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Preface

This book brings together nine contributions selected from among those presented at
the INdAMworkshop “DREAMS,”which was held in Rome (Italy) from January 22
to 26, 2018. This international workshop was the closing event of the “Futuro in
Ricerca” project entitled “Design of Reliable, Exact, and Application-oriented
technologies for geometric Modeling and numerical Simulation (DREAMS),”
funded by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR,
Italy). The project was organized in two research units, located in Florence and
Rome, and coordinated by ourselves. We are very grateful for this support.

The DREAMS project focused on advanced computer aided geometric design
(CAGD) methods and related application areas. Its research plan explored the
identification of novel geometric representations suitable for automatic control and
numerical simulation. The following research topics were covered by the project:
algebraic-geometric structures in CAGD and related algorithms; adaptive splines
and splines on unstructured meshes in isogeometric analysis (IgA); and intercon-
nections between applied geometry, CAGD, approximation theory, linear algebra,
and IgA.

The INdAM workshop provided an opportunity for interaction among
researchers interested in CAGD and related application areas, particular attention
being paid to the topics of the DREAMS project. The scientific activities of the
DREAMS week promoted stimulating discussion and collaboration among the
participants.

The first contribution in the book, written by Alessandra Aimi, is entitled “An
Isogeometric Approach to Energetic BEM: Preliminary Results.” It presents an
isogeometric method for the solution of a space-time variational formulation of the
two-dimensional wave equation.

The second contribution, “Approximate Reconstructions of Perturbed Rational
Planar Cubics,” by Michal Bizzarri, Miroslav Lávička, and Jan Vršek, addresses the
problem of approximating a non-rational planar cubic curve by a rational one,
employing hybrid (symbolic-numeric) computations.
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The contribution, “Quadrature Rules in the Isogeometric Galerkin Method: State
of the Art and an Introduction to Weighted Quadrature,” by Francesco Calabrò,
Gabriele Loli, Giancarlo Sangalli, and Mattia Tani, reviews some quadrature rules
used for efficient matrix assembly in isogeometric methods, with a special focus on
weighted quadrature.

In the contribution “Eigenvalue Isogeometric Approximations Based on
B-Splines: Tools and Results,” Sven-Erik Ekström and Stefano Serra-Capizzano
focus on the spectral analysis of discretization matrices resulting from the isoge-
ometric B-spline discretization of second-order differential equations.

The contribution, “Lofting with Patchwork B-Splines,” by Nora Engleitner and
Bert Jüttler, presents a new method to construct lofting surfaces, one of the fun-
damental operations for creating free-form surfaces in computer aided design, using
patchwork B-splines.

In the contribution “A Study on Spline Quasi-interpolation Based Quadrature
Rules for the Isogeometric Galerkin BEM,” Antonella Falini and Tadej Kanduč
discuss the use of quadrature rules based on quasi-interpolation schemes for weakly
singular integrals in the context of isogeometric boundary element methods.

The contribution, “New Developments in Theory, Algorithms, and Applications
for Pythagorean–Hodograph Curves,” by Rida T. Farouki, Carlotta Giannelli, and
Alessandra Sestini, provides a survey of the recent results in the field of
Pythagorean–hodograph curves and related topics.

The contribution, “Tchebycheffian B-Splines Revisited: An Introductory
Exposition,” by Tom Lyche, Carla Manni, and Hendrik Speleers, gives a refresh-
ing review on the construction of B-splines for smooth piecewise function spaces,
where the pieces are taken from extended Tchebycheff spaces, and their properties.

The last contribution, “Template Mapping Using Adaptive Splines and
Optimization of the Parameterization,” by Svajūnas Sajavičius, Bert Jüttler, and
Jaka Špeh, presents a method to construct an accurate spline map that transforms a
template domain into a target domain, by applying an iterative procedure based on
least-squares fitting.

We wish to thank all the speakers of the workshop, as well as all the participants,
for the interesting talks, the scientific discussions, and the pleasant atmosphere
during the week in Rome. This book would not have been possible without the
authors of the nine papers, who deserve our deepest gratitude for their interesting
contributions. Finally, we would like to thank INdAM for their support for the
workshop organization, which also included the nice facilities in Rome. Special
thanks are due to Mauro Petrucci, who was always available to help us with any
organizational issues and practical arrangements.

Florence, Italy Carlotta Giannelli
Rome, Italy Hendrik Speleers
April 2019
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An Isogeometric Approach to Energetic
BEM: Preliminary Results

Alessandra Aimi

Abstract The Energetic Boundary Element Method (BEM) is a discretization tech-
nique for the numerical solution of wave propagation problems, introduced in [2]
and applied in the last decade for the simulation of wave propagation inside bounded
domains or outside bounded obstacles, in several space dimensions. The differen-
tial initial-boundary value problem at hand is converted into a space-time Boundary
Integral Equation (BIE), which is then written in weak form through energy con-
siderations and discretized by a Galerkin approach. Taking into account the model
problem of 2D soft scattering by open arcs, the aim of this paper is to explore the
introduction of the powerful IgA approach, firstly introduced by Hughes and collab-
orators [18] in the context of Finite Element Methods, into Energetic BEM for what
concerns space discretization, in order to take the same benefits already observed in
IgA-SGBEM (Symmetric Galerkin BEM) applied to BIEs related to elliptic prob-
lems [8]. Numerical challenges to be faced for an efficient integration of weakly
singular kernels related to the fundamental solution of the wave operator will be
outlined and preliminary numerical results will be given and discussed.

1 Introduction

A variety of engineering and physical applications, such as the propagation or
the scattering of acoustic or elastic waves, leads to the problem of solving lin-
ear hyperbolic Partial Differential Equations (PDEs) in two or three dimensional
space. These problems are usually considered in an unbounded homogeneous domain
and advanced numerical techniques to solve them, such as Finite Element Methods
(FEMs) and Finite DifferenceMethods (FDMs), even if well established, suffer from
improper domain truncation and from the choice of boundary conditions to be suit-
ably imposed on the artificial boundary. A nowadays widely used method to tackle

A. Aimi (B)
Department of Mathematical, Physical and Computer Sciences, University of Parma,
Parma, Italy
e-mail: alessandra.aimi@unipr.it

© Springer Nature Switzerland AG 2019
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2 A. Aimi

this situation is to reformulate the PDE as a Boundary Integral Equation (BIE) on
the usually bounded boundary of the problem’s original domain; the BIE can then
be numerically solved by the Boundary Element Method (BEM) [12, 17]. In some
applications, the physically relevant data are given not by the solution in the interior of
the domain but rather by the boundary values of the solution or its derivatives. These
data can be obtained directly from the solution of BIEs, whereas it is well known
that boundary values obtained from FEM solutions are in general not so accurate.
Furthermore, since wave propagation phenomena are often observed in semi-infinite
media (domain) where Sommerfeld radiation condition holds, a suitable numerical
method has to ensure that this condition is not violated. For example, FEMs need
the application of special techniques to fulfill this condition that, on the contrary, is
implicitly fulfilled by BEM. Anyway, when a local non-linearity appears, a suitable
BEM-FEM coupling, when applicable, gives undoubted advantages.

For the numerical solution of wave propagation problems, one needs consistent
approximations and accurate simulations even on large time intervals. In principle,
both frequency-domain [14] and time-domain [10, 11] BEM can be used for hyper-
bolic initial-boundary value problems. Space-time BEM has the advantage that it
directly yields the unknown time-dependent quantities, thus avoiding the use of the
Laplace transform and its inversion. In the time-domain framework, the construction
of the BIEs, via representation formula in terms of single and double layer potentials,
uses the fundamental solution of the hyperbolic PDE and jump relations [16]. The
mathematical background of time-dependent BIEs is summarized by M. Costabel in
[15].

For the numerical solution of the wave equation inside bounded domains or out-
side bounded obstacles, the so-called space-time Energetic BEM has been recently
introduced in the literature, for problems defined in several space dimensions [2, 3,
6]. Energetic BEM comes from a Galerkin type discretization of a weak formulation
based on energy arguments, directly expressed in the space-time domain.

On the other side, the isogeometric approach applied to BEMs is an emerging
research area in different fields of applications (see e.g. [8, 9, 20, 22] for problems
modeled by elliptic PDEs). The Isogeometric Analysis (IgA) paradigm, introduced
by Hughes and collaborators in the seminal paper [18] in the context of FEMs, uses
the same B-spline or NURBS basis, as adopted in CAD systems, to describe both the
boundary of the domain and the approximate solution of the problem at hand, giving
surprising computational advantages. Since then, IgA has brought a renewed interest
in BEMs, because these methods need to work only on the boundary avoiding the
domain meshing and drastically reducing the number of Degrees of Freedom (DoF).

Taking into account the model problem of 2D soft scattering by open arcs, the
aim of this paper is to explore the introduction of the powerful B-spline based IgA
paradigm into Energetic BEM for what concerns space discretization, in order to
take the same benefits already observed in IgA-SGBEM (Symmetric Galerkin BEM)
applied to BIEs related to elliptic problems [8].

The paper is structured as follows. First, the differential model problem on an
unbounded 2D domain and its energetic boundary integral weak formulation are pre-
sented. Then, the consequent BEM discretization is illustrated, highlighting numeri-
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cal aspects of the quadrature of weakly singular space-time integrals. Finally, prelim-
inary numerical results will be given and discussed, showing the superiority of the
IgA approach versus the standard Energetic BEM; the latter based on the classical
local Lagrangian basis for the approximation of the problem solution.

2 Model Problem and Its Energetic Boundary Integral
Weak Formulation

Let us consider a Dirichlet 2D problem for the wave equation exterior to an open arc
Γ ⊂ R2, which models a soft scattering phenomenon:

[
Δu − 1

c2
utt

]
(x, t) = 0, x ∈ R2 \ Γ, t ∈ [0, T ], (1)

u(x, 0) = ut (x, 0) = 0, x ∈ R2 \ Γ, (2)

u(x, t) = g(x, t), x ∈ Γ, t ∈ [0, T ], (3)

where c is the propagation velocity of a perturbation inside the domain, T is the final
time instant of analysis and the boundary datum g(x, t) represents the time history
of the excitation field over Γ .

Since the above problem will be discretized using a boundary element technique,
it must be rewritten in a boundary integral form. This can be done using classical
arguments and the knowledge of the fundamental solution of the 2D wave operator.
The starting point is the single-layer representation of the solution of (1)–(3):

u(x, t) =
∫

Γ

∫ t

0
G(r, t − τ)ψ(y, τ ) dτ dγy, x ∈ R2 \ Γ, t ∈ (0, T ], (4)

where r := x − y, the unknown density ψ =
[

∂u

∂n

]
Γ

represents the time history of

the jump of the normal derivative of u along Γ and

G(x, t) = c

2π

H(c t − ‖x‖)√
c2t2 − ‖x‖2 (5)

is the forward fundamental solution of the 2Dwave operator, with H(·) the Heaviside
function and ‖ · ‖ the Euclidean norm.

From (4), it is clear that in order to recover the solution of the differential problem
at any point outside the obstacle and at any time instant, one has to proceed with a
post-processing phase, provided that the density function ψ(x, t) is known. To this
aim, performing a limit process for x tending to Γ in (4) and using the assigned
Dirichlet boundary condition (3), the weakly singular space-time BIE
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∫
Γ

∫ t

0
G(r, t − τ)ψ(y, τ ) dτ dγy = g(x, t), x ∈ Γ, t ∈ [0, T ], (6)

in the unknown ψ(x, t) can be obtained and written in the compact notation

Vψ = g . (7)

Problem (7) is then set in weak form. The so-called energetic weak formulation
of (7) can be deduced observing that, multiplying the PDE (1) by ut , integrating
over [0, T ] × (R2 \ Γ ) and using integration by parts in space, one obtains that the
energy of the solution u at the final time of analysis T , defined by

E(u, T ) := 1

2

∫
R2\Γ

[
‖∇xu(x, T )‖2 + 1

c2
u2t (x, T )

]
dγx, (8)

can be rewritten as

E(u, T ) =
∫
Γ

∫ T

0
ut (x, t)

[ ∂u

∂nx

]
Γ

(x, t) dt dγx =
∫
Γ

∫ T

0
(V ψ)t (x, t) ψ(x, t) dt dγx .

(9)
Hence, after projecting (7), derivedw.r.t. time, bymeans of test functionsφ belonging
to the same functional space of the unknown density ψ , the energetic weak problem
finally reads as follows: find ψ ∈ L2([0, T ]; H−1/2(Γ )) such that

∫
Γ

∫ T

0
(V ψ)t (x, t)φ(x, t) dt dγx =

∫
Γ

∫ T

0
gt (x, t)φ(x, t) dt dγx ,

∀φ ∈ L2([0, T ]; H−1/2(Γ )) . (10)

Remark 1 The theoretical analysis of the quadratic form coming from the left-hand
side of (10) was carried out in [6] where, under suitable assumptions, coercivity
was proved with some technicalities. This property allowed to deduce stability and
convergence of the related Galerkin approximate solution.

3 Energetic BEM Discretization

At the beginning of this section, the definition of the B-spline basis used in the IgA
approach is briefly recalled, while the definition of the local Lagrangian basis used
below to compare IgA versus standard Energetic BEM is not written, because it is
really basic.

Given a partitionΔ := {a = σ0 < · · · < σn = b} of an interval [a, b] ⊂ R, a gen-
eral polynomial spline spaceB of order k on such partition is composed by piecewise
polynomial functions of degree d = k − 1 which are required to have an assigned
regularityCk−1−mi at the breakpoints σi , i = 1, . . . , n − 1,withmi denoting an inte-
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ger between 1 and k.1 For examplewhen all themi are fixed equal to 1 or to k − 1 or to
k, respectively,B is a subset ofCk−2[a, b], it is included inC[a, b] or it is just a subset
of L2(a, b). It is quite easy to verify that the dimension of such space is dim(B) =
k + ∑n−1

i=1mi . The easiest way to define inB a B-spline basis Bi,k(t), i = 0, . . . , N ,

with N + 1 = dim(B), is based on the usage of a recursion formula and can be
described through two easy steps [13]. The first step consists in associating to
B an extended knot vector Z = {ζ0, . . . , ζN+k} whose elements constitute a non-
decreasing sequence of abscissas, where {ζk−1, . . . , ζN+1} are the internal knots
with ζk−1 = σ0, ζN+1 = σn and {ζk, . . . , ζN } = {σ1, . . . , σ1, . . . , σn−1, . . . , σn−1},
where each σi has mi occurrences and it is said multiple if mi > 1. The remain-
ing knots in Z , {ζ0, . . . , ζk−2} and {ζN+2, . . . , ζN+k}, form two sets of k − 1 knots
called auxiliary left and right knots which are only required to verify the follow-
ing inequalities, ζ0 ≤ · · · ≤ ζk−2 ≤ ζk−1 = a and b = ζN+1 ≤ ζN+2 ≤ · · · ≤ ζN+k .

Note that the standard assumption of selecting an open extended knot vector, that
is ζ0 = · · · = ζk−2 = ζk−1 = a and b = ζN+1 = ζN+2 = · · · = ζN+k ,will be always
considered in the numerical simulations. In the second step, the basis is defined by
using the following recursion [13]:

Bi,1(s) :=
{
1, if ζi ≤ s < ζi+1 ,

0, otherwise;

Bi, j (s) := ωi, j (s) Bi, j−1(s) + ( 1 − ωi+1, j (s) ) Bi+1, j−1(s) , 1 < j ≤ k ,

with

ωi, j (s) :=
{

s−ζi
ζi+ j−1−ζi

if ζi < ζi+ j−1 ,

0 otherwise;

and fractions with zero denominator are considered to be zero. Note that from the
above recursive definition it is easy to verify that the B-splines are non-negative and
that the support of Bi,k is the subinterval [ζi , ζi+k].

Now, let us suppose that the obstacle Γ is given by a B-spline parametric repre-
sentation of order k over the interval [a, b], i.e.

Γ := {x ∈ R2| x = C(s) =
N∑
i=0

Pi Bi,k(s), s ∈ [a, b]} , (11)

where Pi , i = 0, . . . , N are suitably given control points. For the approximation
of the unknown boundary density ψ in space variable, the functional background
compels to choose space basis functions belonging to L2(Γ ), but for smooth obstacles
one can require at least C0(Γ ) regularity.

In the IgA paradigm, an Energetic BEM space discretization involves boundary
element functions wj (x) := Bj,k(C−1(x)), j = 0, . . . , N defined by means of the
B-spline basis related to the partition Δ as described above.

1When mi = k, this means that the function has a finite jump at σi .
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On the other side, the partition Δ induces on the obstacle Γ a boundary
mesh constituted by n non-overlapping curvilinear elements {e1, . . . , en}, such that⋃n

i=1 ei = Γ . Then, for the standard Energetic BEM, a local Lagrangian basis of
degree d = k − 1 can be lifted from Δ to Γ , giving rise to classical piecewise poly-
nomial boundary element functions wL

j (x), j = 0, . . . , NL suitably defined on the
boundary mesh.

In the following M will denote N or NL in relation to the use of IgA or standard
Energetic BEM, and the total number of DoF in space variable will be NDoF =
M + 1. Further, in order to unify the notation, in the sequel the upper index L will be
dropped from wL

j , being clear from the context which kind of space basis functions
will be employed for the simulations.

For the time discretization, a uniform decomposition of the time interval [0, T ]
with time step Δ t = T/NΔt , NΔt ∈ N+, generated by the NΔt + 1 instants tk =
k Δ t, k = 0, . . . , NΔt , is considered and the time mesh is equipped by piece-
wise constant time shape functions. Note that, for this particular choice which will
allow analytical double integration in time variables, shape functions, denoted by
vk(t), k = 0, . . . , NΔt − 1, will be defined as

vk(t) = H(t − tk) − H(t − tk+1) . (12)

Hence, the approximate solution of the problem at hand will be expressed as

ψ(x, t) � ψ̃(x, t) :=
NΔt−1∑
k=0

M∑
j=0

α
(k)
j w j (x) vk(t). (13)

The Galerkin BEM discretization coming from the energetic weak formulation (10)
produces the linear system

A α = β , (14)

of order NDoF · NΔt , where the matrix A has a block lower triangular Toeplitz struc-
ture, due to respectively the choice (12) and the fact that kernel G in (4) depends on
the difference between t and τ . Note that higher order time basis functions would
produce, instead, a block Hessenberg type structure.

Each block has dimension NDoF . If we indicate with A(�) the block obtained when
th − tk = �Δt, � = 0, . . . , NΔt − 1, the linear system can be written as

⎛
⎜⎜⎜⎜⎝

A(0) 0 0 · · · 0
A(1) A(0) 0 · · · 0
A(2) A(1) A(0) · · · 0
· · · · · · · · · · · · 0

A(NΔt−1) A(NΔt−2) · · · A(1) A(0)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α(0)

α(1)

α(2)

...

α(NΔt−1)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

β(0)

β(1)

β(2)

...

β(NΔt−1)

⎞
⎟⎟⎟⎟⎟⎠

, (15)

where α(�) =
(
α

(�)
j

)
and β(�) =

(
β

(�)
j

)
, � = 0, . . . , NΔt − 1 , j = 0, . . . , M .
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The solution of (15) is obtained by a block forward substitution, i.e. at every time
instant t�, one solves a reduced linear system of the type

A(0)α(�) = β(�) − (A(1)α(�−1) + · · · + A(�)α(0)). (16)

Procedure (16) is a time marching technique, where the only matrix to be inverted
once for all is the symmetric, even if dense, non-singular A(0) diagonal block, while
all the other blocks are used to update at every time step the right-hand side. Owing
to this procedure, one can construct and store only the blocks A(0), . . . , A(NΔt−1) with
a considerable reduction of computational cost and memory requirement.

On the other side, the only drawback is the necessity of calculating, as discretiza-
tion matrix elements, double integrals, involving weakly singular kernel in the space
variables, as it happens for SGBEM applied in the context of Dirichlet elliptic exte-
rior problems. In fact, settingΔhk = th − tk , the matrix elements in blocks A(�) , after
a double analytic integration in the time variables, are of the form

1∑
μ,ν=0

(−1)μ+ν

∫
Γ

wl(x)
∫

Γ

H(cΔh+μ,k+ν − r)V(r, th+μ, tk+ν)wm(y) dγy dγx,

(17)
where

V(r, th, tk) = 1

2π

[
log

(
cΔhk +

√
c2 Δ2

hk − r2
)

− log r

]
, (18)

and H(cΔh+μ,k+ν − r) models the wavefront propagation.
Using the standard element-by-element technique, the evaluation of every double

integral in (17) is reduced to the assembling of local contributions of the type

∫
ei

wl(x)
∫
e j

H(cΔhk − r)V(r, th, tk)wm(y) dγy dγx, (19)

where ei , e j belong to (or coincide with) the support of wl , wm , respectively.
Numerical challenges for an efficient integration of the whole kernel in (17) were

faced in [4] for standard Energetic BEM, but for the readers’ convenience they will
be outlined in the next section.

4 Technical Issues in Matrix Element Evaluation

Looking at (18), a space singularity of type log r as r → 0, which is typical of 2D
weakly singular kernels related to elliptic problems, is observed. Hence, efficient
evaluation of double integrals (19) is particularly requiredwhen ei ≡ e j or e j = ei+1.
Further, the Heaviside function H(cΔhk − r) in (19) and the square root function√
c2 Δ2

hk − r2 in (18) give rise to other different type of troubles, which have to be
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Fig. 1 Double integration domain (coincident elements) for different values of Δhk (increasing
time from right to left)

properly managed. For the sake of clearness, let us describe the above issues in a
geometrical setting where C = I d, fixing the velocity c = 1.

When the double integration has to be done over ei ≡ e j , which represent in this
case two coincident straight boundary elements, double integral (19) simplifies in

∫
ei

wl(s)
∫
ei

H(Δhk − r)V(r, th, tk)wm(z) dz ds , (20)

with r = |s − z| in the local variables of integration s, z ∈ (0, 2li ), where 2li repre-
sents the length of the element ei .

Let us note that the double integration domain is constituted by the intersection
between the square ei × ei and strip |s − z| < Δhk where the Heaviside function is
not trivial. The singularities arise for r = 0 along a diagonal of the square, precisely
along the line z = s. Figure1 shows these intersections for different values of Δhk

and fixed length 2li = 0.1.
Setting

Ms = max(0, s − Δhk), ms = min(2li , s + Δhk) , (21)

the double integral (20) can be rewritten as

∫ 2 li

0
wl(s)

∫ ms

Ms

V(r, th, tk)wm(z) dz ds . (22)

The numerical quadrature in the outer variable of integration s has been performed
subdividing, when necessary, the outer interval of integration. Without this subdi-
vision, one should use a lot of quadrature nodes for the outer numerical integration
in order to achieve the single precision accuracy. In fact, the derivative with respect
to s of the outer integrand function, after the inner integration, presents jumps in
correspondence to possible subdivision points given by

s1 = Δhk, s2 = 2li − Δhk . (23)
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Fig. 2 Behavior of the outer integrand function derivative for different values of Δhk

Note that in this simple geometrical case, if Δhk > 2li these points do not belong to
the integration interval [0, 2li ]; ifΔhk = 2li these points coincide with the endpoints
of the integration interval [0, 2li ]; when 0 < Δhk < 2li , Δhk �= li both points belong
to [0, 2li ]; at last, when Δhk = li only one point belongs to the integration interval
(s1 = s2). Almost all these geometrical situations are shown in Fig. 1. Further, as an
example, Fig. 2 presents the behavior of the derivative

d

d s

[ ∫ ms

Ms

log(Δhk +
√

Δ2
hk − |s − z|2) dz

]
,

referred to the domains of the previous figure and to an integrand function related to
the non-singular part (for r → 0) of the kernel (18). Hence, (22) will be eventually
decomposed into the sum of double integrals of the form

∫ b̃

ã
wl(s)

∫ ms

Ms

V(r, th, tk)wm(z) dz ds , (24)

where [ã, b̃] ⊂ [0, 2li ]. Of course when no subdivision is needed, one will have to
deal with only one double integral (24) where [ã, b̃] ≡ [0, 2li ].

In Table1 the computational gain obtained to achieve single precision accuracy
when using the suggested splitting is displayed in the numerical evaluation of the
outer integral in

∫ 2li

0

∫ ms

Ms

log(Δhk +
√

Δ2
hk − |s − z|2) dz ds , (25)

for 2li = 0.1 and Δhk = 0.05, 0.025, using a classical Gauss–Legendre rule. Here,
the inner integral has been evaluated analytically.

In the case of double integration over consecutive elements ei and e j , with e j ≡
ei+1, the distance between the source and the field point can be written as r =
s + z , with the origin of a local reference system fixed in the common endpoint,
s ∈ [0, 2li ] and z ∈ [0, 2l j ]. Hence the double integration domain is represented by
the intersection between the rectangle ei × e j , where the only singular point lies in
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Table 1 Relative errors in the outer numerical integration of (25) when Δhk = 0.05, 0.025, with
and without the proposed splitting. The symbol −− means that the single precision accuracy has
been achieved

Δhk = 0.05 Δhk = 0.025

n.nodes Without splitting With splitting Without splitting With splitting

4 1.5871 × 10−2 1.2663 × 10−5 4.8220 × 10−4 4.7584 × 10−6

8 4.4374 × 10−3 4.8539 × 10−7 5.2265 × 10−2 7.3393 × 10−7

16 1.1928 × 10−3 −− 2.1787 × 10−4 −−
32 3.1162 × 10−4 3.9416 × 10−4

64 7.9969 × 10−5 2.1043 × 10−5

128 2.0301 × 10−5 2.5823 × 10−5

256 5.1162 × 10−6 2.0254 × 10−6

512 1.2786 × 10−6 1.1237 × 10−6

1024 3.1285 × 10−7 6.6507 × 10−7

2048 −− −−

the vertex of coordinates (0, 0), and the half plane: z < Δhk − s, where theHeaviside
function is not trivial. This intersectionwill not be empty if 0 < s < Δhk . Therefore,
setting

m0 = min(Δhk, 2li ) , ms = min(2l j ,Δhk − s) , (26)

the double integral (19) becomes

∫ m0

0
wl(s)

∫ ms

0
V(r, th, tk)wm(z) dz ds . (27)

Also in this case, the numerical quadrature in the outer variable of integration s
has been performed by subdividing, when necessary, the outer interval of integra-
tion. In fact, the derivative with respect to s of the outer integrand function, after
the inner integration, presents a jump in correspondence to a possible subdivision
point given by

s1 = Δhk − 2l j . (28)

Note that in this geometrical case, it is easy to verify that if Δhk < 2l j or Δhk >

2li + 2l j this point does not belong to the integration interval [0,m0], while if 2l j <

Δhk < 2l j + 2li , s1 breaks the outer integration interval in two subintervals. Hence,
(27) will be eventually decomposed into the sum of double integrals of the form

∫ b̃

ã
wl(s)

∫ ms

0
V(r, th, tk)wm(z) dz ds , (29)
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√
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hk − |s − z|2 for Δhk = 0.15, 0.05, 0.025

where [ã, b̃] ⊂ [0,m0]. Of course when no subdivision is needed, we will have to
deal with only one double integral (29) where [ã, b̃] ≡ [0,m0].

Another numerical issue arises in relation to the function log(cΔhk+
√
c2 Δ2

hk−r2)
in (18), even if it is, of course, not singular for r → 0. Nevertheless the inner numer-
ical integration of this function has to be performed carefully when the Heaviside
function reduces the 2D integration domain: the problem one has to deal with is

due to the presence of the square root function
√
c2 Δ2

hk − r2, as mentioned at the
beginning of this section.

This issue will be illustrated for the same geometrical setting as before, always
fixing c = 1 and considering now only the case of coincident elements. The argument

of
√

Δ2
hk − |s − z|2 is always positive but it can assume very small values and in the

limit for the argument tending to zero the derivative of the square root with respect
to the inner variable of integration z becomes unbounded. This behavior, shown
in Fig. 3, happens along the oblique boundary of the double integration domain,
as shown in Fig. 1 for Δhk = 0.05, 0.025, and produces a bad performance of the
classical Gauss–Legendre quadrature formula, for instance in the inner numerical
integration of (25), in the sense that one should use a lot of quadrature nodes to
achieve the single precision accuracy.

To overcome this difficulty, the inner integration has been performed consider-
ing the regularization procedure in [19], which suitably pushes the Gaussian nodes
towards the endpoints of the interval [Ms,ms] and modifies the Gaussian weights in
order to regularize integrand functions with mild boundary singularities (the higher
certain positive integer parameters p, q, the smoother the regularization). The outer
integral in (25) is numerically evaluated by a classical Gauss–Legendre rule.

In Fig. 4, the computational cost of the Gaussian quadrature formula and of the
regularization procedure just explained is shown, in relation to the achievement
of the single precision accuracy (horizontal line) in the evaluation of the double
integral (25) for 2li = 0.1 andΔhk = 0.15, 0.05 (results forΔhk = 0.025 are similar
to those forΔhk = 0.05 and they have not been reported). The outer integral has been
numerically evaluated with the 8-nodes classical Gauss–Legendre formula, recalling
that for Δhk = 0.15 the outer integration interval does not need a subdivision while
for Δhk = 0.05 the outer interval has been divided in two subintervals, and taking
into account the numerical analysis presented in Table1.
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Fig. 4 Comparison between computational costs of Gaussian quadrature and regularization pro-
cedure [19] for the inner numerical integration of (25)

To conclude, in order to obtain preliminary numerical results of IgA-Energetic
BEM, presented in the next section, the numerical evaluation of discretization matrix
elements has been operated through quadrature schemes widely used for weakly sin-
gular kernels in the context of SGBEM coming from elliptic problems [7], coupled
with a suitable regularization technique [19], after a careful subdivision of the inte-
gration domain due to the presence of the Heaviside function. The interested reader
is referred to [4] for a wider and deeper treatment of the above described technical
issues, usable when C = I d.

The extension of the above explained decomposition technique, when C is not
the identity, is the core of a general implementation of IgA-Energetic BEM, which is
currently under study.Working in the framework of an element-by-element technique
on the partition Δ introduced in the parametrization interval [a, b], the key point for
an efficient and accurate evaluation of (19) will be the automatic detection of possible
subdivision points, both for the inner and the outer variables of integration. While
in the case C = I d these points are expressed in closed form (see e.g. (21), (23)), in
the general case they have to be found as roots of the non-linear equation

c2 Δ2
hk − ‖C(s) − C(z)‖2 = 0 (30)

either in z or in s variable, fixing, respectively, the outer integration variable s to find
the eventually reduced inner integration interval, or z as the endpoints of C−1(e j ) to
find possible subdivision points in C−1(ei ). Once these points are found, the double
integral (19) can be evaluated, for instance in the case of coincident elements, as

∫ b̃

ã
wl(s) J (s)

∫ ms

Ms

V(r, th, tk)wm(z) J (z) dz ds , (31)
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where J (·) := ‖C′(·)|| is the parametric speed of the boundary Γ , with quadrature
schemes for singular integrals on curvilinear boundaries described in [7], together
with the already cited regularization technique [19].

Remark 2 Recently, in [1], efficient B-spline based weighted quadrature rules for
IgA-SGBEM applied to elliptic problems have been introduced, abandoning the
element-by-element framework to work directly on the B-spline’s support. In the
context of IgA-Energetic BEM, these formulas should be revised in order to take
into account the possible truncation of the integration domain due to the presence of
the Heaviside function in the kernel.

5 Preliminary Numerical Results

In the following, some preliminary numerical results obtained by the B-spline based
Energetic BEMapplied to the analysis of soft scattering of 2D dampedwaves are pre-
sented. A Fortran code has been implemented modifying an existing standard Ener-
getic BEM sofware,2 principally removing Lagrangian basis routines and inserting
B-spline basis routines. Therefore, here and in the sequel, reported results obtained
by the new code using first order B-splines have been checked and perfectly match
those obtained by the old one using Lagrangian basis of degree 0 and published in [5].

Let us consider the model problem (1)–(3) fixing Γ = {
x = (x, 0) ∈ R2 | x

∈ [−0.5, 0.5]}, c = 1 and Dirichlet boundary datum, taken from [5], given by

g(x, t) = −H(t) f (t)x, where f (t) =

⎧⎪⎨
⎪⎩
sin2 (4π t) , if 0 ≤ t ≤ 1

8
,

1, if t ≥ 1

8
.

(32)

For an analysis on the time interval [0, T ] = [0, 2], the time step Δt = 0.025 and a
uniform decomposition of Γ constituted by 40 elements, equipped at first by piece-
wise constant space basis functions, have been chosen.

Figure5 presents the time history of the BIE numerical solution on the tenth
element of the boundary mesh, i.e. for x ∈ e10. In fact, all the points of e10 behave in
the same way, since we are considering first order B-splines for the approximation
of the BIE solution in space variable. At the beginning of the simulation points in
the neighborhood of x = 1/4 are excited till the time instant t = 1/8, owing to the
nature of Dirichlet datum. Further, they receive a solicitation at t = 1/4 by the wave
coming from the right endpoint of Γ and traveling with unitary velocity. Finally the
Energetic BEM solution stabilizes at a constant value. This is due to the fact that the
boundary datum becomes independent of time, hence one can expect a convergence
to a stationary solution, i.e. the solutionψ∞ of the BIE on Γ related to the simplified

2This software is part of the BEM Fortran library developed by the Numerical Analysis Research
Group of the University of Parma.
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Fig. 5 Approximated
density ψ̃(x, t) for x ∈ e10
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Fig. 6 Convergence of the
approximate transient BIE
solution to the approximate
stationary one, using
B-splines of order 1
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problem

Δu∞(x) = 0, x ∈ R2 \ Γ, (33)

u∞(x) = −x, x ∈ Γ, (34)

u∞(x) = O(1), ‖x‖ → ∞ . (35)

To analyze the convergence of the transient solution to the stationary one, the time
interval of analysis has been extended to [0, T ] = [0, 60], fixing Δt = 0.1. In Fig. 6,
the time history of the difference, evaluated in L2(Γ ) norm, between the Energetic
BEMapproximate transient solution ψ̃ and the SGBEMapproximate stationary solu-
tion ψ̃∞, fixing the same discretization parameter in space, Δx = 0.1 and piecewise
constant basis functions, is plotted.
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Table 2 Difference in L2(Γ ) norm between IgA-Energetic BEM approximate transient solution,
at different time instants, and IgA-SGBEM stationary solution

d DoF t = 2 t = 5 t = 10

1 11 4.95 × 10−2 7.49 × 10−3 1.77 × 10−3

2 12 5.00 × 10−2 7.46 × 10−3 1.76 × 10−3

3 13 4.74 × 10−2 7.29 × 10−3 1.73 × 10−3

4 14 5.00 × 10−2 7.16 × 10−3 1.68 × 10−3

5 15 4.61 × 10−2 6.95 × 10−3 1.64 × 10−3

6 16 4.77 × 10−2 6.85 × 10−3 1.60 × 10−3

Table 3 Difference in L2(Γ ) norm between standard Energetic BEM approximate transient solu-
tion, at different time instants, and standard SGBEM stationary solution

d DoF t = 2 t = 5 t = 10

1 11 4.95 × 10−2 7.49 × 10−3 1.77 × 10−3

2 21 5.23 × 10−2 7.47 × 10−3 1.75 × 10−3

3 31 5.01 × 10−2 7.12 × 10−3 1.66 × 10−3

4 41 4.82 × 10−2 6.85 × 10−3 1.60 × 10−3

5 51 4.67 × 10−2 6.58 × 10−3 1.54 × 10−3

6 61 4.61 × 10−2 6.54 × 10−3 1.53 × 10−3

In the following, a comparison between IgA and standard Energetic BEMs is
given, fixing Δt = 0.1 on the time interval [0, T ] = [0, 10] for all the simulations.

Table2 shows, for different values of degree d of the employed B-spline basis
functions, the DoF in space, i.e. the dimension of the matrix blocks A(�), and the
difference in L2(Γ ) norm between the IgA-Energetic BEM approximate transient
solution and the IgA-SGBEM approximate stationary solutions, fixing the same
discretization parameter in space, i.e.Δx = 0.1, at time instants t = 2, 5, 10. As one
can observe, for increasing time, there is a convergence of the approximate transient
solution ψ̃(·, t) to the corresponding approximate stationary one ψ̃∞(·).

The same behavior happens if standard Energetic BEM and SGBEM are taken
into account, as it is visible in Table3. The only difference is that the number of DoF
increases much more rapidly for increasing Lagrangian basis degree.

In Fig. 7, on the left, the time history of the difference, evaluated in L2(Γ )

norm, between the IgA-Energetic BEM transient solution and the correspond-
ing Energetic SGBEM stationary solution, i.e. ‖ψ̃(·, t) − ψ̃∞(·)‖L2(Γ ), fixing the
same discretization parameter Δx = 0.1 in space and cubic B-splines basis func-
tions, is shown, enlarging the time interval of analysis to [0, 60]. In particular,
‖ψ̃(·, 60) − ψ̃∞(·)‖L2(Γ ) = 4.63 × 10−5. For cubic Lagrangian basis functions, a
similar difference (i.e. between the standard Energetic BEM transient solution and
the corresponding standard SGBEM stationary solution) is plotted in the same Figure
on the right and ‖ψ̃(·, 60) − ψ̃∞(·)‖L2(Γ ) = 4.46 × 10−5.
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to (33)–(35)
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Now, let us analyze the convergence to the analytical solution of the stationary
BIE related to the limit problem (33)–(35), which is known in closed form and reads

ψ∞(x) = −2x√
1
4 − x2

. (36)

This analytical solution is shown in Fig. 8.
In this context, it is useful to recall a theoretical result in [21] given for elliptic

problems, stating that, using the Lagrangian basis of degree d, the Galerkin BEM
absolute error Ed = ‖ψ̃ − ψ‖H−1/2(Γ ) decays as O(d−1). Hence, one can derive the
following formula for estimating the rate of convergence, both for the stationary
approximate solution and for the transient approximate solution evaluated in a fixed,
sufficiently high time instant:
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Table 4 Convergence to the analytical stationary solution, using Lagrangian basis functions in
space

d DoF Ed stat. Ed trans. rated rateNDoF,d

1 11 3.16 × 10−1 3.15 × 10−1 −− −−
2 21 2.50 × 10−1 2.49 × 10−1 0.34 0.36

3 31 1.67 × 10−1 1.66 × 10−1 1.00 1.04

4 41 1.29 × 10−1 1.27 × 10−1 0.93 0.96

5 51 1.02 × 10−1 1.03 × 10−1 0.94 0.96

6 61 8.94 × 10−2 8.65 × 10−2 0.96 0.98

Table 5 Convergence to the analytical stationary solution, using B-spline basis functions in space

d DoF Ed stat. Ed trans. rated rateNDoF,d

1 11 3.16 × 10−1 3.15 × 10−1 −− −−
2 12 2.74 × 10−1 2.73 × 10−1 0.21 1.64

3 13 2.32 × 10−1 2.31 × 10−1 0.41 2.09

4 14 1.92 × 10−1 1.91 × 10−1 0.66 2.57

5 15 1.58 × 10−1 1.56 × 10−1 0.91 2.93

6 16 1.25 × 10−1 1.23 × 10−1 1.30 3.68

rated := log
( Ed

Ed+1

)
/ log

(d + 1

d

)
. (37)

Further, since for C0(Γ ) Lagrangian basis functions it holds NDoF,d � n · d, the
following formula, obtained from (37), can be considered too:

rateNDoF,d := log
( Ed

Ed+1

)
/ log

(NDoF,d+1

NDoF,d

)
. (38)

Table4 presents, for increasing values of degree d of the Lagrangian basis, the
absolute errors Ed for standard SGBEM and standard Energetic BEM solutions, the
latter evaluated at t = 10, together with the evaluated rates of convergence (37) and
(38), which confirm the theoretical expectations, i.e. an error decay as O(d−1) or
equivalently as O(N−1

DoF,d).
Table5 presents, instead, for increasing values of degree d of the B-spline basis,

the absolute errors Ed for IgA-SGBEM and IgA-Energetic BEM solutions, the latter
evaluated at t = 10, together with the rates of convergence still evaluated by (37)
and (38), which show that this approach has an error decay similar to the Lagrangian
approach w.r.t. the basis degree (as expected due to the nature of the analytical
stationary solution having mild singularity at the endpoints of Γ and to the uniform
space mesh employed), but a higher speed of convergence w.r.t. DoF.
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Fig. 9 Errors Ed versus
DoF, for IgA (continuous
line) and standard (dotted
line) simulations
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Table 6 Condition number of the matrix block A(0), together with its dimension

d B-spline basis NDoF Lagrangian basis NDoF

0 2.62 × 100 10 2.62 × 100 10

1 1.03 × 101 11 1.03 × 101 11

2 4.06 × 101 12 3.76 × 101 21

3 1.30 × 102 13 5.33 × 101 31

4 3.60 × 102 14 1.16 × 102 41

5 9.60 × 102 15 1.49 × 102 51

6 2.66 × 103 16 3.44 × 102 61

This feature is perfectly visible in Fig. 9 where absolute errors Ed of the last
two Tables, concerning IgA (continuous line) and standard (dotted line) simulations,
are plotted versus DoF. Hence, these preliminary results show that a B-spline based
IgA approach to Energetic BEM seems to give the same computational benefits as
observed for IgA-SGBEM applied to elliptic problems in [8].

Finally, in Table6, the condition number of the matrix block A(0), together with
its dimension, related to the B-spline and the Lagrangian basis is shown, being the
latter only slightly better than the former one.

Remark 3 The convergence of the transient solution to the stationary one can be
observed also outside the obstacle. In fact, once the unknown density over Γ is
obtained, in the post-processing phase the representation formula (4) allows to eval-
uate the approximate solution of (1)–(3) in any area around the obstacle. In Figs. 10,
11 and 12, snapshots of the transient solution u(x, t) in a square S around Γ , eval-
uated at t = 2, 4, 6, 8, 10 after recovering the IgA-Energetic BEM solution on Γ

using first order B-splines, together with the plot of the corresponding stationary
solution u∞(x) are shown. After the wavefront has left the considered area, the tran-
sient approximate solution is going to overlap the stationary one. In Fig. 13, time
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Fig. 10 Snapshots of the transient solution around Γ , evaluated at t = 2, 4

Fig. 11 Snapshots of the transient solution around Γ , evaluated at t = 6, 8

Fig. 12 Transient solution around Γ evaluated at t = 10 and stationary one

history of the difference in L2(S) norm between transient and stationary solutions
around the obstacle is presented. These results perfectly match those in [5] obtained
by applying standard Energetic BEM with Lagrangian basis functions of degree 0
and the subsequent post-processing phase.
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Fig. 13 Time history of the
difference in L2 norm
between the transient and the
stationary solution around Γ

6 Conclusions

In this paper, a numerical investigation related to a B-spline based IgA approach to
the so-called Energetic BEM, applied to the numerical solution of 2D wave propaga-
tion exterior problems equipped by Dirichlet boundary conditions, has been started.
Preliminary numerical results on straight obstacles indicate the superiority of the pro-
posed approachw.r.t. standard Energetic BEM, based on local Lagrangian basis func-
tions for the approximation of the boundary unknown in space variable, as already
observed for IgA-SGBEM applied to elliptic problems [8]. Current work is devoted
to extend the numerical analysis of IgA-Energetic BEM, performing simulations
involving different types of curvilinear boundaries having a B-spline parametric rep-
resentation, taking also into account Neumann boundary conditions, which allow to
model hard scattering phenomena.
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Approximate Reconstructions
of Perturbed Rational Planar Cubics

Michal Bizzarri, Miroslav Lávička and Jan Vršek

Abstract This paper is devoted to a problem from geometric modelling and related
applications when exact symbolic computations are sometimes used also on objects
given inexactly, i.e., when it is not adequately respected that numerical or input
errors may significantly influence fundamental properties of considered algebraic
varieties, including e.g. their rationality. We formulate a simple algorithm for an
approximation of a non-rational planar cubic which is assumed to be a perturbation
of some unknown rational planar cubic. The input curve is given by a perturbed
polynomial or by perturbed points sampled from the original curve. The algorithm
consists of two main parts. First, we suggest geometric methods for the estimation
of a singular point of the original curve. Then we select from the six-dimensional
subspace of all rational cubics with a given singular point a suitable one that may also
satisfy some further criteria. The designedmethod is presented on several commented
examples.

1 Introduction and Motivation

Symbolic-numeric (or hybrid) computation is a powerful technique nowadays very
often used to improve the stability and robustness of numerical computations. Itsmain
idea consists of identifying and employing always the most suitable framework for
specific computations. Symbolic computations tend to be slow but are always exact,
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while numerical computations are fast but their accuracymaynot always be sufficient.
The combination of both allows us to replace numerically critical and repeating
computations by symbolic ones, thereby improving the quality and reliability of the
results, in particular in geometric computing, for more details see e.g. [1–3].

Nonetheless, one has to be aware of a certain inexactness noticeable in the
approaches from recent years. Especially in applications, but also in some fields
of applied mathematics, standard methods of exact symbolic computation (based on
computer algebra/algebraic geometry) are often used, without any further discussion,
also on mathematical objects which are assumed to be given by the description with
perturbed float coefficients (obtained e.g. as results from some computer computa-
tions), see also [4].

Let us demonstrate it on one simple (illustrative) example. In particular, we will
deal with a situation when some input error (or some error caused by numerical
computations) occurs. Consider nine particular points, among them also the point
q = (−2, 0), which uniquely determine a planar cubic curve C0,

f0(x, y) = −x3 − 2x2 + 2y2, (1)

see Fig. 1 (left). C0 possesses a double point p = (0, 0), hence its genus is 0 and it
has a polynomial parameterization

x0(t) = (
2
(
t2 − 1

)
, 2

(
t3 − t

))
, t ∈ R, (2)

see [5]. However when perturbing coordinates of only one point, e.g. consider the
point q = (−1.99, 0) instead of the original one q = (−2, 0), we obtain a new cubic
curve C, see Fig. 1 (right), with almost the same implicit equation

Fig. 1 Cubic curves determined by nine points. Left: a rational cubic C0 with a singular point p.
Right: an elliptic cubic C without singularities (obtained by a perturbation of C0)
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f (x, y) = −x3 − 1.99353x2 + 0.0179xy2 − 0.00522x+
+ 1.98067y2 + 0.00357 ≈ −x3 − 2x2 + 2y2 = f0(x, y),

(3)

but with completely different geometric properties. The new perturbed curve is not
rational anymore—it is an elliptic curve without singularities and hence it does
not possess a description analogous to (2). This means that all subsequent exact
algorithms and techniques formulated for rational algebraic varieties automatically
fail. Thus a natural question reads: How can we find a rational (cubic) curve “close”
to C? By “close” one can mean the minimum distance of the coefficients of their
implicit equations or another suitable criterion. Of course, not only numerical but
also geometric properties must be considered. And the problem even escalates when
considering more complicated varieties as e.g. curves of higher degree, curves with
more complicated singularities, spatial curves or surfaces.

To sum up, this paper aims at studying important aspects of geometric modelling
stemming from numerical or input errors and their influence on algebraic varieties,
which is a problem that falls within the scope of approximate algebraic geometry, see
[4]. This problem is relatively new in geometricmodelling andmany challengesmust
be still solved and answered, see [6, 7]. Since there is no hope that the problem could
be solved in full generality, special algorithms must be formulated for distinguished
classes of algebraic varieties.

We will focus on the first interesting example and present some methods for
computing approximate reconstructions of perturbed rational planar cubics, given
implicitly by polynomials of degree three. We recall that cubic curves are popular in
geometric modelling because curves of lower degree commonly have too little flexi-
bility, while curves of higher degree are in some situations considered unnecessarily
complex and make it easy to introduce an undesired behavior. Low degree curves
are also preferred when they shall be used for generating other shapes, e.g. surfaces.

2 Preliminaries

Let us consider a planar cubic curve C defined by a homogeneous equation

F(X,Y, Z) =
3∑

i, j, k ≥ 0
i + j + k = 3

ai jk X
iY j Zk = 0, (4)

where X : Y : Z are the homogeneous coordinates for the projective plane P2
C
. The

inhomogeneous version f (x, y) = 0 for the affine plane A2
C
is obtained by setting

x = X/Z , y = Y/Z . In what follows we assume that ai jk are real and moreover the
polynomial F(X,Y, Z) is irreducible over C.
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Let us write
F(X,Y, Z) = B(X,Y, Z)c�, (5)

where B = (X3 : X2Y : · · · : Z3) and c = (a300 : a210 : · · · : a003). Hence the space
of all planar cubic curves can be identified with the projective space P

9
R
. In what

follows,wewill not distinguish betweenC and cwhen there is no danger of confusion.
Then all cubics passing through a given point form a hyperplane in P9

R
and thus one

can find a cubic going through any 9 prescribed points, but it may be reducible and
not unique. In addition, this cubic is unique and irreducible if the given 9 points are
in general position, see [8, 9].

A cubic curve is rational, i.e., it has a rational parameterization iff it possesses a
singular point. The singular points of irreducible cubics are either one double point
(a node), or one cusp. A smooth non-singular cubic is an elliptic curve with its genus
equal to one. See e.g. [8] for more detail about cubics and further algebraic curves.

Furthermore, any irreducible (rational or elliptic) cubic curve f (x, y) = 0 is bira-
tionally equivalent to a planar curve in theWeierstrass form

y2 = x3 + ax + b, (6)

where a and b are real numbers. A sequence of transformations yielding the Weier-
strass form of cubics is described e.g. in [10]. The cubic in the Weierstrass form is
non-singular iff the right-hand side of (6) has three distinct roots α1, α2, α3, i.e., iff
the discriminant

Δ = −16(4a3 + 27b2) (7)

does not vanish. The real part of a non-singular cubic has two components if Δ is
positive, and one component if it is negative. Next, if two of the αi coincide and the
third one is different then the cubic is nodal, if all three roots αi are identical then
the cubic is cuspidal.

Given a cubic polynomial x3 + a2x2 + a1x + a0 then the linear transformation
x �→ x − a2

3 removes the quadratic term, see (6). However this special form does not
play any role in our algorithm, so we will understand under the Weierstrass form of
a cubic curve any expression

y2 = p(x), (8)

where p(x) is a cubic polynomial.
The first illustrative example, given in Sect. 1, demonstrates clearly that pertur-

bations of the input (e.g. the coordinates of the points that determine a cubic) can
cause significant instabilities in geometric features (in our case the rationality) of the
result. This instability brings fatal consequences for further steps based on symbolic
computations and thus for all algorithms based on hybrid computing. Hence it is an
interesting question how to find a rational cubic C̃ close to a given perturbed cubic.

Let us emphasize that the problem is complicated even for curves of low degree
which cubics are. In particular, all singular cubics form an algebraic hypersurface in
P
9
R
given by the equation
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D (a300, a210, . . . , a003) = 0, (9)

where D is the discriminant of f (x, y), see [11] for more details about computing
discriminants. Then finding a close rational cubic C̃ is, in this setup, transformed
to the problem of projecting a point in P

9
R
to this hypersurface. Unfortunately the

discriminant D is of degree 12 and it contains 2040monomials. This makes the direct
approach useless (and the situation is much worse for varieties of higher degree).
So from the practical point of view, it is essential to find other alternatives and
computationally accessible approaches.

Let us recall that the situation is simpler when the potential singular point is
known. Then all rational cubics with a given singular point p form a 6-dimensional
subspace Lp of the 9-dimensional space of all cubics which is given by the linear
equations with unknowns ai jk

FX (p) = FY (p) = FZ (p) = 0, (10)

where FX = ∂F
∂X , FY = ∂F

∂Y , FZ = ∂F
∂Z , or in the matrix representation

Mp (a300 : a210 : · · · : a003)� = 0, Mp =
⎛

⎝
BX (p)

BY (p)

BZ (p)

⎞

⎠ . (11)

3 Formulation of the Problem and Algorithm

First, we would like to emphasize that in real situations the original entity C0 is
not known. This makes it impossible to measure the exact error of a constructed
approximate shape C̃ from this unknown object. Hence, it is difficult to state which
approximate reconstruction is the best one as in the considered neighbourhood one
can find more potential candidates, some of them possibly closer to the perturbed
object than to the original one. This significantly depends on the considered inexact-
ness.

The input to our algorithm is a non-rational cubic C which is a perturbation of
some unknown rational planar cubic C0. This perturbed curve is described by a cubic
polynomial F(X,Y, Z) or f (x, y) obtained either by some computations yielding
directly implicit curve equations, or after solving a system of linear equations (when
exactly 9 points in general position are given), or from some optimization whenmore
perturbed points are prescribed.

As the cubic C is non-rational, it does not possess a singular point. Nonetheless,
the original curve C0 was by assumption singular—but due to a certain perturbation,
its singularity blew up into two (for the nodal cubic) or three (for the cuspidal cubic)
close smooth points.
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Fig. 2 Left: Choosing two “close” roots of p(x) yielding two points p2 = (α2, 0) and p3 = (α3, 0)
(green) on the Weierstrass curveW. Right: The preimages φ−1(p2) and φ−1(p3) (green) on C and
the computed approximation p̃ of the prospective singular point (red)

(I)The initial and crucial step of the reconstruction algorithm is to find a suitable
approximate singular point of C̃. In what follows we present three possible simple
methods how to proceed.

(I.1) As a first method, we can apply an efficient approach based on properties
of theWeierstrass form, i.e., we construct an isomorphismφ : C → W, whereW is a
Weierstrass cubic (8). Thenwe compute the rootsα1, α2 (both real, or both imaginary)
and α3 (real) of p(x). If all αi are real, then we consider αi , α j as a pair of the closest
roots. Otherwise, we consider the imaginary rootsα1, α2. A candidate for the singular
point of C̃ is consequently obtained by averaging the suitable preimages as

p̃ = φ−1(αi , 0) + φ−1(α j , 0)

2
, (12)

see Fig. 2. It is true that the coefficients of the polynomial F(X,Y, Z) or f (x, y) are
given as floating point numbers, in general. Anyway, it is useful to convert them by
rounding to approximate rational numbers, which enables us to apply the symbolic
computation approach (for instance for computing themappingsφ andφ−1 weuse the
CASMaple and the packagealgcurves). In addition, aswewant to avoidworking
with large numbers, it is also convenient to round the coordinates of the approximate
singular point with respect to a prescribed height—we mean by the height of a
rational number x = a/b, gcd(a, b) = 1, the value h(x) = ⌈

log10 max{|a|, |b|}⌉.
Remark 1 In some situations more pairs of real roots αi , α j may be considered as
equivalently close because all the distances |αi − α j | differ less than some prescribed
ε. Then we have to consider all the obtained approximations as equivalently feasible.
Moreover, it is possible to join by averaging all φ−1(αi , 0). This case is also to
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Fig. 3 The gradient vector fields ∇ f (x, y) (black) of cubic curves (blue) defined by f (x, y) = 0
and the real solutions of (13) (red)

consider when the real root α1 and the value α = (α2 + α3)/2, obtained from two
conjugated imaginary roots α2, α3, are closer than the prescribed ε.

(I.2) A different approach for computing an approximate singular point p̃ can
exploit the gradient vector field ∇ f (x, y) = (∂ f/∂x, ∂ f/∂y) associated to the curve
C defined by the polynomial f (x, y). The singular point p on the (unknown) singular
cubic C0 simultaneously satisfies f0(p) = 0 and ∇ f0(p) = 0 and hence we can seek
an approximate singular point p̃ on C̃ by solving

∇ f (x, y) ≡ 0, (13)

where f (x, y) = 0 describes again a known perturbed cubic C. Equation (13) yields
4 solutions p̃i , i = 1, . . . , 4 (counted with multiplicities) obtained as intersections of
two conic sections ∂ f/∂x = 0, ∂ f/∂y = 0. When there is some complex conjugate
couple, we join it together by averaging to obtain one real point (i.e., we consider
their real coordinates only). Now between all the real points we select the one with
the minimal value of f 2(p̃i ), see Fig. 3.

Remark 2 As there are only few potential singular points (max. 4) it is not a com-
putational problem to consider all of them, continue with part (II) and postpone
a final choice to the end with respect to a suitable criterion measuring the quality of
the approximation, see (III).

(I.3) The last presented approach for determining an approximate singularity
from the perturbed cubic is based on finding and identifying “right” critical points.
Recall that a point r on the affine curve C defined by the polynomial f (x, y) is called
critical w.r.t. the direction d iff

∇ f (r) · d = 0, (14)
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see also [12, 13]. When a rational cubic C0 being perturbed, its node decomposes to
two near critical points (w.r.t. a generic direction). Hence we can choose a direction
d and by solving f (x, y) = ∇ f (x, y) · d = 0 compute all 6 critical points ri w.r.t. d
(intersection points of a conic section and a cubic). First, we choose from all couples
ri , r j , i 
= j , only those which might have arisen from one (singular) point, i.e.,
the corresponding coordinates are either both real or complex conjugate. Secondly,
we select such a couple with the minimal absolute value |ri − r j | and compute the
midpoint p̃ = (ri + r j )/2, which serves as a candidate for the sought-after singular
point.

Of course, this process depends on the choice of the direction d. So we perform
the estimation for more directions

di = (
cos(2π i/k), sin(2π i/k)

)
, i = 0, . . . , k − 1, (15)

and for each di we find the corresponding candidate p̃i . Finally, we choose as a
resulting approximate singular point p̃ the trimmed mean of all p̃i , see Fig. 4. We
recall that the trimmed (or truncated)mean is a statisticalmeasure of central tendency,
less sensitive to outliers than the classical mean. It involves the calculation of the
mean after discarding given parts of a probability distribution at the high and low end.
Inmost statistical applications, 5–25% of the ends are discarded. In our computations
we will use the interquartile mean, i.e., 25% trimmed mean (the lowest 25% and the
highest 25% are discarded). Our numerical experiments have shown that this value
is sufficient for the presented approach and yields good results.

Remark 3 Let us note that for a generic cubic, the value of k has an insignificant
influence for the computed singular point. However, when the input cubic is in some
special position then employing only one direction may lead to the incorrect result.
This is why we use more directions. According to our experimental results setting
k = 10 eliminates this inconvenience and the method works correctly.

(II)The second step of the designed reconstruction algorithm is to find a suitable
cubic C̃ sufficiently “close” to the given perturbed cubic Cwhen the singular point p̃
of C̃ is prescribed. For this purpose we have to introduce a metric on the projective
space P9

R
. In particular, we consider the standard metric originated in the ray model

and we will measure the angle between the lines through the origin which represent
the points in the projective space, i.e., we have

δ(x, y) = arccos

( |x · y|
‖x‖‖y‖

)
, (16)

where ‘·’ and ‖ ‖ denote the standard inner product and the standard norm in the
corresponding vector space. The angle δ is real-valued, and runs from 0 to π

2 .
(II.1) The (standard) inner product enables us to work with orthogonal vectors

andorthogonal subspaces.Thus, anorthogonal projection is a projection forwhich the
range and the null space are orthogonal subspaces. Furthermore, let K be the matrix
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Fig. 4 Candidates p̃i corresponding to different directions di (black) and their trimmed mean p̃
(red)

whose rows are the basis vectors of a subspaceU then the orthogonal projection onto
the subspace U is given by the matrix

T = K� (
KK�)−1

K. (17)

This approach induces a projection in the corresponding projective space. Moreover,
it holds

Lemma 1 Let H be a subspace of Pn
R
. Consider a point p ∈ P

n
R
and denote by p⊥

the orthogonal projection of p to H. Then for all q ∈ H it holds δ(p, q) ≥ δ(p, p⊥)

and the equality occurs iff q = p⊥.

Proof Consider the vector space Rn+1 inducing the projective space Pn
R
and its sub-

spaceU ⊂ R
n+1 inducing H ⊂ P

n
R
. Let 〈p〉 be the direction given by a representative

of the point p. The angle between the direction 〈p〉 and the subspace U is defined as
the angle between p and its orthogonal projection p⊥ onto U , and it is a minimum
of the angles between 〈p〉 and any direction given by vectors from U . �

Hence, we can compute the orthogonal projection of the point c representing the
cubic C in P

9
R
to the space Lp̃ of all rational cubics with the singular point p̃. The

solution of homogeneous system (11), when considering the coordinates of p̃, is the
same as the kernel of the matrix Mp̃, i.e.,

Lp̃ = ker(Mp̃). (18)

Considering the basis of this kernel we can describe the projection by the matrix (17)
and using this matrix we arrive at the point

c̃ = cT, (19)
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which represents the sought approximate rational cubic C̃.
(II.2)Alternatively, when Cwas given at the beginning by the set of perturbed

points pi , i = 1, . . . , n and computed by some approximation method (e.g. least
squares minimization), one can once more use the least squares method to deter-
mine f̃ (x, y) = 0. In particular, we consider again (18) and find the (homogeneous)
implicit equation of all rational cubics with the singular point p̃ (which depends on 7
parameters, see the last paragraph of Sect. 2).Wedenote it by F̃λ(X,Y, Z) = 0,where
λ = (λ0 : · · · : λ6). In this 7-parametric system we find the cubic whose implicit
equation minimizes

n∑

i=1

(
F̃λ(pi )

)2
, (20)

subject to the constrain ‖λ‖ = 1. The constraint is considered to exclude the trivial
solution λ = 0.

In particular, the sought solution λ is then the eigenvector of the matrix A�A
corresponding to the smallest eigenvalue, where A is the n × 7 matrix with rows
composed of the coefficients of F̃λ(pi ) w.r.t. λ, i.e.,

A = (
Lp̃B(pi )

�)�
. (21)

And then
c̃ = λLp̃. (22)

(III.) Finally, to measure suitably a quality of the approximation (i.e., the
deviation δ between the perturbed and the constructed cubic) we will consider the
standard metric, see (16), applied on determining the distance between the points c̃,
c in the projective space of cubics P9

R
, in particular

δ(̃c, c) = arccos

( |̃c · c|
‖̃c‖‖c‖

)
. (23)

In addition, when f̃ (x, y) = 0 was computed using the least squares method it is
also natural to quantify the deviation via measuring the approximation of the squared
Euclidean distance of points pi to the curve C̃, see [14],

Δ(C̃, pi ) =
n∑

i=1

(
f̃ (pi )

)2

‖∇ f̃ (pi )‖2
. (24)

Remark 4 When starting with an exact rational cubic, all the presented methods for
determining the singular point yield the actual correct singularity. Then since we
simply choose between all cubics with this (correct) singularity the one with the
minimal distance from the input rational one, we arrive at the input cubic.
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Table 1 The 25% trimmed mean of the distances between i p̃ and p in each row for 1000 different
inputs

ε mean (‖p −1 p̃‖, 0.25) mean (‖p −2 p̃‖, 0.25) mean (‖p −3 p̃‖, 0.25)
10−1 6.92154 × 10−3 2.53897 × 10−3 1.87996 × 10−3

10−2 6.81900 × 10−4 2.36461 × 10−4 1.62944 × 10−4

10−3 4.97281 × 10−5 1.78523 × 10−5 1.45099 × 10−5

10−4 5.90521 × 10−6 1.97876 × 10−6 1.55910 × 10−6

10−5 5.96431 × 10−7 1.73101 × 10−7 1.25627 × 10−7

10−6 6.79475 × 10−8 1.86060 × 10−8 1.38855 × 10−8

10−7 1.30508 × 10−8 1.72472 × 10−9 1.37039 × 10−9

Table 2 The 25% trimmed mean of the angles between C̃i and C in each row for 1000 different
inputs

ε mean (δ(1̃c, c)), 0.25) mean (δ(2̃c, c)), 0.25) mean (δ(3̃c, c)), 0.25)

10−1 5.36635 × 10−3 2.75295 × 10−3 9.56900 × 10−4

10−2 3.78011 × 10−4 1.74204 × 10−4 7.28357 × 10−5

10−3 4.38528 × 10−5 2.01407 × 10−5 8.54439 × 10−6

10−4 4.79020 × 10−6 1.69576 × 10−6 6.38216 × 10−7

10−5 4.44271 × 10−7 6.18986 × 10−8 5.43790 × 10−8

10−6 3.28066 × 10−8 7.87332 × 10−9 5.91876 × 10−9

10−7 1.01274 × 10−9 6.78943 × 10−10 5.82319 × 10−10

In what follows, we demonstrate the behavior of the proposed method on ran-
domly chosen and perturbed rational cubics. Hence, we generate a random cubic
parameterization

x0(t) = (a1(t)/b(t), a2(t)/b(t)) , (25)

where a1(t), a2(t) and b(t) are cubic polynomials fromQ[t] and by a suitable implic-
itization method, see e.g. [15–18], we arrive at the defining polynomial f0(x, y) of
C0. Of course, (10) yields the exact singular point p.

Next, we employ the normal distribution with the mean 0 and the standard devi-
ation ε = 10−
 to perturb C0 which leads to a non-rational cubic C. By performing
all three presented methods for computing the approximate singular point of C we
obtain three candidates i p̃, i = 1, 2, 3. In Table1, the 25% trimmed mean of the
distances between i p̃ and p for 1000 different random inputs (depending on ε) is
measured. Our numerical experiments show that when perturbing a generic rational
cubic with some ε = 10−
, we are able to reconstruct its singular point with the error
approximately equal to 10−
−2.

All points i p̃ are then used for constructing the new rational cubic curves i C̃ with
the singular points in p̃i . In Tables2 and 3, the 25% trimmed mean of angles (23)
between i C̃ and C and i C̃ mutually for 1000 different inputs (depending on ε) is
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Table 3 The 25% trimmed mean of the angles between C̃i in each row for 1000 different inputs

ε mean (δ(1̃c,2 c̃)), 0.25) mean (δ(2̃c,3 c̃)), 0.25) mean (δ(1̃c,3 c̃)), 0.25)

10−1 6.40089 × 10−3 3.51259 × 10−3 5.25147 × 10−3

10−2 6.43319 × 10−4 2.83220 × 10−4 3.41385 × 10−4

10−3 1.01985 × 10−4 3.22014 × 10−5 4.97543 × 10−5

10−4 4.13791 × 10−6 1.23642 × 10−6 4.46979 × 10−6

10−5 2.29031 × 10−7 2.10626 × 10−7 6.11232 × 10−7

10−6 3.23678 × 10−8 2.68345 × 10−8 5.23497 × 10−8

10−7 2.38730 × 10−9 3.24679 × 10−9 4.73451 × 10−9

computed. Table2 shows that the error of the guessed singularity is similar as the
angle of the constructed rational curve and the original one and Table3 implies that
all three methods yield results which generically differ by 10−
−2.

4 Commented Examples

In this section we present three commented examples demonstrating the steps and
approaches of the designed reconstruction algorithm.

Example 1 Consider a cubic curve C defined by the polynomial

f (x, y) = 1.00001x3 − 4.24998x2 + 0.00001xy + 4.68750x − 0.00001y3

+ 2.00001y2 + 2.00000y − 1.04687.
(26)

The curve C is shown in Fig. 5 (left), and at the first sight it looks like it has a singular
point and is rational. However zooming on the suspicious part of the cubic reveals
that it is actually not a singularity, see again Fig. 5 (left, zoomed section), and thus
condition (10) is not satisfied for any point on C. Our goal is to find a rational cubic
C̃ with a defining polynomial f̃ (x, y) approximating f (x, y).

First, we find a suitable singular point of C̃ via approach (I.1). We compute a
corresponding Weierstrass cubicW and a birational transformation φ mapping C to
W. We arrive at

y2 = 1.59075x3 + 0.212759x2 + 0.00205069x + 5.127274 × 10−6. (27)

The polynomial p(x) has the following three real roots:

α1 ≈ −0.123523, α2 ≈ −0.00532387, α3 ≈ −0.00490129. (28)

Since α2 and α3 have the minimal mutual distance from all pairs we obtain a prospec-
tive singular point
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Fig. 5 A perturbed non-rational cubic Cwithout a singular point (left), and its rational approxima-
tion C̃ (right)

1p̃ = φ−1(α2, 0) + φ−1(α3, 0)

2
≈ (0.74999,−0.49996). (29)

Employing approach (I.2) yields first three different singular points of the
gradient field:

p1,2 ≈ (1.41665, 133334), p3 ≈ (2.08328,−0.50000),

p4 ≈ (0.75001,−0.49999).
(30)

Comparing the values

f 2(p1,2) ≈ 1.40477 × 1020, f 2(p3) ≈ 1.40424, f 2(p4) ≈ 6.48668 × 10−10,

(31)
we choose 2p̃ = p4 = (0.75001,−0.49999).

Applying method (I.3), based on computing and identifying the corresponding
critical points w.r.t. 10 directions (15), we arrive at a possible singular point 3p̃ =
(0.75000,−0.49999).

In the second part of the algorithm we may work either with any of the points
1p̃, 2p̃, 3p̃, or one can also compute their suitable affine combination. We round the
prospective singular point w.r.t. the prescribed maximal height 1 and in all three
cases we arrive at the approximate singular point p̃ = (3/4,−1/2). All rational
cubics possessing the singular point p̃ are described by

Lp̃ = ker

⎛

⎝
0 0 0 0 9 −6 4 24 −16 48
27 −12 4 0 24 −8 0 16 0 0
0 9 −12 12 0 12 −16 0 16 0

⎞

⎠ , (32)
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see (18). Next, we project the cubic C to subspace (32). A defining polynomial of
the cubic C̃ can be obtained via (5), i.e., we arrive at

C̃ : −120896908944753 + 541330479134636x

− 490805891701980x2 + 115484180839728x3 + 230968365748992y

+ 1581564218xy + 478676928x2y + 230969124200970y2

− 187835608xy2 − 1117138218y3 = 0. (33)

Finally, computing (23) yields

δ(̃c, c) ≈ 0.000163488. (34)

Example 2 Consider 18 affine points qi , i = 1, . . . , 18, which were sampled from a
cuspidal cubic curve C0. The coordinates of these points were determined inexactly
and moreover rounded, and thus our goal is to find a rational cubic as close to the
points qi as possible. First, employing the method of least squares approximation,
we construct a non-rational cubic C,

f (x, y) = − 1.00413x3 + 5.28002 × 10−4x2y + 3.00974x2

+ 5.17398 × 10−4xy2 + 1.67082 × 10−3xy − 3.00580x

− 3.7894 × 10−4y3 + 1.00670y2 + 1.33963 × 10−3y + 1.00000,
(35)

see Fig. 6 (left), which will become an input to our algorithm. Now we proceed as
in Example 1. Using (I.1), we find the Weierstrass cubic and the corresponding
birational transformation φ. The polynomial p(x) has one real root and two complex
conjugate roots

Fig. 6 A perturbed non-rational cubic Cwithout a singular point (left), and its rational approxima-
tion C̃ (right)
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α1,2 ≈ 2.93130 × 10−2 ± 2.65934 × 10−3i, α3 ≈ −3.52522 × 10−2. (36)

After employing the inverse transformation φ−1 to α1 and α2 and putting the results
together, we obtain the singular point 1p̃ = (1.03097,−0.00197). Method (I.2)
yields two imaginary and two real points and the one with the minimal distance to
C possesses the coordinates 2p̃ = (1.03016,−0.00009). Finally, approach (I.3)
based on computing critical points yields 3p̃ = (1.01976,−0.00009). We again con-
vert floating-point numbers to approximate rational numbers with prescribed maxi-
mal height 1 and arrive at p̃ = (1, 0).

Now, employing the least square approximation we construct a rational cubic C̃
with the singular point p̃ near to the points qi . All cubics with the singular point p̃
are described by

Lp̃ = ker

⎛

⎝
0 0 0 0 1 0 0 2 0 3
3 0 0 0 2 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0

⎞

⎠ . (37)

Among all such singular cubics we choose the resulting one employing the least
squares approximation subject to the constrain ‖λ‖ = 1, see Fig. 6 (right). Finally,
we measure the deviance of C̃ from qi by (24) and obtain

Δ(C̃, qi ) ≈ 2.53271 × 10−17. (38)

Example 3 Although our algorithm was designed for irreducible cubics, in this
example we discuss at least shortly what can happen when a reducible cubic C0

composed of three lines intersecting in three singular points q1 = (0, 0), q2 = (1, 0)
and q3 = (0, 1), i.e.,

C0 : f0(x, y) = xy(x + y − 1), (39)

see Fig. 7 (left), serves as the input.

By perturbing the coefficients of C0 we obtain an irreducible non-rational curve
C, see Fig. 7 (right),

C : f (x, y) = 0.001x3 + 1.001x2y − 0.003x2 + 0.999xy2 − 0.999xy

+ 0.002x − 0.001y3 + 0.001y − 0.001.
(40)

Now, we try to determine a possible singularity of C. Method (I.1) based on
computing the Weierstrass curve works with the roots of polynomial p(x),

α1,2 = −0.503967 ± 9.98636 × 10−6i, α3 = −0.543349, (41)

and by averaging α1,2 we arrive at 1p̃ = (1.00101,−0.002) ≈ q2.
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Fig. 7 A reducible cubic curve C0 (left), and an irreducible perturbed cubic C (right)

Fig. 8 Left: singular points (red and green) of the normal vector field∇ f (x, y) and the one (green)
with the minimal distance from C. Right: Three loci of critical points (red) and their trimmed mean
(green)

Using approach(I.2), we compute first the singular points of the gradient vector
field. Solving (13) yields the following real points

p1 = (0.00198599, 0.994018) ≈ q3, p2 = (0.99499, 0.00100599) ≈ q2,

p3 = (0.332663, 0.332329), p4 = (0.00100604, 0.00200402) ≈ q1,

(42)

and their distances from C are

9.84175 × 10−7, 9.92008 × 10−7, 0.00138831, 9.95994 × 10−7, (43)

respectively. Hence, we choose 2p̃ = p1 ≈ q3, however the choices 2p̃ = p2 or 2p̃ =
p3 are also possible, see Fig. 8 (left).

Finally, method (I.3) based on computing the critical points of C yields three
sets of points concentrating around the points qi . However, the trimmed mean of
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Fig. 9 Rational cubic curves C̃i with singular points in qi , respectively

all points gives us 3p̃ = (0.00052963, 0.0775371), which obviously is not a clever
choice, see Fig. 8 (right).

This example clearly shows that the algorithm is not very suitable for cases when
a given perturbed cubic is close to a reducible cubic and these situations require a
special approach. Nonetheless, the methods (I.2) and (I.3) are able to reveal
all three original singular points when treated carefully. This can be also used,
for instance, when additional information about degeneracy of the original cubic
is known.

As a possible output, we may also construct irreducible cubic curves i C̃ with the
singular points in qi , respectively which gives the following deviations (23), see also
Fig. 9,

δ(̃c1, c) = 0.0810552, δ(̃c2, c) = 0.0601122, δ(̃c3, c) = 0.0422905. (44)

5 Conclusion

In this paper, we designed a simple algorithm for an approximate reconstruction
of perturbed rational planar cubics. As the problem is relatively new in geometric
modelling many open questions must be still answered and at least particular cases
are to be solved first. So, we have focused solely on the first interesting example,
namely on the case of planar cubicswhich are curves popular in geometricmodelling.

As the input perturbed cubic is non-rational, it does not possess a singular point.
Nonetheless, the original curve was by assumption singular. So the initial step of the
reconstruction algorithm is to find a suitable approximate singular point by averaging
suitable regular points of the perturbed curve. We presented three possible simple
methods how to proceed—based on the Weierstrass form, using the gradient vector
field, and applying so called critical points. Next, it was shown how to choose a
suitable rational cubic sufficiently “close” to the given perturbed cubic from the
subspace of all rational cubics with the given singular point.
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In our future work, we would like to focus on further classes of perturbed objects
important for geometric modelling, especially in connection with situations when
methods of computer algebra applied on these approximate objects fail. In addition,
involving the arithmetical optimality of resulting descriptions, see [19], is another
challenge that is worth considering.
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Quadrature Rules in the Isogeometric
Galerkin Method: State of the Art
and an Introduction to Weighted
Quadrature

Francesco Calabrò, Gabriele Loli, Giancarlo Sangalli and Mattia Tani

Abstract In this paper we introduce the quadrature needed in the isogeometric
Galerkin method. Quadrature rules affect the cost of the assembly of the discrete
counterpart of the IGAmethod, so that the search for efficient quadrature is an active
research topic. The focus of the first part is on a brief survey on the contributions
available for the reduction of computational costs for such issue. We review the gen-
eralized Gaussian strategies and the reduced quadrature. Then we present the novelty
of weighted quadrature, recently proposed by Calabrò, Sangalli and Tani for the effi-
cient assembly. We detail the construction of such rules and give some examples.
Finally, we end with some remarks on current work and further developments.

1 Introduction

We consider the Poisson problem

{−∇2u = f, on Ω,

u = 0, on ∂Ω,

as a model problem. Its Galerkin approximation on a discrete space V requires the
computation of the stiffness matrix (or stiffness integrals)
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∫
Ω

∇Ri (x)∇R j (x)dx, (1)

where Ri and R j denote two basis functions in V . If we add a zero-order term to (1)
then we also need the mass matrix (or mass integrals)

∫
Ω

Ri (x)R j (x)dx , (2)

and for problems involving a transport we would have also the so-called advection
matrix: ∫

Ω

Ri (x)∇R j (x)dx. (3)

In IGA, Ω is given by a spline or NURBS parametrization. For the sake of sim-
plicity, we assume Ω is given by a d-dimensional single patch spline representation:

Ω = F([0, 1]d), with F(ζ ) =
∑
i

C i B̂i (ζ ),

where Ci are the control points and B̂i are p-degree tensor-product B-spline basis
functions defined on the parametric patch [0, 1]d .

Being IGAbased on the isoparametric paradigm, the basis functions Ri are defined
as Ri = B̂i ◦ F−1. The integrals above are then computed after change of variable,
thus on the reference domain. For more details, see [22].

Here we consider the computation of the matrices. The mass matrix, that cor-
responds to (2) after change of variable ζ = F−1(x), is M = {m i,i } ∈ R

NDOF×NDOF

where:

m i, j =
∫

[0,1]d
B̂i (ζ ) B̂ j (ζ ) c(ζ ) dζ , (4)

with c(ζ ) = | D̂F(ζ )|.
For the stiffness matrix S = {si, j } ∈ R

NDOF×NDOF we have:

si, j =
∫

[0,1]d

(
D̂F−T ∇̂ B̂i

)T (
D̂F−T ∇̂ B̂ j

)
| D̂F| dζ .

Also in this case we change notations and we write:

si, j =
d∑

l,m=1

∫
[0,1]d

∂ B̂i
∂ x̂l

(ζ )cl,m(ζ )
∂ B̂ j

∂ x̂m
(ζ ) dζ , (5)
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so that C(ζ ) := {
cl,m(ζ )

}
l,m=1,...,d is the matrix:

C(ζ ) = [
D̂F−1(ζ ) D̂F−T (ζ )

] | D̂F(ζ )| .

For the advection matrix A = {ai, j } ∈ R
NDOF×NDOF we have:

ai, j =
∫

[0,1]d
B̂i

(
D̂F−T ∇̂ B̂ j

)
| D̂F| dζ .

Also in this case we change notations and we write:

ai, j =
d∑

l=1

∫
[0,1]d

B̂i (ζ )kl(ζ )
∂ B̂ j

∂ x̂l
(ζ ) dζ , (6)

so that k(ζ ) := {
kl(ζ )

}
l=1,...,d is the vector:

k(ζ ) = [
D̂F−T (ζ )

] | D̂F(ζ )| .

To clarify the use of quadrature we will consider the mass matrixM = {m i, j } (4)
where B̂i and B̂ j are tensor-product B-splines, and c is a coefficient that incorporates
the determinant Jacobian of the geometry mapping and other possible non-tensor
product factors. Following [15, 16, 33] we know that the optimal order of conver-
gence of the overall method is maintained if the approximate integral is computed
with a quadrature rule that is exact for constant functions c.

2 Cost of Assembly

We consider in this paper a d-dimensional scalar Poisson model problem on a single-
patch domain, and an isogeometric tensor-product space of degree p and total dimen-
sion NDOF , with NDOF � pd . For the sake of simplicity, we focus on the case of
C p−1 continuity, i.e., the typical setting of the so-called k-method (see e.g. [22]). The
resulting stiffness matrix has O(NDOF (2p + 1)d) ≈ O(NDOF pd) non-zero entries.
Therefore, we assume CNDOF pd floating point operations (FLOPs) is the (quasi)-
optimal computational cost for the formation of the stiffness matrix, where C is a
(reasonably small) constant1 that does not depend on NDOF and p.

The algorithms currently used in isogeometric codes are suboptimal with respect
to the degree p, that is, their cost grows with respect to the degree p faster than pd .
Optimal assembly procedures are available for the ususal FEM in some cases [5, 6],
while for the IGA case they are attained only with collocation [10, 47] for which
also the optimal convergence rates are now available in some cases [41].

1Throughout the paper the constant C is in general different at each occurrence.
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The majority of isogeometric codes inherit a finite element architecture, which
adopts an element-wise assembly loop with element-wise standard Gaussian quadra-
ture (SGQ). Each local stiffness matrix has dimension (p + 1)2d and each entry is
calculated by quadrature on (p + 1)d Gauss points. The total cost is O(NEL p3d) ≈
O(NDOF p3d) FLOPs, where NEL is the number of elements and, for the k-method,
NEL ≈ NDOF .

The standard way to reduce the cost is to reduce the number of quadrature points,
for example by reduced Gaussian (eventually corrected by variationally consistent
constraints [31]) or generalizedGaussian quadrature (GGQ).We review the literature
on these in the next section, here we clarify GGQ. Consider the mass matrix M =
{m i, j } (4) where B̂i and B̂ j are tensor-product B-splines, and c is a coefficient that
incorporates the determinant Jacobian of the geometry mapping and other possible
non-tensor product factors. Thework [32] has explored the possibility of constructing
and using GGQ quadrature of the kind

∫
Ω̂

c(ζ ) B̂i (ζ )B̂ j (ζ ) dζ ≈ Q
GGQ(c(·) B̂i (·)B̂ j (·)), (7)

where the quadrature weights wGGQ
q and points xGGQq of the quadrature rule

Q
GGQ( f (·)) = ∑

q w
GGQ
q f (xGGQq ) fulfill the exactness conditions

∫
Ω̂

B̂2p
k (ζ )dζ = Q

GGQ(B̂2p
k (·)), ∀k. (8)

Here {B̂2p
k (·)} is the B-spline basis of degree 2p and continuity C p−1. Exact inte-

gration of the product of a pair of p degree splines B̂i (·)B̂ j (·) is then guaran-
teed by (8). Since the wGGQ

q and xGGQq are not known analytically, they need to
be computed numerically as solution of the global non-linear problem (8), see the
next section for the literature on this problem. The number of conditions in (8) is
#{B̂2p

k (·)} ≈ NDOF (p + 1)d ≈ NEL(p + 1)d , dropping the lower order terms, and

therefore GGQ is expected to use about NEL

(
p+1
2

)d
quadrature points, with a saving

of a factor 2d with respect to SGQ.
Also, one can exploit the tensor-product structure ofmultivariate splines by adopt-

ing the so-called sum-factorization as done in [25] and introduced in the IGA frame-
work recently [8]. The application of sum-factorization to the usual element-wise
assembly reduces costs by a factor of p2.

With a major change of paradigm, as we will see in the final section, we can
combine sum-factorization with weighted quadrature to obtain an overall cost of
O(NDOF pd+1) FLOPs.
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3 Bibliographic Review

First, we should mention that quadrature problems in spline spaces have an interest
itself, so that there are contributions starting from the 50’s [40, 43, 49, 52]. These
are papers with explicit calculation of formulae with exactness conditions in the
considered spline space.

The first paper dealing with the construction of quadrature rules with ad-hoc
exactness for applications in IGA is [32]. In this paper the construction is based on
the resolution of the nonlinear equations seen in Eq. (8) with an optimal number of
points, leading to the so-called generalized Gaussian quadrature. We will refer to
this procedure as the global (patch) optimization. This problem is ill-conditioned so
that the computation of such optimal rules was done in limited cases. After, many
attempts have been made to have solutions of the global quadrature problem. As
described before, the saving when using generalized Gaussian quadrature is of a
factor 2d with respect to SGQ.

A search direction moves from the exact known results available from the papers
that we have mentioned at the beginning of this section: these results are used for the
construction of the exact quadrature inC1 cubic spline spaces in [7], andquadratic and
cubic splines in [14]. Then, starting from these known solutions, the same authors
propose a continuation algorithm based on homothopy for the C2 cubic case in
[12] and for the odd degree spline spaces in [13]. Finally, in [11] explicit recursive
algorithms are given for the C1 quintic splines.

One way to construct the quadrature starting from the optimization problem is to
search for the zero of a residual functional. Newton’s algorithm and continuation for
the construction of generalized Gaussian quadrature has been described in a general
setting in [17, 21, 35]. This has been used in [9] for the construction of a quasi-
optimal quadrature rule for IGA. In this paper, local exactness conditions are used
instead of (8). For the resolution of the global problem, a difficult issue is the good
choice of the starting point for the Newton iterations. This issue is considered in [29]
and [34]. In the paper [34] the (global) problem (8) is effectively solved by a Newton
method with an adaptive loop based on continuation, while the paper [29] is also
concerned with reduced quadrature.

The strategy of reduced quadrature relies on element-wise computations that ful-
fills fewer conditions [3, 48] and is also introduced in order to avoid locking [1, 2].
Recently also reduced integration at superconvergent points has been proposed [26].
Reduced quadrature can save some computation for each element: usually instead of
(p + 1)d points on each element uses pd or (p − 1)d so that the order with respect
to p is not changed. In [24, 44] reduced quadratures are introduced in order to gain
optimality with respect to a dispersion measure related to spurious eigenvalues.

Very different strategies have been introduced in order to attain higher savings. In
[36, 37] look-up tables are used for exact integration. Quasi-interpolation with exact
computation of spline integrals is introduced in [19] and recently used also for the
IGA-BEM method [18]. Variationally consistent domain integration is introduced
in [31].
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Finally, we mention that in [38, 39] the authors have reduced the cost of assembly
via low rank approximations of the non tensor product part of the integral factors. This
procedure is promising, although its good performance relies on known information
on the geometry of the domain.

4 Weighted Quadrature

In [20] a new procedure has been introduced that is very general and almost opti-
mal for the formation of the discrete counterpart of the Galerkin-IGA methods. In
this paper a new algorithm which does not use the element-wise assembling loop is
proposed. Instead, a loop over the matrix rows and the use of a specifically designed
weighted quadrature (WQ) rule for each row is introduced. In particular, the quadra-
ture rule for the i-th row of M is as follows:

∫
Ω̂

c(ζ ) B̂ j (ζ ) (B̂i (ζ )dζ ) ≈ Q
WQ
i (c(·) B̂ j (·)), ∀ j . (9)

Unlike (7), in the right hand side of (9) the integrand function is c(·) B̂ j (·) since the
test function is incorporated into the integral weight (measure) (B̂i (ζ )dζ ). The price
to pay is that the quadrature weights depend on i , while we select global quadrature
points as suitable interpolation points that do not depend on i . Again, the quadrature
weights are not known analytically and need to be computed numerically as solution
of the exactness conditions

∫
Ω̂

B̂ j (ζ ) (B̂i (ζ )dζ ) = Q
WQ
i (B̂ j ). (10)

However, the exactness conditions (10) are linear with respect to the weights. Fur-
thermore, (10) is a local problem as the weights outside supp(B̂i ) can be set to zero
a priori. The knot vectors do not need to be uniform with this approach.

The number of exactness conditions of (10) is #{B̂ j (·)} = NDOF . This is lower
than the number of conditions of (8), which is #{B̂2p

k (·)} ≈ NDOF (p + 1)d . Hence,
the main advantage of the WQ with respect to GGQ is that the former requires
significantly fewer quadrature points. In the case of maximum regularity only 2
points are needed in each direction sufficiently far away from the boundary, while
p + 1 points are taken on boundary knot-spans along directions that end on the
boundary. Adopting sum-factorization (see [8]), the proposed algorithm has a total
computational cost of O(NDOF pd+1) FLOPs.

In the more general case of the stiffness matrix, the exactness conditions become,
[30]: ∫

[0,1]d
∂α B̂i (ζ ) ∂β B̂ j (ζ ) dζ = Q

WQ
α,β,i (∂β B̂ j (·)). (11)
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where α, β = 0, 1 indicate if the derivative is done or not.
In all cases, due to the tensor product structure of the basis of B-splines, we can

write the quadrature problem in the univariate case and then apply the quadrature
in the multivariate case via sum-factorization, see [8]. Four different univariate WQ
rules are the building blocks that we use to define the rules QWQ

α,β,i with different test
and trial functions:

Q
(0,0)
i

(
B̂ j (·)

)
=

∫ 1

0
B̂i (ζ )B̂ j (ζ )dζ ; Q(0,1)

i

(
B̂ ′

j (·)
)

= ∫ 1
0 B̂i (ζ )B̂ ′

j (ζ )dζ ; (12)

Q
(1,0)
i

(
B̂ j (·)

)
=

∫ 1

0
B̂ ′
i (ζ )B̂ j (ζ )dζ ; Q

(1,1)
i

(
B̂ ′

j (·)
)

= ∫ 1
0 B̂ ′

i (ζ )B̂ ′
j (ζ )dζ . (13)

Weprefer not to calculate four different rules for the described cases, andwe introduce
two different rules for the two different test functions. We start noticing that the trial
functions B̂ j , B̂ ′

j all are in the space S p
p−2. Then we can count the number of active

trial functions on p + 1 elements—that is the number of elements in the support of
the test function—and this is ≤ 3p.

Finally we search for two rules:

Q
(0)
i

(
B̄ j (·)

) = ∫ 1
0 B̂i (ζ )B̄ j (ζ )dζ, (14)

Q
(1)
i

(
B̄ j (·)

) = ∫ 1
0 B̂ ′

i (ζ )B̄ j (ζ )dζ, (15)

where B̄ j (ζ ) are the functions of degree p and regularity p − 2 whose support
intersect the one of the test function. The quadrature rule (14) can be used also for
the mass (4) and the advection (6) matrices also. Notice that the two cases (14) and
(15) are different and cannot be treated with only one quadrature because the weight
function changes. It is also to be noticed that in the second case the test function B̂ ′

i
is sign changing.

We can choose a priori 3 nodes per direction in the interior of the elements, and on
the boundary elements p + 1 nodes and set up a linear problem for the calculation
of weights that always has a solution. Notice that this leads to a construction of
quadrature rules that have asymptotically O(1) points per element with respect to
the degree p. This is done computing the quadrature rules by means of the linear
problems (14) and (15). We remark that the quadratureQ(1)

i could be constructed as
linear combination of quadrature rules of lower degree, following the properties of the
B-splines. Nevertheless, our construction is straightforward and leads to a quadrature
with good approximation properties, as can be seen in the next tests. Some care has
to be used when computing the solution of the linear problems especially in the case
of under-determined systems.

To compute the quadrature weights for each of the univariate WQ rule we need to
solve nDOF linear systems of dimension ≈(2p)2, where nDOF indicates the number
of degrees of freedom along each direction. Thus, for this systems we search for
the minimum Euclidean norm solution, as proposed in [20]. This is usually done by
means of QR decomposition. Since the matrices involved are often ill-conditioned,
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Fig. 1 Maximal residual achieved in the solution of linear systems for the computation of the
quadrature weights, for maximal regularity splines on a single patch domain of 32 elements. The
comparison is between the QR decomposition and the QR decomposition with column pivoting

herewe test theQRdecomposition performedwith column pivoting so that the diago-
nal elements of the factor R are in non-increasing order. Numerical tests presented in
Figs. 1, 2 and 3 show that the pivoting strategy greatly improves numerical accuracy.

In Fig. 1,we test the procedurewith respect to the exactness attained by the quadra-
ture rule. We compare the maximal residual achieved computing all the quadrature
weights for the rule (15) by means of QR decomposition with and without column
pivoting.

In Figs. 2 and 3 we have plotted the relative error in L2-norm for the solution of
the following Dirichlet problems [46]:

{
−u′′(x) = 4π2 sin(2πx) on [0, 1],
u(0) = u(1) = 0,

(16)

and
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�u(x1, x2, x3) = (sin(5πx1)((75π2x41 + x21 (150π2x22 − 375π2 − 16) + 75π2x42−
x22 (375π2 + 16) + 20(15π2 + 1)) sin(5πx3) sin(5πx2)−
20πx2(2x

2
1 + 2x22 − 5) sin(5πx3) cos(5πx2))−

20πx1(2x
2
1 + 2x22 − 5) sin(5πx3) sin(5πx2) cos(5πx1)) on Ω,

u = 0 on ∂Ω,

(17)
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Fig. 2 Relative error in L2-norm for the solution of problem (16) on a single patch domain of 32
elementsin the framework of isogeometric-Galerkin method with maximal regularity for various
quadrature rules: SGQ, WQ with QR decomposition and WQ with QR decomposition performed
with column pivoting
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Fig. 3 Relative error in L2-norm for the solution of problem (17) on a single patch domain of 323

elements in the framework of isogeometric-Galerkin method with maximal regularity for weighted
quadrature rules: with QR decomposition and with QR decomposition performed with column
pivoting
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Fig. 4 Time for stiffness matrix assembly in the framework of isogeometric-Galerkin method with
maximal regularity on a single patch domain of 203 elements. The comparison is between the WQ
approach proposed and SGQ as implemented in GeoPDEs 3.0

where Ω is the thick quarter of ring described by

Ω = {
(x1, x2, x3) ∈ R

3|1 ≤ x21 + x22 ≤ 4, 0 ≤ x1, x2, 0 ≤ x3 ≤ 1
}
.

We compare standard Gaussian quadrature (only for the one-dimensional problem),
Weighted quadrature through QR decomposition and Weighted quadrature through
QR decomposition with column pivoting. The latter attains better accuracy with
respect to the standard QR decomposition, although an increased error is noticed
for very high degrees, see Fig. 3. In particular, Fig. 2 shows that, through column
pivoting, Weighted quadrature reaches the same accuracy as the standard Gaussian
quadrature. Indeed, at least for the one-dimensional case, we can raise the degree
beyond p = 30 without loss of accuracy. In the three-dimensional case considered
in Fig. 3 the column pivoting strategy attains better accuracy with respect to the
standard QR decomposition but the case of very high degrees is more challenging.
Such behavior is less related to the resolution of the linear problem, but, up to our
comprehension, depends on the position of the fixed nodes: new layouts on the single
element are currently under investigation.

Finally, in Fig. 4 we plot the time for assembling the stiffness matrix when
using SGQ—available as standard in GeoPDEs 3.0 [23, 51]—and our new WQ.
We have done computations up to degree p = 10 with NDOF = 203. In the case
p = 9 GeoPDEs takes more than 50 hours to form the stiffness matrix while the
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proposed algorithm needs only 90 sec, so that the use of high degrees is possible
with WQ.

We emphasize that the WQ is well suited for matrix-free [46] and parallel imple-
mentations, but in this case, for fair comparison, the computation is serial and the
whole matrices are stored. Clearly we exploit sparsity in our MATLAB implemen-
tation: we compute all the nonzero entries of matrices, the corresponding row and
column indices and then call the MATLAB sparse function, that uses a compressed
sparse column format.

5 Current Work and Further Developments

Weighted quadrature poses new issues that are currently under investigation.
First, the application of this technique has been extended to other operators. In

[30] linear elasticity problems are considered. In the same paper a discussion on
the localization of points is done in the case of lower—eventually non uniform—
regularity.

In [4] the weighted quadrature is applied to boundary integral equations: the
regular part can be treated as seen in the previous section, while the singular integrals
are computed with a weighted quadrature where the singular part is incorporated in
the weight. This can be done in an efficient way via modified moments and the
recursive definition of B-splines, see also [18, 27, 28].

Finally, themodest computational cost attained for the construction of the discrete
problem poses new issues on the final resolution of the matrix problems, that become
more dense when the degree increases. Iterative solvers are well suited for such
problems and recently preconditioners have been introduced for these problems, see
[42, 45, 50].
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13. Bartoň, M., Calo, V.M.: Optimal quadrature rules for odd-degree spline spaces and their appli-
cation to tensor-product-based isogeometric analysis. Comput.MethodsAppl.Mech. Eng. 305,
217–240 (2016)
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Eigenvalue Isogeometric Approximations
Based on B-Splines: Tools and Results

Sven-Erik Ekström and Stefano Serra-Capizzano

Abstract In this note, we focus on the spectral analysis of large matrices coming
from isogeometric approximations based on B-splines of the eigenvalue problem

−(a(x)u′(x))′ = λb(x)u(x), x ∈ (0, 1),

where u(0) and u(1) are given. When considering the collocation case, global distri-
bution results for the eigenvalues are available in the literature, despite the nonsym-
metry of the related matrices. Here we complement such results by providing precise
estimates for the extremal eigenvalues and hence for the spectral conditioning of the
resulting matrices. In the Galerkin setting, the matrices are symmetric and positive
definite and a more complete analysis has been conducted in the literature. In the
latter case we furnish a further procedure that gives a highly accurate estimate of
all the eigenvalues, starting from the knowledge of the spectral distribution symbol.
The techniques involve dyadic decomposition arguments, tools from the theory of
generalized locally Toeplitz sequences, and basic extrapolation methods.

1 Introduction

In this note we consider the approximation of one-dimensional elliptic eigenvalue
problems by using an isogeometric either Galerkin or collocation technique with B-
splines [5]. We are interested in the eigenvalues of the large matrices stemming from
the considered approximation processes. In particular, we address the problem of
estimating the extremal eigenvalues and of providing efficient numerical procedures
for computing a good approximation of all the eigenvalues.
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In this direction, it has recently beenproven that the resulting sequence ofmatrices,
indexed with respect to the matrix size, have a canonical distribution (see [15, 17]
and references therein), by using the theory of Generalized Locally Toeplitz (GLT)
sequences [16].

We recall that every GLT sequence has an associated function, called the symbol,
and that the uniform sampling of the symbol provides an asymptotic approximation
of all the eigenvalues, if every matrix of the GLT sequence is Hermitian as it happens
in our setting. However, in general the approximation is quite poor and recently
some extrapolation techniques have been devised (see [9] and references therein). In
the constant coefficient setting, when considering the Galerkin approach, the results
presented in [10] are impressive in the sense that machine precision is obtained with
very low computational cost, while for the variable coefficients further improvements
are needed (see also [17]).

In the current note, when considering the Galerkin setting and variable coeffi-
cients, we propose a further numerical scheme for the computation of all the spectrum
of large matrices by using the numerical computation of the eigenvalues for small
matrices, underlying asymptotic expansions, and extrapolation methods as those in
[9]. The numerical results are of the same quality as those produced by the best
strategy in [17], especially when the problem coefficients are smooth and at least for
low frequencies, which are those of highest interest for understanding the nature of
the problem.

On the other hand, when dealing with the collocation approximation we obtain
large nonsymmetric matrices. However, the GLT machinery can be employed and
the symbol is real-valued and nonnegative [7], as in the symmetric positive definite
Galerkin setting [15]. Hence we expect that most of the eigenvalues are real or with
negligible imaginary part. Here we start the analysis of the collocation case, by
describing a technique based on dyadic decompositions, for estimating the extreme
eigenvalues and hence the asymptotic (spectral) conditioning of the involved matrix
sequences. The analysis contained in Theorem 1 and Corollary 1 confirms that the
conditioning grows at most as h−2, h being the fineness parameter, exactly as in the
case of the matrices obtained with the Galerkin approximation (see e.g [14]).

Finally, it is not clear if the delicate asymptotic expansions observed in [10, 17]
holds also in the collocation setting and indeed this issue will be the subject of future
investigations.

2 Preliminaries

In the following we present the notation that we use. In particular we give the def-
inition of eigenvalue distribution, that of rearrangement, and we briefly discuss the
informal meaning behind these definitions.

A matrix-sequence is any sequence of the form {Xn}n , where Xn is a square
matrix such that size(Xn) → ∞ as n → ∞. Let μd be the Lebesgue measure in Rd

and let Cc(C) be the space of continuous complex-valued functions with bounded



Eigenvalue Isogeometric Approximations Based on B-Splines … 59

support defined on C. If X is an m × m matrix, the eigenvalues of X are denoted
by λ1(X), . . . , λm(X). If g : D ⊂ R

d → C
s×s is an s × s matrix-valued function,

we say that g is measurable if its s2 components gi j : D → C, i, j = 1, . . . , s, are
measurable.

Definition 1 Let {Xn}n be a matrix-sequence, let Nn := size(Xn), and let g : D ⊂
R

d → C
s×s be a measurable s × s matrix-valued function defined on a set D with

0 < μd(D) < ∞. We say that {Xn}n has an (asymptotic) eigenvalue distribution
described by g, and we write {Xn}n ∼λ g, if

lim
n→∞

1

Nn

Nn∑

i=1

F(λi (Xn)) = 1

μd (D)

∫

D

∑s
i=1 F(λi (g(y1, . . . , yd )))

s
dy1 . . . dyd , ∀ F ∈ Cc(C),

where λi (g(y1, . . . , yd)), i = 1, . . . , s, are the eigenvalues of the s × s matrix
g(y1, . . . , yd).

The informal meaning behind the eigenvalue distribution {Xn}n ∼λ g is the fol-
lowing: for all sufficiently large n, the eigenvalues of Xn can be subdivided into s
different subsets of approximately the same cardinality; and the eigenvalues belong-
ing to the i th subset (except possibly for o(Nn) outliers) are approximated by the
samples of the i th eigenvalue functionλi (g(y1, . . . , yd)) over a uniformgrid in D (the
domain of g). For example, if d = 1, Nn = ns and D = [a, b], then the eigenvalues
of Xn are approximately equal to

λi

(
g
(
a + j

b − a

n

))
, j = 1, . . . , n, i = 1, . . . , s,

for n large enough. Likewise, if d = 2, Nn = n2s and D = [a1, b1] × [a2, b2], then
the eigenvalues of Xn are approximately equal to

λi

(
g
(
a1 + j1

b1 − a1
n

, a2 + j2
b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , s,

for n large enough.

Remark 1 (rearrangement) Let g : D ⊆ R
d → C

s×s and suppose that D is a rect-
angle inRd , say D := [a1, b1] × · · · × [ad , bd ]. We also assume that the eigenvalues
λ1(g(y1, . . . , yd)), . . . , λs(g(y1, . . . , yd)) are real for all (y1, . . . , yd) ∈ D. For each
positive integer r , let Gr be the uniform grid in D given by

Gr :=
{(

a1 + i1
r

(b1 − a1), . . . , ad + id
r

(bd − ad)
)

: i1, . . . , id = 1, . . . , r

}
.
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Compute the samples of the eigenvalue functions

λ1(g(y1, . . . , yd)), . . . , λs(g(y1, . . . , yd))

at the points (y1, . . . , yd) ∈ Gr , sort them in increasing order and put them in a
vector (q1, q2, . . . , qsrd ). Let ηr : [0, 1] → R be the piecewise linear non-decreasing
function that interpolates the samples (q0 := q1, q1, q2, . . . , qsrd ) over the nodes
(0, 1

srd ,
2
srd , . . . , 1), i.e.,

ηr

( �

srd

)
:= q�, � = 0, . . . , srd .

Under certain (normally satisfied) conditions on g, the function ηr converges (a.e.)
as r → ∞ to a non-decreasing function η : [0, 1] → R, which is referred to as the
rearranged version of g. What is important about η is that

∫

D

∑s
i=1 F(λi (g(y1, . . . , yd)))

s
dy1 . . . dyd =

∫ 1

0
F(η(t))dt, ∀F ∈ Cc(C).

Therefore, if we have {Xn}n ∼λ g, then we also have {Xn}n ∼λ η.

3 Isogeometric Galerkin Discretization of
Variable-Coefficient Eigenvalue Problems

Consider the following one-dimensional variable-coefficient eigenvalue problem:

{−(a(x)u′
j (x))

′ = λ j b(x)u j (x), x ∈ Ω,

u j (x) = 0, x ∈ ∂Ω,
(1)

where Ω is an open interval in R and a, b ∈ L1(Ω) are such that a, b > 0 a.e. on
Ω . The corresponding weak formulation reads as follows: find eigenvalues λ j ∈ R

+
and eigenfunctions u j ∈ H 1

0 (Ω), for j = 1, 2, . . . ,∞, such that, for all v ∈ H 1
0 (Ω),

a(u j , v) = λ j (b u j , v),

where

a(u j , v) :=
∫

Ω

a(x)u′
j (x)v

′(x)dx, (b u j , v) :=
∫

Ω

b(x)u j (x)v(x)dx .

In the isogeometric Galerkin method, we assume that the physical domain Ω

is described by a global geometry map G : [0, 1] → Ω , which is invertible and
satisfies G(∂([0, 1])) = ∂Ω . We fix a set of basis functions {ϕ1, . . . , ϕNn } defined
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on the reference (parametric) domain [0, 1] and vanishing on the boundary ∂([0, 1]).
We consider the basis functions

ψi (x) := ϕi (G
−1(x)) = ϕi (t), x = G(t), i = 1, . . . , Nn,

which are defined on the physical domainΩ , and we define the approximation space
Wn := span(ψ1, . . . , ψNn ) ⊂ H 1

0 (Ω). Finally, we find approximations to the exact
eigenpairs (λ j , u j ), j = 1, 2, . . . ,∞, by solving the following Galerkin problem:
find λ j,n ∈ R

+ and u j,n ∈ Wn , for j = 1, . . . , Nn , such that, for all vn ∈ Wn ,

a(u j,n, vn) = λ j,n(b u j,n, vn). (2)

Assuming that both the exact and numerical eigenvalues are arranged in non-
decreasing order, the pair (λ j,n, u j,n) is taken as an approximation of the pair (λ j , u j )

for all j = 1, . . . , Nn . The numbers λ j,n/λ j − 1, j = 1, . . . , Nn , are referred to as
the (relative) eigenvalue errors.

In view of the canonical identification of each function vn ∈ Wn with its coefficient
vector with respect to the basis {ϕ1, . . . , ϕNn }, solving the Galerkin problem (2) is
equivalent to solving the generalized eigenvalue problem

Kn(a,G)u j,n = λ j,nMn(b,G)u j,n, (3)

where u j,n is the coefficient vector of u j,n with respect to {ϕ1, . . . , ϕNn } and

Kn(a,G) := [a(ψ j , ψi )]Nn
i, j=1 =

[∫

Ω

a(x)ψ ′
j (x)ψ

′
i (x)dx

]Nn

i, j=1

=
[∫ 1

0

a(G(t))

|G ′(t)| ϕ′
j (t)ϕ

′
i (t)dt

]Nn

i, j=1

, (4)

Mn(b,G) := [(bψ j , ψi )]Nn
i, j=1 =

[∫

Ω

b(x)ψ j (x)ψi (x)dx

]Nn

i, j=1

=
[∫ 1

0
b(G(t))|G ′(t)|ϕ j (t)ϕi (t)dt

]Nn

i, j=1

. (5)

The matrices Kn(a,G) and Mn(b,G) are, respectively, the stiffness and mass matri-
ces. Due to our assumption that a, b > 0 a.e. on Ω , both Kn(a,G) and Mn(b,G)

are always symmetric positive definite, regardless of the chosen basis functions
ϕ1, . . . , ϕNn and the map G. Moreover, it is clear from (3) that the numerical eigen-
values λ j,n , j = 1, . . . , Nn , are just the eigenvalues of the matrix

Ln(a, b,G) := (Mn(b,G))−1Kn(a,G). (6)
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Therefore, if a, b ∈ L1(Ω) and the basis functions ϕ1, . . . , ϕNn are chosen as the B-
splines of degree p andglobal smoothnessCk definedon the interval [0, 1]partitioned
into n equal subintervals (see [17, Sect. 2.1]) and denoted by

B2,[p,k], . . . , Bn(p−k)+k,[p,k], (7)

then

Kn(a,G) =
[∫ 1

0

a(G(t))

|G ′(t)| B ′
j+1,[p,k](t)B

′
i+1,[p,k](t)dt

]n(p−k)+k−1

i, j=1

, (8)

Mn(b,G) =
[∫ 1

0
b(G(t))|G ′(t)|Bj+1,[p,k](t)Bi+1,[p,k](t)dt

]n(p−k)+k−1

i, j=1

. (9)

From the *-algebra structure of GLT sequences, as proven in [16, 17], we know that

{1
n

Kn(a,G)
}

n
∼λ κ[p,k], (10)

{
nMn(b,G)

}

n
∼λ ξ[p,k], (11)

{ 1

n2
Ln(a, b,G)

}

n
∼λ ζ[p,k], (12)

where, according to Remark 1, κ[p,k], ξ[p,k], ζ[p,k] are the rearranged versions of

a(G(t))

|G ′(t)| f[p,k](θ), b(G(t))|G ′(t)|h[p,k](θ),
a(G(t))

b(G(t))|G ′(t)|2 e[p,k](θ),

respectively, with

f[p,k](θ) := K[0]
[p,k] +

η−1∑

�=1

(
K[�]

[p,k]e
i�θ + (K[�]

[p,k])
Te−i�θ

)
, (13)

h[p,k](θ) := M[0]
[p,k] +

η−1∑

�=1

(
M[�]

[p,k]e
i�θ + (M[�]

[p,k])
Te−i�θ

)
, (14)

e[p,k](θ) := (h[p,k](θ))−1f[p,k](θ), (15)

where the blocks K[�]
[p,k] and M[�]

[p,k], of size p − k, are defined in [17]. The analytical
predictions of the eigenvalue errors are obtained through the following sampling
procedure:

λ j,n

λ j
− 1 ≈

n2ζ[p,k]
(

j
n(p−k)

)

λ j
− 1, j = 1, . . . ,m, (16)
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where m := min(n(p − k), n(p − k) + k − 1).
However, such a procedure is not completely satisfactory especially in low fre-

quencies (see [17]), when variable coefficients are considered. More precisely, we
recall that the smallest eigenvalues are those related to slowly oscillating modes,
that is the related eigenvectors belong to the subspace generated by low frequencies.
Since the eigenvalues of the continuous operator appear in the denominator in for-
mula (16), the relative error could be higher even if the absolute approximation is of
high precision.

We address this issue in the next section.
For notational completeness, we stress that in the following the geometrical map

G is always the identity and hence the matrices we consider are those denoted
as Ln(a, b) := Ln(a, b, I ) with Ln(a, b,G) as in (6); furthermore, the regular-
ity will be maximal that is k = p − 1 and hence ep(θ), f p(θ), h p(θ) will denote
e[p,p−1](θ), f[p,p−1](θ), h[p,p−1](θ), respectively.

4 Global Distribution Results and Extrapolation

As discussed in [17], the mismatch between the analytical predictions and the eigen-
value errors essentially occurs only for small eigenvalues and a way to significantly
reduce it has already been illustrated in that paper. Drawing inspiration from [1, 9,
10, 12, 13], we here describe—in the case of an isogeometric Galerkin discretiza-
tion based on B-splines of the eigenvalue problem (1)—an alternative interpolation–
extrapolation procedure to considerably improve the analytical predictions for small
eigenvalues. We also illustrate the performance of this procedure by two examples.

1. We assume that there exists a function cp : [0, π ] → R, depending only on p
and the coefficients a, b of the considered eigenvalue problem (1), such that,
when using an isogeometric p-degreeC p−1 B-spline discretization, the following
property holds: independently of the parameter n, all the eigenvalues of thematrix
1
n2 Ln(a, b), sorted in increasing order, satisfy

λ j,n

n2
≈ cp(θ j,n)ep(θ j,n), j = 1, . . . ,min(n + p − 2, n), (17)

where

ep = f p(θ)

h p(θ)
= (2 − 2 cos θ)h p−1(θ)

h p(θ)

= (2 − 2 cos θ)
(
φ[2p−1](p) + 2

∑p−1
�=1 φ[2p−1](p − �) cos(�θ)

)

φ[2p+1](p + 1) + 2
∑p

�=1 φ[2p+1](p + 1 − �) cos(�θ)
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is defined in [17], and

θ j,n = jπ

n
, j = 1, . . . , n.

2. Compute the eigenvalues of thematrix 1
n21

Ln1(a, b) corresponding to a small value
of n1, i.e.,

λ j1,n1

n21
, j1 = 1, . . . , n1 + p − 2.

Since n1 is small, this computation can be efficiently performed by any standard
eigensolver (e.g., the Matlab eig function).

3. Under the assumption in item 1,

cp(θ j1,n1) ≈ λ j1,n1

n21ep(θ j1,n1)
, j1 = 1, . . . ,min(n1 + p − 2, n1).

This means that we have an approximation of the unknown function cp over the
coarse uniform grid consisting of the points θ j1,n1 .

4. Interpolate the data

(
θ j1,n1 ,

λ j1,n1

n21ep(θ j1,n1)

)
, j1 = 1, . . . ,min(n1 + p − 2, n1),

by using, e.g., the Matlab interp1 function with the ‘spline’ option, so
as to obtain an approximation of cp over the whole interval [0, π ]. We call this
approximation c̃p. Note that, by construction,

c̃p(θ j1,n1) = λ j1,n1

n21ep(θ j1,n1)
, j1 = 1, . . . ,min(n1 + p − 2, n1).

5. Given a large n, compute approximations of the numerical eigenvalues λ j,n by
replacing cp with c̃p in (17):

λ j,n ≈ n2c̃p(θ j,n)ep(θ j,n), j = 1, . . . ,min(n + p − 2, n).

6. Compute analytical predictions for the eigenvalue errors as follows:

λ j,n

λ j
− 1 ≈ n2c̃p(θ j,n)ep(θ j,n)

λ j
− 1, j = 1, . . . ,min(n + p − 2, n).

The next two examples show that the interpolation–extrapolation algorithm defined
by items 1–6 may lead to analytical predictions of the eigenvalue errors which per-
form better (for small eigenvalues) than the analytical predictions proposed in (16).
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Table 1 Example 1 [Linear C0 B-spline discretization with a(x) = 2 + 0.5 x and b(x) = 1]: The
five smallest eigenvalues and eigenvalue approximations, scaled by 102, for n = 200, n′ = 1500,
p′ = 5, and r = 10000

p λ j,n′ λ j,n n2ζr
(

j
n

)
n2c̃1(θ j,n)e1(θ j,n)

1 0.221308917999822 0.221313437064828 0.225759339802366 0.221202202766985

0.885445782386009 0.885517680038136 0.894411370606914 0.884899608283264

1.992343949797817 1.992707562710680 2.006135775082463 1.991307942612523

3.542008222229894 3.543157060383101 3.560895188355945 3.540749097918976

5.534445409962895 5.537249919330117 5.559588944750918 5.533651310530473

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 1 Example 1 [LinearC0 B-spline discretizationwith a(x) = 2 + 0.5 x and b(x) = 1]: analyti-
cal predictions n2ζr (

j
n )/λ j,n′ − 1 and eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn

(Nn = n − 1, n = 200, n′ = 1500, p′ = 5, r = 10000)

Example 1 Let p = 1, n = 200, a(x) = 2 + 0.5 x and b(x) = 1. Let n′ = 1500 �
n, p′ = 5, and take the first n − 1 eigenvalues of Ln′(a, b), namely λ1,n′ , . . . , λn−1,n′ ,
as approximations of the unknown exact eigenvalues λ1, . . . , λn−1. In Table1 we
report the five smallest eigenvalues and approximated eigenvalues for p = 1. As is

clear the new approximation, n2c̃1(θ j,n)e1(θ j,n), performs better than n2ζr
(

j
n

)
to

approximate λ j,n , where the function ζr introduced in [17, Sect. 3.1] is defined in
the following way. Sample a(x)

b(x)e1(θ) at the grid points (x, θ) ∈ Gr , for a chosen r ,
where

Gr =
{(

i

r
,
jπ

r

)
: i, j = 1, . . . , r

}
.

The samples are ordered in increasing order in a vector (z1, z2, . . . , zr2). Let ζr :
[0, 1] → Rbe a piecewise linear non-decreasing function that interpolate the samples
(z0 := z1, z2, . . . , zr2) over the nodes (0, 1

r2 ,
2
r2 , . . . , 1).

In Fig. 1 we present the (approximate) analytical predictions n2ζr (
j
n )/λ j,n′ − 1,

with r = 10000, together with the (approximate) eigenvalue errors λ j,n/λ j,n′ − 1.
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Fig. 2 Example 1 [Linear C0 B-spline discretization with a(x) = 2 + 0.5 x and b(x) = 1]: ana-
lytical predictions n2c̃1(θ j,n)e1(θ j,n)/λ j,n′ − 1 and eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn ,
j = 1, . . . , Nn (Nn = n − 1, n = 200, n′ = 1500, p′ = 5, n1 = 10)

Table 2 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: The five smallest eigenvalues and eigenvalue approximations,
scaled by 107, for n = 200, n′ = 1500, p′ = 5, and r = 10000

p λ j,n′ λ j,n n2ζr,[p,p−1]
(

j
n

)
n2c̃p(θ j,n)ep(θ j,n)

2 0.320242073856735 0.320242073906214 0.326994616633570 0.319596822473787

1.281965164064426 1.281965165832994 1.295209495587940 1.278576943997320

2.884839278092422 2.884839298406320 2.904497248558355 2.877209798346387

5.128863345308352 5.128863459872621 5.154973083201467 5.115745284850879

8.014037230782240 8.014037668616439 8.046649299586466 7.994414445665448

3 0.320242073856735 0.320242073878847 0.326994616613888 0.319613348810547

1.281965164064426 1.281965164062972 1.295209493290653 1.278636625771722

2.884839278092422 2.884839278083705 2.904497230696836 2.877330529920427

5.128863345308352 5.128863345316139 5.154972936807892 5.115937346593204

8.014037230782240 8.014037230847546 8.046648648420712 7.994681508249463

4 0.320242073856735 0.320242073879743 0.326994616613781 0.319603273140503

1.281965164064426 1.281965164063456 1.295209493290564 1.278600044346683

2.884839278092422 2.884839278081923 2.904497230695864 2.877256125504316

5.128863345308352 5.128863345304529 5.154972936792049 5.115818311034016

8.014037230782240 8.014037230780470 8.046648648302227 7.994514965707993

5 0.320242073856735 0.320242073879344 0.326994616614055 0.319620210926112

1.281965164064426 1.281965164062812 1.295209493290633 1.278661525969442

2.884839278092422 2.884839278081491 2.904497230695859 2.877381146957867

5.128863345308352 5.128863345303335 5.154972936792168 5.116018280099667

8.014037230782240 8.014037230779344 8.046648648302266 7.994794677407651
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Fig. 3 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: analytical predictions n2ζr,[p,p−1]( j

n )/λ j,n′ − 1 and eigen-
value errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn (Nn = n + p − 2, n = 200, n′ = 1500,
p′ = 5, r = 10000)
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Fig. 4 Example 2 [p-degree C p−1 B-spline discretization for p = 2, 3, 4, 5 with a(x) = 2.1 ·
109 + 1.05 · 109 x and b(x) = 8000]: analytical predictions n2c̃p(θ j,n)ep(θ j,n)/λ j,n′ − 1 and
eigenvalue errors λ j,n/λ j,n′ − 1 versus j/Nn , j = 1, . . . , Nn (Nn = n + p − 2, n = 200, n′ =
1500, p′ = 5, n1 = 10)
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We note the mismatch for the smallest eigenvalues. In Fig. 2 we plot the (approx-
imate) analytical predictions n2c̃1(θ j,n)e1(θ j,n)/λ j,n′ − 1, obtained from the above
interpolation–extrapolation algorithm for n1 = 10, and the (approximate) eigenvalue
errors λ j,n/λ j,n′ − 1 versus j/(n − 1), for j = 1, . . . , n − 1. We clearly see that in
Fig. 2 the slight mismatch for small eigenvalues observed Fig. 1 has been reduced.

Example 2 Let p = 2, 3, 4, 5, n = 200, a(x) = 2.1 · 109 + 1.05 · 109 x and b(x) =
8000. The approximation parameters n′ and n1 have been chosen as n′ = 1500 and
n1 = 10, respectively, and the eigenvalues λ j,n′ have been chosen correspondingly,
in the sense that λ j,n′ is computed as follows: we compute the eigenvalues λ j,n′ for a
matrixLn′(a, b) of order n′ = 1500 andB-spline degree p′ = 5. Thenwe assume that
the first n + p − 2 (for n = 200) of these eigenvalues, that is j = 1, . . . , n + p − 2,
are accurate representations of the true eigenvalues λ j ; see [17] for a motivation and
a discussion on this matter.

In Table2 we present the five smallest eigenvalues and approximated eigenval-
ues for p = 2, 3, 4, 5. As is clear the new approximation, n2c̃p(θ j,n)ep(θ j,n), per-

forms better thann2ζr,[p,p−1]
(

j
n

)
to approximateλ j,n . Figure3 shows the comparison

between the (approximate) analytical predictions

n2ζr,[p,p−1]
(

j
n

)

λ j,n′
− 1, j = 1, . . . , n,

and the (approximate) eigenvalue errors

λ j,n

λ j,n′
− 1, j = 1, . . . , n + p − 2,

whereas Fig. 4 shows the comparison between the (approximate) analytical predic-
tions

n2c̃p(θ j,n)ep(θ j,n)

λ j,n′
− 1, j = 1, . . . , n,

with the (approximate) eigenvalue errors. We see from Fig. 4 that the mismatch for
small eigenvalues observed in Fig. 3 has been lowered.

5 Dyadic Decomposition Argument and Extreme
Eigenvalues

While the distribution results are available both in the Galerkin [15] and in the collo-
cation setting [7], the use of extrapolationmethods, as those described in the previous
section and in [10, 11], has been developed only in the Galerkin setting. The reason is
the inherent nonsymmetry of the collocation matrices. However, this issue has to be
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investigated in the future, even if few preliminary experiments seem quite promising.
In this section, we start by analyzing the extreme eigenvalues of the (nonsymmetric)
stiffness matrices in the collocation setting. We use a dyadic decomposition argu-
ment already employed for symmetric structures in several contexts (see [3, 20] and
references therein).

Consider the one-dimensional Poisson problem

{
−u′′(x) = f(x), x ∈ (0, 1),

u(x) = 0, x ∈ {0, 1}, (18)

where f ∈ C([0, 1]). Suppose we approximate (18) by using the isogeometric col-
location method based on uniform B-splines (see [7, Sect. 4] for the details on this
method). Then, the resulting discretization matrix is

n2K̃[p]
n := [−N ′′

j,[p](ξi,[p])
]n+p−1

i, j=2
, (19)

where ξi,[p], i = 2, . . . , n + p − 1, are theGreville abscissae defined in [7,Eq. (4.6)],
while N j,[p], j = 2, . . . , n + p − 1, are the usual B-spline basis functions of max-
imal regularity k = p − 1. In other words, with reference to (7), we have

N j,[p] = Bj,[p,p−1], j = 2, . . . , n + p − 1.

We denote by �(K̃[p]
n ) the real part of K̃[p]

n (the real part of a square complex matrix
X [4] is by definition (X + XH)/2, XH being the transpose conjugate). In Theorem 1
we prove for p = 3 the following result:

∃ cp > 0 : �(K̃[p]
n ) ≥ cp τn+p−2(2 − 2 cos θ), ∀n ≥ 2, (20)

where

�(K̃[3]
n ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 4

3 − 1
6

− 4
3

5
2 −1

− 1
6 −1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1 − 1
6

−1 5
2 − 4

3

− 1
6 − 4

3
11
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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τn+1(2 − 2 cos θ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . .
. . .

. . .
. . . −1
−1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 1 There exists a constant c3 > 0 such that

�(K̃[3]
n ) ≥ c3 τn+1(2 − 2 cos θ), ∀n ≥ 2.

Proof For n = 2, . . . , 5, a direct verification shows that �(K̃[3]
n ) is positive definite.

Therefore, the theorem is proved if there exists a constant c > 0 such that

�(K̃[3]
n ) ≥ c τn+1(2 − 2 cos θ), ∀n ≥ 6. (21)

For n ≥ 6 and c > 0, the matrix�(K̃[3]
n ) − c τn+1(2 − 2 cos θ) is explicitly given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 2c − 4

3 + c − 1
6

− 4
3 + c 5

2 − 2c −1 + c

− 1
6 −1 + c 2 − 2c −1 + c

−1 + c 2 − 2c −1 + c

. . .
. . .

. . .

−1 + c 2 − 2c −1 + c

−1 + c 2 − 2c −1 + c − 1
6

−1 + c 5
2 − 2c − 4

3 + c

− 1
6 − 4

3 + c 11
2 − 2c

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and can be decomposed as follows:

r − 4
3 + c

− 4
3 + c s

1

2

+
11
2 − 2c − r 0 − 1

6
0 0 0

− 1
6 0 t

1

3

+ 5
2 − 2c − s −1 + c
−1 + c 1 − c − t

2

3

+

1 − c −1 + c
−1 + c 2 − 2c −1 + c

. . .
. . .

. . .

−1 + c 2 − 2c −1 + c
−1 + c 1 − c

3

n−1
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+ 1 − c − t −1 + c
−1 + c 5

2 − 2c − s

n−1

n

+
t 0 − 1

6
0 0 0

− 1
6 0 11

2 − 2c − r

n−1

n+1

+ s − 4
3 + c

− 4
3 + c r

n

n+1

.

In the above decomposition, r , s, and t are arbitrary real numbers, whereas each term
of the summation is a (n + 1) × (n + 1)matrixwhose only nonzero entries are shown
in the associated box and are contained in the principal submatrix corresponding to
the rows from the superscript to the subscript. For instance,

11
2 − 2c − r 0 − 1

6

0 0 0
− 1

6 0 t

1

3

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2 − 2c − r 0 − 1

6 0 · · · 0
0 0 0

...
...

− 1
6 0 t

...
...

0 . . . . . . 0
...

...
...

0 . . . . . . . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If each term of the above summation is a nonnegative definite matrix, then�(K̃[3]
n ) −

c τn+1(2 − 2 cos θ) is nonnegative definite as well. The following conditions ensure
that each term of the summation is nonnegative definite:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r > 0, s > 0, rs ≥ ( 43 − c
)2

,
11
2 − 2c − r > 0, t > 0,

(
11
2 − 2c − r

)
t ≥ 1

36 ,

5
2 − 2c − s > 0, 1 − c − t > 0,

( 52 − 2c − s)(1 − c − t) ≥ (1 − c)2,

c ≤ 1.

These conditions are satisfied, for instance, with

c = 58

59
, s = 1

2
, r =

(
4
3 − c

)2

s
, t =

1
36

11
2 − 2c − r

.

Hence, (21) holds with c = 58/59. ��
We verified that the dyadic decomposition argument used in the proof of Theorem 1
can also be used to prove (20) for p = 2, 4. Although this argument becomes quite
difficult to apply for p ≥ 5, we have reason to believe that a careful application of it
could prove (20) for any given p ≥ 2.

The above theorem and the relations in (20) have interesting consequences on the
conditioning measured with respect to the induced Euclidean norm as reported in
Corollary 1, whose proof requires a technical but interesting in itself lemma.
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Lemma 1 Given X square matrix, assuming �(X) positive definite, we have

λmin(�(X)) ≤ σmin(X).

Proof As a first step define the following matrix X̂ of order 2n

X̂ =
[
0 X
XH 0

]
.

By taking into account the standard singular value decomposition, it is easy to see
(and it is well-known) that the singular values σ j (X) of X , j = 1, . . . , n, coincide
with the n largest eigenvalues of X̂ , since the eigenvalues of the Hermitian matrix X̂
are ±σ j (X), j = 1, . . . , n. Therefore, we infer that

σmin(X) = λn+1(X̂),

with λ1(X̂) ≤ λ2(X̂) ≤ · · · ≤ λ2n(X̂). From the minimax characterization (see [4])
of the (n + 1)-th eigenvalue of X̂ , we obtain

σmin(X) = max
dim(U )=n

min
u∈U

uH X̂u

uHu
, (22)

where the maximum is taken over all subspaces U with codimension n in C
2n or,

equivalently, over all subspaces U of dimension n. Let U∗ be the n-dimensional
subspace of C2n made of all vectors y of the form

y =
(
u
u

)
, u ∈ C

n, u =

⎛

⎜⎜⎜⎝

u1
u2
...

un.

⎞

⎟⎟⎟⎠ .

If y ∈ U∗ is partitioned into blocks as above, it holds

yH X̂ y

yHy
= uH�(X)u

uHu
, (23)

and since U∗ is a particular subspace of dimension n, from (22) the thesis
follows. ��
Corollary 1 Assume that (20) is satisfied for a given p. Then

μ2(�(K̃[p]
n )) ∼ n2, (24)

and
μ2(K̃[p]

n ) ≤ Cpn
2, (25)
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with Cp a positive constant depending only on p and μ(X) = ‖X‖‖X−1‖ being
the conditioning of an invertible matrix X measured with respect to the induced
Euclidean norm ‖ · ‖.
Proof First of all we observe that both �(K̃[p]

n ) and K̃[p]
n are banded matrices with

coefficients not depending on the parameter n. Hence we have that their induced
Euclidean norm is asymptotic to a a constant not depending on n that is

‖�(K̃[p]
n )‖ ∼ 1, (26)

‖K̃[p]
n ‖ ∼ 1. (27)

We first prove (24). By (20) we have

�(K̃[p]
n ) ≥ cp τn+p−2(2 − 2 cos θ), ∀n ≥ 2,

with cp > 0 and hence �(K̃[p]
n ) is positive definite and its minimal eigenvalue is

bounded from below by

cp4 sin
2

(
π

2(n + p − 1)

)
,

4 sin2
(

π
2(n+p−1)

)
being the minimal eigenvalue of τn+p−2(2 − 2 cos θ) (see [19] and

references therein). On the other hand, �(K̃[p]
n ) contains as a principal submatrix a

Toeplitz matrix of size proportional to n and generated by f p being nonnegative and
having a unique zero of order two (see [7, 14]). Hence such a Toeplitz matrix has the
minimal eigenvalue ln asymptotic to n−2 (see again [19] and references therein) and
by the Cauchy interlacing theorem the minimal eigenvalue of �(K̃[p]

n ) is bounded
from above by ln ∼ n−2. Therefore

λmin(�(K̃[p]
n )) ∼ n−2.

But �(K̃[p]
n ) is positive definite and hence

∥∥∥[�(K̃[p]
n )]−1

∥∥∥ = [λmin(�(K̃[p]
n ))]−1 ∼ n2,

from which, using (26), we deduce

μ2(�(K̃[p]
n )) ∼ n2.

We now prove (25). Given the known fact ‖X−1‖ = [σmin(X)]−1, statement (25)
is a consequence of (27), of (20), of Lemma 1, and of the fact that the minimal
eigenvalue of τn+p−2(2 − 2 cos θ) is



Eigenvalue Isogeometric Approximations Based on B-Splines … 75

sin2
(

π

2(n + p − 1)

)
∼ n−2.

��
Furthermore, we have reasons to conjecture that the spectral conditioning of the

collocation stiffness matrices grows asymptotically as n2, exactly as in the Galerkin
setting [14], since K̃[p]

n contains as a principal submatrix a Toeplitz matrix of size
proportional to n and generated by f p having a unique zero of order two (as�(K̃[p]

n ),
see the proof of Corollary 1).

We finally stress that (20) is also important in a multigrid context for proving the
optimality of the related two-grid and multigrid techniques (see [2, 6, 8, 19]), by
following the theory reported by Ruge and Stüben in [18].

6 Conclusions

In this note, we have considered the spectral analysis of large matrices coming from
the isogeometric approximations based on B-splines of the eigenvalue problem

−(a(x)u′(x))′ = λb(x)u(x), x ∈ (0, 1),

where u(0) and u(1) are given. In the collocation setting, we complemented global
eigenvalue distribution results, available in the literature [7], with precise estimates
for the extremal eigenvalues and hence for the spectral conditioning of the resulting
matrices. In the Galerkin setting, we have designed an efficient matrix-less procedure
(see [9]) that gives a highly accurate estimate of the all the eigenvalues, starting
from the knowledge of the spectral GLT distribution symbol. Possible extensions
include a more systematic treatment of the collocation case, both via the use of
dyadic decomposition arguments and via the use of proper matrix-less extrapolation
techniques. This last item is completely new and represents a real challenge, thus it
will be the subject of a future investigation.
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Lofting with Patchwork B-Splines

Nora Engleitner and Bert Jüttler

Abstract Lofting—also denoted as surface skinning—is one of the fundamental
operations for creating free-form surfaces in Computer Aided Design. This process
generates a surface from a given sequence of section curves. It is particularly useful
for airfoils and turbine blades, since these shapes are often defined by cross sections
with a family of auxiliary surfaces. The use of tensor-product B-splines, which is
currently the standard technology, leads to large data volumes if section curves with
incompatible knot vectors are used.We adopt the framework of Patchwork B-splines,
which supports very flexible refinement strategies, and apply it to the construction of
lofting surfaces. This approach not only reduces the resulting data volume but also
limits the propagation of derivative discontinuities.

1 Introduction

The process of lofting,which is also called surface skinning, is one of the fundamental
operations for the construction of free-form surfaces in geometric design, and its
origins can be traced back to the early days for Computer-Aided Design [14]. It
creates surfaces from given sequences of section curves, and it is particularly useful
for airfoils and turbine blades, since these shapes are often defined by cross sections
with a family of auxiliary surfaces.

More precisely, we consider a sequence of space curves ck(u), k = 0, . . . , N ,
which are all defined over the parameter interval [0, 1]. Each curve is represented as
B-spline curve of degree pk ,

ck(u) =
mk∑

i=0

di,k Ni,pk ,Tk (u), for k = 0, . . . , N ,
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with control points di,k ∈ R
3 and B-splines Ni,pk ,Tk of degree pk defined on the knot

vector Tk . These curves will be denoted as section curves, since they represent the
intersection of an unknown surface (the lofting surface) with a family of auxiliary
surfaces. Note that the degrees and the knot vectors are potentially different for each
of the section curves.

A lofting surface s(u, v) is a surface with parameter domain [0, 1]2, that interpo-
lates the section curves at certain parameters v̄k , i.e.,

s(u, v̄k) = ck(u), for all k = 0, . . . , N .

This paper is devoted to procedures that generate a lofting surface from the given
section curves.

The construction of lofting surfaces has been analyzed in a substantial number
of publications. In order to keep the paper focused, we list only a few representative
references.

The basic definition and construction of tensor-product B-spline lofting surfaces
via interpolation of spline curves is described by Piegl and Tiller [11]. The same
authors also introduced an approximate approach [10], which helps to reduce the
required data volume. In fact, the number of control points of tensor-product spline
lofting surfaces will be quite large if the section curves possess incompatible knot
vectors, and this motivates the use of approximate methods. In another paper, they
presented several improvements and extensions of the skinning algorithm [12].

In recent years, research has focused on particular geometric problems related to
skinning and lofting. Bizzarri et al. [1] describe techniques for skinning and blending
with rational envelope surfaces. Kunkli and Hoffmann [8] discuss the skinning of
sequences of circles and spheres.

Besides tensor-product spline spaces, it appears to be promising to use spline
spaces that support adaptive refinement. As one of the first contributions in this
direction, Yang and Zhen [15] applied the T-spline technology to perform approxi-
mate surface skinning. Li et al. [9] provide an explicit method for surface skinning
using periodic T-spline surfaces.

Hierarchical splines [7] are another well-established approach to adaptive refine-
ment of tensor-product splines. Recently, the original construction of a basis was
enhanced by introducing the truncation mechanism [4, 5]. This has prepared the
ground for the definition of Patchwork B-splines (PB-splines), which form a gener-
alization of hierarchical splines that provides further possibilities for adaptive refine-
ment [3].

The present paper applies this new construction of adaptive splines to the con-
struction of lofting surfaces. We are able to perform exact interpolation of the section
curves and obtain a smaller data volume than tensor-product spline lofting surfaces.
Moreover, the use of PB-splines also helps to limit the propagation of derivative dis-
continuities. In addition, the construction is very flexible, supporting not only knot
vectors containing knots with varying multiplicities, but even section curves with
different polynomial degrees.
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The remainder of the paper is structured into five sections. The next section recalls
the standard approach, which employs tensor-product splines, based on the technol-
ogy described in [11]. Section3 introduces a very simple blending-based solution,
which is not useful for applications but helps to prove the existence of PB-spline
lofting surfaces. The fourth section adapts PB-splines to the lofting problem and
describes the new method for lofting. Several computational results are presented
in Sect. 5, in order to compare the tensor-product B-spline and PB-spline lofting
surfaces. Finally, we conclude the paper.

2 Lofting with Tensor-Product B-Splines

We construct a tensor-product B-spline surface of degree (p, q) with knot vectorsU
and V ,

stp(u, v) =
m∑

i=0

n∑

j=0

ci, j Ni,p,U (u)N j,q,V (v),

that interpolates the section curves ck(u) of degrees pk with knot vectors Tk , i.e.,

m∑

i=0

N∑

j=0

ci, j Ni,p,U (u)N j,q,V (v̄k) =
mk∑

i=0

di,k Ni,pk ,Tk (u), for all k = 0, . . . , N .

In order to generate such a tensor-product spline surface, we create a knot vector U
defining a spline space of degree

p = max
k=0,...,N

pk,

which contains the spline spaces associated with the section curves. Consequently,
each section curve possesses a representation

ck(u) =
m∑

i=0

d�
i,k Ni,p,U (u), for k = 0, . . . , N . (1)

In addition, we choose a suitable degree q, the parameters v̄k and a corresponding
knot vector V = {vi }i=0,...,N+q+1. Finally, we apply a curve interpolation algorithm
to the rows of control points d�

i,0, . . . , d
�
i,N , to compute the control points ci, j of the

lofting surface. More precisely, ci, j is the j th control point of the B-spline curve that
interpolates the points d�

i,0, . . . , d
�
i,N .

Nowwediscuss the procedure inmore detail, summarizing the approach presented
in [11].We start by constructing the common knot vectorU . First, we have to perform
degree elevation on the curves until all curves have the same degree p. Second, we
apply the knot insertion algorithm to the different, degree elevated knot vectors until
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we arrive at the common knot vector U with basis functions Ni,p,U , i = 0, . . . ,m,
for all curves. Hence, we construct U as the union of all knots, with associated
multiplicities, that appear in one of the knot vectors Tk after the degree elevation.
The knot insertion algorithm also provides the new control points d�

i,k of the curves
in (1), such that the shape of the section curves is preserved.

Next we have to choose a degree q, compute the parameters v̄k and define a knot
vector V in v-direction. The degree can be chosen freely as long as it satisfies q ≤ N .
For computing the parameters v̄k and the knots vi ∈ V we use an averaging approach
based on chord-length parameterization. The parameters v̄k are chosen as

v̄0 = 0, v̄N = 1,

and

v̄k = v̄k−1 + 1

m + 1

m∑

i=0

|d�
i,k − d�

i,k−1|
Li

, for k = 1, . . . , N − 1,

with Li = ∑N
k=1 |d�

i,k − d�
i,k−1|. The knots vi are obtained by averaging the parameter

values,
v0 = · · · = vq = 0, vN+1 = · · · = vN+q+1 = 1,

and

vi = 1

q

i−1∑

k=i−q

v̄k, for i = q + 1, . . . , N .

Finally we compute the control points ci, j for i = 0, . . . ,m and j = 0, . . . , n. Inter-
polating over the rows of control points d�

i,0, . . . , d
�
i,N results in m + 1 systems of

equations with N + 1 unknowns each. More precisely, for all i = 0, . . . ,m we solve
the N + 1 equations

n∑

j=0

ci, j N j,q,V (v̄k) = d�
i,k, for k = 0, . . . , N ,

for the N + 1 control points ci, j with j = 0, . . . , N . As stated in [11], the choice of
parameters and knots vi guarantees that the systems are regular.

The method can be generalized by considering larger knot vectors V , which pro-
vide additional degrees of freedom. These degrees of freedom can be used to satisfy
additional constraints or to optimize the shape of the resulting lofting surfaces. Our
experimental results are based on the implementation in the Parasolid™CADkernel.

Generating a lofting surface with tensor-product B-splines is a relatively simple
but highly effective tool and is therefore used in virtually all CAD systems. However,
as a consequence of the degree elevation and knot insertion, the resulting surface
may possess a considerable number of control points, especially when using a large
number of section curves or curves with different knots and varying degrees.
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3 Blending-Based Lofting

A particularly simple solution to the lofting problem can be obtained by the blending
approach. This approach is not based on a globally defined tensor-product spline
space, hence it provides a coarse representation of the lofting surface.

We define blending B-spline functions,

Bi (v) =
q∑

r=0

Ni(q+1)+r,q,V (v),

for i = 0, . . . , N . The corresponding lofting surface is then defined as

sblend(u, v) =
N∑

k=0

ck(u)Bk(v).

Again we have to determine the degree q, the parameters v̄k and the knot vector V .
As in the previous section, the degree q can be choosen arbitrarily. The parameters
are computed with an averaging procedure similar to the tensor-product B-spline
case. However, we do not compute the distances between the control points here,
since we do not have a one-to-one correspondence between the control points of
adjacent section curves. Instead we use sample points on the section curves to obtain
the parameter values v̄k . Hence, we evaluate all curves at the parameter values

ri = i

m̂
, for i = 0, . . . , m̂, m̂ = max

k=0,...,N
mk,

and compute the parameters as

v̄0 = 0, v̄N = 1, (2)

and

v̄k = v̄k−1 + 1

m̂ + 1

m̂∑

i=0

|ck(ri ) − ck−1(ri )|
L̂ i

, (3)

with

L̂ i =
N∑

k=1

|ck(ri ) − ck−1(ri )|.

We define the knots vi ∈ V such that each parameter v̄k is contained in the knot
span [vik , vik+1] and that vik+1 and vik+1 are separated by q knot spans. To be more
precise, we choose the the first and last q + 1 knots as

v0 = · · · = vq = 0, and vn−q = · · · = vn = 1, (4)
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Fig. 1 Example for a
blending-based lofting
surface over 5 section curves
(colored in red)

with n = (N + 2)(q + 1). The remaining knots are then defined as

vk(q+1)+i =
{
v̄k−1 + (i + 1)hk, if k = 1,

v̄k−1 + (i + 1
2 )hk, else,

(5)

with

hk =
⎧
⎨

⎩

v̄k−v̄k−1

q+ 3
2

, if k = 1 or k = N ,

v̄k−v̄k−1

q+1 , else,

for k = 1, . . . , N and i = 0, . . . , q. Figure1 shows an example of a lofting surface
obtained by this simple blending approach. As an advantage, the lofting surface is
obtained without the need for solving systems of linear equations. However, the
section curves correspond to singular curves on the lofting surface. Clearly, the
quality of this result is not sufficient for applications. Nevertheless, we will use the
blending approach to prove the existence of solutions for the lofting surface defined
by PB-splines.

4 Lofting with PB-Splines

After discussing tensor-product B-spline and the blending-based lofting, we intro-
duce a novel lofting method that provides high-quality surfaces while keeping the
number of degrees of freedom small. The construction is based on Patchwork B-
splines (PB-splines) that are defined on sequences of partially nested tensor-product
spline spaces with associated patches. This enables us to employ independently cho-
sen spline spaces in the vicinity of the section curves, thereby eliminating redundant
control points.
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4.1 Patchwork B-Splines

We recall the definition of PatchworkB-splines via a patchwork hierarchy that defines
a patchwork spline space. PB-splines are defined by suitably generalizing the selec-
tion mechanism for hierarchical B-splines. We present certain assumptions on the
patchwork hierarchy which guarantee linear independence and that the PB-splines
form a basis for the patchwork spline space.

The Patchwork Hierarchy

The patchwork hierarchy combines a sequence of tensor-product spline spaces with
a corresponding sequence of patches.

First, we consider a finite sequence of spline spaces S� that are spanned by tensor-
product B-splines,

S� = span{Ni,p�,U�
N j,q�,V�

}(i, j)∈J� ,

for the levels � = 0, . . . , 2N with the index set

J� = {(i, j) : i = 0, . . . ,m�, j = 0, . . . , n�}.

The basis functions are defined over knot vectors U� and V� of degrees p� and q�

in u- and v-direction, respectively. At a point x = (u, v), the basis functions possess
the smoothness

s�(x) = (s�
1(u), s�

2(v)) = (p� − m�
1(u), q� − m�

2(v)),

wherem�
1(u) is the multiplicity of u inU� andm�

2(v) the multiplicity of v in V�. Note
that the spline spaces S� are not required to be nested, i.e., S� is not necessarily a
subspace of S�+1.

Second, we assign a corresponding patch π� to every spline space S�. The patches
are mutually disjoint open rectangles in the R2 that cover the domain Ω ,

Ω =
2N⋃

�=0

π� = [0, 1]2.

Furthermore, we assume that the boundaries of a patch π� are aligned with the knot
lines of the corresponding spline space.1

Finally, we introduce the patchwork spline space P , which contains functions
f ∈ C([0, 1]2) with the following two properties.

1Note that the PB-spline construction defined in [3] allows arbitrary domains and admits more
general open subsets of the Rd as patches. However, for the lofting problem this simpler setting is
sufficient.
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(i) The restriction of f to one of the patches is contained in the corresponding spline
space on that patch, i.e.,

f |π� ∈ S�|π� , for � = 0, . . . , 2N .

(ii) The restriction of f to (π� ∩ π k) possesses the smoothness smax(�,k)(x) for all
x ∈ π� ∩ π k .

Clearly, the properties of the functions in the patchwork spline space are determined
by the chosen patchwork hierarchy, i.e., by the sequence of tensor-product spline
spaces and associated patches.

The Selection Mechanism

In order to construct a basis for the patchwork spline space we adapt Kraft’s selection
mechanism [7], which is based on the relation between the support of a B-spline and
certain subdomains. Instead of this classical approach, weworkwith the constraining
boundary Γ � of a patch π�, which is defined as the part of the boundary ∂π� that is
shared with patches of a lower level,

Γ � =
�−1⋃

k=0

π k ∩ π�.

We use a constraining boundary-based selection mechanism on the patchwork hier-
archy to obtain a basis. For each level � we select the bivariate basis functions
Ni,p�,U�

N j,q�,V�
that are active on the corresponding patch π� while vanishing at the

constraining boundary Γ �,

K� = {(i, j) ∈ J� : (Ni,p�,U�
N j,q�,V�

)|π� �= 0 and (Ni,p�,U�
N j,q�,V�

)|Γ � = 0}.
(6)

The supports of the selected basis functions of level � define the shadow π̂ � of a
patch,

π̂ � =
⋃

(i, j)∈K�

supp(Ni,p�,U�
N j,q�,V�

), � = 0, . . . , 2N .

Finally, collecting the selected basis functions from all levels gives us the Patchwork
B-splines (PB-splines),

K =
2N⋃

�=0

{(Ni,p�,U�
N j,q�,V�

) : (i, j) ∈ K�}.
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Linear Independence and Space Characterization

Two assumptions allow us to characterize the space that is spanned by the PB-splines:

Assumption S2C. The patches and spline spaces possess the property of Simple
Shadow Compatibility:

(i) The shadow π̂ � of a patch π� does not intersect patches of a lower level k < �,
i.e.,

π̂ � ∩ π k = ∅, for all k < �.

(ii) If the shadow π̂ k of a level k < � intersects the patch π� then the corresponding
spaces are nested, i.e.,

π̂ k ∩ π� �= ∅ =⇒ Sk ⊆ S�, for all k < �.

Assumption SMC. All patches and associated spline spaces fulfill the Smoothness
Monotonicity Condition: The smoothness across the constraining boundary Γ � in
transversal direction does not increase when moving from a lower to a higher level,
i.e., for k < � it holds that

s�
i (x) ≤ ski (x) for all x ∈ Γ � ∩ π k,

where the i th coordinate direction is transversal with respect to Γ � at x.

As shown in [3], these two assumptions imply two fundamental results:

Theorem 1 The PB-splines are linearly independent on Ω if the patchwork hierar-
chy satisfies Assumption S2C.

Consequently, the selected B-splines from all levels form a basis.

Theorem 2 The PB-splines span the patchwork spline space P if Assumptions S2C
and SMC are both satisfied.

Therefore, we have two different characterizations of the patchwork spline space
P . On the one hand, there is the implicit definition that characterizes the space by
the properties of the functions it contains. On the other hand, we have a constructive
definition that describes P as the linear hull of its basis, namely the PB-splines.

Note that the PB-splines do not form a partition of unity. In order to restore this
property we have to introduce a truncation mechanism [3]. A detailed discussion is
beyond the scope of the present paper.

4.2 The Patchwork Hierarchy for Lofting

Recall that we want to construct a PB-spline surface spb(u, v), which satisfies the
interpolation conditions spb(u, v̄k) = ck(u) for certain parameter values v̄0, . . . , v̄N ,



86 N. Engleitner and B. Jüttler

i.e.,

spb(u, v̄k) =
2N∑

�=0

∑

(i, j)∈K�

c�
i, j Ni,p�,U�

(u)N j,q�,V�
(v̄k) =

mk∑

i=0

di,k Ni,pk ,Tk (u),

for k = 0, . . . , N . We choose the same spline space in v-direction for all levels, i.e.,
V� = V and q� = q. The degree, the parameter values v̄k and the elements of the
knot vector V = {vi } are chosen in the same way as for the blending-based loft.
Consequently, the locations of the parameters v̄0, . . . , v̄N are determined by (2) and
(3), and the knots vi take the values (4) and (5). How to construct the vectorsU� will
be discussed later.

Curve Patches and Intermediate Patches

All patches are chosen as axis-aligned boxes. We denote the southwest (lower left)
and northeast (upper right) vertex of the rectangular patch π� by

r�
sw = (r �

sw,1, r
�
sw,2) and r�

ne = (r �
ne,1, r

�
ne,2),

respectively. The first N + 1 patches possess the vertices

r�
sw = (0, v(�+1)(q+1)−1) and r�

ne = (1, v(�+1)(q+1)), (7)

for � = 0, . . . , N . We denote these patches as curve patches since each of them
contains the parameter value which is associated with one of the section curves,

(0, 1) × {v̄�} ⊂ π� .

Consecutive curve patches π� and π�+1 are connected by the intermediate patch
π�+N+1 with the vertices

r�+N+1
sw = (0, r �

ne,2) and r�+N+1
ne = (1, r �+1

sw,2),

for � = 0, . . . , N − 1.
Summing up, all the patches are horizontal stripes with width 1. The height of the

curve patches is determined by a single knot span of the knot vector V , while the
height of the intermediate patches is equal to q knot spans.

Now we discuss the choice of the knot vectorU� and the associated degree p� for
each patch. Again we distinguish between curve and intermediate patches.

The curve patch π�, � = 0, . . . , N , simply inherits the degree p� and the knot
vector T� from the corresponding section curve c�(u). The intermediate patch π�,
� = N + 1, . . . , 2N , has the degree
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Fig. 2 Example for a simple
patchwork hierarchy H .
Blue lines represent the knot
lines, black lines are patch
boundaries and dashed red
lines illustrate the parameter
lines v = v̄k

p� = max{p�−N−1, p�−N }.

The corresponding knot vector is obtained by first applying degree elevation to the
knot vectors U�−N−1 and U�−N and then performing knot insertion until one arrives
at a knot vector U� that is the union of the degree elevated knot vectors, where each
knot is considered with multiplicity.

The resulting patchwork hierarchy, which is fully determined by the given section
curves, will be denoted as H . Figure2 shows an instance of such a hierarchy for 5
section curves of maximum smoothness and degrees pk = q = 3.

Basis Construction

Applying the selection mechanism (6) to the patchwork hierarchy H generates sets
of basis functions with associated index sets

K� = {(i, j) : i = 0, . . . ,m�, j = �(q + 1), . . . , (� + 1)(q + 1) − 1},

for � = 0, . . . , N and
K� = ∅,

for � > N . In fact, we select m�(q + 1) basis functions from each curve patch and
none from the intermediate patches. The total number of selected functions is equal to
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|K | = (q + 1)
N∑

�=0

m�.

Corollary 1 The patchwork hierarchy H satisfies S2C and SMC.

Proof. The shadow of a curve patch π� is an axis-aligned box with lower-left and
upper-right corners

r̂�
sw = (0, v�(q+1)) and r̂�

ne = (1, v(�+2)(q+1)−1),

respectively. These vertices can be rewritten as

r̂�
sw =

{
(0, 0), if � = 0,

(0, r �−1
ne,2), otherwise,

and r̂�
ne =

{
(1, 1), if � = N ,

(1, r �+1
sw,2), otherwise.

.

Thus, the shadow π̂ � extends only to the neighboring intermediate patches, which
possess a level larger than �. Moreover, the shadows of the intermediate patches are
empty. The first part of S2C is therefore satisfied.

For the second part of S2C we note that the construction of the vectorsU� implies
that S�−N−1 ⊆ S� and S�−N ⊆ S� for � = N + 1, . . . , 2N . Thus, S2C is fulfilled by
the patchwork hierarchy H .

Now we consider SMC. Note that S2C implies SMC for all pairs of neighboring
patches π k and π� with k < � and π̂ k ∩ π� �= ∅. Since no other pairs of neighboring
patches exist in H , we conclude that SMC is also satisfied. �

Theorem 3 The Patchwork B-splines defined on H form a partition of unity,

2N∑

k=0

∑

(i, j)∈K k

Ni,pk ,Uk (u)N j,q,V (v) = 1, for (u, v) ∈ Ω. (8)

Proof. Recall that the tensor-product B-splines Ni,p�,U�
N j,q,V with (i, j) ∈ J� form

a partition of unity on [0, 1]2. We consider the restriction to π� and obtain

∑

(i, j)∈J�

(Ni,p�,U�
N j,q,V )|π� �=0

Ni,p�,U�
(u)N j,q,V (v) = 1, for (u, v) ∈ π�. (9)

This summation considers the indices

{(i, j) : i = 0, . . . ,m�, j = �(q + 1), . . . , (� + 1)(q + 1) − 1} (10)
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for � = 0, . . . , N , and

{(i, j) : i = 0, . . . ,m�, j = (� − N − 1)(q + 1) + 1, . . . , (� − N + 1)(q + 1) − 2}
(11)

for � = N + 1, . . . , 2N .
First, we show the partition of unity on a curve patch π�, with � = 0, . . . , N . The

left-hand side of (8) evaluates to

2N∑

k=0

∑

(i, j)∈K k

Ni,pk ,Uk (u)N j,q,V (v) =
∑

(i, j)∈K�

Ni,p�,U�
(u)N j,q,V (v), for (u, v) ∈ π�.

Since the index setK� coincides with the set in (10), the partition of unity is implied
by (9).

Second, when considering the restriction to an intermediate patch π�, with � =
N + 1, . . . , 2N , we observe that the only functions that contribute to the sum on the
left-hand side in (8) possess the indices

�−N⋃

k=�−N−1

{(i, j) ∈ Jk : (Ni,pk ,Uk N j,q,V )|
π k∩π� �= 0}.

Therefore, this left-hand side can be rewritten as

(
m�−N−1∑

i=0

Ni,p�−N−1,U�−N−1(u)

) ⎛

⎝
(�−N )(q+1)−1∑

j=(�−N−1)(q+1)+1

N j,q,V (v)

⎞

⎠ +
(
m�−N∑

i=0

Ni,p�−N ,U�−N (u)

) ⎛

⎝
(�−N+1)(q+1)−2∑

j=(�−N )(q+1)

N j,q,V (v)

⎞

⎠ , for (u, v) ∈ π�.

The two sums with index i are equal to one, according to the partition of unity
property of univariate B-splines. Merging the remaining two sums confirms (8) on
π�, since the summation with respect to j is in agreement with the index set defined
in (11). �

Since the selected B-splines defined by H satisfy S2C and SMC, they form a basis
of the associated patchwork spline space according to Theorem 2. This fact enables
us to obtain the following result.

Theorem 4 The patchwork spline space P defined by the hierarchy H contains the
coordinate functions of the lofting surface sblend(u, v), which is generated by the
blending-based approach.
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Proof. We show that the restrictions of sblend(u, v) to the patches π� belong to the
associated spline spaces S�. Recall that

sblend(u, v) =
N∑

k=0

mk∑

i=0

q∑

r=0

di,k Ni,pk ,Tk (u)Nk(q+1)+r,q,V (v).

First we consider a curve patch π�, � = 0, . . . , N . We obtain

sblend(u, v) =
m�∑

i=0

q∑

r=0

di,�Ni,p�,T�
(u)N�(q+1)+r,q,V (v), for (u, v) ∈ π�.

By comparing the knot vectors we find

sblend(u, v) =
∑

(i, j)∈K�

di,�Ni,p�,U�
(u)N j,q,V (v), for (u, v) ∈ π�,

which implies that the restriction of sblend(u, v) to the curve patch π� is contained in
S� for � = 0, . . . , N .

Second, for the intermediate patches π�, � = N + 1, . . . , 2N , we obtain

sblend(u, v) =
�−N∑

k=�−N−1

∑

(i, j)∈K k

di,k Ni,pk ,Uk (u)N j,q,V (v), for (u, v) ∈ π�.

Assumption S2C guarantees that

S�−N−1 ⊆ S� and S�−N ⊆ S�, (12)

which implies that the restriction of sblend(u, v) to the intermediate patch π� is con-
tained in S� for � = N + 1, . . . , 2N .

In addition, we need to verify the smoothness property (ii). This follows imme-
diately from (12) as well and completes the proof. �

4.3 Comparison with Other Adaptive Splines

For section curves of uniform degrees p = p�, where � = 0, . . . , N , the basis con-
structed on the patchwork hierarchy H can equivalently be generated by other adap-
tive spline constructions.We focus on (analysis-suitable) T-splines and LRB-splines,
e.g., see [2, 13].



Lofting with Patchwork B-Splines 91

Fig. 3 The T-mesh that
defines the same basis as the
patchwork hierarchy in Fig. 2

First, we consider T-splines on the T-mesh defined by horizontal lines with start
points (0, vi ) and end points (1, vi ) for all knot values vi ∈ V , where V is computed
as for the PB-splines, and vertical lines with start and end points

(
ω, r �

sw,2 −
⌊q
2

⌋)
and

(
ω, r �

ne,2 +
⌊q
2

⌋)
,

for all inner knot values ω ∈ U� \ {0, 1}, � = 0, . . . , N . The values r �
sw,2 and r �

ne,2
are defined in (7). Thus, the knot lines of the section curves extend over q knot
spans with respect to V when considering odd degrees and q + 1 knot spans for
even degrees. The T-splines defined on this T-mesh are analysis-suitable since no
horizontal T-junction extensions exist. Figure3 shows the T-mesh that defines the
same basis as the patchwork hierarchy in Fig. 2.

Second, we construct a collection of LR B-splines, starting from a tensor-product
mesh that possesses no inner knots in u-direction and a knot vector V as for the
PB-splines. We perform meshline insertions with start point (ω, r �−1

ne,2) and end point
(ω, r �+1

ne,2) for each inner knot ω ∈ U� \ {0, 1}, for � = 0, . . . , N . The resulting mesh
is the same that defines the patchwork hierarchy H . Note that the insertion of the
meshlines can be formulated as a series of primitive meshline extensions, where
we insert a new meshline spanning q elements and extend it (q + 1) times by a
single element. Therefore, linear independence is guaranteed by the theory of LR
B-splines [6].

Note that this equivalence with T-splines and LR B-splines is limited to the case
of uniform degrees for all section curves, since these constructions do not support
non-uniform degrees.
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4.4 Constrained Optimization

Theorem4guarantees that the patchwork spline space P contains at least one solution
of the lofting problem. Uniqueness, however, is not guaranteed. We use numerical
optimization to identify the ‘best’ solution.

In order to construct the PB-spline lofting surface we solve a constrained opti-
mization problem where we minimize an energy term subject to the interpolation
conditions,

minimize J (s) =
∫

Ω

(∂vvs(u, v))2 ,

subject to s(u, v̄k) = ck(u), for all k = 0, . . . , N .

On the patchwork hierarchy H , the interpolation conditions can be rewritten as

(k+1)(q+1)−1∑

j=k(q+1)

cki, j N j,q,V (v̄k) = di,k, for all i = 0, . . . ,mk, and k = 0, . . . , N .

By using the method of Lagrange multipliers we obtain the system

(
E BT

B 0

)(
c
λ

)
=

(
0
d

)
,

of linear equations, which is solved for the unknowns

c = (c�
i, j )�=0,...,N ; (i, j)∈K� ,

and the Lagrange multipliers

λ = (λi,k)k=0,...,N ; i=0,...,mk .

The vector
d = (di,k)k=0,...,N ; i=0,...,mk

contains the control points of the given section curves. The |K | × |K | energy matrix
E possesses the elements

e(�1,i1, j1),(�2,i2, j2) = 2
∫∫

Ω

Ni1,p�1 ,U�1
(u)Ni2,p�2 ,U�2

(u)∂vvN j1,q,V (v)∂vvN j2,q,V (v)du dv,

for �k = 0, . . . , 2N and (ik, jk) ∈ K�k . The integrals in the above expression can be
solved exactly by a Gaussian quadrature rule with 
 p+q−1

2 � points in each coordi-

nate direction where p = maxk=0,...,N pk . For the (
∑N

k=0 mk + 1) × |K | constraints
matrix B we obtain
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b(�,i),(�,i, j) = N j,q,V (v̄�),

for � = 0, . . . , N , i = 0, . . . ,m� and (i, j) ∈ K�. Note that the elements of B depend
only on � and j , therefore, b(�,i1),(�,i1, j) = b(�,i2),(�,i2, j) for any i1, i2 = 0, . . . ,m�.

5 Results

This section presents four lofting examples where we compare the results of using
tensor-productB-splineswith PB-splines. The blending-based lofting is not included,
since the surface quality of this method is not satisfactory.

We start with two academic examples. In the first one, we consider curves of
uniform degrees with highest order smoothness. For the second example, we use
curves of varying degrees and knot multiplicities larger than 1. Furthermore, we
present two real world examples, provided by our industrial partner MTU Aero
Engines, where we construct a surface from a wireframe model consisting of 41
periodic curves with 153 control points each. In this case we use periodic PB-splines,
which are straightforwardly obtained in the same way as periodic tensor-product B-
splines.

We choose degree q = 3 for all examples.

First Example

Consider the 21 section curves of uniform degrees pk = 3 and maximum smooth-
ness, which are shown in Fig. 4, left. The two lofting surfaces by tensor-product
splines and PB-splines are virtually identical, and therefore we visualize only one
of them, see Fig. 4, right. The maximum deviation between the surfaces stp(u, v)
and spb(u, v) does not exceed 2.5e − 4% of the diameter of the bounding box. The
tensor-product surface has 2507 (100%) control points, whereas the PB-spline sur-
face needs only 756 (30.2%). Figure5 depicts the meshes in the parameteric domain
for the tensor-product B-splines (left) and PB-splines (right), respectively. The knot
lines of the tensor-product mesh extend over the entire unit square, while the patch-
work hierarchy contains the knots of the curves only in a certain region around the
associated parameter lines v = v̄k .

Second Example

Consider the 11 section curves of varying degrees pk between 2 and 4, see Fig. 6, left.
Moreover, the knot vectors Tk contain knots with higher multiplicities, which even
causes the loss of differentiability. In this case, the maximum deviation between the
two results is smaller than 0.35% of the diameter of the bounding box. The tensor-
product surface has 1599 (100%) control points, whereas the PB-spline surface needs
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Fig. 4 Section curves and corresponding lofting surface spb(u, v) for the first example

Fig. 5 2D meshes for tensor-product B-splines (left) and PB-splines (right). The black lines in the
right picture represent the patch boundaries

Fig. 6 Section curves and corresponding lofting surface spb(u, v) for the second example

only 508 (32%). Furthermore, the tangent discontinuities of the section curves extend
to the entire tensor-product spline surface, while affecting only some patches of the
PB-spline surface, see Fig. 7. The 2D meshes for both methods are illustrated in
Fig. 8. Note that the different colors of the knot lines correspond to different orders
of smoothness.
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Fig. 7 Reflection lines on the tensor-product spline surface (left) and the PB-spline surface (right)
illustrate the propagation of the tangential discontinuities

Fig. 8 2Dmeshes for tensor-product B-splines (left) and PB-splines (right) for the second example.
The colors encode the degree of smoothness across knot lines, C0 (red), C1 (orange), C2 (blue)
and C3 (green). Bold lines represent patch boundaries

Third Example

In the first industrial example we consider the wireframe model of a bulky airfoil
with 41 periodic curves of degree 3 with maximum smoothness. Lofting with tensor-
product B-splines requires 262,816 (100%) control points. When using PB-splines
we obtain a surface with only 24,600 (9.4%) control points. The maximum deviation
between the airfoilswith a total height of 0.15m is 0.04µm.Figure9 shows the section
curves on the left, followed by the lofting surface with reflection line analysis.
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Fig. 9 Section curves and the resulting lofting surface with reflection lines for the third example

Fig. 10 Section curves and the resulting lofting surface with reflection lines for the fourth example

Fourth Example

Example 4 is similar to the previous example. The only difference lies in the shape of
the airfoil, which is rather thin and elongated. The tensor-product surface possesses
262,773 (100%) control points, while the PB-spline surface is defined by 24,600
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(9.4%) control points. As before, the differences in the surfaces are marginal with a
maximum deviation of 0.016µm for an airfoil height of 0.117m. Figure10 depicts
the section curves and the lofting surface with reflection line analysis.

6 Conclusion

We applied the recently introduced framework of Patchwork B-splines (PB-splines)
[3] to the construction of lofting surfaces. Especially, when considering a large num-
ber of section curves with many control points defined on disjoint knot vectors, the
PB-splines offer a substantial advantage: The adaptivity of the PB-splines enables
us to generate high-quality lofting surfaces with fewer control points compared to
the standard tensor-product B-spline approach, where repeated global knot inser-
tion is required. Moreover, the patchwork structure helps to limit the propagation of
derivative discontinuities.

In contrast to the algorithms proposed in [10, 15] the PB-spline lofting provides
an exact interpolation of the section curves. Also, while [9] presents an algorithm for
periodic cubic splines of C0- and C2-smoothness, we provide a very flexible method
that works for arbitrary section curves. More precisely, these can be periodic, defined
on knot vectors with varyingmultiplicities and possess different polynomial degrees.
The use of an energy term, which was mentioned but not yet implemented in [9],
leads to visually pleasing surfaces without bumps between the section curves.

Furthermore, a PB-spline surface can be exported as collections of standard tensor-
product spline surfaces, thereby providing a simple way to use them in an existing
CADenvironment. The resultingmodel consists of 2N + 1 faces. Clearly, the built-in
smoothness will not be preserved when performing additional control point modifi-
cations within CAD.

Finally, in the case of uniform degrees, we observed that the PB-splines used for
constructing the lofting surface can equivalently be seen as analysis-suitableT-splines
[13] or LR B-splines [2], defined by suitable meshes. The extension to non-uniform
degrees, however, is not covered by these two existing constructions.

Acknowledgements Supported by the Austrian Science Fund (FWF) though NFN S117 “Geom-
etry + Simulation”. The authors thank MTU Aero Engines AG for kindly providing the airfoil data
sets.
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A Study on Spline Quasi-interpolation
Based Quadrature Rules for the
Isogeometric Galerkin BEM

Antonella Falini and Tadej Kanduč

Abstract The two recently introduced quadrature schemes in [7] are investigated for
regular and singular integrals, in the context of boundary integral equations arising
in the isogeometric formulation of the Galerkin Boundary Element Method (BEM).
In the first scheme, the regular part of the integrand, consisting of a B-spline and
of an auxiliary function, is approximated by a suitable quasi-interpolant spline. In
the second scheme, the auxiliary function is approximated by applying the quasi-
interpolation operator and then the product of the two resulting splines is expressed
as a linear combination of particular B-splines. The two schemes are tested and
compared against other standard and novel methods available in the literature to
evaluate different types of integrals arising in the Galerkin formulation. When h-
refinement is performed, numerical tests reveal that under reasonable assumptions,
the second scheme provides the optimal order of convergence, even with a small
amount of quadrature nodes. The quadrature schemes are validated also in numerical
examples to solve 2D Laplace problems with Dirichlet boundary conditions.

1 Introduction

The Boundary Element Method (BEM) is a numerical technique to transform the
differential problem into an integral one, where the unknowns are defined only on
the boundary of the computational domain (see, e.g., [9, 25] and references therein).
The main two advantages of the method are the dimension reduction of the problem
and the simplicity to treat external problems. As a major drawback, the integral
formulation involves Boundary Integral Equations (BIEs), which contain singular
kernel functions. Therefore, robust and precise quadrature formulae are necessary

A. Falini · T. Kanduč (B)
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to provide an accurate numerical evaluation. The solution of the considered BIE is
then obtained by collocation or Galerkin procedures.

The isogeometric formulation of boundary element method (IgA-BEM) has been
successfully applied to 2D and 3D problems, such as linear elasticity [27], fracture
mechanics [22], acoustic [28] and Stokes flows [16]. Recently, the IgA paradigm
has been combined with the Symmetric Galerkin Boundary Element Method (IgA-
SGBEM), which has revealed to be very effective among BEM schemes (see [3, 4,
13, 14, 21] and references therein). Moreover, the full potential of B-splines over the
more common Lagrangian basis has been recently exploited in the assembly stage
of the system matrix in [1].

In thisworkwe frame the two quadrature procedures in [7] in aGalerkin IgA-BEM
for the 2D Laplace problem with Dirichlet boundary conditions. In particular, the
derived quadrature formulae are obtained using a quasi-interpolation (QI) operator,
firstly introduced in [18] and then applied to construct quadrature rules for regular
integrals in [19]. The second procedure has been successfully applied in a Galerkin
adaptive BEM using hierarchical B-splines in [11]. The authors also provided some
theoretical results on the convergence order of the quadrature rule,when h-refinement
is performed.

In this paper we experimentally test both procedures in [7] for the regular and
weakly singular integrals occurring in the Galerkin formulation. We compare the
achieved accuracy with other quadratures available in the literature and suitable
for the evaluation of the assayed boundary integrals; namely the methods in [1,
5, 8, 15, 29]. Moreover, we recall some results on perturbed Galerkin BEM to
provide an estimate for the asymptotic accuracy of the quadratures required to obtain
the optimal order of convergence. The accuracy of the methods is compared also
by computing Galerkin solutions for different 2D Laplace problems with Dirichlet
boundary conditions.

The structure of the paper is as follows. Section2 explains the isogeometric
Galerkin BEM. Section3 is devoted to the adopted quadrature rules based on quasi-
interpolation. Section4 deals with the accuracy of the considered quadratures for
different types of integrals. Three numerical examples to model 2D Laplace prob-
lems are presented in Sect. 5. Finally, some conclusions follow in Sect. 6.

2 BEM Formulation for Interior and Exterior Laplace
Problems

In Sect. 2.1 we summarise the main features of the BEM formulation for the 2D
Laplace problem with Dirichlet boundary conditions and we derive the considered
boundary integral equations. Then, in Sect. 2.2, following the isogeometric paradigm,
both the boundary representation and the approximate solution are expressed in
a B-spline basis. In Sect. 2.3, the governing boundary integrals for the Galerkin
discretization are recalled.
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2.1 BEM Formulation for Laplace Problems

In the present work two different domains are considered: open, bounded, simply
connected domains Ω ⊂ R

2 and unbounded ones, external to an open bounded arc
Γ , Ω = R

2 \ Γ . The solution of the Laplace problem is to find u ∈ H 1(Ω) that
satisfies {

Δu = 0 in Ω ,

u = uD on Γ .
(1)

Given the differential problem (1), the boundary element method provides an
integral formulation, where the unknown is defined only on the boundary of the
considered computational domain [9, 25]; in particular, in the rest of the subsection
we follow the derivation presented in [9]. In potential theory we can express the
solution u in terms of double layer and single layer potentials using the representation
formula,

u(x) = − 1

2π

∫
Γ

∂nyU (x, y) [u(y)] dΓy + 1

2π

∫
Γ
U (x, y) [∂ny u(y)] dΓy, x ∈ R

2 \ Γ.

(2)

The symbol ∂n denotes the normal derivative with respect to the exterior unit normal
vector n on Γ . The harmonic function u is supposed to be regular both in Ω and in
R

2 \ Ω with different boundary values on both sides of Γ . The jump of a function v
across Γ is defined as

[v(x)] := v|R2\Ω(x) − v|Ω(x), x ∈ Γ.

The function − 1
2πU is the fundamental solution of the 2D Laplace operator,

U (x, y) := log ‖x − y‖2.

By applying the trace operator to Eq. (2) we can derive a specific Boundary Integral
Equation (BIE) according to certain assumptions onR2 \ Ω . The derived BIE allows
us to compute the missing boundary datum.

When Γ is a bounded open curve, which does not separate R2 into two disjoint
domains, the external problem is modeled by setting [u]Γ ≡ 0 and the resulting BIE
can be written as

uD(x) = − 1

2π

∫
Γ

U (x, y) φ(y) dΓy, x ∈ Γ. (3)

In (3) the unknown density function φ(y) := [∂ny u(y)] ∈ H̃−1/2(Γ ) represents the
jump of the flux of the solution u. The space H̃−1/2(Γ ) is the dual space of the frac-
tional Sobolev space H 1/2(Γ ), where the duality is defined with respect to the usual
L2(Γ )-scalar product.
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In case of an interior problem we assume u|R2\Ω ≡ 0. The resulting BIE reads

1

2
uD(x) = 1

2π

∫
Γ

∂nyU (x, y) uD(y) dΓy − 1

2π

∫
Γ

U (x, y) φ(y) dΓy, x ∈ Γ,

(4)

and the unknown function φ(y) := ∂ny u(y) ∈ H̃−1/2(Γ ) is the flux of u.
Thus, we have reformulated the original Laplace problem (1) in terms of BIE (3)

and (4). The latter formulation has a clear physical meaning in terms of variables
and it is called the direct approach.

Both integral Eqs. (3) and (4) are referred to as the Symm’s integral equation

Vφ(x) = f (x), x ∈ Γ, (5)

where the operator V : H̃−1/2(Γ ) → H 1/2(Γ ) is defined by

Vφ(x) := − 1

2π

∫
Γ

U (x, y) φ(y) dΓy.

The operator is elliptic if the domain is properly scaled, e.g., its diameter is less
than 1. The right-hand side f in (5) is given by uD in the case of the exterior problem
(3), or as

1

2
uD(x) − 1

2π

∫
Γ

∂nyU (x, y) uD(y) dΓy

in the case of the interior problem (4).

2.2 B-Splines

A knot vector T = {t1, . . . , tN+d+1} is defined as a non-decreasing sequence of knots:

t1 ≤ · · · ≤ td+1 =: a < td+2 ≤ · · · ≤ tN < tN+1 =: b ≤ · · · ≤ tN+d+1.

By removing repeated knots from T we obtain the breakpoints of T. The vector T
defines a univariate B-spline basis on [a, b] of cardinality N and polynomial degree
d; the basis is defined by the well-known recursion formula [6]:

Bi,0(t) := B(T)
i,0 (t) :=

{
1, if ti ≤ t < ti+1,

0, otherwise,

Bi,r (t) := ωi,r (t) Bi,r−1(t) + (
1 − ωi+1,r (t)

)
Bi+1,r−1(t), r = 1, . . . , d,
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where

ωi,r (t) :=
{ t−ti

ti+r−ti
, if ti < ti+r ,

0, otherwise.

B-splines span a space of splines Ŝ, whose smoothness depends on the multiplicities
of the breakpoints in T. An interior breakpoint ti has multiplicity m ≥ 1 if its value
appears m times in T; the space Ŝ has a regularity Cd−m at ti . If m > 1, then ti is
called multiple, otherwise it is simple.

It is common to assume that the boundary Γ can be parametrized by a parametric
B-spline curve F : [a, b] → Γ ⊂ R

2, written in the B-form,

F :=
N∑
i=1

di Bi,d .

An ordered set of control points in R2 is denoted by {di }i=1,...,N .
To recover the interpolation of the first and the last control point, an open knot

vector is constructed by setting t1 = · · · = td = a and tN+2 = · · · = tN+d+1 = b.
This is a standard choice to define open curves.

For a closed curve, i.e., F(a) = F(b), it is more convenient to introduce a periodic
definition of the auxiliary knots. To address also the case of a knot vector with
multiple knots, we introduce ρ := d − m + 1, where m is the multiplicity of the
knot a. In particular, when the knots are simple, ρ = d. The splines are defined on a
periodic knot vector, thus we identify each pair {Bi,d , BN−ρ+i,d}, i = 1, 2, . . . , ρ, as
one periodic basis function, denoted by Bi,d and defined on two disjoint intervals on
[a, b]. For the periodic compatibility it is sufficient that the 2ρ knot differences on
the left are identical to the 2ρ ones on the right, ti+1 − ti = tN−ρ+i+1 − tN−ρ+i for
i = 1, . . . , 2ρ. Furthermore, di = dN−ρ+i for i = 1, . . . , ρ. See [12, Sect. 10.7] for
more details.

2.3 Galerkin Formulation

For both exterior and interior problems, the solution φ of the considered BIE (3) and
(4) belongs to the Sobolev space H̃−1/2(Γ ). The variational formulation of (5) is
(see [30]):

for uD ∈ H1/2(Γ ), find φ ∈ H̃−1/2(Γ ) such that A(φ,ψ) = F (ψ), ∀ψ ∈ H1/2(Γ ),

(6)

where the bilinear formA(φ,ψ) and right-hand side F (ψ) are defined as

A(φ,ψ) :=
∫

Γ

ψ(x) Vφ(x) dΓx , F (ψ) :=
∫

Γ

ψ(x) f (x) dΓx . (7)
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When applying the Galerkin method on (6), the infinite dimensional solution
space H̃−1/2(Γ ) in (6) is approximated by a finite dimensional subspace Sh . The
parameter h is related to the discretization step size of the subspace Sh , and the
subspace is generated by the lifted B-splines defined on Th,

Sh :=
〈
B(Th)
1,d ◦ F−1, B(Th)

2,d ◦ F−1, . . . , B(Th)
N ,d ◦ F−1

〉
. (8)

Let us introduce coordinates s, t ∈ [a, b] ⊂ R in the parametric domain,

s := F−1(x), t := F−1(y).

Then the weak form of the exterior problem (3) reads

∫
Di

B(T)
i,d (s) J (s) uD(F(s)) ds

= − 1

2π

∫
Di

B(T)
i,d (s) J (s)

∫ b

a
U (F(s),F(t)) φh(F(t)) J (t) dt ds, i = 1, . . . , N ,

(9)

where B(T)
i,d are the test functions of the problem defined on a knot vector T for some

fixed h, Di := supp B(T)
i,d and φh ∈ Sh is the approximate solution of φ. The function

J denotes the parametric speed of the curve,

J (·) := ‖F′(·)‖2.

For the interior problem, the corresponding BIE follows from (4),

1

2

∫
Di

B(T)
i,d (s) J (s) uD(F(s)) ds

= 1

2π

∫
Di

B(T)
i,d (s) J (s)

∫ b

a
∂nt U (F(s),F(t)) uD(F(s)) J (t) dt ds

− 1

2π

∫
Di

B(T)
i,d (s) J (s)

∫ b

a
U (F(s),F(t)) φh(F(t)) J (t) dt ds, i = 1, . . . , N .

(10)

To separate the geometrical influence from the singular contribution of the kernel
U (F(s),F(t)) = log ‖F(s) − F(t)‖2, we split U into two functions: K1 regular and
K2 weakly singular, defined as

K1(s, t) = 1

2
log

‖F(s) − F(t)‖22
δ2(s, t)

, K2(s, t) = log δ(s, t).
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Thus U (F(s),F(t)) =: K1(s, t) + K2(s, t). To obtain a regular K1, the function δ

needs to be chosen according to the type of domain. Following the idea from [11], it
is defined as:

δ(s, t) :=
⎧⎨
⎩

|s − t |, ifΓ is an open curve,

|s − t | |(s − t)2 − γ 2|
γ 2

, ifΓ is a closed curve,
(11)

with γ = b − a being the length of the parametric interval.
By writing the approximate solution φh ∈ Sh in terms of B-splines as

φh =
N∑
j=1

α j B
(T)
j,d ◦ F−1,

and by substituting K1 and K2 in place of U , we can rearrange Eqs. (9) and (10) in
a linear system Aα = β with unknowns α := (α j )

N
j=1. In particular, the matrix A

consists of entries Ai, j = A(1)
i, j + A(2)

i, j given as

A(�)
i, j := − 1

2π

∫
Di

B(T)
i,d (s) J (s) ds

∫
Dj

K�(s, t) B
(T)
j,d (t) J (t) dt, (12)

for i, j = 1, . . . , N and � = 1, 2. The entries of the right-hand side β := (βi )
N
i=1 are

computed according to the type of problem:

• For the exterior problems,

βi :=
∫
Di

B(T)
i,d (s) J (s) uD(F(s)) ds, i = 1, . . . , N . (13)

• For the interior problems, β consists of two terms, β = 1
2β

(1) − 1
2π β(2). We com-

pute the entries of β(1) by (13), while the elements of β(2) as

β
(2)
i :=

∫
Di

B(T)
i,d (s) J (s) ds

∫ b

a
K̄ (s, t) uD(F(t)) dt, i = 1, . . . , N . (14)

Note that the kernel function K̄ (s, t) := ∂ntU (F(s),F(t)) J (t) is regular everywhere
assuming F = (F1, F2) to be C2 smooth. More precisely,

K̄ (s, t) = (F2(s) − F2(t)) F ′
1(t) − (F1(s) − F1(t)) F ′

2(t)

‖F(s) − F(t)‖22
, s �= t,

lim
s→t

K̄ (s, t) = F ′
1(t) F

′′
2 (t) − F ′

2(t) F
′′
1 (t)

2 J 2(t)
,

see [1] for further details.
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3 Quadrature Rules

In this section we summarize the two spline QI-based quadrature rules introduced
in [7]. The quadratures are adopted to evaluate regular and singular integrals that
appear in the system matrix (12) and in the right-hand side vector (13) and (14).
Some implementation aspects are explained afterwards.

3.1 The QI-Based Schemes

The core idea of the quadrature procedures is to express the integrand functions
in terms of simpler functions that can be efficiently integrated. Double integrals
in (12) are split into two single ones. Regular non-piecewise polynomial parts are
approximated by particular quasi-interpolation splines. To simplify and speed up
the implementation of the quadratures we can consider the quadrature nodes to be
uniformly spaced on the integration domain.

To evaluate entries in (12)–(14), the computation of the following two types of
integrals needs to be addressed,

IBi [g] :=
∫
Di

B(T)
i,d (t) g(t) dt, (15)

Iws
i
[g] :=

∫
Di

K2(s, t) B
(T)
i,d (t) g(t) dt, (16)

wherewe denotews
i := K2(s, ·) B(T)

i,d (·) andwe assume g ∈ C(Di ). Integrals (16) are
considered weakly singular if s ∈ Di and nearly singular if s /∈ Di but the distance
between s and Di is sufficiently small. When the distance is sufficiently large, the
integral (16) is regular and it can be considered as a type of (15), where K2(s, ·) is
hidden inside g.

We recall the basic ideas of the spline QI quadrature procedures in [7]. In the
so-called procedure 1 the whole product g̃ := B(T)

i,d g is approximated by a quasi-
interpolant spline σg̃ of a chosen degree p. The QI space is defined on an open
knot vector τ := {τ−p, . . . , τn+p}, with uniform knots τ−p = · · · = τ0 < · · · < τn
= · · · = τn+p and it is constructed locally on the support Di =: [τ0, τn] of every
basis function B(T)

i,d :

Ŝτ := 〈B(τ )
−p,p, . . . , B

(τ )
n−1,p〉.

The breakpoints of τ define n + 1 quadrature nodes localised at Di . By replacing g̃
with the quasi-interpolant σg̃ ,

σg̃ =
n−1∑
k=−p

λk(g̃) B
(τ )
k,p ≈ g̃,
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where λk(g̃) are suitable coefficients, the integrals (15) and (16) are approximated by

IBi [g] ≈
n−1∑
k=−p

λk(g̃)
∫
Di

B(τ )
k,p(t) dt =

n−1∑
k=−p

λk(g̃)

∣∣ supp B(τ )
k,p

∣∣
p + 1

, (17)

Iws
i
[g] ≈

n−1∑
k=−p

λk(g̃)
∫
Di

K2(s, t) B
(τ )
k,p(t) dt, (18)

where | · | stands for the size of the region. In case of integrals (15) the evaluation gets
reduced to the computation of integrals of B-splines using the expression (17) (for
the closed form expressions for integrals of B-splines see, e.g., [26, Sect. 5.4]). For
integrals (16) a preliminary computation of the so-called modified moments μ

(i)
k,p(s)

is needed:

μ
(i)
k,p(s) :=

∫
Di

K2(s, t) B
(τ )
k,p(t) dt. (19)

Explicit formulae to compute the moments are derived in [1, 7] for δ = |s − t |. We
refer to [11], when δ takes the second form in (11), suitable for a closed bound-
ary curve.

Theprocedure 2 differs from theprocedure 1 in the initial step, where only
the function g is approximated by a QI spline σg in the local space Ŝτ of degree p:

σg =
n−1∑
k=−p

λk(g) B
(τ )
k,p ≈ g.

Thereafter, the product B(T)
i,d (·) σg(·) of splines is expressed as a linear combination

of B-splines basis functions spanning the product space Π of degree d + p,

B(T)
i,d σg =

n−1∑
k=−p

λk(g) B
(T)
i,d B(τ )

k,p =
∑
m

ηm B(τΠ)
m,d+p.

The spline space Π is defined on a knot vector τΠ constructed locally on Di and
ηm are the appropriate coefficients in the new basis. For the details on the construc-
tion of the B-spline product space and the representation of the product in the new
basis we refer to [20]. By applying procedure 2, the integrals (15) and (16) are
approximated by the following expressions,

IBi [g] ≈
∫
Di

n−1∑
k=−p

λk(g) B
(T)
i,d (t) B(τ )

k,p(t) dt =
∑
m

ηm

∣∣ supp B(τΠ)
m,d+p

∣∣
d + p + 1

, (20)
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Iws
i
[g] ≈

∫
Di

K2(s, t)
n−1∑
k=−p

λk(g) B
(T)
i,d (t) B(τ )

k,p(t) dt =
∑
m

ηm

∫
Di

K2(s, t) B
(τΠ)
m,d+p(t) dt

=
∑
m

ηm μ
(i)
m,d+p(s). (21)

Clearly, choosing a good QI operator is of fundamental importance to obtain
accurate quadrature rules. In our study we adopt the Hermite type QI introduced in
[18] and its derivative free variant [19], already framed in a singular integrals context
in [7].

The quasi-interpolant spline σg , obtained by the adopted QI operator for a given
function g, is defined on a knot vector τ with n + 1 breakpoints and it can be written
in B-form as

σg =
n−1∑
j=−p

λ j (g) B
(τ )
j,p. (22)

For the scheme in [18] the coefficients λ j (g) in (22) are defined as a suitable
linear combination of a local subset of values of g and g′ at the spline breakpoints.
For instance, for p = 2 they can be computed as

λ j (g) = 1
2

(
g(τ j+2) + g(τ j+1)

) − τ j+2−τ j+1
4

(
g′(τ j+2) − g′(τ j+1)

)
, j = −1, . . . , n − 2,

λ−2(g) = g(τ0), λn−1(g) = g(τn).

This p-degree quasi-interpolation scheme is a projector on the considered spline
space and has the optimal approximation order p + 1 in the infinity norm for g ∈
C p+1([τ0, τn]).

If the variant scheme in [19] is chosen, then the g′ values necessary to compute λ j

in (22), are approximated using a suitable finite difference formula. Also this scheme
has optimal approximation order, but it is not a projector.

The asymptotic approximation order does not directly depend on n, however n
should satisfy n ≥ p + 1 if p is odd and n ≥ p + 2 if p even. This condition gives
us the lowest number of quadrature nodes that can be utilized in the two considered
QI-based quadrature schemes. When B(T)

i,d has the maximum regularity, then if d

is odd the quadrature nodes can be chosen as the knots of B(T)
i,d . For the derivative

free variant and even d an additional node is needed to correctly utilize the finite
difference formula; it can be chosen as the midpoint between the two central knots.

As reported in [19], the introduced QI-based quadrature formulae for regular
integrals are competitivewith respect to otherQI-based schemes (see for instance [23,
24]), thanks to the usage of the additional derivative information. The quadrature rules
for singular integrals based on the variant QI scheme [19] also exhibit a competitive
or superior behaviour when compared to others QI-based schemes, see [7] for more
details.
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3.2 Implementation Aspects

When evaluating the modified moments, numerical instability issues might occur.
In this subsection we provide an approach to circumvent this problem. A simple
observation that can speed up the computation of the modified moments is given
afterwards. Some insights regarding additional restrictions related to procedure 1
in the BEM context are stressed at the end.

The derived quadrature techniques (18) and (21) can be applied to evaluate
integrals Iws

i
[g] also in case of regular integrals. Nevertheless, we experimentally

observed that the computation of the modified moments in (19) exhibits numerical
instability as the distance between s and Di increases; similarly as it was observed
for Legendre polynomial-based modified moments [2]. Furthermore, the instabil-
ity increases at a fixed distance, when Di gets smaller and when the spline degree
p in μ

(i)
k,p(s) increases. Therefore, when Iws

i
[g] is regular, it is advisable to adopt

regular-based quadrature rules (17) and (20).
When computing the analytical expression of a regular modified moment in [1, 7,

11] in finite arithmetic, a loss of significance in the computation might occur, since
the operations contain addends of similar sizes but different signs. Besides using
a higher precision arithmetic, the instability effect can be reduced by a tolerance
switch: if Di is far enough from the singularity s, the integrand function K2 is a
well-behaved function and the corresponding modified moments can be efficiently
evaluated with a quadrature rule for regular integrals.

Singular integrals (16) consist of more involved computational steps than the reg-
ular integrals (15), mainly due to prerequisite computation of the modified moments.
The amount of precomputed values can be greatly reduced if we consider a uniform
mesh and all the shape functions B(T )

i,d are obtained by shifting one instance. In that

setting the valueμ
(i)
k,p(s) in (19) depends only on the relative position of s with respect

to the B-spline factor:

• if Di ′ = Di + s ′, then μ
(i ′)
k,p(s

′) = μ
(i)
k,p(s),

• if B(τ )
k+k ′,p(· + s ′) = B(τ )

k,p(·) for the two basis function constructed on Di , then

μ
(i)
k+k ′,p(s + s ′) = μ

(i)
k,p(s).

Moreover, we do not need to completely compute new modified moments when
switching to a finer mesh. If B

(τ h/�)

k ′,p ((t − ζ )/�) = B(τ h)
k,p (t) for some ζ ∈ R and � s +

ζ ∈ [a, b], and Di ′ = (Di − ζ )/�, then the moment μ
(i ′)
k ′,p(s) for the finer mesh can

be obtained from μ
(i)
k,p(� s + ζ ) on a coarser mesh by the expression

μ
(i ′)
k′,p(s) =

∫
Di ′

log |s − t | B(τh/�)

k′,p (t) dt

= 1

�

∫
Di

log

∣∣∣∣ � s + ζ − t

�

∣∣∣∣ B
(τh/�)

k′,p

(
t − ζ

�

)
dt = 1

�
μ

(i)
k,p(� s + ζ ) − log �

�

∣∣ supp B(τh )

k,p

∣∣
p + 1

.
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A similar approach can be applied when δ in (11) for closed curves is considered. In
this casewe are left to derive the expressions for the remaining two terms in the kernel

log δ(s, t) = log

(
|s − t | |(s − t)2 − γ 2|

γ 2

)
= log |s − t | + log

|(s − t) + γ |
γ

+ log
|(s − t) − γ |

γ
.

If B
(τ h/�)

k ′,p ((t − ζ )/�) = B(τ h)
k,p (t) for some ζ ∈ R and � s ± (� − 1)γ + ζ ∈ [a, b], and

Di ′ = (Di − ζ )/�, then

∫
Di ′

log
|(s − t) ± γ |

γ
B(τ h/�)

k′,p (t) dt = 1

�

∫
Di

log
|(� s + ζ − t) ± � γ |

� γ
B(τ h/�)

k′,p

(
t − ζ

�

)
dt

= 1

�

∫
Di

log
|(� s ± (� − 1)γ + ζ − t) ± γ |

γ
B(τ h )
k,p (t) dt

− log �

�

∣∣ supp B(τ h )
k,p

∣∣
p + 1

.

The asymptotic accuracy of a quadrature rule is affected by the accuracy of the
approximated function g in IBi [g] and Iws

i
[g]. The quasi-interpolation operator in

[18] is a projector, i.e., σg = g for g = B(T )
i,d , if B(T )

i,d ∈ Ŝτ , see [18] for details. The
projector property implies p ≥ d and T to be a subset of τ on Di . Hence, IBi [C]
and Iws

i
[C] can be computed exactly by procedure 1 for any constant C , when

the projector operator is used. If the rule is exact only for constant functions, we can
expect the asymptotic accuracy O(h) for the QI operator, and the overall accuracy
O(h2) for the corresponding quadrature scheme.More precisely, one additional order
is obtained due to reduction of the integration domain in the h-refinement procedure.

To obtain higher approximation order for procedure 1, QI splines with higher
degree should be employed. Furthermore the knot vector τ should have multiple
knots to satisfy B(T )

i,d ∈ Ŝτ and a suitable generalization of the operator [18] should
be developed. Another possible limitation of such quasi-interpolation operator is that
the construction of the approximant involves also derivatives of g, which might not
be available for all the considered integrals (e.g., in the outer integrals of A and in β).

The derivative free quasi-interpolant variant [19] bypasses the latter limitation
and it has the same approximation order as the former operator. However, the latter
operator is not a projector and hence it is not applicable in procedure 1 to obtain
exact values of IBi [C] and Iws

i
[C]. On the other hand, the derivative free variant is

a preferable choice for the procedure 2, where the projector is not needed since
the quasi-interpolant is constructed only for g.

4 Accuracy of the Quadrature Rules for the Boundary
Integrals

Tomeasure the accuracy of the derived spline quasi-interpolation quadrature schemes
procedure 1 and procedure 2, from now on denoted by QI1 and QI2, we
perform numerical tests for different types of integrals. The tests comprise of regular
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(15) and singular integrals (16), that appear in the system matrix A and in the right-
hand side vector β. The quadratures are tested against some other quadrature rules,
suitable for the boundary integrals.

The theoretical accuracy of QI1 and QI2 with respect to n is studied in [7]. In [11]
the analysis on the convergence of QI2 is studied, when h-refinement is performed,
the amount of quadrature nodes is kept fixed and the regular part of the integrand is
sufficiently smooth. We recall that the derived convergence order for QI2 for regular
and singular integrals is O(h p+2) and O(h p+2| log h|), respectively.

4.1 Perturbed System and Strang’s Lemma

In this section we summarize results to estimate the needed asymptotic accuracy of
the quadrature rules in BEM, when performing h-refinement on the discrete spaces,
which are defined on a nested sequence of knot vectors T h . To keep the results
concise, we derive only the relevant steps to obtain the error bounds for the matrix
and the right-hand side entries. We refer to [25] for a more general analysis.

For a sufficiently smooth boundary and a sufficiently regular exact solution φ ∈
Hd+1(Γ ) there exists a constant C > 0 such that the following error estimate on the
approximate solution φh ∈ Sh holds,

‖φ − φh‖L2(Γ ) ≤ C hd+1‖φ‖Hd+1(Γ ), (23)

with Sh defined in (8). For our purposes we assume that Sh is constructed on a
uniformly spaced knot vector with simple knots and geometry map F is sufficiently
regular with 0 < Jmin ≤ J(s) ≤ Jmax < ∞.

Mainly due to the truncation error of the quadrature rules, the Galerkin solution
is usually not computed exactly and a notion of a perturbed Galerkin method needs
to be introduced. Sufficiently accurate quadrature rules need to be applied at the
discretization step size h, so that the computed solution φ̃h maintains the optimal
convergence order,

‖φ − φ̃h‖L2(Γ ) ≤ C̃ hd+1‖φ‖Hd+1(Γ ). (24)

As a result of the applied quadrature rules, we denote by Ãh and F̃h the perturbed
functionals of A and F in (7). Let us assume the perturbed Galerkin method to be
stable, i.e., it satisfies the discrete inf-sup conditions. Then there exists γ > 0 and
sufficiently small h ≤ h0 such that

γ ≤ inf
ξh∈Sh\{0}

sup
ψh∈Sh\{0}

|Ãh(ξh, ψh)|
‖ξh‖L2(Γ ) ‖ψh‖L2(Γ )

,

γ ≤ inf
ψh∈Sh\{0}

sup
ξh∈Sh\{0}

|Ãh(ξh, ψh)|
‖ξh‖L2(Γ ) ‖ψh‖L2(Γ )

.
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The following estimate fromStrang’s first lemma (see [25, Sect. 4.2.4]) is obtained

‖φ − φ̃h‖L2(Γ ) ≤ ‖φ − φh‖L2(Γ ) + ‖φh − φ̃h‖L2(Γ )

≤ ‖φ − φh‖L2(Γ ) + γ −1 sup
ψh∈Sh\{0}

|Ãh(φh − φ̃h, ψh)|
‖ψh‖L2(Γ )

≤ ‖φ − φh‖L2(Γ ) + γ −1

(
sup

ψh∈Sh\{0}
|A(φh, ψh) − Ãh(φh, ψh)|

‖ψh‖L2(Γ )

+ sup
ψh∈Sh\{0}

|F (ψh) − F̃h(ψh)|
‖ψh‖L2(Γ )

)
. (25)

The first term in the right-hand side of estimate (25) is bounded by (23). To satisfy
(24) the remaining two consistency error terms in (25) should be sufficiently small.
Thus the functionals Ãh and F̃h must be sufficiently good approximations ofA and
F , respectively.

The estimate (25) helps us to bound the needed accuracy of the system matrix Ah

and the right-hand side vector βh at the discretization step size h. Let Ãh,i j and β̃h,i

be the computed entries of Ah,i j and βh,i defined in (12), (13) and (14). Then

Ah,i, j := A
(
B(T )

j,d ◦ F−1, B(T )
i,d ◦ F−1

)
, βh,i := F

(
B(T )
i,d ◦ F−1

)
,

Ãh,i, j := Ãh

(
B(T )

j,d ◦ F−1, B(T )
i,d ◦ F−1

)
, β̃h,i := F̃h

(
B(T )
i,d ◦ F−1

)
.

Here, we dropped the subscript h in the knot vector T to simplify the notation, as it
is done also for the following two vectors α, ζ . Let φh and ψh be written in B-form
in the basis of Sh ,

φh =
N∑
j=1

α j B
(T)
j,d ◦ F−1, ψh =

N∑
i=1

ζi B
(T)
i,d ◦ F−1.

Upper bounds for the vector norms ‖α‖2 = ‖(α j ) j‖2 and ‖ζ‖2 = ‖(ζ j ) j‖2 in terms
of the function norms ‖φh‖L2(Γ ) and ‖ψh‖L2(Γ ), respectively, are derived by the fol-
lowing steps. From the stability of the so-called p-normB-splines (see [17, Sect. 9.3])
we obtain the following bounds for the standard B-splines in the second norm,

K−1 ‖α‖2 ≤ h−1/2

∥∥∥∥
N∑
j=1

α j B
(T)
j,d

∥∥∥∥
L2([a,b])

≤ ‖α‖2, (26)

where K > 0 depends only on d. The estimate (26) helps us to bound ‖α‖2 with
respect to ‖φh‖L2(Γ ) and Jmin,
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K−1 J 1/2
min ‖α‖2 ≤ J 1/2

min h
−1/2

∥∥∥∥
N∑
j=1

α j B
(T)
j,d

∥∥∥∥
L2([a,b])

≤ h−1/2

√√√√∫ b

a

( N∑
j=1

α j B
(T)
j,d (s)

)2

J (s) ds (27)

= h−1/2 ‖φh‖L2(Γ ).

A similar estimates holds true for ‖ζ‖2 = ‖(ζ j ) j‖2 and ‖ψh‖L2(Γ ).
By applying the bound (27) for ‖α‖2, and an analogous one for ‖ζ‖2, we finally

obtain an estimate on the first consistency error term in (25),

|A(φh, ψh) − Ãh(φh, ψh)|
‖ψh‖L2(Γ )

= |ζ� (Ah − Ãh)α|
‖ψh‖L2(Γ )

≤ ‖Ah − Ãh‖2 ‖ζ‖2 ‖α‖2
‖ψh‖L2(Γ )

≤ K 2 J−1
min h

−1 ‖φh‖L2(Γ ) ‖Ah − Ãh‖2
≤ K 2 J−1

min C
′ h−2 ‖φh‖L2(Γ ) max

i, j
|Ah,i, j − Ãh,i, j |.

The last inequality is obtained by applying the matrix norm inequality between the
induced second norm and the elementwise max norm, and the fact that there exists
sufficiently big C ′ > 0 such that N ≤ C ′ h−1. A similar estimate applies for the
second consistency error term,

|F (ψh) − F̃h(ψh)|
‖ψh‖L2(Γ )

= |ζ� (βh − β̃h)|
‖ψh‖L2(Γ )

≤ ‖βh − β̃h‖2 ‖ζ‖2
‖ψh‖L2(Γ )

≤ K J−1/2
min h−1/2 ‖βh − β̃h‖2

≤ K J−1/2
min C ′1/2 h−1 max

i
|βh,i − β̃h,i |.

The derived estimates and ‖φh‖L2(Γ ) ≤ ‖φh‖Hd+1(Γ ) give us the following bounds
on the accuracy of Ãh and β̃h ,

max
i, j

|Ah,i, j − Ãh,i, j | ≤ C̃ hd+3, max
i

|βh,i − β̃h,i | ≤ C̃ hd+2, (28)

which imply the optimal convergence estimate (24) of the perturbed solution φ̃h .
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4.2 Numerical Tests

In this subsection we test QI1 and QI2 and compare themwith other quadrature rules.
For each of the rules the tests are repeated twice, with lower and higher amount of
quadrature nodes; let the amount of quadrature nodes on the support of a univariate B-
spline for all the considered integration schemes be denoted by ns (clearly ns = n + 1
for QI1 and QI2). In all cases we consider uniform meshes with knot vectors Th .
The spline degree in Sh is fixed to d = 2 and p = 2, 3 for the quasi-interpolation
spaces. The exact integral values are obtained using the integration solver inWolfram
Mathematica.

4.2.1 Regular Integrals IBi

In the first test we employ the quadratures on a regular integral IBi [g], defined in
(15). This type of integrals appears, for example, in the right-hand side β. Let g(t) =
3 sin(π(t + 1)) cos(t + 1). In the test we also include a recently developed B-spline
weighted quadrature rule (BWR) [1, 8], where the integrand B-spline is thought as
a weight function. The exactness for these rules is imposed on the chosen test spline
space or on a refinement of it. The weights of the quadrature rule are computed
solving a local band system and the quadrature nodes are chosen a priori such that the
Schoenberg-Whitney’s conditions hold. In the test we also include the very common
Gauss-Legendre quadrature rule (StdG) [10], which is usually considered as the
optimal possible for polynomials for the given amount of nodes. The main drawback
of this rule is that with an increasing d it is not effective anymore for B-splines since
the required ns increases quadratically with d and not linearly.

For every h = 1/5, 1/10, 1/20, 1/40 of the uniformly spaced meshes we com-
pute the maximum error of a quadrature scheme,

max
i

∣∣∣IBi [g] − ĨBi [g]
∣∣∣ ,

where ĨBi [g] is the value of a numerically computed integral. Figure1 reveals the
optimal convergence order O(h4) for BWR, while for QI2 we observe super conver-
gence O(h5). Both of the schemes provide the optimal accuracy in the context of
the perturbed Galerkin method (see (28) in Sect. 4.1). The quadrature QI1 is steadily
converging butwith a reduced order O(h2), as discussed in Sect. 3.2. As expected, the
accuracy of all the rules is improved if we increase the amount of quadrature nodes
(Fig. 1(b)). For QI2 we can easily increase the quasi-interpolation spline degree to
p = 3; this increases the accuracy of the rule (see Sect. 4 and [11] for details). Using
a low number of nodes ns = 6 for StdG does not output the optimal convergence
order. In a more common setting with more nodes, ns = 9 = (d + 1)2, the rule gives
the optimal order and the lowest error among the considered methods.
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Fig. 1 Error convergence plots with respect to the mesh size h for a type of integral IBi [g] in
Sect. 4.2.1

4.2.2 Regular and Singular Integrals Iws
i

In the second example we measure the accuracy of the integrals that include a term
K2(s, t) = log |s − t |. The integrals are regular and singular integrals Iws

h,i
, with the

factor ws
h.i := K2(s, ·) B(Th)

i,d (·), that appear as the inner integrals in A(2)
i, j . For the test

case we consider g(t) = √
1 + 4t2. The quadratic B-splines B(T h)

i,d are constructed on
the interval [−1, 1] with uniform open knot vectors Th for the following mesh sizes
h = 1/5, 1/10, 1/20, 1/40. The parameter s is restricted to a priori chosen discrete
values. Specifically, s ∈ T h/2, i.e., s takes the values of all knots in the knot vector
Th and all the knot midpoints.

For every mesh size h we measure the maximum error

max
i,s

|Iws
h,i

− Ĩws
h,i

|,

where the computed value of the integral obtained by a quadrature rule is denoted
by Ĩws

h,i
.

In the test we also include other suitable quadrature rules available in the literature.
The hybrid Gauss-trapezoidal quadrature rules, sometimes called just Alpert rules
(Alpert), are a class of quadratures for regular and singular functions, that comprise
of special quadrature nodes and weights near the (regular or singular) edges of
the integration domain [5]. The construction exploits a generalization of the Euler-
Maclaurin summation formula. A common technique to accurately evaluate weakly
singular integrals in BEM is the Telles transformation (Telles), which consists of
applying a cubic polynomial coordinate transformation to smooth out the singularity
and then applying the standard Gaussian quadrature rule to evaluate the regularised
integrals [29]. The singular weighted rule (SWR) [1] is based on the precomputed
modified moments, like QI1 and QI2, but the construction of the weights requires to
solve a global linear system. Finally, we consider a weighted Gaussian rule (WG) for
polynomials [10] with precomputed optimal weights and nodes for different mesh
sizes and parameters s. Due to high complexity to construct the rule, we employ the
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Fig. 2 Error convergence plots with respect to the mesh size h for the regular and singular inner
integrals Iws

i
in Sect. 4.2.2 for various quadrature rules available in literature

weighted rule with the weight function ρ(·) = − log |s − ·| only for s and cells Q
of supp B(T h)

i,d that satisfy s ∈ Q (the rule is computed by a symbolic/high precision
toolbox in Mathematica, see the implementation in [15]). When s /∈ Q, we employ
the standard Gauss-Legendre rule (ρ ≡ 1).

By comparing the convergence error plots in Fig. 2(a) and (b) for a fixed h we can
observe that all quadrature rules converge with the increased amount of quadrature
nodes. Convergence with respect to h reveals that the procedure QI2 is the only
scheme with the optimal convergence order, O(h5| log h|), and increasing the QI
degree to p = 3 again naturally improves the accuracy of the rule. The procedures
QI1 and SWR behave very similarly with the suboptimal convergence order O(h2);
the order can be justified by the observation that both of the rules can guarantee
the exactness only if locally J ≡ const. The suboptimal convergence order of WG
can be attributed to the limitation of the standard Gaussian rule to properly handle
nearly singular integrals. The accuracy of the rule could be improved by taking a
larger domain to employ the logarithmic weighted rule but with a significant extra
cost to precompute rules for additional splines B(T h)

i,d and parameters s by solving
ill-conditioned algebraic systems.

4.2.3 Outer Integrals in Matrix A(2)

In the last test we focus on regular integrals of the type

A(2)
h,i, j := − 1

2π

∫
Di

B(Th)
i,d (s) Iws

h,i
ds, (29)

that appear as the outer integrals in (12) for J ≡ 1. The latter choice allows us to
exactly evaluate the term Iws

h,i
in (29) by computing the corresponding modified

moments (19). Therefore, the error of the numerical integration to compute A(2)
h,i, j is
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Fig. 3 Error convergence plots with respect to the mesh size h for the outer integrals in A(2),
defined in Sect. 4.2.3
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Fig. 4 Function Iws
h,i

for different h and i , from the test in Sect. 4.2.3

contributed solely by the quadrature to compute the outer integral (29). On interval
[−1, 1] we construct uniform meshes with h = 2/5, 1/5, 1/10, 1/20.

In this example we also include the other two previously tested rules for regular
integrals: the B-spline weighted quadrature rule (BWR) and the standard Gauss-
Legendre rule (StdG).

For each mesh size h we measure the maximum error of integrals (29) for every
i and j ,

max
i, j

∣∣∣A(2)
h,i, j − Ã(2)

h,i, j

∣∣∣ ,

where Ã(2)
h (i, j) is the computed integral A(2)

h (i, j) with a quadrature rule. Surpris-
ingly, a suboptimal convergence rate is obtained for all the quadratures, even though
the function Iws

h,i
is well-defined and smooth. From Fig. 3 we can observe the con-

vergence order that is slightly higher than O(h2). Again, the accuracy of the integral
approximations is naturally improved, when ns is increased. This can be observed
by comparing the plot Fig. 3(a) for the lower and Fig. 3(b) for the higher amount of
nodes for a fixed h.
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To clarify the suboptimal convergence in the test, we plot the function Iws
h,i

as a
function of s in Fig. 4 for different fixed h and i . For every mesh we plot the function
only for the corresponding most central spline element, namely i = 4, 7, 12, 22. As
we can see from the plot, the function Iws

h,i
is a smooth function of s but the highest

curvature actually increases with smaller h (depicted as dots in the figure). Since the
derivatives of Iws

h,i
are not bounded when h → 0, none of the considered quadrature

schemes can efficiently approximate this type of integrals for a fixed amount of nodes.

5 Numerical Simulation with (Galerkin) BEM

In this sectionwe test the boundary elementmodel to numerically solve three Laplace
boundary value problems. For all the examples we evaluate the governing integrals
using the presented QI1 and QI2 quadrature schemes and two of the presented alter-
natives: Alpert rules (Alpert), which is combined with the standard Gaussian rule
for the outer integrals of a system matrix, and the weighted quadrature rules (WR),
which comprises of the B-spline weighted rule for the outer integrals and the singular
weighted rule for the inner integrals. The amount of quadrature nodes on the support
of a univariate B-spline is denoted by ns. We note that the distribution of the nodes
for Alpert depends on the proximity to a singularity, hence ns is not strictly the same
for every spline. In all cases we construct several successive approximate solutions
of the problem by performing a dyadic h-refinement procedure on uniform meshes.
We measure the relative error of an approximated solution against the exact one in
L2 norm with respect to degrees of freedom (DoF). The first numerical example is
an exterior problem to an open curve. In the next two examples we employ the direct
formulation to model interior problems to closed curves.

5.1 Exterior Dirichlet Problem to Arc of Parabola

In this test we focus on the exterior problem described in [1], using the BIE (9). The
Dirichlet BVP is defined in the exterior to an arc of parabola Γ ∈ R

2, parametrized
by a quadratic B-spline curve (d = 2). The transformation map F(s) = [s, 1 − s2]�,
s ∈ [−1, 1], is described in terms of B-spline basis with the following knot vector T
and set of control points D,

T = (−1,−1,−1, 1, 1, 1), D =
[−1 0 1
0 2 0

]
.
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Fig. 5 Parabola test in Sect. 5.1: The Dirichlet datum, the exact solution and the initial mesh

The Dirichlet datum uD and the exact solution φ are

(uD ◦ F)(s)

= −(7 − 9s + 4s3) log(2 + 2s + s2) − (7 + 9s − 4s3) log(2 − 2s + s2)

12π
+ 14 + 24s2

9π

+
−(7 + 3s + 4s3) log(1 + s) − (7 − 3s − 4s3) log(1 − s) − (−1 + 12s2) arctan

(
2
s2

)
6π

,

(φ ◦ F)(s) =
√
1 + 4s2.

TheDirichlet datum, the exact solution, and the initialmesh in the physical domain
are depicted in Fig. 5. Observe that, although the function uD ◦ F is well defined for
s ∈ (−1, 1), its derivative is not bounded when s → ±1 and can represent an addi-
tional limitation for the quadrature QI1, which needs also the derivative information
of the integrand.

The convergence orders of the approximate solutions are shown in Table1 for
the quasi-interpolant degree p = 2. Procedure QI1 has a reduced accuracy near both
the edges of the parametric domain. To get the optimal convergence O(hd+1) for all
refinement steps, a relative high amount of quadrature nodes is needed, ns = 49. On
the other hand, it is sufficient to use a small amount of quadrature nodes for the other
schemes, ns = 5 for the procedure QI2, approximately ns = 6 for Alpert and ns = 7
for WR.

5.2 Interior Dirichlet Problem to a Circle

To verify the correctness of themodel using the direct formulation (10), we consider a
simple boundaryvalueproblem.ThedomainΩ is a diskwith radius 1/2 andboundary
Γ parametrized by the map F(s) = 1/2 [cos(πs), sin(πs)]� for s ∈ [−1, 1].

For the chosen exact solution u = x , x ∈ Ω , of the Laplacian, the Dirichlet datum
is (uD ◦ F)(s) = 1/2 cos(πs) and the exact flux is (φ ◦ F)(s) = cos(πs).
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Table 1 Parabola test in Sect. 5.1: Errors and convergence orders of the approximated solutions
for different quadrature schemes

QI1, ns = 49 QI2, ns = 5 Alpert, ns ≈ 6 WR, ns = 7

DoF Error Conv. Error Conv. Error Conv. Error Conv.

12 1.55 · 10−4 1.73 · 10−4 1.54 · 10−4 1.56 · 10−4

22 1.66 · 10−5 3.69 1.74 · 10−5 3.79 1.66 · 10−5 3.68 1.66 · 10−5 3.70

42 2.00 · 10−6 3.27 2.03 · 10−6 3.33 2.01 · 10−6 3.26 1.99 · 10−6 3.27

82 2.44 · 10−7 3.14 2.48 · 10−7 3.14 2.53 · 10−7 3.10 2.47 · 10−7 3.12

162 3.06 · 10−8 3.05 3.08 · 10−8 3.06 3.24 · 10−8 3.02 3.08 · 10−8 3.06

322 3.95 · 10−9 2.98 3.85 · 10−9 3.03 4.37 · 10−9 2.92 3.85 · 10−9 3.03
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-0.5

0

0.5

1

(a) Exact solution

-0.5 0 0.5

-0.5

0

0.5

(b) Initial mesh

Fig. 6 Circle test in Sect. 5.2: The exact solution and the initial mesh

The approximate solution is sought in the space of cubic B-splines (d = 3) with
the initial equally spaced extended knot vector

T = (−2, −5/3, −4/3, . . . , 4/3, 5/3, 2).

The exact solution and the initial mesh in the physical domain are depicted in Fig. 6.
In Table2 we report errors and convergence rates for the approximate solutions

for different amount of DoF. For QI1 we need to take p = d to satisfy the projector
property (see Sect. 3.2), whereas for QI2 it is enough to consider p = 2. To obtain
the optimal convergence order 4 for all the refinement steps, we need to considerably
increase the amount of quadrature nodes for quadrature QI1 (ns = 25), while for QI2
we can maintain a small amount of nodes (ns = 5). Adequate results are provided
also by WR (ns = 13), while for Alpert the amount of nodes for the singular rule
needs to be relatively high (ns ≈ 52).
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Table 2 Circle test in Sect. 5.2: Errors and convergence orders of the approximated solutions using
different quadrature schemes

QI1, ns = 25 QI2, ns = 5 Alpert, ns ≈ 52 WR, ns = 13

DoF Error Conv. Error Conv. Error Conv. Error Conv.

6 1.66 · 10−3 1.73 · 10−3 1.66 · 10−3 1.66 · 10−3

12 7.69 · 10−5 4.43 8.26 · 10−5 4.39 7.69 · 10−5 4.43 7.69 · 10−5 4.43

24 4.40 · 10−6 4.13 4.67 · 10−6 4.14 4.40 · 10−6 4.13 4.40 · 10−6 4.13

48 2.69 · 10−7 4.03 2.78 · 10−7 4.07 2.69 · 10−7 4.03 2.69 · 10−7 4.03

96 1.67 · 10−8 4.01 1.70 · 10−8 4.03 1.67 · 10−8 4.01 1.67 · 10−8 4.01

192 1.05 · 10−9 4.00 1.05 · 10−9 4.02 1.09 · 10−9 3.94 1.05 · 10−9 4.00

Fig. 7 S curve test in
Sect. 5.3: The exact solution
and the initial mesh
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5.3 Interior Dirichlet Problem to S Curve

In the last numerical example we consider a problemwith a more involved geometry,
a domain described by the closed S curve [1]. The curve is parametrized by cubic
B-splines with the knot vector T and set of control points D,

T = (−9/6, −9/6, −9/6, −9/6, −8/6, −7/6, . . . , 7/6, 8/6, 9/6, 9/6, 9/6, 9/6),

D =
[

3 4 7 6.5 5.2 7.3 7.1 6.4 3.8 4.7 5.3 3 3 4 7
3.2 2.2 4 5.8 7.3 8.5 9.2 9.5 8 6.6 5 4.3 3.2 2.2 4

]
.

The boundary Dirichlet datum is set to (uD ◦ F)(s) = F1(s) + F2(s) and the exact
solution reads (φ ◦ F)(s) = (−F ′

1(s) + F ′
2(s))/‖F′(s)‖2. The exact solution and the

initial mesh in the physical domain are depicted in Fig. 7.
In Table3 we report errors for the approximate solutions when C2 cubic test

functions (d = 3) are used. Again, for QI1 we set p = 3 and p = 2 for QI2. Since
the exact solution φ ◦ F is only C1 regular, a reduced order of convergence for the
approximate solution is expected. This is confirmed by our experiments where the
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Table 3 S curve test in Sect. 5.3: Error and convergence orders for C2 cubic test functions using
different quadrature schemes

QI1, ns = 25 QI2, ns = 7 Alpert, ns ≈ 16 WR, ns = 17

DoF Error Conv. Error Conv. Error Conv. Error Conv.

12 1.20 · 10−1 1.30 · 10−1 1.20 · 10−1 1.21 · 10−1

24 3.26 · 10−2 1.88 3.50 · 10−2 1.89 3.26 · 10−2 1.88 3.27 · 10−2 1.89

48 4.46 · 10−3 2.87 4.52 · 10−3 2.95 4.46 · 10−3 2.87 4.47 · 10−3 2.87

96 6.30 · 10−4 2.82 6.46 · 10−4 2.81 6.30 · 10−4 2.82 6.40 · 10−4 2.80

192 1.05 · 10−4 2.59 1.07 · 10−4 2.59 1.05 · 10−4 2.59 1.05 · 10−4 2.61

384 1.82 · 10−5 2.52 1.86 · 10−5 2.53 1.82 · 10−5 2.52 1.84 · 10−5 2.51

Table 4 S curve test in Sect. 5.3: Error and convergence orders for C1 quadratic test functions
(left) and for cubic test functions with C1 smoothness at the initial knots, and C2 regularity at the
inserted knots (right)

QI1, ns = 13 QI2, ns = 7

DoF Error Conv. Error Conv.

12 1.24 . 10 −1 1.26 . 10−1

24 2.76 . 10 −2 2.17 2.79 . 10−2 2.17

48 2.96 . 10 −3 3.22 2.98 . 10−3 3.23

96 2.55 . 10 −4 3.53 2.58 . 10−4 3.53

192 2.50 . 10 −5 3.35 2.53 . 10−5 3.35

384 2.92 . 10 −6 3.10 2.84 . 10−6 3.16

QI2, ns = 7 QI2, ns = 13

DoF Error Conv. Error Conv.

24 2.92 . 10−2 2.65 . 10−2

36 7.12 . 10−3 3.48 6.67 . 10−3 3.40

60 7.28 . 10−4 4.46 6.69 . 10−4 4.50

108 4.64 . 10−5 4.68 3.08 . 10−5 5.23

204 5.51 . 10−6 3.35 1.73 . 10−6 4.53

396 8.99 . 10−7 2.73 1.31 . 10−7 3.88

average convergence order drops to approximately 2.5. Only QI2 scheme outputs
accurate enough results with a relative small amount of quadrature nodes (ns = 7).

In Table4 (left) we can observe an improved convergence order 3 if we employ
C1 quadratic test functions (d = 2) since the test functions have the same regularity
as the exact solution. Here p = 2 for both the quadrature rules. Of course, in this
setting the space to describe the geometry is not a subspace of the test space Sh .

To conclude this test, we consider also a case with cubic test functions (d = 3)
that are C1 smooth on the initial mesh by using double knots. More precisely, the
discretization space Sh consists of basis functions that are C1 regular at the initial
knots, and C2 continuous at the inserted knots, obtained by dyadic refinements. In
this setting, the space to describe the geometry is a subspace of Sh for every step
size h. Note that, in this case for the periodic compatibility ρ = d − m + 1 = 2 (see
Sect. 2.2). The results for the errors and convergence orders are reported in Table4
(right) for QI2 with p = 2, ns = 7 and ns = 13. A higher amount of quadrature
nodes is necessary to recover the optimal order 4 for the approximate solution.
The quadrature scheme QI1 is not considered in this test since every basis function
B(T )
i,d ∈ Sh should belong to the quasi-interpolation space Ŝτ and the involved quasi-

interpolation operator cannot handle multiple knots.
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6 Conclusion

A study of two recently introduced spline quasi-interpolation quadrature schemes is
performed in the context of boundary integral equations in Galerkin IgA-BEM. A
comparison of the accuracy of the schemes for singular integrals was already done in
[7]. The analysis with respect to the amount of employed quadrature nodes revealed
the optimal order of convergence for both approaches.

In the present paper, numerical tests show a notable difference between the two
schemes. For a fixed amount of quadrature nodes the accuracy of the considered
integrals is examined, when performing h-refinement of the approximation space.
The observed rate of convergence is optimal only for the second scheme. Among
all the tested integration methods in the numerical simulations for the 2D Laplace
problems, the second QI-based procedure utilizes the least amount of quadrature
nodes. For example, from the obtained tests we can infer that for B-spline shape
functions of odd degree and maximum regularity, suitable nodes can be chosen as
the breakpoints of the knot vector. Regarding the first procedure, the amount of
locally employed nodes should be increased throughout the h-refinement steps to
recover the optimal order.

In future work, we would like to investigate quadrature schemes for integrals of
higher order singularities for more complex differential problems and compare them
with other state-of-the-art approaches for BEM. Moreover, a proper treatment of
the outer integrals of the system matrix would contribute to better efficiency of the
overall scheme. Finally, a valuable contribution would be to derive stable formulae
for the modified moments to simplify the construction of the proposed methods.
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New Developments in Theory,
Algorithms, and Applications
for Pythagorean–Hodograph Curves

Rida T. Farouki, Carlotta Giannelli and Alessandra Sestini

Abstract The past decade has witnessed sustained interest in elucidating the basic
theory of Pythagorean–hodograph (PH) curves, developing construction algorithms,
formulating generalizations, and investigating applications. The rapid pace of this
activity, encompassing diverse lines of inquiry, makes it desirable at this point to take
a broad perspective of these recent developments, and assess their relationships. In
the present article, we aim to address this need by categorizing recent results into
a number of broad themes—extensions and specializations of the basic polynomial
PH curves; rational orthonormal frames along spatial PH curves; construction and
analysis algorithms for PH curves; surface design based on PH curves; and the use
of PH curves in practical applications.

1 Introduction

The incorporation of Pythagorean–hodograph (PH) structures in parametric curves
facilitates exact computation of many geometrical properties that otherwise require
numerical approximations. The significance of this feature in diverse applications
(such as path planning and motion control for robotics, manufacturing, computer
animation, and unmanned aerial vehicles) has spurred intensive study of the theory,
algorithms, and applications for PH curves since their inception [85] in 1990.
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The current state of development of theory and algorithms for PH curves has been
assessed on several earlier occasions. The Handbook of Computer Aided Geometric
Design includes a chapter [41] that offers a synopsis of the early phase of research
on PH curves, up to about 2000. Subsequently the book Pythagorean–Hodograph
Curves: Algebra and Geometry Inseparable [43], published in 2008, presented a
comprehensive assessment of the field, and a special issue of the journal Computer
Aided Geometric Design on “Pythagorean–hodograph curves and related topics”
appeared [72] in the same year. Further new developments concerning PH curves
were briefly described in a paper [132] that appeared a few years ago.

Recent years have witnessed a sustained and growing interest in research on PH
curves, yielding a wealth of new paradigms and applications. In fact, it has become
quite difficult to keep track of the volume and diversity of these new developments.
Consequently, the intent of this article is to present a coherent overview of the new
results since the appearance of the book [43], emphasizing novel concepts and the
relationships between different avenues of investigation.

The plan for the remainder of this article is as follows. Following a brief review
of the definitions and distinctive properties of PH curves in Sect. 2, we describe a
number of specializations and generalizations of the basic polynomial PH curves in
Sect. 3—including helical polynomial curves; rational PH space curves; PH curves
based upon sparse polynomial bases, mixed polynomial–trigonometric bases, and
spline bases; the Pythagorean hodograph condition under the Minkowski (rather
than Euclidean) metric, and surfaces that possess Pythagorean normals.

As described in Sect. 4, the construction of rational orthonormal frames on PH
curves has been an active research focus in recent years. Key advances include the
identification of low–degree PH curves with rational adapted rotation–minimizing
frames (in which the normal–plane vectors do not rotate about the tangent); the
construction of rational minimal twist frames, which have the least possible rotation
of the normal–plane vectors, consistent with prescribed boundary conditions; frames
with no rotation of the osculating–plane vectors about the binormal, and frames that
are rotation–minimizing with respect to the curve polar vector.

On account of their non–linear nature, the construction and analysis of PH curves
is more challenging than for standard linear models. Nevertheless, as described in
Sect. 5, there has been considerable recent progress. This includes algorithms for
constructing PH curves satisfying various geometrical constraints (including arc
length), and procedures for identification and “reverse engineering” of PH curves.
Section6 then addresses the use of PH curves for surface constructions, including
surface patches bounded by lines of curvature, swept surfaces based on differential
or integral properties of the sweep curve, and surface patches with PH isoparametric
curves. Finally, some applications of PH curves in spatial kinematics and real–time
motion control are discussed in Sect. 7,while Sect. 8 summarizes the results described
herein, and assesses the prospects for further advancements.
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2 Fundamentals of Pythagorean–Hodograph Curves

PH curves were originally conceived [85] as planar polynomial parametric curves
r(ξ) = (x(ξ), y(ξ)) with hodographs (derivatives) r′(ξ) = (x ′(ξ), y′(ξ)) satisfying
the Pythagorean condition

x ′2(ξ) + y′2(ξ) = σ 2(ξ) (1)

for some polynomial σ(ξ), which defines the parametric speed of r(ξ), i.e., the
derivative ds/dξ of arc length s with respect to the curve parameter ξ . The fact that
σ(ξ) is a polynomial (rather than the square–root of a polynomial) means that its
integral—the arc length function s(ξ)—is likewise a polynomial, and the unit tangent
t(ξ), normal n(ξ), curvature κ(ξ), and the offset curves rd(ξ) = r(ξ) + d n(ξ) at
each distance d from r(ξ) are all rational in ξ .

Spatial polynomial PH curves r(ξ) = (x(ξ), y(ξ), z(ξ)) satisfying the extension
of (1) to R3, namely

x ′2(ξ) + y′2(ξ) + z′2(ξ) = σ 2(ξ) (2)

for some polynomial σ(ξ), were first considered in [87]. The simplest (non–trivial)
planar and spatial PH curves are the cubics, which admit characterizations in terms
of fairly simple geometrical constraints on their Bézier control polygons. However,
attempts to characterize higher–order PH curves in terms of their control polygons
often lead to cumbersome, non–intuitive constraints [37, 39, 207, 213] of dubious
value in practical use. Consequently, PH curves are usually specified as interpolants
to given discrete data (end points and tangents, total arc length, etc.).

The construction of PH curve interpolants is greatly facilitated by the adoption
of a suitable algebraic model. For planar curves, this is based on using the complex
representation [39]—i.e., on identifying points (x, y) in the Euclidean plane with
complex values x + i y. Setting

r′(ξ) = x ′(ξ) + i y′(ξ) = w2(ξ) (3)

for some complex polynomial w(ξ) = u(ξ) + i v(ξ), the Pythagorean condition (1)
is satisfied with

x ′(ξ) = u2(ξ) − v2(ξ) , y′(ξ) = 2 u(ξ)v(ξ) , σ (ξ) = u2(ξ) + v2(ξ) , (4)

and once the coefficients ofw(ξ) have been computed by satisfying the interpolation
conditions, the planar PH curve r(ξ) can be obtained by integration of r′(ξ). The
parametric speed and cumulative arc length of r(ξ) are specified by the polynomial
functions

σ(ξ) = |w(ξ)|2 , s(ξ) =
∫ ξ

0
σ(u) du
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in the curve parameter ξ , while the unit tangent and normal vectors and the curvature
are defined by the rational expressions

t(ξ) = w2(ξ)

|w(ξ)|2 , n(ξ) = − i
w2(ξ)

|w(ξ)|2 , κ(ξ) = 2
Im(w(ξ)w′(ξ))

|w(ξ)|4 .

The initial study [87] of spatial PH curves was based upon a sufficient, but not
necessary, characterization for the solutions of equation (2). To obtain a formulation
compatible with arbitrary orientations of the x, y, z coordinate frame, the quaternion
algebra is usually invoked [30, 50]. Namely, if A(ξ) = u(ξ) + v(ξ) i + p(ξ) j +
q(ξ)k is any quaternion polynomial, the product1

r′(ξ) = x ′(ξ) i + y′(ξ) j + z′(ξ)k = A(ξ) iA∗(ξ) , (5)

where A∗(ξ) = u(ξ) − v(ξ) i − p(ξ) j − q(ξ)k is the conjugate of A(ξ), yields

x ′(ξ) = u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) ,

y′(ξ) = 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] ,

z′(ξ) = 2 [ v(ξ)q(ξ) − u(ξ)p(ξ) ] ,

σ (ξ) = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ) , (6)

which satisfies the PH condition (2) inR3. The map (u, v, p, q) → (x ′, y′, z′, σ ) has
also been interpreted [33] as a generalized stereographic projection. The parametric
speed and cumulative arc length of the PH curve r(ξ) obtained by integrating r′(ξ)

are specified by the polynomials

σ(ξ) = |A(ξ)|2 , s(ξ) =
∫ ξ

0
σ(u) du ,

and the rational orthonormal frame defined along r(ξ) by

(e1(ξ), e2(ξ), e3(ξ)) = (A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ)kA∗(ξ))

|A(ξ)|2 (7)

is known as the Euler–Rodrigues frame (ERF)—e1(ξ) coincides with the curve tan-
gent, while e2(ξ), e3(ξ) span the curve normal plane at each point [26, 116].

An alternative approach [30] is to construct spatial PH curves from a pair of
complex polynomials α(ξ) = u(ξ) + i v(ξ),β(ξ) = q(ξ) + i p(ξ) through the Hopf
map expression

r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) . (8)

1The use of the basis vector i in the product (5) is only conventional—any other unit vector u may
be used instead, corresponding to a change of coordinates.
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Setting A(ξ) = α(ξ) + k β(ξ), this is seen to be equivalent to the quaternion form
when the imaginary unit i is identified with the quaternion basis element i.

The PH forms (3) and (5) may be generalized by multiplying them with a scalar
polynomial f (ξ), but the resulting hodographs are no longer primitive—i.e., their
components are not relatively prime, and a real root of f (ξ) will incur a cusp (i.e.,
sudden tangent reversal) on r(ξ). Without the factor f (ξ), the planar PH form (3)
always generates a primitive hodograph when gcd(u(ξ), v(ξ)) is a constant. For the
spatial form (5), however, the situation ismore subtle: gcd(u(ξ), v(ξ), p(ξ), q(ξ)) =
constant does not ensure a primitive hodograph, since the real polynomial

h(ξ) = | gcd(u(ξ) + i v(ξ), p(ξ) − i q(ξ)) |2 ,

if non–constant, is a common factor of x ′(ξ), y′(ξ), z′(ξ).
The complex polynomial w(ξ) in (3) and quaternion polynomial A(ξ) in (5) are

called the pre–images of planar and spatial Pythagorean hodographs. For a planar
r′(ξ) there are two pre–images w(ξ), that differ only in sign. For a spatial r′(ξ),
however, there exists a one–parameter family of pre–images, since Ã(ξ) i Ã∗(ξ) =
A(ξ) iA∗(ξ)when Ã(ξ) = A(ξ) (cos θ + sin θ i) for any θ . Thus, the pre–image is
actually a “ringed surface” in 4–dimensional space [50, 68].

A more comprehensive treatment of the definitions, properties, construction, and
applications of planar and spatial polynomial PH curves may be found in [43], and
the extension of the Pythagorean hodograph structure to Euclidean spaces of higher
dimension is discussed in [183].

3 Specializations and Generalizations of Polynomial
PH Curves

In their original formulation [85], the PH curves were investigated from an algebraic
perspective as plane polynomial curves with derivatives that satisfy the Pythagorean
condition (1). The extension to rational planar PH curves was developed in [179]
from a more geometrical perspective, and the introduction [30] of the quaternion
representation has established a firm foundation for the theory of spatial PH curves.
As described below, many novel specializations and generalizations of these basic
PH curve formulations have emerged during the past decade.

3.1 Helical Curves and Double PH Curves

A helical curve is characterized by the fact that its unit tangent vector t(ξ) maintains
a constant angle ψ relative to a fixed unit vector a. For a polynomial curve r(ξ), this
condition is equivalent to
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a · r′(ξ) = cosψ |r′(ξ)| ,

and can only be satisfied if r(ξ) is a PH curve [70], for which |r′(ξ)| is a polynomial.
An alternative characterization is that helical curves have a constant ratio of their
curvature and torsion—namely, κ(ξ)/τ(ξ) = tanψ . The double DPH (DPH) curves
are a special class of PH curves, for which | r′(ξ) × r′′(ξ) |—in addition to |r′(ξ)|—is
a polynomial. Now every spatial PH curve satisfies [61] the property

| r′(ξ) × r′′(ξ) |2 = σ 2(ξ) ρ(ξ) ,

where ρ(ξ) is the polynomial defined in terms of the components u(ξ), v(ξ), p(ξ),

q(ξ) of the quaternion polynomial A(ξ) in (5) as

ρ = 4 [ (up′ − u′ p + vq ′ − v′q)2 + (uq ′ − u′q − v p′ + v′ p)2 ] .

This may be more compactly expressed using the complex polynomials α(ξ),β(ξ)

in the Hopf map form (8) as ρ = | α β ′ − α′β |2. Consequently, the DPH curves are
those PH curves for which ρ(ξ) is a perfect square, i.e., ρ(ξ) = ω2(ξ) for some
polynomial ω(ξ), and they coincide with the set of polynomial curves for which
the Frenet frame vectors and the curvature and torsion functions have a rational
dependence [204] on the curve parameter ξ , namely

t = r′

σ
, n = σ r′′ − σ ′r′

σω
, b = r′ × r′′

σω
, κ = ω

σ 2
, τ = (r′ × r′′) · r′′′

σ 2ω2
.

It was noted already in [87] that every spatial PH cubic is a helical curve, but not all
higher–order spatial PH curves are helical. The tangent indicatrix of a helical curve
r(ξ)—i.e., the locus traced by the unit tangent vector t(ξ)—is a (small) circle on the
unit sphere. Two types of helical PH space quintics were identified in [70], based
on the behavior of the tangent indicatrix: a monotone–helical PH quintic exhibits a
consistent sense of rotation of t(ξ) about the axis vector a, while a general helical
PH quintic may exhibit reversals in the sense of rotation of t(ξ).

It has been shown in [156] that a spatial PH curve of arbitrary degree is helical
if and only if the rational plane curve defined in terms of the complex polynomials
α(ξ),β(ξ) in the Hopf map form (8) by z(ξ) = α(ξ)/β(ξ) defines a straight line or
a circle, and this characterization was also employed in [156] to solve the first–order
Hermite interpolation problem with helical PH quintic space curves.

It is known [12] that the cubic and quintic DPH curves coincide exactly with the
helical PH curves of the same degree, but DPH curves of degree 7 exist that are not
helical. More precisely, all helical polynomial curves must be DPH curves, although
there are non–helical DPH curves of degree ≥ 7. A comprehensive treatment of the
theory of helical polynomial curves and DPH curves, emphasizing the relationship
between the quaternion andHopfmapmodels, and the enumeration of all curve types
(helical and non–helical) up to degree 7, was presented in [61, 62].
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Geometric Hermite interpolation with monotone helical PH quintic curves was
investigated in [103], while an algorithm to construct cubic helical PH splines with
Frenet frame continuity was presented in [104]. More recently, the construction of
helical PH curves that satisfy initial and final positions and motion directions was
investigated in [48], motivated by the problem of defining paths for unmanned aerial
vehicles with limited climb rates to achieve a desired change in altitude.

Finally, DPH curves also arise in the theory of Salkowski curves—a family of
space curves characterized by constant curvature and non–constant torsion [157].
Namely, with suitable constants and re–parameterizations, certain Salkowski curves
correspond to rational DPH curves. These properties have been exploited in [157] to
construct closed non–planar paths of constant curvature, consisting of segments of
Salkowski curves and circular helices.

3.2 Rational Pythagorean–Hodograph Curves

Since the integration of a rational Pythagorean hodograph does not necessarily yield
a rational curve, alternative approaches are required to construct rational PH curves.
The planar case was first investigated in [94, 179, 180] using the dual representation,
in which a plane curve is interpreted as the envelope of a one–parameter family of
tangent lines rather than a point locus. To generate a rational planar PH curve, the
tangent lines are specified by a family of rational unit tangent vectors and a rational
support function, defining the normal distance of the tangent lines from the origin.

A different approach is required for the construction of spatial rational PH curves,
since planes (rather than lines) are dual to points inR3. Such an approach was briefly
outlined in [178] and developed in greater detail in [91]. The method begins by
specifying a field of rational unit tangent vectors t(ξ) for the desired rational PH
curve. Together with its derivative t′(ξ), this field defines the orientation of the curve
osculating planes, which are uniquely determined by also fixing a rational support
function f (ξ) specifying their normal distances from the origin. The envelope of the
osculating planes is a developable ruled surface, and the rational PH space curve r(ξ)

is identified as its edge of regression (or cuspidal edge), which has the closed–form
expression

r(ξ) = f (ξ)u′(ξ) × u′′(ξ) + f ′(ξ)u′′(ξ) × u(ξ) + f ′′(ξ) u(ξ) × u′(ξ)

u(ξ) · [u′(ξ) × u′′(ξ) ] ,

where u(ξ) = t(ξ) × t′(ξ). As noted in [91], the interpolation of G1 or G2 data with
these spatial rational PH curves incurs only linear equations, rather than the non–
linear equations that occur with polynomial PH curves. Note, however, that rational
PH curves do not (in general) have rational arc lengths [45].

This approach to rational spatial PH curves has been further developed in [134],
employing a quaternion model to formulate a polynomial dual representation that
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facilitates the enumeration of curves of low class (i.e., degree of the dual form). With
this model, G1 Hermite interpolation with rational PH space curves was discussed
in [138] using rational cubics, and in [139] using curves of class 4.

3.3 Algebraic–Trigonometric PH Curves

The extension of Pythagorean hodograph structures to more general function spaces
is exemplified by the recent study [182] of algebraic–trigonometric Pythagorean–
hodograph (ATPH) curves. The starting point for this generalization is the choice
of a suitable normalized B–basis for the space of trigonometric or mixed algebraic–
trigonometric polynomials. In this context, Bernstein–like bases can be defined that
incorporate a tension parameter, which can be used to modify the curve shape. As
a consequence, algebraic–trigonometric Bézier curves share properties analogous
to their classical polynomial counterparts. It should be noted that PH curves were
already extended to complete Chebyshev systems in [135] to define Pythagorean–
hodograph cycloidal curves (see also Sect. 3.6).

The main focus of [182] is to formulate ATPH analogs of the well–known planar
polynomial quintic PH curves, by integrating the expression r′(ξ) = w2(ξ), where
for complex values w0,w1,w2 the function

w(ξ) = w0 B̃2
0 (ξ) + w1 B̃2

1 (ξ) + w2 B̃2
2 (ξ)

is defined in terms of the normalized B–basis specified by

B̃2
0 (ξ) = cos(α − ξ) − 1

cosα − 1
,

B̃2
1 (ξ) = cosα − cos ξ − cos(α − ξ) + 1

cosα − 1
,

B̃2
2 (ξ) = cos ξ − 1

cosα − 1
,

which specializes to the quadratic Bernstein basis in the limit α → 0 of the shape
parameter α. The resulting curve r(ξ) belongs to the function space spanned by the
basis { 1, ξ, cos ξ, sin ξ, cos 2ξ, sin 2ξ } and in the context of this space has properties
(arc length, offset curves, de Casteljau–like algorithm, etc.) analogous to those for
the polynomial PH curves. The adaptation of the standard C1 PH quintic Hermite
interpolation algorithm [80] to these ATPH curves, and the construction of ATPH
spiral segments, is also discussed in [182].

Further adaptations of established algorithms for polynomial PH curves to the
context of ATPH curves include the construction of C2 spline interpolants that have
shape parameters associated with each spline segment [98], and the formulation of a
quaternion representation for spatial ATPH curves, with application to solutions of
the C1 Hermite interpolation problem that incorporate a free shape parameter [181].
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3.4 Minkowski Pythagorean–Hodograph Curves

The medial axis of a planar domain D consists of the locus of centers (x, y) of all
maximal inscribed circles, that touch the domain boundary ∂ D in at least two points,
and the medial axis transform (MAT) specifies the radius r of the maximal disk that
is centered at each point of the medial axis [18]. The domain boundary ∂ D can, in
principle, be reconstructed from its MAT as the envelope of the family of maximal
disks specified by given data (x, y, r). The generalization of the PH property to the
Minkowski space R2,1 of Special Relativity theory (with a metric signature + + −)
leads to the definition of Minkowski Pythagorean–hodograph (MPH) curves, which
permit precise (rational) reconstructions of planar shape boundaries fromMATs that
are specified by MPH curves [27, 159–161].

A polynomial curve (x(ξ), y(ξ), r(ξ)) in the Minkowski space R2,1 is an MPH
curve if its derivative components satisfy the Pythagorean relation

x ′2(ξ) + y′2(ξ) − r ′2(ξ) = σ 2(ξ)

for some polynomial σ(ξ). The solutions to this conditionmay be characterized [160,
161] in terms of four polynomials u(ξ), v(ξ), p(ξ), q(ξ) by a modification of (6) as

x ′(ξ) = u2(ξ) − v2(ξ) + p2(ξ) − q2(ξ) ,

y′(ξ) = 2 [ u(ξ)v(ξ) − p(ξ)q(ξ) ] ,

r ′(ξ) = 2 [ u(ξ)p(ξ) − v(ξ)q(ξ) ] ,

σ (ξ) = u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) . (9)

One may consider (6) and (9) as instances of the forms generated by the generalized
stereographic projection introduced in [33].

The interpolation of G1 Hermite data in R
2,1 using MPH cubics was considered

in [128]. Subsequently, C1 Hermite interpolation by means of MPH quintics was
addressed in [129] using a quaternion model and, as with the problem of C1 Hermite
interpolation by PH quintics in R

3 [51, 56], the interpolants were found to depend
on two free parameters. This method was extended in [133] to Hermite interpolants
of C2 data in R2,1 by degree 9 MPH curves, which exhibit four free parameters.

The generalization of Minkowski Pythagorean–hodograph curves to the rational
case was introduced in [130]. In particular, it was shown there that any rational MPH
curve c(ξ) inR2,1 can be obtained in terms of a rational PH curve (x(ξ), y(ξ)) inR2

and an additional rational function r(ξ) in the form

c(ξ) =
(

x(ξ) + r(ξ)y′(ξ)

σ (ξ)
, y(ξ) − r(ξ)x ′(ξ)

σ (ξ)
, r(ξ)

)
.



136 R. T. Farouki et al.

The analysis of interconnections between spatial MPH curves and their planar PH
counterparts was continued [131] in the context of Hermite interpolation problems.
The concept of rational envelope curves, as a superset of the class of MPH curves,
was introduced in [16], and MPH–preserving mappings were investigated in [127].

3.5 Pythagorean–Normal and Linear Normal Surfaces

By analogy with the constructions of rational PH curves discussed in Sect. 3.2, the
characterization of rational surfaces s(u, v) with rational unit normals n(u, v) =
(su × sv)/|su × sv| (and hence rational offset surfaces)was considered in [179], using
the dual form in which a surface is interpreted as the envelope2 of a two–parameter
family of tangent planes (see also [175]). Such surfaces are known as Pythagorean
normal (PN) surfaces, and their representation under certain parameterizations has
been further discussed in the context of convolution surfaces in [147].

A quaternion approach to polynomial PN surfaces was proposed in [137], based
on identifying constraints on the coefficients of a bivariate quaternion pre–image
polynomial, that are sufficient to ensure it will generate a surface with Pythagorean
unit normals. These PN surfaces may be of odd or even degree, and constructions for
cubic, quartic, and quintic instances were enumerated. A comprehensive unifying
theory of PN surfaces based on a geometric algebra formalism has been introduced
in [143], and PN surface construction methods have been addressed in [17, 148].

The LN surfaces, originally proposed in [117], are an alternative approach to the
Pythagorean normal principle for identifying surfaces with rational offsets. These
surfaces admit a field of (non–unit) normal vectors that are linearly dependent on
the surface parameters, and by an appropriate re–parameterization one can show that
they possess Pythagorean unit normals, and thus have rational offsets. LN surfaces
have been characterized [99] as surfaces that possess odd (antisymmetric) rational
support functions. It is known [10, 146, 173] that all quadratic triangular Bézier
surface patches are LN surfaces. Further developments concerning the theory of LN
surfaces and their construction algorithms may be found in [120, 184]. Finally, the
studies [172, 174] approach the problem of surfaces with rational offsets from the
more general perspective of the envelopes of two–parameter families of spheres.

3.6 Other Special Forms

The roulettes are curves generated kinematically as the loci traced by a point of one
curve that “rolls without slipping” against a second curve. They have played a key
role [86] in the history of science and technology. Some familiar examples are the

2Since they have just a one–parameter family of tangent planes, the developable surfaces require a
separate treatment.
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cycloid (generated by a circle rolling along a straight line) and the epicycloids and
hypocycloids (generated by a circle rolling on the outside or inside of another circle,
respectively). It was shown in [193] that rational epicycloids and hypocycloids have
rational offset curves, and an algorithm for G1 Hermite interpolation with segments
of such curves was also presented. Certain roulettes can also be identified as curves
with polynomial support functions [195]. Pythagorean–hodograph cycloidal (PHC)
curves were proposed in [135], as a generalization of the PH cubics to extended
complete Chebyshev systems (see also Sect. 3.3). The analysis of PHC curves in
[135] includes a G1 Hermite interpolation scheme and its asymptotic behavior.

The fact that they admit rational parameterization of their one–sided offset curves
[85] is key property of planar PH curves. However, certain planar curves that are not
generated by the complex form (3) may also admit rational parameterization of their
(two–sided) offsets, after imposing a rational transformation of the parameter that
yields an improper (i.e., doubly–traced) representation of the curve. It was shown
in [152] that such curves correspond to complex hodographs defined by multiplying
(3) with a complex linear factor z ξ + 1 with z �= 0. A geometrical characterization
of the cubic curves with rational two–sided offsets has been presented in [153].

Another approach to generating PH curves is through appropriate polynomial or
rational mappings of other PH curves. For example, stereographic projection can be
used [203] to map planar polynomial PH curves into rational spherical PH curves
(i.e., PH curves on the unit sphere). Möbius transformations of the complex plane
are employed in [150] to map planar polynomial PH cubics into rational PH curves,
that can be used to solve the C1 Hermite interpolation problem. A family of (scaled)
rational mappings from R

2 to R3 that preserve the Pythagorean hodograph property
has been studied in [122], and used to solve the problem of Hermite interpolation
with spatial PH curves by mapping of planar PH curve interpolants.

The notion of “sparse” Pythagorean–hodograph curves, defined in terms of bases
that span only a subset of the polynomials of a given degree, was introduced in [2].
In particular, this study focuses on certain “cubic–like” PH curves defined for non–
negative integer k in terms of the basis {1, ξ k+1, ξ k+2, ξ k+3} on a positive interval
ξ ∈ [ a, b ] which spans a Müntz space. As with the standard polynomial PH cubics
[85], these sparse cubic–like PH curves are shown to admit simple characterizations
in terms of the control polygon geometry, and they incorporate free parameters that
prove useful in constructing G1 Hermite interpolants. The “quintic–like” sparse PH
curves, which may exhibit inflections, are also addressed in [2].

Finally, we note that the algebraic models used to construct PH curves (based on
the complex numbers and quaternions) are simple instances of the Clifford algebra.
Although it has only occasionally been used in the development of PH curve theory
and algorithms—for example, to characterize MPH curves in R

2,1 and R
3,1 [129,

160] and as an alternative model for PH curves in R3 [170]—further exploitation of
the methodology of Clifford algebra (also known as geometric algebra [171]) may
yield new insights, algorithms, or generalizations for PH curves.
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4 Rational Orthonormal Frames Along PH Curves

The specification of orientation along a spatial path r(ξ) by an orthonormal frame
(f1(ξ), f2(ξ), f3(ξ)) is a fundamental problem in kinematics, and it is desirable that
the frame vectors have a rational dependence on the curve parameter ξ . Of special
interest are cases where the frame orientation is correlated with the path geometry.
As noted in Sect. 2, every polynomial PH curve admits a rational adapted frame,
called the Euler–Rodrigues frame (ERF), which consists of the tangent and mutually
orthogonal vectors that span the normal plane.

The ERF serves as the point of departure for constructing other rational adapted
frames: the rotation–minimizing frame (RMF) and minimal twist frame (MTF). The
variation of a frame is defined by its angular velocity ω. An RMF is characterized
by a zero angular velocity component ω1 in the tangent direction, while an MTF
has the least absolute value for the arc–length integral of this component, consistent
with prescribed initial and final orientations. The familiar Frenet frame is rotation–
minimizing with respect to the principal normal, rather than the tangent, and for the
family of double PH curves (see Sect. 3.1) it is rational. Other frames considered
below include the rotation–minimizing osculating frame (which has a zero angular
velocity component in the direction of the binormal), and the rotation–minimizing
directed frame, in which f1(ξ) = r(ξ)/|r(ξ)| is the polar vector.

4.1 Rational Rotation–Minimizing Adapted Frames

The variation of an adapted orthonormal frame (f1(ξ), f2(ξ), f3(ξ)) on a space curve
r(ξ), where f1(ξ) = r′(ξ)/|r′(ξ)| is the tangent and f2(ξ), f3(ξ) span the normal
plane, is specified by its angular velocity ω through the relations

df1
ds

= ω × f1 ,
df2
ds

= ω × f2 ,
df3
ds

= ω × f3 , (10)

with s being arc length measured along r(ξ). If ω is expressed in the form

ω = ω1f1 + ω2f2 + ω3f3 , (11)

its components are

ω1 = df2
ds

· f3 , ω2 = df3
ds

· f1 , ω3 = df1
ds

· f2 . (12)

The component ω1 specifies the rate of rotation of the normal–plane vectors f2, f3
about the curve tangent f1, and for applications such as swept surface constructions,
5–axis CNC machining, computer animation, spatial motion planning, and robotics,
it is often desirable to have adapted frames satisfying ω1 ≡ 0, i.e., the normal–plane
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vectors have no instantaneous rotation about the curve tangent. Adapted frames with
ω · t ≡ 0 are called rotation–minimizing frames (RMFs) or Bishop frames [15].

Since the construction of RMFs on general polynomial/rational curves requires a
numerical quadrature, many methods have been proposed [69, 119, 155, 209, 210]
to construct rational approximations of them. It should be noted [42] that any spatial
PH curve admits exact RMF computation, but in general this incurs transcendental
terms. However, a subset of the spatial PH curves, identified by algebraic constraints
on the coefficients of their generating polynomials, admits exact rational RMFs. We
summarize here the characterizations and properties of these RRMF curves, which
have been subject to intensive investigation over the past decade. A more detailed
review, covering results up to a few years ago, may be found in [46].

It was observed in [26] that, for the spatial PH curve generated by the quaternion
polynomial A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k, the angular velocity compo-
nent ω1 of the ERF is given by

ω1 = de2
ds

· e3 = 2(uv′ − u′v − pq ′ + p′q)

σ 2
, (13)

and the possibility of identifying PH curves for which ω1 ≡ 0—i.e., the ERF is itself
an RMF—was considered. The simplest PH curves satisfying this condition are of
degree 7, and incorporate 16 free parameters. A simpler characterization of these
degree 7 RRMF curves [71] is in terms of the five constraints

scal(A0 iA∗
1) = scal(A0 iA∗

2) = 0 ,

3 scal(A1 iA∗
2) + scal(A0 iA∗

3) = 0 , (14)

scal(A1 iA∗
3) = scal(A2 iA∗

3) = 0 ,

on the coefficients of the cubic quaternion polynomials generating spatial PH curves
of degree 7, expressed in Bernstein form as

A(ξ) = A0(1 − ξ)3 + A13(1 − ξ)2ξ + A23(1 − ξ)ξ 2 + A3ξ
3 .

The design of rational rotation–minimizing rigid–body motions using these curves,
that satisfy initial and final positions and orientations, was considered in [71]. This
involves the solution of four quadratic equations in four real unknowns, with two
free parameters available for shape optimization.

The possibility of identifying lower–degree RRMF curves, for which the ERF
is not rotation–minimizing, was considered in [102], based on taking f1(ξ) = e1(ξ)

and imposing a rational normal–plane rotation of the form

[
f2(ξ)

f3(ξ)

]
= 1

a2(ξ) + b2(ξ)

[
a2(ξ) − b2(ξ) − 2 a(ξ)b(ξ)

2 a(ξ)b(ξ) a2(ξ) − b2(ξ)

] [
e2(ξ)

e3(ξ)

]
, (15)
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for polynomials a(ξ), b(ξ) with gcd(a(ξ), b(ξ)) = constant. This amounts to ori-
enting f2(ξ), f3(ξ) relative to e2(ξ), e3(ξ) through the angle

θ(ξ) = − 2 arctan
b(ξ)

a(ξ)
. (16)

If (f1(ξ), f2(ξ), f3(ξ)) is to be an RMF, the angular velocity component

dθ

ds
= − 1

σ(ξ)

a(ξ)b′(ξ) − a′(ξ)b(ξ)

a2(ξ) + b2(ξ)

incurred by the rotation (15), in the direction f1 = e1, must exactly cancel the ERF
angular velocity component (13). Hence, the spatial PH curve with quaternion pre–
image polynomialA(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k is an RRMF curve if and
only if the condition

uv′ − u′v − pq ′ + p′q
u2 + v2 + p2 + q2

= ab′ − a′b
a2 + b2

(17)

is satisfied for polynomials a(ξ), b(ξ) with gcd(a(ξ), b(ξ)) = constant. Based on
this, it was shown that no non–planar cubic RRMF curves exist [102].

The existence of non–planar quintic RRMF curves was first demonstrated in [57],
based on the Hopf map formulation in terms of two quadratic complex polynomials
α(ξ) and β(ξ). These quintic RRMF curves were identified by two constraints of
degree 4 and 6 imposed on the Bernstein coefficients α0,α1,α2 and β0,β1,β2 of
α(ξ),β(ξ) and their conjugates. However, these constraints are not symmetric with
respect to reversing the order of the coefficient indices 0, 1, 2 (which corresponds to
the simple re–parameterization ξ → 1 − ξ of r(ξ)).

By employing the quaternion and Hopf map forms interchangeably, a simpler
characterization was subsequently identified in [44], that involves only quadratic
constraints, and is symmetric in the coefficient indices. In terms of the quaternion
form, it may be phrased as follows—a quadratic quaternion pre–image polynomial
A(ξ) will generate a quintic RRMF curve if and only if its Bernstein coefficients
A0,A1,A2 satisfy the vector constraint

vect(A2 iA∗
0) = A1 iA∗

1 . (18)

Figure1 compares the variation of the normal–plane vectors for the familiar Frenet
frame and the RMF on a spatial PH quintic. Note the strong rotation of these vectors
about the tangent for the Frenet frame, and also the sudden reversal at the inflection
point (where the curvature vanishes).

Condition (18) is based on the assumption that, in the satisfaction of (17), the
numerators and denominators on the left or right have no common factors that can
be cancelled out—i.e., deg(u, v, p, q) = deg(a, b). This assumption also permits
formulation of a criterion to identify RRMF curves of arbitrary degree [88]. Namely,
introducing the two polynomials defined by
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Frenet

RMF

Fig. 1 A comparison of the normal–plane vectors for the rotation–minimizing frame (left) and the
Frenet frame (right) along a spatial PH quintic curve with an inflection point

ρ = (up′ − u′ p + vq ′ − v′q)2 + (uq ′ − u′q − v p′ + v′ p)2 ,

η = (uu′ + vv′ + pp′ + qq ′)2 + (uv′ − u′v − pq ′ + p′q)2 ,

which satisfy

ρ + η = (u2 + v2 + p2 + q2)(u′2 + v′2 + p′2 + q ′2) , (19)

a spatial PH curve generated by a quaternion polynomial A(ξ) of any degree is an
RRMF curve if and only if ρ(ξ) and η(ξ) are divisible by the parametric speed σ(ξ).
Note that, in view of (19), it is only necessary to check divisibility of either ρ or η by
σ . However, the significance of this divisibility condition for the actual construction
of RRMF curves has not yet been clarified.

Subsequently, RRMF curves were identified that satisfy the condition (17) with
deg(u, v, p, q) �= deg(a, b). A family of RRMF quintics was described in [89], that
satisfies (17) with deg(u, v, p, q) = 2 and deg(a, b) = 1, so a common quadratic
factor cancels from the numerator and denominator of the rational function on the
left in (17). Moreover, it has been shown in [22] that RRMF curves satisfying (17)
with deg(u, v, p, q) < deg(a, b) also exist, due to a cancellation on the right in (17).
These results reveal an intricate structure to the entire space of RRMF curves.

The paper [52] formulates a characterization of the quintic RRMF curves in terms
of the root structures of their quadratic quaternion pre–image polynomialsA(ξ), for
the case deg(u, v, p, q) = deg(a, b) = 2 in (17). It was shown that the roots ofA(ξ)

can be obtained by a simple algorithm, requiring computation of the unique positive
root of a real cubic equation, and the degenerate (linear or planar) instances of the
quintic RRMF curves were found to correspond to cases where A(ξ) has a double
root. For non–planar RRMF quintics, the real cubic factors into linear and quadratic
terms, and closed–form expressions for the roots of A(ξ) can be derived.
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A more comprehensive analysis of the structure of quaternion polynomialsA(ξ)

of general degree, that are compatible with the satisfaction of equation (17) with
the possibility of cancellation on the left or the right, was developed in [54]. This
analysis shows that any quaternion polynomial A(ξ) generating an RRMF curve
can be related to another quaternion polynomial B(ξ), which generates a rotation–
minimizing ERF (i.e., the expression on the left in (17) vanishes identically). As
noted in [26], the simplest quaternion polynomials B(ξ) yielding non–degenerate
space curves with rotation–minimizing ERFs are cubic, and in [54] it is shown that
such polynomials also exist for any degree > 3.

The paper [7] proposes an interesting approach to rational RMFs on space curves,
based on the observation that a general Möbius transformation in R

3 (which may
be interpreted as a composition of inversions in planes and spheres) maps curves
with rational RMFs into other curves with rational RMFs. This property was used
in [7] to develop a scheme for G1 Hermite interpolation by rational PH curves with
rational RMFs, based on transformations of spatial PH cubic segments. Note that,
in general, a Möbius transformation maps a polynomial PH curve into a rational PH
curve of higher degree, which does not (in general) have a rational arc length, since
the integration of a rational parametric speed may incur transcendental terms.

4.2 Rational Adapted Frames of Minimal Twist

The construction of an RMF on a given curve r(ξ) is an initial value problem [124]—
i.e., fixing the orientation of the normal–plane vectors f2, f3 at any point of r(ξ)

determines their orientation at every other point. Hence, in general, it is impossible
to construct rotation–minimizing spatial motions along a given curve that satisfies
prescribed initial and final orientations.3 Upon completing a rotation–minimizing
motion along a smooth closed path, for example, the final orientation of a rigid body
will differ from its initial orientation.

Since it is often desirable to independently specify the path geometry and the
initial/final orientation states for an adapted spatial rigid–body motion, the concept
of a minimal twist frame (MTF) has been introduced in [79]. An adapted frame
(f1(ξ), f2(ξ), f3(ξ)) along a space curve r(ξ), ξ ∈ [ 0, 1 ] of arc length S is an MTF
with respect to given initial and final instances

(f1(0), f2(0), f3(0)) and (f1(1), f2(1), f3(1))

if its angular velocity Ω = Ω1f1 + Ω2f2 + Ω3f3 (where f1 is the tangent) satisfies
the following conditions:

(1) Ω1 does not change sign for ξ ∈ (0, 1)—i.e., the normal–plane vectors f2, f3
maintain a monotone sense of rotation about f1;

3For the rotation–minimizing motions with fixed initial/final orientations in [58, 71] the curve was
not defined a priori, but was rather an outcome of the construction procedure.
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(2) the frame achieves the least possible absolute value of the twist integral,

T =
∫ S

0
Ω1 ds =

∫ 1

0
Ω1(ξ) σ (ξ) dξ . (20)

A point where Ω1 changes sign is an inflection of the frame (f1, f2, f3) and condition
(1) excludes cancellation of clockwise and anti–clockwise rotations of f2, f3 about
f1. In the absence of inflections, the values of T for different frames with the same
end states can differ only by an integer multiple of 2π , and among them there is a
unique value whose magnitude does not exceed π .

To construct rational MTFs, a rational normal–plane rotation of the ERF is used,
of the form (15) employed in constructing rational RMFs. Combining a(ξ), b(ξ) into
the complex polynomial w(ξ) = a(ξ) + i b(ξ), such that

exp(i θ(ξ)) = w2(ξ)

|w(ξ)|2 = a2(ξ) − b2(ξ) + i 2a(ξ)b(ξ)

a2(ξ) + b2(ξ)
, (21)

the angular velocity component Ω1 of the frame (f1(ξ), f2(ξ), f3(ξ)) becomes

Ω1(ξ) = ω1(ξ) + θ ′(ξ)

σ (ξ)
, (22)

where ω1(ξ) is the tangent component (13) of the ERF angular velocity, and

θ ′(ξ) = 2
Im(w(ξ)w′(ξ))

|w(ξ)|2 = 2
a(ξ)b′(ξ) − a′(ξ)b(ξ)

a2(ξ) + b2(ξ)
.

The total twist can thus be expressed as

T =
∫ S

0
Ω1 ds =

∫ 1

0
ω1σ + θ ′ dξ = TERF + θf − θi , (23)

where TERF is the twist of the ERF, and θi , θf ∈ (−π,+π ] are the values of θ that
specify the initial and final orientations of f2, f3 relative to e2, e3. For the PH quintics,
TERF admits closed–form evaluation by partial fraction expansion of the integrand
[79]. The computed value of T is replaced by the reduced twist Tmin, which is equal
to T when T ∈ (−π,+π ] and is otherwise defined by adding or subtracting the
integer multiple of 2π that yields a value in the domain (−π,+π ].

For an MTF, the mean value of Ω1 is Ω1 = Tmin/S. The condition Ω1 ≡ Ω1

cannot be achieved by a rational MTF, but it can be closely approximated. With a
quadratic polynomial w(ξ) = w0(1 − ξ)2 + w12(1 − ξ)ξ + w2ξ

2, choosing w0 =
exp(i 12θi ) and w2 = γ exp(i 12θf ), where γ is a free real parameter, satisfies the
boundary conditions θ(0) = θi and θ(1) = θf . Moreover, setting Δθ = θf − θi , the
choice
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Fig. 2 Left: a spatial PH quintic with indicated initial and final normal plane vectors for a minimal–
twist frame (MTF). Right: a rational MTF compatible with the prescribed boundary conditions

w1 = σ(0) [ Ω1 − ω1(0) ] exp(i 12θf ) + γ σ(1) [ Ω1 − ω1(1) ] exp(i 12θi )

4 sin 1
2Δθ

ensures that Ω1(0) = Ω1(1) = Ω1, so Ω1(ξ) agrees with Ω1 at the two end points,
and the free parameter γ can be used to minimize the mean square deviation of
Ω1(ξ) about Ω1. When the ERF angular velocity component ω1(ξ) of r(ξ) exhibits
relatively mild variations, the constructed MTF closely approximates the condition
Ω1(ξ) ≡ Ω1 (see Fig. 2). For instances where ω1(ξ) has pronounced variations,
this condition can be more accurately approximated [79] by subdividing the [ 0, 1 ]
parameter domain at the extrema and/or inflections of ω1(ξ).

A method for constructing spatial PH curves with rational minimal–twist frames
and prescribed end points, frames orientations, and total arc length, is described in
[67]. This method employs the degree 7 PH curves with rotation–minimizing ERFs,
identified by the constraints (14) on the coefficients of the pre–image polynomial.
The problem can be reduced to computing the real roots of four quadratic equations
in four real variables by Newton–Raphson iterations. The equations incorporate two
free parameters (specifying the end derivative magnitudes) that can be exploited to
optimize a suitable intrinsic measure of the curve shape.

4.3 Rotation–Minimizing Osculating Frames

The Frenet frame is rotation–minimizing with respect to the principal normal of a
curve, while the adapted RMFs are rotation–minimizing with respect to the tangent.
Thus, it seems natural to also consider the frames that are rotation–minimizing with
respect to the remaining Frenet frame vector, the binormal [144]. By analogy with
aeronautical terminology, these three frames may be considered to define pitch–free,
roll–free, and yaw–free motions along a given spatial path.
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Frames defining yaw–free motions, called rotation–minimizing osculating frames
(RMOFs)—since the tangent and principal normal span the curve osculating plane,
which has no instantaneous rotation about the binormal—were investigated in [60].
To identify curves with rational RMOFs, the focus of this study was on the double
PH (DPH) curves described in Sect. 3.1, since they possess rational binormals. The
possibility of generating a rational RMOF by means of a rational rotation of the
rational tangent and principal normal vectors of a DPH curve was analyzed, and it
was observed that this is not possible for space curves of degree < 7. The RMOF
was also employed in [60] to construct certain ruled surfaces, whose tangent planes
coincide with the osculating planes of a given space curve, and whose rulings have
the least possible rotation consistent with this constraint.

An alternative approach to constructing space curves with rational RMOFs was
developed in [136], based on space curves with Pythagorean binormals (PB curves),
rather than the DPH curves. The PB curves constitute a superset of the DPH curves,
since they require |r′(ξ) × r′′(ξ)|—but not |r′(ξ)|—to be a polynomial or rational
function of the curve parameter ξ . Consequently the PB curves do not, in general,
admit rational representation of their cumulative arc lengths.

The construction of PB curves employs the dual representation [134], in which a
space curve is defined by prescribing a one–parameter family of osculating planes,
and they possess rational orthonormal frames, analogous to the ERF on spatial PH
curves, comprising the binormal and orthogonal unit vectors in the osculating plane.
By an appropriate rational rotation in the osculating plane, analogous to that used
to construct rational rotation–minimizing adapted frames, a rational RMOF can be
constructed. It was shown in [134] that such constructions are feasible for rational
PB curves of degree ≥ 6, and for polynomial PB curves of degree ≥ 7.

4.4 Rotation–Minimizing Directed Frames

The notion of a rotation–minimizing directed frame (RMDF) was first introduced
in [55], motivated by the problem of specifying the image–plane orientation for a
camera executing a spatial path r(ξ) while imaging a static object,4 situated at the
origin. The intent is to minimize the apparent rotation of the image incurred by the
camera motion. The RMDF comprises the unit polar vector o(ξ) = r(ξ)/|r(ξ)| and
mutually orthogonal unit vectors u(ξ), v(ξ) in the image plane, perpendicular to
o(ξ), that exhibit no instantaneous rotation about o(ξ).

By replacing each derivative of r(ξ) in its Frenet–Serret apparatus [144] by a
derivative of order one lower, one obtains the directed Frenet frame

o(ξ) = r(ξ)

|r(ξ)| , u(ξ) = r(ξ) × r′(ξ)

|r(ξ) × r′(ξ)| × o(ξ) , v(ξ) = r(ξ) × r′(ξ)

|r(ξ) × r′(ξ)| ,

4The assumption that the object is static and situated at the origin is not essential, since only the
relative position of the object and camera matter.



146 R. T. Farouki et al.

and the polar curvature and torsion,

λ(ξ) = |r(ξ) × r′(ξ)|
|r(ξ)|3 , υ(ξ) = [ r(ξ) × r′(ξ) ] · r′′(ξ)

|r(ξ) × r′(ξ)|2 ,

and hence a complete theory of polar differential geometry. For a rational RMDF,
the theory of Pythagorean–hodograph (PH) curves can be adapted to introduce the
Pythagorean (P) curves, characterized by solutions of the equation

x2(ξ) + y2(ξ) + z2(ξ) = ρ2(ξ) (24)

for some polynomial ρ(ξ), which ensures a rational polar vector o(ξ) = r(ξ)/ρ(ξ).
The theory of P curves coincides with that of PH curves, applied to the anti–

hodograph s(ξ) = ∫
r(ξ) dξ (i.e., the indefinite integral) of the given curve r(ξ).

The methods used to construct spatial PH curves, and to identify the existence of
rational rotation–minimizing adapted frames on them, can thus be adapted to define
spatial P curves and identify those instances that admit rational RMDFs. Algorithms
that employ P curves to construct rational rotation–minimizing camera motions,
which interpolate given positions and RMDF orientations, are described in [64].

5 Algorithms for Pythagorean–Hodograph Curves

To facilitate their adoption in practical applications, algorithms to construct, modify,
and analyze PH curves are required. Building upon prior advances, this continues to
be a very active area of research, with the development of many new capabilities.
The flexibility of PH curves in practical use has been confirmed by the proof of a
Weierstrass–type approximation theorem in [29]. This states that, for any C1 curve
in the Euclidean spaces R2 and R3 or Minkowski space R2,1 there exists a sequence
of polynomial PH curves of increasing degree converging uniformly to that curve.

In practice, to obtain more shape flexibility, spline extensions of polynomial PH
curves are typically preferred to individual PH curves of higher degree. However, to
import PH splines into commercial CAD systems, it is necessary to express them5

in the standard free–form B–spline representation (B–form). The B–form of C2 PH
quintic splines was derived in [66]: since the PH segments are quintic, but meet with
C2 continuity, triple interior knots must be used. A scheme for local modification of
planar PH quintic splines was also proposed in [66], that preserves the PH structure in
response to a generic control point displacement. This procedure modifies only two
contiguous spline segments, and the continuity between themodified and unmodified
segments must be relaxed from C2 to C1 to preserve the PH structure of the spline.
An example is shown in Fig. 3—see [66] for complete details.

5To exploit the advantageous features of PH splines, one must also store the complex or quaternion
pre–image polynomials of each spline segment—see Sects. 5.4 and 7.3.
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Fig. 3 A C2 PH quintic spline (left) and the modified PH quintic spline (right), obtained after
applying a displacement to one of the B-spline control point. The B-spline control polygons of the
two PH quintic splines are also shown

Planar C2 PH quintic splines have traditionally been constructed [4, 73] as the
interpolants to a given sequence of points p0, . . . ,pn . Alternative control–polygon
based methodologies for specifying planar and spatial C2 PH spline curves were
developed in [75, 169]. In [3] the B–spline form of a planar C2 PH quintic spline is
obtained by direct integration of (3), with the complex pre–image polynomial z(ξ)

replaced by a complex spline function Z(ξ) specified by its knots and coefficients.
Closed–form expressions for the PH B–spline control points in terms of the knots
and coefficients of Z(ξ) are derived in [3]. Because of the non–linear dependence of
the former on the latter, the main difficulty with this approach is in ensuring that the
PH spline curve satisfies prescribed geometrical properties.

5.1 Construction Algorithms

Because of their non–linear nature, algorithms to construct or modify PH curves
based on control polygon paradigms are, in general, impractical—see, however,
[123]. Consequently, the typical approach [4, 80] to designing individual PH curve
segments or PH spline curves is based upon interpolating discrete geometrical data
(points, tangents, etc.). These interpolation problems typically admit a multiplicity
of solutions that may differ substantially in shape, and the identification of a “good”
solution is usually based on minimization of a shape measure, such as the absolute
rotation index or the elastic bending energy, defined for a curve of total length S by

R =
∫ S

0
|κ| ds , E =

∫ S

0
κ2 ds , (25)

where κ is the curvature and s is arc length [40, 80]. Note, however, that minimizing
E without any constraint on S can lead to unbounded interpolants [14].
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The construction of PH spline interpolants can be achieved through both local
and global schemes, based on prescribed discrete data (points and possibly also unit
tangent vectors). Since the minimization of a shape measure typically requires the
use of numerical methods, and can be computationally quite expensive, alternative
strategies to identify the “good” solution have been proposed in the literature. As
outlined in Sects. 5.1.1 and 5.1.2 below, a common theme is to identify the PH
solution that is in some sense “near” to the standard ordinary cubic solution for the
prescribed data. This is based on the perception that cubic interpolants usually have
reasonable shape (although it should be noted that, for derivative magnitudes large
compared to the spacing between points, planar cubic interpolants will often exhibit
loops in cases where at least one PH interpolant is free of self–intersections).

5.1.1 Local Interpolation Schemes

First order Hermite interpolation has often been used to design planar or spatial PH
curves, since it allows development of local schemes based on polynomial/rational
PH curves of low degree. With single segments of primitive planar polynomial PH
curves, the minimum degree of practical value is five, since the planar PH curves of
degree three are all segments of the Tschirnhaus cubic, which has insufficient shape
flexibility to interpolate even general G1 Hermite data [80]. A characterization of
the set of G1 Hermite data for which planar PH cubic interpolants exist was given in
[20], together with an identification of the subset of these data that also guarantees
the absence of a self–intersection loop in the interpolant. The use TC–biarcs (i.e., a
pair of Tschirnhaus cubic segments that meet with tangent continuity) to solve the
C1 Hermite interpolation problem has been discussed in [11, 84].

On the other hand, it is well–known [80] that in general four distinct planar PH
quintic interpolants to given C1 Hermite data always exist, and the absolute rotation
index R defined in (25) provides a robust, closed–form measure for identification
of the “good” solution. The method of [80] was extended in [118] to accommodate
interpolation of C1 data together with end–point curvatures, using planar PH curves
of degree 7, and it was shown that up to eight distinct interpolants exist.

An alternative topological scheme for selecting the “good” planar PH quintic
interpolant was proposed in [25], based on the notion that it should be continuously
deformable into the unique ordinary cubic interpolant matching the given C1 data.
More precisely, it was shown in [25] that at least one of the four PH quintic Hermite
interpolants exhibits this property, which corresponds to vanishing of the hodograph
winding number relative to the ordinary cubic. An explicit identification scheme
based on this idea was developed, that does not rely upon the evaluation of fairness
measures, and is still applicable when the uniqueness fails [25].

In order to obtain greater flexibility, several variants of the basic polynomial
PH curve Hermite interpolation schemes have been proposed. For example, a
family of polynomial PH curves with complex hodographs of the form r′(ξ) =
k (ξ − c)2n+1 + d (where k, c,d are complex values) was proposed in [126] for
solving theC1 Hermite interpolation problem, and a polynomial re–parameterization
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was used to separately control the shape and parametric speed of the interpolant. A
Möbius transformation was applied to planar PH cubics in [150], that yields an addi-
tional complex degree of freedom allowing the determination of four rational PH
cubic interpolants to planar C1 Hermite data. In [149], conditions on the complex
coefficients of a truncated Laurent series of the form

r(ξ) = a−1

ξ − c
+ a0 + a1(ξ − c) + a3(ξ − c)3 ,

where c is a complex value, were identified to ensure that r(ξ) is a planar rational
PH curve, and it was shown that this form generically admits four interpolants to
C1 data. The numerical examples in [149, 150] indicate that one of the constructed
interpolants typically has reasonable shape, and some fairness measures may even
improve on the standard PH quintic interpolants. However, in some instances the
constructed PH curves are of higher degree, and the rational interpolants do not in
general possess rational arc length functions [45].

The interpolation of generic spatial Hermite again cannot be achieved by cubic
polynomial PH curves, even in the case when only unit end tangents are specified
[119, 145, 168], unless an adjustment of the orientation of one of them is allowed
[168]. Consequently, if only primitive polynomial PH curves are desired, it is again
necessary to appeal to the quintics. Using the quaternion representation, it was first
shown in [51] that interpolation of C1 Hermite data with spatial PH quintics incurs
a two–parameter family of interpolants,6 rather than a finite number as in the planar
case. Since the shape of the interpolants can be rather sensitive to the choice of the
two free angular parameters, three criteria were proposed in [56] for their selection.
These criteria ensure at least one reasonable interpolant, and also degree reduction
to a PH cubic interpolant when the Hermite data are compatible with its existence.
Moreover, one of them (the CC criterion) admits easy closed–form implementation,
and it has been shown [188] to yield fourth–order approximation for the spatial
PH quintic interpolation scheme, as with ordinary cubic curves. Prior work on the
approximation order of planar and spatial PH curves may be found in [194, 196].

Interpolation of spatial G1 Hermite data under shape constraints by PH quintic
splines was addressed in [76], by an extension of the analysis previously developed
in the planar case [78]. A tension parameter is associated with each spline segment,
and the imposed shape constraints are concerned with preservation of convexity at
the knots and the sign of the discrete torsion on each spline segment. An asymptotic
analysis developed in terms of the tension parameters shows that satisfaction of the
prescribed shape constraints can always be achieved for each segment by using the
CC criterion to fix the two free angular parameters of that segment, requiring only
mild application of the tension parameters that does not compromise the overall
fairness of the interpolant, as illustrated in Fig. 4.

To achieve low–degree interpolants, local Hermite interpolation schemes based
on spatial PH cubic biarcs were introduced in [8, 187]. Quintic triarcs have been

6This is a consequence of the fact that, under the map (5), the pre–image of a point in R3 is a circle
in the quaternion space H—see [68].
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Fig. 4 An example spatial G1 PH quintic spline constructed by the local interpolation scheme in
[76]. Left: the PH spline (red) interpolating the “chair” point set and associated unit tangents (green
arrows). Right: the torsion plot (green), and the sign of the discrete torsion (blue). In each spline
segment the tension is set equal to 1 and the two angular parameters are fixed by the CC criterion

adopted in [9] to produce C2 PH spline interpolants to second order Hermite data,
but a six–dimensional family of solutions is obtained in the spatial case.

As an alternative to the customary first–order Hermite interpolation approach, a
local Lagrange geometric interpolation scheme based on the planar PH cubics was
proposed in [111], requiring as input just a sequence of four points, but achieving
only C0 smoothness at the end points. Even in this case “reasonable data” conditions
are necessary to ensure the existence of an interpolant, whose computation requires
the solution of a non–linear rational system in the two unknown parameter values
associated with the interior data points.

The study [113] develops a scheme for geometric interpolation using PH curves
in Euclidean spaces of any dimension, independent of the specific forms (3) and (5)
in R

2 and R
3. In this scheme, the PH condition is imposed as a constraint on the

curve coefficients, rather than being built in a priori by an algebraic representation.
The method incurs the solution of a non–linear system of equations, and is illustrated
by construction of cubic Hermite and Lagrange interpolants, using either standard
polynomial root–solvers or a homotopy approach. This scheme was also applied in
[114] to local G2 interpolation with PH quintics that interpolate end points together
with unit tangents and curvature values. Although multiple solutions exist, a method
to identify the “good” interpolant is suggested by means of an asymptotic analysis.
Prior work on the construction of higher degree PH curve Hermite interpolants may
be found in, for example, [118, 197].

5.1.2 Global Interpolation Schemes

If derivative values at the data points are not available, an approximation (e.g. finite
difference) scheme must be first applied in order to use a local Hermite interpolation
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method. In this case, the shape of the resulting spline curve may depend sensitively
on the quality of the derivative estimation. Moreover, local constructions of spline
curves cannot address the important issue of global shape quality.

Traditional spline constructions adopt a Lagrange interpolation scheme, wherein
the input consists of a sequence of discrete data points that are to be interpolated at
the spline nodes. This approach typically involves the solution of a global system
of equations, but (for a given degree of the spline segments) yields a higher order
of continuity at the nodes, and favorable global shape fairness measures. This is the
approach first adopted [4, 73] for the construction of planar C2 PH quintic splines,
and subsequently extended to the spatial C2 PH quintic splines in [77].

For the interpolation of n + 1 data points in the planar case, there are 2n+m distinct
PH interpolants, where m ∈ {−1, 0, 1} depends on the adopted end conditions. The
initial study [4] employed a homotopy scheme to generate the complete space of all
formal C2 PH quintic spline interpolants, but this is too expensive when only the
“good” spline interpolant is required. As an efficient alternative, Newton–Raphson
iterations was adopted in [73] to numerically solve the non–linear tridiagonal system
of complex quadratic equations characterizing the solution space. In this context,
an accurate starting approximation is essential for efficient and reliable convergence
to the “good” PH spline solution, and to achieve this the nodal derivatives of the
“ordinary” C2 cubic spline interpolating the same data points are exploited.

A similar approach was adopted in [28], but a criterion based on the absolute
hodograph winding number—an extension of the concept introduced in [25]—is
employed to choose the C2 PH quintic spline closest to the “ordinary” C2 cubic
spline (interpolating the same data points) from a topological viewpoint.

If G2 smoothness is sufficient and a convex set of data points satisfying certain
assumptions is specified, together with compatible initial/final unit tangent vectors,
an alternative spline formulation based upon PH cubic (Tschirnhaus) segments was
proposed in [112]. The construction requires solution of a non–linear tridiagonal
system of equations. Since it is essentially based on piecing together segments of a
unique curve, this formulation has a rather limited domain of applicability.

The construction of spatial C2 PH quintic spline interpolants is more challenging,
since it is characterized by a system of N quadratic vector equations in N quaternion
unknowns. In [77], an additional N scalar conditions were imposed to formulate a
Newton–like scheme that produces reasonable spline interpolants.

The study [113] considers the problem of constructing a single PH curve segment
of degree n in d–dimensional Euclidean space by solving a Lagrange interpolation
problem and its variant with specified boundary unit tangent vectors. The PH nature
of the interpolant is imposed by constraint equations, rather than through the usual
forms (3) and (5) appropriate to R2 and R3. This approach requires the solution of a
rather complicated system of non–linear equations, and homotopy theory is used to
establish the existence and (in some cases) the number of admissible solutions.
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5.2 PH Curves with Prescribed Arc Lengths

Since polynomial PH curves possess polynomial cumulative arc length functions, it
is possible to impose an exact specified total arc length in the construction of curves
interpolating prescribed geometrical data. It is perhaps surprising, however, that this
capability has only recently been exploited. The imposition of arc length constraints
in the construction of PH curves was first considered in [106], motivated by the
problem of measuring physical shapes using the Morphosense, a ribbon–like device
equipped with electronic sensors at known positions along its length. In computing
a spline fit to data obtained from the Morphosense laid against a smooth surface, the
sensor spacings must be imposed as the arc lengths between spline nodes.

With the Hopf map representation, the construction of an N–segment C2 spatial
PH quintic spline interpolating points p0, . . . ,pN with segment arc lengths l1, . . . , lN

can be formulated as the solution of a system of N complex and 2N real equations in
2N + 4 complex coefficients. Instead of using spline end conditions to address the
excess degrees of freedom, the solution is obtained by optimizing a shape measure,
under constraints specified by the N complex and 2N real interpolation conditions.
The construction used in [106] is overtly numerical in nature, and the complexity of
the equations makes questions of existence and uniqueness of solutions difficult to
analyze. They are more amenable to analysis in the context of individual PH quintic
segments interpolating planar or spatial G1 Hermite data, as described below.

The construction of planar PH quintics r(ξ), ξ ∈ [ 0, 1 ] with specified end points
p0,p1 and tangents t0, t1 and a prescribed total arc length L was addressed in [47],
under the assumption of equal–magnitude end derivatives, i.e., |r′(0)| = |r′(1)| = w2

where w �= 0 (so symmetric data yields symmetric interpolants). Transforming the
data to canonical form with p0 = (0, 0) and p1 = (1, 0), setting t0 = (cos θ0, sin θ0)

and t1 = (cos θ1, sin θ1), and expressing the Bernstein coefficients of the complex
quadratic polynomial w(ξ) as

w0 = w exp(i 12θ0) , w1 = u + i v , w2 = w exp
(
i 12θ1

)
,

the construction can be reduced to finding the solutions of the system of quadratic
equations

4u2 + 6(c0 + c1)uw + (6c20 + 6c21 + 2c0c1)w
2 − 15(L + 1) = 0 ,

4uv + 3(s0 + s1)uw + 3(c0 + c1)vw + (6c0s0 + 6c1s1 + c0s1 + c1s0)w
2 = 0 ,

4v2 + 6(s0 + s1)vw + (6s20 + 6s21 + 2s0s1)w
2 − 15(L − 1) = 0 ,

in the three real unknowns u, v, w where (c0, s0) = (cos 1
2θ0, sin

1
2θ0) and (c1, s1) =

(cos 1
2θ1, sin

1
2θ1). These equations admit further reduction to just a single quadratic

equation in w2 that always has two positive roots, but only the smaller root identifies
real solutions to the above system [47]. Hence, in general, there are two distinct PH
quintic interpolants to the data p0,p1, t0, t1, L of which one has attractive shape, and
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Fig. 5 Planar PH quintics (blue) with end pointspi = (0, 0),pf = (1, 0) and tangent directions and
arc lengths θ0 = 30◦, θ1 = 60◦, L = 1.35 (left); and θ0 = 67.5◦, θ1 = −157.5◦, L = 1.50 (right).
The “ordinary” cubics with the same end points and tangents are also shown (red) for comparison

the other is discarded due to undesired loops. Figure5 illustrates some examples of
the constructed PH quintics—for comparison, the “ordinary” cubics with the same
end points and tangents are also shown. This procedure has been employed in [48]
to construct helical paths (or curves of constant slope) between given end points and
motion directions, through a “lifting” process. Such curves can be used to specify a
flight path at constant speed for an aerial vehicle with a limited climb rate.

The generalization of the analysis in [47] to the case of spatial PH quintics r(ξ),
ξ ∈ [ 0, 1 ]with end points p0,p1 and tangents t0, t1 and total arc length L , again with
the assumption that |r′(0)| = |r′(1)| = w2, is more challenging [49]. In the standard
C1 Hermite interpolation by spatial PH quintics [56], it is known that the solutions
depend on two free parameters ψ0, ψ2 and their arc lengths are determined (within a
certain range) by the difference ψ2 − ψ0. Compared to C1 Hermite interpolation, the
two degrees of freedom gained in the present context by relaxing from C1 to G1 data
are used up by imposing the arc length L , which need only satisfy L > |p1 − p0|,
and the assumption |r′(0)| = |r′(1)| = w2. Thus, we may expect solutions to the
present problem (if they exist for any given data) to also exhibit two free parameters.

Based on canonical–form data, the construction of G1 spatial PH quintic Her-
mite interpolants of given arc length L was reduced in [49] to finding the positive
roots of a quadratic equation in w2 with data–dependent coefficients, and these roots
must satisfy certain data–dependent bounds. It was shown [49] that this equation
always has two positive roots, of which only the smaller root satisfies the stipulated
bounds. Solutions are thus obtained for any given data G1 Hermite p0,p1, t0, t1 and
any arc length L > |p1 − p0|, incorporating two free parameters ψ0, ψ2. Since the
interpolant shape can be quite sensitive to the values of these parameters, exploiting
them to optimize a suitable measure of the intrinsic curve shape is desirable.

It is appropriate to also mention here the “rectifying control polygon” for planar
PH curves, introduced in [123]. Since a PH curve of degree n has fewer degrees of
freedom than a general polynomial curve of degree n, an arbitrary modification of
its Bézier control polygon will destroy its PH nature. Also, as observed in Sect. 2,
only the simplest non–trivial (cubic) case admits an intuitive characterization of PH
curves in terms of the geometry of the Bézier control polygon.

The rectifying control polygon is defined so as to have the same arc length and
degrees of freedom as the associated PH curve. The control points of the rectifying
control polygon are convex combinations of the Bézier control points. It matches the
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curve end points, but not the tangents, and the familiar shape–preserving properties
of the Bézier form (which arise from its linear nature) do not hold. The problem of
determining a PH curve from a given rectifying control polygon is also addressed in
[123]. As usual with PH curves, this problem admits a multiplicity of solutions, and
a suitable shape measure must be invoked to identify the “good” solution.

5.3 Algorithms for Geometric Design Applications

The advantageous properties of PH curves have proven useful in a variety of basic
geometric design problems. For example, they have been employed to define fillet
or transition curves that smoothly join simple geometrical elements, such as linear,
circular, or spiral path segments [95, 101, 151, 205, 206]. Such transition curves are
of interest in applications such as the layout of highways and railways, or smoothing
of sharp corners in piecewise–linear toolpaths for CNC machining (see Sect. 7.1),
and may have to satisfy various constraints—a prescribed total arc length, the order
of continuity with the segments they connect, monotonicity of curvature, etc.

Planar polynomial PH curves have also been applied [158] to solve the classical
isoperimetric problem, i.e., to find the closed curve of a given length encompassing
the largest possible area. It is well known that, among all possible planar curves,
the optimal solution to this problem is a circle. The use of polynomial PH curves
in this context is motivated by the availability of simple closed–form expressions
for the total arc length. In [158] the problem is studied in the context of PH curves
r(ξ), ξ ∈ [ −1,+1 ] with r(+1) = r(−1) and various degrees of smoothness at this
juncture point. It is interesting to note that the best PH curve solution of a given
degree is just C0 even though solutions with higher orders of continuity still exhibit
convergence of the geodesic distance from a circle with increasing degree.

The dual form of rational planar PH curves and their offsets has also been applied
[1] to construct ovals and rosettes of constant width. An oval of constant width w is
a convex curve free of self–intersections that, for any orientation, touches parallel
lines a distance w apart—such curves have applications in mechanism design. The
constructions used in [1] employ G2 piecewise rational PH curves of class 4, whose
segments are portions of the involutes to Tschirnhaus cubics, and the constant width
property is achieved by parallel translations of the control lines in the dual form.

5.4 Reverse Engineering of PH Curves

To fully utilize the advantageous properties of PH curves, it is necessary to know
their pre–image polynomials—namely, the complex polynomial w(ξ) in (3) for a
planar PH curve, and the quaternion polynomial A(ξ) in (5) for a spatial PH curve
(or equivalently the two complex polynomials α(ξ),β(ξ) in the Hopf map form (8)).
However, this information is lost when a polynomial PH curve r(ξ) is communicated
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to an application using only its control points, and in fact there is no immediate way
of knowing whether or not a given curve r(ξ) is a PH curve.

In order to address this problem, the idea of “reverse engineering” PH curves was
introduced in [65]. The first step is to identify whether given control points define
a polynomial PH curve, and to determine its degree (since the control points may
define a degree–elevated form). With an affirmative outcome, the second step is to
construct the pre–image polynomial(s) from the given control points.

The simplest identification is based on the polynomial arc length of PH curves,
instead of analyzing the control polygon. The parametric speed |r′(ξ)| = ds/dξ of a
polynomial curve r(ξ) is the derivative of arc length s with respect to the parameter
ξ , and it is a polynomial σ(ξ) if and only if r(ξ) is a PH curve. A quadrature scheme
with m nodes on ξ ∈ [ 0, 1 ] is said to have precision n if it yields exact integral
values for polynomials of degree ≤ n from a weighted sum of values sampled at the
nodes. On applying such a scheme to |r′(ξ)|, the arc length estimates will “saturate”
as m increases if r(ξ) is a PH curve, since its parametric speed is a polynomial.

The Gauss–Legendre and Newton–Cotes rules are two commonly used numeri-
cal quadratures, which exhibit saturation of the arc length estimates for PH curves
of degree n when m ≥ � 1

2 n� and 2 
 1
2 (m + 1)� > n, respectively. Hence, for PH

quintics, saturation occurs for m ≥ 3 with the former, and m ≥ 5 with the latter,
although the former involves more complicated nodes and weights. Note that this
identification scheme applies equally to both planar and spatial PH curves.

Once the PH nature and degree of a polynomial curve r(ξ) have been verified, the
Bernstein coefficients of the pre–image polynomial can be determined from a system
of quadratic equations. In the case of a planar PH quintic with the complex control
points pk = xk + i yk , for example, r′(ξ) has coefficients dk = n (pk+1 − pk), and
the coefficients w0,w1,w2 of the quadratic polynomial w(ξ) must satisfy

w2
0 = d0 , w0w1 = d1 , 2w2

1 + w0w2 = 3d2 , w1w2 = d3 , w2
2 = d4 .

Although this system appears overdetermined, the known PH nature of r(ξ) ensures
its consistency, and one may use only the first (or last) 3 equations. The w0,w1,w2

values are then easily obtained (up to a sign indeterminacy).
As an example, the method was applied to the planar PH quintic defined [80] by

the initial and final pairs of control pointsp0 = (1.0, 1.0),p1 = (2.5,−0.5) andp4 =
(2.5, 4.5),p5 = (4.0, 3.0)withNewton–Cotes quadrature. The arc lengths computed
in double–precision arithmetic saturate as expected:

m = 2, S = 10.60660171779822,
m = 3, S = 6.88667502260488,
m = 4, S = 6.09350707561590,
m = 5, S = 5.45897271802472,
m = 6, S = 5.45897271802472,
m = 7, S = 5.45897271802472,
m = 8, S = 5.45897271802472,
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and the Bernstein coefficients of w(ξ) are obtained as

w0 = 3.00887036259443 − 1.24631491160906 i ,
w1 = 0.00383089626255 + 4.56753122870050 i ,
w2 = 3.00887036259443 − 1.24631491160906 i .

An analogous method holds for determining the coefficients of the quaternion pre–
image polynomial A(ξ) in the case of spatial PH curves [65].

6 Surface Constructions Based on PH Curves

The distinguishing property of a PH curve r(ξ) is the particularly simple form of its
parametric speed, which defines the fundamental relation between the parameter ξ

and curve arc length s. This property has no immediate, intuitive generalization to a
parametric surface r(u, v), although there are definitions—such as the PN surfaces
discussed in Sect. 3.5—that inherit certain aspects of PH curves. Nevertheless, PH
curves can still play an important role in numerous surface construction contexts, as
illustrated by the representative examples described below.

6.1 Rational Patches Bounded by Lines of Curvature

A curve c(ξ) on a parametric surface s(u, v) is defined by specifying the two
surface parameters as functions u(ξ), v(ξ) of another parameter ξ identifying
position along the curve. The Darboux frame (t(ξ),h(ξ),n(ξ)) along the curve
c(ξ) = s(u(ξ), v(ξ)) is defined [144] in terms of the surface partial derivatives su , sv

as

t = u′ su + v′ sv

| u′ su + v′ sv | , h = su × sv

| su × sv | × t , n = su × sv

| su × sv | . (26)

It consists of the tangent t(ξ) to the curve c(ξ), the surface normal n(ξ) along it,
and the tangent normal h(ξ) = n(ξ) × t(ξ)—a vector lying in the surface tangent
plane that is orthogonal to the curve tangent t(ξ) at each point. The variation of the
Darboux frame along c(ξ) is described [144, 199] by the equations

⎡
⎣ t′

h′
n′

⎤
⎦ = σ

⎡
⎣ 0 κg κn

−κg 0 −τg
−κn τg 0

⎤
⎦

⎡
⎣ t

h
n

⎤
⎦ , (27)
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where the parametric speed, normal curvature, geodesic curvature, and geodesic
torsion of c(ξ) are defined by

σ = | u′su + v′sv | , κn = n · t′
σ

, κg = h · t′
σ

, τg = h · n′

σ
.

The variation of the Darboux frame may alternatively be expressed in terms of its
angular velocity

ω = − τg t − κn h + κg n , (28)

as
dt
ds

= ω × t ,
dh
ds

= ω × h ,
dn
ds

= ω × n .

A line of curvature on a smooth surface is a locus whose tangent coincides with
a principal curvature direction of the surface at every point [144]. There are two
families of lines of curvature, tangent to each of the principal directions, that form
an “orthogonal net” over the surface.7 An alternative characterization [144] is that a
surface curve c(ξ) is a line of curvature if and only if its geodesic torsion satisfies
τg ≡ 0. From (28) this implies that ω · t ≡ 0, and hence c(ξ) is a line of curvature
if and only if its Darboux frame is rotation–minimizing with respect to t, i.e., h and
n exhibit no instantaneous rotation about t along the curve c(ξ).

This property facilitates construction of rational tensor–product surface patches
with boundary curves that are lines of curvature [13], specified by the RRMF curves
described in Sect. 4.1. The construction commences with the four corner points and
associated Darboux frames for the desired surface patch. Four quintic RRMF curves
are then constructed to define the patch boundary curves, and their RMFs determine
the variation of the surface normal and the tangent normal on them. The patch interior
is then “filled in” using a Coons interpolation scheme [38], and the residual free
parameters may be used to optimize the interior shape.

6.2 Rational Swept Surface Constructions

The construction of surfaces through sweep operations offers an intuitive approach
to specifying a diverse family of surface types that are commonly used in geometric
design. The basic idea is to use a sweep curve s(v) to specify a continuous family of
geometrical transformations that act on a profile curve p(u). These transformations
may be combinations of translations, rotations, scalings, and more general actions.
The profile and sweep curves are typically defined as polynomial or rational forms,
and in order to ensure compatibility with prevailing CAD representations, the sweep
operation should generate a rational swept surface r(u, v).

7The system of lines of curvature is singular at umbilic points, where the principal directions are
undefined [144].
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A systematic approach to rational swept surface constructions was first proposed
in [105]. For rational profile and sweep curves p(u) and s(v), this approach defines a
rational swept surface r(u, v) whose homogeneous coordinates are bilinear in those
of p(u) and s(v). When the profile and sweep curves are rational cubics, they may
be represented by 4 × 4 coefficient matrices, and by contracting these matrices with
a 4 × 4 × 4 selector matrix, which defines a particular type of sweep operation, one
obtains the 4 × 4 × 4 matrix that defines a rational bicubic swept surface r(u, v).

This formalism allows familiar sweep forms, such as translational, rotational, and
conical surfaces, to be automatically generated, eliminating the possibility of errors
in deriving them “by hand” [32, 176]. However, for general polynomial or rational
curves, restricting r(u, v) to a bilinear dependence on the homogeneous coordinates
of p(u) and s(v) excludes many desirable sweep types. For example, to translate
p(u) along s(v) such that the former always lies in the normal plane of the latter, the
sweep curve must have a rational unit tangent vector, i.e., it must be a PH curve.

Since polynomial PH curves possess polynomial parametric speed and arc length
functions, and rational unit tangents and curvatures, using them as sweep curves
vastly enlarges the morphology of sweep types that generate rational swept surfaces
[81]. The examples described below illustrate the diversity of rational swept surface
types that are possible with PH sweep curves (see [81] for more complete details).
In these examples, the parameters u and v indicate whether a function refers to the
profile curve or sweep curve.

• Oriented–translation sweep. Given a profile curve p(u) = x(u) i + z(u)k in the
(x, z) plane, and a PH sweep curve s(v) = x(v) i + y(v) j in the (x, y) plane with
parametric speed σ(v) and normal n(v), the surface

r(u, v) = s(v) + x(u)n(v) + z(u)k

is generated by translating p(u) along s(v), while orienting p(u) so as to always
lie in the normal plane of s(v). To guarantee that r(u, 0) = p(u), the sweep curve
must satisfy s(0) = 0 and s′(0)/σ (0) = j.

• Offset–translation sweep. In place of a sweep curve s(v), this surface type uses a
distance function d(v) to specify a continuous family of offset curves to a planar PH
profile curve p(u) = x(u) i + y(u) j with unit normal n(u), which are uniformly
translated orthogonal to the plane of p(u). The resulting offset–translation swept
surface is defined by

r(u, v) = p(u) + d(v)n(u) + v k .

• Oriented–involute sweep. An involute of a given plane curve s(v) is a curve c(v)
within the same plane, such that s(v) is its locus of centers of curvature. Involutes
are fundamental in the design of gear tooth shapes that achieve conjugate action
(i.e., an exactly constant angular velocity ratio) of meshing gears. If s(v) and t(v)
are the arc–length function and tangent of s(v), the involute is defined by
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c(v) = s(v) − s(v) t(v) .

For a profile curve p(u) = x(u) i + z(u)k in the (x, z) plane and a PH sweep
curve s(v) = x(v) i + y(v) j in the (x, y) plane, we define the oriented–involute
sweep by

r(u, v) = c(v) − x(u) t(v) + z(u)k .

This surface is obtained by translating p(u) along the involute c(v), and orienting
it in the normal plane to c(v) at each point. To ensure that r(u, 0) = p(u), we must
have s(0) = 0 and s′(0)/σ (0) = − i.

• Generalized conical sweep. The oriented–translation sweep may be generalized
by also subjecting the profile curve to a uniform scaling, linearly dependent on
the sweep curve arc length s(v). If S is the total arc length of s(v) and c0, c1 are
positive initial and final scale factors, we introduce the scaling function

c(v) = c0(S − s(v)) + c1s(v)

S
, v ∈ [ 0, 1 ] ,

and the generalized conical swept surface is defined by

r(u, v) = s(v) + c(v) [ x(u)n(v) + z(u)k ] .

For each v, the translated/oriented copy of the profile curve p(u) is scaled by the
factor c(v). To ensure that r(u, 0) = p(u), wemust have s(0) = 0, s′(0)/σ (0) = j,
and c0 = 1.

When p(u) is a polynomial curve, s(v) is a polynomial PH curve, and d(v) is a
polynomial function, the homogeneous coordinates of the swept surfaces r(u, v) in
each of the above examples are polynomials in u and v. In the case of the generalized
conical sweep, for example, they are specified by

W (u, v) = Sσ(v) ,

X (u, v) = Sσ(v)x(v) + [ c0S + (c1 − c0)s(v) ] y′(v)x(u) ,

Y (u, v) = Sσ(v)y(v) − [ c0S + (c1 − c0)s(v) ] x ′(v)x(u) ,

Z(u, v) = [ c0S + (c1 − c0) s(v) ] σ(v)z(u) .

The above examples are by no means exhaustive, and are only intended to illustrate
the rich variety of rational swept surface types that become possible with the use of
PH sweep curves. In fact, unlike the matrix formalism [105] used to generate swept
surfaces specified by bilinear forms in the profile and sweep curve homogeneous
coordinates, this richness makes it difficult to categorize the complete set of rational
swept surfaces based on the use of PH sweep curves.

A real–time interpolator algorithm that machines the above surface types directly
from their high–level procedural definitions (i.e., the sweep type and the profile and
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profile curve

sweep curve
swept surface

Fig. 6 Left: construction of a generalized conical sweep surface from a profile curve and a PH
sweep curve. Right: the surface machined in aluminum using its high–level procedural definition

sweep curve definitions) was described in [166]. This bypasses the need to generate
voluminous, approximate G code part programs, or to re–generate them when the
cutting tool is changed. Figure6 illustrates an example generalized conical sweep
surface, and its machining in aluminum based on this methodology.

6.3 Surface Patches with PH Isoparametric Curves

A method for constructing tensor–product surface patches s(u, v) for which the v =
constant isoparametric loci are spatial PH curves was developed in [83], based on
integrating the form

su(u, v) = A(u, v) iA∗(u, v) , (29)

with respect to u, where A(u, v) is a bivariate quaternion polynomial expressed in
terms of the Bernstein bases of degree m and n in u and v as

A(u, v) =
m∑

i=0

n∑
j=0

Ai j bm
i (u)bn

j (v) . (30)

The product (29) yields the pure vector expression

A(u, v) iA∗(u, v) =
2m∑
i=0

2n∑
j=0

ai j b2m
i (u) b2n

j (v) , (31)

where

ai j =
min(m,i)∑

k=max(0,i−m)

min(n, j)∑
l=max(0, j−n)

(m
k

)( m
i−k

)
(2m

i

)
(n

l

)( n
j−l

)
(2n

j

) Akl iA∗
i−k, j−l (32)
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for i = 0, . . . , 2m and j = 0, . . . , 2n. Integration with respect to u then gives

s(u, v) =
2m+1∑
i=0

2n∑
j=0

pi j b2m+1
i (u) b2n

j (v) , (33)

where p0 j for j = 0, . . . , 2n are freely chosen to define the boundary curve s(0, v),
and the remaining control points are given by

pi j = pi−1, j + 1

2m + 1
ai−1, j (34)

for i = 1, . . . , 2m + 1 and j = 0, . . . , 2n. The focus in [83] is on the particular case
m = n = 2, yielding tensor–product patches of degree (5, 4) in (u, v).

Upon fixingA00,A10,A20 andA02,A12,A22 by constructing the two boundary
curves s(u, 0) and s(u, 1) as PH quintic Hermite interpolants,A01,A11,A21 remain
to be determined. As demonstrated in [83], these coefficients can be used to fix the
interior control points p51,p52,p53 defining the boundary curve s(1, v) with p50, p54
having already been determined in fixing s(u, 0) and s(u, 1). In particular,A01,A21

can be eliminated to obtain a single quadratic equation inA11 of the form

A11 PA∗
11 + A11 Q + RA∗

11 = S , (35)

with quaternion coefficients P,Q,R,S. This equation is rather unusual, since the
quaternion unknown and its conjugate exhibit left and right coefficients, while the
quadratic term has a coefficient interposed between them. A comprehensive analysis
of its solution space has been presented in [53].

The above construction yields a degree (5, 4) tensor–product patch s(u, v) with
quintic PH curves as its v = constant isoparametric loci, and pre–defined boundary
curves. The coefficients P,Q,R,S in (35) include three free scalar parameters, that
can be exploited to optimize the interior shape of the surface patch.

7 Applications of Pythagorean–Hodograph Curves

Applications play an important role in computer aided geometric design, motivating
development of new theory and algorithms to serve practical needs. In minimizing
the need to invoke numerical approximations, PH curves can enhance the accuracy,
efficiency, and robustness of applications. The present section reviews two important
application domains for PH curves: real–time motion control and path planning.
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7.1 Real–Time Motion Control

The distinctive features of PH curves make them well–suited to problems of real–
time motion control in robotics, manufacturing, inspection, and related applications.
Given a desired feedrate (speed) along a prescribed path, the real–time interpolator
algorithm generates a reference point (i.e., commanded machine position) in each
sampling interval of the controller. The difference between the commanded position
and actual machine position (as measured by encoders on the machine axes) defines
the instantaneous position error, which is the basic control variable.

PH curves admit essentially exact real–time interpolator algorithms for various
feedrate dependencies on elapsed time, arc length, path curvature, etc. [74, 90, 202].
However, they also possess many other advantages in motion control, for example
in inverse dynamics error compensation schemes [36, 186]. The physical limitations
(axes inertia and friction) of real machines prevent them from exactly executing a
desired path r(ξ), but if the machine physical properties and controller parameters
are known, one may compute a modified path that, subject to the machine dynamics,
will induce the machine to exactly execute the original desired path r(ξ).

For a basic P (proportional) controller, the modified path can be exactly specified
as a rational curve when the given path r(ξ) is a polynomial PH curve. In fact, the
modification amounts [36] to simply adding the “correction” term

Δr = b (V/σ)2 r′′ + (V/σ) [ b (V/σ)′ + c ] r′ (36)

to r(ξ), where σ(ξ) = |r′(ξ)| is the parametric speed, V is the feedrate (which may
be non–constant), and b, c are constants8 determined by the machine and controller
properties. Experiments on a CNC mill with an open–architecture controller [186]
show that the inverse dynamics scheme substantially improves the tracking accuracy
along strongly–curved paths, as shown by the plots of contour error (the geometrical
deviation of the executed path from the commanded path) in Fig. 7.

A further important application of the PH curves is in the high–speed cornering
problem. It is physically impossible for a machine to execute a sharp corner at finite
speed, and the need to decelerate into and accelerate out of corners can substantially
increase overall execution times for piecewise–linear paths, and impose undesirable
stresses on the axis drive systems. The typical solution to this problem is to smooth
out the path with corner rounding curves that satisfy a prescribed tolerance, and to
impose a suitable feedrate modulation along these corner curves.

PH curves are especially well–suited to the corner rounding problem [82, 107,
108, 167, 191, 198, 208] since they can define G2 corner rounding curves between
linear segments that have smooth curvature distributions, and are amenable to real–
time feedrate modulation dependent on position or curvature along the corner curve.
A “canonical form” G2 PH quintic corner curve r(ξ), ξ ∈ [ 0, 1 ] with side length
L and corner angle θ between the initial and final control points p0 = (0, 0) and

8The expression (36) assumes that these constants are the same for each machine axis, but this
assumption is not essential.
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Fig. 7 Measured path contour error magnified 200× along a C2 PH spline curve, for feedrates
of 200, 400, 600, 800 in/min, with the inverse dynamics scheme switched on (left) and off (right).
Linear “lead–in” and “lead–out” segments are also included, so as to minimize transient effects

p5 = (L + L cos θ, L sin θ) is defined [82] by the interior control points

p1 = p2 =
(

6L cos 1
2θ

6 cos 1
2θ + 1

, 0

)
, p3 = p4 =

(
L + L cos θ

6 cos 1
2θ + 1

,
L sin θ

6 cos 1
2θ + 1

)

and expressions for its maximum curvature, total arc length, and deviation from the
exact corner point pc = (L , 0) can be easily derived [82]. Figure8 shows examples
of these corner curves, and the curvature–dependent feedrate

V (ξ) = f κmaxV0

(1 − f ) κ(ξ) + f κmax
,

which for 0 < f < 1 achieves a reduction fromV0 to f V0 at themid–point extremum
of the curvature, κmax = κ( 12 ). Experiments on a variety of corner–rounded paths
[167] indicate reductions in overall execution times of ∼24–32% compared to the
“full stop” execution of piecewise–linear paths without corner rounding.

A number of other real–time motion control strategies and applications based on
the use of PH curves have been described in [21, 92, 100, 109, 110, 121].

7.2 Path Planning Applications

Path planning is a key component of diverse applications, such as CNC machining,
automated assembly or inspection, the coordinated motion of autonomous vehicles,
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Fig. 8 Left: canonical form G2 PH quintic corner curves for the turning angles 45◦, 90◦, 135◦.
Right: curvature–dependent feedrate functions for the corner curves, corresponding to feedrate
reduction factors f of 10%, . . . , 90% relative to the nominal value V0

robotic surgery, and computer animation. Such problems may be concerned only
with issues of position, or with position and orientation, and may entail satisfaction
of various constraints—correlation of position and orientation, obstacle avoidance,
maintenance of minimum safe separations, bounds on linear or angular velocity and
acceleration, etc. We briefly review here the growth of interest over the past decade
in exploiting the properties of PH curves for path planning applications.

7.2.1 Unmanned or Autonomous Vehicles

The use of PH curves in planning paths for unmanned or autonomous aerial, land,
or submarine vehicles has been discussed by several authors [6, 19, 23, 24, 31, 59,
93, 154, 163–165, 189, 190, 201, 211, 212]. The availability of cheap “drones”
equipped with surveillance devices and wireless communications has spawned an
interest in diverse applications—e.g., remote sensing or surveying for agricultural,
geophysical, and meteorological assessment; search–and–rescue missions; marine
biology and oceanography studies; assessment and management of disaster relief
plans; law enforcement; and automated consumer products delivery.

The path generation problem may be subject to a variety of constraints, such as
avoidance of environmental obstacles; satisfaction of bounds on the path curvature
or climb angle; and maintaining safe separations within, or ensuring simultaneous
arrivals of, vehicle swarms. However, as noted in [59], some early studies indicate
misconceptions concerning the basic properties and advantages of PH curves in the
path planning context. These attributes of PH curves may be summarized as follows.

• The ability to construct paths with precisely–specified arc lengths between given
end states (see Sect. 5.2) allows predictable arrival times for vehicles that travel
at a constant speed. This can ensure simultaneous arrival of multiple vehicles that
follow independent paths with common departure and destination points.

• The polynomial arc length property facilitates assessment of nearest approaches
of vehicles following different paths at constant speed—paths that intersect may
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Fig. 9 Left: intersecting planar PH quintic paths of equal arc length, traversed at constant speed
(the dots indicate the closest approach). Right: path separation as a function of the path arc length

nevertheless satisfy safe minimum separations, since the intersections correspond
to different timings along them (see Fig. 9). The rational offsets to planar PH paths
define “exclusion zones” that can be used to discount a priori the possibility of
unsafe close approach if they do not overlap.

• Algorithms for planning routes through obstacle fields typically yield piecewise–
linear paths with sharp corners, which cannot be physically realized at non–zero
speed by vehicles with finite inertia. The PH curve corner–rounding scheme (see
Sect. 7.1) can be used to address this problem, and ensure that physical bounds on
acceleration or steering rates are not exceeded at a given desired speed.

• The determination of the curvature extrema of PH paths can be formulated as a
polynomial root–solving problem, whose solutions can be used to assign feasible
constant speeds under known acceleration bounds. For aerial vehicles, helical PH
paths can be used to set safe constant speeds under known bounds on climb rates.

Further studies of path planning with PH curves, subject to obstacle avoidance
constraints, have been presented in [34, 96]. A key preliminary step is to construct
a piecewise–linear path in the free space that connects prescribed initial and final
positions. A PH quintic G1 [96] or G2 [34] spline interpolation scheme with tension
is then employed to define a smoother admissible path passing through the vertices
of the piecewise–linear path. An off–line feedrate scheduler incorporating kinematic
constraints was proposed in [97], that produces a C2 spline time–dependent feedrate
function for planar paths specified as PH splines, that is compatible with standard
real–time PH curve interpolator algorithms.

7.2.2 Constrained Spatial Rigid–Body Motions

A spatial motion of a rigid body involves specifying the variation of position and
orientation with time t . The path of a specific point (e.g., the center of mass) may be
used to describe the variation of position as a curve r(t), and an orthonormal frame
(f1(t), f2(t), f3(t)) embedded within the body can be used to specify the variation of
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orientation. In general, r(t) and (f1(t), f2(t), f3(t)) are independent, and a number
of studies [140, 142, 177] address rational motions of this type. However, we will
focus here on “constrained” spatial motions, involving a correlation of position and
orientation, which are important in many application contexts.

The first two derivatives of the path r(t) define the velocity v and acceleration
a of the body, while the first two derivatives of the frame (f1(t), f2(t), f3(t)) spec-
ify the angular velocity ω and angular acceleration α. As observed in Sect. 4.1, an
adapted rotation–minimizing motion satisfies the constraint v · ω ≡ 0 (i.e., there is
no instantaneous rotation about the direction of motion), and the simplest rational
rotation–minimizing motions correspond to the quintic RRMF curves. Preliminary
results on the construction of RRMF quintics that interpolate given G1 Hermite data
(end points and unit tangent vectors) were presented in [63].

The construction of rational rotation–minimizing motions, with given initial and
final positions and orientations, was studied in [58] using the characterization (18)
of RRMF quintics in terms of their quaternion pre–image polynomial coefficients,
and it was shown that the problem can be reduced to finding the positive real roots
of a degree 6 polynomial with coefficients dependent on the given data. However, it
was observed that positive real roots do not exist for all possible data sets.

An alternative approach based on the degree 7 PH curves that have rotation–
minimizing ERFs, as identified by the quaternion coefficient constraints (14), was
developed in [71]. In this case, it was possible to reduce the construction to solving a
system of four quadratic equations in four real variables. These equations incorporate
two free parameters specifying the magnitudes of the end derivatives, which can be
used to optimize the curve shape. Although the curves are of higher degree than the
RRMF quintics, their rational RMFs are actually of lower degree, since the ratio-
nal normal–plane rotation (15) is not required. Two distinct solutions are typically
observed for specified end points, frames, and derivative magnitudes. Because of the
non–linear nature of the problem, a formal proof for existence of interpolants to arbi-
trary given data—for some values of the free parameters—is non–trivial. However,
empirical evidence supporting this was presented in [71]. Figure10 illustrates some
examples of the constructed rational rotation–minimizing motions.

As noted in Sect. 4.2, the construction of anRMFon a given curve is an initial value
problem, and consequently an RMF along a pre–defined curve cannot match both
initial and final orientations—in themethods described above, the curvewas not pre–
defined, butwas rather an outcomeof the construction. To address this issue, amethod

Fig. 10 Two examples of rotation–minimizing rigid body motions along degree 7 PH curves that
possess rational RMFs, matching prescribed initial and final positions and orientations
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has been developed in [162] to match desired initial/final orientations for rigid body
motion along a prescribed curve, using the minimal twist frame (MTF) introduced
in Sect. 4.2, and was also extended to minimal twist spline motions, interpolating
orientations at a sequence of discrete locations along a specified curve, with the least
possible twist between consecutive locations.

The study [64] considers the construction of rational spatial motions specified
by rotation–minimizing directed, rather than adapted, frames (see Sect. 4.4). These
motions are based upon a family of quartic P curves, characterized by the condition
(24), that possess rational rotation–minimizing directed frames. The quartic P curves
can interpolate initial/final positions and orientations of a camera, together with an
initial motion direction, and by piecing such P quartics together one can define a G1

camera motion that yields the least possible image rotation of a stationary object.
Further constructions of this type of motions are described in [115, 141, 185].

7.3 PHquintic Software Library

To encourage greater adoption of PH curves in applications, a C/C++ open–source
software library for constructing, modifying, and analyzing planar PH quintics has
been published [35]. Using the complex representation, a planar PH quintic segment
is defined by a structure of the form

struct PHquintic {
complex p[6] ; /* Bezier control points */

complex w[3] ; /* pre-image coefficients */

double sigma[5] ; /* parametric speed coefficients */

double s[6] ; /* arc length coefficients */

} ;

This definition is redundant, since the initial control point p0 and the Bernstein
coefficients w0,w1,w2 of w(ξ) suffice to reconstruct all the other information, but
it serves to improve the efficiency of subsequent algorithms. The functions provided
in this library include:

• construction of first–order PH quintic Hermite interpolants, as specified by initial
and final control–point pairs p0,p1 and p4,p5 with the absolute rotation index
[80] used to identify the “good” solution;

• construction of open and closed C2 PH quintic spline curves that interpolate a
sequence of points p0, . . . ,pn (with pn = p0 in the case of a closed curve) using
the efficient method described in [73];

• construction of the control points and weights defining the exact rational offsets
to planar PH quintics [85];

• computation of the exact elastic bending energy of PH quintic segments [40].
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In addition to these high–level C functions, which can be easily integrated with
applications software, an interactive C++ interface was developed for the Windows
environment, based on the Microsoft Foundation Class Library and Open Graphics
Library. This allows the user to input data points by mouse, and interactively modify
PH curves using the mouse to move them (exact data point coordinates can also be
manually typed in). Key properties of the constructed PH curves (arc length, bending
energy, etc.) are reported, and their offset curves can also be constructed.

7.4 Other Applications

For brevity, we mention only briefly a selection of other recent applications for the
PH curves, which include: aesthetic design of artistic patterns [125]; vision–based
command generation and disturbance compensation in planar contour tracking [21];
smooth tracking of head motions for virtual reality applications [5]; improving the
efficiency of robotic pick–and–place operations [200]; and modeling of continuum
manipulators [192].

8 Closure

As documented in this survey, the past decade—since the appearance of [43]—has
been very fruitful in broadening and deepening the basic theory of Pythagorean–
hodograph curves; in the formulation of algorithms for constructing, modifying, and
analyzing them; and in demonstrating their advantages in practical applications.

The increasing adoption of PH curves in practical applications in recent years is
a propitious development, since these applications frequently suggest and motivate
new lines of investigation for the development of basic theory and novel algorithms.
As the 30th anniversary of the original Pythagorean hodograph concept approaches
[85], it is evident that it has served as a very fruitful paradigm, for both theoretical
and practical research, and may continue as such for many years to come.
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Tchebycheffian B-Splines Revisited:
An Introductory Exposition

Tom Lyche, Carla Manni and Hendrik Speleers

Abstract Tchebycheffian splines are smooth piecewise functions where the differ-
ent pieces are drawn from extended Tchebycheff spaces. They are a natural gen-
eralization of polynomial splines and can be represented in terms of an interesting
set of basis functions, the so-called Tchebycheffian B-splines, which generalize the
standard polynomial B-splines. We provide an accessible and self-contained expo-
sition of Tchebycheffian B-splines and their main properties. Our construction is
based on an integral recurrence relation and allows for the use of different extended
Tchebycheff spaces on different intervals. The special class of generalized B-splines
is also discussed in detail.

1 Introduction

Extended Tchebycheff (ET-) spaces are natural generalizations of algebraic polyno-
mial spaces [14, 30]. Any nontrivial element of an ET-space of dimension p + 1
has at most p zeros counting multiplicity. Extended complete Tchebycheff (ECT-)
spaces are an important subclass that can be generated through a set of positiveweight
functions [25, 30] and allow for defining generalized power functions [18]. Relevant
examples are nullspaces of linear differential operators on suitable intervals [10, 30].

Similarly to the polynomial spline case, Tchebycheffian splines are smooth piece-
wise functions whose pieces are drawn from ET-spaces [26, 30]. They share many
properties with the classical polynomial splines but also offer a more flexible frame-
work, due to the wide variety of ET-spaces. As it is difficult to trace all the works
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on Tchebycheffian splines, we refer the reader to [30] for an extended bibliogra-
phy on the topic. Multivariate extensions of Tchebycheffian splines can be easily
obtained via (local) tensor-product structures [5–7]. Besides their theoretical inter-
est, Tchebycheffian splines have application in several branches of the sciences,
including geometric modeling and numerical simulations; see, e.g., [20–23, 31].

Most of the results known for polynomial splines extend in a natural way to the
Tchebycheffian setting. There are basically two main categories of extensions: the
various pieces are drawn either from the same ET-space or from different ET-spaces.
In the former case, Tchebycheffian splines always admit a representation in terms of
basis functions, called Tchebycheffian B-splines, with similar properties to polyno-
mial B-splines. In this context, Tchebycheffian B-splines were introduced in 1968
by Karlin [13] using generalized divided differences. We refer the reader to the his-
torical notes in [30, Chaps. 9 and 11] for further details. The existence of a basis with
similar properties for splines with pieces taken from different ET-spaces requires
constraints on the various ET-spaces. Necessary and sufficient conditions for the
existence of Tchebycheffian B-splines in this more general piecewise structure—
sometimes referred to in the literature as piecewise Tchebycheffian B-splines [27]—
has been obtained bymeans of blossoms; see [26, 27, 29] and references therein. Due
to the intrinsic “piecewise” structure of splines, we prefer to use the term Tcheby-
cheffian B-splines also in this more general piecewise setting. Various approaches
can be used to construct Tchebycheffian B-splines whenever they exist, such as gen-
eralized divided differences [30], Hermite interpolation [8, 28], integral recurrence
relations [4], de Boor-like recurrence relations [11, 18], and blossoming [26]. Each
of these definitions has advantages according to the problem one has to face or to
the properties to be proved. All these constructions lead to the same functions, up to
a proper scaling.

This paper aims to provide a self-contained exposition of Tchebycheffian B-
splines and their main properties, which are often scattered, and sometimes hidden,
in the literature. Our construction of Tchebycheffian B-splines is based on an integral
recurrence relation and allows for the use of different ET-spaces on different intervals
in order to be able to completely exploit the richvariety ofET-spaces, as often required
in applications. Although the construction and the properties we present are already
known, the corresponding proofs—just based on elementary calculus—are largely
new, resulting in an accessible, homogeneous, and original presentation. On the other
hand, due to space limitation, some properties of Tchebycheffian B-splines are not
treated in this short overview. In particular, we do not discuss the Marsden identity,
dual functionals and construction of quasi-interpolants; see, e.g., [1, 30].

Our presentation of the Tchebycheffian B-spline setting strongly relies on proper-
ties of ECT-spaces related to the generating weight functions. On the other hand, any
ET-space on a bounded and closed interval is an ECT-space (see [24, Corollary2.12]
and [26]), and therefore it is also equipped with weight functions. In view of this
important result, since only closed and bounded intervals are of interest to define
spline spaces, we could avoid mentioning the concept of ECT-spaces for construct-
ing Tchebycheffian B-splines, as it is sometimes the case in the literature (see, e.g.,
[26]). However, for the sake of completeness and clarity, we prefer to present the
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material in terms of ECT-spaces (similar to, e.g., [3, 30]). Our approach requires that
the E(C)T-spaces we are dealing with are identified by a sequence of weights which
connect smoothly across the different segments. How to construct these weights is
well known for a single ET-space [13, 26] but it can be an issue whenever different
ET-spaces are considered [27]. However, admissible weights can be easily obtained
for an interesting class of Tchebycheffian splines which allows for the use of different
ET-spaces, the so-called generalized splines. For generalized splines, the presented
construction readily applies without requiring any additional work.

The remainder of the paper is divided in three sections. Section2 introduces ET-
spaces and ECT-spaces. It also summarizes some of their properties to be used
in the construction of Tchebycheffian B-splines. Section3 contains the core of the
paper: it defines Tchebycheffian B-splines through an integral recurrence relation
and proves some of their main properties including non-negativity, smoothness, and
knot insertion. Section4 concludes the paper by discussing the interesting special
class of generalized B-splines.

2 Extended Tchebycheff Spaces

In this section we introduce spaces that are a natural generalization of algebraic
polynomial spaces, the so-called extended Tchebycheff spaces. In particular, we
mainly focus on the subclass of extended complete Tchebycheff spaces. Such spaces
can be spanned by a set of basis functions that are a natural generalization of the
polynomial power basis.

2.1 Definition and Basic Properties

Suppose we have a (p + 1)-dimensional subspace Up(I ) of C p(I ) where I is a real
interval. AHermite interpolation problem in Up(I ) consists of finding an element
g ∈ Up(I ) satisfying the following conditions:

D jg(zi ) = fi, j , j = 0, . . . ,mi − 1, i = 0, . . . , �, (1)

where z0, . . . , z� are distinct points in I , and mi are positive integers such that∑�
i=0 mi = p + 1, and fi, j ∈ R. We now define extended Tchebycheff spaces1 on a

real interval I .

Definition 1 Let I be an interval of the real line. Given an integer p ≥ 0, a space
Tp(I ) ⊂ C p(I ) of dimension p + 1 is an extended Tchebycheff (ET-) space on I

1The spaceTp(I ) is called aTchebycheff (T-) space if any solution of (1)withm0 = · · · = mp = 1
is unique in Tp(I ). In such a case, (1) is a Lagrange interpolation problem.
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if any Hermite interpolation problem with p + 1 data on I has a unique solution in
Tp(I ).

The definition immediately implies that a (p + 1)-dimensional subspace ofC p(I )
is an ET-space on I if and only if any nontrivial element of the space has at most p
zeros in I counting multiplicity. Moreover, any ET-space on I is an ET-space of the
same dimension on any nontrivial subinterval of I .

Example 1 The space Pp := 〈1, x, . . . , x p〉 of algebraic polynomials of degree less
than or equal to p is an ET-space on the real line.

Example 2 The space 〈cos(x), sin(x)〉 is an ET-space on any interval [a, a + π)

with a ∈ R. Indeed, the equation c1 cos(x) + c2 sin(x) = 0 has exactly one solution
in the considered interval for any fixed c1, c2 not both equal to zero. On the other
hand, on any interval [a, a + π ] or larger, this space is not an ET-space anymore.

We now focus on a special subclass of ET-spaces.

Definition 2 Let I be an interval of the real line. Given an integer p ≥ 0, the
space Tp(I ) ⊂ C p(I ) of dimension p + 1 is an extended complete Tchebycheff
(ECT-) space if there exists a basis {u0, . . . , u p} of Tp(I ) such that every subspace
〈u0, . . . , uk〉 is an ET-space on I for k = 0, . . . , p. The basis {u0, . . . , u p} is called
an ECT-system.

Example 3 Taking uk(x) = xk , k = 0, . . . , p, we see from Example1 that the space
Pp is an ECT-space on any interval of the real line.

Example 4 AnECT-space is clearly an ET-space, but the converse is not always true.
It is sufficient to consider the space 〈cos(x), sin(x)〉. This is an ET-space on [0, π),
see Example2, but not an ECT-space on [0, π). However, the space is an ECT-space
on (0, π).

The next theorem shows that the classes of ECT-spaces and ET-spaces coincide
in a very important case; see [24, Corollary2.12] and [26] for details.

Theorem 1 If I is a bounded closed interval, then any ET-space on I is an ECT-
space on I .

In the following we will provide a characterization of an ECT-space in terms of
Wronskians. TheWronskian of k + 1 functions {u0, . . . , uk} of classCk(I ) is given
by the determinant

W [u0, . . . , uk](x) := det
(
Diu j (x)

)k
i, j=0.

If there exists a point x̄ ∈ I such that W [u0, . . . , uk](x̄) �= 0, then the functions
{u0, . . . , uk} are linearly independent. Wronskians can be used to characterize an
ECT-space as follows; see [30, Theorem9.1] for a proof.
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Theorem 2 A (p + 1)-dimensional subspace of C p(I ) is an ECT-space on I if and
only if there exists a basis {u0, . . . , u p} such that all the Wronskians are positive;
more precisely,

W [u0, . . . , uk](x) > 0, k = 0, . . . , p, x ∈ I.

Note that the basis {u0, . . . , u p} in Theorem2 is an ECT-system.
Theorem2 gives a characterization of ECT-spaces in terms of Wronskians, but

there is no similar characterization for ET-spaces. If 〈u0, . . . , u p〉 is a (p + 1)-
dimensional ET-space on I , then the Wronskian W [u0, . . . , u p](x) is either positive
for all x ∈ I or negative for all x ∈ I . However, the converse does not hold. It is suf-
ficient to consider the space 〈cos(x), sin(x)〉. This is an ET-space only on intervals
of the form [a, a + π) or subintervals (see Example2), but W [cos, sin](x) = 1 for
all x ∈ R.

Example 5 In Example3 we have shown that the space Pp is an ECT-space using
the set {1, x, . . . , x p}. More generally, Pp can be seen as the span of the power basis

{

1, x − y,
(x − y)2

2
, . . . ,

(x − y)p

p!
}

, (2)

for any fixed y ∈ R. Indeed, the Wronskians of this set of functions are all equal to
one.

2.2 Generalized Powers

In this section we introduce special functions that can be regarded as a generalization
of the power basis in (2).

Definition 3 Let (v1, . . . , vp) be a vector of continuous functions on an interval I .
For the points x, y in I , the repeated integral Gp is defined recursively by

Gp[v1, . . . , vp](x, y) :=
∫ x

y
v1(t)Gp−1[v2, . . . , vp](t, y) dt, p ≥ 1, (3)

starting with G0(x, y) := 1.

From the definition we obtain

G1[v1](x, y) =
∫ x

y
v1(t) dt,
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and for p > 1,

Gp[v1, . . . , vp](x, y) =
∫ x

y
v1(t1)

∫ t1

y
v2(t2) · · ·

∫ tp−1

y
vp(tp) dtp · · · dt1.

We only list two basic properties of repeated integrals; for proofs and further prop-
erties we refer the reader to [18].

• Diagonal Property. Let v j ∈ Cmax(p−1− j,0)(I ), j = 1, . . . , p. For any y ∈ I we
have

∂r

∂xr
G p[v1, . . . , vp](x, y)|x=y = 0, r = 0, . . . , p − 1. (4)

• Generalized Binomial Formula. For any x, y, c ∈ I we have

Gp[v1, . . . , vp](x, y) =
p∑

j=0

(−1)p− j G j [v1, . . . , v j ](x, c)Gp− j [vp, . . . , v j+1](y, c).

(5)

We are now ready to define a generalization of the classical power basis in (2).

Definition 4 Letw := (w0, . . . ,wq) be a vector of continuous functions on an inter-
val I . For a nonnegative integer p ≤ q and a fixed point y in I , we define the gen-
eralized powers by

uw0,p(x, y) := wp(x),

uw1,p(x, y) := wp(x)G1[wp−1](x, y),
uw2,p(x, y) := wp(x)G2[wp−1,wp−2](x, y),

...

uwp,p(x, y) := wp(x)Gp[wp−1, . . . ,w0](x, y),

(6)

with G j the repeated integrals in (3).

We immediately obtain the following properties.

• Recurrence Formula. From the definition (3) of repeated integrals we deduce

uwj,p(x, y) = wp(x)
∫ x

y
uwj−1,p−1(t, y) dt, j = 1, . . . , p, x, y ∈ I. (7)

• Smoothness. If wj ∈ C j (I ), j = 0, . . . , p, then

uwj,p ∈ C p(I ), j = 0, . . . , p. (8)

This follows from (7).
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Example 6 If wp− j = · · · = wp = 1 then

uwj,p(x, y) = wp(x)G j [wp−1, . . . ,wp− j ](x, y) = (x − y) j

j ! . (9)

In this case, (5) takes the form

(x − y)p

p! =
p∑

j=0

(−1)p− j (x − c) j

j !
(y − c)p− j

(p − j)! =
(
(x − c) − (y − c)

)p

p! .

The next theorem shows that the Wronskians of generalized powers can be
expressed in a simple form; see [13, p. 278].

Theorem 3 Let w := (w0, . . . ,wp) be a vector of weight functions on an interval I
such that w j ∈ C j (I ), j = 0, . . . , p. For any x, y ∈ I and 0 ≤ k ≤ p we have

W [uw0,p(·, y), . . . , uwk,p(·, y)](x) = wk+1
p (x)wk

p−1(x) · · ·wp−k(x).

Theorem3 leads to the following properties.

• Linear Independence. Suppose there exists a point x̄ ∈ I such that

wp(x̄) · · ·wp−k(x̄) �= 0.

Then,W [uw0,p(·, y), . . . , uwk,p(·, y)](x̄) �= 0 and, as a consequence, the generalized
powers {uw0,p(·, y), . . . , uwk,p(·, y)} are linearly independent for any y ∈ I .

• Weight Functions. Letw := (w0, . . . ,wp) be a vector of positiveweight functions
on an interval I such that wj ∈ C j (I ), j = 0, . . . , p. Then, for any x, y ∈ I the
Wronskians of the generalized powers are positive, and we have

wp(x) = uw0,p(x, y), wp−1(x) = W [uw0,p(·, y), uw1,p(·, y)](x)
(
uw0,p(x, y)

)2 ,

and for 2 ≤ k ≤ p,

wp−k(x) = W [uw0,p(·, y), . . . , uwk,p(·, y)](x)W [uw0,p(·, y), . . . , uwk−2,p(·, y)](x)
(
W [uw0,p(·, y), . . . , uwk−1,p(·, y)](x)

)2 .

In the following we discuss spaces spanned by generalized powers. The general-
ized binomial formula (5) and definition (6) imply

〈uw0,p(·, y1), . . . , uwk,p(·, y1)〉 = 〈uw0,p(·, y2), . . . , uwk,p(·, y2)〉, y1, y2 ∈ I,

for k = 0, . . . , p. This observation leads to the following well-posed definition.
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Definition 5 Let w := (w0, . . . ,wq) be a vector of positive weight functions on an
interval I such that wj ∈ C j (I ), j = 0, . . . , q. For a nonnegative integer p ≤ q, we
define the space T

w
p(I ) on the interval I generated by the weight vector w by

T
w
p(I ) := 〈uw0,p(·, y), . . . , uwp,p(·, y)〉, (10)

where uwj (·, y), j = 0, . . . , p are given in (6) and y is any fixed point in I .

It is clear that the space T
w
p(I ) in (10) only depends on w0, . . . ,wp.

Example 7 From Example6 we see that if w0 = · · · = wp = 1 then

T
w
p(R) =

〈

1, x − y,
(x − y)2

2
, . . . ,

(x − y)p

p!
〉

= Pp,

for any fixed y ∈ R.

We now show that generalized powers defined in terms of positive weight func-
tions span an ECT-space.

Theorem 4 Let w := (w0, . . . ,wp) be a vector of positive weight functions on
an interval I such that w j ∈ C j (I ), j = 0, . . . , p. The space T

w
p(I ) is an ECT-

space of dimension p + 1 on the interval I . In particular, the generalized powers
{uw0,p(·, y), . . . , uwp,p(·, y)} are linearly independent.
Proof By recalling (8) we see that T

w
p(I ) ⊂ C p(I ). From Theorem3 it follows that

all the Wronskians of the generalized powers {uw0,p(·, y), . . . , uwp,p(·, y)} are posi-
tive on I , and in particular that {uw0,p(·, y), . . . , uwp,p(·, y)} forms a basis for T

w
p(I ).

Theorem2 completes the proof. �

In view of Theorem2, we can assume that any ECT-space Tp(I ) is spanned by
an ECT-system with positive Wronskians. The next theorem shows that Tp(I ) is
spanned by generalized powers associated with certain positive weight functions.
The proof can be deduced from [13, Proof of Theorem1.1, p. 276].

Theorem 5 Let Tp(I ) be any ECT-space of dimension p + 1 on the interval I , and
let {u0, . . . , u p} be an ECT-system with positive Wronskians spanning Tp(I ). We
define the positive weight functions

wp(x) := u0(x), wp−1(x) := W [u0, u1](x)
(u0(x))2

,

wp−k(x) := W [u0, . . . , uk](x)W [u0, . . . , uk−2](x)
(
W [u0, . . . , uk−1](x)

)2 , k = 2, . . . , p.

Then, the corresponding generalized powers {uw0,p(·, y), . . . , uwp,p(·, y)} form a basis
for Tp(I ) for any y ∈ I .
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There exist different weight vectors generating the same ECT-space. Obviously,
the weight vector (c0w0, . . . , cpwp) generates the same space as the weight vector
(w0, . . . ,wp) for any positive constants c j , j = 0, . . . , p. A less trivial case is illus-
trated in Example8. A nice construction of all possible weight vectors generating
the same ECT-space is given in [25].

Example 8 The space 〈1, cos(x), sin(x)〉 is an ECT-space of dimension 3 on
(−π/2, π/2). This can be shown by considering the weight vector w = (w0,w1,w2)

with

w0(x) = 1

cos2(x)
, w1(x) = cos(x), w2(x) = 1.

Then, the corresponding generalized powers with y = 0 are

uw0,2(x, 0) = w2(x) = 1,

uw1,2(x, 0) =
∫ x

0
cos(t) dt = sin(x),

uw2,2(x, 0) =
∫ x

0
cos(t1)

∫ t1

0

1

cos2(t2)
dt2dt1 =

∫ x

0
sin(t1) dt1 = 1 − cos(x).

Actually, with some additional effort we can prove that 〈1, cos(x), sin(x)〉 is an
ECT-space of dimension 3 on (−π, π). To this end, consider the weight vector
w = (w0,w1,w2) with

w0(x) = w1(x) = 1

/

cos2
(
x

2

)

, w2(x) = cos2
(
x

2

)

.

Then, for x ∈ (−π, π) and any fixed y ∈ (−π, π) we find the generalized powers

uw0,2(x, y) = w2(x) = cos2
(
x

2

)

= 1 + cos(x)

2
,

uw1,2(x, y) = sin(x) − (1 + cos(x)) tan

(
y

2

)

,

uw2,2(x, y) = 2 sin2
(
x − y

2

)/

cos2
(
y

2

)

= 1 − cos(x) cos(y) − sin(x) sin(y)

cos2(y/2)
.

Example 9 Let 〈u, v〉 be an ET-space of dimension 2 on [a, b]. We can assume
without loss of generality that u(a) = u(b) = 1 and v(a) = 0, v(b) �= 0. It turns out
that u is positive on [a, b] because otherwise it would have two zeros (counting
multiplicity) in (a, b). Set

w0(x) := D

(
v

u

)

(x) = u(x)Dv(x) − v(x)Du(x)

(u(x))2
= W [u, v](x)

(u(x))2
,

w1(x) := u(x).
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Since 〈u, v〉 is an ET-space, the Wronskian W [u, v] is either positive or negative on
[a, b]. Hence, we can assume it is positive on [a, b]; if this is not the case, we change
the sign of v. This implies that w0 is positive on [a, b]. Moreover,

w1(x)
∫ x

a
w0(t) dt = w1(x)

(
v(x)

u(x)
− v(a)

u(a)

)

= v(x). (11)

Therefore, 〈u, v〉 is the space T
w
2 ([a, b]) with w = (w0,w1), and so from Theorem4

we know it is an ECT-space on [a, b]. We conclude that any ET-space of dimension 2
on a closed interval [a, b] is an ECT-space of dimension 2 on [a, b]. This is in
agreement with Theorem1. Note that the statement does not hold anymore if the
interval is not closed; see Example4.

Example 10 Let U, V ∈ C p([a, b]) be given such that 〈Dp−1U, Dp−1V 〉 is an ET-
space on [a, b]. Then, the space 〈1, x, . . . , x p−2,U (x), V (x)〉 for p ≥ 2 is an ECT-
space of dimension p + 1 on [a, b]. Indeed, it is the space T

w
p([a, b]) generated by

the weight functions

w0(x) = W [u, v](x)
(u(x))2

, w1(x) = u(x), w2(x) = · · · = wp(x) = 1,

where

u(x) := c0,u D
p−1U (x) + c1,u D

p−1V (x),

v(x) := c0,vD
p−1U (x) + c1,vD

p−1V (x),

such that u(a) = u(b) = 1 and v(a) = 0, v(b) �= 0 (see Example9).

Example 11 Let Lp be the linear differential operator defined by

Lp f := Dp+1 f +
p∑

j=0

a j D
j f, f ∈ C p+1(I ), (12)

where a j ∈ C(I ) and I is a real interval. Any operator of the form (12) is uniquely
identified by its nullspace, denoted byLp .More details on linear differential operators
can be found in [12, Chap.5]. The nullspace Lp is an ECT-space on I if and only if
there exist positive weight functions wj ∈ C j+1(I ), j = 0, . . . , p such that

Lp f = w0 · · ·wpD0 · · · Dp f, (13)

where

Dj f := D

(
f

w j

)

, j = 0, . . . , p;

see [10, Theorem2, p. 91].
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– If the coefficients a j are equal to zero, then Lp = Pp is an ECT-space on the real
line; see Example3.

– If the coefficients a j are constants and the characteristic polynomial λp+1 +∑p
j=0 a jλ

j has only real roots, then Lp is an ECT-space on the real line; see
[10, Proposition16, p. 124]. For example, given distinct real numbers α0 < α1 <

· · · < αp, the space 〈eα0x , eα1x , . . . , eαp x 〉 is the nullspace of

Lp f = (D − α0) · · · (D − αp) f,

implying it is an ECT-space on the real line.
– If the coefficients a j are constants and the characteristic polynomial has complex
roots, then Lp is an ECT-space on a suitable interval. For example, the space
〈1, x, . . . , x p−2, cos(x), sin(x)〉 with p ≥ 2 is the nullspace of

Lp f = Dp+1 f + Dp−1 f ;

it is also an ECT-space on the interval (−π/2, π/2) that can be generated by the
weight functions

w0(x) = 1

cos2(x)
, w1(x) = cos(x), w2(x) = · · · = wp(x) = 1;

see Example8 for the special case p = 2. The factorization (13) becomes

Lp f = 1

cos
D

(

cos2
(

D

(
1

cos
Dp−1 f

)))

.

Actually, the space 〈1, x, . . . , x p−2, cos(x), sin(x)〉 is an ECT-space on larger
intervals whose maximum lengths increase with p; see Example8 and [9].

– In the general case of nonconstant coefficients a j (x), Lp is an ECT-space on a
suitable interval. For example, if I is compact, then Lp is an ECT-space on any

subinterval of I of length less than min
(
1, 1

(p+1)M

)
, where

M ≥ max
0≤ j≤p

max
x∈I |a j (x)|;

see [10, Proposition1, p. 81].

3 Tchebycheffian B-Splines

In Sect. 2 we showed that ECT-spaces extend in a very natural way the space of
algebraic polynomials. Now,we focus on smooth functions that are defined piecewise
in ECT-spaces, and we define the so-called Tchebycheffian B-splines, which are a



190 T. Lyche et al.

natural generalization of polynomial B-splines. Since we are interested in bounded
and closed intervals, in view of Theorem1, ET-spaces are ECT-spaces and so they are
equipped with weight functions. Therefore, Tchebycheffian B-splines are actually
defined piecewise in ET-spaces.

We start by introducing some preliminary notations.A function is called piecewise
continuous on a finite interval I if it is bounded and continuous except at a finite
number of points, where the value is obtained by taking the limit either from the left
or the right. We denote the space of these functions by C−1(I ). The right and left
limits of a real number x are denoted by

x+ := lim
t→x
t>x

t, x− := lim
t→x
t<x

t, x ∈ R.

Similarly, we denote right and left derivatives of a function f by

D+ f (x) := lim
h→0
h>0

f (x + h) − f (x)

h
, D− f (x) := lim

h→0
h<0

f (x + h) − f (x)

h
,

provided that the limits exist at the point x ∈ R. Furthermore, assume f to be defined
on [a, b] � [c, d]. The notation f ∈ C j ([c+, d−])means that f is a function of class
C j on the interval [c, d]when considering the right/left limit in the left/right endpoint.
Note that, in general, Dr+ f (c) �= Dr− f (c) and Dr+ f (d) �= Dr− f (d), r = 0, . . . , j .

3.1 Definition and Basic Properties

In order to define Tchebycheffian B-splines we use the concept of knot sequences.
Suppose for integers n > p ≥ 0 that a knot sequence

ξ := {ξi }n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ N, p ∈ N0,

is given. This allows us to define a set of n Tchebycheffian B-splines of degree p.

Definition 6 Given a knot sequence ξ , the functions w0, . . . ,wp are called Tcheby-
cheffian B-spline weights with respect to ξ if they are positive on [ξ1, ξn+p+1] and
for j = 0, . . . , p,

wj ∈ C j ([ξ+
i , ξ−

i+1]), ξi < ξi+1, i = 1, . . . , n + p, (14)

and
wj ∈ Cmax( j−μi ,−1)(ξi ), i = 2, . . . , n + p, (15)

where μi is the multiplicity of ξi in ξ .
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The Tchebycheffian B-spline weights w := (w0, . . . ,wp) have a piecewise struc-
ture, and define a set of local weights on each interval [ξ+

i , ξ−
i+1], denoted by

wj,i (x) := wj (x), x ∈ [ξ+
i , ξ−

i+1],

for j = 0, . . . , p. In view of (14), Theorem4 implies that these local weights wi :=
(w0,i , . . . ,wp,i ) specify an E(C)T-spaceT

wi
p ([ξ+

i , ξ−
i+1]) of dimension p + 1 for each

ξi < ξi+1. We will see that the smoothness at the knots in (15) suffices to define
Tchebycheffian B-splines with smoothness properties similar to the polynomial B-
spline case.

Example 12 For i = 1, . . . , n + 1, let 〈ui , vi 〉 be ET-spaces of dimension 2 on
[ξi , ξi+1], where

ui , vi ∈ C1([ξi , ξi+1]), ui (ξi ) = ui (ξi+1) = 1, vi (ξi ) = 0, vi (ξi+1) = 1,

and, according to Example9, we can define the local weights

w0,i (x) := W [ui , vi ](x)
(ui (x))2

, w1,i (x) := ui (x), x ∈ [ξi , ξi+1].

The global weights

w0(x) := w0,i (x), w1(x) := w1,i (x), x ∈ [ξi , ξi+1), i = 1, . . . , n + 1

satisfy (14) and (15) for p = 1. Hence, w0,w1 are Tchebycheffian B-spline weights
with respect to ξ , and they generate the given ET-spaces on each (nontrivial) interval
[ξ+

i , ξ−
i+1].

Definition 7 Letw := (w0, . . . ,wq) be a vector of Tchebycheffian B-spline weights
with respect to a knot sequence ξ . Suppose for a nonnegative integer p ≤ q and
some integer j that ξ j ≤ ξ j+1 ≤ · · · ≤ ξ j+p+1 are p + 2 real numbers taken from ξ .
The j th Tchebycheffian B-spline Bw

j,p,ξ : R → R of degree p is identically zero if
ξ j+p+1 = ξ j and otherwise defined recursively by

Bw
j,p,ξ (x) := wp(x)

(∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy −
∫ x

ξ j+1

Bw
j+1,p−1,ξ (y)

γ w
j+1,p−1,ξ

dy

)

, (16)

starting with

Bw
i,0,ξ (x) :=

{
w0(x), if x ∈ [ξi , ξi+1),

0, otherwise.
(17)

Here, γ w
i,k,ξ is defined as the integral of Bw

i,k,ξ ,
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γ w
i,k,ξ :=

∫ ξi+k+1

ξi

Bw
i,k,ξ (y) dy, (18)

and we used the convention that if γ w
i,k,ξ = 0 then

∫ x

ξi

Bw
i,k,ξ (y)

γ w
i,k,ξ

dy :=
{
1, if x ≥ ξi+k+1,

0, otherwise.
(19)

The Tchebycheffian B-spline Bw
j,p,ξ is called normalized when wp = 1.

In order to stress the similarity with the polynomial B-spline case, the term degree
p is used in Definition7 to identify the dimension p + 1 of the underlying E(C)T-
space. We also use the terms linear in case of p = 1, quadratic in case of p = 2,
and so on. Furthermore, we use the notation

B[ξ j , . . . , ξ j+p+1;w0, . . . ,wp] := Bw
j,p,ξ ,

showing explicitly on which knots and weight functions the Tchebycheffian B-spline
depends.2

Definition7 allows for the construction of Tchebycheffian B-splines where the
different pieces are drawn from different ET-spaces. This can be done provided that
we are able to construct Tchebycheffian B-spline weights as in Definition6 which
identify on each interval the desired ET-space. Example12 shows that this is always
the case if we consider ET-spaces of dimension two. In view of Example10, this
paves the path for the construction of the so-called generalized B-splines which
will be discussed in Sect. 4. A more general setting can be addressed by relying on
the elegant constructive procedure for finding all weight vectors associated with a
given ET-space in a bounded closed interval presented in [25]. In particular, this
procedure, which is based on the properties of Tchebycheffian Bernstein functions,
has been exploited in [27] to construct normalized Tchebycheffian B-splines with
pieces belonging to ET-spaces of dimension 5 (see also [2]).

Example 13 The linear Tchebycheffian B-spline is given by

Bw
j,1,ξ (x) = B[ξ j , ξ j+1, ξ j+2;w0,w1](x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1(x)

∫ x
ξ j
w0(y) dy

∫ ξ j+1

ξ j
w0(y) dy

, if x ∈ [ξ j , ξ j+1),

w1(x)

∫ ξ j+2

x w0(y) dy
∫ ξ j+2

ξ j+1
w0(y) dy

, if x ∈ [ξ j+1, ξ j+2),

0, otherwise.

2Our Tchebycheffian B-spline construction follows the approach of [3, 4], while it differs from [26]
in two ways: the indexing of the weight functions and the positioning of the weight functions with
respect to the integration. This provides a more intuitive notation.
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Fig. 1 Two linear trigonometric Tchebycheffian B-splines on a knot sequence of the form
{−1, 0, ξ}. Left: ξ = 1/4, Right: ξ = 5/4. The knot positions are visualized by vertical dotted lines

In particular, when w0(x) = 1/ cos2(x), w1(x) = cos(x) and −π/2 < ξ j < ξ j+2 <

π/2, we have

B[ξ j , ξ j+1, ξ j+2;w0,w1](x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin(x − ξ j ) cos(ξ j+1)

sin(ξ j+1 − ξ j )
, if x ∈ [ξ j , ξ j+1),

sin(ξ j+2 − x) cos(ξ j+1)

sin(ξ j+2 − ξ j+1)
, if x ∈ [ξ j+1, ξ j+2),

0, otherwise.

All spline pieces belong to the trigonometric space 〈cos(x), sin(x)〉. This is in agree-
ment with Example8. The spline function is discontinuous at a double knot and con-
tinuous at a simple knot. Two such linear trigonometric Tchebycheffian B-splines
(with ξ1 = −1, ξ2 = 0, ξ3 = 1/4 or ξ3 = 5/4) are depicted in Fig. 1.

Example 14 The quadratic (normalized) Tchebycheffian B-spline defined on the
uniform knot sequence {iω}3i=0 with ω < π , and generated by the weight functions

w0(x) = 1

(w1(x))2
, w1(x) = cos(x − (i + 1)ω/2)

cos(ω/2)
, w2(x) = 1,

x ∈ [iω, (i + 1)ω),

(20)

is given by

B[0, ω, 2ω, 3ω;w0,w1, 1](x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − cos(x)

2(1 − cos(ω))
, if x ∈ [0, ω),

cos(2ω − x) + cos(x − ω) − 2 cos(ω)

2(1 − cos(ω))
, if x ∈ [ω, 2ω),

1 − cos(3ω − x)

2(1 − cos(ω))
, if x ∈ [2ω, 3ω),

0, otherwise.
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Fig. 2 Two quadratic trigonometric Tchebycheffian B-splines. Left: ω = 1, Right: ω = 5/2. The
knot positions are visualized by vertical dotted lines

All spline pieces belong to the trigonometric space 〈1, cos(x), sin(x)〉. The knots
are simple and it can be verified that the function is continuous with a continuous
first derivative for all x ∈ R. Two such quadratic trigonometric Tchebycheffian B-
splines (with ω = 1 and ω = 5/2) are depicted in Fig. 2. Observe that, to obtain
quadratic Tchebycheffian B-splines with pieces belonging to 〈1, cos(x), sin(x)〉, we
could have used the simpler weight functions w0(x) = 1/ cos2(x), w1(x) = cos(x),
w2(x) = 1 instead of (20). However, this choice results in the restriction ω < π/6
to ensure positivity of the weight functions on the interval [0, 3ω].

Let χi denote the characteristic function on the interval [ξi , ξi+1). The general
explicit expression for a Tchebycheffian B-spline is quite complicated. Applying the
recurrence relation in Definition7 repeatedly we find

Bw
j,p,ξ (x) =

j+p∑

i= j

Bw,{i}
j,p,ξ (x)χi (x), p ≥ 0, (21)

where Bw,{i}
j,p,ξ is defined on the interval [ξi , ξi+1) as the restriction of Bw

j,p,ξ to that
interval, and it is assumed to be zero if ξi = ξi+1. In particular, for the nontrivial
cases we have

Bw,{ j}
j,0,ξ (x) = w0(x),

Bw,{ j}
j,1,ξ (x) = w1(x)

∫ x
ξ j
w0(y) dy

∫ ξ j+1

ξ j
w0(y) dy

,

Bw,{ j+1}
j,1,ξ (x) = w1(x)

∫ ξ j+2

x w0(y) dy
∫ ξ j+2

ξ j+1
w0(y) dy

.



Tchebycheffian B-Splines Revisited: An Introductory Exposition 195

For p ≥ 1, in the nontrivial cases, it follows that the first and last piece are given by

Bw,{ j}
j,p,ξ (x) = wp(x)Gp[wp−1, . . . ,w0](x, ξ j )

/ p∏

i=1

γ w
j,i−1,ξ ,

Bw,{ j+p}
j,p,ξ (x) = wp(x)Gp[wp−1, . . . ,w0](ξ j+p+1, x)

/ p∏

i=1

γ w
j+p−i+1,i−1,ξ ,

(22)

where Gp is defined in (3). If ξ j < ξ j+1 = ξ j+p+1 then (22) simplifies to

Bw,{ j}
j,p,ξ (x) = wp(x)

Gp[wp−1, . . . ,w0](x, ξ j )

Gp[wp−1, . . . ,w0](ξ j+1, ξ j )
, (23)

and if ξ j = ξ j+p < ξ j+p+1 then

Bw,{ j+p}
j,p,ξ (x) = wp(x)

Gp[wp−1, . . . ,w0](ξ j+p+1, x)

Gp[wp−1, . . . ,w0](ξ j+p+1, ξ j+p)
. (24)

In the following we list some basic properties of Tchebycheffian B-splines that
can be directly derived from Definition7.

• Local Support. A Tchebycheffian B-spline is locally supported on the interval
given by the extreme knots used in its definition. More precisely,

Bw
j,p,ξ (x) = 0, x /∈ [ξ j , ξ j+p+1). (25)

This can be proved using induction on the recurrence relation (16).

• Piecewise Structure. A Tchebycheffian B-spline has a piecewise Tchebycheff
structure, i.e.,

Bw,{m}
j,p,ξ ∈ T

w
p([ξm, ξm+1)), m = j, . . . , j + p. (26)

Proof We proceed by induction on p. Clearly, the case p = 0 holds by the defini-
tion in (17). Suppose (26) holds for degree p − 1. By (16) the function Bw,{m}

j,p,ξ (x)
for x ∈ [ξm, ξm+1) is a linear combination of

wp(x)
∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy, wp(x)
∫ x

ξ j+1

Bw
j+1,p−1,ξ (y)

γ w
j+1,p−1,ξ

dy,

where we recall ∫ x

ξi

Bw
i,p−1,ξ (y)

γ w
i,p−1,ξ

dy = 1, x ≥ ξi+p.



196 T. Lyche et al.

The result immediately follows from the induction hypothesis, the recurrence
relation (7) and Definition5. �

• Local Partition of Unity. The sum of the Tchebycheffian B-splines of degree p
is given by

m∑

j=m−p

Bw
j,p,ξ (x) = wp(x), x ∈ [ξm, ξm+1), p + 1 ≤ m ≤ n. (27)

In particular, for normalized Tchebycheffian B-splines this relation simplifies to

m∑

j=m−p

Bw
j,p,ξ (x) = 1, x ∈ [ξm, ξm+1), p + 1 ≤ m ≤ n. (28)

Proof For p = 0, the relation (27) follows from (17). For p ≥ 1, we obtain from
(16), (25) and (19) that

m∑

j=m−p

Bw
j,p,ξ (x)

= wp(x)
m∑

j=m−p

(∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy −
∫ x

ξ j+1

Bw
j+1,p−1,ξ (y)

γ w
j+1,p−1,ξ

dy

)

= wp(x)

(

1 +
m∑

j=m−p+1

∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy −
m−1∑

j=m−p

∫ x

ξ j+1

Bw
j+1,p−1,ξ (y)

γ w
j+1,p−1,ξ

dy

)

= wp(x).

In case of normalized Tchebycheffian B-splines we have wp = 1. �

• Differentiation. The derivative of a Tchebycheffian B-spline can be simply
expressed in terms of two consecutive Tchebycheffian B-splines of lower degree
as

D+
( Bw

j,p,ξ

wp

)

(x) = Bw
j,p−1,ξ (x)

γ w
j,p−1,ξ

− Bw
j+1,p−1,ξ (x)

γ w
j+1,p−1,ξ

, p ≥ 1, (29)

where fractions with zero denominator have value zero. In particular, for normal-
ized Tchebycheffian B-splines the relation simplifies to

D+Bw
j,p,ξ (x) = Bw

j,p−1,ξ (x)

γ w
j,p−1,ξ

− Bw
j+1,p−1,ξ (x)

γ w
j+1,p−1,ξ

, p ≥ 1. (30)

Example 15 The standard polynomial B-splines of degree p (see, e.g., [19, Def-
inition2]) are normalized Tchebycheffian B-splines of degree p generated by the
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weights w0 = · · · = wp = 1 and defined on the same knot sequence ξ . This is in
agreement with Example7 showing that T

w
p([a, b]) = Pp([a, b]) when w0 = · · · =

wp = 1.

Example 16 Let w := (w0, . . . ,wp) be a vector of positive functions on the interval
[a, b] such that wj ∈ C j ([a, b]), j = 0, . . . , p, and consider the knot sequence

ξ := {a =: ξ1 = · · · = ξp+1 < ξp+2 = · · · = ξ2p+2 := b},

which consists of only two different knots (a and b) but both of multiplicity p + 1.
Then, for p ≥ 1 the functions in Definition7 are given by

Bw
1,p,ξ (x) = wp(x)

(

1 −
∫ x

a

Bw
2,p−1,ξ (y)

γ w
2,p−1,ξ

dy

)

,

Bw
j,p,ξ (x) = wp(x)

(∫ x

a

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy −
∫ x

a

Bw
j+1,p−1,ξ (y)

γ w
j+1,p−1,ξ

dy

)

, 2 ≤ j ≤ p,

Bw
p+1,p,ξ (x) = wp(x)

∫ x

a

Bw
p+1,p−1,ξ (y)

γ w
p+1,p−1,ξ

dy.

These functions are called Tchebycheffian Bernstein functions of degree p and
span the ECT-space T

w
p([a, b]) of dimension p + 1. They reduce to the standard

Bernstein polynomials of degree p when w0 = · · · = wp = 1.

3.2 Further Properties of Tchebycheffian B-Splines

In this section we prove several properties of Tchebycheffian B-splines, in par-
ticular nonnegativity, smoothness and local linear independence. The most tech-
nical part is to prove that γ w

i,�,ξ > 0 whenever the support of the correspond-
ing Tchebycheffian B-spline is nontrivial, i.e., ξi < ξi+�+1. The construction of
Bw

j,p,ξ requires all the Tchebycheffian B-splines B
w
i,�,ξ for i = j, . . . , j + p − � and

� = p − 1, p − 2, . . . , 0; this involves the corresponding γ w
i,�,ξ .

We first note that from Definition7 the function

∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy, p ≥ 1

is of classC0([ξ1, ξn+p+1]) if γ w
j,p−1,ξ �= 0, and of classC−1([ξ1, ξn+p+1]) otherwise.

The next lemma discusses the behavior of Tchebycheffian B-splines at the endpoints
of their support.

Lemma 1 Suppose γ w
i,�,ξ > 0 whenever ξi < ξi+�+1 for i = j, . . . , j + p − � and

� = 0, . . . , p − 1.
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(i) Let 1 ≤ μ j ≤ p + 1 such that ξ j = · · · = ξ j+μ j−1 < ξ j+μ j . We have

Dr
+B

w
j,p,ξ (ξ j ) = 0, r = 0, . . . , p − μ j ,

and

D
p+1−μ j

+ Bw
j,p,ξ (ξ j ) = wp(ξ j )

p−1∏

k=μ j−1

wk(ξ j )

γ w
j,k,ξ

.

(ii) Let1 ≤ μ j ≤ p + 1 such that ξ j+p+1−μ j < ξ j+p+2−μ j = · · · = ξ j+p+1.Wehave

Dr
−B

w
j,p,ξ (ξ j+p+1) = 0, r = 0, . . . , p − μ j ,

and

D
p+1−μ j

− Bw
j,p,ξ (ξ j+p+1) = (−1)p+1−μ j wp(ξ j+p+1)

p−1∏

k=μ j−1

wk(ξ j+p+1)

γ w
j+p−k,k,ξ

.

Proof We focus on statement (i). Forμ j = p + 1 the result follows from the explicit
expression in (24), and in particular the result holds for p = 0. Suppose now
1 ≤ μ j ≤ p. It follows from the definition that Bw

j,p,ξ (ξ j ) = 0, and for r ≥ 1 the
differentiation formula (29) implies

Dr
+

( Bw
j,p,ξ

wp

)

(x) = Dr−1
+ Bw

j,p−1,ξ (x)

γ w
j,p−1,ξ

− Dr−1
+ Bw

j+1,p−1,ξ (x)

γ w
j+1,p−1,ξ

. (31)

We proceed by induction on p. The case p = 0 was already shown before. Since
Bw

j,p−1,ξ and Bw
j+1,p−1,ξ have a knot of multiplicityμ j andμ j − 1 at ξ j , respectively,

we deduce from the induction hypothesis that

Dr
+B

w
j,p−1,ξ (ξ j ) = 0, r = 0, . . . , p − μ j − 1,

Dr
+B

w
j+1,p−1,ξ (ξ j ) = 0, r = 0, . . . , p − μ j ,

and

D
p−μ j

+ Bw
j,p−1,ξ (ξ j ) = wp−1(ξ j )

p−2∏

k=μ j−1

wk(ξ j )

γ w
j,k,ξ

.

Therefore, from (31) we obtain

Dr
+

( Bw
j,p,ξ

wp

)

(ξ j ) = 0, r = 1, . . . , p − μ j ,

and



Tchebycheffian B-Splines Revisited: An Introductory Exposition 199

D
p−μ j+1
+

( Bw
j,p,ξ

wp

)

(ξ j ) =
p−1∏

k=μ j−1

wk(ξ j )

γ w
j,k,ξ

.

Recall that Bw
j,p,ξ (ξ j ) = 0, and so

(
Bw

j,p,ξ

wp

)
(ξ j ) = 0. Finally, taking into account the

smoothness of wp in (14), the Leibniz rule gives

Dr
+B

w
j,p,ξ (ξ j ) =

r∑

k=0

(
r

k

)

Dr−k
+ wp(ξ j ) D

k
+

( Bw
j,p,ξ

wp

)

(ξ j ), r = 0, . . . , p − μ j + 1,

which completes the proof of statement (i). The proof of statement (ii) is
similar. �

In the following we investigate the number of sign changes of linear combinations
of Tchebycheffian B-splines. We first define what we mean by sign changes of a
function.

Definition 8 The number of sign changes of a function f : [a, b] → R is defined
by

S−( f ) := sup
k≥2

sup
a≤x1<···<xk≤b

S−( f (x1), . . . , f (xk)),

where S−(c1, . . . , ck) denotes the number of (strict) sign changes in the sequence of
real numbers c1, . . . , ck .

Lemma 2 For a given function g ∈ C−1([a, b]), we set

f (x) := f (a) +
∫ x

a
g(y) dy, x ∈ [a, b].

Suppose the function f has a finite number of sign changes on [a, b], as defined in
Definition8. Then,

(i) S−(g) ≥ S−( f ) + 1 if f (a) = f (b) = 0 and f �≡ 0;
(ii) S−(g) ≥ S−( f ) if f (a) f (b) = 0;
(iii) S−(g) ≥ S−( f ) − 1.

Proof From its definition it follows that f is continuous on [a, b].We start by proving
statement (i). Suppose S−( f ) = k. Since f (a) = f (b) = 0 and f �≡ 0, there exists
a sequence of points

a = x0 < x1 < · · · < xk < xk+1 = b,

and zi ∈ (xi , xi+1), i = 0, . . . , k, such that

f (xi ) = 0, i = 0, . . . , k + 1, f (zi ) �= 0, i = 0, . . . , k.
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Since
∫ zi

xi

g(y) dy = f (zi ) − f (xi ) �= 0,
∫ xi+1

xi

g(y) dy = f (xi+1) − f (xi ) = 0,

the function g changes sign at least once in the interval (xi , xi+1). This implies that
S−(g) ≥ k + 1 = S−( f ) + 1. With a similar line of arguments we can prove the
statements (ii) and (iii). �

The proof of the next lemma is inspired by [3, Lemma2.11].

Lemma 3 Let k ≥ 0. Suppose γ w
i,�,ξ > 0 whenever ξi < ξi+�+1 for i = j, . . . , j +

k + p − � and � = 0, . . . , p − 1. For ci ∈ R, i = j, . . . , j + k, the function

s(x) :=
j+k∑

i= j

ci B
w
i,p,ξ (x)

has at most k sign changes on the interval [ξ j , ξ j+k+p+1].
Proof If s ≡ 0 there is nothing to prove. Otherwise we use induction on p. For p = 0
the result follows from the definition (17) of Bw

i,0,ξ and the positivity of the weight
function w0. Assuming p ≥ 1 and using (16), we can write

s(x) = c jwp(x)
∫ x

ξ j

Bw
j,p−1,ξ (y)

γ w
j,p−1,ξ

dy − c j+kwp(x)
∫ x

ξ j

Bw
j+k+1,p−1,ξ (y)

γ w
j+k+1,p−1,ξ

dy

+ wp(x)
j+k∑

i= j+1

(ci − ci−1)

∫ x

ξ j

Bw
i,p−1,ξ (y)

γ w
i,p−1,ξ

dy.

(32)

Suppose now that for any k and any j it holds that
∑ j+k

i= j ci B
w
i,p−1,ξ has at most

k sign changes. If one of the knots has multiplicity p + 1 in the knot sequence
{ξ j+1 ≤ · · · ≤ ξ j+k+p}, say ξ j+� = ξ j+�+p for some � ∈ {1, . . . , k}, then

s(x) =
j+�−1∑

i= j

ci B
w
i,p,ξ (x) +

j+k∑

i= j+�

ci B
w
i,p,ξ (x) =: s1(x) + s2(x).

From (25) we know that s1(x) = 0 for x /∈ [ξ j , ξ j+�) and s2(x) = 0 for
x /∈ [ξ j+�, ξ j+k+p+1). Hence,

S−(s) ≤ S−(s1) + S−(s2) + 1. (33)

Therefore, to show that S−(s) ≤ k it suffices to show that S−(s1) ≤ � − 1 and
S−(s2) ≤ k − �. These are two subproblems of the same structure. A repeated appli-
cation of this argument allows us to eliminate all knots of multiplicity p + 1 in the
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knot sequence {ξ j+1 ≤ · · · ≤ ξ j+k+p}. Therefore, it is enough to prove the result in
the case

ξi < ξi+p, i = j + 1, . . . , j + k. (34)

Assuming that (34) holds, we consider four cases.
First case: ξ j < ξ j+p and ξ j+k+1 < ξ j+k+p+1. For x ∈ [ξ j , ξ j+k+p+1], let

f (x) :=
∫ x

ξ j

g(y) dy, g(x) :=
j+k+1∑

i= j

(
ci − ci−1

γ w
i,p−1,ξ

)

Bw
i,p−1,ξ (x),

with c j−1 := 0 and c j+k+1 := 0. Since ξi < ξi+p for i = j, . . . , j + k + 1, the
hypothesis ensures that γ w

i,p−1,ξ > 0 for i = j, . . . , j + k + 1. Hence, g is well
defined andbelongs toC−1([ξ j , ξ j+k+p+1])because of (26). By the induction hypoth-
esis, we also know that g has at most k + 1 sign changes. As a consequence, f is a
continuous function with a finite number of sign changes and f (ξ j ) = 0. From (32)
it is clear that s(x) = wp(x) f (x), and the positivity of wp implies S−(s) = S−( f ).
Moreover, from the local support of the B-splines it follows that f (ξ j+k+p+1) = 0.
Thus, from statement (i) of Lemma2 we get S−(s) = S−( f ) ≤ S−(g) − 1 ≤ k.

Second case: ξ j = ξ j+p and ξ j+k+1 = ξ j+k+p+1. For x ∈ [ξ j , ξ j+k+p+1], let

f (x) := c j +
∫ x

ξ j

g(y) dy, g(x) :=
j+k∑

i= j+1

(
ci − ci−1

γ w
i,p−1,ξ

)

Bw
i,p−1,ξ (x).

Since ξi < ξi+p for i = j + 1, . . . , j + k, the hypothesis ensures thatγ w
i,p−1,ξ > 0 for

i = j + 1, . . . , j + k. Hence, g is well defined and belongs to C−1([ξ j , ξ j+k+p+1]).
Since γ w

j,p−1,ξ = γ w
j+k+1,p−1,ξ = 0, and taking into account (19), we have s(x) =

wp(x) f (x) for x ∈ [ξ j , ξ j+k+p+1). From (25) we see that s(ξ j+k+p+1) = 0, and so
the positivity of wp implies S−(s) = S−( f ). With the same line of arguments as in
the previous case, from statement (iii) of Lemma2 and the induction hypothesis, we
get S−(s) = S−( f ) ≤ S−(g) + 1 ≤ k on [ξ j , ξ j+k+p+1].

In the two remaining cases ξ j < ξ j+p and ξ j+k+1 = ξ j+k+p+1 or ξ j = ξ j+p and
ξ j+k+1 < ξ j+k+p+1, the result follows in a similar way by using statement (ii) of
Lemma2. �

We are now ready to show nonnegativity of Tchebycheffian B-splines.

Lemma 4 If ξ j < ξ j+p+1 then Bw
j,p,ξ (x) ≥ 0 for x ∈ [ξ j , ξ j+p+1] and moreover

γ w
j,p,ξ > 0.

Proof We proceed by induction on p. For p = 0 the result follows from the defi-
nition (17) of Bw

i,0,ξ and the positivity of the weight function w0. Suppose now that
γ w
i,�,ξ (x) > 0 whenever ξi < ξi+�+1 for i = j, . . . , j + p − � and � = 0, . . . , p − 1.
Let 1 ≤ μ j ≤ p + 1 such that ξ j = · · · = ξ j+μ j−1 < ξ j+μ j . From Lemma1 and the
induction hypothesis we get
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Dr
+B

w
j,p,ξ (ξ j ) = 0, r = 0, . . . , p − μ j , D

p+1−μ j

+ Bw
j,p,ξ (ξ j ) > 0.

Therefore, Bw
j,p,ξ (x) > 0 for x ∈ (ξ j , ξ j + ε) and some ε > 0. Moreover, from

Lemma3 (with k = 0) it follows that Bw
j,p,ξ has no sign changes on [ξ j , ξ j+p+1].

This means that Bw
j,p,ξ is nonnegative on [ξ j , ξ j+p+1] and it is a nontrivial function

on an open subset of [ξ j , ξ j+p+1]. As a consequence, γ w
j,p,ξ > 0. �

The positivity of γ w
j,p,ξ whenever ξ j < ξ j+p+1 shown in Lemma4 implies that the

assumptions of Lemmas1 and 3 are always satisfied.

Theorem 6 (Nonnegativity) A Tchebycheffian B-spline is nonnegative everywhere,
and positive inside its support, i.e.,

Bw
j,p,ξ (x) ≥ 0, x ∈ R, and Bw

j,p,ξ (x) > 0, x ∈ (ξ j , ξ j+p+1). (35)

Proof The nonnegativity of Bw
j,p,ξ on R follows from the local support (25) and

Lemma4. Hence, it just remains to prove that Bw
j,p,ξ (x) > 0 for ξ j < x < ξ j+p+1.

If ξ j < ξ j+1 = ξ j+p+1 or ξ j = ξ j+p < ξ j+p+1 the result follows immediately
from the expression of the first and last piece in (23) and (24).

Now, suppose ξ j < ξ j+p and ξ j+1 < ξ j+p+1. FromLemma4we obtain γ w
j,p−1,ξ >

0 and γ w
j+1,p−1,ξ > 0, so that Bw

j,p,ξ (ξ j ) = Bw
j,p,ξ (ξ j+p+1) = 0. Moreover, from the

proof of the same lemma, we know that Bw
j,p,ξ (x) > 0 for x ∈ (ξ j , ξ j + ε) and some

ε > 0. In a similar way, we can also prove that Bw
j,p,ξ (x) > 0 for x ∈ (ξ j+p+1 −

ε, ξ j+p+1) and some ε > 0. Assume now that there exists a point x̄ ∈ (ξ j , ξ j+p+1)

such that Bw
j,p,ξ (x̄) = 0. We will show that this assumption leads to a contradiction.

Let

Bw
j,p,ξ (x) = wp(x)

∫ x

ξ j

g(y) dy, g(x) := Bw
j,p−1,ξ (x)

γ w
j,p−1,ξ

− Bw
j+1,p−1,ξ (x)

γ w
j+1,p−1,ξ

.

Since Bw
j,p,ξ (ξ j ) = Bw

j,p,ξ (x̄) = Bw
j,p,ξ (ξ j+p+1) = 0, and Bw

j,p,ξ is not identically zero
on each of the two intervals (ξ j , x̄) and (x̄, ξ j+p+1), from statement (i) of Lemma2
we deduce that g must have at least one sign change on [ξ j , x̄] and at least another
sign change on [x̄, ξ j+p+1]. On the other hand, from Lemma3 it follows that g
can have at most one sign change on [ξ j , ξ j+p+1]. This contradiction concludes the
proof. �

We now describe the smoothness behavior of Tchebycheffian B-splines at the
knots in their support.

Theorem 7 (Smoothness) If ξ is a knot of Bw
j,p,ξ of multiplicity μ ≤ p + 1 then

Bw
j,p,ξ ∈ C p−μ(ξ), (36)

i.e., its derivatives of order 0, 1, . . . , p − μ are continuous at ξ . Moreover, if μ =
p + 1 then Bw

j,p,ξ (ξ) is bounded.
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Proof By Lemma1 (and Lemma4) the result holds if ξ = ξ j or ξ = ξ j+p+1. Sup-
pose now ξ j < ξ < ξ j+p+1. Observe that μ ≤ p, ξ j < ξ j+p and ξ j+1 < ξ j+p+1, and
therefore by Lemma4 we have γ w

j,p−1,ξ > 0 and γ w
j+1,p−1,ξ > 0.

We first prove that Bw
j,p,ξ is continuous at ξ whenever μ ≤ p. Indeed, by (15) we

have wp ∈ C0(ξ) and by (26) the integrands in (16) are bounded, and so Bw
j,p,ξ and

Bw
j,p,ξ

wp
are continuous at ξ .

In order to show (36) for μ < p, we proceed by induction on p. Both terms
in the differentiation formula (29) have a knot of multiplicity at most μ at ξ ,

and from the induction hypothesis we obtain D
(

Bw
j,p,ξ

wp

)
∈ C p−1−μ(ξ). Moreover,

since
Bw

j,p,ξ

wp
is continuous at ξ , we can conclude that

Bw
j,p,ξ

wp
∈ C p−μ(ξ) for μ < p.

Since ξ j < ξ < ξ j+p+1 then by (15) we have wp ∈ C p−μ(ξ), and so Bw
j,p,ξ ∈

C p−μ(ξ). �

Finally, we show that Tchebycheffian B-splines are (locally) linearly independent
on each knot interval and span the local E(C)T-space defined on such interval.

Theorem 8 (Local Linear Independence) The set {Bw
j,p,ξ }mj=m−p forms a basis for

the E(C)T-space T
w
p on [ξm, ξm+1) for any p + 1 ≤ m ≤ n.

Proof By the piecewise Tchebycheff structure (26) of Tchebycheffian B-splines,
it suffices to prove that the functions {Bw

j,p,ξ }mj=m−p are linearly independent on
[ξm, ξm+1) for any p + 1 ≤ m ≤ n.

We use induction on p. The case p = 0 follows from (17). Now, let p ≥ 1. Fix
m such that ξm < ξm+1, and suppose that for all x ∈ [ξm, ξm+1),

1

wp(x)

m∑

j=m−p

c j B
w
j,p,ξ (x) = 0. (37)

After differentiating (37), it follows from (29) and (25) that

m∑

j=m−p+1

(
c j − c j−1

γ w
j,p−1,ξ

)

Bw
j,p−1,ξ (x) = 0.

Since ξm < ξm+1, Lemma4 implies that γ w
j,p−1,ξ > 0, j = m − p + 1, . . . ,m. Then,

the induction hypothesis gives us that cm−p = · · · = cm , so

cm
wp(x)

m∑

j=m−p

Bw
j,p,ξ (x) = 0.

By relation (27) we get cm = 0. As a consequence, all functions Bw
j,p,ξ in (37) are

linearly independent on [ξm, ξm+1). �
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3.3 The Tchebycheffian Spline Space

In this section we focus on the span of the Tchebycheffian B-splines of degree p
specified by the knot sequence ξ := {ξi }n+p+1

i=1 and the vector of Tchebycheffian
B-spline weights w, i.e.,

S
w
p,ξ :=

{

s : [ξp+1, ξn+1] → R : s =
n∑

j=1

c j B
w
j,p,ξ , c j ∈ R

}

. (38)

This is the space ofTchebycheffian splines spanned by theTchebycheffianB-splines
{Bw

1,p,ξ , . . . , B
w
n,p,ξ } over the interval [ξp+1, ξn+1], which is called the basic interval.

We define the Tchebycheffian B-splines to be left continuous at the right endpoint
ξn+1, so as to avoid asymmetry in the construction of the space.

We now introduce some terminology to identify certain properties of knot
sequences which are crucial in the study of the space (38).

• A knot sequence ξ is called (p + 1)-regular if ξ j < ξ j+p+1 for j = 1, . . . , n. By
the local support (25) such a knot sequence ensures that all the Tchebycheffian
B-splines in (38) are not identically zero.

• Aknot sequence ξ is called (p + 1)-basic if it is (p + 1)-regular with ξp+1 < ξp+2

and ξn < ξn+1. As wewill show later, the Tchebycheffian B-splines in (38) defined
on a (p + 1)-basic knot sequence are linearly independent on the basic interval
[ξp+1, ξn+1].
From the results in the previous section we can immediately conclude the follow-

ing list of properties of Tchebycheffian splines in the B-spline representation.

• Smoothness. If ξ is a knot ofmultiplicityμ then s ∈ Cr (ξ) for any s ∈ S
w
p,ξ , where

r + μ = p. This follows from the smoothness property of the Tchebycheffian B-
splines (Theorem7). Therefore, the relation between smoothness, multiplicity and
degree is the same as in the polynomial B-spline case:

“smoothness + multiplicity = degree”. (39)

• Local Support. The local support (25) of the Tchebycheffian B-splines implies

n∑

j=1

c j B
w
j,p,ξ (x) =

m∑

j=m−p

c j B
w
j,p,ξ (x), x ∈ [ξm, ξm+1), p + 1 ≤ m ≤ n,

(40)
and if ξm < ξm+p then

n∑

j=1

c j B
w
j,p,ξ (ξm) =

m−1∑

j=m−p

c j B
w
j,p,ξ (ξm), p + 1 ≤ m ≤ n + 1. (41)
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• Minimal Support. From the smoothness properties it can be proved that if the
support of s ∈ S

w
p,ξ is a proper subset of [ξ j , ξ j+p+1] for some j then s ≡ 0.

Therefore, the Tchebycheffian B-splines have minimal support.

• Partition of Unity. By (27) we have

n∑

j=1

Bw
j,p,ξ (x) = wp(x), x ∈ [ξp+1, ξn+1]. (42)

In particular, for normalized Tchebycheffian B-splines this relation simplifies to

n∑

j=1

Bw
j,p,ξ (x) = 1, x ∈ [ξp+1, ξn+1]. (43)

Since these splines are nonnegative it follows that they form a nonnegative par-
tition of unity on [ξp+1, ξn+1].

• Differentiation. By (29) we have for p ≥ 1,

D+
(

1

wp

n∑

j=1

c j B
w
j,p,ξ

)

(x) =
n∑

j=2

c(1)
j Bw

j,p−1,ξ (x), x ∈ [ξp+1, ξn+1], (44)

where
c(1)
j := c j − c j−1

γ w
j,p−1,ξ

, (45)

and fractions with zero denominator have value zero.

• Linear Independence. If ξ is (p + 1)-basic, then the Tchebycheffian B-splines
{Bw

1,p,ξ , . . . , B
w
n,p,ξ } are linearly independent on the basic interval. Thus, the spline

space S
w
p,ξ is a vector space of dimension n.

Proof We must show that if

s(x) =
n∑

j=1

c j B
w
j,p,ξ (x) = 0, x ∈ [ξp+1, ξn+1],

then c j = 0 for all j . Let us fix 1 ≤ j ≤ n. Since ξ is (p + 1)-regular, there is an
integer m j with j ≤ m j ≤ j + p such that ξm j < ξm j+1. Moreover, the assump-
tions ξp+1 < ξp+2 and ξn < ξn+1 guarantee that [ξm j , ξm j+1) can be chosen in the
basic interval. From the local support property (40) we know
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s(x) =
m j∑

i=m j−p

ci B
w
i,p,ξ (x) = 0, x ∈ [ξm j , ξm j+1).

Theorem8 implies cm j−p = · · · = cm j = 0, and in particular c j = 0. �

In the following we are looking for a characterization of the Tchebycheffian spline
space S

w
p,ξ in terms of piecewise Tchebycheff functions with a certain smoothness.

Definition 9 Let Δ be a sequence of break points,

Δ := {η0 < η1 < · · · < η�+1}, a := η0, b := η�+1, (46)

and let r := (r1, . . . , r�) be a vector of integers such that −1 ≤ ri ≤ p for i =
1, . . . , �. Furthermore, letw := (w0, . . . ,wp) be a vector of positiveweight functions
on [a, b] such that for j = 0, . . . , p,

wj ∈ C j ([η+
i , η−

i+1]), i = 0, . . . , �,

wj ∈ Cmax( j−p+ri ,−1)(ηi ), i = 1, . . . , �.
(47)

The spaceS
r,w
p (Δ) ofpiecewiseTchebycheff functions of degree pwith smoothness

r over the partition Δ is defined by

S
r,w
p (Δ) := {

s : [η0,η�+1] → R : s ∈ T
w
p([ηi , ηi+1)), i = 0, . . . , � − 1,

s ∈ T
w
p([η�, η�+1]), s ∈ Cri (ηi ), i = 1, . . . , �

}
.

(48)

Any element s ∈ S
r,w
p (Δ) can be written in the form

s(x) =
p∑

j=0

c0, j u
w
j,p(x, η0) +

�∑

i=1

p∑

j=ri+1

ci, j u
w
j,p(x, ηi )+, x ∈ [a, b], (49)

where uwj,p(x, y) are generalized powers (see Definition4) and

uwj,p(x, y)+ :=
{
uwj,p(x, y), x > y,

0, x < y,
(50)

where the value at y is definedby taking the right limit. The functions in (50) are called
generalized truncated powers. From the smoothness conditions in (47) we see that
wp−k ∈ Cmax(ri−k,−1)(ηi ), k = 0, . . . , p, and from Definition4 we immediately get

uwj,p(ηk, ηi ) ∈ Cri (ηk), k = i + 1, . . . , �, j = 0, . . . , p.

Moreover, since wp−k ∈ C p−k([η+
i , η−

i+1]), k = 0, . . . , p, by combining (4) and (6)
we have
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Dl
+u

w
j,p(ηi , ηi ) = 0, l = 0, . . . , ri , j = ri + 1, . . . , p.

This shows that the function in (49) belongs to the space (48). The representation
(49) implies

dim(Sr,w
p (Δ)) ≤ p + 1 +

�∑

i=1

(p − ri ). (51)

The next theorem states that the Tchebycheffian spline space S
w
p,ξ is equal to the

space S
r,w
p (Δ) with a prescribed partition Δ and smoothness r .

Theorem 9 (Characterization of Spline Space) Let ξ := {ξi }n+p+1
i=1 be a (p + 1)-

basic knot sequence. The space S
w
p,ξ spanned by Tchebycheffian B-splines of degree

p defined over the knot sequence ξ is characterized by

S
w
p,ξ = S

r,w
p (Δ),

where Δ is a partition as in (46) defined from the knot sequence as follows,

ξp+1 =: η0, ξp+2, . . . , ξn =:
μ1

︷ ︸︸ ︷
η1, . . . , η1, . . . ,

μ�
︷ ︸︸ ︷
η�, . . . , η�, ξn+1 =: η�+1,

and the smoothness r is defined by

ri := p − μi , i = 1, . . . , �.

Proof Since we are dealing with a (p + 1)-basic knot sequence ξ , we have η0 < η1
and η� < η�+1. TheTchebycheffianB-splineweightsw satisfy the smoothness condi-
tions in (47); see Definition6. From the piecewise structure (26) and the smoothness
(36) of Tchebycheffian B-splines it follows that the space S

w
p,ξ is a subspace of

S
r,w
p (Δ). Moreover, using (51) we arrive at

dim(Sw
p,ξ ) = n = p + 1 +

�∑

i=1

(p − ri ) ≥ dim(Sr,w
p (Δ)).

This concludes the proof. �

3.4 Knot Insertion

In this section we are addressing the problem of representing a given Tchebycheffian
spline on a refined knot sequence. In particular, we focus on the special case where
only a single knot is inserted. Since any refined knot sequence can be reached by
repeatedly inserting one knot at a time, it suffices to deal with this case.
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Without loss of generality, we assume that the spline s = ∑n
j=1 c j B

w
j,p,ξ is given

on a (p + 1)-basic knot sequence ξ := {ξi }n+p+1
i=1 . We want to insert a knot ξ in

some subinterval [ξm, ξm+1) of [ξp+1, ξn+1), resulting in a new (p + 1)-basic knot
sequence ξ̃ := {ξ̃i }n+p+2

i=1 defined by

ξ̃i :=

⎧
⎪⎨

⎪⎩

ξi , if 1 ≤ i ≤ m,

ξ, if i = m + 1,

ξi−1, if m + 2 ≤ i ≤ n + p + 2.

(52)

We are interested in the Tchebycheffian B-spline form of s on the new knot sequence.

Lemma 5 Let the (p + 1)-basic knot sequence ξ̃ := {ξ̃i }n+p+2
i=1 be obtained from

the (p + 1)-basic knot sequence ξ := {ξi }n+p+1
i=1 by inserting just one knot ξ in

[ξp+1, ξn+1). Then,

Bw
j,p,ξ = α j,p,ξ B

w
j,p,ξ̃

+ β j+1,p,ξ B
w
j+1,p,ξ̃

, (53)

where

(i) α j,p,ξ = 1 and β j+1,p,ξ = 0 if ξ ≥ ξ j+p+1;
(ii) α j,p,ξ > 0 and β j+1,p,ξ > 0 if ξ j < ξ < ξ j+p+1;
(iii) α j,p,ξ = 0 and β j+1,p,ξ = 1 if ξ ≤ ξ j .

Proof From Theorem9 it follows that S
w
p,ξ ⊆ S

w
p,ξ̃

, so every Bw
j,p,ξ can be written as

a linear combination of the Tchebycheffian B-splines defined over ξ̃ . If ξ ≥ ξ j+p+1

then Bw
j,p,ξ = Bw

j,p,ξ̃
, which shows (53) in case (i). If ξ ≤ ξ j then Bw

j,p,ξ = Bw
j+1,p,ξ̃

,

which shows (53) in case (iii). In the remainder, we focus on the last case (ii) and
assume ξ j < ξ < ξ j+p+1.

Fix j . We can write

Bw
j,p,ξ (x) =

n+1∑

i=1

c j,i B
w
i,p,ξ̃

(x).

If x ∈ [ξ̃k, ξ̃k+1) with ξ̃k ≥ ξ j+p+1 = ξ̃ j+p+2, then

0 = Bw
j,p,ξ (x) =

k∑

i=k−p

c j,i B
w
i,p,ξ̃

(x),

and by local linear independence we get c j,i = 0 for any i ≥ j + 2 since k − p ≥
j + 2. Similarly, c j,i = 0 for any i ≤ j − 1. This implies (53) for some α j,p,ξ and
β j+1,p,ξ .

Next, we show the positivity of α j,p,ξ . Let μ j be the multiplicity of ξ j as a knot
of Bw

j,p,ξ . Then, ξ j appears μ j times as a knot of Bw
j,p,ξ̃

and μ j − 1 times as a knot
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of Bw
j+1,p,ξ̃

. We consider the (p + 1 − μ j )th derivative at ξ j of the two sides in (53).

By using the expression in statement (i) of Lemma1 and recalling that the weight
functions are positive, we get

α j,p,ξ =

⎧
⎪⎨

⎪⎩

1, μ j = p + 1,
γ w
j,p−1,ξ̃

· · · γ w
j,μ j−1,ξ̃

γ w
j,p−1,ξ · · · γ w

j,μ j−1,ξ

, μ j ≤ p.
(54)

Note that by Lemma4 all γ ’s involved in (54) are positive because ξ j < ξ j+μ j . The
positivity of β j+1,p,ξ can be proved in a similar way. Let μ j+p+1 be the multiplicity
of ξ j+p+1 as a knot of Bw

j,p,ξ . From statement (ii) of Lemma1 we get

β j+1,p,ξ =

⎧
⎪⎨

⎪⎩

1, μ j+p+1 = p + 1,
γ w
j+2,p−1,ξ̃

· · · γ w
j+p+2−μ j+p+1,μ j+p+1−1,ξ̃

γ w
j+1,p−1,ξ · · · γ w

j+p+1−μ j+p+1,μ j+p+1−1,ξ

, μ j+p+1 ≤ p.
(55)

This completes the proof. �

Theorem 10 (Knot Insertion) Let the (p + 1)-basic knot sequence ξ̃ := {ξ̃i }n+p+2
i=1

be obtained from the (p + 1)-basic knot sequence ξ := {ξi }n+p+1
i=1 by inserting just

one knot ξ , such that ξm ≤ ξ < ξm+1 with p + 1 ≤ m ≤ n as in (52). Then,

s(x) =
n∑

j=1

c j B
w
j,p,ξ (x) =

n+1∑

i=1

c̃i B
w
i,p,ξ̃

(x), x ∈ [ξp+1, ξn+1], (56)

where

c̃i =

⎧
⎪⎨

⎪⎩

ci , if i ≤ m − p,

αi,p,ξci + βi,p,ξci−1, if m − p < i ≤ m,

ci−1, if i > m.

(57)

The values αi,p,ξ and βi,p,ξ in (57) are nonnegative, and

αi,p,ξ + βi,p,ξ = 1, m − p < i ≤ m. (58)

Proof From Lemma5 we immediately deduce that

n∑

j=1

c j B
w
j,p,ξ = α1,p,ξ c1B

w
1,p,ξ̃

+ βn+1,p,ξ cn B
w
n+1,p,ξ̃

+
n∑

i=2

(αi,p,ξ ci + βi,p,ξ ci−1)B
w
i,p,ξ̃

,

where the α’s and β’s are nonnegative. This gives (56) with

c̃i = αi,p,ξci + βi,p,ξci−1, i = 2, . . . , n. (59)
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First, recall from (42) that both sets of B-splines in (56) sum to wp. Hence, in the
case s = wp, (59) implies

1 = αi,p,ξ + βi,p,ξ , i = 2, . . . , n.

Since p + 1 ≤ m ≤ n, it follows that {m − p + 1, . . . ,m} ⊆ {2, . . . , n} and we
obtain (58). Furthermore, from case (i) in Lemma5 we have αi−1,p,ξ = 1 and
βi,p,ξ = 0 for 2 ≤ i ≤ m − p. We also observe from (54) that αm−p,p,ξ = 1. Indeed,
if μm−p = p + 1 it is obvious, and otherwise we have γ w

m−p,k−1,ξ̃
= γ w

m−p,k−1,ξ for

k = μm−p, . . . , p. Similarly, from case (iii) in the same lemma we have αi,p,ξ = 0
and βi+1,p,ξ = 1 for m < i ≤ n. If ξm = ξ then this case also implies βm+1,p,ξ = 1.
If ξm < ξ then we can conclude from (55) that βm+1,p,ξ = 1. This completes the
proof. �

From the proof we observe that the α’s and β’s in (57) are specified in (54) and (55),
respectively.

4 Generalized B-Splines

In this section we consider a special subclass of normalized Tchebycheffian B-
splines, the so-called generalized B-splines.3 They can be seen as the minimal exten-
sion of classical polynomial splines still offering a wide variety of additional flexi-
bility.

Definition 10 Given the partitionΔ := {η0 < η1 < · · · < η�+1} and an integer p ≥
2, a generalized polynomial space of degree p is defined as a space of the form

P
U,V
p (Δ) := 〈1, x, . . . , x p−2,U (x), V (x)〉, x ∈ [η0, η�+1], (60)

where U, V ∈ C p([η+
i , η−

i+1]) and 〈Dp−1U, Dp−1V 〉 is an ET-space on [η+
i , η−

i+1]
for all i = 0, . . . , �.

From Example10 we conclude that the restriction of the generalized polynomial
space P

U,V
p (Δ) on the interval [η+

i , η−
i+1] is an ECT-space of dimension p + 1 gen-

erated by weight functions of the form

w0,i (x), w1,i (x), w2,i (x) = · · · = wp,i (x) = 1, (61)

where

3The term “generalized splines” has several different meanings in the literature. For example, the
splines considered here are much less general than those described in [30, Chap.11]. We follow the
definition given in [17]. This definition was already used before for special choices of U and V ;
see, for example, [15, 16].
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w1,i (ηi ) = w1,i (ηi+1) = 1. (62)

Note that the space 〈Dp−1U, Dp−1V 〉 is an ECT-space on [η+
i , η−

i+1] generated by
the weights w0,i and w1,i (see Example9). The local weights in (61)–(62) allow us
to define a global weight vector w := (w0, . . . ,wp) such that

wj (x) := wj,i (x), x ∈ [ηi , ηi+1), i = 0, . . . , �, j = 0, . . . , p. (63)

From the construction it is easy to check that each weight wj ∈ C j ([η+
i , η−

i+1]),
i = 0, . . . , � and that wj ∈ C j−1(ηi ), i = 1, . . . , �.

We now define generalized B-splines of degree p associated with a knot sequence
ξ and a generalized polynomial space P

U,V
p (Δ). The knot sequence ξ := {ξi }n+p+1

i=1
is connected to the partition Δ as follows

ξ1, . . . , ξn+p+1 =
μ0

︷ ︸︸ ︷
η0, . . . , η0, . . . ,

μ�+1
︷ ︸︸ ︷
η�+1, . . . , η�+1, (64)

for some integers μ0, . . . , μ�+1.

Definition 11 For a given partition Δ, let P
U,V
p (Δ) be a generalized polynomial

space of degree p ≥ 2, and let ξ be a knot sequence connected to Δ as in (64). For
any ξi < ξi+1, let ui , vi be the unique functions in 〈Dp−1U, Dp−1V 〉 on [ξ+

i , ξ−
i+1]

satisfying
ui (ξi ) = 1, ui (ξi+1) = 0, vi (ξi ) = 0, vi (ξi+1) = 1.

Suppose for some integer j that ξ j ≤ ξ j+1 ≤ · · · ≤ ξ j+p+1 are p + 2 real numbers
taken from ξ . The j th generalizedB-spline BU,V

j,p,ξ : R → R of degree p is identically
zero if ξ j+p+1 = ξ j and otherwise defined recursively by

BU,V
j,p,ξ (x) :=

∫ x

ξ j

BU,V
j,p−1,ξ (y)

γ
U,V
j,p−1,ξ

dy −
∫ x

ξ j+1

BU,V
j+1,p−1,ξ (y)

γ
U,V
j+1,p−1,ξ

dy, (65)

starting with

BU,V
i,1,ξ (x) :=

⎧
⎪⎨

⎪⎩

vi (x), if x ∈ [ξi , ξi+1),

ui+1(x), if x ∈ [ξi+1, ξi+2),

0, otherwise.

(66)

Here, γU,V
i,k,ξ is defined as the integral of BU,V

i,k,ξ ,

γ
U,V
i,k,ξ :=

∫ ξi+k+1

ξi

BU,V
i,k,ξ (y) dy,

and we used the convention that if γ
U,V
i,k,ξ = 0 then
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∫ x

ξi

BU,V
i,k,ξ (y)

γ
U,V
i,k,ξ

dy :=
{
1, if x ≥ ξi+k+1,

0, otherwise.

We now show that generalized B-splines are a special instance of normalized
Tchebycheffian B-splines, and therefore they enjoy all their properties.

Theorem 11 Generalized B-splines are normalized Tchebycheffian B-splines gen-
erated by the Tchebycheffian B-spline weights w0, . . . ,wp given in (63).

Proof Wefirst note that the global weightsw0, . . . ,wp in (63) satisfy the smoothness
conditions in Definition6, so they are actually Tchebycheffian B-spline weights with
respect to ξ . Let w := (w0, . . . ,wp). A direct computation shows that Bw

i,1,ξ (x) =
BU,V
i,1,ξ (x) for all i . Indeed, if ξi < ξi+1 then from Definition7 and the weight property

(62) we know that

Bw
i,1,ξ (ξi ) = 0, lim

x→ξi+1
x<ξi+1

Bw
i,1,ξ (x) = lim

x→ξi+1
x<ξi+1

w1(x) = 1,

and from the piecewise Tchebycheff structure that Bw
i,1,ξ belongs to the ET-space

〈Dp−1U, Dp−1V 〉 on [ξ+
i , ξ−

i+1]. Since the same properties also hold for BU,V
i,1,ξ (x),

they must be identical on [ξi , ξi+1). A similar argument holds for the interval
[ξi+1, ξi+2). As a consequence, taking into account that w2 = · · · = wp = 1, it fol-
lows clearly from their definitions that Bw

j,p,ξ (x) = BU,V
j,p,ξ (x) for p ≥ 2 and they are

normalized. In other words, generalized B-splines are a special instance of normal-
ized Tchebycheffian B-splines. �

Example 17 Any linearTchebycheffianB-spline Bw
j,1,ξ (x) canbewritten as B

U,V
j,1,ξ (x)

in the form (66), up to the positive scaling factor w1(ξ j+1). In particular, when
U (x) = cos(x), V (x) = sin(x), we have

BU,V
j,1,ξ (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin(x − ξ j )

sin(ξ j+1 − ξ j )
, if x ∈ [ξ j , ξ j+1),

sin(ξ j+2 − x)

sin(ξ j+2 − ξ j+1)
, if x ∈ [ξ j+1, ξ j+2),

0, otherwise.

This is the scaled version of the spline in Example13, with scaling factorw1(ξ j+1) =
cos(ξ j+1).

Example 18 The generalized B-spline of degree p = 2 on a knot sequence ξ con-
sisting of simple knots is given by
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BU,V
j,2,ξ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ j

∫ x

ξ j

v j (y) dy, if x ∈ [ξ j , ξ j+1),

1 − δ j+1

∫ x

ξ j+1

v j+1(y) − δi

∫ ξ j+2

x
u j+1(y), if x ∈ [ξ j+1, ξ j+2),

δ j+1

∫ ξ j+3

x
u j+2(y) dy, if x ∈ [ξ j+2, ξ j+3),

0, otherwise,

where

δi := (
γ
U,V
i,1,ξ

)−1 =
(∫ ξi+1

ξi

vi (y) dy +
∫ ξi+2

ξi+1

ui+1(y) dy

)−1

.

ThenormalizedTchebycheffianB-spline defined inExample14 is a special case, con-
sidering the functionsU (x) = cos(x),V (x) = sin(x), and theuniformknot sequence
{iω}3i=0.

Example 19 Consider the partition Δ = {0, 1, 2, 3}, and

U (x) =

⎧
⎪⎨

⎪⎩

x, if x ∈ [0, 1),
eαx , if x ∈ [1, 2),
x, if x ∈ [2, 3),

V (x) =

⎧
⎪⎨

⎪⎩

x2, if x ∈ [0, 1),
e−αx , if x ∈ [1, 2),
x2, if x ∈ [2, 3).

When taking ξ = Δ, we get for p = 1,

BU,V
1,1,ξ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x, if x ∈ [0, 1),
sinh((2 − x)α)

sinh(α)
, if x ∈ [1, 2),

0, otherwise,

BU,V
2,1,ξ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

sinh((x − 1)α)

sinh(α)
, if x ∈ [1, 2),

3 − x, if x ∈ [2, 3),
0, otherwise,

and for p = 2,

BU,V
1,2,ξ (x) = 1

1 + sinh(β)

β cosh(β)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x2, if x ∈ [0, 1),
1 + cosh(β) − cosh((3 − 2x)β)

β sinh(β)
, if x ∈ [1, 2),

(x − 3)2, if x ∈ [2, 3),
0, otherwise,

(67)
where β := α/2. The three nontrivial pieces of BU,V

1,2,ξ belong to P2, 〈1, eαx , e−αx 〉,
and P2. When α tends to zero, the quadratic generalized B-spline in (67) tends to the
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Fig. 3 Two quadratic generalized B-splines with pieces belonging to the spaces P2, 〈1, eαx , e−αx 〉,
and P2. Left: α = 1, Right: α = 5. The knot positions are visualized by vertical dotted lines

quadratic polynomial cardinal B-spline. Two such quadratic generalized B-splines
(with α = 1 and α = 5) are depicted in Fig. 3.

Example 20 If U (x) = x p−1 and V (x) = x p, then the space in (60) is nothing else
than the polynomial space Pp. In this case,

ui (x) = ξi+1 − x

ξi+1 − ξi
, vi (x) = x − ξi

ξi+1 − ξi
, ξi < ξi+1,

and Definition11 results in the standard polynomial B-splines of degree p. This is
in agreement with Example15.
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Template Mapping Using Adaptive
Splines and Optimization of the
Parameterization

Svajūnas Sajavičius, Bert Jüttler and Jaka Špeh

Abstract We consider the construction of a spline map (a volumetric deformation)
that transforms a template, which is given in the domain, into a target shape. More
precisely, the domain is equipped with a set of surface patches (the template skele-
ton) and target patches for some of them (which are called the constraining patches)
are specified. The constructed spline map approximately transforms the constraining
patches into the associated target patches. Possible applications include isogeometric
segmentation and parameterization of the computational domain. In particular, the
approach should be useful when performing isogeometric segmentation and param-
eterization for a large class of computational domains possessing similar shapes.
We present a solution approach, which is based on least-squares fitting. In order to
deal with the influence of the parameterization, the well-established approaches of
point and tangent distance minimization are employed for the iterative solution of
the resulting nonlinear optimization problems. Additionally, we enrich the approach
with spline space refinement. The efficiency and performance of the approach are
investigated experimentally. We demonstrate that the optimization of the parameter-
ization, which is used in the point or tangent distance minimization, is an essential
step of the procedure. In addition, we use adaptive spline refinement in order to save
computational resources. The proposed template mapping approach is also applied
to a case of industrial interest, as well as to a volumetric example.
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1 Introduction

In this paper, we focus on the template mapping problem. The problem consists
of the construction of a spline map (a volumetric deformation) that transforms the
template domain into the target domain. The template map is constructed taken into
account restrictions on mapping certain surface patches from the template domain:
the template map transforms these surfaces (the constraining patches) into other
predefined surfaces (the target patches).

The template mapping possesses applications in isogeometric segmentation and
parameterization (see [33, 47]). These two steps are essential as preprocessing steps
for NURBS-based numerical simulation, i.e., for isogeometric analysis (IGA) [22].
Consequently, they have attracted substantial interest from the scientific community.
We summarize some of the related literature in the following.

IGA-suitable spline parameterizations of swept volumes are described inpaper [1].
The paper [7] analyzes aspects of parameterization quality for geometric modeling
in IGA. Solid modeling and domain parameterization using trivariate T-splines is
discussed in [8, 29, 43].

The papers [16, 44] describe optimization based techniques for planar and volu-
metric domain parameterization in IGA. High-quality constructions for multi-patch
NURBS parameterizations are introduced in [48]. The paper [10] uses inverse har-
monic mappings for planar domain parameterization using truncated hierarchical
B-splines (THB-splines), while [37] employs Powell–Sabin spline representations
and [31] uses the Teichmüller mapping.

Unstructured spline spaces for IGA on manifolds are introduced in [35] (see also
[24] for G1 smooth discretizations). The conversion of the boundary representation
(B-Rep) models into domain parameterizations for IGA is addressed in [2], while
the construction of multi-patch parameterizations is discussed in [6]. Scaled bound-
ary parameterizations for IGA are considered in [3]. The recent paper [19] adopts
elliptic grid generation principles for IGAapplications.Another approach to the com-
putation of IGA-suitable planar parameterizations via PolySquare-enhanced domain
partition is investigated in [46]. An approach for constructing low-rank parameteri-
zations of planar domains is proposed in [32]. The paper [45] focuses on generating
high-quality high-order Bézier triangular and tetrahedral elements for IGA on tri-
angulations. A template segmentation is exploited in order to provide a multi-patch
parameterization of a planar multiply-connected domain in [9]. The recent paper [18]
gives an overview of isogeometric segmentation and parameterization and provides
additional references.

The present paper is devoted to the technique of template mapping, which should
be a useful tool when solving the isogeometric domain segmentation and param-
eterization problem for a large class of computational domains possessing similar
shapes and equivalent topologies. Such classes occur naturally in engineering, e.g.,
when one is trying to identify the optimal design for a specific application. In this
setting it appears to be a promising approach to transfer a pre-defined segmentation
and parameterization from a (simplified) master domain (the “template”) to each
particular instance of the domain.
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We solve the templatemapping problem by applying an iterative procedure, which
is based on least-squares fitting. In particular, we minimize an objective function that
involves several terms representing the geometric error, smoothing and regulariza-
tion.

For computational purposes, we need to discretize the objective function. The
standard method to discretize the geometric error term is the point distance mini-
mization (PDM) error term [21]. The optimization procedure based on the PDMerror
term is equivalent to an alternating optimizationmethod. Though this method is quite
robust and leads to significant improvements of the initial results, it is also known
to have a low rate of convergence. Another approach, which employs the tangent
distance minimization (TDM) error terms [4], is a Gauss–Newton-type method, thus
providing quadratic convergence for zero-residual problems.

The method of squared distance minimization (SDM), which was introduced in
[34], provides an alternative to the above-mentioned discretization methods for the
geometric error terms (see [5] and the references cited therein). The SDM error terms
are curvature-dependent, thus requiring C2 smoothness, and the method lacks clear
theoretical advantages with respect to the TDMmethod. A detailed discussion of the
SDM method is therefore beyond the scope of the present paper.

In this paper, we adapt the PDM/TDMmethods to the template mapping problem.
In addition, we enrich the iterative approach with spline space refinement. Besides
various other observations that we obtain during the experimental study, we also
demonstrate that the local (adaptive) spline space refinement used instead of the
global (uniform) refinement helps to save computational resources. The local refine-
ment allows achieving a similar accuracy of the results with significantly reduced
computational effort.

The rest of the paper is organized as follows. Section2 presents the basic notation
and definitions, formulates the template mapping problem and shortly describes
possible applications to isogeometric segmentation and parameterization. In Sect. 3,
the template mapping problem is discretized. We give a detailed description of the
presented iterative approach for the template mapping problem in Sect. 4. The results
of the experimental study are presented in Sect. 5. Finally, Sect. 6 summarizes the
paper by formulating conclusions and identifying directions for future work.

2 Template Mapping Problem

In this section, we introduce the basic notation and definitions. Before formulating
the template mapping problem in dimension independent form, possible applications
to isogeometric segmentation and parameterization are shortly described.

Our interest in the template mapping originated in its possible applications to
isogeometric segmentation and parameterization. To clarify the practical meaning
of the theoretical concepts, which will be introduced below, we first summarize our
approach to isogeometric segmentation and parameterization.
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Assume that we have a B-Rep model of the computational domain, which we
need to parameterize for the purpose of applications of IGA. If the domain is too
complicated to be parameterized as a single patch, it needs to be segmented into
quadrilateral or cuboidal subdomains (patches) that can be parameterized separately
(multi-patch parameterization) in subsequent steps.

More precisely, we consider a template domain, described by a B-Rep model,
which is topologically equivalent to the original computational domain (target
domain). It is assumed that a segmentation of the template domain can be defined
in a natural way and subdomains can be parameterized easily using some standard
technique (for example, Coons patches). If, in addition, we have a map that deforms
the template domain into B-Rep of the original computational domain, we arrive at
a multi-patch parameterization of the original computational domain.

Wenow introduce the template skeleton and the target patches. Note that in the rest
of the paper we use the notion surface to denote curves (d = 2) or two-dimensional
surfaces (d = 3). We also use the hat symbol̂ for everything related to the template
domain and skeleton.

Let us assume that ̂Ω is a domain with piecewise smooth boundary in Rd (d = 2
or d = 3). We call this domain the template domain. In the template domain ̂Ω ,
the surface patches ̂Γ k , k ∈ K = {1, 2, . . . , M}, are given. Each of these patches is
parameterized as

γ̂k : (0, 1)d−1 → ̂Γ k .

The surfaces ̂Γ k , k ∈ K ∗ = {1, 2, . . . , N }, N < M , are called the constraining
patches, and the remaining ones (k ∈ K \ K ∗) are referred to as the free patches.
The union of the constraining and free patches forms the template skeleton ̂Γ :

̂Γ =
⋃

k∈K
̂Γ k .

Each constraining patch ̂Γ k corresponds to the target patch Γ k ⊂ R
d (k ∈ K ∗).

The target patches Γ k are parameterized as

γk : (0, 1)d−1 → Γ k .

The constraining patches form the part of the template that must be mapped to the
corresponding target patches with high accuracy. In contrast to this, there are no
constraints on the mapping of free patches. The sole purpose of introducing these
patches is to define the segmentation into quadrilateral (d = 2) or cuboidal (d = 3)
subdomains.

We assume that the topological structure of the intersection of the constraining
patches ̂Γ k ⊂ ̂Γ matches that of the target patches Γ k .

Our aim is to construct the template map

s : ̂Ω → R
d
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that satisfies the requirements

s ◦ γ̂k◦ �k (t) =γk (t), t ∈ (0, 1)d−1, (1)

for k ∈ K ∗. Here �k : (0, 1)d−1 → (0, 1)d−1 are the reparameterizations of the con-
straining patches ̂Γ k . In general, the reparameterization functions �k can be chosen
in different ways but they should always be bijective and regular. The requirements
(1) ensure that the template map s transforms each constraining patch ̂Γ k to the
corresponding target patch Γ k , k ∈ K ∗. We emphasize that the requirements (1) are
formulated for the constraining and target patches only. For application purposes,
the template map s is also supposed to be injective and regular in ̂Ω .

The surfaces ˜Γ k parameterized as

γ̃k : (0, 1)d−1 → ˜Γ k : t �→ s ◦ γ̂k◦ �k (t)

are called the mapped (transformed) constraining patches (for k ∈ K ∗) or the
mapped (transformed) free patches (for k ∈ K ). We expect that (cf. (1))

γk (t) ≈ γ̃k(t), t ∈ (0, 1)d−1,

is valid for each target patch Γ k and the corresponding mapped constraining patch
˜Γ k (k ∈ K ∗).

A schematic description of the template mapping problem is presented in Fig. 1.
Alternatively, it can also be summarized in the following diagram:

[0, 1]d−1 [0, 1]d−1

Γ k
̂Γ k

γ k

�k

γ̂ k

s

Note that only approximate commutativity of this diagram is to be expected.
We now introduce a variational formulation of the template mapping problem.

We construct the template map s satisfying the constraints (1) by solving a nonlinear
optimization (the least-squares) problem [25]. Indeed, we define and minimize the
least-squares objective function:

F =
∑

k∈K ∗
‖ γk −γ̃k‖2L2([0,1]d−1) + Q(s) → min . (2)

The term Q in the objective function stands for the smoothing and regularization. This
term involves functionals known as the quality measures. Various quality measures
are known from the rich literature on mesh generation (cf. [12, 28]) and parameter-
ization in isogeometric analysis [10, 16, 19]. We will use the uniformity (simplified
thin plate energy) functional
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Fig. 1 The template mapping problem: find the map (a volumetric deformation) s that transfers
the template skeleton (red and green, left) in such a way that the constraining patches (red, left) are
transformed into the target patches (red, right). The mapping of the free patches (green, left) is not
constrained

Qu(s) =
∫

̂Ω

(

d
∑

m,n=1

‖sumun‖2
)

du.

were s with subscripts denote partial derivatives of the map s.

3 Discretization

In the previous section we formulated the template mapping problem in an abstract
way. A proper template map is expected to satisfy certain requirements. In this
section, the template mapping problem is discretized.

We will use a spline approximation of the template map. More precisely, we
assume that the template map s is a spline function represented in a hierarchical
spline space as a linear combination of the spline basis functions τ �

j defined by
coefficients c�

j ∈ R
d :

s(u) =
L

∑

�=1

J �

∑

j=1

c�
jτ

�
j (u), u ∈ ̂Ω. (3)

Here the upper index � stands for the hierarchical level, L denotes the total number
of levels of refinement, and J � is the numbers of spline basis functions of level �.
For the simplicity of notation, all the coefficients c�

j are collected in one matrix

c = (. . . , c�
j , . . .) ∈ R

d×n,

where n = ∑L
�=1 J

� is the number of hierarchical spline basis functions in all levels.
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Next we describe the discretization of the geometric input data. The target patches
Γ k are discretized by sampling points {pk

i }i∈I corresponding to the initial parameter
values {tki }i∈I :

pk
i =γk (tki ),

where tki ∈ (0, 1)d−1 and I is an index set.
For the purpose of the closest point computation (see next section), we also dis-

cretize the constraining patches ̂Γ k , k ∈ K ∗. Each constraining patch is discretized
by sampling points {̂pk

ı̂ }̂ı∈ ̂I corresponding to the parameter values {̂tkı̂ }̂ı∈ ̂I : where
̂tkı̂ ∈ (0, 1)d−1 and ̂I is an index set. These sampled points are used for the initial-
ization of the closest point computation. Consequently, their number is expected to
be much larger then the number of points sampled on the target patches, | ̂I | 
 |I |.
In the rest of the paper we assume that ı̂ ∈ ̂I , i ∈ I and k ∈ K ∗.

Now we consider a discrete representation of the reparameterization functions.
Assume that we have already the template map s. For each target patch Γ k and each
sampled point pk

i , the reparameterization function �k defines the parameter value
̂tk,∗i such that the mapped point p̃k,∗

i = s ◦ γ̂(̂tk,∗i ) is the closest point to the point pk
i

from all the points on the mapped constraining patch ˜Γ k :

̂tk,∗i := arg min
̂t∈(0,1)d−1

‖pk
i − s ◦ γ̂k(̂t)‖.

In this way, the reparameterization functions �k are represented discretely by the
optimal parameter values {̂tk,∗i }:

�k : (0, 1)d−1 → (0, 1)d−1 : tki �→̂tk,∗i .

The optimal parameter values are expected to ensure that the difference vectors

pk
i − s ◦ γ̂k(̂tk,∗i )

are parallel to the unit normal vectors1 at the points pk
i of the target patch Γ k . The

points p̃k,∗
i = γ̃k(̂tk,∗i ) are called the closest points (or foot points) of the points pk

i
on the mapped constraining patch ˜Γ k .

Finally we introduce the discretized optimization problem. Let {pk
i } be a discrete

set of points sampled on each target patch Γ k . The objective function defined by (2)
is discretized as

˜F =
∑

k

∑

i

eki + ˜Q, (4)

where eki = min̂t∈(0,1)d−1 ‖pk
i − γ̃k(̂t)‖2 are the squaredorthogonal distancesbetween

the points pk
i and the mapped target patch ˜Γ k , and ˜Q is a discretized smoothing and

1Different constraints are present at patch boundaries.
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regularization term. The smoothing and regularization term is added to the objec-
tive function in order to avoid situations where the resulting linear system becomes
singular or self-overlappings appear in the template map.

We minimize the objective function ˜F with respect to the reparameterization
functions �k and the coefficients c:

˜F → min
�k ,c

.

This nonlinear least-squares problem is a separable and constrained optimization
problem. Indeed, the reparameterization functions �k and the coefficients c can be
treated as two separate groups of optimization variables, and the optimization prob-
lem can be formulated as the minimization of the objective function (4) with respect
to the coefficients c, i.e.

˜F → min
c

,

subject to the parameter optimization constraints. For the solution of this optimization
problem we will apply an iterative procedure presented in the next section.

4 Iterative Solution Procedure

Our aim is to minimize the objective function (4) with respect to the coefficients
of the discretized template map, and the reparameterization functions. We apply an
iterative procedure for the solution of this optimization problem. In this section, we
give a general outline of the procedure as well as describe its steps in detail.

As it was mentioned in the previous section, the optimization problem (3) is
separable. Therefore, we treat the unknown coefficients c of the map s and the repa-
rameterization functions �k in separate steps. The outline of the iterative procedure
for the template mapping problem solution is the following:

Step 1: Discretization and initialization
Step 2: Control point computation
Step 3: Closest point computation
Step 4: Checking termination and refinement criteria:

(4a) Termination criterion
(4b) Refinement criterion

Step 5: Spline space refinement

In the next sections we will describe all the steps in detail.

Step 1: Discretization and Initialization

We assume the target patches Γ k are discretized by sampled points {pk
i } (see above).

In addition, we also construct the initial version of the template map s. The initial
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template map is defined by initial tensor-product spline basis and initial values of
the coefficients c.

As the initial map for the iterative procedure, we use the identity map. This
choice is suitable in cases when the constraining patches are quite similar to the
target patches. Another possibility is to execute one iteration of the control point
computation step (Step 2) with a simplified objective function (in order to obtain a
simpler quadratic optimization problem).

Step 2: Control Point Computation

Suppose that the template map s defined by (3) is an initial map, or the current map
generated in the previous iteration of the procedure. In this step, we minimize the
objective function ˜F with respect to the coefficients c. Clearly, the new values of the
coefficients c define an updated map s.

For the discretization of the squared orthogonal distances (error terms) eki in the
discretized objective function (4) we implemented and examined the point distance
minimization (PDM) and the tangent distance minimization (TDM) procedures (see
e.g. [42] and references therein). The error terms eki in the PDM are expressed as

ekPDM,i = ‖pk
i − γ̃k(̂tki )‖2,

while in the TDM procedure they are approximated as

ekTDM,i =
[

(

pk
i − γ̃k(̂tki )

)� · Nk
i

]2
,

where Nk
i are the unit normal vectors at the points pk

i on the target patch Γ k . Both
PDM and TDM procedures can be combined together. Then the squared orthogonal
distances are expressed as

eki ≈ ωPDM ekPDM,i + ωTDM ekTDM,i ,

where ωPDM and ωTDM are the weights controlling the influence of PDM and TDM
errors terms.

In our implementation, the smoothing and regularization term is assumed to be

˜Q = ωr ˜Qr + ωu ˜Qu,

where ωr and ωu are user-defined non-negative weights for the Tikhonov regulariza-
tion term

˜Qr (c) =
L

∑

�=1

J �

∑

j=1

‖c�
j − c�

j‖2

and the discretized uniformity functional ˜Qu (see [10]), while c�
j are the coefficients

from the previous iteration.
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The template map coefficients c are obtained by solving the linear system aris-
ing after the differentiation of the objective function (4) with respect to unknown
coefficients c,

∂ ˜F

∂c
= 0.

We obtain a linear system since we consider only the quadratic uniformity functional
as quality measure in our implementation. Other quality measures could be consid-
ered in addition to this simple one, but the implementationwould then require suitable
techniques from non-linear optimization, e.g., Gauss–Newton-type methods [25].

Step 3: Closest Point Computation

In this step, we perform an update of the parameter values {̂tk,∗i } in such a way that the
mapped points p̃k

i = (s ◦ γ̂k)(̂tk,∗i ) are the closest points to the corresponding points
pk
i on the target patch Γ k . Taking into account the discretization of the constraining

patches, the initial parameter values are computed as

̂tk,∗i =̂tkı̂0 with ı̂0 = argmin
ı̂

‖pk
i − p̃k

ı̂ ‖,

where p̃k
ı̂ = s ◦ γ̂k(̂tkı̂ ).

The initial parameter values are improved by executing a few Newton steps:

̂tk,∗i ← ̂tk,∗i + Δ̂tk,∗i ,

where

Δ̂tk,∗i =
(

pk
i − s ◦ γ̂k(̂tki )

)� · (

su1 ◦ γ̂k(̂tki )
)

‖su1 ◦ γ̂k(̂tki )‖2

in the planar (d = 2) case, and

Δ̂tk,∗i =
( ‖su1 ◦ γ̂k(̂tki )‖

(

su1 su2
) ◦ γ̂k(̂tki )

(

su1 su2
) ◦ γ̂k(̂tki ) ‖su2 ◦ γ̂k(̂tki )‖

)−1
(

(

pk
i − s ◦ γ̂k(̂tki )

)� · (

su1 ◦ γ̂k(̂tki )
)

(

pk
i − s ◦ γ̂k(̂tki )

)� · (

su2 ◦ γ̂k(̂tki )
)

)

in the volumetric (d = 3) case, where su1 and su2 denote the partial derivatives of the
map s. These formulas can be derived by considering the linear Taylor approximation
of s. It should be noted that this procedure needs to be modified on and near patch
boundaries, in order to obtain valid results.

Step 4: Checking Termination and Refinement Criteria

The iterative procedure is repeated until a certain termination criterion is satisfied,
e.g., the prescribed accuracy is achieved or the maximal number of iterations is
reached. The procedure also terminates if the template map s becomes unacceptably
irregular. We monitor the determinant of the Jacobian at certain points in ̂Ω and
terminate the procedure if the percentage of points with negative values of Jacobian
determinant exceeds a prescribed threshold.
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Fig. 2 The iterative approach for template mapping problem

In addition, the proposed approach for the template mapping problem can be
enriched with the refinement of the spline space in which the template map s is
represented. After several PDM/TDM iterations the accuracy of the results can be
estimated and, if necessary, the spline space can be refined before executing another
series of PDM/TDM iterations. As an indicator for the spline space refinement, the
difference of the error in two successive iterations can be used: the spline space is
refined whenever the error no longer changes significantly.

The flowchart representing the iterative approach is depicted in Fig. 2. The effec-
tiveness of the approach combining PDM/TDM iterations and the spline space refine-
ment will be demonstrated in Sect. 5. The details on the spline space refinement step
will be given in the next section.

Step 5: Spline Space Refinement

The standard tensor-product constructions of the multivariate splines provide the
possibility of the global (uniform) refinement only. This means that the insertion of a
new knot into one of the knot vectors refines the entire column or row of cells in the
mesh. In order to overcome this, various generalizations of tensor-product splines
were proposed (see [13] and the references cited therein).

In our implementation of the approach, the local refinement is based on THB-
splines [13, 14], which form another basis for the space of hierarchical splines [11,
17, 27]. In addition to the possibility of the local refinement, the THB-splines pos-
sess numerous nice mathematical properties. Compared to the hierarchical splines
introduced in [27], THB-splines form a non-negative partition of unity and have the
same or a smaller support. In addition, THB-splines are linearly independent and
strongly stable with respect to the maximum norm [15].

In order to select hierarchical mesh cells that should be refined, various strate-
gies can be applied. We can mention the absolute threshold and relative threshold
approaches [26]. In the first strategy, the points where the error exceeds a user-defined
threshold are marked for the refinement, while the latter approach marks a certain
percentage of points with the largest errors.

The size of the refined area and, consequently, the size of the corresponding THB-
spline basis can be affected by properly adjusting the extension parameter [26].
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As we will see in computational experiments, the local refinement of the spline
space allows to significantly reduce the amount of computational resources, which
are required in the case of the global refinement.

5 Experimental Results

In this section we set up a test example and use it to analyze and compare different
versions of the considered approach for the template mapping problem in terms of
the accuracy and computational complexity (the amount of required computational
resources). The experimental study consists of four experiments. In one of them, we
apply the approach to a case of industrial interest. An experiment demonstrating the
approach applicability to volumetric cases is also presented.

First we discuss briefly some implementation details. The template skeleton and
target patches, which will be used in Experiments 1 and 2 of our experimental study,
are presented in Fig. 3. For simplicity, in the first two experiments we analyze the
template skeleton without free patches (all the patches are constraining). The tem-
plate skeletons and the target patches of industrial and volumetric examples will be
introduced below.

The iterative procedure is initialized by defining an initial map and sampling
points pk

i on each target patch Γ k . In our experiments, as the initial map we use
the identity map defined in a space of tensor-product B-splines of bi-degree (3, 3)
(in planar cases) or tri-degree (3, 3, 3) (in volumetric case). The B-spline basis is
defined using uniform knot vectors with 11 inner knots in each direction.

On each target patch in planar examples (Experiments 1–3), we sample 200 points
corresponding to the parameters uniformly distributed on the unit interval. For the
closest point computation, we discretize each constraining patch ̂Γ k by sampling 104

points. Then, we map these points using the template map s. From all these mapped
points we find an initial closest point on the target patch Γ k for each point pk

i . An
initial closest point then is improved by executing two Newton steps (Step 3).

Fig. 3 Target patches (left) and constraining patches (right) used in Experiments 1 and 2
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The selection of appropriate weights ωr and ωu of the Tikhonov regularization
term and the uniformity functional in the discretized objective function (4) is one of
themain challenges of the proposed approach. Theseweights affect both the accuracy
and quality of the final result (see e.g. [26] for the detailed discussion) and, therefore,
they should be selected very carefully. In Experiments 1, 2 and 4 we will only apply
the Tikhonov regularization with the weight ωr = 2 × 10−2. In Experiment 3, we
will also use the uniformity functional with weight ωu = 2 × 10−2. This was needed
to obtain an acceptable accuracy of the results.

In our experiments, the hierarchical mesh cells for the local refinement aremarked
using the absolute threshold strategy with the threshold of the pointwise maximal
L2-error being constant and equal to 10−5. The marked cells then are refined using
the dyadic cell refinement.

The accuracy of the results is measured using the squared l2-error:

El2 =
∑

k

∑

i

‖pk
i − p̃k

i ‖2.

Before the error estimation, the closest point computation (parameter optimization)
step is executed.

All the steps of the examined approach have been implemented inG+Smo (Geom-
etry + Simulation modules) C++ library for IGA [23]. This library includes an
efficient implementation of the THB-splines.

Experiment 1: Comparison of PDM and TDM

In the first experiment, we are going to demonstrate that the closest point computation
(parameter optimization) step (Step 3) is an essential component of the approach.
Moreover, we compare convergence rates of the procedures and the regularity of the
resulting template maps.

In Fig. 4 we demonstrate the template mapping results obtained using procedure
with the fixed parameterization, as well as the approach based on PDM or TDMwith
the parameter optimization step. In this experiment, the templatemap s is constructed
in the initial tensor-product spline space (the spline space refinement is not applied).

Fixed parameterization PDM TDM

Fig. 4 The template mapping obtained after 20 iterations of different approaches: fixed parame-
terization (left), PDM (center) and TDM (right) (Experiment 1)
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Fig. 5 Squared l2-errors (left) and the percentage of points with negative values of the Jacobian
determinant (right) (Experiment 1)

Table 1 Squared l2-errors and the percentage of points with negative values of the corresponding
map Jacobian determinant obtained after 20 iterations of the procedure with fixed parameterization
and PDM/TDM procedures with the closet point computation step (Experiment 1)

l2-error Non-regular points (%)

Fixed parameterization 4.16585 × 10−3 2.0969

PDM 4.03419 × 10−4 0.3552

TDM 1.76909 × 10−4 0.0000

From Fig. 4 we can see that the resulting map s obtained using the fixed param-
eterization has self-overlappings. To estimate the regularity of the template map s,
we computed the determinant of the map Jacobian at 106 points sampled in the para-
metric domain. The squared l2-errors obtained during 20 iterations of the procedure
as well as the percentage of points with negative values of the Jacobian determinant
are presented in Fig. 5 (see also Table1 for the corresponding numerical values after
the last of 20 iterations). The most accurate results were obtained using the approach
based on TDM. The PDM with the closest point computation step produced slightly
less accurate results.

In the case of the procedure with fixed parameterization, the percentage of non-
regular points (points with negative values of Jacobian determinant) exceeds 2%.
The closest point computation in PDM procedure reduces this percentage to around
0.36%. In the map produced by the procedure based on TDM, we do not identify
non-regular points at all.

Clearly, the approach benefits from the closest point computation (parameter
optimization) step. Therefore, we will use the closest point computation in the rest
of this study. Moreover, since TDM seems to have clear advances with respect to
PDM, we limit ourselves to TDM in the remaining experiments.

Experiment 2: Comparison of Global and Local Spline Space Refinement

The goal of the second experiment is to compare the global and local spline space
refinement strategies (Step 5) in terms of the accuracy of the results and the amount
of the required computational resources.
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Fig. 6 The template mapping obtained after three iterations of global refinement (top) or seven
iterations of local refinement (bottom) of the initial spline space (Experiment 2)

In this experiment, the spline space refinement is done after each single TDM
iteration. The template mapping results are presented in Fig. 6. By using the same
map regularity testing procedure as in Experiment 1, we do not identify any points
with negative values of the Jacobian determinant. From Fig. 7 (left) we see that the
number of degrees of freedom (the size of the spline space) grows exponentially
if the spline space is refined globally. In case of the local spline space refinement,
this number grows only linearly. This observation is expected and complies with the
results obtained in [26].

From Fig. 7 (right) we also see that the local refinement leads to a similar accuracy
of the resultswhen using significantly coarser spline spaces (withmuch fewer degrees
of freedoms in the spline map representation). Consequently, in order to achieve a
similar accuracy, the local refinement strategy requires much less additional compu-
tational resources (computational time and memory) in comparison with the global
one. Note that the procedure for adaptive refinement was stopped when the termi-
nation criterion was satisfied. This explains why the final error value exceeds the
error obtained by using global refinement, where much fewer refinement steps were
executed.
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Fig. 7 The number of degrees of freedom (DOFs) (left), and the squared l2-errors versus the number
of degrees of freedom (right) obtained during the global and local refinement of the spline space
(Experiment 2)

Experiment 3: Industrial Example

In this experiment, the presented approach is applied to two cases corresponding to
the target patches, which represent the profiles of twin screw compressor rotors with
four (male rotor) and six (female rotor) lobes (Fig. 8, top), see [20, 30, 36, 38–41]
for additional details. The corresponding template skeletons are depicted in Fig. 8
(bottom). In this case, the template skeletons contain not only constraining patches
but free ones too.

By this experiment we aim to demonstrate the approach applicability to the cases
with industrial input and, in addition, investigate the possibility to combine series of
TDM iterations and the local spline space refinement. We combine TDM procedure
with local refinement of the spline space, i.e., the spline space refinement iteration is
executed after each series of five TDM iterations. In addition to Tikhonov regular-
ization (ωr = 2 × 10−2), the uniformity functional with the weight ωu = 2 × 10−2

is also used in this experiment. The identity map is used for the initialization of the
iterative procedure.

The knot configurations in parametric and physical domains are exhibited in
Figs. 9 and 10. The maps presented in these figures have no non-regular points.
In addition, Fig. 11 demonstrates how the errors change after each iteration of TDM
procedure. We see that after several iterations error decay slows down. The refine-
ment of the spline space helps to speed up the convergence and obtain more accurate
final results. We have already demonstrated in Experiment 2 that the local refinement
strategy allows saving computational resources in comparison with the global one.

Experiment 4: Volumetric Example

So far,we applied the templatemapping approach for the planar (d = 2) cases only. In
the last experiment, we demonstrate the approach applicability to volumetric (d = 3)
cases. The input data and the results are presented in Fig. 12.

The set of the target patches consists of four faces from a axis-aligned box and
a patch made by extruding and rotating a curve from Experiments 1 and 2 (Fig. 3).
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Fig. 8 Target patches (top) and template skeletons (bottom) used in Experiment 3. The target
patches represent the profiles of a male rotor (left) and a female rotor (right) in a twin screw
compressor. The template skeletons contain both the constraining patches (black) and free patches
(green)

Fig. 9 The template mapping obtained after 20 iterations using TDM (Experiment 3)
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Fig. 10 The template mapping obtained after 20 iterations using TDM combined with three itera-
tions of local refinement of the spline space (Experiment 3)

Fig. 11 Squared l2-errors obtained by combiningTDMand spline space refinement (Experiment 3):
the profiles of twin screw compressor male rotor (left) and female rotor (right)
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Fig. 12 Volumetric example of the template mapping (Experiment 4). Top row: target patches
(left), template patches (middle), target patches and mapped template patches (right). Bottom row:
hierarchical mesh after one iteration of adaptive spline space refinement (left) and squared l2-errors
(right)

Correspondingly, the set of template patches consists four faces from a box and a
one-sheeted hyperboloid (cylindrical patch made by sweeping with varying radius).

In Fig. 12 we demonstrate how the mapped template patches match the target
patches. The target patches were mapped using a volumetric template map obtained
after two series of ten TDM iterations combined with one iteration of the adaptive
spline space refinement. The initial template map is represented by 6,859 degrees of
freedom, while after one iteration of the local refinement this number increased to
12,248. In case of the global spline space refinement, we would need 42,875 degrees
of freedom. The map produced by the iterative procedure has no non-regular points.

We also compared the convergence speed of the procedures with and without
spline space refinement. From Fig. 12 (bottom, right) we see that the local spline
space refinement iteration, executed when the decay of the error already is slow, can
slightly speed up the convergence. Although in this case the speedup is not extremely
high, already the first TDM iteration after spline space refinement gives the results,
which are more accurate in comparison to those obtained after the last iteration of the
TDM procedure without spline space refinement. Therefore, this experiment once
again confirms that the adaptive spline space refinement allows reducing the number
of required iterations and, consequently, the amount of computational resources.
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6 Concluding Remarks

We introduced the template mapping problem and presented an iterative adaptive
approach for solving it. Based on the results of the experimental investigation, we
arrive at the following conclusions.

• The closest point computation (parameter optimization) is beneficial for solving
the template mapping problem. The iterative procedure based on TDM converges
faster than the procedure based on PDM.

• In comparison with the global refinement of the spline space, the local refinement
allows achieving a similar accuracy with significantly less amount of computa-
tional resources.

• The iterative minimization of the objective function can be efficiently combined
with the spline space refinement.

• The approach is applicable to volumetric data. This is very important from the
practical point, in view of applications to isogeometric segmentation and param-
eterization.

Acknowledgements Supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 678727 (the MOTOR project), as well as by the ERC
advanced grant CHANGE (GA no. 694515) and by the Austrian Science Fund (FWF NFN S117).
We are grateful to our project partners from Dortmund for providing the data for the industrial
example.

References

1. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.V.: Swept volume
parameterization for isogeometric analysis. In: Hancock, E.R.,Martin, R.R., Sabin,M.A. (eds.)
Mathematics of Surfaces XIII: 13th IMA International Conference. Lecture Notes in Computer
Science, vol. 5654, pp. 19–44. Springer, Berlin (2009)

2. Al Akhras, H., Elguedj, T., Gravouil, A., Rochette, M.: Towards an automatic isogeometric
analysis suitable trivariate models generation–application to geometric parametric analysis.
Comput. Methods Appl. Mech. Eng. 316, 623–645 (2017)

3. Arioli, C., Shamanskiy, A., Klinkel, S., Simeon, B.: Scaled boundary parameterizations in
isogeometric analysis. Comput. Methods Appl. Mech. Eng. 349, 576–594 (2019)

4. Blake, A., Isard, M.: Active Contours. Springer, London (1998)
5. Bo, P., Ling, R., Wang, W.: A revisit to fitting parametric surfaces to point clouds. Comput.

Graph. 36, 534–540 (2012)
6. Buchegger, F., Jüttler, B.: Planar multi-patch domain parameterization via patch adjacency

graphs. Comput. Aided Des. 82, 2–12 (2017)
7. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware modeling:

understanding quality considerations in modeling for isogeometric analysis. Comput. Methods
Appl. Mech. Eng. 199, 334–356 (2010)

8. Escobar, J.M., Cascón, J.M., Rodríguez, E.,Montenegro, R.: A new approach to solidmodeling
with trivariate T-splines based on mesh optimization. Comput. Methods Appl. Mech. Eng. 200,
3210–3222 (2011)

9. Falini, A., Jüttler, B.: THB-splines multi-patch parameterization for multiply-connected planar
domains via template segmentation. J. Comput. Appl. Math. 349, 390–402 (2019)



Template Mapping Using Adaptive Splines and Optimization … 237

10. Falini, A., Špeh, J., Jüttler, B.: Planar domain parameterization with THB-splines. Comput.
Aided Geom. Des. 35–36, 95–108 (2015)

11. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. ACM SIGGRAPH Comput.
Graph. 22, 205–212 (1988)

12. Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley, New York
(2008)

13. Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J.: THB-splines: an
effective mathematical technology for adaptive refinement in geometric design and isogeomet-
ric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)

14. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines.
Comput. Aided Geom. Des. 29, 485–498 (2012)

15. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel
spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

16. Gravesen, J., Evgrafov, A., Nguyen, D.M., Nørtoft, P.: Planar parametrization in isogeometric
analysis. In: Floater, M., Lyche, T., Mazure, M.L., Mørken, K., Schumaker, L.L. (eds.) Math-
ematical Methods for Curves and Surfaces: 8th International Conference. Lecture Notes in
Computer Science, vol. 8177, pp. 189–212. Springer, Berlin (2014)

17. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical
tensor product B-splines. In: LeMéhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting
and Multiresolution Methods, pp. 163–172. Vanderbilt University Press, Nashville (1997)

18. Haberleitner, M., Jüttler, B., Scott, M.A., Thomas, D.C.: Isogeometric analysis: representation
of geometry. Encyclopedia of Computational Mechanics. Wiley, New York (2017)

19. Hinz, J., Möller, M., Vuik, C.: Elliptic grid generation techniques in the framework of isogeo-
metric analysis applications. Comput. Aided Geom. Des. 65, 48–75 (2018)

20. Hinz, J., Möller, M., Vuik, C.: Spline-based parameterization techniques for twin-screw
machine geometries. IOP Conf. Ser. Mater. Sci. Eng. 425(012030) (2018)

21. Hoschek, J.: Intrinsic parametrization for approximation. Comput. Aided Geom. Des. 5, 27–31
(1988)

22. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–
41), 4135–4195 (2005)

23. Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry + simulation
modules: implementing isogeometric analysis. PAMM 14, 961–962 (2014)

24. Kapl, M., Sangalli, G., Takacs, T.: Construction of analysis-suitable G1 planar multi-patch
parameterizations. Comput. Aided Des. 97, 41–55 (2018)

25. Kelley, C.T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics, vol. 18.
Society for Industrial and Applied Mathematics (1999)

26. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model
(re-)construction with THB-splines. Graph. Models 76, 273–288 (2014)

27. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut,
C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Van-
derbilt University Press, Nashville (1997)

28. Liseikin, D.V.: Grid Generation Methods. Springer, Netherlands (2010)
29. Liu, L., Zhang, Y., Hughes, T.J.R., Scott, M.A., Sederberg, T.W.: Volumetric T-spline construc-

tion using Boolean operations. Eng. Comput. 30, 425–439 (2014)
30. Möller, M., Hinz, J.: Isogeometric analysis framework for the numerical simulation of rotary

screw machines. I. General concept and early applications. IOP Conf. Ser. Mater. Sci. Eng.
425(012032) (2018)

31. Nian, X., Chen, F.: Planar domain parameterization for isogeometric analysis based on Teich-
müller mapping. Comput. Methods Appl. Mech. Eng. 311, 41–55 (2016)

32. Pan, M., Chen, F., Tong, W.: Low-rank parameterization of planar domains for isogeometric
analysis. Comput. Aided Geom. Des. 63, 1–16 (2018)

33. Pauley, M., Nguyen, D.M., Mayer, D., Špeh, J., Weeger, O., Jüttler, B.: The isogeometric
segmentation pipeline. In: Jüttler, B., Simeon, B. (eds.) IsogeometricAnalysis andApplications



238 S. Sajavičius et al.
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