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Abstract In this note, we focus on the spectral analysis of large matrices coming
from isogeometric approximations based on B-splines of the eigenvalue problem

−(a(x)u′(x))′ = λb(x)u(x), x ∈ (0, 1),

where u(0) and u(1) are given. When considering the collocation case, global distri-
bution results for the eigenvalues are available in the literature, despite the nonsym-
metry of the related matrices. Here we complement such results by providing precise
estimates for the extremal eigenvalues and hence for the spectral conditioning of the
resulting matrices. In the Galerkin setting, the matrices are symmetric and positive
definite and a more complete analysis has been conducted in the literature. In the
latter case we furnish a further procedure that gives a highly accurate estimate of
all the eigenvalues, starting from the knowledge of the spectral distribution symbol.
The techniques involve dyadic decomposition arguments, tools from the theory of
generalized locally Toeplitz sequences, and basic extrapolation methods.

1 Introduction

In this note we consider the approximation of one-dimensional elliptic eigenvalue
problems by using an isogeometric either Galerkin or collocation technique with B-
splines [5]. We are interested in the eigenvalues of the large matrices stemming from
the considered approximation processes. In particular, we address the problem of
estimating the extremal eigenvalues and of providing efficient numerical procedures
for computing a good approximation of all the eigenvalues.
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In this direction, it has recently beenproven that the resulting sequence ofmatrices,
indexed with respect to the matrix size, have a canonical distribution (see [15, 17]
and references therein), by using the theory of Generalized Locally Toeplitz (GLT)
sequences [16].

We recall that every GLT sequence has an associated function, called the symbol,
and that the uniform sampling of the symbol provides an asymptotic approximation
of all the eigenvalues, if every matrix of the GLT sequence is Hermitian as it happens
in our setting. However, in general the approximation is quite poor and recently
some extrapolation techniques have been devised (see [9] and references therein). In
the constant coefficient setting, when considering the Galerkin approach, the results
presented in [10] are impressive in the sense that machine precision is obtained with
very low computational cost, while for the variable coefficients further improvements
are needed (see also [17]).

In the current note, when considering the Galerkin setting and variable coeffi-
cients, we propose a further numerical scheme for the computation of all the spectrum
of large matrices by using the numerical computation of the eigenvalues for small
matrices, underlying asymptotic expansions, and extrapolation methods as those in
[9]. The numerical results are of the same quality as those produced by the best
strategy in [17], especially when the problem coefficients are smooth and at least for
low frequencies, which are those of highest interest for understanding the nature of
the problem.

On the other hand, when dealing with the collocation approximation we obtain
large nonsymmetric matrices. However, the GLT machinery can be employed and
the symbol is real-valued and nonnegative [7], as in the symmetric positive definite
Galerkin setting [15]. Hence we expect that most of the eigenvalues are real or with
negligible imaginary part. Here we start the analysis of the collocation case, by
describing a technique based on dyadic decompositions, for estimating the extreme
eigenvalues and hence the asymptotic (spectral) conditioning of the involved matrix
sequences. The analysis contained in Theorem 1 and Corollary 1 confirms that the
conditioning grows at most as h−2, h being the fineness parameter, exactly as in the
case of the matrices obtained with the Galerkin approximation (see e.g [14]).

Finally, it is not clear if the delicate asymptotic expansions observed in [10, 17]
holds also in the collocation setting and indeed this issue will be the subject of future
investigations.

2 Preliminaries

In the following we present the notation that we use. In particular we give the def-
inition of eigenvalue distribution, that of rearrangement, and we briefly discuss the
informal meaning behind these definitions.

A matrix-sequence is any sequence of the form {Xn}n , where Xn is a square
matrix such that size(Xn) → ∞ as n → ∞. Let μd be the Lebesgue measure in Rd

and let Cc(C) be the space of continuous complex-valued functions with bounded
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support defined on C. If X is an m × m matrix, the eigenvalues of X are denoted
by λ1(X), . . . , λm(X). If g : D ⊂ R

d → C
s×s is an s × s matrix-valued function,

we say that g is measurable if its s2 components gi j : D → C, i, j = 1, . . . , s, are
measurable.

Definition 1 Let {Xn}n be a matrix-sequence, let Nn := size(Xn), and let g : D ⊂
R

d → C
s×s be a measurable s × s matrix-valued function defined on a set D with

0 < μd(D) < ∞. We say that {Xn}n has an (asymptotic) eigenvalue distribution
described by g, and we write {Xn}n ∼λ g, if

lim
n→∞

1

Nn

Nn∑

i=1

F(λi (Xn)) = 1

μd (D)

∫

D

∑s
i=1 F(λi (g(y1, . . . , yd )))

s
dy1 . . . dyd , ∀ F ∈ Cc(C),

where λi (g(y1, . . . , yd)), i = 1, . . . , s, are the eigenvalues of the s × s matrix
g(y1, . . . , yd).

The informal meaning behind the eigenvalue distribution {Xn}n ∼λ g is the fol-
lowing: for all sufficiently large n, the eigenvalues of Xn can be subdivided into s
different subsets of approximately the same cardinality; and the eigenvalues belong-
ing to the i th subset (except possibly for o(Nn) outliers) are approximated by the
samples of the i th eigenvalue functionλi (g(y1, . . . , yd)) over a uniformgrid in D (the
domain of g). For example, if d = 1, Nn = ns and D = [a, b], then the eigenvalues
of Xn are approximately equal to

λi

(
g
(
a + j

b − a

n

))
, j = 1, . . . , n, i = 1, . . . , s,

for n large enough. Likewise, if d = 2, Nn = n2s and D = [a1, b1] × [a2, b2], then
the eigenvalues of Xn are approximately equal to

λi

(
g
(
a1 + j1

b1 − a1
n

, a2 + j2
b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , s,

for n large enough.

Remark 1 (rearrangement) Let g : D ⊆ R
d → C

s×s and suppose that D is a rect-
angle inRd , say D := [a1, b1] × · · · × [ad , bd ]. We also assume that the eigenvalues
λ1(g(y1, . . . , yd)), . . . , λs(g(y1, . . . , yd)) are real for all (y1, . . . , yd) ∈ D. For each
positive integer r , let Gr be the uniform grid in D given by

Gr :=
{(

a1 + i1
r

(b1 − a1), . . . , ad + id
r

(bd − ad)
)

: i1, . . . , id = 1, . . . , r

}
.
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Compute the samples of the eigenvalue functions

λ1(g(y1, . . . , yd)), . . . , λs(g(y1, . . . , yd))

at the points (y1, . . . , yd) ∈ Gr , sort them in increasing order and put them in a
vector (q1, q2, . . . , qsrd ). Let ηr : [0, 1] → R be the piecewise linear non-decreasing
function that interpolates the samples (q0 := q1, q1, q2, . . . , qsrd ) over the nodes
(0, 1

srd ,
2
srd , . . . , 1), i.e.,

ηr

( �

srd

)
:= q�, � = 0, . . . , srd .

Under certain (normally satisfied) conditions on g, the function ηr converges (a.e.)
as r → ∞ to a non-decreasing function η : [0, 1] → R, which is referred to as the
rearranged version of g. What is important about η is that

∫

D

∑s
i=1 F(λi (g(y1, . . . , yd)))

s
dy1 . . . dyd =

∫ 1

0
F(η(t))dt, ∀F ∈ Cc(C).

Therefore, if we have {Xn}n ∼λ g, then we also have {Xn}n ∼λ η.

3 Isogeometric Galerkin Discretization of
Variable-Coefficient Eigenvalue Problems

Consider the following one-dimensional variable-coefficient eigenvalue problem:

{−(a(x)u′
j (x))

′ = λ j b(x)u j (x), x ∈ Ω,

u j (x) = 0, x ∈ ∂Ω,
(1)

where Ω is an open interval in R and a, b ∈ L1(Ω) are such that a, b > 0 a.e. on
Ω . The corresponding weak formulation reads as follows: find eigenvalues λ j ∈ R

+
and eigenfunctions u j ∈ H 1

0 (Ω), for j = 1, 2, . . . ,∞, such that, for all v ∈ H 1
0 (Ω),

a(u j , v) = λ j (b u j , v),

where

a(u j , v) :=
∫

Ω

a(x)u′
j (x)v

′(x)dx, (b u j , v) :=
∫

Ω

b(x)u j (x)v(x)dx .

In the isogeometric Galerkin method, we assume that the physical domain Ω

is described by a global geometry map G : [0, 1] → Ω , which is invertible and
satisfies G(∂([0, 1])) = ∂Ω . We fix a set of basis functions {ϕ1, . . . , ϕNn } defined
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on the reference (parametric) domain [0, 1] and vanishing on the boundary ∂([0, 1]).
We consider the basis functions

ψi (x) := ϕi (G
−1(x)) = ϕi (t), x = G(t), i = 1, . . . , Nn,

which are defined on the physical domainΩ , and we define the approximation space
Wn := span(ψ1, . . . , ψNn ) ⊂ H 1

0 (Ω). Finally, we find approximations to the exact
eigenpairs (λ j , u j ), j = 1, 2, . . . ,∞, by solving the following Galerkin problem:
find λ j,n ∈ R

+ and u j,n ∈ Wn , for j = 1, . . . , Nn , such that, for all vn ∈ Wn ,

a(u j,n, vn) = λ j,n(b u j,n, vn). (2)

Assuming that both the exact and numerical eigenvalues are arranged in non-
decreasing order, the pair (λ j,n, u j,n) is taken as an approximation of the pair (λ j , u j )

for all j = 1, . . . , Nn . The numbers λ j,n/λ j − 1, j = 1, . . . , Nn , are referred to as
the (relative) eigenvalue errors.

In view of the canonical identification of each function vn ∈ Wn with its coefficient
vector with respect to the basis {ϕ1, . . . , ϕNn }, solving the Galerkin problem (2) is
equivalent to solving the generalized eigenvalue problem

Kn(a,G)u j,n = λ j,nMn(b,G)u j,n, (3)

where u j,n is the coefficient vector of u j,n with respect to {ϕ1, . . . , ϕNn } and

Kn(a,G) := [a(ψ j , ψi )]Nn
i, j=1 =

[∫

Ω

a(x)ψ ′
j (x)ψ

′
i (x)dx

]Nn

i, j=1

=
[∫ 1

0

a(G(t))

|G ′(t)| ϕ′
j (t)ϕ

′
i (t)dt

]Nn

i, j=1

, (4)

Mn(b,G) := [(bψ j , ψi )]Nn
i, j=1 =

[∫

Ω

b(x)ψ j (x)ψi (x)dx

]Nn

i, j=1

=
[∫ 1

0
b(G(t))|G ′(t)|ϕ j (t)ϕi (t)dt

]Nn

i, j=1

. (5)

The matrices Kn(a,G) and Mn(b,G) are, respectively, the stiffness and mass matri-
ces. Due to our assumption that a, b > 0 a.e. on Ω , both Kn(a,G) and Mn(b,G)

are always symmetric positive definite, regardless of the chosen basis functions
ϕ1, . . . , ϕNn and the map G. Moreover, it is clear from (3) that the numerical eigen-
values λ j,n , j = 1, . . . , Nn , are just the eigenvalues of the matrix

Ln(a, b,G) := (Mn(b,G))−1Kn(a,G). (6)
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Therefore, if a, b ∈ L1(Ω) and the basis functions ϕ1, . . . , ϕNn are chosen as the B-
splines of degree p andglobal smoothnessCk definedon the interval [0, 1]partitioned
into n equal subintervals (see [17, Sect. 2.1]) and denoted by

B2,[p,k], . . . , Bn(p−k)+k,[p,k], (7)

then

Kn(a,G) =
[∫ 1

0

a(G(t))

|G ′(t)| B ′
j+1,[p,k](t)B

′
i+1,[p,k](t)dt

]n(p−k)+k−1

i, j=1

, (8)

Mn(b,G) =
[∫ 1

0
b(G(t))|G ′(t)|Bj+1,[p,k](t)Bi+1,[p,k](t)dt

]n(p−k)+k−1

i, j=1

. (9)

From the *-algebra structure of GLT sequences, as proven in [16, 17], we know that

{1
n

Kn(a,G)
}

n
∼λ κ[p,k], (10)

{
nMn(b,G)

}

n
∼λ ξ[p,k], (11)

{ 1

n2
Ln(a, b,G)

}

n
∼λ ζ[p,k], (12)

where, according to Remark 1, κ[p,k], ξ[p,k], ζ[p,k] are the rearranged versions of

a(G(t))

|G ′(t)| f[p,k](θ), b(G(t))|G ′(t)|h[p,k](θ),
a(G(t))

b(G(t))|G ′(t)|2 e[p,k](θ),

respectively, with

f[p,k](θ) := K[0]
[p,k] +

η−1∑

�=1

(
K[�]

[p,k]e
i�θ + (K[�]

[p,k])
Te−i�θ

)
, (13)

h[p,k](θ) := M[0]
[p,k] +

η−1∑

�=1

(
M[�]

[p,k]e
i�θ + (M[�]

[p,k])
Te−i�θ

)
, (14)

e[p,k](θ) := (h[p,k](θ))−1f[p,k](θ), (15)

where the blocks K[�]
[p,k] and M[�]

[p,k], of size p − k, are defined in [17]. The analytical
predictions of the eigenvalue errors are obtained through the following sampling
procedure:

λ j,n

λ j
− 1 ≈

n2ζ[p,k]
(

j
n(p−k)

)

λ j
− 1, j = 1, . . . ,m, (16)
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where m := min(n(p − k), n(p − k) + k − 1).
However, such a procedure is not completely satisfactory especially in low fre-

quencies (see [17]), when variable coefficients are considered. More precisely, we
recall that the smallest eigenvalues are those related to slowly oscillating modes,
that is the related eigenvectors belong to the subspace generated by low frequencies.
Since the eigenvalues of the continuous operator appear in the denominator in for-
mula (16), the relative error could be higher even if the absolute approximation is of
high precision.

We address this issue in the next section.
For notational completeness, we stress that in the following the geometrical map

G is always the identity and hence the matrices we consider are those denoted
as Ln(a, b) := Ln(a, b, I ) with Ln(a, b,G) as in (6); furthermore, the regular-
ity will be maximal that is k = p − 1 and hence ep(θ), f p(θ), h p(θ) will denote
e[p,p−1](θ), f[p,p−1](θ), h[p,p−1](θ), respectively.

4 Global Distribution Results and Extrapolation

As discussed in [17], the mismatch between the analytical predictions and the eigen-
value errors essentially occurs only for small eigenvalues and a way to significantly
reduce it has already been illustrated in that paper. Drawing inspiration from [1, 9,
10, 12, 13], we here describe—in the case of an isogeometric Galerkin discretiza-
tion based on B-splines of the eigenvalue problem (1)—an alternative interpolation–
extrapolation procedure to considerably improve the analytical predictions for small
eigenvalues. We also illustrate the performance of this procedure by two examples.

1. We assume that there exists a function cp : [0, π ] → R, depending only on p
and the coefficients a, b of the considered eigenvalue problem (1), such that,
when using an isogeometric p-degreeC p−1 B-spline discretization, the following
property holds: independently of the parameter n, all the eigenvalues of thematrix
1
n2 Ln(a, b), sorted in increasing order, satisfy

λ j,n

n2
≈ cp(θ j,n)ep(θ j,n), j = 1, . . . ,min(n + p − 2, n), (17)

where

ep = f p(θ)

h p(θ)
= (2 − 2 cos θ)h p−1(θ)

h p(θ)

= (2 − 2 cos θ)
(
φ[2p−1](p) + 2

∑p−1
�=1 φ[2p−1](p − �) cos(�θ)

)

φ[2p+1](p + 1) + 2
∑p

�=1 φ[2p+1](p + 1 − �) cos(�θ)
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is defined in [17], and

θ j,n = jπ

n
, j = 1, . . . , n.

2. Compute the eigenvalues of thematrix 1
n21

Ln1(a, b) corresponding to a small value
of n1, i.e.,

λ j1,n1

n21
, j1 = 1, . . . , n1 + p − 2.

Since n1 is small, this computation can be efficiently performed by any standard
eigensolver (e.g., the Matlab eig function).

3. Under the assumption in item 1,

cp(θ j1,n1) ≈ λ j1,n1

n21ep(θ j1,n1)
, j1 = 1, . . . ,min(n1 + p − 2, n1).

This means that we have an approximation of the unknown function cp over the
coarse uniform grid consisting of the points θ j1,n1 .

4. Interpolate the data

(
θ j1,n1 ,

λ j1,n1

n21ep(θ j1,n1)

)
, j1 = 1, . . . ,min(n1 + p − 2, n1),

by using, e.g., the Matlab interp1 function with the ‘spline’ option, so
as to obtain an approximation of cp over the whole interval [0, π ]. We call this
approximation c̃p. Note that, by construction,

c̃p(θ j1,n1) = λ j1,n1

n21ep(θ j1,n1)
, j1 = 1, . . . ,min(n1 + p − 2, n1).

5. Given a large n, compute approximations of the numerical eigenvalues λ j,n by
replacing cp with c̃p in (17):

λ j,n ≈ n2c̃p(θ j,n)ep(θ j,n), j = 1, . . . ,min(n + p − 2, n).

6. Compute analytical predictions for the eigenvalue errors as follows:

λ j,n

λ j
− 1 ≈ n2c̃p(θ j,n)ep(θ j,n)

λ j
− 1, j = 1, . . . ,min(n + p − 2, n).

The next two examples show that the interpolation–extrapolation algorithm defined
by items 1–6 may lead to analytical predictions of the eigenvalue errors which per-
form better (for small eigenvalues) than the analytical predictions proposed in (16).
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Table 1 Example 1 [Linear C0 B-spline discretization with a(x) = 2 + 0.5 x and b(x) = 1]: The
five smallest eigenvalues and eigenvalue approximations, scaled by 102, for n = 200, n′ = 1500,
p′ = 5, and r = 10000

p λ j,n′ λ j,n n2ζr
(

j
n

)
n2c̃1(θ j,n)e1(θ j,n)

1 0.221308917999822 0.221313437064828 0.225759339802366 0.221202202766985

0.885445782386009 0.885517680038136 0.894411370606914 0.884899608283264

1.992343949797817 1.992707562710680 2.006135775082463 1.991307942612523

3.542008222229894 3.543157060383101 3.560895188355945 3.540749097918976

5.534445409962895 5.537249919330117 5.559588944750918 5.533651310530473

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
analytical predictions
eigenvalue errors

Fig. 1 Example 1 [LinearC0 B-spline discretizationwith a(x) = 2 + 0.5 x and b(x) = 1]: analyti-
cal predictions n2ζr (

j
n )/λ j,n′ − 1 and eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn

(Nn = n − 1, n = 200, n′ = 1500, p′ = 5, r = 10000)

Example 1 Let p = 1, n = 200, a(x) = 2 + 0.5 x and b(x) = 1. Let n′ = 1500 �
n, p′ = 5, and take the first n − 1 eigenvalues of Ln′(a, b), namely λ1,n′ , . . . , λn−1,n′ ,
as approximations of the unknown exact eigenvalues λ1, . . . , λn−1. In Table1 we
report the five smallest eigenvalues and approximated eigenvalues for p = 1. As is

clear the new approximation, n2c̃1(θ j,n)e1(θ j,n), performs better than n2ζr
(

j
n

)
to

approximate λ j,n , where the function ζr introduced in [17, Sect. 3.1] is defined in
the following way. Sample a(x)

b(x)e1(θ) at the grid points (x, θ) ∈ Gr , for a chosen r ,
where

Gr =
{(

i

r
,
jπ

r

)
: i, j = 1, . . . , r

}
.

The samples are ordered in increasing order in a vector (z1, z2, . . . , zr2). Let ζr :
[0, 1] → Rbe a piecewise linear non-decreasing function that interpolate the samples
(z0 := z1, z2, . . . , zr2) over the nodes (0, 1

r2 ,
2
r2 , . . . , 1).

In Fig. 1 we present the (approximate) analytical predictions n2ζr (
j
n )/λ j,n′ − 1,

with r = 10000, together with the (approximate) eigenvalue errors λ j,n/λ j,n′ − 1.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 analytical predictions
eigenvalue errors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2 Example 1 [Linear C0 B-spline discretization with a(x) = 2 + 0.5 x and b(x) = 1]: ana-
lytical predictions n2c̃1(θ j,n)e1(θ j,n)/λ j,n′ − 1 and eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn ,
j = 1, . . . , Nn (Nn = n − 1, n = 200, n′ = 1500, p′ = 5, n1 = 10)

Table 2 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: The five smallest eigenvalues and eigenvalue approximations,
scaled by 107, for n = 200, n′ = 1500, p′ = 5, and r = 10000

p λ j,n′ λ j,n n2ζr,[p,p−1]
(

j
n

)
n2c̃p(θ j,n)ep(θ j,n)

2 0.320242073856735 0.320242073906214 0.326994616633570 0.319596822473787

1.281965164064426 1.281965165832994 1.295209495587940 1.278576943997320

2.884839278092422 2.884839298406320 2.904497248558355 2.877209798346387

5.128863345308352 5.128863459872621 5.154973083201467 5.115745284850879

8.014037230782240 8.014037668616439 8.046649299586466 7.994414445665448

3 0.320242073856735 0.320242073878847 0.326994616613888 0.319613348810547

1.281965164064426 1.281965164062972 1.295209493290653 1.278636625771722

2.884839278092422 2.884839278083705 2.904497230696836 2.877330529920427

5.128863345308352 5.128863345316139 5.154972936807892 5.115937346593204

8.014037230782240 8.014037230847546 8.046648648420712 7.994681508249463

4 0.320242073856735 0.320242073879743 0.326994616613781 0.319603273140503

1.281965164064426 1.281965164063456 1.295209493290564 1.278600044346683

2.884839278092422 2.884839278081923 2.904497230695864 2.877256125504316

5.128863345308352 5.128863345304529 5.154972936792049 5.115818311034016

8.014037230782240 8.014037230780470 8.046648648302227 7.994514965707993

5 0.320242073856735 0.320242073879344 0.326994616614055 0.319620210926112

1.281965164064426 1.281965164062812 1.295209493290633 1.278661525969442

2.884839278092422 2.884839278081491 2.904497230695859 2.877381146957867

5.128863345308352 5.128863345303335 5.154972936792168 5.116018280099667

8.014037230782240 8.014037230779344 8.046648648302266 7.994794677407651
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Fig. 3 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: analytical predictions n2ζr,[p,p−1]( j

n )/λ j,n′ − 1 and eigen-
value errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn (Nn = n + p − 2, n = 200, n′ = 1500,
p′ = 5, r = 10000)
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Fig. 4 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: analytical predictions n2c̃p(θ j,n)ep(θ j,n)/λ j,n′ − 1 and
eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn (Nn = n + p − 2, n = 200, n′ =
1500, p′ = 5, n1 = 10)



Eigenvalue Isogeometric Approximations Based on B-Splines … 69

We note the mismatch for the smallest eigenvalues. In Fig. 2 we plot the (approx-
imate) analytical predictions n2c̃1(θ j,n)e1(θ j,n)/λ j,n′ − 1, obtained from the above
interpolation–extrapolation algorithm for n1 = 10, and the (approximate) eigenvalue
errors λ j,n/λ j,n′ − 1 versus j/(n − 1), for j = 1, . . . , n − 1. We clearly see that in
Fig. 2 the slight mismatch for small eigenvalues observed Fig. 1 has been reduced.

Example 2 Let p = 2, 3, 4, 5, n = 200, a(x) = 2.1 · 109 + 1.05 · 109 x and b(x) =
8000. The approximation parameters n′ and n1 have been chosen as n′ = 1500 and
n1 = 10, respectively, and the eigenvalues λ j,n′ have been chosen correspondingly,
in the sense that λ j,n′ is computed as follows: we compute the eigenvalues λ j,n′ for a
matrixLn′(a, b) of order n′ = 1500 andB-spline degree p′ = 5. Thenwe assume that
the first n + p − 2 (for n = 200) of these eigenvalues, that is j = 1, . . . , n + p − 2,
are accurate representations of the true eigenvalues λ j ; see [17] for a motivation and
a discussion on this matter.

In Table2 we present the five smallest eigenvalues and approximated eigenval-
ues for p = 2, 3, 4, 5. As is clear the new approximation, n2c̃p(θ j,n)ep(θ j,n), per-

forms better thann2ζr,[p,p−1]
(

j
n

)
to approximateλ j,n . Figure3 shows the comparison

between the (approximate) analytical predictions

n2ζr,[p,p−1]
(

j
n

)

λ j,n′
− 1, j = 1, . . . , n,

and the (approximate) eigenvalue errors

λ j,n

λ j,n′
− 1, j = 1, . . . , n + p − 2,

whereas Fig. 4 shows the comparison between the (approximate) analytical predic-
tions

n2c̃p(θ j,n)ep(θ j,n)

λ j,n′
− 1, j = 1, . . . , n,

with the (approximate) eigenvalue errors. We see from Fig. 4 that the mismatch for
small eigenvalues observed in Fig. 3 has been lowered.

5 Dyadic Decomposition Argument and Extreme
Eigenvalues

While the distribution results are available both in the Galerkin [15] and in the collo-
cation setting [7], the use of extrapolationmethods, as those described in the previous
section and in [10, 11], has been developed only in the Galerkin setting. The reason is
the inherent nonsymmetry of the collocation matrices. However, this issue has to be
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investigated in the future, even if few preliminary experiments seem quite promising.
In this section, we start by analyzing the extreme eigenvalues of the (nonsymmetric)
stiffness matrices in the collocation setting. We use a dyadic decomposition argu-
ment already employed for symmetric structures in several contexts (see [3, 20] and
references therein).

Consider the one-dimensional Poisson problem

{
−u′′(x) = f(x), x ∈ (0, 1),

u(x) = 0, x ∈ {0, 1}, (18)

where f ∈ C([0, 1]). Suppose we approximate (18) by using the isogeometric col-
location method based on uniform B-splines (see [7, Sect. 4] for the details on this
method). Then, the resulting discretization matrix is

n2K̃[p]
n := [−N ′′

j,[p](ξi,[p])
]n+p−1

i, j=2
, (19)

where ξi,[p], i = 2, . . . , n + p − 1, are theGreville abscissae defined in [7,Eq. (4.6)],
while N j,[p], j = 2, . . . , n + p − 1, are the usual B-spline basis functions of max-
imal regularity k = p − 1. In other words, with reference to (7), we have

N j,[p] = Bj,[p,p−1], j = 2, . . . , n + p − 1.

We denote by �(K̃[p]
n ) the real part of K̃[p]

n (the real part of a square complex matrix
X [4] is by definition (X + XH)/2, XH being the transpose conjugate). In Theorem 1
we prove for p = 3 the following result:

∃ cp > 0 : �(K̃[p]
n ) ≥ cp τn+p−2(2 − 2 cos θ), ∀n ≥ 2, (20)

where

�(K̃[3]
n ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 4

3 − 1
6

− 4
3

5
2 −1

− 1
6 −1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1 − 1
6

−1 5
2 − 4

3

− 1
6 − 4

3
11
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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τn+1(2 − 2 cos θ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . .
. . .

. . .
. . . −1
−1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 1 There exists a constant c3 > 0 such that

�(K̃[3]
n ) ≥ c3 τn+1(2 − 2 cos θ), ∀n ≥ 2.

Proof For n = 2, . . . , 5, a direct verification shows that �(K̃[3]
n ) is positive definite.

Therefore, the theorem is proved if there exists a constant c > 0 such that

�(K̃[3]
n ) ≥ c τn+1(2 − 2 cos θ), ∀n ≥ 6. (21)

For n ≥ 6 and c > 0, the matrix�(K̃[3]
n ) − c τn+1(2 − 2 cos θ) is explicitly given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 2c − 4

3 + c − 1
6

− 4
3 + c 5

2 − 2c −1 + c

− 1
6 −1 + c 2 − 2c −1 + c

−1 + c 2 − 2c −1 + c

. . .
. . .

. . .

−1 + c 2 − 2c −1 + c

−1 + c 2 − 2c −1 + c − 1
6

−1 + c 5
2 − 2c − 4

3 + c

− 1
6 − 4

3 + c 11
2 − 2c

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and can be decomposed as follows:

r − 4
3 + c

− 4
3 + c s

1

2

+
11
2 − 2c − r 0 − 1

6
0 0 0

− 1
6 0 t

1

3

+ 5
2 − 2c − s −1 + c
−1 + c 1 − c − t

2

3

+

1 − c −1 + c
−1 + c 2 − 2c −1 + c

. . .
. . .

. . .

−1 + c 2 − 2c −1 + c
−1 + c 1 − c

3

n−1
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+ 1 − c − t −1 + c
−1 + c 5

2 − 2c − s

n−1

n

+
t 0 − 1

6
0 0 0

− 1
6 0 11

2 − 2c − r

n−1

n+1

+ s − 4
3 + c

− 4
3 + c r

n

n+1

.

In the above decomposition, r , s, and t are arbitrary real numbers, whereas each term
of the summation is a (n + 1) × (n + 1)matrixwhose only nonzero entries are shown
in the associated box and are contained in the principal submatrix corresponding to
the rows from the superscript to the subscript. For instance,

11
2 − 2c − r 0 − 1

6

0 0 0
− 1

6 0 t

1

3

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 2c − r 0 − 1

6 0 · · · 0
0 0 0

...
...

− 1
6 0 t

...
...

0 . . . . . . 0
...

...
...

0 . . . . . . . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If each term of the above summation is a nonnegative definite matrix, then�(K̃[3]
n ) −

c τn+1(2 − 2 cos θ) is nonnegative definite as well. The following conditions ensure
that each term of the summation is nonnegative definite:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r > 0, s > 0, rs ≥ ( 43 − c
)2

,
11
2 − 2c − r > 0, t > 0,

(
11
2 − 2c − r

)
t ≥ 1

36 ,

5
2 − 2c − s > 0, 1 − c − t > 0,

( 52 − 2c − s)(1 − c − t) ≥ (1 − c)2,

c ≤ 1.

These conditions are satisfied, for instance, with

c = 58

59
, s = 1

2
, r =

(
4
3 − c

)2

s
, t =

1
36

11
2 − 2c − r

.

Hence, (21) holds with c = 58/59. ��
We verified that the dyadic decomposition argument used in the proof of Theorem 1
can also be used to prove (20) for p = 2, 4. Although this argument becomes quite
difficult to apply for p ≥ 5, we have reason to believe that a careful application of it
could prove (20) for any given p ≥ 2.

The above theorem and the relations in (20) have interesting consequences on the
conditioning measured with respect to the induced Euclidean norm as reported in
Corollary 1, whose proof requires a technical but interesting in itself lemma.
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Lemma 1 Given X square matrix, assuming �(X) positive definite, we have

λmin(�(X)) ≤ σmin(X).

Proof As a first step define the following matrix X̂ of order 2n

X̂ =
[
0 X
XH 0

]
.

By taking into account the standard singular value decomposition, it is easy to see
(and it is well-known) that the singular values σ j (X) of X , j = 1, . . . , n, coincide
with the n largest eigenvalues of X̂ , since the eigenvalues of the Hermitian matrix X̂
are ±σ j (X), j = 1, . . . , n. Therefore, we infer that

σmin(X) = λn+1(X̂),

with λ1(X̂) ≤ λ2(X̂) ≤ · · · ≤ λ2n(X̂). From the minimax characterization (see [4])
of the (n + 1)-th eigenvalue of X̂ , we obtain

σmin(X) = max
dim(U )=n

min
u∈U

uH X̂u

uHu
, (22)

where the maximum is taken over all subspaces U with codimension n in C
2n or,

equivalently, over all subspaces U of dimension n. Let U∗ be the n-dimensional
subspace of C2n made of all vectors y of the form

y =
(
u
u

)
, u ∈ C

n, u =

⎛

⎜⎜⎜⎝

u1
u2
...

un.

⎞

⎟⎟⎟⎠ .

If y ∈ U∗ is partitioned into blocks as above, it holds

yH X̂ y

yHy
= uH�(X)u

uHu
, (23)

and since U∗ is a particular subspace of dimension n, from (22) the thesis
follows. ��
Corollary 1 Assume that (20) is satisfied for a given p. Then

μ2(�(K̃[p]
n )) ∼ n2, (24)

and
μ2(K̃[p]

n ) ≤ Cpn
2, (25)
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with Cp a positive constant depending only on p and μ(X) = ‖X‖‖X−1‖ being
the conditioning of an invertible matrix X measured with respect to the induced
Euclidean norm ‖ · ‖.
Proof First of all we observe that both �(K̃[p]

n ) and K̃[p]
n are banded matrices with

coefficients not depending on the parameter n. Hence we have that their induced
Euclidean norm is asymptotic to a a constant not depending on n that is

‖�(K̃[p]
n )‖ ∼ 1, (26)

‖K̃[p]
n ‖ ∼ 1. (27)

We first prove (24). By (20) we have

�(K̃[p]
n ) ≥ cp τn+p−2(2 − 2 cos θ), ∀n ≥ 2,

with cp > 0 and hence �(K̃[p]
n ) is positive definite and its minimal eigenvalue is

bounded from below by

cp4 sin
2

(
π

2(n + p − 1)

)
,

4 sin2
(

π
2(n+p−1)

)
being the minimal eigenvalue of τn+p−2(2 − 2 cos θ) (see [19] and

references therein). On the other hand, �(K̃[p]
n ) contains as a principal submatrix a

Toeplitz matrix of size proportional to n and generated by f p being nonnegative and
having a unique zero of order two (see [7, 14]). Hence such a Toeplitz matrix has the
minimal eigenvalue ln asymptotic to n−2 (see again [19] and references therein) and
by the Cauchy interlacing theorem the minimal eigenvalue of �(K̃[p]

n ) is bounded
from above by ln ∼ n−2. Therefore

λmin(�(K̃[p]
n )) ∼ n−2.

But �(K̃[p]
n ) is positive definite and hence

∥∥∥[�(K̃[p]
n )]−1

∥∥∥ = [λmin(�(K̃[p]
n ))]−1 ∼ n2,

from which, using (26), we deduce

μ2(�(K̃[p]
n )) ∼ n2.

We now prove (25). Given the known fact ‖X−1‖ = [σmin(X)]−1, statement (25)
is a consequence of (27), of (20), of Lemma 1, and of the fact that the minimal
eigenvalue of τn+p−2(2 − 2 cos θ) is
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sin2
(

π

2(n + p − 1)

)
∼ n−2.

��
Furthermore, we have reasons to conjecture that the spectral conditioning of the

collocation stiffness matrices grows asymptotically as n2, exactly as in the Galerkin
setting [14], since K̃[p]

n contains as a principal submatrix a Toeplitz matrix of size
proportional to n and generated by f p having a unique zero of order two (as�(K̃[p]

n ),
see the proof of Corollary 1).

We finally stress that (20) is also important in a multigrid context for proving the
optimality of the related two-grid and multigrid techniques (see [2, 6, 8, 19]), by
following the theory reported by Ruge and Stüben in [18].

6 Conclusions

In this note, we have considered the spectral analysis of large matrices coming from
the isogeometric approximations based on B-splines of the eigenvalue problem

−(a(x)u′(x))′ = λb(x)u(x), x ∈ (0, 1),

where u(0) and u(1) are given. In the collocation setting, we complemented global
eigenvalue distribution results, available in the literature [7], with precise estimates
for the extremal eigenvalues and hence for the spectral conditioning of the resulting
matrices. In the Galerkin setting, we have designed an efficient matrix-less procedure
(see [9]) that gives a highly accurate estimate of the all the eigenvalues, starting
from the knowledge of the spectral GLT distribution symbol. Possible extensions
include a more systematic treatment of the collocation case, both via the use of
dyadic decomposition arguments and via the use of proper matrix-less extrapolation
techniques. This last item is completely new and represents a real challenge, thus it
will be the subject of a future investigation.
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