart failure that is characterized by normal or decreased volume of both
ventricles associated with biatrial enlargement, normal LV wall thickness and
atrioventricular (AV) valves, impaired ventricular filling with restrictive physiol-
ogy, and normal (or near normal) systolic function.

e Left ventricular noncompaction (LVNC) is a recently recognized congenital
cardiomyopathy characterized by adistinctive (“spongy”) morphological appear-
ance of the LV myocardium. Noncompaction involves predominantly the distal
(apical) portion of the LV chamber with deep intertrabecular recesses (sinusoids)
in communication with the ventricular cavity, resulting from an arrest in the
normal embryogenesis.

However, while the overwhelming majority of cardiomyopathies are autosomal
dominant, more complex modes of inheritance, such as homozygous, double hetero-
zygous, and compound heterozygous mutations, are existent which underlie reces-
sive, X-linked, or mitochondrial types of inheritance (Table 8.1). While a lot of
valuable information were gathered from careful clinical and genetic examination of
human subjects, significant molecular insights were revealed from the generation
and analysis of genetically altered mouse models.
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Table 8.1 Most important genetic cardiomyopathies, prevalences, mode of inheritance, and
related genes

Disease | Prevalence Inheritance Genes/structure
HCM 1:500 Mainly AD Sarcomere
DCM 1:500- Mainly AD, AR, mitochondrial, Sarcomere, cytoskeleton, signal
1:2000 X-linked transduction
ECM
ARVC 1:2000- Desmosome
1:5000
RCM Rare AD, AR, mitochondrial, X-linked | Sarcomere (troponin)
LVNC Rare AD, AR, mitochondrial, X-linked | DCM related

AD autosomal dominant, AR autosomal recessive, HCM hypertrophic cardiomyopathy, DCM
dilated cardiomyopathy, ECM extracellular matrix, ARVC arthythmogenic right ventricular cardio-
myopathy, RCM restrictive cardiomyopathy, LVNC left ventricular noncompaction

Insert a new exon to Delete/add a microRNA

Delete/mutate !
make gene fusion control element

promotor
Inserta constitutive or

Add/delete transcription inducible promotor
factor binding sites

}

Fusea

Disruptgene (knockout) reporter gene

r Make a point mutation

Transcription Promotor 3" Untranslated
Factor Region

Fig. 8.1 Examples of various genetic changes that can be introduced into mice

8.3 Overview of Genetic Interventions

Genetic engineering can be applied to create model animals that mimic human
conditions and gene therapy. Genetically modified mice are the most common
genetically engineered animal model and used to study heart disease, including
cardiomyopathies. Homologous recombination using a targeting vector that consists
of a modified version of the endogenous gene can change the gene or interest.
Furthermore, we can introduce different functional changes of a specific gene into
a mouse locus through gene targeting (Fig. 8.1).

8.3.1 Random Transgenesis

A transgenic mouse model can be generated by random insertion of a foreign DNA
sequence/fragment into the genome by random transgenesis. The insertion of the
foreign DNA usually results in a gain of function (expression of a new gene) or
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overexpression of endogenous genes. The classical method used for the generation
of transgenic mice is via pronuclear injection where a transgene is injected into a
fertilized mouse egg with subsequent random integration of the gene within the
mouse genome. These models are the simplest with very little molecular biology
work and require a relatively short development time. However, the biggest
disadvantages of this model come from the unpredictability of the location of
genomic integration and the number of inserted gene copies. Random insertion of
genetic elements into the mouse genome can lead to the misregulated expression of
essential genes. The inserted transgene may also be subjected to variegation and
positional effects, such as gene silencing, which may lead to altered phenotypic
outcomes.

8.3.2 Knockout (KO)

We can determine the function of a specific gene in an organism by creating a KO
rendering that specific gene nonfunctional and by inferring the differences between
the knockout organism and normal or wild-type littermate controls. The original
gene knockout technique was developed by Martin Evans, Oliver Smithies, and
Mario Capecchi [5-7]. It is necessary that we know the sequence of the gene to
create a KO organism. The traditional process of creating a KO organism starts with
constructing an appropriate plasmid where the mutant version of the gene of interest
is incorporated. The plasmid construct is engineered with an aim that the faulty
version of the gene will recombine with the target gene. Embryonic stem cells are
transfected with the plasmid, along with a “transgene” whose overexpression
indicates plasmid transfection, and screened by antibiotic selection (Fig. 8.2).
Recombination occurs in the region of that sequence within the gene, resulting in
the insertion of a faulty sequence to disrupt the gene. The targeted embryonic stem

Exons

. . | 3 I E Target Gene

Homologous recombination

[ Linearized Targeting vector

Neo l 4 |
l Geneticin (G418) Selection

Modified Allele
o

Fig. 8.2 The process of homologous recombination employed in mouse model development. A
gene KO model is generated where the neomycin selection cassette replaces part of the gene coding
sequence, rendering the gene nonfunctional (Adapted from Gama Sosa et al. [8])
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cells are inserted into early embryos, and chimeric organism is generated. Chimeric
animals are selectively bred to produce heterozygous animals which are needed to
obtain homozygous mutation carriers.

8.3.3 Conditional Knockout

In contrast, a conditional KO allows gene deletion in a tissue (e.g., liver, heart)- or
time-specific (a specific stage in development) manner. In tissue-specific conditional
KO, a gene is inactivated in target tissue(s) only; in all other tissues, the gene is fully
functional. A target gene can also be inactivated at particular time(s) of interest, e.g.,
mimicking adult-onset condition with more physiological responses and disease
relevance. Conditional KO animals are useful to study the role of individual genes
in living organisms; as in traditional gene knockout, embryonic death can occur from
a gene mutation. Conditional KO organism is most commonly created by
introducing short sequences called lox (locus of recombination) sites around the
gene of interest and introduced into the germline via the same mechanism as KO
(Fig. 8.3). This germline can then be crossed to another line containing Cre
recombinase, which is a viral enzyme that can recognize these sequences. This
system is inducible by tetracycline or by other means that activate transcription of
the Cre recombinase gene or by tamoxifen that activates transport of the Cre
recombinase protein to the nucleus. Activation of the system leads to either deletion
or inversion of the genes between the two lox sites, depending on their orientation.

8.3.4 Knock In (KI)

Gene Kl is a targeted insertion involving one-for-one substitution of DNA sequence
information in a genetic locus. This technique usually relies on homologous recom-
bination for gene replacement. Embryonic stem cells with specific gene modification
are then implanted into a viable blastocyst, which will grow into a mature chimeric
mouse with some cells having the modifications introduced to the embryonic stem
cells. Subsequent offspring of the chimeric mouse will then have the gene KI
[9]. The first KI mouse model in heart failure research was described by
Geisterfer-Lowrance et al., where HCM was generated by introducing Arg*®® — Gln
mutation into the o cardiac myosin heavy chain (MHC) mouse locus [10]. This
elegant study was a “proof-of-concept” showing that a specific mutation is the
underlying cause of a devastating human disease. Later on, this mouse model was
used to study the role of sarcomere mutations in the development of HCM and
successfully used in drug discovery where the beneficial effects of MYK-461 is
discovered [11]. We can design KI models where the transgene is introduced into the
permissive ROSA26 gene locus, which is well suited for gene overexpression and
speedy KI model development [12]. Reporter genes or any other genes of interest
can be introduced into ROSA26 gene locus.

A point mutation can be introduced in a single defined base pair location of a gene
of interest. The resulting model expresses a mutant protein instead of the wild type if
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Mouse expressing Cre recombinase
gene controlled by a tissue-specific
promoter X

Mouse with gene Y
is inactivated by Cre
in tissue X

Mouse carrying conditional
(floxed) alleles of gene Y

Fig. 8.3 The Cre-loxP system is used extensively in mouse models for cell type- and tissue-
specific as well as temporally regulated genetic alteration. Mice that express Cre recombinase under
the control of a tissue-specific promoter are crossed with mice that constitutively express a “floxed”
genetic region, meaning that the region is flanked by loxP sites. Cre-mediated recombination
excises any region of DNA in between, leaving behind a single loxP site

the point mutation is in the coding sequence, but the expression pattern is
maintained. Point-mutant models have several potential applications including the
study of the causal role of mutations in human pathological conditions, in vivo
functionality of an enzyme active site, or protein binding site. Point mutations may
also be used as a complementary strategy or an alternative strategy to the more
common KO mouse model.

8.3.5 Precision Genetic Engineering (PGE)

PGE focuses on the development of site-directed modification methods in specific
DNA sequences to introduce new traits in the models. Zinc finger domains, a zinc
ion containing protein domain that can recognize specific DNA sequence, can be



8 Mouse Models to Study Inherited Cardiomyopathy 297

engineered to fuse with DNA cleavage domain to form zinc finger nucleases (ZFNs).
These engineered DNA-binding proteins that facilitate targeted editing of the
genome by creating double-strand breaks in DNA at specific sites [13]. Transcription
activator-like effector nucleases (TALEN) are other sets of chimeric nucleases
composed of programmable, sequence-specific DNA-binding modules fused with
nonspecific DNA cleavage domain, which can cut DNA at specific locations
[14]. ZFNs and TALENs enable homology-directed repair at specific genomic
locations after inducing DNA double-strand breaks. Recent development of
CRISPR/Cas9 system also allows us accurate and successful gene insertions with
ease [15]. The CRISPR/Cas system is a prokaryotic immune system that confers
resistance to foreign genetic elements [16]. We can manipulate cellular genome
specifically at a desired location—thus allowing existing genes to be removed—by
delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a
cell [17], and we can generate complete gene KO mice in a single step [18].

8.3.6 Tet-Off/Tet-On

Different antibiotics, e.g., tetracycline or its derivatives, can induce gene expression.
This method was first described by Professors Hermann Bujard and Manfred Gossen
at the University of Heidelberg in 1992 [19]. In this system, transcription is turned
on/off in the presence of an antibiotic in a reversible way, providing an advantage
over KO and KI where the gene inactivation is irreversible. A tetracycline response
element (TRE) is 7 repeats of a 19-nucleotide sequence, and this sequence is
recognized by tetracycline repressor (tetR). A tetracycline-controlled transactivator
(tTA) was developed by Gossen and Bujard by fusing tetR with the C-terminal
domain of VP16, an essential transcriptional activation domain from herpes simplex
virus. In this system, tet-inducible promoter is repressed by the presence of tetracy-
cline and known as Tet-Off. In a subsequent report, Gossen et al. [20] used random
mutagenesis to identify which amino acids of tetR are important for tetracycline-
dependent repression. Mutation of these residues created a reverse Tet repressor
(rTetR) which relies on the presence of tetracycline for transcription induction
(Tet-On).

8.3.7 Humanized Mouse Model

A humanized mouse is a biological model in which a mouse gene is replaced by
either a part of or the entire equivalent human gene. The human protein is expressed
in mouse in the same cells and tissues instead of the mouse protein. Humanized
mouse models are important tools for studying pathological conditions, preclinical
research, and compound efficacy in vivo to ensure translatability between various
human- and species-specific in vitro and in vivo models. The human protein is
expressed typically using the mouse promoter and regulatory regions to ensure
natural expression and maintain functionality of the protein. Humanized models
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provide a far better predictive tool to model human disease and efficacy testing of
therapeutic compounds over wild-type mice [21]. By replacing key murine genes
with their human counterparts, these models offer greater predictive ability that
enables us to increase the impact of research on human diseases, speed up drug
discovery, and reduce the time-to-market of new therapeutics.

8.3.8 Reporter Mouse Model

A reporter mouse model is a model in which a target gene is modified for the purpose
of monitoring its promoter activity. This is done through the replacement of coding
sequence of the gene with the coding sequence of a marker, such as green fluorescent
protein (GFP). Reporter mouse models can be used to monitor a target protein’s
expression, localization, and trafficking and are powerful tools to monitor transcrip-
tional activity of a promoter in vivo. We can also generate reporter models where we
avoid knocking out the endogenous gene and use polycistronic technology to couple
the expression of the reporter gene with the endogenous promoter, thus allowing
co-expression of both target and reporter genes [22].

8.4 Examples: Mouse Models of Cardiomyopathies

To describe a complete overview, listing the myriads of genetically altered mouse
models used in heart failure research, is beyond the scope of this review. Therefore,
we chose to highlight some of the models we think are probably most important in
identifying the roles of key proteins in cardiomyopathies (Fig. 8.4) (we apologize to
many authors who contributed to this exciting field but not being mentioned here).

8.4.1 Phospholamban (PIn)

One of the first genetically altered mouse models to study the importance of
individual proteins in myocardial contractility was the phospholamban knockout
model [23]. Phospholamban is an important regulator of Ca**-ATPase in the cardiac
sarcoplasmic reticulum. This protein was first discovered by Arnold Martin Katz and
coworkers in 1974 [24] and is an integral membrane protein of 52 amino acids
encoded by PLN gene. Phospholamban is a substrate for the cAMP-dependent
protein kinase (PKA) in cardiac muscle. Although it functions as an inhibitor of
Ca**-ATPase, phosphorylation by PKA relieves the inhibition. The mouse
phospholamban gene was cloned from 129/SvJ mouse. An internal HindIII fragment
was replaced by Xho I-Sal 1 fragment of the polyadenylation signal-deficient neo
gene from pMClreo. Embryonic stem cells were electroporated with this targeting
fragment. Phospholamban-targeted ES cells were injected into C57Bl/6 blastocysts
and transferred to pseudopregnant females. Heterozygous mutant mice were mated
to generate homozygous mutant. Phospholamban ablation in mice showed no gross
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Fig. 8.4 Different cardiomyocyte proteins that were genetically altered in mouse models described
in this report. The corresponding mouse models generated to decipher the function and significance
are indicated

developmental abnormalities, but mice exhibited enhanced myocardial performance.
The time to peak pressure and the time to half-relaxation were significantly shorter in
absence of phospholamban. These mice provided an attractive system for elucidation
of the regulatory effects of phospholamban on sarcoplasmic reticulum Ca**-ATPase.

Phospholamban KO mice were crossbred with a well-characterized mouse model
of DCM, which harbors a deficiency in muscle-specific LIM protein (MLP; please
see also CSRP3 section). Phospholamban ablation led to a dramatic rescue of the
cardiomyopathy phenotype of MLP KO mice [25]. Later on, phospholamban KO
mice were also crossbred with TNF1.6 mice, which develop heart failure as a
consequence of cardiac-specific overexpression of tumor necrosis factor alpha
(TNF-a). The resulting offsprings with phospholamban ablation showed improved
calcium transients but not cardiac functions [26]. Phospholamban KO mice were
also crossbred with tropomyosin-mutant (a-TmE180G) mice, which mimic mutation
and features from human hypertrophic cardiomyopathy. The resulting progeny (PLN
KO/Tm180) displayed a rescued hypertrophic phenotype with improved morphol-
ogy and cardiac function [27]. More recent work showed that phospholamban
ablation in ryanodine receptor (RyR2)-mutant mice breaks spontaneous Ca’*
waves, which is a major cause of Ca’*-mediated arrhythmias [28]. A marked
increase in sarcoplasmic reticulum Ca®* leaking was also observed. Despite
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increased Ca®* leakage, phospholamban ablation in these mice protected against
catecholaminergic polymorphic ventricular tachycardia (CPVT) [28].

The PLN:p.R14del, highly prevalent in the Netherlands, is associated with severe
DCM and ARVC. Recently, iPS-derived cardiomyocytes from patients have been
successfully used to model this disease in the “petri dish” [29, 30]; however, suitable
in vivo models are also needed to develop novel cures for this otherwise lethal
disease.

8.4.2 Calcineurin (CaN)

Calcineurin is a heterodimer of a 58 to 64 kDa catalytic subunit, calcineurin A
(CnA), and a 19 kDa regulatory subunit, calcineurin B (CnB), well known as one of
the major four Ser/Thr phosphatases found in eukaryotic cells and implicated in
cardiac hypertrophy and associated heart failure. The role of calcineurin (CaN) in
cardiac hypertrophy was first described by Molkentin et al. in 1998 [31]. Transgenic
mice that express activated forms of calcineurin were generated by cloning a
constitutively active form of calcineurin A catalytic subunit with 5'Sal T and 3'Hin
DIII linkers into an expression vector containing a-MHC promoter. Similarly, mice
expressing human NF-AT3 were generated by cloning a DNA sequence encoding
amino acids 317-902 of human NF-AT3 into a-MHC expression vector. These
sequences were injected into fertilized oocytes, and resulting oocytes were trans-
ferred into the oviducts of pseudopregnant mice. Cardiac hypertrophy and heart
failure mimicking human heart disease were observed in the transgenic mice
expressing calcineurin and NF-AT3. More importantly, the authors showed that
pharmacologic agents that inhibit calcineurin activity block in vivo and in vitro
hypertrophy. Calcineurin A B-deficient animals (CnAp—/—) have been generated;
the only phenotype reported is smaller hearts in comparison to their wild-type
littermate controls [32]. However, calcineurin also appears to be cardioprotective,
at least under conditions of ischemia reperfusion [33].

8.4.3 Titin (TTN)

Titin is important in the contraction of striated muscle tissue and connects Z line to
M line in sarcomere (for a brief review, please see Tabish et al. [34]). It functions as a
molecular spring and responsible for the passive elasticity of muscle. It is the largest
known protein with 244 individually folded domains [35]—and these domains
unfold when the protein is stretched and refold when the tension is removed
[36]. Gerull et al. first reported that titin mutations cause familial DCM in
autosomal-dominant fashion in 2002 [37]. Later on, it was shown in a large cohort
of subjects that truncating mutations in titin account up to 25% of all causes of
dilated cardiomyopathy [38]. These data have largely been confirmed by other
authors (for review Tabish et al. [34] and Marston et al. [39]). The first titin mutation
reported in mice arose spontaneously on C57BL/6 J background, causing muscular
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dystrophy with myositis [40]. A KI mouse model was generated with a previously
identified 2-bp insertion mutation. Homozygous mutation caused sarcomere forma-
tion defects in embryonic heart and was shown to be embryonically lethal [41]. Het-
erozygous mice were viable and showed normal cardiac morphology and function.
However, when these heterozygous mice were chronically exposed to angiotensin II,
they developed marked left ventricular dilatation with impaired fractional shortening
and diffused myocardial fibrosis—mimicking human DCM [41].

Titin mutation was recently (2014) added to human familial clinical genetic
testing of cardiomyopathies, which resulted in an additional 10% genetic diagnosis
of DCM [42]. Frameshift mutations in the titin gene are a major cause of DCM. A
proof-of-concept was established recently showing that disruption in the titin reading
frame due to truncating mutations can be restored by exon skipping. This
RNA-based strategy was shown to work in both patient cardiomyocytes and in
mouse heart with DCM, providing us with a potential treatment option for
DCM [43].

8.4.4 Myosin Binding Protein C 3 (Mybpc3)

Myosin binding protein C (MYBPC) is a crucial component of the sarcomere and an
important regulator of muscle function. While mutations in the cardiac isoform of
MYBPC (MYBPC3) are well-known causes of cardiomyopathies, such as HCM and
DCM, the underlying molecular mechanisms are not well understood. A variety of
MYBPC3 mutations have been studied in great detail and several corresponding
mouse models have been generated. Most MYBPC3 mutations may cause
haploinsufficiency, and with it, they may cause a primary increase in calcium
sensitivity that could explain major clinical features of HCM patients such as the
hypercontractile phenotype and the well-known secondary effects such as myofibril-
lar disarray, fibrosis, myocardial hypertrophy, and remodeling including
arrhythmogenesis. However, the presence of poison peptides, mutant sarcomeric
proteins that incorporate into myofibrils and act as dominant negative proteins, in
some cases cannot be fully excluded, and most probably other mechanisms are also
at play. Here we discuss various MYBPC3 mouse models and their implications in
cardiomyopathy.

MYBPC3 mutations causing human HCM were first reported in 1995
[44, 45]. Indeed HCM is a frequent disease, affecting 1:500 individuals [2], and
depending on the population analyzed, MYBPC3 mutations are found in up to
40-50% of the genotyped HCM patients [46]. To date more than 350 different
MYBPC3 mutations have been reported in patients with HCM[47]. In general,
MYBPC3 mutations are associated with a slightly lower penetrance (those with
disease-causing mutations that have clinical manifestations), with later onset of
disease, and with milder forms of disease progression in comparison to other
HCM-causing mutations located, for example, in the beta myosin heavy chain
(MYH7) gene [48, 49]. However this general statement may not necessarily be
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true for all MYBPC3 mutations, and indeed some MYBPC3 mutations are
associated with a poor prognosis.

Other MYBPC3 mutations primarily found in DCM patients have also been
reported, for example, the Asn948Thr missense mutation [50]. In addition, the
MYBPC3 Arg502Trp mutation with a frequency of about 2.4% is the most common
HCM-causing mutation among individuals of European descent in the USA
[51]. Other mutations may be prevalent in different European populations, such as
in the Netherlands, where three different founder mutations are present: (1) the
¢.2373_2374insG MYBPC3 which is present in the great majority of HCM patients
(up to 8 to 25%) and where (2) the ¢.2864_2865delCT and (3) the ¢.2827C>T
mutations occur in about 5% of HCM patients each [52, 53]. Although MYBPC3
mutations are established as well-known causes of cardiomyopathy, the underlying
molecular mechanisms are not well defined. Genetically altered mouse models
provided significant new insights, which will be discussed in the next paragraphs.

To gain more insight into the underlying molecular mechanisms, Mybpc3 has
been deleted in genetically altered mouse models by two independent groups. Loss
of this protein is not associated with any embryonic lethality, and MYBPC3 also is
not essential for sarcomere formation, but its absence results in profound eccentric
hypertrophy in the homozygous animals [54, 55]. Hemodynamic analysis of the
mice where exons 1 and 2 have been deleted was performed by the Carrier group,
revealing the presence of normal contractility but severe diastolic defects. In addi-
tion, heterozygous animals develop septal hypertrophy, a hallmark of HCM
[54]. However, these animals were engineered such that they harbor a complete
ablation of the gene and therefore are useful to identify basic mechanisms, but the
overwhelming majority of human mutation carriers express mutant mRNAs and
probably proteins, which makes it difficult to relate these data directly to humans.

Therefore, in addition to the pure knockout models, wild-type and truncated
MYBPC3, which mimic a certain type of human mutations leading to the loss of
carboxyterminal domain including titin and myosin binding sites, were
overexpressed in mouse models. Overexpression of the truncated form, but not the
wild-type protein, led to the appearance of HCM features, including hypertrophy,
and an increase in calcium sensitivity [56]. Whereas abovementioned transgenes
were well expressed at the mRNA and protein levels, overexpression of a Mybpc3
mutant lacking only the myosin binding domain resulted in the expression of only
very modest levels of mutant protein (i.e., about 5%) which led to a mild hypertro-
phy and heart failure phenotype [57].

Two additional KI mouse models have been engineered to carry Mybpc3
mutations found in patients which affect titin and myosin binding. Interestingly,
animals homozygous for these mutations develop a DCM-like phenotype with
depressed contractility and hypertrophy [58]. Another KI mouse model was
generated such that the mutant protein did not contain the amino terminal myosin
binding domain. The mutant protein was readily integrated into the sarcomeres of
heterozygous and homozygous animals and was protein kinase A (PKA)
phosphorylatable, and no major structural defects of sarcomere were detected.
However, this mutation was associated with a significant increase in calcium
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sensitivity [59]. An additional mouse KI model, based on a G>A transition located
on the last nucleotide of exon 6 and which was found in a patient with HCM, has
been generated by Lucie Carrier’s group. Interestingly this mutation gives rise to
three different mRNAs: (1) missense mutation; (2) nonsense due to exon skipping,
frameshift, and premature stop codon; and (3) deletion/insertion as nonsense but
with additional partial retention of a downstream intron which restores the reading
frame and leads to an almost full-length protein. Homozygous animals develop
hypertrophy, interstitial fibrosis, and decreased myocardial function, whereas het-
erozygous animals do not have any obvious phenotype [60]. Additional genetically
altered mouse models have been generated to study MYBPC3 phosphorylation,
which will be discussed in the next part.

8.4.4.1 MYBPC3 Phosphorylation

Human MYBPC3 contains at least four phosphorylation sites that are localized
inside the myosin binding motif (serines 275, 284, 304, with an additional phos-
phorylation site not unequivocally identified) [61]); the mouse myosin binding motif
contains three to four sites (serines 273, 282, 302, (305)) [62—64]. These phosphor-
ylation sites have been studied in various transgenic mouse models; for example,
lines have been established where the phosphorylation sites (Ser273, Ser282, and
Ser302), along with two adjacent sites that could be potentially phosphorylated
(Thr272, Thr281), were converted to alanines. While overexpression of wild-type
MYBPC3 was able to rescue the MYBPC3 null phenotype, the
non-phosphorylatable MYBPC3 was not [65]. Transgenic mice with complete
deletion of phosphorylation motif “LAGAGRRTS” show an increase in cardiac
contractility and relaxation and an increase in the phosphorylation of the remaining
MYBPC3, troponin I, and phospholamban [66]. On the other hand, overexpression
of a phosphomimetic MYBPC3 in a Mybpc3 null background showed subtle
changes in sarcomeric ultrastructure characterized by increased distances between
the thick filaments, indicating that phosphomimetic MYBPC3 affects thick-thin
filament relationship. The loss of MYBPC3 phosphorylation has been observed in
failing human hearts, and strategies to increase its phosphorylation may have
cardioprotective effects [61, 67].

Although compelling evidences suggest that MYBPC3 phosphorylation
modulates contractility by controlling the proximity of the myosin heads to actin,
the precise molecular mechanism remains unclear (reviewed in [68]). MYBPC3
phosphorylation can abolish its ability to interact with the S2 region of the myosin
heavy chain in vitro, but it may enhance MYBPC3 interactions with the thin
filament. Alternatively, dephosphorylation results in strong binding of Mybpc3 to
the myosin head, probably preventing its force-generating interaction with actin
[67, 69]. However, recent data indicate that MYBPC3 may act synergistically with
the myosin regulatory light chain to enhance cross-bridge formation by altering the
interaction of the myosin head with actin. It may well be that this interaction depends
on phosphorylation of either Mybpc3 or regulatory light chain and may well be able
to provide another mechanism how phosphorylation of sarcomeric proteins may
affect protein-protein interactions and kinetics of force development [70]. Although
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it is well known that the distance between thick and thin filaments is a major
determinant of calcium sensitivity and the loss of MYBPC3 is associated with
increased calcium sensitivity, the precise molecular mechanism of how MYBPC3
phosphorylation affects this system is unknown. Part of this problem is that PKA
phosphorylation decreases calcium sensitivity via troponin I phosphorylation, which
leads to a decrease in troponin C calcium sensitivity. However Mybpc3 phosphory-
lation, which appears to decrease calcium sensitivity as well, has no effect on
interfilament spacing [70]. Further studies, based on various transgenic animals,
will certainly help to answer this question.

8.4.5 Cysteine-Rich Protein 3 (Csrp3/Mlp)

Cysteine-rich protein 3 (CSRP3) or muscle LIM protein (MLP) is a myogenic factor
and was first described in 1994 [71]. MLP is a LIM-only protein consisting of
194 amino acids that constitute two LIM domains, each followed by a glycine-rich
domain. Soon after its initial description, the protein became important in cardiovas-
cular research when it was demonstrated in 1997 [72] that Csrp3-deficient mice
developed hypertrophy followed by DCM later in life—at that time the first geneti-
cally altered organism reproducing this devastating disease. Perhaps even more
important was that human CSRP3 mutations were able to cause human forms of
cardiomyopathy [73-77]. The precise mechanisms by which CSRP3 mutations
cause these diseases are not fully elucidated yet. As mentioned before, additional
ablation of phospholamban (Pln) in Csrp3 '~ mice exhibiting normal or enhanced
SR-calcium ATPase function [78] rescues the heart failure phenotype (i.e., no heart
failure in Pln and Csrp3 double KO mice; please see PLN section) [25]. It was also
shown that Csrp3 ™/ cardiomyocytes are defective in producing brain natriuretic
peptide (BNP), a sensitive cardiac mechanical load marker, when exposed to
mechanical stress but not to endothelin (Gg-coupling receptor agonist) or phenyl-
ephrine (x-adrenergic agonist), suggesting that the primary defect is not located in
the downstream pathway but in the initial sensing of the stretch stimulus [76]. Thus,
CSRP3 was suggested to be part of a macromolecular, cardiac mechanical stretch
Sensor.

CSRP3 was found to be present in different cellular compartments, including the
sarcomeric Z-disc/I-band of different species such as drosophila [79], mouse
[72, 80-82], and humans [76]. It was also reported to be present in the costamere
(where P1-spectrin interacts with MLP) [83, 84], in the intercalated disc (where
N-RAP interacts with MLP) [85], and in the cytoplasm (actin) [71], as well as in the
nucleus [80]. However, Geier and coworkers found MLP mostly cytoplasmic and
not at the Z-disc [86]. Boateng and colleagues demonstrated quite elegantly that
CSRP3 in cardiac myocytes is present in two different molecular forms: the oligo-
meric form, which is present at the sarcolemma and the cytoskeleton, and the
monomeric form, which is exclusively located in the nucleus [80]. Interestingly,
after myocardial infarction and pressure overload, in both animal model and failing
human hearts, nuclear CSRP3 levels in the myocardium increased at the expense of
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nonnuclear form. In failing human hearts, almost no CSRP3 was detectable outside
the nucleus. Additional work by Boateng and coworkers provided stronger evidence
for nucleocytoplasmic shuttling of CSRP3 based on putative nuclear localization
signal (NLS) [87]. The possible role of NLS was first suggested by Fung et al. when
a clone with sequence homology of rat muscle LIM protein was isolated and
characterized from a human fetal heart cDNA library [88]. Significant insights on
the functional properties of nuclear CSRP3 were provided by using cell-penetrating
synthetic peptide containing the putative nuclear localization signal (RKYGPK) of
CSRP3—which inhibited any shuttling of endogenously synthesized CSRP3 to the
nucleus, thus documenting functionality of this NLS [87]. Inhibition of nuclear
translocation prevented the increased protein accumulation, usually seen with phen-
ylephrine treatment, in isolated cardiomyocytes, thus identifying an important role of
CSRP3 in controlling agonist-stimulated hypertrophy. Interestingly, cyclic strain of
myocytes with prior NLS treatment resulted in disarrayed sarcomeres—an observa-
tion that has also been made in cardiomyocytes of Csrp3 KO mice [71]. Inhibition of
nuclear shuttling during cyclic-mechanical strain prevents increased protein synthe-
sis and BNP expression, suggesting that CSRP3 is required for remodeling of
myofilaments and altered gene expression. A direct link between BNP gene expres-
sion and Csrp3 has been shown earlier [76], and research from other groups with
heterozygous Csrp3 KO mice with myocardial infarction suggest similar association
[82]. Although the functional significance of nuclear Csrp3, like myocyte hypertro-
phy following biomechanical stress, gene expression, and sarcomere assembly, has
been demonstrated in this study, more questions are arising. One of the most
important questions is how a small protein-adaptor molecule like MLP can exert
its actions in different cellular compartments including the nucleus. The
prohypertrophic phosphatase calcineurin has been previously identified as a cyto-
skeletal target/interacting partner of Csrp3 [82, 89, 90], and it was demonstrated that
CSRP3 at the Z-disc is necessary for calcineurin activation in cardiac myocytes
[82, 89, 90].

What are the nuclear targets of CSRP3 in cardiac myocytes? As CSRP3 does not
bind DNA directly, one could speculate that it interacts with DNA by stress-
responsive cardiac transcription factors like GATA4, GATA6, API1, or serum
response factor (SRF). In fact, it was previously shown that CSRP2, which is closely
related to CSRP3, can bind GATAs and SRF and thereby enhance gene expression
in smooth muscle cells [91]. By linking different transcription factors, as shown by
the complex formation via protein-protein interaction between two LIM-domain
containing proteins [92], CSRP3 may integrate the activities of multiple nuclear
regulatory proteins in order to coordinate gene expression. It is also possible that
CSRP3 facilitates nucleocytoplasmic shuttling of its nonnuclear target calcineurin,
which has been shown to translocate to the nucleus in hypertrophied cardiac
myocytes [93]. Research on CSRP3 was predominantly focused on its cytoskeletal
function. Although the interaction of CSRP3 with different transcription factors,
such as MyoD, MRF4, and myogenin, was shown in skeletal myocytes [94], and
CSRP3 nuclear localization in right ventricular murine hypertrophy following
increased biomechanical stress [95], the functional significance of this NLS
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remained elusive until the report by Boateng and coworkers [87]. In this context, we
have previously shown that CSRP3 also interacts with the transcription factor
ZBTB17, which is important for survival signaling [96].

It should be noted that CSRP3 becomes acetylated within its NLS on position
K69 [81], a modification thought to affect calcium sensitivity, which may affect
CSRP3’s nucleocytoplasmic shuttling. It will be interesting to analyze the effects of
human CSRP3 mutations on its nuclear localization and analyze their ability to affect
specific genes, particularly of K69R mutation, found in an individual affected by
DCM and endocardial fibroelastosis [77]. Besides acetylation, other posttransla-
tional modifications such as  phosphorylation, sumoylation, and/or
polyubiquitinylation may also affect CSRP3 function [97].

8.5 Conclusion

Due to many advantages over large animal models, mouse models are commonly
used in CV research, both in academia and big pharma. They a have a short life span,
which allows scientists to follow the natural course of disease at an accelerated pace.
More importantly, mice can be genetically modified, allowing for rapid establish-
ment of proof-of-principle that can later be extended to larger animal models.
Nevertheless, mice have disadvantages, such as being phylogenetically distant
from humans, and some physiological features and their response to pharmacologi-
cal treatments may not be comparable to humans. Therefore, translational aspects
and the value of genetically altered mice must be interpreted with caution. However,
genetically altered mouse models provided us with fundamental insights in cardiac
Ca®* homeostasis/signaling (PIn), hypertrophism and survival signaling
(calcineurin), patho-mechanisms of general heart failure (Csrp3, Mlp), phosphory-
lation (Mybpc3), and potential routes to therapy (Ttn). Although we made significant
progress, more efforts are necessary to better understand the underlying molecular
mechanisms of heart failure and to exploit the knowledge for innovative therapies to
benefit the mankind.
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Emerged as a highly versatile and applicable vertebrate animal model to study
embryonic development, zebrafish over the last two decades became a valuable
human disease model for cardiovascular research. The unprecedented in vivo imag-
ing capabilities allowing live analysis of organ formation and organ function com-
bined with the ease of precise genetic interrogation established zebrafish as a
recognized cardiovascular disease model. This chapter provides an overview of
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zebrafish’s history in biomedical and particularly cardiovascular research, delivers
an outline of available methodologies and resources when using zebrafish, and gives
examples of the versatility of zebrafish in cardiovascular research and how it
progressed our understanding of a given disease.

9.1 From a Developmental Model to a Disease Model
9.1.1 The Beginnings and the Rise in Popularity

In the 1980s, Dr. George Streisinger and his colleagues at the University of Oregon
laid the groundwork for using the zebrafish as a genetic model. He focused initially
his pioneering work on developmental genetics based on several practical
advantages and genetic amenities. The idea of having a vertebrate model with
which genome-wide forward genetic screens are feasible as performed before in
worms, flies, and plants to uncover novel gene functions ultimately materialized in
1989 was carried out by a colleague of Streisinger at the University of Oregon
[1]. Inspired by the success and the potential of this first forward genetic screen,
scientists from two groups in Boston and Tiibingen conducted the first large-scale
forward genetic screen in a vertebrate model. This screen recovered over 800 mutants
with mutations in 372 genes uniquely involved in the development of the central
nervous system, intestines, blood, bone, vasculature, and the heart to only name a
few [2, 3]. Even over 20 years after conducting this screen, zebrafish mutants from it
are still being used and analyzed in labs worldwide, illustrating the huge impact and
the value this screen had and still has in the community.

Zebrafish are approximately 3-5-cm-long fish belonging to the teleost family
with inexpensive housing and modest space requirements. When mated, a single
female can produce between 100 and 300 eggs per week. Sexual maturity is reached
with the age of 3 months. Particularly tempting as a developmental model is its
extrauterine development and its fast ontogeny. Its small larval size of 1-2 mm
allows analysis throughout the entire development, while macroscopic cell
experiments like cell transplantations remain feasible and efficient. Gastrulation
begins at around 5 h postfertilization (hpf) and segmentation, and with that
somitogenesis, by 10 hpf (Table 9.1) [4]. Embryonic vasculogenesis is completed
by 18 hpf, and angiogenesis can be observed before 20 hpf, and the first primitive
heart tube initiates first contractions within the first day of development. Already
3 days postfertilization (dpf), the cardiovascular system of the zebrafish is compara-
ble to that of a newborn mammal and reaches full maturity by 5 dpf, in a by-then
organism exhibiting most of the internal organs found in humans [5]. In contrast to
mammalian models, zebrafish does not rely on a functioning cardiovascular system
during the first 5 days of life, since oxygen and nutrient supply is achieved exclu-
sively through passive diffusion. Even substantial cardiovascular deficiencies can
thus be tolerated and fish, even without any observable heart activity or blood flow,
develop overly normal without systemic compromising impact due to secondary
adverse effects within the first 5 dpf [6].
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Table 9.1 Comparison of timepoints when key cardiovascular developmental events happen in
zebrafish, mouse, and humans

Zebrafish | Mouse Human
Gastrulation 5 hpf E6.5 17 days
Somitogenesis 10 hpf E7-E7.5 17-18 days
Cardiac progenitors migrate and fuse at | 12-18 E8 19 days
the midline hpf
First contractions of the primitive heart | 21-22 E8.5 22 days (3 weeks)
tube hpf
Heart chambers visible 30 hpf E8.5 22 days (3 weeks)
Looping 30-36 E8.5 22 days (3 weeks)
hpf
Valve formation 45 hpf E9 30 days
Ventricular septation - El5 90 days
Atrial septation - After birth After birth (appr.
(day 21) 40 weeks)
Cardiovascular maturity 5 dpf 4 weeks 8-12 years
Vasculogenesis-primitive plexus 20 hpf E8-8.5 1st trimester (up to
formation week 11)

E embryonic day

9.1.2 The Uprising Disease Model

Not only because of these obvious advantages but also with the 1996 mutagenesis
screens and the recovery of mutant alleles modeling known human diseases, the
zebrafish began its journey toward challenging the till-then dominating mouse model
in recapitulating human disease conditions. As a nonmammalian model though, the
zebrafish comes with apparent limitation, the most obvious being that zebrafish lack
some of the organs found in humans, like lungs and mammary gland. The first
zebrafish mutant reported modeling a human pathology and contributed to a better
understanding of the underlying pathomechanism was yquem (ype) [7]. Zebrafish
and humans share remarkable conservation in hematopoiesis, and ype presented a
photosensitive porphyria syndrome as seen in patients. Although porphyria in
humans was already associated to a gene encoding uroporphyrinogen decarboxylase
(UROD), the study of ype now explained the exact enzymatic defect leading to the
disease also in humans [7].

Subsequently, publications on zebrafish modeling various human pathologies
dramatically increased. While modeling blood disorders in zebrafish dominated
initially, zebrafish models for human diseases ranging from ocular disorders and
neurodegenerative diseases to muscular dystrophies, cancer, addiction, behavioral
disorders, and cardiovascular diseases have been described [8—10]. In particular,
concerning congenital heart malformations, like valve deficiencies, to aneurisms,
cardiomyopathies, and arrhythmias, zebrafish is now a well-established cardiovas-
cular disease model. Although having a two-chambered heart instead of a four-
chambered heart as in mammals, the zebrafish was proved to be particularly valuable
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for cardiac electropathophysiology (see section below) as compared to mice, since
zebrafish action potential shape, heart rate, and the electrocardiogram closely resem-
ble that of humans [11].

9.2 Genetics and Genetic Interrogation in Zebrafish

The ease of performing even large-scale genetic studies in zebrafish, which in the
past also contributed significantly to a more detailed understanding of genetics in
human disease, makes a high-quality genome sequence and complete annotation
essential. The zebrafish is now further frequently used as an independent functional
validation tool for findings from human genetics studies [12]. A recent study,
initiated in 2001 by the Wellcome Sanger Trust Institute, identified and annotated
26,000 individual genes encoded on the zebrafish’s 25 chromosomes compared to
the roughly 20,500 genes in the human genome [13]. Sequencing additionally
revealed that teleosts underwent a whole-genome duplication, with 25-30% of the
duplicated genes still retained in zebrafish [13, 14]. Thus, frequently duplicated
genes are found when screening for human disease gene orthologues, adding
potentially to a functional validation experimentation since duplicated genes often
exhibit subfunctionalization properties. Seventy percent of the human genes have a
direct homologue in the zebrafish. More astounding is that 84% of the known human
disease genes have a direct homologue in fish [13].

Along with this solid foundation, the zebrafish comes with a highly versatile tool
set to interrogate gene functions and identify genes with so far unappreciated
functions. As traditionally introduced and envisioned by its pioneers, the zebrafish
was and is a powerful forward genetics model.

9.2.1 Forward Genetics

Classical chemical mutagenesis screens, in particular deploying N-ethyl-N-
nitrosourea (ENU), are easy and unprecedented in zebrafish compared to any other
vertebrate model and enable production of thousands of mutants in a relatively short
time (reviewed here [15]). While being easy and producing mutations very effi-
ciently with little genomic bias, chemical mutagenesis screens have the disadvantage
that subsequent identification of the gene mutation causative for the observed
phenotype is time- and resource-consuming. To overcome this limitation, insertional
mutagenesis techniques using replication-deficient pseudotyped retroviruses or
transposons were introduced by several groups [16—18]. In addition, and initially
adapted from mouse, the Sleeping Beauty DNA transposon somatic mutagenesis
system was successfully introduced in zebrafish and led to the identification of
conserved and novel human cancer genes in zebrafish [19]. Insertional mutagenesis,
due to its predesigned insertional cassettes, including reporters, enhancers, silencers,
and amplification tags, allows rapid identification of the targeted gene. However, this
comes with the price that retroviruses and transposons typically achieve a very much
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lower mutagenic efficiency than ENU, requiring considerably larger libraries of
mutagenized fish.

Using sensitized genetic backgrounds to perform modifier screens is a powerful
way to isolate genetic interactions of genes. Since screening of several genomes and
large libraries of mutagenized animals is necessary, this was longtime reserved for
invertebrate models, including Drosophila and C. elegans. Kramer et al. performed
the first enhancer screen for modifiers affecting dorsoventral patterning by using
heterozygous zebrafish mutants for the chordin gene and identified initially seven
enhancer mutations [20]. Bai et al. screened for genetic suppressors of a mutation in
the moonshine (mon) gene, which encodes for the transcriptional intermediary factor
1 gamma (#f1y) [21]. mon mutants exhibit anemia and larval lethality. They utilized a
complex haploid screening strategy and identified the sunrise mutation that fully
normalized globin content in mon mutants. Interestingly, sunrise encodes for cdc73,
a component of the Pol II transcriptional elongation complex, for the first time
linking #f1y function and transcriptional elongation to erythroid development.

9.2.2 Reverse Genetics

The so far numerous forward screens performed in zebrafish to date, despite the
significant time, staff, and resource efforts, have led to the identification of plentiful
new genes and conserved pathways involved in human disease, including cardio-
vascular disease [22-24]. However, not only because zebrafish became a valuable
model to functionally validate candidate genes but also because of advances in
sequencing and other large-scale gene identification technologies, including high-
throughput automated gene expression analysis, i.e., in situ hybridization screenings,
reverse genetic tools to interrogate the function of distinct genes have been
established [25, 26]. Development of available technologies adapted to zebrafish
research accelerated dramatically during recent years (Table 9.2).

First reverse genetics in zebrafish was performed based on technologies that were
well established and combined with advanced sequencing leading to targeting
induced local lesions in genomes, or TILLING for short [28]. In TILLING, libraries
of ENU-mutagenized F1 families are sequenced and sperm cryopreserved. Sperm
can be revitalized by in vitro fertilization when a locus of interest is affected by an
induced mutation. Hundreds and thousands of cryopreserved sperm from TILLING
efforts are stored in huge facilities and catalogued. They are available to the research
community through the Zebrafish International Research Center (ZIRC, www.
zebrafish.org) at the University of Oregon, USA, and the European Zebrafish
Research Center (EZRC, http://www.ezrc.kit.edu) at the Karlsruhe Institute for
Technology (KIT), Germany [29].

With the introduction of morpholino-modified antisense oligonucleotides
(MO) adapted from Xenopus, an easy, fast, efficient, and specific gene silencing
tool when well controlled [30] to analyze the function of a distinct gene became
available [31]. MOs do not target the genomic locus of a gene but rather bind to the
transcript to cause aberrant translation or splicing. They do so either by targeting the
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Table 9.2 Overview of available reverse genetics tools

Reverse
genetic tools
Morpholino-
mediated
gene
knockdown

Tol2-
mediated
large
genomic
deletions

Retrovirus-
mediated
insertional
mutations

ENU-
mediated
targeting
induced
local lesions
in genomes
(TILLING)
ZFN-
mediated
gene
targeting

TALEN-
mediated
gene

targeting

Mechanism

Synthesized
oligonucleotide
analogs disrupt
splicing or
attenuate
translation

Transposon
element Tol2
integrates into
the genome,
causing gene
disruption

Retroviral
element
integrates into
the genome,
causing gene
disruption
ENU
mutagenesis
followed by
sequencing
genomic region
of interest

Zinc finger
nucleases-
mediated DNA
double-strand
break

TALEN
nucleases-
mediated DNA
double-strand
break

Pros

Fast, convenient,
modified caged
MO can be used
for conditional
gene knockdown,
rapid
identification of
affected gene

Integration
occurs randomly
and efficiently,
inheritable, huge
acceptance in the
community,
excellent
construct
availability
Integration
occurs randomly
and efficiently,
inheritable, rapid
identification of
affected gene
Generates a
diverse range of
mutant alleles for
genetic analysis

Generates small
deletions or
insertions at
desired genomic
region of interest

Same as above

Cons

Not inheritable,
effective within
first 3-5 days of
development,
prone to
off-target effect

Requires large
space and is
labor-intensive,
tends to have hot
spots

Same as above

Same as above

Constructing
ZFNs targeting
desired target
sites is time- and
labor-
consuming;
generation of
stable mutants
takes up to

12 months
Off-target
effects;
generation of
stable mutants
takes up to

12 months

J. Liu et al.

Resources

Gene tools, http:/
www.gene-tools.
com

Wiki and
repository: http://
www.tol2kit.
genetics.utah.edu,
constructs
available through
Addgene

N/A

http://www.
sanger.ac.uk/
Projects/D_rerio/
zmp/

N/A

N/A

(continued)
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Table 9.2 (continued)

Reverse

genetic tools | Mechanism Pros Cons Resources
CRISPR/ CRISPR/Cas9- Same as above, Generation of a N/A
Cas9- mediated DNA and the most stable mutant

mediated double-strand versatile gene takes up to

gene break targeting method | 12 months;

targeting genetic

compensation
reported [27]

translational start site to block translation completely or by targeting splice-site
junctions in the pre-mRNA causing either exon skipping or intron integration
resulting in frameshift and premature stop codon generation [31, 32]. While transla-
tion blocking MOs require an antibody specific for the targeted protein to assess
efficacy, the efficiency of disruption of splicing by the splice-site MOs can be easily
evaluated by RT-PCR. The development of photoactivatable MOs (caged MOs)
helped to overcome the limitation that MOs act globally and constitutively
[33]. Caged MO activity can be temporarily and even spatially controlled by
applying cellular resolution light, i.e., using two-photon microscopes [34]. MOs
proved to be a versatile tool not only to inhibit gene function but also to confirm
genetic interactions of genes when titrated and co-injected, for gene dosage
experiments, to suppress miRNAs by targeting miRNA maturation or for miRNA
target validation by interfering with miRNA target 3’-UTR binding [35-37]. Despite
being extremely valuable, MOs come with the disadvantage of having transient
effects because they do not cause genetic lesions, allowing gene knockdown only for
about 3 days [31]. Further, MO experiments require well-trained and experienced
staff to control for potential off-target effects and toxicity [30, 38]. Recently,
discrepancies between the observed phenotypes induced by MOs and stable mutants
were reported, which can be in part explained by genetic compensation mechanisms
occurring in mutants but not when the gene is transiently inactivated as in
morphants, possibly thereby obscuring phenotypes otherwise visible after MO use
[27, 39].

The latest development of advanced genome-editing technologies complements
the existing reverse genetics tools in zebrafish. First, zinc finger nucleases (ZFN),
then TALE nucleases, and ultimately CRISPR/Cas9 have been shown to be highly
effective in zebrafish, and particularly, CRISPR enables cheap and relatively effort-
less generation of mutants in virtually every lab [40—45]. Narayanan et al. recently
demonstrated the feasibility of simultaneous in vivo mutagenesis of entire gene and
miRNA gene families by multiplex CRISPR/Cas9, highlighting the versatility of this
system [46]. Multiplexed CRISPR/Cas9 was subsequently employed to demonstrate
that miRNAs provide phenotypic robustness and protect the vascular systems from
changing environmental conditions [47].

Besides inducing simple lesions, CRISPR/Cas9 enables targeted genome editing
allowing introduction and correction of distinct mutations, integration of exogenous
sequences like LoxP, and even introduction of reporter genes, including GFP
[48]. However, besides the very well and efficiently performing NHEJ
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(non-homologues end-joining), HDR (homology-directed repair) seems to work
rather inefficient in zebrafish [48, 49].

As in other animal models, transgenic strategies are another valuable reverse
genetics tool to elucidate gene function. Either wild-type forms or constitutive active
or dominant-negative isoforms of the gene of interest can be transiently, by simple
RNA injections, or stably, by stably integrated transgenesis, expressed. Generation
of a stable transgenic line takes between 6 and 12 months. Here, also a diverse tool
set, including GAL4/UAS- and Cre/LoxP-based systems, and a diverse set of
promoters, including cell-type-specific promoter elements or tamoxifen and heat
shock-responsive elements to drive spatially and temporally controlled expression of
the transgene, are available [50].

9.2.3 Genetic Diagnostic Testing Using Zebrafish

Current large-scale genomic sequencing studies of human patients have identified
many disease-associated genetic variants at an accelerating pace and at ever-
decreasing costs. One of the major challenges that we are facing with all these
genomic data is to determine the pathogenicity of newly identified candidate disease
genes and genetic variants. This is particularly true for the ones that have not been
previously evaluated in an experimental model system. Owing to the
abovementioned advantages as a vertebrate model system, zebrafish has emerged
as an attractive model to determine the cause-effect relationship between the genetic
variants and the human defects and the underlying molecular disease mechanisms.

Giving the versatile genetic tool set in zebrafish, the ability of genetic diagnostic
testing ranges from simple gene causality and single variant testing to the identifica-
tion and characterization of more complex disease genetics. We will focus here on
how the zebrafish can be used to test for a variety of genetic testing scenarios;
distinct examples can be found in the disease entity sections below.

(I) Using transient MO-mediated knockdown or stable CRISPR/Cas9 knockouts
as a tool to identify disease causality of a gene from single genes or from a set of
candidates isolated through, i.e., GWAS, enables simple and fast causality screen-
ing. Gene candidates mapped for disorders segregating under a recessive mode of
inheritance can be easily and rapidly tested. Phenocopy of large parts of the
phenotypic spectrum found in the respective patient cohort allows for identification
and functional verification of identified null variants with predicted nonsense,
frameshift, or splice-site mutations. (II) The power of zebrafish is the ability to
transiently overexpress genes or gene variants by injection of in vitro generated
RNA carrying the desired mutation. This allows very specific in vivo variant testing.
In vivo complementation experiments by combining mRNA injection of transcripts
carrying the to-be tested mutation with MO-mediated knockdown or stable knockout
result in more specific mutation-focused testing. The loss-of-function effect of the
variant is proven by the inability to rescue the induced gene loss. This method is very
helpful to identify null variants in a scenario of recessively inherited disorder.
Injection of variants into wild-type animals enables identification of dominant-
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negative acting gene mutations. If small amounts of the mutant variant cause a
disease phenotype, while injection of equal amounts of the wild-type variant has no
effect, this indicates toxicity of the mutant allele and hence dominant-negative mode
of action [51]. (IIT) The ease to generate stable mutants in single or multiple genes at
once and the availability of a huge variety of mutant alleles through international
resource centers as mentioned above enable even the unraveling of more complex
genetic traits in vivo. Combining mutant alleles by multiplex targeting through
CRISPR or compound mutation generation by crossing of different mutant lines
allows demonstration of genetic interactors and modifiers of phenotypic traits
[47, 52]. Convenient is the use of MOs, since here the amount of gene reduction
can be titrated. Combining carefully titrated MOs targeting different specific genes
can thus be used to prove genetic interaction and disease modifiers in an in vivo
setting with little time effort [35].

The applicability of zebrafish in the diverse genetic scenarios is summarized in
Table 9.3.

9.3 Cardiovascular Disease Models
9.3.1 Congenital Heart Disease Modeling in Zebrafish

Congenital heart diseases (CHDs) are the leading cause of human birth defects, and
many of these diseases originate from genetic defects that impact cardiac develop-
ment and morphogenesis [58, 59]. During development, the heart is the first organ to
form and function. After its initial formation at the ventral midline, the vertebrate
heart undergoes a series of complex morphogenetic processes that transform the
linear heart tube into a functional pumping organ (Fig. 9.1a-g) [5, 63, 64]. Although
the zebrafish heart appears to be structural simpler than its counterpart in higher
vertebrates, much of the molecular and cellular mechanisms governing cardiac
formation and further maturation are conserved between zebrafish and higher
vertebrates [5, 23, 60, 64-66].

CHDs in humans feature a wide variety of structural abnormalities that affect
nearly every structure of the developing heart including the myocardium, the valves,
and the great vessels [59]. If left uncorrected, in severe cases, the structural defects
will lead to cardiac dysfunction and thus negatively impact life quality of the
affected individual. In zebrafish, myocardial wall abnormalities manifest as either
hypoplastic ventricle or hypotrabeculation, both of which cause progressive reduc-
tion in cardiac contractility [67]. Cardiac valve malformations often arise from
defective endocardial cell migration and/or remodeling, leading to improper endo-
cardial cushion and/or valve leaflet formation [23, 68, 69]. These defects can result
in blood regurgitation and altered intracardiac fluid dynamics [68, 69]. Other cardio-
vascular defects in zebrafish include heterotaxy whereby the relative position of the
zebrafish cardiac chambers is altered [70, 71], and malformations of the pharyngeal
arch arteries (PAAs), the transient embryonic blood vessels that eventually give rise
to the carotid arteries and great vessels of the heart [72, 73].
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Table 9.3 Overview of usage scenarios for genetic diagnostic testing using zebrafish and the

available methods

Query

Disease causality testing
of a single candidate
gene

Identification of a
disease gene from a set
of genes, i.e., by GWAS

Pathogenicity testing of
single identified
mutations

Complex Trait Testing
(polygenic evidence)
or

Candidate gene/
signaling network

or

Disease modifier testing

Approach options

MO (weeks) or stable KO,
CRISPR/TALENS (months)
MO (weeks) or stable KO,
CRISPR/TALENS (months)
combined with transgenic

sensor/marker line

WT/variant RNA injection
combined with MO KD or
stable KO

WT/variant RNA injection in
wr

Multiple mutant/heterozygotes
generation by crossing
different mutant lines [52]
Sensitization of a het line by
introduction of a second het
mutation [52]

Multiplex CRISPR targeting
[47]

MO combination experiment
[35]

Sensitization by using multiple
titrated MOs [35]

Rescue of MO KD by injecting
genetic interactor or
downstream affector RNA

Findings

— Identification and validation of a
disease gene [51, 53, 54]

— Complete phenocopy proves
loss-of-function, null variant
effect or recessive mode of
inheritance [51, 53, 54]

— Phenotype in heterozygotes or
MO titration proves
haploinsufficiency [55]

— Isolation of distinct effects and
on distinct cell types/tissues/
biological processes [56, 57]

— Inability to rescue with variant
mRNA proves pathogenicity [57]
— Could indicate recessively
inherited disorder

— Development of phenotype with
variant injection proves
pathogenicity [51, 57]

— Indicates dominant-negative
effect of variant [51, 57]

— Polygenetic cause for a disease
can be proved [52]

— Proof for genetic interaction
[35, 47, 52]

— Causation testing of gene
networks [35, 47, 52]

— Identification of disease
modifier [35, 47, 52]

— Risk factor stratification [47]

GWAS genome-wide association study, KD knockdown, KO knockout, MO morpholino, WT wild
type. Citations provide examples for distinct genetic testing scenarios. The list of cited articles is

not exhaustive

Hypoplastic left heart syndrome (HLHS) is a rare but complex CHD
characterized by severe hypoplastic left ventricle and extremely underdeveloped
mitral and aortic valves [74, 75]. These severe structural defects render the left side
of the heart less efficient in pumping blood to the body, and surgical corrections are
needed to improve the survival of HLHS infants [76]. HLHS usually occurs as
isolated disease and the associated genetic loci include, among others, those
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Fig. 9.1 The embryonic and adult zebrafish hearts. (a) The zebrafish linear heart tube at 24 hpf. (b)
The looping zebrafish linear heart tube at 36 hpf. (¢) The two-chambered zebrafish heart at 48 hpf.
(d) The zebrafish heart grows in size by 5 dpf. (e) Cross-sectional view of 5 dpf zebrafish heart
showing ventricular protruding trabeculae, cardiac valves, and the outmost epicardial layer.
Modified from Brown et al. JCC 2016 [60]. (f, g) Confocal projections of 3 and 5 dpf zebrafish
hearts, respectively. From Samsa et al., Development 2015 [61]. (h) Schematics of juvenile and
adult zebrafish hearts at the top and an isolated adult heart at the bottom. (i-1) Control hearts (i) and
hearts with left-right patterning defects (j-I) stained by in situ hybridization labeling the cardiac-
specific myosin light chain 2. From Lai et al. Development 2012 [62]

encoding the transcriptional factors NKX2.5 and HANDI1 and the gap junction
protein GJA1 [77-79]. Interestingly, recent studies in zebrafish revealed an impor-
tant role for Nkx2.5 and its homologue Nkx2.7 in chamber identity maintenance
[80, 81]. Although the numbers of differentiated ventricular and atrial
cardiomyocytes (CMs) are not affected by the loss of nkx2.5 function at the linear
heart tube stage, zebrafish nkx2.5 mutant demonstrates a nearly 50% decrease in the
number of ventricular CMs with a corresponding increase in the number of atrial
CMs starting from cardiac looping stage. These nkx2.5 mutant phenotypes are
further enhanced by a loss of nkx2.7 function. These observations suggest that
these two Nkx factors play critical role in maintaining ventricular and atrial cell
identity during the time of cardiac loop and chamber emergence [80, 81]. Although
no studies have reported an enlargement of atria in HLHS human patients, studies
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Fig. 9.2 Zebrafish as a vascular model. (a) Vasculature of a transgenic Tg(kdrl:EGFP) embryo at
5dpf. (b, ¢) Cardiovascular defects in zebrafish ccm2 mutants, characterized by endocardial
overproliferation (b’) and increased sprout- and branch point formation (¢’) at 48hpf. From Renz
et al. [83] (d) Zebrafish as a model for atherosclerosis. Lipid deposits labeled by fluorescent lipids in
the vascular wall of Tg(kdrl:EGFP) transgenic animal [84]

using zebrafish might still provide mechanistic clue as to why HLHS patients
develop miniature left ventricles. Combing mouse forward genetics and further
validation by CRISPR/Cas9 gene editing in mouse and zebrafish, a recent study
showed that Sap130, a histone deacetylase complex subunit, mediates left ventricu-
lar hypoplasia, further demonstrating the value of zebrafish as a powerful genetic
system to model HLHS [82].

Cardiac valves are critical components in the heart that function to ensure
unidirectional blood flow (Fig. 9.2e). Human patients with congenital valve defects
would present either obstructed or backward blood flow due to valvular stenosis and
valvular insufficiency, respectively [85-87]. In zebrafish, the atrioventricular
(AV) valve that forms at the AV junction is the most well-studied valvular structure
[23, 68, 69, 88, 89]. At 48 hours postfertilization (hpf), as the AV junction constricts
and demarcates the two cardiac chambers, the endocardial cells at the junction begin
to differentiate and form a specialized ringlike structure, the AV canal, to help reduce
retrograde blood flow [68, 69]. Around 72 hpf, the AV endocardial cells further
invaginate and generate primitive valve leaflets allowing for complete prevention of
regurgitation [69]. Due to the conserved molecular mechanisms underlying valve
formation between zebrafish and higher vertebrates, zebrafish has been utilized to
evaluate the potential in vivo effect of genetic variants associated with human
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congenital valve defects. By sequencing 32 candidate genes implicated in atrioven-
tricular septum (AVS) development, a recent study identified 11 detrimental genetic
variants associated with AVS defects [57]. Further functional analysis demonstrated
that expression of a patient-specific ALK2 1.343P variant in zebrafish embryos led to
aberrant expression of endocardial cushion marker genes and disrupted AV canal
formation. More recently, Durst et al. identified DCHSI missense mutations as an
inherited risk factor for mitral valve prolapse (MVP) [53]. DCHSI encodes a
member of the cadherin superfamily involved in cell polarity. MO-mediated knock-
down of the zebrafish homologue dchs!b compromised AV canal formation and
resulted in retrograde blood flow [53]. Intriguingly, the wild-type human DCHS1,
but not the two DCHS1 variants (P197L, R2513H), rescued the AV canal defects
caused by dchsib knockdown in zebrafish embryos, further supporting the link
between the familiar mutations with MVP [53].

Heterotaxy is a rare birth defect featuring randomization of visceral organ situs
[90]. Although situs inversus leads to little or no medical problems, heterotaxy often
causes structural abnormalities in the heart and/or other major visceral organs. The
heart is the first organ that responds to laterality signals and thus exhibits left-right
asymmetry (Fig. 9.1h—k). In addition to the positioning defect, other cardiac defects
seen in heterotaxy patients are transposition of the great arteries and septal defect
[91-93]. Because of an essential role of the motile cilia in left-right patterning,
genetic mutations that affect motile cilia formation and/or function and the down-
stream nodal signaling that controls left-right patterning result in heterotaxy and
cardiac structural abnormalities [94]. To date, targeted candidate exome sequencing
has identified many human mutations in ciliary dynein components, such as dynein
intermediate chain 1 (DNAI1) [95, 96], dynein heavy chain 5 (DANHS) [95], dynein
heavy chain 6 (DNAH6) [97], and left-right dynein (DNAH11) [96], in heterotaxy
patients. Selection of the candidate genes was based on genetic data obtained from
model organisms, in particular Chlamydomonas mutants with the defective structure
and/or function of flagella [98]. Intriguingly, recent human genetic studies have
identified novel heterotaxy-causing genes, some of which have unanticipated roles in
cilia structure and function or potentially affect the downstream signaling controlling
left-right patterning [99].

9.3.2 Cardiomyopathy Modeling in Zebrafish

In 2002, with the zebrafish mutants silent heart (sih) and pickwick (pik) harboring
mutations in cardiac troponin and titin, respectively, rendering the hearts a contrac-
tile and recapitulating human cardiomyopathy, the usefulness of zebrafish as a
cardiomyopathy model became obvious [100, 101]. Both genes are associated
with human hypertrophic (HCM) and dilated cardiomyopathy (DCM)
[102, 103]. In subsequent years, many more cardiomyopathy-causing genes were
evaluated using the zebrafish. Roughly 96% of all known human cardiomyopathy-
causing genes have a direct zebrafish orthologue, supporting the usefulness of
zebrafish [104]. The zebrafish even helped to identify novel DCM genes, i.e.,
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Nexilin, which was first identified as a novel component of the sarcomeric z-disk in
zebrafish and then confirmed to be a molecular base of human DCM by a genetic
screening of patients with idiopathic DCM [51]. Strikingly, even the ultrastructural
characteristics of Nexilin loss described in zebrafish were mimicked in human
Nexilin mutation carriers. Subsequently, Nexilin was also linked to human HCM
[105]. Vogel et al. systematically evaluated the usefulness of zebrafish as a disease
animal model for human DCM [106]. They knocked down a diverse set of known
human DCM genes and evaluated the resulting phenotypes. Inactivation of all genes
not only reliably caused DCM, but zebrafish morphants even recapitulated gene-
specific disease characteristics, highlighting the value of zebrafish as a diagnostic
model to evaluate human cardiomyopathy genetics. Genes evaluated in zebrafish
quickly expanded from merely sarcomeric proteins to signaling molecules, transcrip-
tion factors, and cytoskeletal and other regulatory proteins [106—111]. Zebrafish
models contributed dramatically to novel mechanistic insights of human cardiomy-
opathy, as exemplified by a study from Zou et al. The authors used CRISPR
technology to generate distinct titin mutants, leading to the identification of a
human conserved titin internal promoter that can rescue favorably mutations residing
in the N-terminus of the protein. This renders N-terminal mutations less severe than
mutations affecting the C-terminus and might serve as an explanation for the
observed variability in expressivity and severity in human titin mutation
carriers [112].

Besides larval zebrafish, adults recently are used to model cardiomyopathy.
Human cardiomyopathy usually affects adult individuals with disease mutations
predominantly being recessively inherited. While previously homozygous zebrafish
mutants with manifestation of disease during larval developmental stages were
predominantly analyzed, adult zebrafish might represent a model closer modeling
the human pathology. The adult zebrafish heart consists of all cell types found in the
human heart, including cardiomyocytes, fibroblasts and endothelial cells, while the
larval heart mainly contains cardiomyocytes. Common pathways involved in disease
progression in human heart disease, including the p-adrenergic system, were shown
to function more similarly in the adult than in the larval heart [113]. A few adult
cardiomyopathy models exist that contributed significantly to a deeper understand-
ing of disease progression and potential therapeutic opportunities [114—117]. A
recent study aimed at understanding the basis for the heterogeneity of observed
phenotypes in essential myosin light chain (MYL3) mutation carriers, which can be
observed even in patients carrying the same mutation [118]. The authors used adult,
heterozygous mutant fish, mimicking human dominant mutation carriers. Combin-
ing functional analyses with molecular and biochemical assays, the study provides
evidence that MYL3 is essential to adapt heart function to physical stress. Heterozy-
gous mutant fish developed cardiomyopathy and increased lethality only after
exposure to forced swimming while being unremarkable under normal conditions.
Variability in expressivity and severity of MYL3-associated cardiomyopathy in
humans hence depends on the degree of the stress the heart experiences during
lifetime, and controlling cardiovascular stress might represent a possibility to reduce
disease symptoms [118].



9 Interrogating Cardiovascular Genetics in Zebrafish 327

While being valuable to more closely resemble human cardiomyopathy, using
adult zebrafish comes with disadvantages. The biggest disadvantage is time, since
generating stable mutants is significantly more time-consuming than MO-based
larval studies. Further, analysis of heart function in larvae is very easy and can be
performed by using a simple light microscope. Because adult zebrafish lack trans-
parency, more advanced imaging modalities have to be used, demanding higher
costs and highly trained personnel. In accordance to mammalian studies, echocardi-
ography was adapted to analyze heart function in adult zebrafish, now allowing the
assessment of conventional echocardiographic parameters to advanced analysis of
detailed myocardial mechanics deploying modern speckle tracking [118-120]. And
last but not least, the ability of using larval zebrafish to perform high-throughput
screens (see section below) is unprecedented and is impossible to match with adult
zebrafish. Nevertheless, adult zebrafish cardiomyopathy models are rising and will
more and more complement larval studies in the future.

9.3.3 Arrhythmias

While murine hearts beat with up to 900 beats per minute (bpm), zebrafish hearts
contract with a frequency of 60—100 bpm, thus much more closely resembling heart
rates of humans. This resemblance is furthermore evident in the very similar form
and kinetic of a zebrafish ventricular action potential and the echocardiogram
[11]. Drugs targeting late repolarization channels induce confound arrhythmias in
zebrafish while being only marginally functional in mice. Although being very
small, the larval zebrafish heart is able to present a variety of different arrhythmic
flavors, including tachycardia, bradycardia, atrioventricular block (AV block), atrial
fibrillation, and sinus exit block. First evidence for the applicability of zebrafish as an
arrhythmia model came from the island beat (isl) mutant in 2001, harboring a
mutation in the cardiac L-type calcium channel [121]. is/ larvae display a
noncontractile ventricle and an asynchronously contracting atrium, resembling atrial
fibrillation. Breakdance mutant zebrafish (bre), carrying loss-of-function mutations
in the zebrafish orthologue of the human HERG channel, model long-QT syndrome
2 (LQT2) [122, 123]. bre hearts develop a second-degree AV block, with the
ventricle skipping every other beat of the atrium (2,1 rhythm). Using a morpholino
targeting kcnh6 or high dosages of HERG-blocking drugs, such as terfenadine or
E-4031, enables to induce a 3:1 and 4:1 and even up to a third-degree AV block. bre
fish are very useful to screen for modifiers of LQT2 in vivo [124, 125]. Besides LQT,
with reggae (reg) mutant zebrafish, one of the first animal models for the human
short-QT syndrome 1 (SQT1) was introduced [126]. reg mutant fish carry a gain-of-
function mutation in the zebrafish HERG channel and display a whole range of
phenotypes, including complete cessation of contractility over up to hours, to atrial
fibrillation and sinus exit block. A sodium-calcium exchanger (NCX1) deficiency
was reported for the tremblor (tre) mutant that displays chaotic and dyssynchronized
cardiac contractions and atrial fibrillation due to abnormal calcium transients
[127]. A second tre mutant, besides being important for rhythmicity, indicated a
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role for NCX1 for normal cardiac development and sarcomere formation, since this
mutant displayed malformed hearts and severely disrupted sarcomeres [128].

A direct implication for human genetics came from a zebrafish transgenic line that
expressed a mutation in the SCN5A sodium channel frequently associated with
conduction disease, sinus node dysfunction, atrial and ventricular arrhythmias, and
dilated cardiomyopathy in patients [129]. Mutant SCN5A expressing zebrafish
developed bradycardia, conduction system abnormalities, and premature death,
suggesting conserved functions in the heart and demonstrating the usefulness of
zebrafish as an in vivo screening model to distinguish benign from functional genetic
variants found in humans with arrhythmias [129].

9.3.4 Vascular Disease

Zebrafish offers the ability to choose from a diverse range of transgenic reporter lines
labeling vascular endothelial cells, lymphatic endothelial cells, or vascular smooth
muscle cells and pericytes [68, 130—134]. Combined with its exceptional imaging
capabilities, this facilitates unprecedented visualization of organ formation and
malformation as well as vascular function and malfunction in vivo (Fig. 9.2a).
Studies in zebrafish have contributed greatly to advance our understanding of
vascular biology and disease. The prominent role of Notch signaling for arterial-
venous specification and its function as a determining factor to select tip and stalk
cell fates during angiogenesis was first described in zebrafish [135, 136]. Further, our
views of early formation of the first embryonic artery and vein were reinvented with
observations in zebrafish that the first embryonic vein forms by selective sprouting
of progenitor cells from a common arterial and venous precursor vessel subsequently
undergoing fate segregation regulated through the ligand EphrinB2 and its receptor
EphB4 [137].

Defects in vascular integrity and resulting hemorrhage were among the first
pathologies described in zebrafish, advancing our understanding of factors essential
for vessel integrity and of genes involved in human disease conditions involving
hemorrhage formation [24, 138—145]. The cerebral cavernous malformation (CCM)
protein complex plays a crucial role for normal blood vessel development and
vascular integrity [146]. CCMs are vascular lesions characterized by enlarged thin-
walled blood vessels and lack of supporting subendothelial cells such as smooth
muscle or astrocytic foot processes. In patients, CCMs are primarily found within the
neurovasculature of the central nervous system and often cause headaches, seizure,
or often lethal cerebral hemorrhages due to a loss of function of at least one of the
three genes, KRIT1/CCM1, CCM2/0OSM, or CCM3/PDCDI10. In zebrafish, ccm
mutants exhibit proliferation and sprouting defects in endocardial and endothelial
cells (Fig. 9.2b, c). Mechanistically, the loss of CCM proteins results in a 81 integrin-
dependent overexpression of the zinc finger transcription factors Klf2a and KIf2b,
which in turn causes an upregulation of endothelial-specific factor egfi7, thereby
promoting excessive angiogenesis. Pharmacological inhibition of VEGF signaling
or klf2a/b knockdown by antisense oligonucleotide morpholino injection rescued
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ccm mutant cardiovascular defects [83]. Thus, zebrafish can help to further unravel
so far unrecognized pathomechanistic insights of human diseases and enables
identification of potential therapeutic targets.

Worldwide, atherosclerosis is the leading cause of death. It is a pathological
process of inflammation and progressive deposition of cholesterol, cellular debris,
and calcium in the artery walls. Zebrafish, with its unique visualization abilities by
combining transgenic reporter lines with biological indicator dyes, can help to
identify novel mechanisms and candidate genes and their role in the pathogenesis
of the disease to ultimately screen for new druggable targets [147, 148]. Recent
studies have shown that zebrafish fed with high-cholesterol diet (HCD) mimic lipid
deposition within arterial vessels in humans (Fig. 9.2d) [84]. Combined with trans-
genic lines marking leukocytes or macrophages, zebrafish becomes a powerful tool
to analyze inflammatory modulating drugs on the progression of atherosclerosis
in vivo [149].

9.4  Zebrafish in High-Throughput Drug Screens

Over the last 100 years or so, classical drug development has been employing two
broad types of small molecule screening strategies, the phenotypic screening and the
target-based screening, to identify small molecules that can be used as lead com-
pound for novel pharmaceutical drugs [150]. Historically, new drugs discovery has
been mostly relied on phenotype-based screening that utilizes cellular or animal
models to search for compounds that induce desirable phenotypic change(s). Since
1980s, owing to the advances in molecular biology and genomics, target-based
screening, which aims to identify small molecules against defined molecular targets
implicated in human diseases, has immediately gained popularity. Nevertheless,
there are a few advantages for phenotypic screening over the target-based screening
as a tool of choice for lead discovery [151, 152]. For instance, phenotypic screening
doesn’t require prior knowledge about the molecular target to identify drugs that
produce therapeutic effects. This strategy also has the potential to identify compound
that alleviates a diseased phenotype through targeting multiple biological targets. As
such, the last two decades has witnessed the emergency of zebrafish as an animal
model to the forefront of phenotype-based small molecule screening [152].

In 2000, Peterson et al. published the very first whole-organism-based small
molecule screen and identified compounds that affected various aspects of early
zebrafish development [153]. The same group also performed the first chemical
suppressor screen aiming to reverse the coarctation phenotype observed in zebrafish
gridlock mutants [154—156]. gridlock harbors a hypomorphic mutation in the hey?2
gene that encodes a bHLH transcriptional repressor [155]. After screening 5000
small molecules, two structurally related compounds were identified to suppress the
gridlock coarctation phenotype likely through upregulating VEGF expression
[154]. Given the resemblance of zebrafish cardiac electrophysiology to that of
human hearts [11], zebrafish has been served as a particularly valuable model for
identifying therapeutics that can rescue arrhythmia defects. By screening 1200
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commercially available small molecules, Peal et al. identified two compounds that
reproducibly rescued breakdance mutant long-QT defect [125]. In recent years,
phenotype-based screening using zebrafish has benefited significantly from the latest
developed motorized robotics systems. These high-throughput tools and
technologies facilitate embryo dispensation, compound delivery, and incubation,
as well as image acquisition and analysis of a variety of parameters to grasp the
complexity of cardiac function, and will undoubtedly accelerate the identification of
cardiovascular disease therapeutics in whole-organism-based systems.

9.5 Conclusions

— A variety of human cardiovascular diseases can be modeled in zebrafish.

— Availability of a highly versatile genetic tool set allows easy and fast
interrogation of gene function and evaluation of disease causality of gene
candidates and even provides insights into functional genetic networks.

— The unprecedented visualization capabilities of zebrafish enable phenotypic
characterization from whole organ level down to cell and subcellular
characterization.

— As a future prediction, zebrafish will urge into high-throughput drug discovery
and will accelerate the identification of disease, including cardiovascular disease,
therapeutics in whole-organism-based systems in the future.
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10.1 Introduction

The three most ground-breaking developments in biomedical research in the last
decades may have been the generation of human induced pluripotent stem cells
(hiPSCs) from diseased and healthy individuals, the discovery of the clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
9 (Cas9) genome editing system, and the possibility to identify disease-related
genetic variants in human populations in genome-wide association studies
(GWAS) or by modern sequencing methods. Although these highly complementary
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fields have evolved rapidly in the last decade and already profoundly changed our
understanding of cardiovascular genetics, there is tremendous potential to further
merge these technologies. This chapter aims to summarize the state of the art with
respect to the use of hiPSCs to model cardiovascular genetic diseases, to pinpoint
challenges and limitations of this technology, and to outline potential strategies to
overcome these by the implementation of evolving genome editing technology and
human genetic research tools.

10.2 Studies of Monogenic Cardiovascular Disease in hiPSCs:
Insights and Limitations

With the discovery of somatic cell reprogramming by the transient heterologous
expression of transcription factors, it suddenly became possible to obtain various cell
types from patients and healthy individuals for the in vitro study of genetic disease
without the need of genomic modification.

To validate this novel tool, it appeared most reasonable to model genetic diseases
with a strong penetrance. Furthermore, the elaborated methods of single-cell elec-
trophysiology were already well established as a potential readout for ion channel
disorders. Consequently, the first studies utilizing hiPSC-derived cells for the
modeling of cardiovascular disease focused on monogenic, mostly dominant rhythm
disorders. The first study to recapitulate a human channelopathy in hiPSC-derived
cardiomyocytes (hiPSC-CMs) was published in 2010 by our group [1]. Briefly,
hiPSC-CMs from a long-QT syndrome 1 (LQT1) patient, carrying a potassium
voltage-gated channel subfamily Q member 1 (KCNQ1) loss-of-function mutation
were shown to exhibit significantly prolonged action potential duration, attributable
to a reduced Ik current. A dominant negative trafficking defect of the KCNQI1
channel could be identified as the cause of the severely reduced Ik, current. Subse-
quently, a wealth of studies have used hiPSC-CMs to model human monogenic
arrhythmias, e.g., LQT1 [1-3], LQT2 [4-8], LQT3 [9-12], and LQTS, also known
as Timothy syndrome [13], Jervell and Lange-Nielsen syndrome [14], LQTS3/
Brugada overlap syndrome [15], and catecholaminergic polymorphic ventricular
tachycardia (CPVT) type 1 [16-21] and 2 [22, 23]—to name a selection.

Another group of cardiovascular monogenic diseases that have been modeled
in vitro using hiPSC-derived cells are cardiomyopathies [24-26], e.g., dilated
cardiomyopathy (DCM) [27-35], hypertrophic cardiomyopathy (HCM) [36-40],
or arrthythmogenic right ventricular cardiomyopathy (ARVC) [41-45]. These studies
further emphasized a critical feature of the hiPSC system that may be advantageous
or disadvantageous, depending on the situation: hiPSC-derived cells differentiate
in vitro along pathways that likely reflect embryonic development. On the upside,
this allows the study of developmental defects and enables researchers to distinguish
between diseases of the progenitor and diseases of the terminally differentiated cell
type. As an example, the altered cell—cell interactions found in ARVC were shown to
already affect cardiomyocyte progenitors by priming them toward an adipocytic
lineage [45]. On the downside, many hiPSC-derived cells, e.g., cardiomyocytes,
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resemble their fetal counterparts in humans, not reaching the maturity of adult
cardiomyocytes. This limits the validity of hiPSC models for genetic diseases with
a late-onset adult phenotype, reflected by the difficulty to provoke a clear-cut mature
cellular phenotype in many studies of adult-onset diseases [46].

Many of the studies listed above were conducted in one or two hiPSC lines from
patients and few control hiPSC lines from healthy family members or even unrelated
donors. This may have been appropriate for monogenic disorders with a strong
underlying genetic cause that leads to a disease phenotype regardless of the genetic
background. Nevertheless, with almost a decade of successful hiPSC disease
modelling, the influence of the genetic background on hiPSC phenotype and the
impact of line-to-line variability is becoming increasingly clear. This calls for novel
approaches regarding genetic background as well as biological replicates, which will
be discussed in the next section.

10.3 Line-to-Line Variability vs. the Influence of Genetic
Background: Need for Isogenic Controls

Disease modeling studies using hiPSCs have taught us that individual hiPSC lines
exhibit a relatively high variability in their biological potential to differentiate into
distinct cell lineages [46, 47]. This line-to-line variability is mostly caused by
epigenetic modifications due to reprogramming history and passaging as well as
genetic background differences, altogether remaining a considerable challenge of
hiPSC technology [26, 46—48]. Hence, mainly robust disease phenotypes of high
penetrance can be revealed when comparing patient-derived cells with unrelated
controls, whereas mild phenotypic differences may fall into the noise of line-to-line
variability and not be detected. Generation of several clonal hiPSC lines from a
patient and a control could help to account for cell line variability emerging from
genetic and epigenetic alterations during reprogramming and culturing cells over
time. To overcome differences in genetic background, generation of isogenic hiPSCs
by correcting the disease-associated mutation in patient hiPSCs or by introducing the
causative mutation in control hiPSCs has become an important tool to decipher
subtle disorder phenotypes and to link a cellular phenotype to a specific mutation
[46, 47]. Isogenic lines have identical genetic backgrounds and differ only at one
specific locus. The significance of this strategy has been demonstrated exemplarily
in a pre-CRISPR/Cas9 study that modeled long QT syndrome using isogenic pairs of
patient and (corrected) control hiPSCs as well as control and gene-targeted human
embryonic stem cells (hESCs) harboring the same mutation in KCNH2 gene,
generated by conventional recombination targeting strategy, to dissect the influence
of genetic background on the phenotypic outcome [49]. Due to the inefficiency of
classical homologous recombination approaches in the human system, this approach
was rather exceptional and the use of hiPSCs from healthy unrelated individuals or at
least unaffected family members was standard in hiPSC-based disease modeling
studies for a long time [24, 26, 46—48]. With the recent improvement of genome
editing technologies including zinc finger nucleases (ZFNs) [50], transcription
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Table 10.1 hiPSC-based cardiovascular disease modeling studies using isogenic controls

Disease Gene Method References
ARVC/D SCN5A CRISPR/Cas9 [44]
BTHS TAZ CRISPR/Cas9 [55]
DCM PLN TALEN [35]
TIN CRISPR/Cas9 [30]
DMD DMD CRISPR/Cas9 [56]
DMD CRISPR/Cas9 [57]
HCM ALPK3 CRISPR/Cas9 [58]
PRKAG?2 CRISPR/Cas9 [59, 60]
TNNT2 CRISPR/Cas9 [61]
MYH7 CRISPR/Cas9 [62, 63]
MYBPC3 CRISPR/Cas9 [63, 64]
HCM/LVNC ACTCI CRISPR/Cas9 & piggy-bac [65]
JLNS/LQTI KCNQI CRISPR/Cas9 [14]
LQTI1 KCNQI1 homologous recombination [66]
LQT2 KCNH?2 homologous recombination [49]
LQTI15 CALM?2 CRISPR/Cas9 [67, 68]

ARVC arrhythmogenic right ventricular cardiomyopathy/dysplasia, BTHS Barth syndrome, DCM,
dilated cardiomyopathy, DMD Duchenne muscular dystrophy, HCM hypertrophic cardiomyopathy,
JLNS Jervell and Lange-Nielsen syndrome, LVNC left ventricular non-compaction cardiomyopa-
thy, LOT long QT syndrome

activator-like effector nucleases (TALENSs) [51], and CRISPR/Cas9 [52-54] based
systems, the genetic manipulation of human stem cells has become easy and efficient
allowing and demanding the utilization of isogenic controls for phenotypic and
mechanistic characterization of a disease-causing variant. Table 10.1 summarizes
studies that have used isogenic PSC lines to model cardiovascular disorders [14, 30,
35, 44, 49, 55-68].

The CRISPR/Cas9 system, with its simplicity, efficacy, and flexibility, stands out
among the other gene-editing techniques to modify the genome in human cells and
has become the preferred method for either correcting putative disease-causing
variants in patient-derived cells or introducing a genetic aberration in unaffected
controls. It relies on the guide RNA (gRNA) defining the specificity of the targeting
site and offers the possibility by applying different gRNAs to insert multiple
mutations at several loci simultaneously [69, 70]. Although CRISPR/Cas9 is a
powerful technology, it has technical constraints in the off-target effects resulting
from unintended DNA cleavage at sites of unspecific binding of the gRNA-Cas9
complex and requires careful screening for off-target effects after gene editing.
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10.4 hiPSC Disease Modeling in the Era of Highly Efficient
Genome Editing: Concepts for the Study of Polygenic
Diseases, Addressing Variants with Low Penetrance

The usage of isogenic pairs of control and disease hiPSCs that differ solely at a
specific genetic variant becomes even more important when modeling polygenic
diseases that arise from a complex interaction of risk alleles of relatively small effect
sizes with the environmental factors [71, 72]. Genome-wide association studies have
identified a plethora of cardiovascular disease-linked genomic loci including
deletions/insertions, copy number variations or single nucleotide polymorphisms
(SNPs) that may be critical for complex polygenic defects [73, 74]. The hiPSC
technology provides a valuable tool for the modeling of complex cardiac disorders,
however, the investigation of the disease-causing mechanisms and elucidation of the
contribution of individual risk loci to the disease phenotype remain challenging
[47]. This could be due to several reasons. Typically, the identified genetic variants
reside within non-coding regulatory regions [75] and have rather subtle phenotypic
effects, which are difficult to study. Moreover, risk alleles can be found not only in
diseased but also in non-affected individuals [46] making it challenging to assess the
functionality of a distinct polymorphism. Contrary to monogenic maladies where a
mutation of a single gene is disease causative, polygenic disorders develop from a
sum of multiple genetic variants acting in a complex network, in which a single
variant likely will not be sufficient to trigger the disease, complicating the determi-
nation of the causality between the mutation and the phenotype.

Since the main limitation of hiPSC-based models for complex disorders is the
lack of robust phenotypes, correlating risk loci with molecular profiles, so-called
quantitative traits offers a way of delineating genetic variants by defining the
quantitative trait loci (QTL) [47, 76, 77]. Gene expression levels are often used to
assess the effect of genetic variation on transcriptional regulation [76]. Other molec-
ular traits, including DNA methylation, epigenetic modification, protein expression,
and metabolites can be examined to evaluate the role of risk loci in the disease
[47,76, 77].

As a proof of principle, the group around Kelly Frazer examined associations of
the genetic variations with the transcriptional profiles of the hiPSC-CMs from the
iPSC Collection for Omic Research (iPSCORE) collection and could demonstrate
that gene expression patterns cluster by genetic background and can be used to
evaluate SNPs linked with physiological and disease phenotypes [78]. With a similar
method, Matsa and colleagues assessed variations in gene expression signatures of
hiPSC-CMs from breast cancer patients and could predict patient-specific
differences in drug cardiotoxicity based on individual RNA sequencing (RNA-seq)
patterns [79].

In another recent study, Gupta et al. discerned the function of the genetic variant
associated with five vascular diseases by using a series of isogenic stem cell lines in
combination with RNA-seq and genome-wide epigenetic analyses and could iden-
tify a non-coding variant that can distally regulate endothelin-1, which is known to
play a role in vascular remodeling [80]. This work highlights a strategy how hiPSCs
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together with gene editing and global profiling of gene expression and epigenetics
could be used to decode genetic risk loci in the context of complex diseases [47, 80].

With the aim of addressing the function of GWAS-identified variants within
regulatory networks, there is a need to integrate single cell technologies with genetic
screens on a genome-wide basis [47, 77]. Perturb-seq [81] and CRISP-seq [82] are
novel techniques combining massively parallel single-cell RNA-seq with CRISPR/
Cas9-mediated genetic perturbations on a genome scale that could be used to study
mechanisms underlying polygenic diseases. These approaches enable the analysis of
transcriptional consequences upon CRISPR-based modulation of risk loci in the
same cell allowing the modeling of regulatory circuits of these risk variants.

10.5 Upscaling hiPSC-Based Testing: A Potential Paradigm Shift
for Drug Development

In several hiPSC disease modeling studies of cardiovascular genetic diseases, drugs
acting on the presumed pathophysiologic mechanism were tested [83] and in many
cases, features of the phenotype could be modified by the drug, e.g., nifedipine
shortened the action potential and reduced the number of early afterdepolarizations
(EADs) in LQT2 [4]. Initially, some of the drugs were used to confirm the
pathomechanisms proposed in the studies. On the other hand, these experiments
demonstrated the potential of hiPSC disease models as drug screening platforms,
leading to the detection of new drug candidates by discovering potential novel
applications for known compounds, as in the case of roscovitine for the treatment
of LQTS8 [13] or dantrolene for the treatment of catecholaminergic polymorphic
ventricular tachycardia type I (CPVT1) [21].

In principle, the idea of using hiPSC disease models as a platform for pharmaco-
dynamic testing can be extended to multiple candidate drugs or even upscaled to
unbiased screens of compound libraries. This however requires the presence of an
obvious phenotype that can be modified by the desired drug action and easily
quantified, ideally in a high-throughput manner. Again, arrhythmia research may
serve as an example of how phenotypic readouts may be optimized for high-
throughput analyses: while automated patch clamp recording, multielectrode assays
or the use of voltage-sensitive dyes may offer a solution [84-88], a particularly
interesting approach for a phenotypic readout has been taken by researchers from our
and other groups in the case of channelopathies affecting action potential duration:
genetically encoded voltage sensors were successfully utilized to repeatedly
visualize and record the action potentials in hiPSC-CMs without harming the cells
[66, 89, 90]. Furthermore, the voltage sensors can be expressed under the control of
promoters specific for cardiomyocyte subtypes, i.e., ventricular myocytes, atrial
myocytes, and nodal myocytes, which helps to overcome the common differentia-
tion heterogeneity and thereby increase the signal-to-noise ratio of the readout
[66]. The action potential recordings enable the assessment of single cell action
potential duration, which is a meaningful readout for the efficacy of drugs targeting
long-QT syndromes. Alternatively, the method can be used to test the cardiotoxicity
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of drugs that may alter QT duration in some individuals, an important adverse effect
of several drugs including certain types of antibiotic and neuroleptic drugs [91].

With growing numbers of cell lines being collected in hiPSC banks, hiPSC-based
drug screening could also be realized vice versa by testing single candidate drugs on
multiple or even a library of hiPSC lines, i.e., multiple genetic backgrounds. Not
only can this help to elucidate whether the efficacy of a drug is present regardless of
genetic background, this could also serve as an in vitro platform for
pharmacogenomics in the context of precision medicine: in combination with
whole genome sequencing of the hiPSC library (which only needs to be conducted
once for each hiPSC line) it would be possible to perform in vitro GWAS analyses
and identify variants associated with strong or weak susceptibility to the drug action.
In perspective, this could serve as a basis to genetically define patient populations
who may benefit more or less from a specific pharmacotherapy [48, 92, 93].

Similarly, this strategy could be further extended as a platform for
toxicogenomics, i.e., to test candidate drugs for toxicity on a library of hiPSC-
derived cells of different cell-types, e.g., cardiomyocytes, hepatocytes [94, 95], or
renal proximal tubular cells [96], provided that reproducible differentiation protocols
that work for all hiPSC lines can be established and appropriate readout measures
can be defined.

Before such multi-dimensional high-throughput/high-content approaches can be
realized, several hurdles must be overcome. First, culture conditions must be further
standardized to allow automatized cultures of biobanked hiPSC lines. The same is
true for differentiation protocols, which need to work equally efficient in the
majority of banked hiPSC lines before such projects can be realized. Finally, it has
to be pointed out that to date many phenotypic measures used in hiPSC models of
cardiovascular diseases like sarcomeric organization or contractile force are difficult
to quantify reliably with the same precision and reproducibility as, e.g., action
potential duration in single cells. However, as genetic variants affecting drug action
or toxicity may have only small individual impact on cellular phenotypes, readout
assays with strong discriminatory power will be required to yield reliable results
from in vitro pharmacogenomic or toxicogenomic studies. An alternative to pheno-
typic biologic readouts may be the direct transcriptional analysis by RNA-seq,
although the throughput with this cost-intensive approach would be limited and
the biologic significance of solely transcriptional readouts is not clear. Thus, further
research focusing on the improvement of reliable and upscalable phenotypic assays
is warranted.

Taken together, at the current state of technology and the pace of technological
development, automatized high-throughput hiPSC-based platforms for drug screen-
ing, efficacy, and toxicity can be envisioned to complement or even replace tradi-
tional methods of drug development in the future. While there are still important
issues that need to be overcome—including cost effectiveness—high-throughput
hiPSC-based methods for future drug testing may be an ideal tool to meet aims
proposed by the concept of precision medicine.
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10.6 3D Culture in Engineered and Biological Systems:
Assessing Non-cell-Autonomous Functions

The human heart is a large organ composed of different interacting cell types with a
complex architecture. Consequently, not all genetic properties or genetic diseases
affecting the heart can be recapitulated by studying individual cardiomyocytes. Yet,
due to usual in vitro culture conditions, most hiPSC-based studies so far mainly
focus on cell-autonomous functions of cardiomyocytes. However, the interaction of
different cells in a three-dimensional system plays an important role for normal
cardiac function and in numerous diseases. For instance, arrhythmia mechanisms of
macro- or micro-reentry require alterations in action potential propagation from one
cell to another, and in many cases the disease mechanism may not be an inherent
property of distinct cardiomyocytes, but rather a change in 3D architecture such as
scarring or fibrosis or a change in cellular composition. Furthermore, the interaction
of contractile cardiomyocytes, conduction system cells, and non-myocyte cells such
as fibroblasts, endothelial cells, or pericytes may be underappreciated by current
research. Of course it seems extremely challenging to tackle this kind of complexity
in a dish in a meaningful manner. However, recent advances in the field of bioengi-
neering and 3D culture are encouraging and raise the hope that 3D systems may
become a valid tool for hiPSC disease modeling and drug testing for certain
applications.

Cardiac tissue-engineering approaches seeding hiPSC-derived cells in ECM
biogels, in many cases following primarily regenerative aims, have led to the
development of reproducible three-dimensional tissue patches that appear to have
improved physiologic force-development, cell alignment, and maturation, compared
to standard 2D cultures [97-101]. Another promising approach is the reseeding of
hiPSC-derived cells on decellularized matrix, which gives the cells important envi-
ronmental cues via the ECM [102, 103]. Finally, the self-organizing capabilities of
hiPSC-derived progenitors may be used to form so-called organoids, i.e., structures
derived by 3D in vitro culture, that resemble important properties of organs. In the
cardiac field, organoid research is still in the early stages of development [104, 105].

In summary, the lack of reliable culture systems that allow the in vitro study of
complex physiologic 3D structures and mechanisms has been a limitation of hiPSC
disease modeling. State-of-the-art tissue engineering and advances in 3D culture
may be able to provide new platforms for hiPSC-based genetic research.

10.7 Conclusion

Due to the limited accessibility of viable cardiac tissue from patients, the in vitro
study of cardiac function and disease has been fueled by the discovery of human
embryonic stem cells (hESCs) and hiPSCs. Nine years after the first successful
cardiac hiPSC disease modeling study by our group, many lessons have been
learned, including advantages and disadvantages of the system. The recent discovery
and development of highly efficient genome editing tools such as CRISPR/Cas9
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Fig. 10.1 Considerations for the design of hiPSC studies of cardiac genetics

does not only present a solution to some limitations of the technology by allowing
the efficient introduction of mutations and generation of isogenic controls, it also
may have been the missing link to utilize hiPSC technology for the study of disease-
associated common variants identified by GWAS. Furthermore, hiPSC banks them-
selves may be the source of genetic material for GWAS in pharmacogenomic and
toxicogenomic studies, making it a potentially invaluable tool in the context of
precision medicine. Improved culturing methods, including 3D systems and more
specific phenotyping methods, such as recent optical physiology tools, will be
essential to raise this technology to the next level (see Fig. 10.1).
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Abstract

Cardiovascular diseases represent one of the most important causes of morbidity
and mortality worldwide. The pathogenesis of cardiovascular disease is complex
and remains elusive. Remarkable progress in deciphering the molecular
mechanisms of cardiovascular disease has been achieved in different fields of
research, ranging from basic-experimental research to molecular epidemiology to
clinical research. Each of these isolated fields have successfully improved the
pathophysiological understanding in cardiovascular disease. Within the last
years, systems medicine has emerged to study the complex genetic, molecular,
and physiological interactions leading to cardiovascular diseases by integrating
and combining multilevel data sets from different research fields.

This chapter provides an overview of the current understanding of systems
medicine and the computational and epidemiological tools applied. First,
applications of systems medicine in cardiovascular research are described and
challenges and opportunities that arise with systems medicine as a promising tool
for cardiovascular genetics are discussed.

11.1 Introduction

Cardiovascular disease (CVD) comprises numerous complications of the heart,
many of which are related to impaired blood flow that might lead to congestive
disorders, arrhythmia, or heart valve problems [1]. Causes for organ-wide failure or
disorders often have their origin at the subcellular, molecular level, whose effects
spread to the level of the whole heart, eventually leading to its spontaneous failure.
Thus, to understand the origin and progression of CVD, multiple levels of cellular
function—from genomics to transcriptomics and proteomics—to cellular organiza-
tion—from cell-cell communication, adhesion, and movement—to organ organiza-
tion including heart physiology and the phenotypic and clinical characteristics of an
individual, have to be considered—and must be studied in a dynamic context.
Knowledge from each individual level has already been accumulated—although
somewhat fragmented—and has been made increasingly accessible with digitaliza-
tion [2]. To provide a detailed and comprehensive picture, now, we have to learn
how to “put the individual pieces together” by learning how to best link and
systematically integrate multidimensional datasets.

The concept of systems biology tackles exactly these questions [3, 4]. Systems
biology aims at understanding inter- and intracellular dynamic processes through the
integration of various high- and low-throughput quantitative data by using mathe-
matical approaches. The concept of a mathematical description of molecular and
cellular processes was already applied in simple biological systems more than
50 years ago [5-7]. Driven forward by the development of molecular biology and
genetics as research disciplines, the subsequent decades showed large advancements
to link molecular events to diseases. In recent years, the generation and evolution of
high-dimensional and global molecular data, which are summarized as omics data
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(i.e., genomics, transcriptomics, proteomics, metabolomics, lipidomics, gylcomics,
as well as phenomics or radiomics), have revolutionized approaches to complex
biological phenomena. Owing to this development, the last years have witnessed
spectacular successes in the identification of new loci involved in the susceptibility
to CVD [8-12]. The underlying pathophysiological mechanisms of CVD remain,
however, still to be determined. Recently, the idea of a systematic integration of
multidimensional datasets in biomedical research and clinical management has
percolated through virtually all medical disciplines and has been expanded as the
field of systems medicine.

Systems medicine can be described as the implementation of systems biology
approaches into medical research (https://www.casym.eu [13]). According to this
description, a more comprehensive and detailed picture and thus an improvement of
disease understanding is taken by the combination of multidimensional omics data
from omics-based science, systems biology, network theory, and clinical experience
and medical informatics tools for translating the knowledge into improved patient
care [14].

Consequently, systems medicine as a new research field does not only rely on
bioinformatics and mathematics, but also on fruitful collaborations across disciplin-
ary boundaries additionally involving computational experts, clinicians, engineers,
data manager(s), as well as epidemiologists and researchers in life science
(s) (Fig. 11.1).

This chapter provides an overview of the status of systems medicine in the field of
cardiovascular disease, with a particular view on the computational methods and
tools currently applied, and discusses the opportunities and challenges that come
along with the implementation of systems medicine into cardiology.

11.2 Methods in Systems Medicine

Despite technological advances, the main conceptual challenge remains the integra-
tion of complex data across entities, space, and time. The difficulty of data integra-
tion is deeply rooted in the emergence of novel behavior stemming from molecular
and cellular self-organization, which does not allow extrapolation of knowledge
across biological processes. For example, current knowledge of protein dynamics
cannot explain the emergence of the transcriptional landscape of a cell. To circum-
vent this problem, the modeling of biological systems generally pursues two major
approaches: a top-down and a bottom-up approach. The top-down approach starts
from statistical analysis of large-scale omics data with the goal to discern regulatory
patterns between different experimental conditions or patient samples. While it
allows an unbiased, holistic view of the biology, it usually provides only a limited
understanding of molecular mechanisms and thus remains mostly correlative instead
of causative. In the case of CVD, a top-down approach can stratify patients with
respect to their disease state and pathway activity at a given time point, without,
however, considering their pathophysiology in detail or understanding the individual
cell, e.g., a cardiomyocyte, all of which might be causing the disease (Fig. 11.2). A
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Fig. 11.2 Principles of systems biology. (a) The top-down approach allows an unbiased, holistic
view of a biological system, without understanding the molecular mechanisms in detail. In contrast,
the bottom-up approach attempts to understand and capture molecular mechanisms and interaction
with the aim to transfer this knowledge on larger biological network (b). Figure modified from
Michael Liebmann, Guest Commentary, Bio IT World, March, 2004
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bottom-up approach tries to understand disease starting from molecular interactions
and integrating these into larger biological networks. Such an approach requires
quantitative dynamic data, which is often not available in sufficient detail, often
limiting model up-scaling, and in a limited medical impact.

11.2.1 Networks and Pathways

A different approach toward understanding global properties of biological systems is
the use of network theory. Cellular behavior is controlled through protein—protein
interactions. This so-called interactome can be abstracted into a network, whereby
proteins corresponding to nodes and edges represent possible interactions between
them. The virtue of this approach is the use of network theory tools to study the
importance of individual proteins, to allow dynamic simulation, and to study the
effect of network rewiring on the network state, namely, cellular phenotype
[15, 16]. The resulting network topology provides insight into organizational
principles of the cell. Biological networks are hierarchically organized with few
central hubs being connected to many nodes and with many nodes having only few
interactors [17]. This makes biological networks robust to random deletions of
nodes, i.e., failure of a protein/gene mutation, but fragile to targeted interventions
with hub genes or proteins, which often then leads to disease. Likewise, these hub
genes/proteins are potential drug targets for a given phenotype [18]. The topology of
biological networks has often been exploited for functional enrichment and annota-
tion of genes/proteins of interest [19]. Random [20] and network diffusion methods
[21, 22] allow to detect modules and subnetworks among differentially regulated
genes or sets of gene mutations, which can subsequently be studied in details. In
particular, network diffusion is an interesting approach to find genetic predisposition
toward disease and has been successfully applied to cancer [23] or autism [24].

Using this network approach, it is possible to broaden the view from a single
protein to larger interaction networks and to explore complex interactions and
disease progression in the necessary unbiased way.

It needs to be kept in mind that network analyses crucially depend on the
underlying knowledge on network nodes and edges. Various public protein—protein
interaction databases exist, as the Biological General Repository for Interaction
Datasets [25] (http://www.thebiogrid.org), the Biomolecular Interaction Network
Database [26] (https://omictools.com/bind-tool), the Database of Interacting
Proteins [27] (http://dip.doe-mbi.ucla.edu), the Molecular INTeraction database
[28] (https://omictools.com/mint-3-tool), the IntAct molecular interaction database
[29] (http://www.ebi.ac.uk/intact), or the Human Protein Reference Database [30]
(http://www.hprd.org). A common protein—protein interaction (PPI) tool is the
STRING database (https://string-db.org/), which includes indirect (functional) as
well as direct interactions (physical) and also predicted protein—protein associations
based on co-expression data [31]. From these PPI networks, molecular function and
disease association can be predicted based on network topology [32]. However, the
identification of relevant network regions (modules), which are linked to diseases
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and biological functions, is still a major challenge and goal in the field of systems
biology/medicine [33]. The following aspects make it even more difficult: (a) search
for a subnetwork (module) depends on the size of the biological network and is in
general time consumable, (b) the usage of different omics platforms (sequencing,
mass spectrometry, or microarrays) comprise the problems of normalization, batch
correction, annotation, and also completeness. Moreover, our biological understand-
ing is incomplete, e.g., only approximately 15% of all protein—protein interactions
are known. To gain insight into the interaction properties, network diffusion-based
approaches have been developed to calculate a global measure of network proximity
by simulation the diffusion of quantity throughout a network. This idea is
implemented in the tools HotNet [22] or Response Net [34]. Network-based stratifi-
cation (NBS) integrates mutations into PPIs to stratify cancer into informative
subtypes. This elucidates whether patients share similar network regions based on
their mutations. These networks are also predictive on patient survival or tumor
response therapy and can be used for RNA expression patterns with the aim to obtain
similar information in the absence with DNA sequencing [35]. In this context,
weighted gene co-expression network analysis (WGCNA) [36] uses network con-
struction to identify biological functional relevant modules and its respective key
drivers. Using this approach, Horvath et al. could identify a molecular target in
glioblastoma as a key gene within a gene co-expression module that has a major
impact on cell proliferation. The emphasis on pathway modules reduces the internal
complexity, e.g., comparison of 20 modules as compared to 20,000 genes. More-
over, intramodular connectivity can be used to identify key drivers, so-called hub
nodes. In this context, WGCNA were used to identify the two genes, G6PD and
S100A7, that are related to coronary artery disease [37].

Another network approach is transcriptional regulatory associations in pathways
(TRAP). In contrast to other gene—gene network approaches, this network inference
algorithm is able to identify gene-pathway transcriptional regulatory relationship, in
which a single gene is determined as a transcriptional regulator [38]. In this algo-
rithm, regulator-pathway associations are derived from transcriptional co-regulation
in more than 3000 individual microarray experiments with transcription factor-
coding genes, taken from the Riken Transcription Factor Database and Regulator
Pathways.

In order to obtain a functional insight into gene regulation, Subramanian et al.
developed a powerful analytical method called gene set enrichment analysis (GSEA)
that is based on focusing on gene sets. The latter is a group of genes that share
common biological properties/function. GSEA determines whether the genes are
randomly distributed or specifically assigned to a gene set [39]. Such an analysis
benefits greatly from the annotation of biological databases, e.g., ConsensusPath DB
or Kyoto Encyclopedia of Genes and Genomes (KEGG). ConsensusPathDB is a
meta pathway database that provides a comprehensive collection of human (as well
as mouse and yeast) molecular interaction data together with a web interface (http://
consensuspathdb.org) that offers several computational methods and visualization
tools to analyze these data. This database comprises network modules interaction,
biochemical pathways, and functional information to support data interpretation of
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high-throughput data with the aim to prioritize specific biological function and
signaling pathways [40, 41]. KEGG is a database resource of large molecular
datasets based on genome sequencing and other high-throughput experimental
technologies to obtain a high-level functional understanding of biological systems,
such as a cell or an organism [42] (http://www.genome.jp/kegg). Another database is
Reactome that focuses on human pathways, biological processes, and reactions
information [43]. It also offers a web interface including tools for pathway browsing
and data analysis (https://reactome.org). The Gene Ontology Consortium (http://
www.geneontology.org) has the aim to generate an extensible, ordered, and con-
trolled vocabulary that comprises many eukaryotic processes and is subgrouped into
three main ontologies: biological process, molecular function, and cellular
component [44].

Further databases for specific diseases and gene expression exist, such as the
genotype-tissue expression (GTEX, https://www.gtexportal.org) [45] that examines
association between genetic variation and gene expression in human tissues, or the
Human Protein Atlas (https://www.proteinatlas.org) [46] and The Cancer Genome
Atlas (TCGA, https://cancergenome.nih.gov). The latter links genetic alteration to
specific cancer types, whereas the protein Human Protein Atlas maps proteins in
cells, tissues, and organs based on both protein and transcriptome data sets. Due to
such databases and tools [47], the analysis and understanding of high throughput
data, also with regard to CVD, can greatly be improved.

11.2.2 Cohort Studies and Biobanks

In order to identify novel risk factors for CVD, large epidemiological cohort studies
are particularly suitable. In a cohort study, cardiovascular phenotypes and
subsequent fatal and non-fatal events can be studied over time and provide powerful
results in identifying relationships between the characteristics of a population and
that population’s behavior. Two types of cohort studies are prominently used in
cardiovascular disease. Prospective studies are carried out from the present time into
the future, whereas retrospective studies are carried out at the present time but look to
the past to examine disease events and outcomes [48]. The best-known epidemio-
logical cohort study in the cardiovascular field is the Framingham Heart Study
(FHS), initiated in 1948, which is currently investigating the third generation of
the original participants. The FHS is the longest running prospective cohort study
and has contributed enormously to the understanding of various cardiovascular risk
factors and to how these factors relate to the overall and cardiovascular-related
mortality [49, 50]. The FHS could only be generated based on large populations,
generation of a large amount of big data, and by the support of several health
institutes. On the basis of the knowledge generated by the FHS, other epidemiologi-
cal cohort studies were implemented in the last years and have provided additional
information on cardiovascular disease risk [S1-55].

In the last decades, bio specimens became an important additional resource in
epidemiological studies and are collected and stored into various so-called biobanks.
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The main bio specimens collected include blood samples, urine, feces, tonsil swaps,
saliva, tear fluid, tissue samples and biopsies, as well as genetic material. These
materials made modern molecular analyses such as omics analyses feasible on the
large scale as these specimens are easily collected and various related phenotypic
and linked clinical data are available.

Today, large biobanks are an essential part of a cohort’s infrastructure [56, 57]
and build the basis for a large part of the biomedical research and consequently are
critical for translating advances in molecular biology and new possibilities in the
context of systems medicine [56].

11.3 Systems Medicine in Cardiovascular Disease

In the cardiovascular biomarker field, recent studies that relied on the concept of
systems medicine have been proposed and/or applied. A few studies have already
successfully identified novel mechanisms of CVD and/or were translated into
clinical application.

11.3.1 Systems Medicine Approaches to Reveal Novel Molecular
Pathways

11.3.1.1 Myocardial Infarction

As a major cause of death, myocardial infarction (MI) is best predicted in middle-
aged adults by a positive family history, strongly supporting a genetic basis of MI
[58]. Investigating the genetic background of MI with tools applied in systems
medicine, a novel pathway and potential drug targets for treatment of cardiovascular
disease were identified in elegant studies combining omics and clinical data with
bioinformatical and experimental models. In an extended family with several
members diagnosed of coronary artery disease (CAD), exome sequencing and
linkage analysis identified rare loss-of-function and missense mutations in the
genes GUCY1A3 and the chaperonin containing TCP1 subunit 7 (CCT7),
respectively [12].

The GUCY1A3 gene encodes the alphal subunit of the soluble guanylyl cyclase
(sGC). The sGC complex, a heterodimer of the alphal and a betal subunit, acts as
the receptor for nitric oxide (NO) and catalyzes the formation of the second messen-
ger cGMP [59]. cGMP has several cellular functions, including the inhibition of
platelet aggregation, thereby representing an important feature of thrombus forma-
tion in MI, and smooth muscle cell relaxation [59]. Further evidence point to a
critical involvement of the NO-sGC-cGMP pathway in mediating CAD and MI
risk [59].

Transfection of the GUCY1A3 mutation into human embryonic kidney cells as
well as downregulation of CCT7 by siRNA were preformed to elucidate the func-
tional implications of these variants. These experimental approaches led to a strong
reduction of soluble guanylyl cyclase (x1-sGC) al levels [12]. Using platelets
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extracted from family members carrying either single GUCY1A3 or CCT7
mutations, a double mutation, or none of the rare alleles, al-sGC levels and
NO-dependent cGMP generation were investigated. Carriers of the digenic mutation
exhibited a significant reduction of al-sGC levels and cGMP formation. Subse-
quently, GucylA3-deficient mice showed an increased thrombus formation,
indicating an increased risk of MI via dysfunctional nitric oxide signaling in rare
allele carrying family members.

Further functional evidence that the variants in the risk locus affect GUCY1A3
gene expression was provided by [59]. Using human samples and cell lines, the SNP
1s7692387, located in a DNasel hypersensitive site, was identified as being involved
in the regulation of GUCY1A3 gene expression. The GUCY1A3 risk variant
rs7692387 seems to act by a modulation of the binding site for a transcription factor,
ZEBI1, thereby directly affecting the expression of the target gene.

As a consequence of impaired GUCY1A3 expression, homozygous risk allele
carriers exhibited decreased inhibitory effects of sGC stimulation on cell migration,
the production of cGMP was inhibited, and platelet aggregation after exposure to an
NO donor was impaired. In agreement with these human data, lower Gucyla3
expression correlated with more aortic atherosclerosis in mice. By the integration
of a series of data derived from experimental settings, human clinical data, and bio
specimens, a novel link between impaired soluble-guanylyl-cyclase-dependent nitric
oxide signaling and MI risk was identified, possibly providing a new therapeutic
target for reducing the risk of MI [12].

11.3.2 Systems Medicine Approaches to Reveal Novel
Cardiovascular Biomarkers

11.3.2.1 Blood Pressure

Huan et al. [60, 61] conducted a multilevel integration analysis on one of the major
cardiovascular risk factors, blood pressure (BP), to identify novel candidate genes
involved in BP regulation. Computationally, the authors combined multilevel
datasets including genetic, transcriptomic, and phenotype data. Several genes were
identified in relation to BP, which jointly explain 5-9% of BP variation. To further
seek for molecular key drivers of BP regulation, co-expression sub-networks that
were jointly connected by the SH2B adaptor protein 3 (SH2B3) were identified
[58, 61]. In order to elucidate the molecular role of SH2B3 and the relation to
hypertension, Sh2b3—/— mice were investigated in response to low-dose angioten-
sin II treatment [62]. In untreated Sh2b3—/— mice, kidneys and aortas showed
greater levels of inflammation, oxidative stress, and glomerular injury. These effects
were accelerated after angiotensin II infusion. A strong indication that the predomi-
nant effect of SH2B3 on BP is mediated by hematopoietic cells was shown by
experiments of bone marrow transplantations of SH2b3—/— into wild-type which
reproduced the hypertensive phenotype. Subsequent studies identified the genes of
the BP co-expression networks [58, 63] including CRIP1 (cysteine-rich protein 1).
These studies further elucidated that CRIP1 transcript expression additionally
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correlated to measures of cardiac hypertrophy and identified circulating CRIP1
protein levels as a potential biomarker for increased risk for incident stroke, a sequel
of high BP [63].

11.3.2.2 Microbiome

During the last years, the gut microbiome has attracted increasing attention in many
medical fields and emerged as a central factor affecting human health and disease
[64] and has been linked to cardiovascular disease. In a metagenome-wide associa-
tion study, a cross-disease cohort integrative analysis was performed, including data
from subjects affected by atherosclerotic disease, cardiometabolic diseases, obesity,
type 2 diabetes, liver cirrhosis, or the autoimmune disease rheumatoid arthritis [65].

Compared to the healthy controls, the gut microbiome of atherosclerotic disease
patients was significantly different in multivariate analyses and showed separation in
principle component and distance-based redundancy analyses, which was supported
by the relative reduction in the genera Bacteroides and Prevotella, and an enrichment
in Streptococcus and Escherichia in atherosclerotic disease patients. Co-abundance
network of metagenomically (genetically) linked groups confirmed the major com-
positional differences in individuals with and without atherosclerotic disease.

To explore the diagnostic value of the gut microbiome composition in relation to
atherosclerotic disease, random forest classifiers including several different
metagenomics linked groups and KEGG (The Kyoto Encyclopedia of Genes and
Genomes) functional modules were selected to construct a mathematical model that
predicts clinical indices. A discriminatory ability to distinguish between individuals
with and without atherosclerotic disease with an area under the receiver operating
curve of 0.86 was observed, demonstrating the presence of atherosclerotic disease-
associated features in the gut microbiome that may be further developed into
non-invasive and inexpensive biomarkers [65]. Insights into the potential possible
changes within the gut microbiome in the disease state were provided by KEGG
pathway analyses, showing—among others—a higher potential for sugar and amino
acid transport, a lower potential for vitamin synthesis altered potential for homocys-
teine and tetrahydrofolate metabolism, and an enrichment in virulence factors.

As medication can influence the gut microbiome, subsequent analyses were
performed and random-forest classifiers for distinguishing between atherosclerotic
disease patients treated with and without medication. Overall, the results propose
that although drug treatment may affect the composition of the gut microbiota and
thus constitute a confounding factor, medication weakened the disease signal,
meaning an even more significant difference would be expected in a cohort free of
medication [65].

These results were extended to other related diseases such as obesity, type
2 diabetes, liver cirrhosis, and rheumatoid arthritis, and multi-disease microbiome-
based classifiers were extracted from these additional microbiome datasets. The
results showed that the gut microbiome of each disease exhibited unique features
in functional capacity, in species, and gene compositions.

By using human bio specimens, clinical data and bioinformatical approaches, this
study implicates a role of the gut microbiome in heart disease. The data represent a
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comprehensive resource for further investigations on the role of the gut microbiome
in promoting or preventing cardiovascular disease as well as other related diseases.

There is a considerable power of using the microbiome to separate diseased
subjects from healthy subjects as well as to predict responses to treatment or the
development of diseases in the absence of treatment [66]. To further guide the utility
of the microbiome for robust clinical use, data must be validated in larger and more
diverse populations, and methodologies must be standardized across different
laboratories [66].

11.4 Challenges in Systems Medicine

Systems medicine aims to explore medicine beyond linear relationships and single
parameters and includes multiple parameters and spatial conditions to achieve a
holistic perspective [67].

Over the last years, emerging and interdisciplinary approaches with extensive
tools, novel analytical methods and strategies have rapidly been developed.

Promises are made that systems medicine will lead to an innovation in diagnosis
and prognosis of cardiovascular diseases and a better understanding of disease
mechanisms and pathology and thereby improved therapeutic options.

Nevertheless, at the current state, the adaptation of systems medicine into medical
research and, in the long run, into “real-world” clinical practice is a complex
endeavor and researchers are facing multiple challenges (Fig. 11.3).

Here, we will discuss the main challenges that arise from working with large
amounts of data and from working in an interdisciplinary team.
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11.4.1 Big Data: Harmonization of Data/Methods/Formats

With the advent of high-throughput technologies, massive data sets are generated
that need to be handled, processed, harmonized, and shared [68].

For instance, with the falling sequencing costs, soaring accuracy, and a steadily
expanding base of scientific knowledge a vast amount of data, perhaps in the range
of petabytes, is generated each year [69]. Thus, some researchers worry that the flood
of data could overwhelm the computational pipelines needed for analysis and
generate unprecedented demand for storage [69].

Therefore, new infrastructures and information technology systems need to be
developed and implemented into the research facilities and clinics. In particular,
clinical routine will require different levels of granularity of the information—
ranging from a short overview of the patient record in the clinical information
system up to an in-depth discussion of potential therapies [70] or to an inclusion
for electronic decision support systems [71, 72]. Subsequently, standardization of
conditions for collection and storage of molecular and individual data as well as the
respective metadata need to be established.

The benefits of harmonizing and pooling research databases will be enormous.
Although over the past half-decade both governments and researchers emphasized
the importance of harmonizing data as well as collaborative usage of data and
samples, the integration and harmonization of different data sets, especially high-
throughput data, will continue to be a major challenge [73, 74]. This situation is
exacerbated by ethical, legal, and civil rights with regard to the sharing or aggrega-
tion of data at an individual level. New database management systems are at the
forefront of providing solutions to some of these issues [75]. The idea is that these
tools can link different distributed databases with the aim to ensure a secure and
effective data analysis. This endeavor can be supported through an interactive and
strong collaboration of the different project partners and also through a clear and
defined annotation of the diverse data. In this context, BioSHarre (biobank
standardization and harmonization for research excellence in the European Union)
is a project of the Seventh Framework Program (FP7) and aims to develop tools for
data harmonization and standardized IT systems for existing biobanks and cohorts
across Europe and apply them to conduct pan-European epidemiological research
[76] (https://www.bioshare.eu/).

In spite of this, it is important that the different data sets are stored right from the
start with the correct annotation and format in the database. This can only be
implemented if the consensus on data formats and data annotation and also metadata
information is clearly defined. Such data standards have first started with MIAME
(minimum information about a microarray experiment) [77] and have found their
way into Omics databases like Gene Expression omnibus or Array Express and
recently with the Sequence Read Archive. Sequence data on humans from whole
exome/whole genome data add an additional layer of controlled access due to ethical
reasons. Such databases are the European Genome-Phenome Archive (EGA) [78]
the NCBI (NCBI, National Center for Biotechnology Information; https://www.
ncbi.nlm.nih.gov/) where the information is usually stored.
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11.4.2 Data Exchange, Data Safety, and Ethical Aspects

Worldwide, large discussions are currently ongoing regarding the privacy and
ownership of data and sharing of data and bio specimens. Traditional models of
consent became impractical as more and more large numbers of individuals are
included in cohort studies and a much larger amount of data is generated from one
individual (e.g., by genome-wide microarray or sequencing approaches). Further-
more, due to the interdisciplinary setting, these large data sets and bio specimens
might be shared with internal as well as external partners. Therefore, newer consent
strategies include the use of broad or open consent [79] to cover the multilevel
assessment of personal, clinical, and biological data as well as the storage and use of
data and bio specimens in biobanks [80].

Further issues need to be discussed when medical informatics tools, e.g., elec-
tronic decision support and medical informatics systems, might directly be integrated
and translated into clinical practice to support patient care [14, 81-83]. For example,
is it feasible that clinical decisions will be derived (only) from computer algorithms?
What about concerns related to privacy, data protection, and ownership of data?

11.4.3 Interdisciplinary Communication

Besides all the technical difficulties, an important challenge is the multidisciplinarity
that inevitably evolves with systems medicine. Different scientific and clinical
disciplines are involved in systems medicine, ranging from epidemiologists and
data managers to informaticians, bioinformaticians, statisticians, and life scientists,
and most importantly to clinicians. Even within one of these specific groups, several
experts (e.g., cardiologist, radiologist, experts in intensive care) are needed for
proper interpretation of the data and clinical situation.

A first step in working in an interdisciplinary team is to overcome problems of
communication. Each research area has its own language leading to difficulty of
understanding and working with each other [13]. However, the closer these
disciplines work together, understand, and learn from each other, the more success-
ful will be the progress in system medicine.

11.5 Conclusion and Perspectives
11.5.1 The Future of Systems Medicine in Cardiovascular Research
Systems medicine emerged as a powerful tool to study complex diseases by the

integration of multidimensional datasets [47]. In the near future, multidimensional,
large-scale data are generated, jointly analyzed with phenotypical and clinical
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characteristics, hypotheses are functionally examined in basic research models, and
findings are translated into epidemiological cohort studies to gain knowledge about
the cardiovascular clinical meaning. The expectations are high that the research
results will be translated into routine clinical practice.

For an efficient implementation of systems medicine in the cardiovascular field,
important cornerstones are: (1) a sustained interplay and communication between
experts of multiple disciplines, (2) an optimized usage of resources and
infrastructures to efficiently share data, biomaterial, and knowledge, and (3) the
extension of the research beyond traditional domains of discovery and disease
etiology to accelerate translation into the clinics [84].

In the cancer field, some of these cornerstones have already been implemented
such as the interdisciplinary tumor boards. Therein, the individual patient diagnoses
are discussed in order to identify therapeutic opportunities based on extended
molecular diagnostics in combination with genome, transcriptome, epigenome
sequencing followed by bioinformatics analysis. Such boards are characterized not
only by great interdisciplinarity, integrating various clinical research areas, such as
oncology, pathology, system biology/system medicine, but also by standardized
workflows for patient selection, sample preparation, analysis methods, and
reporting. For example, the Molecular Tumor Board of the German Cancer Consor-
tium (DKTK) MASTER program has set itself the task to clarify whether matching
treatments with individual molecular profiles lead to improved disease outcome
based on the clinical application of whole exome/whole genome and RNA sequenc-
ing. This program emphasizes that the main advantage of precision medicine is the
collection of characterized molecular data from large patient cohorts and its integra-
tion of genetic and clinical information of individual patients. Even if these data are
often incomplete, they can be reused for many important future medical questions
and research [85].

These kind of “boards” have not been established in the field of cardiovascular
disease so far. Certainly, the collection of cardiovascular samples for sequence
analysis is much more difficult compared to tumor samples, however, an interdisci-
plinary board of, e.g., cardiologists, pathologists, nephrologists, systems biologists,
bioinformaticians, or further clinical disciplines will tremendously increase the
molecular understanding of cardiovascular diseases and therefore will open up
new avenues in diagnosis, therapy, and prevention. An example of a proposed
cardiovascular board is provided in Fig. 11.4.

Given all the promises, opportunities, but also challenges of systems medicine,
the upcoming years will see that researchers of different disciplines are working
together to translate results from cardiovascular research into better health strategies
and the use of systems medicine as a transforming tool for cardiovascular research
(Fig. 11.5).
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Fig. 11.4 Proposed molecular-cardiovascular board. The interdisciplinary board discusses indi-
vidual patient diagnoses to identify therapeutic opportunities based on extended molecular
diagnostics to open new avenues for both research projects and clinical trials
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Fig. 11.5 Systems medicine as a transforming tool in cardiovascular disease. From traditional
approaches of single experiments and isolated analyses to large-scale, integrated systems-based
approaches to facilitate the translation of discoveries to clinical utility
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Abstract

In this chapter, we provide latest insights about sex differences in prevalent
cardiovascular diseases (CVD) in the general population. CVD is considered as
one of the most prevalent diseases and the leading cause of death in both men and
women. Sex-related factors have an important impact of the differences in the
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development, the presentation of symptoms, the awareness for the disease, and
the progression and management of CVD. Common CVDs in the general popu-
lation such as ischemic heart disease, atrial fibrillation, and heart failure demon-
strate the importance of sex-specific approaches that have an effect on clinical
outcomes. The relationship between sex-specific attributable risk factors and the
development of CVD often pass unnoticed. However, differences in classical risk
factor distribution can only partly explain observed sex differences. Genetics may
contribute to the understanding of sex differences in CVD. Existing and emerging
technologies take genetic examinations at increasingly high resolution at the
population level.

12.1 Introduction

When discussing the differences in the development of cardiovascular disease
(CVD) in women and men, two terms need to be defined: “sex” and “gender.” The
term “sex” summarizes the biological differences between men and women. This
sex-differentiation is characterized by the structure and function of the cardiovascu-
lar system. This includes chromosomes, sex organs, and hormonal contributions
among others [1]. Whereas the term “gender” summarizes psychosocial and behav-
ioral factors for women and men in the context of their cultural and societal role [2].

It is very likely that the combination of “sex” and “gender” have an impact on the
development, progression, and management of CVD and are both of importance
(Fig. 12.1) [3].
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Fig. 12.1 Interaction between sex and gender over a lifetime and their impact on CVD develop-
ment in the general population
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For both men and women, CVD is the leading cause of death worldwide. A
further increase of mortality due to CVD is observed at a global level [4]. According
to the recent report of the European Heart Network, CVD in women is responsible
for 2.1 million deaths (49% of all deaths), while CVD in men accounts for 1.8
million deaths (40% of all deaths) in the European population [5]. This divergence in
death rates can be partly explained by a higher risk of competing events, i.e., the risk
of men dying from other causes [6]. Men have earlier onset of CVD compared to
women [7]. Women lose fewer years of life due to CVD as they develop the disease
approximately 7 to 10 years later [8].

Despite these facts, CVD has often been stereotyped as a men’s disease.
Differences in risk factor profile, clinical presentation, and disease perception may
play a role here. For instance, women are considerably more likely than men to
present with atypical symptoms (e.g., fatigue, sleep disturbance, nausea, and abdom-
inal, neck, jaw, or shoulder pain) and absence of typical chest pain [9]. These
differences of clinical presentation therefore turn into behavioral differences
between men and women if they experience a CVD event. In the past, research
showed that the delay in seeking CVD treatment in women is significantly longer
than men. This time loss may worsen the outcome of the disease [10, 11].

The knowledge about sex differences between the female and male heart such
as the difference of physiological and pathophysiological conditions increasing
constantly. These differences can be found in all domains of cardiovascular health
and disease, including coronary disease, heart thythm, and heart failure. With regard
to the epidemiology, pathophysiology, presentation, and outcomes of CVD, one can
determine different clinical characteristics between the sexes [12]. Sex differences in
the cardiovascular system can be summarized by general differences with regard to
the following factors:

Cardiovascular system: sex-related characteristics in the prevalent general population

Physiology * Sympathetic activity in women is reduced.
* Parasympathetic activity in women is enhanced.
* Plasma concentrations of norepinephrine in women is
lower.

Anatomy * Women’s vs men’s anatomic dimensions on average (age
and race adjusted):
— Left ventricular mass: men > women,
— Ventricular wall thickness: men > women,
— Atrial and ventricular dimensions: men > women,
— Vessel size: men >women.
Cardiovascular function * Stroke volume in women is 10% less on average and thus
women have lower cardiac output.
* Higher pulse rate in women (3-5 beats/minute).
* Higher ejection fraction in women.

Electrocardiographic and * Women on average have a longer corrected QT interval and
electrophysiologic indices a shorter sinus node recovery time.

Electrocardiographic and * Drug-induced torsades de pointes is more common in
electrophysiologic indices women.

(continued)



384 D. Engler et al.

¢ Sudden cardiac death and atrial fibrillation are more
common in men.

Hormonal status * Estrogen and progesterone represents the most important
sex hormones in women; testosterone have a decisive
importance in men.

» The menstrual cycle can affect hematologic and
electrocardiographic indices.

Cardiovascular adaptive * In response to stress:
mechanisms — By increasing the pulse rate, women more strongly
regulate the cardiac output.
— Due to an increased vascular resistance, men develop an
increased blood pressure.
* Orthostatic hypotension and syncope is more related to
women.

Hematologic indices * Women have a lower hematocrit, due to a lower number of
circulating red blood cells per unit volume of plasma.
* Women have a reduced capacity for carrying oxygen due to
a lower of hemoglobin.
* The consumption of oxygen in women is lower.

Note: Modified with permission from Fink, S. W. Cardiovascular Disease in Women. In:
Richardson M, Chessman KH, Chant C, et al. (Eds.). Pharmacotherapy Self-Assessment Program,
seventh Edition. Book 1: Cardiology. Lenexa, Kansas City: American College of Clinical Phar-
macy, 2010; 182

Multiple variables such as the societal roles and behaviors, biological and physi-
ological characteristics, genes, epigenetics, gene expression, and hormonal status
may have sex-specific interactions that determine the pathogenesis and course of the
disease.

Over the last decades, research and clinical practice have improved in their focus
on sex differences in CVD. Although many of the basic mechanisms underlying sex
differences in CVD remain unknown, epidemiological data have clearly shown that
there are sex differences in the community. This overview provides insights into the
sex differences in risk factors and CVD distribution in the general population.

12.2 Sex and Cardiovascular Risk Factor
12.2.1 Risk Factors in General

Numerous large-scale epidemiological studies (e.g., Framingham Heart Study,
INTERHEART, etc.) showed that more than 90% of all cardiovascular events
could be attributed to a relatively small number of often modifiable risk factors.
These risk factors include: smoking, hypertension, dyslipidemia, diabetes, abdomi-
nal obesity, high-risk diet, psychosocial factors, lack of physical activity, and alcohol
abstinence compared to moderate consumption [13—15].
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In general, the association of these major risk factors with CVD do not differ
between the sexes in their direction but may have different magnitude and signifi-
cance. Also, there are significant sex interactions [6]. For instance, women with
diabetes have more than 40% higher risk of incident coronary heart disease (CHD)
than men with diabetes [12, 15]. Pregnancy-related hazards such as gestational
hypertension [16], as well as frequently occurring endocrine disorders, e.g., poly-
cystic ovary syndrome (PCOS) in women of reproductive age, are accompanied by
an increased risk of developing CVD in later life [17]. A recent Norwegian cohort
study that included over 15,000 pregnant women confirms the previous findings.
Women who experience hypertension in pregnancy have a twofold to threefold
higher risk of increased systolic blood pressure in the future. Furthermore, they
experience significantly higher body mass index and wider waist circumference
compared to women with normal blood pressure during pregnancy [16]. Over the
last decades, there have been mixed trends in CVD risk factors for both women and
men. On the one hand, there is a decrease in the prevalence of very high levels of
cholesterol; on the other hand, a dramatic increase in the prevalence of obesity,
particularly among women, has been observed. The proportion of women with high
blood pressure increased, whereas it decreased among men [18].

12.2.2 Blood Pressure and Hypertension

One in three adults worldwide have hypertension (hypertension as systolic pressure
greater than 140 mm Hg or diastolic blood pressure greater than 90 mm Hg) [19]. In
general, the differences between women and men the prevalence of the disease
seems to be equally distributed. A recent systematic analysis of population-based
studies from 90 countries showed an age-standardized prevalence of hypertension in
adults aged >20 years in 2010 was 31.9% in men and 30.1% in women [20]. In
younger age groups, the incidence rate of hypertension in men is higher than in
women (18-29 years: women = 1.3%; men = 8.3%) [21]. Men experience hyper-
tension more often and also have higher low density lipopotein (LDL) cholesterol
levels than similar aged women in premenopausal status [22]. In older age groups (>
65 years) the disease is more prevalent in women [23, 24].

In women, white coat hypertension appears to be more frequent. Men show a
higher proportion of masked hypertension [25]. The most common type of hyper-
tension in old women is isolated systolic hypertension. Women with hypertension
present with stiffer myocardium and vessels compared to men at old age. These
conditions may be a possible link to a higher prevalence of heart failure with
preserved ejection fraction (HFpEF) in women [26]. Potential sex differences in
the pathophysiology of hypertension have been highlighted. The regulation of
arterial pressure and renal function by the renin-angiotensin system (RAS) is notice-
ably different between the sexes [27]. The RAS regulates extracellular fluid homeo-
stasis through renal function and arterial pressure. Several studies show that
premenopausal women as compared to aged-matched men are more protected
from hypertension due to a differential balance in the RAS [28, 29]. Despite such
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differences in the pathophysiology of hypertension, there is no sex-specific approach
in the treatment of hypertension yet [26].

Based on the attributable risk of hypertension for myocardial infarction in the
INTERHEART study, normalization of blood pressure values can decrease the risk
of disease in both sexes. In men, the risk can be reduced by 15.7% compared to
women in whom a reduction by 25.4% could be calculated [30]. At the population
level, the awareness and knowledge of high blood pressure is limited. An ongoing
US national health and nutrition examination study, shows a low rate of awareness
with regard to hypertension treatment and control among both sexes [31]. It induces
the need to improve health education in both men and women. It remains to be
shown whether sex-specific strategies are needed for this purpose.

12.2.3 Diabetes Mellitus

The pathophysiological consequences of diabetes mellitus extend to all components
of the cardiovascular system: the microvasculature, the larger arteries, the heart, as
well as the kidneys [32]. Diabetes mellitus, type 1 and type 2, is an established risk
factor for CVD that harbors a significant increase in CVD mortality [32]. About 70%
of all deaths in patients with diabetes are related to CVD [33]. New estimates
indicate a total number of individuals with diabetes will rise from 6.4%, 285 million
adults, in 2010 to 7.7%, 439 million adults, by 2030 [34]. On a global scale, the
overall prevalence of diabetes is somewhat higher in men than in women. In
particular, age is an important factor of sex-specific difference in the prevalence of
diabetes. Whereas men have a higher prevalence of diabetes in the age group of
<60 years, women have a significantly higher number of the disease in the older age
group [35]. Consistent evidence exists that women with this condition experience a
greater relative risk for CVD events and CVD death compared to their male
counterparts [36]. Framingham Heart Study data showed a twofold increased risk
of CVD in men with diabetes and a more than 3.5-fold higher risk in women [37]. An
excess risk in women with diabetes has also been observed for heart failure, and
peripheral artery occlusive disease. Data of the INTERHEART study confirm that
diabetes was more strongly associated with a risk of myocardial infarction in women
with a relative risk of 4.26 versus 2.67 in men [38]. A recent meta-analysis of
prospective population-based studies also reported a 44% higher relative risk in
women compared to men [14]. More than 15% excess risk of fatal coronary heart
disease is also observed among women with type 1 diabetes compared to men [39].

12.2.4 Body Mass Index and Obesity

The development of CVD is associated with obesity and overweight. However, the
development of obesity and overweight differ between men and women due to the
manifestation of obesity-related conditions such as hyperlipidemia, insulin resis-
tance, and type 2 diabetes mellitus. For instance, weight gain occurs differently in
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men and women. Men generally have higher body weight than women, but the
proportion of fat is greater in women.

According to the data of the global burden of disease (GBD), the prevalence of
obesity (BMI >30 kg/m?) has more than doubled worldwide since 1980 and is now
5% in children and 12% in adults [40]. Two billion adults (>18 years) worldwide are
overweight whereof 39% men and 40% of women (>18 years) are overweight
(BMI > 25 kg/mz) and 11% of men and 15% of women were obese [40]. In the
western societies, the rates of overweight and obesity have dramatically increased in
the recent decades for both men and women [41]. Associations can be seen between
a high value of BMI in individuals and the gross domestic product (GDP) level of a
respective country. The prevalence of obesity in upper middle income counties
(24%) in both sexes is more than threefold higher compared to lower middle income
countries (7%). Several overlapping physiological systems and processes predict the
development of CVD related to overweight and obesity which includes sex
differences. In the Framingham Heart Study, obesity increased the relative risk of
coronary artery disease (CAD) by 64% in women as opposed to 46% in men [42].

12.2.5 Cholesterol

In general, there is no sex difference in the prevalence of elevated total cholesterol
worldwide [43]. Among adults, 37% men and 40% women present with elevated
cholesterol levels. On a global scale, the mean total cholesterol changed little
between 1980 and 2008, falling by less than 0.1 mmol/L per decade in men and
women [44]. The lipid profiles of young women tend to be more beneficial compared
to men. High-density lipoprotein cholesterol concentrations are higher on average
whereas low-density lipoprotein cholesterol is lower in women compared to men.
However, with age this advantage diminishes, in part due to hormonal changes after
the menopausal transition of women [45]. In a meta-analysis of 55,000 participants a
decrease in total cholesterol by 1 mmol/L was associated with about lower ischemic
heart disease mortality in both sexes in all age categories [46]. In contrast, a recent
meta-analysis of 97 cohort studies with over one million participants showed that
there is evidence of a small but significantly stronger effect in men (Cl = 95%;
RR = 1.24) compared to women (Cl = 95% CI; RR = 1.20) with raised cholesterol
to develop coronary heart disease [47]. A systematic work-up of potential
sex-specific effects of major lipids on cardiovascular risk is missing [6].

12.2.6 Smoking and Alcohol Intake

Smoking and alcohol intake are common in many populations. However, the
consumption characteristics vary considerably between sexes. On a global level,
the prevalence of smoking is much higher in men (48%) than it is in women (10%)
[48]. In general, women smoked fewer cigarettes than men and tended to start
smoking later in life. However, women and men who start smoking cigarettes
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nowadays smoke nearly the same number of cigarettes and take up smoking at the
same age. Multiple studies have shown a stronger association in women between
long-term smoking and the risk of developing CVD than in men [49-51]. A meta-
analysis by Huxley and Woodward which included about four million individuals
and at least 67,000 coronary heart disease events from 26 prospective trials found
that women had a 25% increased risk related to cigarette smoking compared with
men [39]. Both the change of smoking patterns in women over the last century and
the higher risk of CVD when smoking may therefore result in increasing numbers of
smoking-related CVD compared to men. Considering the population attributable
risk to develop ischemic heart disease, it seems to be possible that the prevalence of
ischemic heart disease will particularly increase in the future for this target
group [52].

The reasons for the differential associations of smoking may include sex
hormones. Combined use of contraceptives and smoking pose a significant risk of
ischemic heart disease [39, 51]. In a small cohort study of 346 women with PCOS,
including 98 smokers and 248 non-smokers, an increased level of fasting insulin,
free testosterone, and free androgen index was observed in women with PCOS who
smoke [53]. These increased levels may enhance insulin resistance that potentially
results in a cardiovascular health risk. Another possible association is shown due to
differential gender effect of smoking and arginine vasopressin (AVP) [54]. AVP has
a direct impact of the cardiovascular system [55]. A small study observed a higher
level of AVP in smoking in women that could contribute to negative effect on
cardiovascular health in women [55]. These hormones possibly lead to a higher risk
of CVD [54, 55]. However, it should be considered that these findings are only based
on limited data and need validation. Therefore, the current understanding of the
negative impact of smoking on CVD in females needs further investigation.

Besides smoking, alcohol intake is also a relevant risk factor for the development
of CVD for both men and women. Alcohol consumption in the population is
attributed to 3.3 million deaths per year and men have a higher mortality rate
attributed to alcohol (7.6%) compared to their female counterparts (4.0%). In
general, the intake of alcohol is described with a U-shape association. Both very
low or high alcohol consumption are negative for CVD health whereas moderate
alcohol consumption appears to be beneficial, except for atrial fibrillation for which a
linear relation has been shown consistently. Several studies demonstrated that
consuming moderate amounts of alcohol has been associated with reduced risk of
coronary heart disease, stroke, and congestive heart failure. There are speculations
on sex differences in alcohol intake and CVD risk. However, due to diverse study
results about general alcohol con