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Abstract. Much of the focus in the design of deep neural networks has
been on improving accuracy, leading to more powerful yet highly complex
network architectures that are difficult to deploy in practical scenarios,
particularly on edge devices such as mobile and other consumer devices
given their high computational and memory requirements. As a result,
there has been a recent interest in the design of quantitative metrics for
evaluating deep neural networks that accounts for more than just model
accuracy as the sole indicator of network performance. In this study,
we continue the conversation towards universal metrics for evaluating
the performance of deep neural networks for practical on-device edge
usage. In particular, we propose a new balanced metric called NetScore,
which is designed specifically to provide a quantitative assessment of
the balance between accuracy, computational complexity, and network
architecture complexity of a deep neural network, which is important
for on-device edge operation. In what is one of the largest comparative
analysis between deep neural networks in literature, the NetScore metric,
the top-1 accuracy metric, and the popular information density metric
were compared across a diverse set of 60 different deep convolutional
neural networks for image classification on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC 2012) dataset. The evaluation
results across these three metrics for this diverse set of networks are
presented in this study to act as a reference guide for practitioners in the
field. The proposed NetScore metric, along with the other tested metrics,
are by no means perfect, but the hope is to push the conversation towards
better universal metrics for evaluating deep neural networks for use in
practical on-device edge scenarios to help guide practitioners in model
design for such scenarios.
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1 Introduction

There has been a recent urge in both research and industrial interests in deep
learning [4], with deep neural networks demonstrating state-of-the-art perfor-
mance in recent years across a wide variety of applications. In particular, deep
convolutional neural networks [5,6] has been shown to outperform other machine
learning approaches for visual perception tasks ranging from image classifica-
tion [19] to object detection [22] and segmentation [11]. One of the key driving
factors behind the tremendous recent successes in deep neural networks has been
the availability of massive computing resources thanks to the advances and pro-
liferation of cloud computing and highly parallel computing hardware such as
graphics processing units (GPUs). The availability of this wealth of comput-
ing resources has enabled researchers to explore significantly more complex and
increasingly deeper neural networks that has resulted in significant performance
gains over past machine learning methods. For example, in the realm of visual
perception, the depth of deep convolutional neural networks with state-of-the-art
accuracies have reached hundreds of layers, hundreds of millions of parameters
in size, and billions of calculations for inferencing.

While the ability to build such large and complex deep neural networks
has led to a constant increase in accuracy, the primary metric for performance
widely leveraged for evaluating networks, it has also created significant barri-
ers to the deployment of such networks for practical edge device usage. The
practical deployment bottlenecks associated with the powerful yet highly com-
plex deep neural networks in research literature has become even more visible
in recent years due to the incredible proliferation of mobile devices, consumer
devices, and other edge devices and the increasing demand for machine learning
applications in such devices. As a result, the design of deep neural networks
that account for more than just accuracy as the sole indicator of network per-
formance and instead strike a strong balance between accuracy and complexity
has very recently become a very hot area of research focus, with a number of
different deep neural network architectures designed specifically with efficiency
in mind [14,18,26,28,33,34,36].

One of the key challenges in designing deep neural networks that strikes a
strong balance between accuracy and complexity for practical usage lies in the
difficulties with assessing how well a particular network architecture is strik-
ing that balance. As previous mentioned, using accuracy as the sole metric for
network performance does not provide the proper indicators of how efficient a
particular network is in practical scenarios such as deployment on mobile devices
and other consumer devices. As a result, there has been a recent interest in the
design of quantitative metrics for evaluating deep neural networks that accounts
for more than just model accuracy. In particular, it is generally desirable to
design such metrics in a manner that is as hardware vendor agnostic as pos-
sible so that different network architectures can be compared to each other in
a consistent manner. One of the most widely cited metrics in research litera-
ture for assessing the performance of deep neural networks that accounts for
both accuracy and architectural complexity is the information density metric



Netscore: Universal Performance Metric for Deep Neural Networks 17

proposed by [1], which attempts to measure the relative amount of accuracy
captured within one of the most basic building blocks of a deep neural network:
a parameter. More specifically, the information density (D(N )) of a deep neural
network N is defined as the accuracy of the deep neural network (denoted by
a(N )) divided by the number of parameters needed for representing it (denoted
by p(N )),

D(N ) =
a(N )
p(N )

(1)

While highly effective for giving a good general idea of the balance between
accuracy and architectural complexity (which also acts as a good indicator for
memory requirements), the information density metric does not account for the
fact that, depending on the design of the network architecture, the architec-
ture complexity does not necessarily reflect the computational requirements for
performing network inference (e.g., MobileNet [14] has more parameters than
SqueezeNet [18] but has lower computational requirements for network infer-
ence). Therefore, the exploration and investigation towards universal perfor-
mance metrics that account for accuracy, architectural complexity, and compu-
tational complexity is highly desired as it has the potential to improve network
model search and design.

In this study, we continue the conversation towards universal metrics for
evaluating the performance of deep neural networks for practical usage. In par-
ticular, we propose a new balanced metric called NetScore, which is designed
specifically to provide a quantitative assessment of the balance between accu-
racy, computational complexity, and network architecture complexity of a deep
neural network. This paper is organized as follows. Section 2 describes the pro-
posed NetScore metric and the design principles around it. Section 3 presents and
discusses experimental results that compare the NetScore, information density,
and top-1 accuracy across 60 different deep convolutional neural networks for
image classification on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC 2012) dataset [25], making this one of the largest comparative studies
between deep neural networks.

2 NetScore: Design Principles

The proposed NetScore metric (denoted here as Ω) for assessing the performance
of a deep neural network N for practical usage can be defined as:

Ω(N ) = 20 log

(
a(N )α

p(N )β
m(N )γ

)
(2)

where a(N ) is the accuracy of the network, p(N ) is the number of parameters
in the network, m(N ) is the number of multiply–accumulate (MAC) operations
performed during network inference, and α, β, γ are coefficients that control the
influence of accuracy, architectural complexity, and computational complexity of
the network on Ω. A number of design principles were taken into consideration
in the design of the proposed NetScore metric, which is described below.
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2.1 Model Accuracy Representation

In the NetScore metric, the obvious incorporation of the model accuracy a(N ) of
the network N into the metric is in the numerator of the ratio, as an increase in
accuracy should naturally lead to an increase in the metric, similar to the infor-
mation density metric [1]. We further introduce a coefficient α in the proposed
NetScore metric to provide better control over the influence of model accuracy
on the overall metric. In particular, we set α = 2 to better emphasize the impor-
tance of model accuracy in assessing the overall performance of a network in
practical usage, as deep convolutional neural networks that have unreasonably
low model accuracy remain unusable in practical scenarios, regardless how small
or fast the network is. In this study, the unit used for a(N ) is in percent top-1
accuracy on the ILSVRC 2012 dataset [25].

2.2 Model Architectural and Computational Complexity
Representations

Taking inspiration from the information density metric [1], we represent the
architectural complexity of a deep neural network by the number of parameters
p(N ) in the network N and incorporate it in the denominator of the ratio. As
such, the architecture complexity of the network is inversely proportional to the
metric Ω, where an increase in architectural complexity results in a decrease
in Ω. In addition, we incorporate the computational complexity of the deep
neural network as an additional factor in the denominator of the ratio to be
taken into consideration for assessing the overall performance of a network for
practical usage, which is particularly important in operational scenarios such as
inference on mobile devices and other consumer devices where computational
power is limited. To represent the computational complexity of the network N
in a manner that is relatively hardware vendor agnostic, thus enabling a more
consistent comparison between networks, we chose to leverage the number of
multiply–accumulate (MAC) operations necessary for performing network infer-
ence. Given that the computational bottleneck associated with performing net-
work inference on a deep neural network is predominantly in the computation of
MAC operations, the number of MAC operations m(N ) is a good proxy for the
computational complexity of the network. By incorporating both architectural
and computational complexity, the proposed NetScore metric can better quan-
tify the balance between accuracy, memory requirements, and computational
requirements in practical usage. Furthermore, we introduce two coefficients (β
and γ, respectively) to provide better control over the influence of architec-
tural and computational complexity on the overall metric. In particular, we set
β = 0.5 and γ = 0.5 since, while architectural and computational complexity are
both very important factors to assessing the overall performance of a network
in practical scenarios, the most important metric remains the model accuracy
given that, as eluded to before, networks with unreasonably low model accuracy
are not useful in practical scenarios regardless of size and speed.
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Given these coefficients, NetScore is in the units of squared percentage accu-
racy per root parameter per root MAC operation, and represents the capacity
of a network architecture to utilize its full learning and computing capacity.

2.3 Logarithmic Scaling

One of the difficulties with comparing the overall performance of different deep
neural networks with each other is their great diversity in their model accu-
racy, architectural complexity, and computational complexity. This makes the
dynamic range of the performance metric quite large and unwieldy for practi-
tioners to compare for model search and design purposes. To account for this
large dynamic range, we take inspiration from the field of signal processing; in
particular, the logarithmic scale commonly used to express the ratio between one
value of a property to another. In the proposed NetScore metric, we transform
the ratio between the model accuracy property (a(N )) and the model architec-
tural and computational complexity (p(N ) and m(N )) into the logarithmic scale
to reduce the dynamic range to within a more readily interpretable range.

3 Experimental Results and Discussion

To get a better sense regarding the overall performance of the huge wealth of deep
convolutional neural networks introduced in research literature in the context of
practical usage, we perform a large-scale comparative analysis across a diverse
set of 60 different deep convolutional neural networks designed for image classi-
fication using the following quantitative performance metrics: (i) top-1 accuracy,
(ii) information density, and (iii) the proposed NetScore metric. The dataset of
choice for the comparative analysis in this study is the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC 2012) dataset [25], which consists of
1000 different classes. To the best of the author’s knowledge, this comparative
analysis is one of the largest in research literature and the hope is that the results
presented in this study can act as a reference guide for practitioners in the field.

The set of deep convolutional neural networks being evaluated in this
study are: AlexNet [19], AmoebaNet-A (4, 50) [23], AmoebaNet-A (6,
190) [23], AmoebaNet-A (6, 204) [23], AmoebaNet-B (3, 62) [23], AmoebaNet-
B (6, 190) [23], AmoebaNet-C (4, 50) [23], AmoebaNet-C (6, 228) [23],
CondenseNet (G = C = 4) [16], CondenseNet (G = C = 8) [16], DenseNet-121
(k = 32) [17], DenseNet-169 (k = 32) [17], DenseNet-161 (k = 48) [17], DenseNet-
201 (k = 32) [17], DPN-131 [2], GoogleNet [31], IGC-L100M2 [35], IGC-
L16M16 [35], IGC-L100M2 [35], Inception-ResNetv2 [30], Inceptionv2 [32],
Inceptionv3 [32], Inceptionv4 [30], MobileNetv1 (1.0-224) [14], MobileNetv1 (1.0-
192) [14], MobileNetv1 (1.0-160) [14], MobileNetv1 (1.0-128) [14], MobileNetv1
(0.75-224) [14], MobileNetv2 [26], MobileNetv2 (1.4) [26], NASNet-A (4
@ 1056) [38], NASNet-A (6 @ 4132) [38], NASNet-B (4 @ 1536) [38],
NiN [20], OverFeat [27], PNASNet-5 (4, 216) [21], PolyNet [37], PreResNet-
152 [13], PreResNet-200 [13], PyramidNet-101 (alpha = 250) [9], PyramidNet-200
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(alpha = 300) [9], PyramidNet-200 (alpha = 450) [9], ResNet-152 [12], ResNet-
50 [12], ResNet-101 [12], ResNeXt-101, SENet [15], ShuffleNet (1.5) [36],
ShuffleNet (x2) [36], SimpleNet [10], SqueezeNet [18], SqueezeNetv1.1 [18],
SqueezeNext (1.0-23v5) [7], SqueezeNext (2.0-23) [7], SqueezeNext (2.0-23v5) [7],
TinyDarkNet [24], VGG16 [29], Xception [3], ZynqNet [8].

In this study, the units used for p(N ) and m(N ) for two of the quantitative
performance metrics (information density and the proposed NetScore metric)
are in M-Params (millions of parameters) and G-MACs (billions of MAC opera-
tions), respectively, given that most modern deep convolutional neural networks
are within those architectural and computational complexity ranges.

3.1 Top-1 Accuracy

The top-1 accuracies across 60 different deep convolutional neural networks for
the ILSVRC 2012 dataset is shown in Fig. 1. It can be clearly observed that
significant progress has been made in the design of deep convolutional neural
networks for image classification over the past six years, with the difference
between the deep convolutional neural network with the highest top-1 accuracy
in this study (i.e., AmoebaNet-C (6, 228)) and that of AlexNet exceeding 25%.
It is also interesting to see that more recent developments in efficient deep con-
volutional neural networks such as MobileNetv1, MobileNetv2, and ShuffleNet
all have top-1 accuracies that exceed VGG-16, the third largest tested network
evaluated in the study that was also the state-of-the-art just four years ago, thus
further illustrating the improvements in network design over the past few years.

3.2 Information Density

The information densities across 60 different deep convolutional neural networks
for the ILSVRC 2012 dataset is shown in Fig. 2. It can be clearly observed that
the deep convolutional neural networks that were specifically designed for effi-
ciency (e.g., MobileNetv1, MobileNetv2, ShuffleNet, SqueezeNet, Tiny DarkNet,
and SqueezeNext) have significantly higher information densities compared to
networks that were designed purely with accuracy as a metric. More specifi-
cally, the SqueezeNext (1.0-23v5), Tiny DarkNet, and the SqueezeNet family of
networks had the highest information density by a wide margin compared to
the other tested deep convolutional neural networks, which can be attributed to
their significantly lower architectural complexity in terms of number of network
parameters. Another notable observation from the results in Fig. 2 is that the
dynamic range of the information density metric is quite large across the diverse
set of 60 deep convolutional neural networks evaluated in this study.

3.3 NetScore

The NetScore across 60 different deep convolutional neural networks for the
ILSVRC 2012 dataset is shown in Fig. 3. Similar to the trend observed in Fig. 2,
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Fig. 1. Top-1 accuracy across 60 different deep convolutional neural networks for the
ILSVRC 2012 dataset.
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Fig. 2. Information density across 60 different deep convolutional neural networks for
the ILSVRC 2012 dataset. Units are in %/M-Params.
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Fig. 3. NetScore across 60 different deep convolutional neural networks for the ILSVRC
2012 dataset.
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it can be clearly observed that many of the deep convolutional neural networks
that were specifically designed for efficiency have significantly higher NetScores
compared to networks that were designed purely with accuracy as a metric.
However, what is interesting to observe is that the NetScore ranking amongst
these efficient networks are quite different than that when using the informa-
tion density metric. In particular, the top ranking deep convolutional neural
networks with the highest NetScores are SqueezeNext (1.0-23v5), CondenseNet
(G = C = 8), and MobileNetv2.

The SqueezeNet family of networks, on the other hand, had much lower rel-
ative NetScores compared to the aforementioned efficient networks despite hav-
ing the top two highest information densities. This observation illustrates the
effect of incorporating computational complexity to the assessment of deep con-
volutional neural networks for practical usage, given that while the SqueezeNet
family of networks has significantly lower architectural complexities compared to
other tested networks, it also is offset by noticeably higher computational com-
plexities compared to other tested efficient networks such as the MobileNetv1,
MobileNetv2, SqueezeNext, and ShuffleNet network families.

The proposed NetScore metric, which by no means is perfect, could poten-
tially be useful for guiding practitioners in model search and design and hopefully
push the conversation towards better universal metrics for evaluating deep neu-
ral networks for use in practical scenarios. Future work includes incorporating
additional or alternative factors that are important to assessing architectural
and computational complexities of deep neural networks beyond what is being
used in the NetScore metric, as well as finding a good balance between these
different factors based on relative importance for the deployment of deep neural
networks for practical usage in scenarios such as mobile devices and other edge
devices.

References

1. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678 (2017)

2. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. CoRR
abs/1707.01629 (2017). http://arxiv.org/abs/1707.01629

3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR
abs/1610.02357 (2016). http://arxiv.org/abs/1610.02357

4. Cun, Y.L., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
5. Cun, Y.L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324 (1998)
6. Cun, Y.L., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Hand-

written digit recognition with a back-propagation network. In: Proceedings of the
Advances in Neural Information Processing Systems (NIPS) (1989)

7. Gholami, A., et al.: Squeezenext: hardware-aware neural network design. CoRR
abs/1803.10615 (2018). http://arxiv.org/abs/1803.10615

8. Gschwend, D.: ZynqNet: an FPGA-accelerated embedded convolutional neural net-
work (2016). https://github.com/dgschwend/zynqnet

http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1707.01629
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1803.10615
https://github.com/dgschwend/zynqnet


Netscore: Universal Performance Metric for Deep Neural Networks 25

9. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. CoRR
abs/1610.02915 (2016). http://arxiv.org/abs/1610.02915

10. HasanPour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple,
using simple architectures to outperform deeper and more complex architectures.
CoRR abs/1608.06037 (2016). http://arxiv.org/abs/1608.06037

11. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.

CoRR abs/1603.05027 (2016). http://arxiv.org/abs/1603.05027
14. Howard, A., et al.: Mobilenets: efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861 (2017)
15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507

(2017). http://arxiv.org/abs/1709.01507
16. Huang, G., Liu, S., van der Maaten, L., Weinberger, K.Q.: Condensenet: an efficient

densenet using learned group convolutions. CoRR abs/1711.09224 (2017). http://
arxiv.org/abs/1711.09224

17. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

18. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint arXiv:1602.07360 (2016)

19. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS (2012)

20. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013).
http://arxiv.org/abs/1312.4400

21. Liu, C., et al.: Progressive neural architecture search. CoRR abs/1712.00559 (2017).
http://arxiv.org/abs/1712.00559

22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

23. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classi-
fier architecture search. CoRR abs/1802.01548 (2018). http://arxiv.org/abs/1802.
01548

24. Redmon, J.: Tiny darknet (2016). https://pjreddie.com/darknet/tiny-darknet/
25. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.

Comput. Vis. 115(3), 211–252 (2015)
26. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted

residuals and linear bottlenecks. arXiv preprint arXiv:1704.04861 (2017)
27. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:

integrated recognition, localization and detection using convolutional networks.
CoRR abs/1312.6229 (2013). http://arxiv.org/abs/1312.6229

28. Shafiee, M., Li, F., Chwyl, B., Wong, A.: Squishednets: squishing squeezenet further
for edge device scenarios via deep evolutionary synthesis. In: NIPS (2017)

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

30. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact
of residual connections on learning. CoRR abs/1602.07261 (2016). http://arxiv.
org/abs/1602.07261

31. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014).
http://arxiv.org/abs/1409.4842

http://arxiv.org/abs/1610.02915
http://arxiv.org/abs/1608.06037
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1711.09224
http://arxiv.org/abs/1711.09224
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1712.00559
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
https://pjreddie.com/darknet/tiny-darknet/
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1409.4842


26 A. Wong

32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.
org/abs/1512.00567

33. Wong, A., Shafiee, M.J., Jules, M.S.: muNet: a highly compact deep convolutional
neural network architecture for real-time embedded traffic sign classification. CoRR
abs/1804.00497 (2018). http://arxiv.org/abs/1804.00497

34. Wong, A., Shafiee, M.J., Li, F., Chwyl, B.: Tiny SSD: a tiny single-shot detection
deep convolutional neural network for real-time embedded object detection. CoRR
abs/1802.06488 (2018). http://arxiv.org/abs/1802.06488

35. Zhang, T., Qi, G., Xiao, B., Wang, J.: Interleaved group convolutions for deep
neural networks. CoRR abs/1707.02725 (2017). http://arxiv.org/abs/1707.02725

36. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolu-
tional neural network for mobile devices. CoRR abs/1707.01083 (2017). http://
arxiv.org/abs/1707.01083

37. Zhang, X., Li, Z., Loy, C.C., Lin, D.: Polynet: a pursuit of structural diversity
in very deep networks. CoRR abs/1611.05725 (2016). http://arxiv.org/abs/1611.
05725

38. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. CoRR abs/1707.07012 (2017). http://arxiv.org/
abs/1707.07012

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1804.00497
http://arxiv.org/abs/1802.06488
http://arxiv.org/abs/1707.02725
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1611.05725
http://arxiv.org/abs/1611.05725
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

	NetScore: Towards Universal Metrics for Large-Scale Performance Analysis of Deep Neural Networks for Practical On-Device Edge Usage
	1 Introduction
	2 NetScore: Design Principles
	2.1 Model Accuracy Representation
	2.2 Model Architectural and Computational Complexity Representations
	2.3 Logarithmic Scaling

	3 Experimental Results and Discussion
	3.1 Top-1 Accuracy
	3.2 Information Density
	3.3 NetScore

	References




