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Preface

ICIAR 2019 was the 16th edition of the series of annual conferences on image analysis
and recognition, offering a forum for participants to interact and present their latest
research contributions in the theory, methodology, and applications of image analysis
and recognition. ICIAR 2019, the International Conference on Image Analysis and
Recognition, was held in Waterloo, Ontario, Canada, August 27–29, 2019. ICIAR is
organized by AIMI, the Association for Image and Machine Intelligence, a
not-for-profit organization registered in Ontario, Canada.

We received a total of 142 papers from 27 countries. Before the review process, all
the papers were checked for similarity using a comparison database of scholarly work.
The review process was carried out by members of the Program Committee and other
reviewers. Each paper was reviewed by at least two reviewers (most articles received
three professional reviews), and checked by the conference chairs. A total of 84 papers
were finally accepted and appear in these proceedings. We would like to sincerely
thank the authors for responding to our call, and to thank the reviewers for the careful
evaluation and feedback provided to the authors. It is this collective effort that resulted
in the strong conference program and high-quality proceedings.

We were very pleased to include four outstanding keynote talks: “Image Synthesis
and Its Growing Role in Medical Imaging” by Professor Jerry Prince of Johns Hopkins
University, USA; “Exploiting Data Sparsity and Machine Learning in Medical Imag-
ing” by Professor Michael Insana, of the University of Illinois at Urbana Champaign,
USA; “Knowledge Discovery: Can We Do Better than Deep Neural Networks” by
Professor Ling Guan of Ryerson University, Toronto, Canada; and “Palmprint
Authentication—Research and Development” by Professor David Zhang of Chinese
University of Hong Kong (Shenzhen), Hong Kong. We would like to express our
gratitude to our distinguished keynote speakers for accepting our invitation to share
their vision and recent advances in their areas of expertise.

Besides the standard sessions, the program included five special sessions in the
theory and applications of tools of image analysis and recognition:

• Image Analysis and Recognition for Automotive Industry
• Deep Learning on the Edge
• Medical Imaging and Analysis Using Deep Learning and Machine Intelligence
• Adaptive Methods for Ultrasound Beamforming and Motion Estimation
• Signal Processing Techniques for Ultrasound Tissue Characterization and Imaging

in Complex Biological Media

We would like to thank the program co-chairs, Dr. Wail Gueaieb, of the University
of Ottawa, and Dr. Shady Shehata of YourIKA Inc., who secured a high-quality
program, Dr. Mark Crowley of the University of Waterloo and Dr. Chahid Ouali of
YourIKA Inc., for helping with the local logistics with precious assistance from
Nichola Harrilall, of the Waterloo AI Institute, and Dr. Khaled Hammouda, the



publications chair and webmaster of the conference, for maintaining the website,
managing the registrations, interacting with the authors, and preparing the proceedings.
We are also grateful to Springer’s editorial staff, for supporting this publication in the
LNCS series. Additionally, we would like to thank the precious sponsorship and
support of the Faculty of Engineering, at the University of Waterloo, notably, Dean
Pearl Sullivan, the Faculty of Engineering at the University of Porto, the Institute for
Systems and Computer Engineering, Technology and Science (INESC TEC), Portugal,
the Waterloo AI Institute at the University of Waterloo, the Center for Pattern Analysis
and Machine Intelligence at the University of Waterloo, and the Center for Biomedical
Engineering Research at INESC TEC. We also appreciate the valuable co-sponsorship
of the IEEE Computational Intelligence Society, Waterloo-Kitchener Chapter.

We were very pleased to welcome all the participants to ICIAR 2019. For those who
were not able to attend, we hope this publication provides a good overview of the
research presented at the conference, and we look forward to meeting you at the next
ICIAR conference.

August 2019 Fakhri Karray
Aurélio Campilho

Alfred Yu
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Abstract. Deep neural networks (DNNs) have demonstrated success for
many supervised learning tasks, ranging from voice recognition, object
detection, to image classification. However, their increasing complexity
might yield poor generalization error that make them hard to be deployed
on edge devices. Quantization is an effective approach to compress DNNs
in order to meet these constraints. Using a quasiconvex base function in
order to construct a binary quantizer helps training binary neural net-
works (BNNs) and adding noise to the input data or using a concrete
regularization function helps to improve generalization error. Here we
introduce foothill function, an infinitely differentiable quasiconvex func-
tion. This regularizer is flexible enough to deform towards L1 and L2

penalties. Foothill can be used as a binary quantizer, as a regularizer,
or as a loss. In particular, we show this regularizer reduces the accu-
racy gap between BNNs and their full-precision counterpart for image
classification on ImageNet.

1 Introduction

Deep learning has seen a surge in progress, from training shallow networks to
very deep networks consisting of tens to hundreds of layers. Deep neural networks
(DNNs) have demonstrated success for many supervised learning tasks [14,16].
The focus has been on increasing accuracy, in particular for image, speech,
and recently text tasks, where deep convolutional neural networks (CNNs) are
applied. The resulting networks often include millions to billions parameters.
Having too many parameters increases the risk of over-fitting and hence a poor
model generalization after all. Furthermore, it is hard to deploy DNNs on low-
end edge devices which have tight resource constraints such as memory size,
battery life, computation power, etc. The need for models that can operate in
resource-constrained environments becomes more and more important.

Quantization is an effective approach to satisfy these constraints. Instead of
working with full-precision values to represent the parameters and activations,
quantized representations use more compact formats such as integers or binary
numbers. Often, binary neural networks (BNNs) are trained with heuristic meth-
ods [5,12]. However it is possible to embed the loss function with an appropriate
c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-27272-2_1
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regularization to encourage binary training [2]. Common regularizations encour-
age the weights to be estimated near zero. Such regularization are not aligned
with the objective of training binary networks where the weights are encouraged
to be estimated −1 or +1. Using a regularization function specifically devised
for binary quantization [11], it is shown how to modify the objective function in
back-propagation to quantize DNNs into one bit with a scaling factor using a
quasiconvex base.

In deep learning regularization is sometimes hidden in heuristic methods dur-
ing training. For instance, adding noise to the input data yields to generalization
error improvement [1,13]. Data augmentation, and early stopping are some other
heuristic regularizations widely applied in practice. A more theoretically sound
regularization method is dropout [15], a widely-used method for addressing the
problem of over-fitting. The idea is to drop units randomly from the neural net-
work during training. It is known that dropout improves the test accuracy com-
pared to conventional regularizers such as L1 [18] and L2 [15]. [19] proved that
dropout is equivalent to an L2-type regularizer applied after scaling the inputs.

Linear regression can be regarded as the simplest neural network, with no
hidden layer and a linear activation function. Therefore, it is important to study
regularization in linear regression context.

Inspired by the extensive research literature on regularization in the statis-
tical community we introduce foothill as a quasiconvex function with attractive
properties with strong potentials to be applied in practice in neural network
quantization, training neural networks, linear regression, and robust estimation.

This function is a generalization of lasso and Ridge penalties and has a strong
potential to be used in deep learning. First, we start studying attractive functional
properties of foothill that motivates its use. Then, we demonstrate its application
in neural networks binary quantization and neural networks training. Foothill is
flexible enough to be used as a regularizer or even as a loss function.

2 Foothill Regularizer

Let us define the mathematical notation first. Denote univariate variables with
lowercase letters, e.g. x, vectors with lowercase and bold letters, e.g. x, and
matrices with uppercase and bold letters, e.g. X.

2.1 Definition

Define the foothill regularization function as

pα,β(x) = αx tanh
(

βx

2

)
. (1)

where tanh(.) is the hyperbolic tangent function, α > 0 is a shape parameter and
β > 0 is a scale parameter. The function is symmetric about 0 (see Fig. 1, left
panel). The first and the second derivatives (see Fig. 1, right panel) of foothill are
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dpα,β(x)
dx

= α tanh
(

βx

2

)
+

1
2
αβx sech2

(
βx

2

)
,

d2pα,β(x)
d2x

=
1
2
αβ sech2

(
βx

2

){
2 − βx tanh

(
βx

2

)}
,

where sech(.) is the hyperbolic secant function.

−1 1

1

2

pα,β(x)

−2.4 −1 1 2.4

−1

1

d(l)p1,1(x)
d(l)x

Fig. 1. Left panel: regularization function (1) for α = 1, β = 1 (solid line) and α = 1,
β = 50 (dashed line). Right panel: the first (dashed line) and the second (solid line)
derivatives of the regularization function (1) for α = 1 and β = 1.

2.2 Properties

The regularization function (1) has several interesting properties. It is infinitely
differentiable and symmetric about the origin,

pα,β(x) = pα,β(−x).

Also, it is flexible enough to approximate the lasso [18] and Ridge penalties [4] for
particular values of α and β. The following properties suggest that this function
could be considered as a quasiconvex alternative to the elastic net penalty [20].

Property 1. For α = 1 and β → ∞, the foothill penalty (1) converges to the
lasso penalty.

Proof. For x > 0, it is easy to see that

lim
β→+∞

tanh
(

βx

2

)
= 1,

lim
β→+∞

pα,β(x) = x.

Equivalently, for negative x, as pα,β(x) is symmetric about the origin, then
limβ→+∞ pα,β(x) = −x, which is equivalent to pα,β(x) → |x| when β → +∞. �

Property 2. For α > 0, β > 0, and β = 2/α the foothill penalty (1) approximates
the Ridge penalty in a given interval [−c; c].
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Proof. Let us study this property formally. Take the Taylor expansion of (1),

pα,β(x) ≈ αβ

2
x2 − αβ3

24
x4 +

αβ5

240
x6 + O(x8). (2)

And, for a given c > 0,

∫ c

0

(
αβ

2
x2 − pα,β(x)

)2

dx ≈ α2β6

5184
c9 + O(c11). (3)

The integral in (3) diverges if c tends to infinity, but for a finite positive
number c, one can numerically estimate the minimal distance between the L2

norm and (1) with a tiny approximation error. This can be achieved by taking
β = 2/α and (3) becomes

∫ c

0

(
x2 − pα,β(x)

)2
dx ≈ 1

81α4
c9 + O(c11) = εc. (4)

For large values of α, the error εc is negligible, see for example Fig. 2 where
the regularization function (1) approximates the Ridge penalty almost perfectly
within [−5; 5]. Furthermore, for fixed parameters, note that

lim
x→+∞ pα,β(x) − αx = 0, and lim

x→−∞ pα,β(x) + αx = 0. �

Hence it is also interesting to note that (1) behaves like a polynomial function
for small values of x, and like a linear function for large values. Therefore, using
it as a loss function (instead of a regularization), (1) behaves like the Huber loss
used in practice for robust estimation [6]. Figure 2 shows that (1) is bounded
between the Huber loss and the squared error loss.

Fig. 2. Plots of the ridge, the foothill penalty with α = 16 and β = 0.125 and twice the
Huber loss. The solid blue line represents the foothill penalty, the dashed line represents
the Ridge one (upper bound) and Huber (lower bound) is represented in dotted line.
(Color figure online)
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Property 3. Saddle points of pα,β(x) are x0 ≈ ±2.3994/β and pα,β(x0) = 2α
β .

Proof. Indeed, the second order derivative vanishes at

2 − βx tanh
(

βx

2

)
= 0,

which is solved by an iterative method for βx ≈ ±2.3994. This implies

βx0 tanh
(

βx0

2

)
= 2,

or equivalently

pα,β(x0) =
2α

β
.

�

Property 4. The function pα,β(x) is quasiconvex.

Proof. It is straight forward to show that pα,β(x) is decreasing from −∞ to 0
and increasing from 0 to +∞ and any monotonic function is quasiconvex (see
Fig. 1, right panel). �

Table 1 suggests that foothill has the flexibility to be used for feature selection
regularizer such as the lasso or used only to shrink the estimator in order to
prevent over-fitting like the Ridge. Finally, it also can be used as a loss function
for robust regression as an alternative to the Huber loss.

Table 1. Relationship to other functions

Shape α Scale β Function

Lasso 1 +∞ pα,β(x) = |x|
Ridge +∞ 2/α pα,β(x) = x2

Huber < +∞ 2/α pα,β(x) = αx tanh
(

x
α

)

Foothill 1 2 pα,β(x) = xtanh(x)

3 Models

We start with motivating the use of foothill regularizer for binary quantization.
Then, we study some properties in the linear regression context.
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3.1 Binary Quantization

In BNNs, weights and activations are binarized using the non-differentiable sign
function during the forward pass. It allows to compute dot product using xnor-
popcount operations. However, we need to take the derivative of sign w.r.t. its
input, which does not exist. Therefore, a gradient estimator is required [5]. The
framework of BNN+ [2] introduces modified L1 and L2 regularizations functions
which encourage the weights to concentrate around μ × {−1;+1}, where μ is a
scaling factor. The modified L1 and L2 regularizations are defined as

R1(x) = ||x| − μ|, (5)

R2(x) = (|x| − μ)2. (6)

We follow the generalization of [11] and modify (1) to construct a shifted
regularization function p̃α,β(x) as

p̃α,β(x) = pα,β

(
x − μ sign(x)

)
. (7)

−1.5 −0.5 0.5 1.5

1

p̃16,0.125(x)

−1.5 −0.5 0.5 1.5

1

p̃0.5,50(x)

Fig. 3. Regularization functions for binary networks (7) with α = 16 and β = 0.125
(left panel) and α = 0.5 and β = 50 (right panel). Dashed line is μ = 0.5 and solid
line is μ = 1.5. The scaling factor μ is trainable, as a result the regularization function
adapts accordingly.

The regularization term is added to the loss function,

J(W,b) = L(W,b) + λ
H∑

h=1

p̃α,β(Wh),

where L(W,b) is the cost function, W and b are the matrices of all weights
and bias parameters in the network, Wh is the matrix of weights at layer h
and H is the total number of layers. Here, p̃α,β(.) is the binary quantizer (7).
The regularization function is differentiable, so more convenient to implement
in back-propagation. The parameters α and β could be defined for the whole
network or per layer. In this case, each layer has its own regularization term.
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Training the objective function J(W,b) quantizes the weights around ±μ for
large values of the regularization constant λ. Adding the regularization function
to the objective function of a deep neural networks adds only one line to the
back-propagation in order to estimate the scaling factors. Hence, while training,
the regularization function adapts and the weights are encouraged towards μ ×
{−1;+1} (see Fig. 3). We suggest starting training with λ = 0 and increasing λ
with logarithmic rate as a function of the number of epochs [11,17]. The scaling
factor and the number of scaling factors are important for BNNs to compete
with full-precision networks. In practice, we use a scaling factor per neuron for
fully-connected layers and a scaling factor per filter for convolutional layers.
Without a scaling factor, the accuracy loss is large [5]. The scaling factors are
applied after the fully-connected and convolutional layers which are performed
using xnor-popcount operations during inference. In our experiments, we learn
the scaling factors with back-propagation.

3.2 Regression

Suppose the response variable is measured with an additive statistical error ε
and the relationship between the response and the predictors is fully determined
by a linear function

y = Xθ + ε, (8)

where yn×1 is the vector of observed response, Xn×p is row-wise stacked matrix
of predictors, θp×1 is the p-dimensional vector of coefficients, and εn×1 is white
noise with zero mean and a constant variance τ2.

The penalized estimator with squared-loss function is defined as

θ̂ = argmin
θ

1
2n

‖y − Xθ‖22 + λ

p∑
j=1

pα,β(θj), (9)

where pα,β(.) is the regularization function (1). Here, λ is the regularization
constant. Setting λ = 0 returns the ordinary least squares estimates, which
performs no shrinking and no selection. For a given λ > 0 and finite α and
β, the regression coefficients θ̂ are shrunk towards zero, and for α = 1, when
β → +∞, (1) converges to the lasso penalty which sets some of the coefficients
to zero (sparse selection), so does selection and shrinkage simultaneously.

To better understand the proposed penalty, we consider the orthogonal case
where we assume that the columns of X in (8) are orthonormal, i.e. X

�
X = nIp.

Therefore, the minimization problem of (9) is equivalent to estimating coeffi-
cients component-wise. Let ẑj = x

�
j y/n be the ordinary least squares estimate

for j = 1, ..., p. Here, for fixed α > 0 and a given scale parameter β > 0, this
leads us to the univariate optimization problem

argmin
θj

[
1
2
(ẑj − θj)2 + λαθj tanh

(
βθj

2

)]
. (10)
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The numerical solutions of (10) with various values of α and β are shown
in Fig. 4. When β is small, the solutions are smooth and by increasing β, the
solutions become similar to ones of lasso.

Fig. 4. Solution paths in the orthogonal design study according to the OLS estimator
ẑj for the foothill with α = 16 and β = 0.125 (dashed and dotted line) and α = 1 and
β = 50 (dashed line), with λ = 0.5. The solid blue line represents the OLS estimator.
(Color figure online)

Following [8] proof for Bridge regression [3], we show that under similar
conditions and a fixed λ, the penalized estimator is

√
n-consistent.

Consider the linear model (8) and denote the penalized least squares function
by

Jn(θ) =
1
2
(y − Xθ)�(y − Xθ) + λ

p∑
j=1

pα,β(θj).

Property 5. Assume that the matrix E[X�X] < ∞ is positive definite. Let θ̂n

be the penalized estimator. θ̂n is consistent if any given ε > 0, there exist a large
constant C such that

Pr
(

inf
‖u‖=C

Jn

(
θ +

u√
n

)
> Jn(θ)

)
≥ 1 − ε. (11)

Proof. This implies there is a local minimizer such that ‖θ̂n − θ‖ = OP (
√

n).
Simple algebra shows that

Dn(u) := Jn(θ +
u√
n

) − Jn(θ)

=
1
2
u�X�X

n
u − u�X�(y − Xθ)√

n

+ λ

p∑
j=1

(
pα,β

(
θj +

uj√
n

)
− pα,β(θj)

)
,

which is minimized at
√

n(θ̂n − θ). By the strong law of large numbers and the
central limit theorem, the first two terms converge to

1
2
u�

E[X�X]u − u�Z,
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where Z ∼ N (0,Σ) where Σ = τ2
E[X�X]. The third term can be rewritten as

λ√
n

p∑
j=1

⎛
⎝pα,β

(
θj + uj√

n

)
− pα,β(θj)

uj√
n

⎞
⎠ uj ,

and suppose that λ√
n

→ λ0. Therefore, when n → +∞, we have uj√
n

→ 0 so the
third term of Dn converges to

λ0

p∑
j=1

(
dpα,β(θj)

dθj

)
uj .

For λ fixed, λ0 = 0 and the first derivative of the regularization function is
bounded, which means that Dn(u) converges to

D(u) =
1

2τ2
u�Σu − u�Z,

which is convex and has a unique minimizer and hence,
√

n(θ̂n − θ) →d argminD(u),

which shows that by choosing sufficiently large C, (11) holds and that θ̂n is√
n-consistent. �

4 Application

In this section, we evaluate the performance of foothill on different applications.
With two extra parameters, foothill is more flexible than L1 and L2. We believe
that its flexibility helps fine-tuning.

4.1 Binary Quantization

In this section, we evaluate foothill’s performance on a hard task. We use the
shifted version from equation (7) in order to quantize a neural network. We quan-
tize AlexNet architecture on ImageNet [9]. This dataset consists of ∼1.2M train-
ing images, 50K validation images and 1000 classes. During training, images are
resized to 256×256 and a random crop is applied to obtain 224×224 input size.
Random horizontal flip is also used as a data augmentation technique. At test
time, images are resized to 256×256 and a center crop is applied to get 224×224
size. For both steps, standardization is applied with mean = [0.485, 0.456, 0.406]
and std = [0.229, 0.224, 0.225]. Note that AlexNet architecture used for training
BNNs is slightly modified from the original architecture as we need to change the
order of some operation. For instance, pooling should not be performed after the
binary activations. Therefore, we adopt the architecture described in [2] where
batch normalization layers are added [7]. Weights and activations are quantized
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using the sign function for all convolutional and fully-connected layers except
the first and the last ones which are kept to be in full-precision. We initialize
the learning rate with 5 × 10−3 and divide it each 10 epochs alternatively, by 5
and by 2. We use λ = 10−6 × log(t) where t is the current epoch and train the
networks for 100 epochs. We compare our method to traditional binary networks.

Table 2. Comparison of top-1 and top-5 accuracies of quantized neural network using
the lasso (5), Ridge (6) and foothill (7) modified regularizers to traditional BinaryNet
[5] and XNOR-Net [12] on ImageNet dataset, using AlexNet architecture.

Method Top-1 accuracy Top-5 accuracy

R1(x) 43.0% 67.5%

p̃0.5,50(x) 44.4% 68.5%

p̃0.75,50(x) 44.3% 68.4%

R2(x) 42.9% 67.5%

p̃100,0.02(x) 44.2% 68.5%

p̃20,0.1(x) 44.5% 68.3%

BinaryNet 41.2% 65.6%

XNOR-Net 44.2% 69.2%

Full-precision 57.1% 80.3%

In Table 2, we report XNOR-Net performance from the original paper of [12]
and the BinaryNet one from the implementation of [10], which is higher than the
one reported in the original paper. We do not report the performance of [2] as
they make use of a pre-trained model in their experiments, whereas we train the
binary neural networks from scratch. We see that quantizing a neural network
using foothill function as a regularization that pushes the weights towards binary
values gives more accurate results for ImageNet dataset, better than L1 and L2

by more than 1.5%, which is a big gain for BNNs. Furthermore, for AlexNet
architecture, our method beats the state of the art BinaryNet and XNOR-Net.

4.2 Regularization

We use AlexNet architecture augmented by batch normalization in order to com-
pare foothill (1) to L1 and L2 regularizers on CIFAR-10. We train the network
for 50 epochs using stochastic gradient descent optimizer with momentum 0.9
and a learning rate of 10−2 that is divided by 10 at epochs 20 and 30. The data
preprocessing pipeline is the same as for ImageNet. For each experiment, the
regularization constant λ is set to a value in {10−4, 10−3, 10−2}.

The results reported in Table 3 and Fig. 5 empirically demonstrate the flex-
ibility of foothill against L1 and L2. Our regularization function is less sen-
sitive to the choice of λ. For instance, L1-regularized AlexNet’s accuracy can
have 34.16% difference depending on which λ has been used for training while
foothill with α = 0.5 and β = 50 regularized AlexNet’s accuracy difference ranges
in 4.96%.
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Table 3. Regularized AlexNet top-1 accuracies on CIFAR-10 test set, using different λ
values. Our implementation of the non-regularized AlexNet achieves 88.63% accuracy.

λ L1(x) p0.5,50(x) p0.75,50(x) L2(x) p16,0.125(x) p20,0.1(x)

10−4 89.75% 89.53% 90.24% 88.61% 88.73% 89.12%

10−3 81.74% 90.55% 90.05% 89.51% 89.30% 89.44%

10−2 55.59% 85.60% 84.78% 89.99% 89.86% 90.21%

Fig. 5. From left to right, λ = 10−4, 10−3, 10−2 validation curves for L1 (blue), L2 (red)
and the best foothill regularizer (orange). The validation curves show the robustness
of foothill in comparison with L1 with respect to λ. (Color figure online)

5 Conclusion

Here we developed a new function, called foothill, that can be used as a binary
quantizer, as a regularizer, or a loss function.

Most of the deep networks includes millions of parameters that requires
extensive resources to be implemented in realtime. A modified version of foothill
can be used to quantize deep networks and ultimately run neural networks to
low power edge devices, such as wearable devices, cell phones, wireless base sta-
tions, etc. Network quantization yields to accuracy degradation. Recent studies
[5,12] suggest proper training of weights controls the accuracy loss. The shift
version of foothill has the potential of pushing heuristic training towards a more
clear and formalized training using regularization. Our numerical results confirm
this assumption since our implementation of a quantized neural network using
foothill regularizer beats L1 and L2 regularizers and XNOR-Net, which is the
state of the art binary quantization method.

As a regularizer foothill may encourage estimation shrinkage, sparse selec-
tion, or both depending on the values of its parameters. More concretely its
parameters can be tuned to approximate both lasso (which implements sparse
selection) and Ridge penalty (which implements shrinkage). Therefore foothill
looks like a quasiconvex version of the elastic net which approximates the lasso
and the Ridge. As a loss function, the behaviour of foothill is similar to the
Huber loss.
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Abstract. Much of the focus in the design of deep neural networks has
been on improving accuracy, leading to more powerful yet highly complex
network architectures that are difficult to deploy in practical scenarios,
particularly on edge devices such as mobile and other consumer devices
given their high computational and memory requirements. As a result,
there has been a recent interest in the design of quantitative metrics for
evaluating deep neural networks that accounts for more than just model
accuracy as the sole indicator of network performance. In this study,
we continue the conversation towards universal metrics for evaluating
the performance of deep neural networks for practical on-device edge
usage. In particular, we propose a new balanced metric called NetScore,
which is designed specifically to provide a quantitative assessment of
the balance between accuracy, computational complexity, and network
architecture complexity of a deep neural network, which is important
for on-device edge operation. In what is one of the largest comparative
analysis between deep neural networks in literature, the NetScore metric,
the top-1 accuracy metric, and the popular information density metric
were compared across a diverse set of 60 different deep convolutional
neural networks for image classification on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC 2012) dataset. The evaluation
results across these three metrics for this diverse set of networks are
presented in this study to act as a reference guide for practitioners in the
field. The proposed NetScore metric, along with the other tested metrics,
are by no means perfect, but the hope is to push the conversation towards
better universal metrics for evaluating deep neural networks for use in
practical on-device edge scenarios to help guide practitioners in model
design for such scenarios.
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1 Introduction

There has been a recent urge in both research and industrial interests in deep
learning [4], with deep neural networks demonstrating state-of-the-art perfor-
mance in recent years across a wide variety of applications. In particular, deep
convolutional neural networks [5,6] has been shown to outperform other machine
learning approaches for visual perception tasks ranging from image classifica-
tion [19] to object detection [22] and segmentation [11]. One of the key driving
factors behind the tremendous recent successes in deep neural networks has been
the availability of massive computing resources thanks to the advances and pro-
liferation of cloud computing and highly parallel computing hardware such as
graphics processing units (GPUs). The availability of this wealth of comput-
ing resources has enabled researchers to explore significantly more complex and
increasingly deeper neural networks that has resulted in significant performance
gains over past machine learning methods. For example, in the realm of visual
perception, the depth of deep convolutional neural networks with state-of-the-art
accuracies have reached hundreds of layers, hundreds of millions of parameters
in size, and billions of calculations for inferencing.

While the ability to build such large and complex deep neural networks
has led to a constant increase in accuracy, the primary metric for performance
widely leveraged for evaluating networks, it has also created significant barri-
ers to the deployment of such networks for practical edge device usage. The
practical deployment bottlenecks associated with the powerful yet highly com-
plex deep neural networks in research literature has become even more visible
in recent years due to the incredible proliferation of mobile devices, consumer
devices, and other edge devices and the increasing demand for machine learning
applications in such devices. As a result, the design of deep neural networks
that account for more than just accuracy as the sole indicator of network per-
formance and instead strike a strong balance between accuracy and complexity
has very recently become a very hot area of research focus, with a number of
different deep neural network architectures designed specifically with efficiency
in mind [14,18,26,28,33,34,36].

One of the key challenges in designing deep neural networks that strikes a
strong balance between accuracy and complexity for practical usage lies in the
difficulties with assessing how well a particular network architecture is strik-
ing that balance. As previous mentioned, using accuracy as the sole metric for
network performance does not provide the proper indicators of how efficient a
particular network is in practical scenarios such as deployment on mobile devices
and other consumer devices. As a result, there has been a recent interest in the
design of quantitative metrics for evaluating deep neural networks that accounts
for more than just model accuracy. In particular, it is generally desirable to
design such metrics in a manner that is as hardware vendor agnostic as pos-
sible so that different network architectures can be compared to each other in
a consistent manner. One of the most widely cited metrics in research litera-
ture for assessing the performance of deep neural networks that accounts for
both accuracy and architectural complexity is the information density metric
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proposed by [1], which attempts to measure the relative amount of accuracy
captured within one of the most basic building blocks of a deep neural network:
a parameter. More specifically, the information density (D(N )) of a deep neural
network N is defined as the accuracy of the deep neural network (denoted by
a(N )) divided by the number of parameters needed for representing it (denoted
by p(N )),

D(N ) =
a(N )
p(N )

(1)

While highly effective for giving a good general idea of the balance between
accuracy and architectural complexity (which also acts as a good indicator for
memory requirements), the information density metric does not account for the
fact that, depending on the design of the network architecture, the architec-
ture complexity does not necessarily reflect the computational requirements for
performing network inference (e.g., MobileNet [14] has more parameters than
SqueezeNet [18] but has lower computational requirements for network infer-
ence). Therefore, the exploration and investigation towards universal perfor-
mance metrics that account for accuracy, architectural complexity, and compu-
tational complexity is highly desired as it has the potential to improve network
model search and design.

In this study, we continue the conversation towards universal metrics for
evaluating the performance of deep neural networks for practical usage. In par-
ticular, we propose a new balanced metric called NetScore, which is designed
specifically to provide a quantitative assessment of the balance between accu-
racy, computational complexity, and network architecture complexity of a deep
neural network. This paper is organized as follows. Section 2 describes the pro-
posed NetScore metric and the design principles around it. Section 3 presents and
discusses experimental results that compare the NetScore, information density,
and top-1 accuracy across 60 different deep convolutional neural networks for
image classification on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC 2012) dataset [25], making this one of the largest comparative studies
between deep neural networks.

2 NetScore: Design Principles

The proposed NetScore metric (denoted here as Ω) for assessing the performance
of a deep neural network N for practical usage can be defined as:

Ω(N ) = 20 log

(
a(N )α

p(N )β
m(N )γ

)
(2)

where a(N ) is the accuracy of the network, p(N ) is the number of parameters
in the network, m(N ) is the number of multiply–accumulate (MAC) operations
performed during network inference, and α, β, γ are coefficients that control the
influence of accuracy, architectural complexity, and computational complexity of
the network on Ω. A number of design principles were taken into consideration
in the design of the proposed NetScore metric, which is described below.
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2.1 Model Accuracy Representation

In the NetScore metric, the obvious incorporation of the model accuracy a(N ) of
the network N into the metric is in the numerator of the ratio, as an increase in
accuracy should naturally lead to an increase in the metric, similar to the infor-
mation density metric [1]. We further introduce a coefficient α in the proposed
NetScore metric to provide better control over the influence of model accuracy
on the overall metric. In particular, we set α = 2 to better emphasize the impor-
tance of model accuracy in assessing the overall performance of a network in
practical usage, as deep convolutional neural networks that have unreasonably
low model accuracy remain unusable in practical scenarios, regardless how small
or fast the network is. In this study, the unit used for a(N ) is in percent top-1
accuracy on the ILSVRC 2012 dataset [25].

2.2 Model Architectural and Computational Complexity
Representations

Taking inspiration from the information density metric [1], we represent the
architectural complexity of a deep neural network by the number of parameters
p(N ) in the network N and incorporate it in the denominator of the ratio. As
such, the architecture complexity of the network is inversely proportional to the
metric Ω, where an increase in architectural complexity results in a decrease
in Ω. In addition, we incorporate the computational complexity of the deep
neural network as an additional factor in the denominator of the ratio to be
taken into consideration for assessing the overall performance of a network for
practical usage, which is particularly important in operational scenarios such as
inference on mobile devices and other consumer devices where computational
power is limited. To represent the computational complexity of the network N
in a manner that is relatively hardware vendor agnostic, thus enabling a more
consistent comparison between networks, we chose to leverage the number of
multiply–accumulate (MAC) operations necessary for performing network infer-
ence. Given that the computational bottleneck associated with performing net-
work inference on a deep neural network is predominantly in the computation of
MAC operations, the number of MAC operations m(N ) is a good proxy for the
computational complexity of the network. By incorporating both architectural
and computational complexity, the proposed NetScore metric can better quan-
tify the balance between accuracy, memory requirements, and computational
requirements in practical usage. Furthermore, we introduce two coefficients (β
and γ, respectively) to provide better control over the influence of architec-
tural and computational complexity on the overall metric. In particular, we set
β = 0.5 and γ = 0.5 since, while architectural and computational complexity are
both very important factors to assessing the overall performance of a network
in practical scenarios, the most important metric remains the model accuracy
given that, as eluded to before, networks with unreasonably low model accuracy
are not useful in practical scenarios regardless of size and speed.
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Given these coefficients, NetScore is in the units of squared percentage accu-
racy per root parameter per root MAC operation, and represents the capacity
of a network architecture to utilize its full learning and computing capacity.

2.3 Logarithmic Scaling

One of the difficulties with comparing the overall performance of different deep
neural networks with each other is their great diversity in their model accu-
racy, architectural complexity, and computational complexity. This makes the
dynamic range of the performance metric quite large and unwieldy for practi-
tioners to compare for model search and design purposes. To account for this
large dynamic range, we take inspiration from the field of signal processing; in
particular, the logarithmic scale commonly used to express the ratio between one
value of a property to another. In the proposed NetScore metric, we transform
the ratio between the model accuracy property (a(N )) and the model architec-
tural and computational complexity (p(N ) and m(N )) into the logarithmic scale
to reduce the dynamic range to within a more readily interpretable range.

3 Experimental Results and Discussion

To get a better sense regarding the overall performance of the huge wealth of deep
convolutional neural networks introduced in research literature in the context of
practical usage, we perform a large-scale comparative analysis across a diverse
set of 60 different deep convolutional neural networks designed for image classi-
fication using the following quantitative performance metrics: (i) top-1 accuracy,
(ii) information density, and (iii) the proposed NetScore metric. The dataset of
choice for the comparative analysis in this study is the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC 2012) dataset [25], which consists of
1000 different classes. To the best of the author’s knowledge, this comparative
analysis is one of the largest in research literature and the hope is that the results
presented in this study can act as a reference guide for practitioners in the field.

The set of deep convolutional neural networks being evaluated in this
study are: AlexNet [19], AmoebaNet-A (4, 50) [23], AmoebaNet-A (6,
190) [23], AmoebaNet-A (6, 204) [23], AmoebaNet-B (3, 62) [23], AmoebaNet-
B (6, 190) [23], AmoebaNet-C (4, 50) [23], AmoebaNet-C (6, 228) [23],
CondenseNet (G = C = 4) [16], CondenseNet (G = C = 8) [16], DenseNet-121
(k = 32) [17], DenseNet-169 (k = 32) [17], DenseNet-161 (k = 48) [17], DenseNet-
201 (k = 32) [17], DPN-131 [2], GoogleNet [31], IGC-L100M2 [35], IGC-
L16M16 [35], IGC-L100M2 [35], Inception-ResNetv2 [30], Inceptionv2 [32],
Inceptionv3 [32], Inceptionv4 [30], MobileNetv1 (1.0-224) [14], MobileNetv1 (1.0-
192) [14], MobileNetv1 (1.0-160) [14], MobileNetv1 (1.0-128) [14], MobileNetv1
(0.75-224) [14], MobileNetv2 [26], MobileNetv2 (1.4) [26], NASNet-A (4
@ 1056) [38], NASNet-A (6 @ 4132) [38], NASNet-B (4 @ 1536) [38],
NiN [20], OverFeat [27], PNASNet-5 (4, 216) [21], PolyNet [37], PreResNet-
152 [13], PreResNet-200 [13], PyramidNet-101 (alpha = 250) [9], PyramidNet-200
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(alpha = 300) [9], PyramidNet-200 (alpha = 450) [9], ResNet-152 [12], ResNet-
50 [12], ResNet-101 [12], ResNeXt-101, SENet [15], ShuffleNet (1.5) [36],
ShuffleNet (x2) [36], SimpleNet [10], SqueezeNet [18], SqueezeNetv1.1 [18],
SqueezeNext (1.0-23v5) [7], SqueezeNext (2.0-23) [7], SqueezeNext (2.0-23v5) [7],
TinyDarkNet [24], VGG16 [29], Xception [3], ZynqNet [8].

In this study, the units used for p(N ) and m(N ) for two of the quantitative
performance metrics (information density and the proposed NetScore metric)
are in M-Params (millions of parameters) and G-MACs (billions of MAC opera-
tions), respectively, given that most modern deep convolutional neural networks
are within those architectural and computational complexity ranges.

3.1 Top-1 Accuracy

The top-1 accuracies across 60 different deep convolutional neural networks for
the ILSVRC 2012 dataset is shown in Fig. 1. It can be clearly observed that
significant progress has been made in the design of deep convolutional neural
networks for image classification over the past six years, with the difference
between the deep convolutional neural network with the highest top-1 accuracy
in this study (i.e., AmoebaNet-C (6, 228)) and that of AlexNet exceeding 25%.
It is also interesting to see that more recent developments in efficient deep con-
volutional neural networks such as MobileNetv1, MobileNetv2, and ShuffleNet
all have top-1 accuracies that exceed VGG-16, the third largest tested network
evaluated in the study that was also the state-of-the-art just four years ago, thus
further illustrating the improvements in network design over the past few years.

3.2 Information Density

The information densities across 60 different deep convolutional neural networks
for the ILSVRC 2012 dataset is shown in Fig. 2. It can be clearly observed that
the deep convolutional neural networks that were specifically designed for effi-
ciency (e.g., MobileNetv1, MobileNetv2, ShuffleNet, SqueezeNet, Tiny DarkNet,
and SqueezeNext) have significantly higher information densities compared to
networks that were designed purely with accuracy as a metric. More specifi-
cally, the SqueezeNext (1.0-23v5), Tiny DarkNet, and the SqueezeNet family of
networks had the highest information density by a wide margin compared to
the other tested deep convolutional neural networks, which can be attributed to
their significantly lower architectural complexity in terms of number of network
parameters. Another notable observation from the results in Fig. 2 is that the
dynamic range of the information density metric is quite large across the diverse
set of 60 deep convolutional neural networks evaluated in this study.

3.3 NetScore

The NetScore across 60 different deep convolutional neural networks for the
ILSVRC 2012 dataset is shown in Fig. 3. Similar to the trend observed in Fig. 2,
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Fig. 1. Top-1 accuracy across 60 different deep convolutional neural networks for the
ILSVRC 2012 dataset.
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Fig. 2. Information density across 60 different deep convolutional neural networks for
the ILSVRC 2012 dataset. Units are in %/M-Params.
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Fig. 3. NetScore across 60 different deep convolutional neural networks for the ILSVRC
2012 dataset.
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it can be clearly observed that many of the deep convolutional neural networks
that were specifically designed for efficiency have significantly higher NetScores
compared to networks that were designed purely with accuracy as a metric.
However, what is interesting to observe is that the NetScore ranking amongst
these efficient networks are quite different than that when using the informa-
tion density metric. In particular, the top ranking deep convolutional neural
networks with the highest NetScores are SqueezeNext (1.0-23v5), CondenseNet
(G = C = 8), and MobileNetv2.

The SqueezeNet family of networks, on the other hand, had much lower rel-
ative NetScores compared to the aforementioned efficient networks despite hav-
ing the top two highest information densities. This observation illustrates the
effect of incorporating computational complexity to the assessment of deep con-
volutional neural networks for practical usage, given that while the SqueezeNet
family of networks has significantly lower architectural complexities compared to
other tested networks, it also is offset by noticeably higher computational com-
plexities compared to other tested efficient networks such as the MobileNetv1,
MobileNetv2, SqueezeNext, and ShuffleNet network families.

The proposed NetScore metric, which by no means is perfect, could poten-
tially be useful for guiding practitioners in model search and design and hopefully
push the conversation towards better universal metrics for evaluating deep neu-
ral networks for use in practical scenarios. Future work includes incorporating
additional or alternative factors that are important to assessing architectural
and computational complexities of deep neural networks beyond what is being
used in the NetScore metric, as well as finding a good balance between these
different factors based on relative importance for the deployment of deep neural
networks for practical usage in scenarios such as mobile devices and other edge
devices.
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Abstract. A critical part of multi-person multi-camera tracking is per-
son re-identification (re-ID) algorithm, which recognizes and retains iden-
tities of all detected unknown people throughout the video stream.
Many re-ID algorithms today exemplify state of the art results, but
not much work has been done to explore the deployment of such
algorithms for computation and power constrained real-time scenar-
ios. In this paper, we study the effect of using a light-weight model,
MobileNet-v2 for re-ID and investigate the impact of single (FP32)
precision versus half (FP16) precision for training on the server and
inference on the edge nodes. We further compare the results with the
baseline model which uses ResNet-50 on state of the art benchmarks
including CUHK03, Market-1501, and Duke-MTMC. The MobileNet-V2
mixed precision training method can improve both inference through-
put on the edge node, and training time on server 3.25× reaching to
27.77 fps and 1.75×, respectively and decreases power consumption on
the edge node by 1.45×, while it deteriorates accuracy only 5.6% in
respect to ResNet-50 single precision on the average for three differ-
ent datasets. The code and pre-trained networks are publicly available.
(https://github.com/TeCSAR-UNCC/person-reid)

Keywords: Person re-identification · MobileNet-V2 · ResNet-50 ·
Real-time multi-target multi-camera tracking · Edge node · Triplet-loss

1 Introduction

Real-time Multi-target Multi-Camera Tracking (MTMCT) is a task of position-
ing different unknown people on different camera views at a constrained amount
of time. The results of this task can be beneficial to video surveillance, smart
stores, and behavior analysis and anomaly detection. The core of MTMCT is per-
son re-identification (re–ID) algorithm which retrieves person identities regard-
less of their poses and camera views.

Ideally, system re-identification should happen in real-time fashion at edge
nodes. However, the most of recently proposed methods in literature [6,17,20,23]
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used ResNet-50 [7] as a backbone of their method, which is computationally
expensive and targeted at the server side. One approach to reducing the compu-
tation complexity is to leverage light-weight network models such as MobileNet-
V2 [11], even though these networks might not meet the real-time demands
due to limited hardware resources and memory bandwidth at the edge node.
Lowering accuracy and quantization can relive the pressure on both memory
bandwidth and computation throughput [1,14]. However, to the best of our
knowledge, the effect of quantization on final accuracy has not been studied for
object re-identification approaches based on deep learning paradigms.

In this paper, we proposed a scalable and light-weight architecture based
on the MobileNet-V2 to meet a predefined timing and power budget. We have
also studied the effect of quantization and mixed training on two ResNet-50 and
MobileNet-V2 network architecture in details. Specifically, our contribution is
summarized as follows:

– We proposed a re-identification architecture based on light-weight MobileNet-
V2, and we compare the results against the ResNet-50 in respect of accuracy.

– We also studied the effect of mixed precision training approach on both
ResNet-50 and MobileNet-V2. We investigated which layers of networks
should be quantized to be able to train the network. Our finding is orthogonal
to other object re-identification based on deep learning methods and can be
applied to improve their performance.

– We evaluated final system performance concerning throughput and power
consumption on Nvidia Xavier board and discussed in details.

The rest of this article is organized as the following: Sect. 2 briefly reviews the
previous person re–ID approaches. Section 3 presents our re–ID methods based
on MobileNet-V2 and mixed precision for real-time inference. Section 4 presents
the experimental results including comparison with existing approaches, and
finally Sect. 5 concludes this article.

2 Related Works

There has been an increasing amount of research in the domain of object detec-
tion and tracking in recent years. With the problem of multi-object detection and
tracking comes another one, which is re-identifying the same objects throughout
the frames in the video precisely as the accuracy of tracking highly depends on
it. Hence, in this section, we will be reviewing some of the recent work done for
person re-id.

Classical computer vision approaches like those in [21] which are based on
covariance descriptors which augment various feature representations of an image
like RGB, Hue-Saturation-Value (HSV), local binary patterns, etc. over a mean
Riemannian matrix (introduced by Bak et al. [2]) from multi-shot images to
find similarities between different images have been done. Similar approaches
were adopted in [15] for real-time embedded computation but the authors do
not provide with any accuracy evaluation.
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In [3], Oliveira et al. generate a unique signature for each object which com-
prises interest points and color features for the object and calculates the sim-
ilarity between different signatures using Sum of Quadratic Differences(SQD).
Similar classical approaches are demonstrated by [9] and [5], which uses Biologi-
cally Inspired Features (BIF) and k-shortest path algorithm. Classical techniques
are promising; however, with the boom in deep learning algorithms and plethora
of computational power all thanks to the top of the line GPUs, they are even
surpassing human level recognition for re-id.

Modern deep learning techniques like Alignedreid [23], extract features from
ROI using CNNs as base networks and then divide the feature map into local and
global features intuitively dividing the ROI into horizontal sections and matching
each section with the other images. Xiaoke et al. in [27], use videos instead of
separate frames to learn the inter-video and intra-video distances between people
in them effectively creating triplet pairs. Tong et al. [22] proposed an Online
Instance Matching(OIM) loss paradigm which uses a Look Up Table(LUT) for
labeled objects and a cicular queue for unlabelled objects and learns to re-id
people on the go.

Yantao et al. in [18] formulate the problem of person re-id into a graph neural
network problem, with each node denoting a pair of images whose similarity
and dissimilarities are learned through a message passing technique between
the nodes. Siamese network is used to compute similarity metric between pairs.
Authors in [12] introduce spatiotemporal attention models to learn key spatial
features of objects throughout the video.

Almost all the works as mentioned above are novel and state of the art,
however, they all use very complicated and deep networks which would hinder
their performance in real-time scenarios. In next section, we propose a light-
weight system with reasonably high accuracy on the state of the art benchmarks.

3 Mixed Precision Real-Time Person Re-identification

In this section, we discuss two ResNet-50 and MobileNet-V2 architectures. Then
we continue to explain the loss function, and in the last, we give an introduction
about mixed precision training, and we elaborate more on network layers and
loss precision partitioning.

3.1 Background

In this section, we will give an introduction for two ResNet-50, MobileNet-
V2 networks. Since the ResNet-50 is massively used for state-of-art person re-id,
we consider it as baseline for our evaluation in experimental results (Sect. 4).

Residual Network (ResNet). Observing the difficulty of optimizing deeper
convolutional networks for the task of image recognition and image localiza-
tion, authors in [7] came up with the idea of using shortcut connections which
they called residual connections claiming that such connections will help deeper
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Fig. 1. Structural components of ResNet

stacked networks to learn efficiently. They use the baseline VGG nets [19] archi-
tecture, which uses 3x3 convolution blocks, and translate it to a 34 layer plain
network and a 34 layer residual network (ResNet) for initial experimentation.
They further evaluate the results on deeper ResNets with 50, 101 and 152 layers
with the latter achieving a minimum error rate on the ImageNet [4] dataset for
recognition.

Figure 1(a) shows the basic building block of a ResNet. After every two con-
volution blocks, there is an input residual mapping added to the output of the
blocks which then goes to the ReLu activation layer. The function F (x) is an
identity function prevents the residual mapping in adding any additional param-
eters to the network. Figure 1(b) shows a bottleneck block for ResNet 50/101/152
where a three stack layer replaces a two stack layer. The idea for introducing
a bottleneck block is to reduce training time constraints for deeper networks,
without adding any additional parameters.

For object re-identification, we used a pre-trained ResNet-50 model on Imag-
Net dataset. We also removed the last Fully Connected (FC) layer at the end
of the network used for classification and added a 2D average pooling with the
kernel size of (16, 8) in order to make the output of the network in the shape of a
1D vector with size of 2048 as an embedded appearance features. In contrast to
[17], we did not add any additional FC to prevent increasing the computational
complexity at the edge node.

Mobile Network (Mobilenet). Most deep convolution networks have a huge
number of parameters and operations making them unsuitable for use in mobile
and embedded platforms. Authors in [10], developed light-weight deep convolu-
tion network which they called MobileNets. They effectively break down a stan-
dard convolution into a depthwise and pointwise convolution operation reduc-
ing the computational complexity of the net. They also introduce two hyper-
parameters, width multiplier and resolution multiplier, which alter the thickness
of intermediate layers and resolution of the inputs respectively. They evaluate
their model on ImageNet dataset with other state of the art light-weight net-
works. Following the same trend in [11], MobileNet-V2 were introduced, which
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incorporated linear bottleneck layers and inverted residual connections into the
previous network reducing the multiply-add operations and number of parame-
ters further but increasing the accuracy.

In Fig. 2(a), the normal convolution filters can be seen with the shape of
K ×K ×M ×N , where K is the size of the filter, M is the input channels, and N
is output channels. Andrew et al. [4], transform this convolution into depthwise
filtering, Fig. 2(b), where each filter is applied to each channel individually and
pointwise combination, Fig. 2(c), where a 1 × 1 filter transforms the filtered
features into a new feature map. They show the reduced computation cost and
parameters with this approach. MobileNet has 28 layers including depthwise
and pointwise layers separately with batch normalization and ReLu activation
function. Width multiplier alpha scales the input and output channels by α×M
and α × N . Resolution multiplier does the same thing with the input image
resolution hence scaling the computation expense and accuracy trade-off.
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Fig. 2. Different MobileNet-V2 convolution blocks

We also used a pre-trained MobileNet-V2 model on ImagNet dataset. We
removed the classification layer (FC) at the end of the network used for classi-
fication and added again a 2D average pooling with the kernel size of (8, 4) in
order to make the output of the network in the shape of a 1D vector with size
of 1280 as an embedded appearance features.

3.2 Triplet-Loss Function

Alexander et al. in [8], rekindles the triplet loss network for person re-
identification (re-id) with their work. The underlying architecture of a triplet
loss network consists of three identical networks which transform the cropped
Region of Interest(ROI) into embeddings on a lower dimensional space. One ROI
has to be the anchor image, second has to be a positive sample of the anchor
and third a negative sample. The basic concept here is to minimize the distance
between the anchor and the positive samples and maximize the distance between
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the anchor and the negative samples in the lower dimensional embedding space.
To facilitate such learning, a suitable loss function is used after the embeddings
are extracted from the ROIs:

Loss =
n∑

i=1

[
α + ‖fa

i − fp
i ‖2 − ‖fa

i − fn
i ‖2

]

+
, (1)

where α is margin, fa, fp, and fn are embedded appearance feature of anchor,
positive, and negative samples for the class i, respectively. Minimizing Loss
function will force all samples of class i to be inside of hypersphere of radius
α. The dimension of the hypersphere is equal to the size of the output of our
networks (2048 for ResNet-50, and 1280 for MobileNet-V2). Now a drawback
here is that the network might only learn easy samples and not hard samples,
i.e., hard positives and hard negatives, and be biased towards the easy ones. An
example of hard positives is when a person may change his/her clothes and an
example of a hard negative is two different persons wearing the same colored
clothes/accessories. To overcome this problem, hard sample mining should be
accomplished by selecting hard samples for each class after each optimization
iteration. In the next iteration, positive and negative samples are selected for
class i from the hard samples pool.

3.3 Mixed Precision Training

Since the deep learning approaches are error-tolerant algorithms, designers
decrease the accuracy of these networks by lowering the number of bits required
to represents weights and biases, and they minimize the introduced error caused
by quantization by training the network with reduced precision. However, half
precision training needs to overcome two critical challenges of mapping numbers
which are too small to be represented in half precision, and vanishing gradi-
ent due to limited precision representation. In [14], they address these problems
FP32 master copy of weights, and gradient scaling method during the back-
propagation respectively.

For networks used for person identification, we partitioned networks in two
single, and half precision categories. We used Apex1 to assign error-friendly
operations, such as convolution and General Matrix Multiply (GeMM) operation,
to half precision. During our experiment, we realized if we map the inputs of
batch normalization layers in both networks to half precision, training does not
converge. We also realized that the loss calculation should also be accomplished
in single precision since hard samples are extracted based on loss function and
the average distance between anchors and their positives and negatives instances.
Lowering the accuracy at loss function will lead to weak hard positives and
negatives pool.

1 https://github.com/NVIDIA/apex.

https://github.com/NVIDIA/apex
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4 Experimental Results

We evaluate the performance and accuracy of the two ResNet-50 and MobileNet-
V2 networks in this section. We also describe the testing data-sets, the hardware
setups, training time, accuracy, throughput, and power consumption for both
single and half precision for each network on three datasets.

4.1 Learning Parameters and Datasets

We used DukeMTMC-reID [16,25], CUHK03 [13], and Market1501 [24] for eval-
uating the performance of two networks with different training methods. Table 1
summarizes the hyper parameters of our network. We updated the baseline
framework for person re-ID2 in order to support mixed precision training and
different network models. We used the combined version of training sets of all
three datasets to have better generalization at test phase. We decreased learn-
ing rate exponentially after 150 epochs and used Adam optimizer to train both
networks.

Table 1. The training parameters

Item Description Value

1 Batch size 128

2 IDs per batch 32

3 Instances per ID 4

4 Initial learning rate 2 × 10−4

5 Input shape (H×W) (256× 128)

6 Epoch 300

7 Margin 0.3

4.2 Accuracy

Figure 3 compares the accuracy results for baseline and ResNet-50 half precision.
The Re-Ranking (RR) [26] method can improve the mAP on the average of 12%
for both half and single precision. The CUHK03 benefits the highest improve-
ment by applying the RR method among other datasets. Based on the results,
we can realize that half precision only degrades 0.9% on the average concerning
single precision for all three CMC-(1, 5) and mAP.

Figure 4 depicts the MobileNet-V2 model performance for both single and
half precision in a similar approach. As we can see single precision negligibility
deteriorate the CMC-1 performance for 0.5%. Based on side by side CMC-1
comparison on Fig. 5 for both ResNet-50 and MobileNet-V2 network, we can

2 https://github.com/huanghoujing/person-reid-triplet-loss-baseline.

https://github.com/huanghoujing/person-reid-triplet-loss-baseline
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Fig. 3. ResNet-50 accuracy evaluation on three different benchmarks. We trained the
model for two different precision configuration, one single precision (a) and mixed
precision (b).
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Fig. 4. MobileNetV2 accuracy evaluation on three different benchmarks. We trained
the model for two different precision configuration, one single precision (a) and mixed
precision (b).

realize that the MobileNet-V2 half precision is negligibly 5.6% less than baseline.
We also compare the results qualitatively in Fig. 6. We selected randomly three
queries from each dataset and sorted the nearest objects based on Euclidean
distance from the gallery considering the embedded appearance feature extracted
without applying the RR method.

4.3 Training Time

We used the system described in Table 2 to train two ResNet-50 and MobileNet-
V2 networks. Table 3 shows the results of training time on the server for different
system configuration. As we can observe, half precision can improve training time
to 1.20× on the average for both networks, and MobileNet-V2 half precision can
upgrade it to 1.75× with respect to the baseline model.
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Fig. 5. A CMC-1 Comparison of two networks ResNet50 (RN) and MobileNetV2 (MN)
for three different training and inference approaches.

(a) ResNet-50: Single precision (left), half precision (right)

(b) MobileNet-V2: Single precision (left), half precision (right)

Fig. 6. A qualitative comparison of two networks with different precision. The images
without the bounding box in each sample are queries, and five images in front of it are
the first five ranked samples in the gallery. We marked true and false detected with
green and red boxes respectively.

4.4 Edge Node Evaluation

We evaluated system performance in respect to power consumption and infer-
ence time on Nvidia Xavier embedded node. Table 4 summarizes the hardware
resources on this board. We extracted the Open Neural Network eXchange
(ONNX) format representation of all four network configurations and uploaded
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Table 2. Training system configuration

Item Description Value

1 Processor info Intel(R) Xeon(R) CPU E5-2640

2 CPU cores 40

3 GPUs 2 × nVidia TITAN V

4 OS version Ubuntu 18.04 LTS

5 Memory 96GB/94.2GB Available

Table 3. Training elapsed time of two networks with different precision

Item Description Value (mins)

1 ResNet-50 (single) 242.65

2 ResNet-50 (half) 174.45

3 MobileNet-V2 (single) 140.3

4 MobileNet-V2 (half) 138.1

them on the edge side. As it is depicted in Table 5, we can reach to 18.92× model
size compression ratio over the baseline model for MobileNet-V2 half precision.
We mapped the half-precision types of both networks on Deep Learning Accel-
erators (DLA) and single precision to GPU Volta cores. We also set the Xavier
power mode to MAX-N3.

Table 4. The edge node hardware configuration

Item Description Value

1 Processor info ARM v8.2 64-bit CPU

2 CPU cores 8

3 GPUs 512-Core Volta GPU

4 DL accelerators 2

5 OS version Ubuntu 18.04 LTS

6 Memory 16GB/15.4GB Available

The inference time (Table 6) and power consumption (Table 7) is acquired
for the batch size of 16. We obtained both timing performance and power con-
sumption only for extracting features, and we did not consider model loading
and other pre-processing tasks. MobileNet-V2 half precision improves the infer-
ence throughput 3.25× and reaches to 27.77 fps, while it only consumes 6.48 W.

3 https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks.

https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks
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Table 5. Model sizes of two networks.

Network Model Size (MB) Improvement(×)

Single precision Mixed precision Per same model Over the baseline

ResNet-50 94.6 47.7 1.98 18.92

MobileNetV2 9.4 5.0 1.88

Table 6. Throughput performance on Nvidia Xavier.

Network Throughput (fps) Improvement (×)

Single precision Mixed precision Per same model Over the baseline

ResNet-50 8.54 21.71 2.54 3.25

MobileNetV2 20 27.77 1.38

Table 7. Power consumption on Nvidia Xavier.

Network Power (W) Improvement (×)

Single precision Mixed precision Per same model Over the baseline

ResNet-50 9.45 7.86 1.2 1.45

MobileNetV2 6.48 6.48 1

As the hardware warm-up was same for both MobileNet-V2 half-precision and
single precision, we did not observe any power consumption improvement for
this network.

5 Conclusion

In this paper, we present a light-weight person re-identification method based on
MobileNet-V2. We even improved the performance of the edge node to the next
level by mapping models to half precision. The experimental results elucidate
that mixed precision training can achieve real-time re-identifying persons at
the frame rate of 27.77 per second by only consuming 6.48 W. Our finding of
network partitioning for mixed precision training is orthogonal to other person
re-identification based on deep learning paradigm and can be applied to improve
the overall system performance.
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Abstract. With the development of e-commerce in the past years and
its growing overlap over the classic way of doing business, many compu-
tational and statistical methods were researched and developed to make
recommendations for products belonging to the store catalog. Often the
data used in recommendation methods involves user interactions, being
images and video types of information somewhat unexplored. This work,
which we call Xanathar, proposes to extend such paradigm with real-
time in-video recommendations for 25 classes of products, using image
classifiers and feeding video streams to a modified ResNet-50 network
processed on GPU, achieving a top-5 error of 5.17% and running at
approximately 60 frames per second. Therefore, describing objects in
the scene and proposing related products in-screen, directing user buy-
ing experience and creating an immersive and intensive purchase envi-
ronment.

Keywords: Deep learning · Convolutional neural networks ·
Computer vision · Video product recommendation · E-commerce

1 Introduction

The commercial relationship between companies and customers has changed
significantly in the past twenty years, mainly due to the development of online
commerce platforms or internet-only firms. Before this paradigm shift, word
of mouth product recommendations was the fundamental manner to advertise
goods and services. Since most of the time online commerce hits a global cov-
erage of customers, the amount of data that can be collected from customer
interactions is vast and can describe user buying preferences [13]. Recommenda-
tion algorithms uses this data in many ways to show product recommendations
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to customers [20], but images are a type of data seldom used and video are
even more rare. Considering the human-like image classification capabilities of
current network architectures [6], hardware advances and the ubiquity of mobile
devices with video capture, we can expand the type of data used for product rec-
ommendations to a new multimedia domain, therefore the usage of prerecorded
or real-time video streams depicts a brand-new and unexplored form of prod-
uct advertising. The current work, which we call Xanathar, accomplishes the
aforementioned video based product recommendations with orders of magnitude
faster than [1] and more accurate than [15].

1.1 Proposal

Devices that take pictures are ubiquitously with almost every buyer and mobile
cameras present on devices like smartphones can be used to digitize a natural
scene containing consumer goods. Also the TV or videos posted to online video
services are a source of data for this type of recommendation. Analyzing the
real-time scene captured and finding objects related to the product catalog of an
arbitrary retailer is a new way of recommending products. Therefore, the purpose
of Xanathar is to perform image classification on video streams, based on a
convolutional neural network (CNN) called ResNet-50 [7] with small changes on
its architecture like Leaky ReLU [9] as the activation function and Adam [10] as
the optimizer. Network weights was achieved by training with annotated images
from selected classes available on ImageNet image database [4]. Architecture
choice on this type of real-time application is guided by two metrics: resulting
frames per second and accuracy. Using the mentioned architecture is possible to
make real-time overlaid on video recommendations to customers only using user
self generated prerecorded or real-time videos. Since the current work is focused
on image classifiers for subsequent product recommendation, the localization
of recognized objects is not important, thus recognizing its presence on a frame
should be sufficient. Regarding this, real-time object recognition and localization
architectures as proposed by [15] are not required.

1.2 Related Work

Image classification and object recognition on images or video were addressed
in several works. On image classification, [11] presented a CNN achieving top-5
error rate of 18.9%. The top-n error rate is the default for measuring accuracy
of these network predictions, describing the prediction likelihood of the top-n
results. Improvements on accuracy with deepening of the network were intro-
duced in [19]. With other specialized layers, [19] could achieve a top-5 error
rate of 7.5% on ImageNet database. The CNN went deeper in [21], decreasing
even further the error rate and accomplishing a top-5 error of 3.1%, although
with increased classification time. The state-of-the-art image classifiers are [1,2],
obtaining respectively a top-5 error rate of 3% and 3.7%. These network archi-
tectures has impressive low error rates, but can be really slow on classification
time, which is not suitable for real-time applications like classifying online video
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streams or image classification in milliseconds. Real-time classifiers like [16] has
higher error rates, but faster classification time. As a region proposal network,
which describes object’s position on scene, [16] was trained with PASCAL VOC
database [5] using mAP metric. The mAP, or mean average precision, describes
how precise the predicted bounding boxes of detected objects are overlapped with
actual own predetermined one. [16] attained a mAP of 70.4% with recognition
time of 0.2 s. Another real-time recognizer is known as YOLO [15], with a mAP
of 66.4% and recognition time of 0.04 s. For the mentioned static image classifi-
cation networks, the main differences between [11,19,21] resides on the number
and type of layers used. [11] has 5 convolutional layers followed by max-pooling
ending with dense layers, [19] is deep as 26 convolutional blocks and [21] has
more than 95 convolutional layers. Visual search and recommendation presented
on [18] depicts searching by image on retail product catalog with accuracy of
84.04%, but it’s not suitable for video recognition as it was build to be an image
search engine. Although none of the mentioned related works are focused on
product recommendation based on video, they are some of the state-of-the-art
approaches for general object recognition and recommendation based on images.

2 Methodology

2.1 Image Database

To train the convolutional network and obtain the weights that will be used in the
classification, a subset of the image database ImageNet [4] was used, containing
synsets related to product categories commonly sold on e-commerce, for instance
consumer goods like toaster or iron. A synset is synonym that groups words into
sets of related meaning [14]. A complete list of the synsets used on network’s
training phase can be analyzed on Table 1.

Table 1. The twenty five selected synsets used to train the network related to consumer
goods.

ImageNet selected subset of synsets

fridge stove blender fryer mixer

microwave toaster purifier coffeepot cooktop

refrigerator vase espresso maker rack couch

chair dinning table cabinet armchair wardrobe

iron washer dishwasher tv crock pot

All input images from ImageNet were converted to have the same dimensions
(224 × 224). The training and test base images was first stored in an HDF5 [22]
file as rank-3 tensors and shape 224 × 224 × 3, i.e., the RGB channels have been
preserved. At least one dimension of the original image have 224 pixels, hence the
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majority of images in the database has suffered with minimal distortions, due to
enlarging or reduction of these dimensions.Total samples on this database is 25048.
The hierarchy built for image retrieval in the HDF5 file can be seen in Fig. 1.

hdf5

class

uuid

tensor (shape: 224x224x3)

Fig. 1. The tree’s organization with the tensors representing images. Each synset
receives an integer numeric identifier describing the class which the object is part
of, followed by an universal unique identifier [12], which determines the uniqueness of
image. Finally, we have the image tensor itself, with dimensions 224 × 224 × 3.

To retrieve these images, the image’s URLs contained in each synsets received
a request and its tensors saved on the mentioned HDF5 file. Each class gained a
constant unique integer identifier for posterior training and class identification,
for instance microwave → 1, refrigerator → 2 and so on. Samples of images in
the database can be seen on Fig. 2. From the samples, 80% were separated for
CNN training (10% of this for validation), leaving 20% for testing.

Fig. 2. Twenty random image samples that are stored in the image base, from the
total of 25048. In this visualization, it is possible to perceive the different geometric
transformations that the images in classes may have.
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2.2 Data Augmentation

Image retrieval and their grouping into classes caused an uneven distribution of
sample quantities in each group (see Fig. 3). The unbalanced distribution may
lead to under-fitting of the model for classes near the minima of this distribution.
To standardize and increase the volume of samples available for training, a data
augmentation process was employed and the geometric transformations applied
were a rotation of at most 50◦, a width and height change of 20%, shear left and
right of at most 30%, zoom of 10% and horizontal flip. These transformations
were only applied to classes with a number of samples below the distribution
mean and the goal was to make such classes reach the mean quantity. Classes
with sample size greater than mean includes sufficient geometric transformations.

Fig. 3. Class distribution of image frequencies. Since some classes like mixer and fryer
has fewer samples than others like vase and purifier, classes with low frequencies were
expanded applying the mentioned transformations in Sect. 2.2. This way, the distribu-
tion became more balanced.

3 Learning Image Classifiers

3.1 Training

To avoid accuracy degradation in training, it is possible to introduce blocks of
layers called residual blocks, which instead of directly mapping the output of
one layer to the next, maps it to a residual. If the calculated residuals do not
address an error E less than the current one, the identity-function is applied
to the block, transferring it to the next one, and this process is repeated in
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the following layers. Consider H(x) as the mapping between layers, also the
existence of a new mapping F(x) such that F(x) �→ H(x) − x, which F(x) is a
residual mapping to fit instead of a direct one. Thus, F(x) becomes F(x)+x in
the case of an optimal mapping [7]. This explains that each calculated residual
works as an error minimizing gate between layers, hence only layers that directs
the overall error to a minimum are employed in a batch and is easier to drive a
residual to zero than stack nonlinear layers [7]. An instance of a sample residual
block can be visualized in Fig. 4.

Weight layer

Weight layer

Leaky ReLU

Leaky ReLU

Fig. 4. Example of a residual block. The input tensor x being mapped to F(x) and
depending on the residual, its identity function I is calculated and a decision point is
computed. If the residual decreases, the direct next one layer are calculated. Otherwise,
it works like a gate and some layers forward starts its weight update, instead of the
next one.

The convolutional network architecture used for training is similar to that
proposed by [7] and known as ResNet-50. It is constituted of 50 residual blocks,
using as activation function the Leaky ReLU instead of ReLU from the original
architecture. At the end, a dense network (multi-layer perceptron) was used,
followed by a softmax activation function. The stochastic algorithm Adam [10]
was employed for cost function optimization, with hyper-parameters defined by
ε = 10−3, ρ1 = 0, 9, ρ2 = 0, 999 e δ = 10−8. For weight initialization, the
variance scaling technique was employed, with samples drawn from an uniform
distribution calculated by Eq. 1

φ =

√
3

1
n

(1)

and based on the number of inputs n in the weight tensor. To normalize data
between residual blocks, a batch normalization [8] process was applied. The con-
volution operation used in this architecture was the cross correlation [6] which
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measures the similarity between two arbitrary functions f(x) e g(x) during a
time window t [23]. Since time domain is not present in images, cross correlation
between tensors K and I are defined by Eq. 2

(I ∗ K)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m,n) (2)

The cost function chosen was the cross entropy, which is described by Eq. 3

H(P,Q) = −Ex∼P log Q(x), (3)

where P and Q are probability distributions, Ex∼P is the expectation with
respect to P (x) of function log Q(x) [6]. To minimize the cross entropy, Adam
[10] optimization algorithm was selected, due to a speed boost on training time
over other methods. The activation function Leaky ReLU (Leaky Rectified Lin-
ear Unit) was chosen instead ReLU to avoid the death of some neurons and given
the nature of the task [9]. A ϕ(x) based on Leaky ReLU can be defined by Eq. 4

ϕ(x) =

{
x, if x > 0
ρx, otherwise,

(4)

where ρ is a small constant determining the slope of the negative domain. This
activation function has the advantage of being simple to optimize, as well as the
original ReLU function, defined by ϕ(x) = max{0, x}, since the two are differ-
ential in at least part of your domain. More specifically, ReLU in at least half,
Leaky ReLU in all non-zero domain. Pooling layers were used in the beginning
and ending of the architecture, respectively a max-pooling and global average

50x

Convolucional
layer

Leaky 
ReLU Maxpooling

Batch
normalizatio

n

Zero 
Padding

224 x 224 x 3

Input 
tensor

Residual Blocks

Global
Averaging

Pooling
Dense Softmax

Fig. 5. The architecture of convolutional network used in training, which is known
by ResNet-50 [7]. It is composed by 50 residual blocks containing convolutional layers,
applying convolution operations with changing shapes throughout the network followed
by batch normalization. After that, a dense network performs the task of learning the
classifications associated with the resulting tensors, ending on a softmax layer, giving
a special case of multinomial distribution over the classes.
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pooling. A dense layer at the end learns features associated to each class and a
softmax layer depicts the distribution of input images to classes. The network
has a total of 177 layers. The network’s architecture is presented schematically
on Fig. 5.

In the architecture used, the training ended after 122 h and 121 epochs, using a
batch size of 16 and a NVIDIA® GTX 1060 GPU for acceleration. The portion of
image database separated for validation was used at this training phase at the end
of each epoch, to validate the network’s cost function decay on the current epoch.

3.2 Classification

As a real-time video recommendation system, the actual network demands a sub-
second classification time, preferable below 0.04 s per frame, since video streams
below 24 frames per second (fps) or above 120 fps are respectively not recog-
nized as a fluid video or even perceived by human eyes [17]. Thus, in Xanathar,
prerecorded video streams lower than 60 fps are speed up and higher are slowed
down, therefore no speed correction are applied. For video streams originating
from video cameras, the classification time is bounded by the device fps captur-
ing or hardware capabilities. For the mentioned video sources (prerecorded or
video cameras), audio are discarded from the stream. Overall classification speed
varies depending on the hardware accelerator used. The video resolution has no
influence on the classification time due to down-scaling: every frame are resized
to the same dimensions of input images on training phase, which is 224 × 224
pixels (RGB channels preserved). Tests with the full frame resolution was per-
formed and the overall error rate remained unchanged, only increasing drastically

Fig. 6. Four samples of different video sources with top-3 recognized classes indicated.
The most likely class labels of each frame is depicted below the frame. All video sources
represented here were loaded from prerecorded video files.
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the classification time. Five resolutions were tried to verify the network perfor-
mance: 360p, 480p, 720p, 1080p and 4 K with respectively classification times
(in seconds) of 0.030 s, 0.095 s, 0.324 s, 0.545 s and 1.174 s. Video-frame samples
of recognized objects are presented on Fig. 6.

4 Results

Confronting the trained model against the test data set, it was possible to calcu-
late a top-1 error of 21.41 and a top-5 error of 5.17. Xanathar achieves a frame
classification in 0.016 s, classifying approximately at 60 fps. The comparison with
other systems can be seen on Table 2. A final result of the system can be analyzed
in Fig. 7.

4.1 Recommendation

Once the object has been recognized, we have its most likely class, which was
based on the metadata entries described in Table 1. These entries enable the
search for text similarity, using recognized class text labels to perform a search
on the product catalog, looking for products with similar titles to the recognized

Fig. 7. Frame example of three product recommendations overlaid in a video stream.
In this case, the top-3 most likely predicted class labels were tv, vase and dinning table.
In possession of these class labels, the system can start the search for product titles
which contains similar text to labels. Prices and descriptions of products are stored on
an external catalog. Recommendations are preserved in the video stream for about five
seconds if there is a change of objects in the scene. If class labels remains the same, no
change in recommendations presented happens.
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Table 2. Comparison of top-1 and top-5 error rate (classification networks) alongside
with mAP (localization and/or real-time networks) against the ResNet-50 based archi-
tecture used in Xanathar. Using ResNet-50 to the classification task, was possible to
achieve higher accuracy with lower classification time. The main reason to describe the
two different metrics like top-n and mAP is due to the resulting nature of each net-
work. [15,16] returns bounding boxes locating the object and [1,2,7,19] results likely
classes which the image or frame may belongs.

Network precision-1 (%) precision-2 (%) time (sec.)

YOLO [15] mAP: 66.4 0.04

Faster R-CNN [16] mAP: 70.4 0.2

VGG-19 [19] top-1: 24.4 top-5: 7.5 4

MultiGrain [1] top-1: 15.7 top-5: 3 4.1

Oct-ResNet-152+SE [2] top-1: 17.1 top-5: 3.7 3.9

Xanathar top-1: 21.41 top-5: 5.17 0.016

classes. More specifically, the title based recommendation uses text similarity
algorithms like Jaro–Winkler and Damerau—Levenshtein distance [3] to com-
pare recognized class labels over indexed product titles. The class labels are
generated by the network on every frame, but the search for products with sim-
ilar title from the class identified only happens every five seconds, selecting the
most stable classes, or the ones that changes less. The option to change rec-
ommendation overlay at most every five seconds was made to maintain user’s
visibility of recommended products information. In this case, a customer that
wants to keep some recommendation on the screen naturally will sustain the
desired product at the center of video stream.

5 Conclusions

Classifying objects on video streams in real-time is a task that is bounded by
processing time, since a common video stream has 30 or more frames per second,
with varying resolutions, reaching not rarely 4096×2160 pixels per frame. There-
fore, objects in a frame must be recognized in no more than 0.04 s to maintain
the flow and be perceived by human eyes with fluidity. To achieve low classifi-
cation error rate and accomplish the high frame rate needs, the ResNet-50 [7]
network was chosen (with minor modifications) due its low top-5 error rate and
classification speed. Several other network architectures were compared and the
total time to perform classification on some of these architectures demonstrated
as been a problem, since it took much more than the 0.04 s to classify a frame,
damaging the video fluidity. Not all network architectures are suitable to run in
real-time applications and hardware choices for processing each frame and clas-
sify objects are also important, as the speed of 0.016 s per frame of Xanathar was
achieved with GPUs. Accuracy is also important, as the classification precision
defines the quality of the recommendation and how the customer will react to it.
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Hence, customers will only interact positively with these recommendations if the
recommended products are correct, which is granted by the achieved low top-5
error rate of 5.17% of Xanathar. With the in-screen recommendations overlaid
to the video, customers can quickly search for similar wanted products or receive
product advertisements for what is been watched on TV or online video channels.
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Abstract. In industrial applications of AI, challenges for visual inspection
include data shortage and security. In this paper, we propose a Federated
Learning (FL) framework to address these issues. This method is incorporated
with our novel DataonomySM approach which can overcome the limited size of
industrial dataset in each inspection task. The models pre-trained in the server
can continuously and regularly update, and help each client upgrade its
inspection model over time. The FL approach only requires clients to send to the
server certain information derived from raw images, and thus does not sacrifice
data security. Some preliminary tests are done to examine the workability of the
proposed framework. This study is expected to bring the field of automated
inspection to a new level of security, reliability, and efficiency, and to unlock
significant potentials of deep learning applications.

Keywords: Visual Inspection � Federated Learning � DataonomySM

1 Introduction

Visual inspection of products is a common task across the industry. In China alone,
there are more than 60 million workers for it. In order to improve the quality of product
and reduce the cost, machine vision has been used for a long time. Traditional auto-
mated vision technologies [1] such as pattern matching have made great progresses on
measurement and presence detection. However, they typically require extensive
development and expertise to build a specialized algorithm for each type of surface or
structure. Recently, Deep Learning (DL) based approach has become an attractive
alternative [2–4], which has proven to be successful in inspection applications. It is
convenient to implement and generic enough to have similar models applied to dif-
ferent industries, and thus shows promising potentials in the automated inspection field.

One of the biggest challenges for applying DL-based approach to the industry is the
lack of data samples for classification tasks of defect detection. In practice, a common
approach [2] is to use the weights of lower layers of a convolutional neural network
(CNN) that is pre-trained on large datasets with an existing architecture, for example,
VGG [5], Inception [6], or others, and retrain the on top layers of the classifier on the
datasets of a specific task. However, a public model trained on a variety of image
classes may not be sensitive enough for transfer learning for defect inspection on
material surfaces. Recent advances in transfer learning [7, 8] show that it is possible to
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quantify how a DL model can help another task. Previously, we proposed a novel
approach named DataonomySM [6], which can be used to train the classifier for a
specific task with relatively small data samples. In this study, we extend the Dataon-
omySM approach into building cross-industry base models for transfer learning, instead
of focusing on defection of single type of product or industry. The advantage of this is
that it can allow clients from a new industry to quickly deploy a base model and
perform acceptable automated inspection while the service provider (server) can work
on improving the model as new datasets are continuously generated from the clients.

Another significant issue regarding all traditional approaches in automated surface
inspection is that they all involve the modeler directly analyzing the raw image dataset
or a similar version of that dataset that exposes the private information that manu-
facturers wish to protect. In those cases, if the modeler is from an external party, then
the data security will be at risk, which hinders the development of this industry.
Fortunately, Federated Analysis/Federated Learning [9, 10] (FL) has been researched
recently, encompassing applications like autonomous driving, analytics of mobile
phone data, etc. It is basically a computational framework that is based on a network
with data distributed on edge devices. In FL, the model training (or data analytics if it is
FA) is done on the original devices (edges) that store the data, e.g. IoT devices, mobile
phones, instead of in the server, thus allowing the data to stay in the user devices with
only the model information to be sent to the server. In this study, we propose a novel
FL framework for the model training for automated inspections to ensure data security
of clients.

In order to practically apply the Federated Learning with deep learning models,
which typically require significant amount of data to train, one problem, which is the
data (with labels) scarcity of each individual client, may pose a challenge to model
training. This can be addressed by the DataonomySM approach earlier introduced. In
fact, DataonomySM and its following transfer learning procedure are perfectly com-
patible with the FL framework, and are incorporated in our framework.

The following consists of Sect. 2: DataonomySM for cross-industry applications
Sect. 3: our Federated Learning framework, Sect. 4: Experiments, and finally Sect. 5:
Conclusion.

2 DataonomySM for Cross-Industry Applications

2.1 DataonomySM Approach Workflow

DataonomySM as an important method used in our FL framework, which can help
address the difficulty posed by the scarcity of data on the local client side performing
deep learning training. In our previously proposed workflow of defect inspection in [7],
as shown in Fig. 1a and b, the DataonomySM approach is used to prepare big datasets
for the base model of specific industry, which is later used for transfer learning to
obtain final model for defect inspection.
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Briefly, the DataonomySM approach itself involves using a pretrained public
available CNN model, e.g. Inception V3, to test the defect dataset, and obtain the mean
probability of the defect dataset to be classified as each class in the public dataset, e.g.
ImageNet. Then the probabilities will be used in the data augmentation process to
quantify how well the differences between defect classes in the defect dataset can be
related to each class in the public dataset. With a normalized affinity matrix [11], the
final step is to obtain a global mapping scheme to maximize the performance across all
defect classes, while minimizing the supervision. We achieve the selection problem
using Binary Integer Programming (BIP) [12].

To give some examples, Fig. 2 shows how public dataset classes in ImageNet are
ranked for a wood [13] surface defect dataset using DataonomySM.

This works perfectly for obtaining a base model for a single type of surface material
of a specific industry. For cross-industry applications, we need to create a base model
that is shared by defect datasets from different industries. The workflow of Dataon-
omySM is thus extended into what is shown in Fig. 1c.

Basically, a cross-industry base model which will later be used for transfer learning
in clients’ local computers, will be trained by a blend of public dataset classes that are

Fig. 1. Framework of the DataonomySM approach. (a) Basic training workflow using
DataonomySM; (b) Detailed steps in DataonomySM (c) Cross-industry training using
DataonomySM

Fig. 2. DataonomySM ranking of public classes for wood dataset [13].
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highly related to each industry’s surface defect data. In other words, for each industry,
there will be a group of dataset classes, which are highly relevant (with high affinity) to
it, included in the total of selected classes for the base model training. Certain selected
classes may have high relevance to multiple industries. As shown in Fig. 1c, the defect
dataset of each industry first undergoes data augmentation and AHP separately. Then
the normalized data affinity from all industries are appended together as the affinity
matrix P. Given this information, the BIP method under a budget policy for cross-
industry application is applied to obtain the selected classes for base model training.

2.2 Budget Policy for Cross-Industry Base Model

Normally the numbers of sample from different industries are unbalanced. The budget
policy is aimed at balancing the number of selected classes for each industry, while
having the selected classes for different industries balanced in a way that the differences
in the training difficulty, available defect data size, and importance among different
industries are considered. The BIP method is applied to select the best set of classes
among the 1000 classes in ImageNet to train the base model. A vector x is defined, in
which each binary element xi represents class i to be either included in the base model
training xi ¼ 1ð Þ or excluded xi ¼ 0ð Þ. The BIP problem becomes

maximize cTx

subject to Ax� b

x ¼ 0; 1f gN

where N is the total number of classes in the public dataset and equals 1000 for
ImageNet. c is a vector, in which each element ci is defined as a coefficient that
quantifies the overall benefit of selecting class i, which is dependent on the affinities of
class i to the target tasks (pi;t), the importance of each target task in the final application
(rtÞ, and a balance factor of accessible data size among different defect datasets (qt). as
given below:

ci ¼
XT

t¼1

�rtqtpi;t ð1Þ

where t represents a specific target defect detection task, T is the total number of target
tasks, and

qt ¼ n�1
tPT
1 n

�1
k

ð2Þ

is used to counter the imbalance of different defect datasets, so that the one with smaller
data, which is assumingly more difficult to train in the transfer learning, will be more
favored (or compensated) in determining the selection of related classes from the public
dataset by having a higher weight for its closely related class.
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The problem is constrained by the budget policy, in which the total amount of
training budget of the base model cannot exceed a number M, e.g. 50, 100. Hence, the
matrix A and b will satisfy:

a1;j ¼ lj ¼ 1 ð3Þ

b1 ¼ M ð4Þ

Where lj is the cost of adding class j, which is assumed to be uniformly 1 in this
study. Only one row for A and b is needed at this point. However, depending on the
actual situation, more constraints can be added.

Note that this BIP design will only work under the premise that the base model
trained with more classes will yield better predictions monotonically. A small number
of 50 classes should be a safe one for that premise in most cases, as the model is a deep
network that requires large training data. However, as the number of classes reaches a
certain value, the quality may increase or reduce. The range of the number of classes in
which class number still has a benefit can only be determined empirically by experi-
ments. In our specific case, 50 classes is not too high a number that would otherwise
negatively affect the prediction power of the final defect inspection model.

Finally, the cross-industry base model can be created by retraining the model with
the new set of classes selected in the BIP process. This will be used for transfer learning
to obtain the final defect model. The details for how this is implemented in business
operations will be described in the next section on Federated Learning.

An example of the public data classes selected for the training of the cross-industry
model of wood [13] and texture datasets [14] are given in Fig. 3.

3 Federated Learning Framework

3.1 Basic Framework

In the Federated Learning framework of our study, the server is the organization or
individual that designs the model structures and provide service to manufacturers on
automated inspection. Each client is one of inspection sites in production lines in a

Fig. 3. Illustration of cross-industry DataonomySM results for wood [13] and texture datasets
[14].
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manufacturer that need high quality algorithms for its own specific inspection task.
Some manufacturers may have hundreds of similar inspection sites, each of which is a
client that undergoes separate communication with the server to obtain and update its
inspection model. Note that each production line may have some different inspection
task with another, so each line will need a different model.

The typical procedure for handling multiple clients in a manufacturing company is
described here, as shown in Fig. 4. It includes three stages for a full cycle of service:
Deploy, Server Model Update, and Client Model Update. After each cycle, there will
be updates to the server and client models, with help of new image data collected from
clients. The three stages are described in detail below.

3.2 Deployment Stage

As a client firstly requests service, the client sends a request to the server for a new
model for their inspection task, along with some basic information regarding their data.
The server will then analyze whether it is possible to finally obtain a model for the
inspection or what approach to make. Typically, if the new client is of a new industry to
the server, or there is no surface type similar enough in precedented cases done in the
server before for the new client, then a generalized cross-industry base model will be
given to be deployed directly for the production line as an initial solution. Otherwise, if
the new client is a similar production line of an old client that has a customized model
readily available (updated from the last cycle), then the new client will be given that
model as the base model to train on its available data and directly run its surface
inspection tasks with high accuracy.

Fig. 4. Illustration of the workflow of Visual Inspection using Federated Learning.
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As illustrated in Fig. 4, the existing inspection sites (A, B, C,…) of the manu-
facturer at Cycle i have already been running their models. They do not need any
further operations in this stage. Client X is a new installation in the production line that
firstly joined at some time point during the Deployment stage of Cycle i. Client X
needs to send a request to the server. The server approves it based on the client’s data
type and local computer settings and responds by providing X with the initial base
model for it. At any time during this stage of this cycle, which is typically in the order
of months, if there is any other new client, it will be given a base model right after the
request as well. Once the base model is received, the client will conduct the transfer
learning with limited sample data locally and start the process of automated surface
inspection.

Basically, the Deployment Stage covers most of the time of each cycle, and any
new client at any time can join in and deploy their initial model. However, in the very
first beginning for a manufacturer, a set of new clients join in and will be provided with
the initial base model at the same time. All clients are expected to collect new data at
this stage to prepare for new model updates.

3.3 Server Model Update Stage

Periodically the server will have its models updated, with information collected from
running(alive) clients. This is done regularly at a certain schedule in every cycle, which
can be annually or quarterly. The server will first send to the clients an algorithm along
with a new base model that each client can use to extract low level features to be sent
back to the server. The low-level features are those extracted from the low-level
convolutional layers of their newly trained model. As will be later shown, the third
convolutional layer of Inception V3 can make the output features effectively different
from the raw image. This will not reveal the original image, thus still protecting data
privacy. The retraining of the base model by each client before feature extraction is
optional for the clients. The client can also directly use the base model sent by the
server and extract image features from a designated convolutional layer. The retraining
may add minor uncertainties to the later model training by the server but will add
protection to clients’ data. If the client does not have new image data generated at this
moment, then it does not need to send back the feature data, as the case for Client B in
Cycle i in Fig. 4.

After the server received all the feature data from the clients, the feature data will be
fed into a truncated CNN that has the layers used by the clients removed and starts from
the next higher-level layer. The server will conduct a set of procedures which can
include the DataonomySM process or other advanced methods to update the new base
model in the server, with more weight on the new image features, rather than the initial
cross-industry model. The lower level convolutional layers in the previous version will
be added back to the truncated CNN after the latter is updated, in order to reconstruct
the full CNN model. Note that even if one client possesses only a small dataset
(hundreds of images), it can still be provided with a model update with reasonable
quality, since the updated base model can be applied to each client.
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3.4 Client Model Update Stage

In this stage, the server will send the updated base models to all the clients and each
client will train its new model locally with a small size of raw data at minimal time cost.
The clients will then deploy their final models in their inspection systems. After this
short stage, the clients and the server will proceed to the Deployment stage of the next
cycle.

4 Experiments

4.1 Experimental Setup

Preliminary experiments were done to examine the feasibility of the proposed
DataonomySM approach and the implementation of the FL framework. We will
demonstrate our trained models including two models for single industry, and a cross-
industry base model developed with DataonomySM approach, used in deriving two
specialized models.

For the development of the cross-industry base model, one dataset is the DAGM-
2007 dataset [14] which consists of 8050 images for training, in which 1046 images
contain defects; and 8050 images for testing, in which 1054 images contain defects. In
our experiment, we split the training dataset into two parts, 80% for training and 20%
for validation during the training stage. The example image for each class contained in
this dataset is shown in Fig. 5a.

Another dataset we used in the experimental study is the Wood Defect Dataset
provided by Silvén et al. in [13]. Since the dataset fails to provide the wood images
without defect, we collect the positive examples from the Internet. Samples images are
shown in Fig. 5b. The wood data as well used the 80%/20% training and test data split.

Fig. 5. Illustration of texture dataset (a) and wood dataset (b).
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Our experiment for retraining the Inception V3 using ImageNet data subset ran on
computer with eight GeForce GTX 1080 Ti graphics card as a server machine. For the
transfer learning of the classifier for defect detection was ran on computer with one
GeForce GTX 1080 Ti graphics card as a client machine.

A texture model was built on single industry base model, for which Inception V3 is
trained through 500 classes in ImageNet selected by DataonomySM analysis of texture
data. Weights in all layers are freed to retrain in the transfer learning process. A wood
model is also built on a similar manner.

For the cross-industry model, the texture and wood data were used together with
DataonomySM approach described in Sect. 2, and we selected 50 classes for the
retraining of the Inception V3 model. Then we applied transfer learning to train a
model for each of the wood and texture datasets.

4.2 Results

As shown in Table 1, the texture model that was built on single-industry base models
show superior accuracy when compared with previous studies [15, 16].

Our method can be used in wood dataset too. The accuracy is 99.12%, compared
with the build-in Inception V3 which is 97.7%. It can be seen that our framework using
DataonomySM for data augmentation shows high performance on defect detection with
limited dataset compared to the state of art method.

The test accuracy results and training times for the cross-industry base model, along
with the texture model and wood model that are built upon it, are given in Table 2.
Note that among the 50 classes selected from ImageNet, 40 of them are ranked higher
in the wood DataonomySM, while the other 10 classes are ranked higher in the texture
DataonomySM.

Table 1. Accuracy results for the texture data defect detection model.

No. TiBa2011 [15] Muto et al. [16] This study
SVM DNN

1 91.5 99.33 100 100
2 99.9 100 100 100
3 98.7 98.66 49.38 99.83
4 96.8 99.63 98.75 100
5 NA NA NA 99.83
6 NA NA NA 99.65
7 NA NA NA 100
8 NA NA NA 99.57
9 NA NA NA 100
10 NA NA NA 99.91
Ave. NA NA NA 99.88
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From Table 2, we see that the base model trained to have correlations with two
different industries can be used to obtain high quality models for the defect inspection
tasks of each industry. The time cost of each model is also satisfyingly low, which
allows our server in the Federated Learning Framework to efficiently update the models
and have them ready for the clients. The simulated FL process in one cycle for 4 clients
on wood dataset gives the estimate of the time cost and data size involved as shown in
Table 3.

Some sample results of the features extracted from the first layer of the Inception
V3 neural network are shown in Fig. 6. It can be seen that the first convolutional layer
features do not show the same image as the raw one, though certain channels show
close resemblance. This should be enough for most cases to protect data privacy in
defect inspection applications. However, to make the image more unrecognizable from
the raw ones, the client may extract features from a higher level layer to send to the
server, as shown in Fig. 7.

Table 3. Federated Learning process time cost and data size involved in one cycle.

Stage Client
computing
cost

Client data size Server
training
cost

Server data size

Deployment 1 min
(few layers)

1.0 MB (42 images)
and 92 MB (base
model)

NA NA

Server
update

48 min
(all layers)

23.3 MB (1573 images)
and 92 MB (model)

19 h 5.2 GB (features)
and 368 MB
(models)

Client
update

2 min
(few layers)

1.0 MB (42 images)
and 92 MB (base
model)

NA NA

Table 2. Models involved in the cross-industry approach (all trained on 8 GPU).

Model Accuracy Training time

Base model 85.5% 6.6 h
Wood model 100.0% 6 min
Texture model 99.7% 54 min
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Raw Channel 0 Channel 8 Channel 16 Channel 24

Fig. 6. 4 Raw images of the texture data (shown in the 1st column of the plot) and their extracted
features from 4 different feature channels of the first convolutional layer of the pre-trained
Inception V3 model. Each row shows the raw data and features of one image.

Raw Channel 0 Channel 16 Channel 32 Channel 48

Fig. 7. 4 Raw images of the texture data (shown in the 1st column of the plot) and their extracted
features from 4 different feature channels of the third convolutional layer of the pretrained
Inception V3 model. Each row shows the raw data and features of one image.
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5 Conclusion

We have presented a novel framework of using Federated Learning method and
DataonomySM to provide manufactures with the service in automated defect inspection
without sacrificing data privacy and demanding large datasets. The feasibility of the
cross-industry modelling and its efficiency in the FL framework is also demonstrated
by experiments. Our framework can protect clients’ data privacy by training models
without directly accessing their raw data, but instead using extracted features from
intermediate layers of the CNN model. The framework allows both fast model
deployment for new clients and continuous model updates that does not require large
dataset generated by an individual client. We will extend the framework as the dis-
tributed AI computing to serve various industries, with sustained/efficient improvement
of model quality and quick model deployment in the near future.
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Abstract. Recurrent Neural Networks are a state of the art method for
modeling sequential data. Unfortunately, the practice of RNNs is ahead
of the theory. We lack any method for summarizing or analyzing what
a network has learned, once it’s trained. This paper presents two meth-
ods for visualizing concepts learned by RNNs in the domain of action
recognition. The first method shows the sensitivity of joints over time.
The second generates synthetic videos that maximize the responses of a
class label or hidden unit given a set of anatomical constraints. These
techniques are combined in a visualization tool called SkeletonVis to help
developers and users gain insights into models embedded in RNNs for
action recognition.

Keywords: LSTM · Action recognition · Visualizations ·
Saliency maps

1 Introduction

Recurrent Neural Networks (RNNs) such as Long Short Term Memory (LSTM)
networks [20], have been successful in many applications involving sequential
data. Examples can be found in text classification [5], image and video cap-
tioning [2,13], speech recognition [7,12], and action and gesture recognition
[22,26,27]. The success of these deep learning models lies in the complex feature
representations they learn from training data and encode as combinations of
weights in memory.

Unfortunately, the practice of deep learning is ahead of the theory. There is
currently no way of summarizing what a trained RNN has learned. All that a
developer knows is the accuracy with which the network labels the validation
data. This can lead to surprises when networks learn properties of the input data
other than what the designer intended and/or the user assumes. As a result, we
lack confidence in even high-performing networks when they are deployed in
applications where the input might differ from the training data, or where the
cost of failure is high. We need methods to visualize what recurrent nets learn.
This paper presents two methods for visualizing concepts learned by RNNs in the
domain of activity recognition. Activity recognition has the advantage that the
inputs are sequences of 3D human poses (also called skeletons). This provides
c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 67–80, 2019.
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a framework for visualizing results and anatomical constraints for generating
synthetic inputs. The first visualization method shows the sensitivity of joints
over time, extending the work by Li et al. [15]. Sensitivity is the normalized
partial derivative of an output signal with respect to a given joint, where the
output may either be a class label or the output of a specific hidden unit. For
example, when analyzing an LSTM trained to recognize throwing motions we
see that it is sensitive to the positions and motions of the arms, which is not
a surprise, but also the upward motion of the spine. In essence, the LSTM has
learned that throwing requires an upward movement of the entire body, which
otherwise the user may not know.

The second visualization method generates synthetic videos that maximize
the responses of a class label or hidden unit within a set of known anatomical
constraints. This yields different insights from the first method. For example,
the response of one hidden unit to throws is maximized when the subject begins
as low to the ground as possible. The goal of such visualizations is to show users
what the system has learned, and therefore how it might respond to novel inputs.

The visualization techniques presented in this paper are presented as case
studies in the context of LSTMs, but can be applied to most recurrent networks,
including Gated Recurrent Unit networks (GRUs [8]). For LSTMs, we present a
visualization tool called SkeletonVis. This tool can be used over the web to view
LSTM networks we have trained on the NTU activity data set, or downloaded
and applied to LSTMs trained by users on data sets of their choice.

In summary, the contributions of this paper are:

1. A technique for visualizing the sensitivity of an LSTM class label or hidden
unit responses to specific joints in pose data.

2. A technique for generating synthetic videos that elicit maximal responses by
class labels or hidden units.

3. A software tool called SkeletonVis for visualizing LSTMs.
4. Case studies of using SkeletonVis to probe the properties of trained networks.

2 Prior Literature

The computer vision literature includes many methods for visualizing features
learned by convolutional neural networks. See [28] for an up-to-date survey
and [1] for an interactive summary of visualization techniques in CNNs. This
paper builds on two concepts in CNN visualizations, namely saliency maps by
Simoyan and Zisserman [21] and activation maximization by Mahendran and
Vedaldi [17]. This paper extends their techniques to recurrent networks.

Recently, RNN researchers have introduced techniques like attention mecha-
nism that change the underlying network architecture to study specific proper-
ties of the input data. However, the model-driven properties still remain under
explored. Diagnostic visualizations of RNN models are better established in the
field of natural language processing than computer vision. See [3,15,23,25] for a
brief survey. However, the input to all the above methods is a single character



Looking Under the Hood: Visualizing What LSTMs Learn 69

or word, embedded into a vector. This is significantly different from the input
to LSTMs in an action recognition system.

The input to an action recognition LSTM is a 3D skeleton pose over time.
Interpreting how relations over time within a video are modeled is particu-
larly difficult. The two main techniques used to understand models in skeleton
based action recognition are spatio-temporal attention mechanism [22] and co-
occurrence of joints [27]. The spatio-temporal approach [22] helps us understand
the importance given by the model to joints and time frames in a sequence.
Unfortunately, as with the attention approach, the original model is altered.
The co-occurrence of joints approach reveals correlations of joints in an action
sequence without changing the model, but the hidden states of the LSTM are not
explored. Our approach aims to interpret hidden states directly. The approach
in [15] uses saliency heatmaps to highlight the network’s ability to understand
negative sentiment in text. Our approach shows that the network is able to focus
on the most informative joints in an action by assigning them a higher saliency.

As part of visualization, we generate synthetic skeletons that conform to
anatomical constraints. 3D pose estimation techniques have a similar need. Tri-
pathy et al. [24] propose a constrained Kalman filter to denoise joint coordinates
obtained from Kinect sensors. Our approach integrates the bone length con-
straints proposed in this paper. Dabral et al. [9] model joint angle limits and
bone length limits as a loss function that strongly penalizes joints that deviate
from valid angular limits. While our approach does not consider a loss func-
tion minimization, their formulation of joint angle limits is used below. There
are pose estimation papers that go farther: [10] discriminates joint types (ball
joints vs. hinge joints). Akhter and Black [4] formulate priors to eliminate invalid
poses by pose-conditioned joint angle limits. Such constraints may be added to
our techniques in the future.

3 Approach

We propose two approaches to visualizing what a trained RNN has learned. The
first is a gradient-based saliency approach that illustrates the relevance of a joint
to a class label or hidden unit. The approach is inspired by the saliency maps
in [15], which use heat maps to visually demonstrate the importance of words.
The second approach shows synthetic skeletons that maximize the hidden state
activations of class labels or selected neurons. To make these techniques easy to
use, we consolidate them into a visualization tool called SkeletonVis. SkeletonVis
allows users to gain insights into the workings of their trained models in order
to increase (or decrease) their confidence in a network’s abilities.

Figure 1 show the architecture of a recurrent network used for skeleton-based
action recognition. The input is a sequence of skeleton poses over time; the
output is a vector of class label probabilities. Opening up the architecture, the
recurrent network is a one-layer LSTM cell, similar to [22,26]. This is followed
by a fully-connected (FC) layer and a softmax layer. The FC layer takes as
input the outputs of the LSTM’s hidden units h, and has one output unit for
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every class in the data set. The softmax layer converts the FC outputs into label
probabilities.

The rest of this section describes our techniques in more detail. Section 3.1
explains how joint saliency is calculated. Section 3.2 describes how skeletons are
generated to maximize a class label or hidden state output. A brief overview of
the SkeletonVis tool is explained in Sect. 3.3.

Fig. 1. The LSTM architecture used for the experiments in this paper. It is followed by
a single hidden layer converting hidden unit responses into label responses, and then a
softmax layer converting label responses into probabilities.

3.1 Gradient-Based Saliency

Gradients help us understand the contribution of each individual input unit to
the final output of a network. This technique has been used extensively to find
localized class-discriminative visual explanations in images for CNN models [21]
and to find important words in text mining [15]. In skeleton-based action recog-
nition, saliency measures the contribution of every body joint to the decision
about a particular class of action.

For the model shown in Fig. 1, we first explore the gradient of the response
hu of hidden unit u with respect to dimension d of joint j. Note that we are
considering the partial derivative of hu with respect to the pose input xt and not
the previous hidden state input ht-1. We are therefore measuring the sensitivity
of a particular pose value in time, not the combined impact of a joint over time.

We denote the gradient gut,j,d as:

gut,j,d =
δhu

t

δxt,j,d
(1)

where xt and hu
t are the pose input and hidden state output of neuron u at time

instance t, respectively. The absolute value of gut,j,d denotes the sensitivity of the
input joint to the final output hidden state. Thus, we denote sensitivity Su

t,j,d as:

Su
t,j,d = |gut,j,d| (2)
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For any particular time t, joint j and dimension d, the sensitivity Su
t,j,d is a scalar.

When there are joints with very little motion across the data set, i.e. body parts
that don’t move, their sensitivity can become very large due to random sensor
noise. Hence, we normalize sensitivity across a sequence as:

S′u
t,j,d =

σxt,j,d

σhu
t

∗ Su
t,j,d (3)

where S′u
t,j,d denotes the normalized sensitivity for dimension d of joint j for

neuron u at time t. σxt,j,d
denotes the standard deviation of the pose input xj,d

over t, and σhu
t

denotes the standard deviation of hu over t. We will refer to the
normalized sensitivity S′u

j,d for the rest of this paper.
Sensitivity is a scalar value for each dimension of a joint in the skeleton pose.

For a given time t, we denote the summation of sensitivities across the X, Y and
Z dimensions of a joint as the final contribution of the joint to the hidden state
of the neuron. Thus:

S′u
t,j =

3∑

d=1

S′u
t,j,d (4)

Equation 4 measures the sensitivity of a hidden unit u to input joint j at
time t. To understand the impact of a joint not just on a single hidden unit
but on the overall class response we take the product of the normalized joint
sensitivities with their magnitudes in the weight matrix column of the FC layer
for the respective class. The weights in the FC layer indicate the final effect of
a hidden unit in the classification of an input sequence. The weight matrix has
dimensions (H, C) where H is the number of hidden neurons in the LSTM and C
is the number of classes in the data set. The final sensitivity map is represented
as an aggregation of the weighted sensitivities of all neurons for the class under
consideration and can be written as:

S′
t,j =

H∑

u=1

S′u
t,j ∗ |W u

c | (5)

where |W u
c | is the magnitude of the weight of neuron u for class c. This result is

visually represented in SkeletonVis as a sequential colormap with darker values
for large sensitivities and lighter values for small ones.

3.2 Activation Maximization

Sensitivity visualization shows a user what body parts are having the most influ-
ence over a class label or the response of a hidden unit. Activation maximization,
on the other hand, generates synthetic inputs that maximize the response of a
class label or hidden unit. The idea is to warn users about inputs that the
network might never have encountered but which would cause the network to
generate a strong response for a particular class label.
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Activation maximization is implemented by hill-climbing. We begin with any
input sequence that receives class label c. Starting with this input, we calculate
the gradient of the fully connected layer for class c with respect to the input:

dct,i =
δoc
δxt,i

(6)

where dc
t,i denotes the gradient of the output for class c with respect to the input

pose xi at time t. Note that this gradient is obtained for all neurons in the LSTM
cell for input xi and time t and is therefore a vector of length H, where H is the
number of hidden units in the LSTM.

The gradient dct,i is a weighted sum of the gradients of every hidden unit u
with respect to the input pose xi at time t. This can also be written as:

dct,i =
H∑

u=1

W u
c ∗ δhu

t

δxt,i
(7)

Fig. 2. Why anatomical constraints matter. Frame (a) shows a skeleton after one iter-
ation of activation maximization without anatomical constraints. Frame (b) shows it
after one iteration with constraints.

The value of dct,i is used to update input pose xt for the next iteration.
Unfortunately, the LSTM treats every input feature xt,j,d as independent. The
gradient update calculated by Eq. 7 alters the data to increase the networks
response, but the result may look nothing like a human skeleton. Figure 2(a)
shows the input pose updated according to the gradient in Eq. 7. The human
form is unrecognizable. The middle of the spine has been moved to the top,
elongating the spine and giving it an unrealistic degree of curvature. Other joints
have been moved in odd ways as well, resulting in a non-human shape.

In many ways, this situation is analogous to what happens when activation
maximization is applied to convolutional neural networks performing image clas-
sification. Activation maximization produces “images” that fool the CNN, but
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look like white noise to human observers [6,11,18]. In our case, activation max-
imization produces “skeletons” that don’t look like skeletons. Fortunately, in
action recognition, unlike general image recognition, human anatomy provides
constraints that can be used to alter how poses are updated.

To produce valid skeletons, we apply two types of constraints, bone length
constraints and pairwise angle constraints. We are aware that the constraints
below are not exhaustive. At this stage, we rely on a few, important constraints
for conceptualization.

For a frame f , we construct a state vector sf as:

sf = [x0, x1..xN , y0, y1..yN , z0, z1..zN ] (8)

Thus, sf is a N × 3 dimension vector, where N is the number of joints. The bone
length bi,j between any two connected pair of joints is given by the Euclidean
distance between the joints:

bi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (9)

For Kinect version 2, there are 25 joints and 24 pairs of connected joints (bones).
We consider the reference bone length bi,j to be the mean of bi,j,t over the input
video sequence. The bone length constraint is defined as:

‖(sf + d′) · Ai,j‖ /
√

2 − bi,j = 0 (10)

where Ai,j is a 75 × 75 dimension matrix. For example, for joints (0,1) the A
matrix will be represented as:

A0,1 =

0 1 ...25 26 ...50 51 ...74
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

1 −1 ..0 0 ...0 0 0
−1 1 ..0 0 ...0 0 0
0 0 ..1 −1 ...0 0 0
0 0 .. − 1 1 ...0 0 0
0 0 ..0 0 ...1 −1 0
0 0 ..0 0 ... − 1 1 0
0 0 ..0 0 ...0 0 0

In addition to preserving bone lengths between connected pairs, certain joint
angle constraints are also imposed on skeletons. Inspired by the joint angle limits
in [9], we propose three joint constraints and four joints constraints.

The conditions for three joint angle constraints are as follows: Let vsb,sm

and vss,sm be two unit vectors, in this case the vectors from spine mid to spine
base and spine mid to spine shoulder. We constrain the angle between vsb,sm

and vss,sm to be between 160◦ and 180◦. Mathematically, this is expressed as:

− 0.93969 � (vsb,sm · vss, sm) � −1 (11)

Similarly we constrain the angle made by the spine top and the two shoulders
to be between 110◦ and 180◦, the angle made by the spine base with the hips to
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be between 100◦ and 180◦, and the angle made by the wrist with the elbow and
hand joint to be between 90◦ and 180◦. We formulate similar angle constraints
with four joints. Let vrh,sb, vlh,sb and vsm,sb be three unit vectors from spine
base to right hip, spine base to left hip and spine base to spine mid, respectively.
We define the vector nrh,sb,lh as the normal vector to the plane defined by vrh,sb

and vlh,sb.
nrh,sb,lh = (vrh,sb × vlh,sb) (12)

For the four joints to be in a valid position, we restrict the vectors nrh,sb,lh and
vsm,sb to be between 0◦ and 90◦. Mathematically this is written as:

1 � (nrh,sb,lh · vsm,sb) � 0 (13)

All the constraint equations (bone lengths, three joint angles and four joint
angles) are grouped and denoted as C. We then find the update d′ that optimizes:

minimize (d − d′)2 subject to C. (14)

We then add this constrained update d’ to the current skeleton pose and iter-
ate to hill climb in the space of valid skeletons. Figure 2(b) shows the skeleton
updated with one iteration of the constrained gradient.

Equation 14 modifies the input (i.e. the sequence of skeleton poses) to increase
the label response while generating skeletons that satisfy the anatomical con-
straints. As shown in Fig. 2(b), the first update yields a more extreme motion
that optimizes, in this case, the throw action. If we continue the gradient updates
until convergence, we get a skeleton that maximizes the class response for the
sequence. Unfortunately, the skeleton that optimizes the class response still fails
to look like a skeleton, despite adhering to the constraints imposed on it. Figure 5
shows a skeleton that optimizes the response but does not look like a valid skele-
ton. We could add more constraints, for example by requiring that the skeleton
be supported rather than floating in mid-air, but at the moment these unrealis-
tic optima provide a warning about inputs that generate strong false responses,
while earlier stages in the optimization show us more realistic motions that
strengthen the response.

3.3 SkeletonVis

We aggregate sensitivity analysis and activation maximization into an interactive
visualization tool called SkeletonVis. This tool is intended to help users better
understand models learned by LSTMs. SkeletonVis can be used over the web to
see visualizations of previously trained networks, or it can be downloaded and run
locally to examine the user’s own LSTM networks. Users can log on to http://
www.cs.colostate.edu/∼vision/skvis toolset/index.php to view the existing case
studies or download the source code from the same site to run it locally.

Figure 3 shows SkeletonVis as it appears over the web. On top, the system
summarizes the model and data information, showing the number of data sam-
ples, classes, and hidden neurons in the model, as well as the Kinect version used

http://www.cs.colostate.edu/~vision/skvis_toolset/index.php
http://www.cs.colostate.edu/~vision/skvis_toolset/index.php
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Fig. 3. The SkeletonVis tool, as it appears to LSTM developers and users.

and the classification accuracy of the system. Users select the class or hidden
unit they want to inspect, and an input video to visualize. Users also choose
whether to visualize sensitivity or activation maximization, and in the case of
activity maximization how many optimization iterations to apply. In the next
section, we present case studies using this tool.

4 Case Studies

This section provides examples of using the visualization techniques described
above to analyze LSTM networks. In particular, we trained LSTM networks
on two data sets, NTU-RGBD action recognition data set [19] and SYSU data
set [14], and analyzed what was learned using SkeletonVis. Although the network
is modern and relatively good at action recognition, we remind the reader that
focus of this paper is on the analysis of the network, not the network’s accuracy.

4.1 An LSTM Trained on NTU-RGBD Data Set

For our first case studies, we trained a single-layer LSTM network on the NTU-
RGBD data set [19]. This dataset contains 56,880 video samples of RGB-D
videos and skeleton data captured using a Kinect v2. There are 60 action classes
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performed by 40 participants and seen from multiple viewpoints. Cross Subject
(CS) and Cross View (CV) are the standard modes of evaluation. For simplicity,
we trained our network on the 44,213 videos of 49 actions that contain only a
single person. Data obtained from one participant (Participant 2) is reserved
as validation data (739 samples, equivalent to 2% of the training data). The
skeleton data is normalized as specified in [19].

The model contains 150 hidden neurons, trained with a batch size of 128. The
Adam optimizer [16] is used for training with an initial learning rate of 0.005.
The learning rate is reduced by a factor of 10 after 100 epochs. The training was
terminated after 25,800 iterations.

4.2 Sensitivity Analysis

The role of sensitivity analysis is to give users an intuition about what parts of
the body a class label or hidden unit is paying attention to. For most actions,
we start with an intuitive idea of what joints the network should focus on. The
point of sensitivity analysis is to determine whether the network matches our
expectations.

Fig. 4. Sensitivity visualizations of frames extracted from throw and kick actions. (a)
shows the sensitivity of joints from an early frame of a throwing motion. (b) shows
the sensitivities from an early frame of a kicking motion, while (c) shows a later frame
from the same kicking video.

Figure 4(a) shows the sensitivity plot of one frame in a throw action. As we
expected, the arms are highly sensitive. However, the mid-spine joint is unex-
pectedly sensitive, too. It has roughly the same sensitivity as the hands and
elbows in the initial frames of the action. The throw label seems to be sensi-
tive to it because throwing includes a vertical movement of the torso in all the
training samples.

Parts (b) and (c) of Fig. 4 show frames from a kick action. With kicking, we
expect attention to be focused on the knees and feet. The actual story is more
dynamic. In the early frames of the video, the LSTM is sensitive to the spine,
shoulders and elbows as well as the knees and left foot. As the kicking motion
progresses, the LSTM becomes less sensitive to the upper body and focuses on
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the foot instead. This seems to emphasize the starting pose, since most NTU
kicks begin from a standing position. It may also be that people tend to spread
their arms slightly at the beginning of a kick for balance.

4.3 Activation Maximization

In addition to sensitivity analysis, SkeletonVis shows synthetic videos produced
by activation maximization. Figure 5 concentrates on a single frame from each
of two throwing videos. The actual skeleton for each frame shown on the left.
The middle shows this skeleton after one iteration of activation maximization.
The right shows the final local optima reached after 12 iterations.

We learn different things from the second and third columns of Fig. 5. The
second columns teaches us how to make the throw response stronger through
exaggeration, in this case by putting the participant in a more crouched position,
with their left arm more curled and their left shoulder dipped. The feet are also
shown as more splayed, but we know that throw is not very sensitive to the
positions of the feet, so presumably this difference is unimportant.

Fig. 5. Figure shows the progression of skeleton

The third column of Fig. 5, on the other hand, warns us about non-sensical
videos that could fool us. For the throw motion, activation maximization con-
verges to a local optimum that might be described as a floating contortionist.
Although the bone and angle constraints are satisfied, the skeleton is extremely
contorted and floating in mid-air. This is clearly not feasible, yet it maximizes
the throw response and suggests a possible source of false responses.

4.4 An LSTM Trained on SYSU Data Set

The SYSU dataset [14] contains 480 video samples of RGB-D videos and skeleton
data captured using a Kinect v1, rendering skeletons with 20 joints. There are
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12 action classes performed by 40 participants. We evaluate the system using
one cross validation, with 20 training subjects and 20 testing subjects. Skeleton
data is normalized as in the NTU-RGBD data set.

The model consists of 200 hidden neurons, trained with a batch size of 64.
The Adam optimizer [16] is used for training with an initial learning rate of 0.005.
The learning rate is reduced by a factor of 10 after 60 epochs. The training was
terminated after 3,000 iterations.

Figure 6 shows frames from two similar actions: mopping and sweeping. To
differentiate these actions, the model focuses on the movement of the legs in
the sweeping action, and the lowered position of the head in the mopping
action. Thus these joints have unexpectedly high sensitivities, in addition to
the expected high sensitivities of the arms. The position and orientation of the
spine seems to be a differentiating factor in most of the samples of the two
actions.

Fig. 6. Sensitivity visualizations of frames extracted from mopping and sweeping
actions.

5 Conclusions and Future Work

Recurrent Neural Networks are a state of the art method for modeling sequential
data. However, the internal workings of these models are often treated as black
boxes by the researchers using them. This paper provide insights into models
learned by RNNs through visualization. Sensitivity, reveals the most relevant
joints in an action. We observe that while the joints we expect to be important
generally are important, there is often more to the story. For example, throwing
may include an upward trajectory of the torso, while kicking may be recog-
nized in part by the starting pose. Using one (or a few) iterations of activation
maximization, we show how the response of a video can be strengthened by
exaggerating a motion, thus providing intuitions about the idealized form of an
action. At the same time, by running activation maximization to convergence
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we produce impossible inputs that can fool an RNN. We aggregate these tech-
niques into an interactive visualization tool called SkeletonVis, which we are
making available so that RNN developers and users can gain insights into these
enigmatic networks.

In the future, we plan to improve the anatomical constraints underlying acti-
vation maximization. We will add temporal constraints to eliminate implausible
accelerations, and volume constraints to prevent body parts from passing inside
each other. Lastly, multi-layer LSTMS are becoming common, and we intend to
explore feature abstractions from higher layers.
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Abstract. In this paper, we introduce an effective information fusion
method using multimodal hashing with discriminant canonical correla-
tion maximization. As an effective computation method of similarity
between different inputs, multimodal hashing technique has attracted
increasing attentions in fast similarity search. In this paper, the proposed
approach not only finds the minimum of the semantic similarity across
different modalities by multimodal hashing, but also is capable of extract-
ing the discriminant representations, which minimize the between-class
correlation and maximize the within-class correlation simultaneously for
information fusion. Benefiting from the combination of semantic sim-
ilarity across different modalities and the discriminant representation
strategy, the proposed algorithm can achieve improved performance. A
prototype of the proposed method is implemented to demonstrate its
performance in audio emotion recognition and cross-modal (text-image)
fusion. Experimental results show that the proposed approach outper-
forms the related methods, in terms of accuracy.

Keywords: Information fusion · Multimodal hashing ·
Discriminant canonical correlation maximization ·
Audio emotion recognition · Cross-modal fusion

1 Introduction

The advancement in multimedia content analysis and sensing technology have
enabled and encouraged the design and development of computationally effective
and economically feasible multimodal systems for a broad spectrum of applica-
tions [1–3]. Since multimodal data contain rich information about the semantics
presented in the sensory and media data, valid interpretation and integration of
multimodal information is recognized as a central issue for the successful utiliza-
tion of multimedia in a wide range of applications. Therefore, information fusion
is becoming an increasingly important research topic. However, for information
fusion, one of the major concerns lies in the identification of the discrimina-
tory representations between different modalities. To solve this problem, a wide
variety of methods have been proposed [4–6].
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Since hashing has fast query speed and low storage cost, it has been widely
applied to similarity search works. Recently, more and more attentions have
been focused on multimodal hashing in multimedia data with modalities [7–9].
For instance, we can obtain a medical image from the same organ with dif-
ferent physical processes such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI).

It is widely acknowledged that there are two main categories of multimodal
hashing methods: cross-modal hashing (CMH) and multi-source hashing (MSH).
The method of MSH is also named multiple feature hashing with the purpose of
studying better codes by leveraging auxiliary views than unimodal hashing [7].
Recently, there has been extensive focus on the method of CMH, since only
one view is needed for a query point in CMH. For instance, all the tasks of
image-to-image, text-to-image, and image-to-text retrieval can be performed by
CMH [10].

CMH methods are further grouped into two classes: unsupervised CMH and
supervised CMH based on the usage of supervised information or not. For
unsupervised CMH methods, mostly relying on canonical correlation analysis
(CCA) [11], it maps two different views into a common latent space to explore
the maximum between two variables. For supervised CMH method, it utilizes
supervised information for hashing, leading to improved performance on differ-
ent tasks. Although the existing supervised methods have achieved promising
results in many real applications, they only account for the similarity across
different modalities, completely ignoring the data structure and discriminant
representation within each modality.

In this paper, a multimodal hashing with discriminant canonical correlation
maximization is proposed for information fusion. The main contributions of the
presented method are summarized as follows.
1. Since multi-source fusion is a special case of multimodal fusion, the proposed
method in this paper can be used for CMH and MSH, simultaneously.
2. In this paper, the similarity across different modalities from multimodal hash-
ing is applied to information fusion.
3. The proposed method is able to synchronously minimize the between-class
correlation and maximize the within-class correlation of multimodal variables,
revealing the intrinsic structure and discriminant representations from different
multimodal hashing information.
4. Not only the intrinsic structures and discriminant representation are con-
sidered, but also the semantic similarity across different modalities is utilized,
improving the final performance.

The remainder of this paper is organized as follows: Sect. 2 introduces the pro-
posed multimodal hashing with discriminant canonical correlation maximization.
In Sect. 3, implementation of the proposed method for audio emotion recognition
and cross-modal fusion is presented. The experimental results and analysis are
given in Sect. 4. Conclusions are drawn in Sect. 5.
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2 The Proposed Method

In this section, we introduce the proposed method for information fusion. In
the following, we first briefly describe the fundamentals of existing supervised
multimodal hashing (SMH) method, and then formulate the proposed method.

2.1 The Existing SMH Method

Let x∗ = [x1
∗, ..., xN

∗]T ∈ RN×m and y∗ = [y1∗, ..., yN
∗]T ∈ R N×p be two sets

of variables as the entries, and N denotes the number of training samples. Then,
m and p are the dimensions of feature space in each variable set, respectively.

As a supervised method, semantic labels for each training entity
in SMH are available. The labels are represented by the label vectors
{l1, l2..., lN |li ∈ {0, 1}c }, where c is the total number of classes. Then, li,k
denotes the ith entity belongs to the kth class. Otherwise, li,k = 0. For the
method of SMH, its goal is to learn two hashing functions for two different
entries: f(xi

∗) : Rm → {−1, 1}L and g(yi
∗) : Rp → {−1, 1}L, where L is the

length of the binary hash code. These two hashing functions map the original
data in the corresponding entry into a common hamming space. Although there
are a great number of functions which can be used to define f(x∗) and g(y∗), we
utilize the following functions

f(x∗) = sgn(x∗Wx∗),
g(y∗) = sgn(y∗Wy∗), (1)

where sgn() denotes the element-wise sign function, Wx∗ ∈ Rm×L and Wy∗ ∈
Rp×L are the projected matrices. Therefore, the solution to the SMH is to find the
projected matrices Wx∗ and Wy∗ with the minimum of the semantic similarity
across different modalities.

2.2 The Proposed Multimodal Hashing with Discriminant
Canonical Correlation Maximization (MH-DCCM)

Let U ∈ R N×c be the matrix to store the class label information with Ui,k = li,k,
where Ui,k stands for the element at the ith row and kth column in the matrix
U . Then, the similarity matrix is written as follows

S = UUT (2)

Since the value of sgn function satisfies the following relation

sgn ∈ {−1, 1}, (3)

therefore
sgn · sgn ∈ [−1, 1]. (4)

Hence, the element-wise linear transformation is applied to S to get S′,

S′ = 2S − 1 · 1T (5)
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where S′ ∈ RN×N and the value of S′ ∈ [−1, 1].
The mean vector of x∗ and y∗ is written as follows:

xM =
1
N

N∑

i=1

xi
∗, yM =

1
N

N∑

i=1

yi
∗ (6)

Then x = [x1
∗ − xM , ..., xN

∗ − xM ]T and y = [y1∗ − yM , ..., yN
∗ − yM ]T are two

zero-mean sets, which are written as follows

xT · 1 = 0 ∈ Rm,
yT · 1 = 0 ∈ Rp (7)

where
1 = [1, 1, · · · 1]T ∈ RN×1 (8)

Let
x = [x1

(1), x2
(1) · · · xn1

(1), · · · x1
(c), x2

(c) · · · xnc

(c)]T ∈ RN×m (9)

y = [y1(1), y2(1) · · · yn1
(1), · · · y1(c), y2(c) · · · ync

(c)]T ∈ RN×p, (10)

and
end

= [0, 0, · · · 0,︸ ︷︷ ︸
d−1∑

u=1
nu

1, 1, · · · 1︸ ︷︷ ︸
nd

0, 0, · · · 0︸ ︷︷ ︸
N−

d∑

u=1
nu

]T ∈ RN×1 (11)

where xj
(d) and yj

(d) denote the j th sample in the dth class, respectively. nd

is the total number of samples in the dth class, which satisfies the following
relation

c∑

d=1

nd = N (12)

Then, the within-class correlation matrix Cwxy
can be written as [5]:

Cwxy
=

c∑
d=1

nd∑
h=1

nd∑
g=1

xh
(d)T yg

(d)

=
c∑

d=1

(end
T x)T (end

T y)

= xT Ay

(13)

where

A =

⎡

⎢⎣

⎛

⎜⎝
Hn1×n1 . . . 0

... Hnd×nd

...
0 . . . H

nc×nc

⎞

⎟⎠

⎤

⎥⎦ ∈ RN×N (14)
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where Hnd×nd
is in the form of nd × nd and all the elements in Hnd×nd

are unit
values. Similarly, the between-class correlation matrix Cbxy

is in the form of [5]:

Cbxy
=

c∑
d=1

c∑
q=1
d�=q

nd∑
h=1

nq∑
g=1

xh
(d)T yg

(q)

=
c∑

d=1

c∑
q=1

nd∑
h=1

nq∑
g=1

xh
(d)T yg

(q)−
c∑

d=1

nd∑
h=1

nd∑
g=1

xh
(d)T yg

(d)

= (xT • 1)(1T • y) − xT Ay
= 0 − xT Ay
= −xT Ay

(15)

where 1 = [1, 1, · · · 1]T ∈ RN×1. The discriminant function is formulated as the
following expression:

∼
Cxy = Cwxy

− Cbxy
(16)

Substituting Eqs. (13) and (15) into (16) yields:

∼
Cxy = Cwxy

− Cbxy
= xT Ay − (−xT Ay) = 2xT Ay (17)

Therefore, the optimal discriminant function is written as the following opti-
mization problem:

arg max
Wx,Wy

Wx
T

∼
Cxy Wy (18)

Since A is a symmetric matrix, Eq. (18) is further expressed as follows

arg max
Wx,Wy

Wx
T

∼
Cxy Wy

= arg max
Wx,Wy

2Wx
T xT AyWy

= arg max
Wx,Wy

2(xWx)T A(yWy)

= arg max
Wx,Wy

2(A1/2xWx)T (A1/2yWy)

(19)

Furthermore, for canonical correlation analysis, two sets of variables x and y
should satisfy the following constrained condition to guarantee the first projec-
tion is uncorrelated with the second projection (canonical property):

Wx
T xT AxWx = NIL

Wy
T yT AyWy = NIL

(20)

where IL denotes an identity matrix of size L × L.
In this paper, the mapping functions f(x) and g(y) are defined as follows:

f(x) = sgn(A1/2xWx),
g(y) = sgn(A1/2yWy),

(21)



86 L. Gao and L. Guan

Based on multimodal hashing and discriminant correlation maximization meth-
ods, the objective function of the proposed multimodal hashing with discrimi-
nant correlation maximization is to find the minimum of the semantic similarity
across different modalities shown as follows

min
Wx,Wy

∥∥∥sgn(A1/2xWx)sgn(A1/2yWy)
T − LS

′
∥∥∥
2

(22)

Based on the spectral relaxation algorithm in [12], Eq. (22) is formulated as
follows

min
Wx,Wy

∥∥∥(A1/2xWx)(A1/2yWy)
T − LS

′
∥∥∥
2

(23)

subject to
(A1/2xWx)T A1/2xWx = NIL

(A1/2yWy)T A1/2yWy = NIL
(24)

Equation (23) is further written as follows

min
Wx,Wy

∥∥∥(A1/2xWx)(A1/2yWy)
T − LS

′
∥∥∥
2

= min(tr{[(A1/2xWx)(A1/2yWy)T − LS
′
]

[(A1/2xWx)(A1/2yWy)T − LS
′
]T })

= min(tr{[(A1/2xWx)(A1/2yWy)T (A1/2yWy)(A1/2xWx)T ]
−2L[(A1/2xWx)T S

′
(A1/2yWy)] + [L2(S

′
)T S

′
]})

= min(tr{[(A1/2xWx)(NIL)(A1/2xWx)T ]}
−tr{2L[(Wx

T xT A1/2)S
′
(A1/2yWy)]} + tr{[L2(S

′
)T S

′
]})

= min(Ntr{[(A1/2xWx)(IL)(A1/2xWx)T ]}−
Ltr{2[(Wx

T xT A1/2)S
′
(A1/2yWy)]} + L2tr{[(S

′
)T S

′
]})

= min(−Ltr{2[(Wx
T xT A1/2)S

′
(A1/2yWy)]} + LN2+

L2tr{[(S
′
)T S

′
]})

(25)

where tr() denotes the trace of a matrix. Since LN2 and L2tr{[(S
′
)T S

′
]} are

const, Eq. (25) can be expressed as follows

max
Wx,Wy

tr{2[(Wx
T xT A1/2)S

′
(A1/2yWy)]}

s.t.

(A1/2xWx)
T
A1/2xWx = NIL

(A1/2yWy)
T
A1/2yWy = NIL

(26)

After that, we apply the method of Lagrange multiplier to transform Eq. (26)
into:

J(Wx,Wy) = tr{2[(Wx
T xT A1/2)S

′
(A1/2yWy)]}−

λ
2 {[(A1/2xWx)T A1/2xWx) + (A1/2yWy)T A1/2yWy] − 2NIL} (27)

Let
∂J(Wx,Wy)

∂Wx
= 0 (28)
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and
∂J(Wx,Wy)

∂Wy
= 0, (29)

Equation (26) is further written as follows
[

0 Rxy

Ryx 0

]
W = λ

[
Rxx 0
0 Ryy

]
W (30)

where
Rxx = xT Ax, (31)

Ryy = yT Ay, (32)

Rxy = xT A1/2S
′
A1/2y, (33)

Ryx = Rxy
T , (34)

W =
[

Wx

Wy

]
. (35)

Then, Eq. (30) can be solved as the generalized eigenvalue (GEV) problem. In
summary of the discussion so far, the proposed multimodal hashing with dis-
criminant canonical correlation maximization (MH-DCCM) algorithm is given
below:

Algorithm 1 The Proposed MH-DCCM Algorithm
Require:

* Extracted data/information from multimodal sources to form the zero-mean sets
x and y;
* Use the label information of samples from sets x and y to form A and S

′
;

Ensure:
* Compute the matrixes Rxx, Ryy, Rxy and Ryx.
* Compute the eigenvalues and eigenvectors of Eq. (30).
return Wx and Wy.

3 Feature Extraction and Classification

In this section, the feature extraction and classification are presented in two
applications ranging from multi-source information fusion in audio emotion
recognition to multimodal information fusion in cross-modal (text-image) fusion.

3.1 Multi-source Information Fusion

Due to a special case of multimodal fusion, multi-source fusion utilizes different
features extracted from the same modality data but with different extraction
methods, highly likely carrying complementary information. Therefore, it would
lead to better performance for different tasks.
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Audio Emotion Recognition. Audio is one of the most essential and natural
verbal channels to transmit human affective states and it is easily accessible for
emotion recognition. Hence, the performance of audio emotion recognition has
also been investigated by numerous works in the literature [13,14]. Currently,
Prosodic and Mel-frequency cepstral coefficient (MFCC) are widely used in audio
emotion recognition [15,16].

In this paper, the fusion of Prosodic and MFCC features is investigated. The
two features are extracted as follows:

(a) 25-dimensional: Prosodic features used in [15].
(b) 65-dimensional: MFCC features (the mean, median, standard deviation,

max, and range of the first 13 MFCC coefficients).

3.2 Multimodal Information Fusion

Multimodal information fusion refers to a process which achieves more reliable
and robust analysis performance by integrating multimodal data sources [17]. It
has drawn increasingly extensive interest in both research and industrial sectors,
in a plethora of applications such as security and surveillance, video streaming,
education and training, healthcare, and human computer interaction (HCI).

Cross-Modal (Text-Image) Fusion. In the paper, we extract the bag-of-
visual SIFT feature vector from images [7] and Latent Dirichlet Allocation (LDA)
feature vector from texts [18], which are shown as follows:

(c) 128-dimensional: bag-of-visual SIFT feature vector.
(d) 10-dimensional: Latent Dirichlet Allocation feature vector.

3.3 Classification

In this paper, we use the recognition algorithm proposed in [19], which can be
written as follows:

Given two sets of features, represented by feature matrices

X1 = [x1
1, x

1
2, x

1
3, ...x

1
d] (36)

and
X2 = [x2

1, x
2
2, x

2
3, ...x

2
d] (37)

dist[X1X2] is defined as

dist[X1X2] =
d∑

j=1

∥∥x1
j − x2

j

∥∥
2

(38)

where ‖a − b‖2 denotes the Euclidean distance between the two vectors a and b.



Information Fusion via MH-DCCM 89

Let the feature matrices of the N training samples as F1, F2, ...FN and each
sample belongs to some class Ci (i = 1, 2...c), then for a given test sample I, if

dist[I, Fl] = min
j

dist[I, Fj ](j = 1, 2...N) (39)

and
Fl = Ci (40)

the resulting decision is I = Ci.

4 Experimental Results and Analysis

To evaluate the effectiveness of the proposed discriminant multimodal hashing
method, we implement experiments on Ryerson Multimedia Lab (RML) [15] and
eNTERFACE (eNT) [16] audio emotion database for multi-source information
fusion, and the Wiki dataset for cross-modal fusion, respectively.

4.1 Multi-source Fusion

The RML database consists of samples speaking six different languages (English,
Mandarin, Urdu, Punjabi, Persian, and Italian) from eight subjects to express the
six principal emotions-angry, disgust, fear, surprise, sadness and happiness. The
audio samples are recorded at a sampling rate of 22050 Hz. The eNT database
contains samples from 43 subjects, also expressing the six basic emotions, with
a sampling rate of 48000 Hz for audio channel.

During the experiments, 456 audio samples of eight subjects from RML
database and 456 audio samples of ten subjects from eNT database are utilized,
respectively. Both of the audio samples are divided into training and testing
subsets including 360 and 96 samples each. With the purpose of benchmark,
the accuracy of utilizing Prosodic and MFCC features is first evaluated and
tabulated in Table 1. The recognition accuracy is calculated as the ratio of the
number of correctly classified samples over the total number of testing samples.

Table 1. Results of audio emotion recognition with the single feature

Database Feature Accuracy

RML Prosodic 51.04%

RML MFCC 37.50%

eNT Prosodic 50.21%

eNT MFCC 39.58%

To demonstrate the effectiveness of the proposed MH-DCCM method, the
methods of Fisher Discriminant Analysis (FDA) [20], CCA [11], discriminant
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CCA (DCCA) (a special case of DMCCA [5]), labeled CCA (LCCA) (a special
case of LMCCA [21]), Semantic Correlation Maximization Multimodal Hashing
(SCMMH) [7] with the same Prosodic and MFCC features, and deep learning
based method Alexnet [22] are implemented on the same two datasets for com-
parison and the optimal accuracies are given in Tables 2 and 3, respectively.

Table 2. The optimal accuracy with different methods on RML database

Method The optimal accuracy

FDA [20] 56.25%

CCA [11] 53.13%

DCCA [5] 63.54%

LCCA [21] 59.38%

SCMMH (L = 32) [7] 62.50%

Alexnet (Pre-trained) [22] 59.46%

Alexnet (Fine-tuned) [22] 66.17%

The proposed MH-DCCM method (L = 32) 67.56%

Table 3. The optimal accuracy with different methods on eNT database

Method The optimal accuracy

FDA [20] 53.13%

CCA [11] 63.54%

DCCA [5] 67.71%

LCCA [21] 64.58%

SCMMH (L = 32) [7] 71.88%

Alexnet (Pre-trained) [22] 51.33%

Alexnet (Fine-tuned) [22] 78.08%

The proposed MH-DCCM method (L = 32) 78.13%

From Tables 2 and 3, it is observed that the performance of fusion methods
is better than the single feature. Moreover, since the between-class correlation
and within-class correlation are introduced to the proposed multimodal hashing
method simultaneously, it outperforms the statistical machine learning based
methods–CCA, DCCA, LCCA, SCMMH, and the deep learning based method.

4.2 Cross-Modal Fusion

For cross-modal (image-text) information fusion, we conduct experiments on the
Wiki dataset. There are a total of 2866 documents which are image-text pairs
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and annotated with semantic labels of 10 categories. A random split was used
to produce a training set of 2173 documents, and a test set of 693 documents.

As a benchmark, the performance of using the bag-of-visual SIFT feature
vector and Latent Dirichlet Allocation feature vector is first evaluated shown in
Table 4.

Table 4. Results of cross-modal fusion with the single feature

Database Feature Accuracy

Wiki bag-of-visual SIFT 27.56%

Wiki Latent Dirichlet Allocation 56.28%

To further demonstrate the effectiveness of the proposed discriminant mul-
timodal hashing, comparison with CCA [11], discriminant CCA (DCCA) [5],
labeled CCA (LCCA) [21], and Semantic Correlation Maximization Multimodal
Hashing (SCMMH) [7], is conducted on the Wiki database for comparison and
the optimal accuracies are tabulated in Table 5.

Table 5. The optimal accuracy with different methods on Wiki database

Method The optimal accuracy

CCA [11] 58.73%

DCCA [5] 62.34%

LCCA [21] 61.62%

SCMMH (L = 32) [7] 63.35%

The proposed MH-DCCM method (L = 32) 67.10%

From the above experimental results, again, the accuracy of fusion methods
is generally better than the single feature. On the other hand, clearly, the dis-
criminant power of the proposed method provides a more effective modelling
of the relationship between different features and cross-modal data, achieving
better performance than the related methods.

5 Conclusions

In this paper, we have proposed an effective multimodal hashing with dis-
criminant canonical correlation maximization method. The proposed method
is applied to multi-source and multimodal information fusion problems in audio
emotion recognition and cross-modal fusion. Benefiting from the discriminant
power and semantic similarity across different modalities, it improves the final
performance and achieves higher accuracy than the related methods.
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Abstract. Variational learning of mixture models has proved to be
effective in recent research. In this paper, we propose a generalized
inverted Dirichlet based mixture model with an incremental variational
algorithm. We incorporate feature selection and a component splitting
approach for model selection within the variational framework. This
helps us estimate the complexity of the data efficiently concomitantly
eliminating the irrelevant features. We validate our model with two chal-
lenging applications; image categorization and dynamic texture catego-
rization.

Keywords: Unsupervised learning · Generalized inverted Dirichlet ·
Variational learning · Component splitting · Feature selection

1 Introduction

Image analysis plays a pivotal role in making crucial decisions, such as in indus-
trial automation involving computer vision. Clustering images from different
categories is an essential task in image analysis as it helps to learn the underly-
ing patterns in the data. One of the best known methods for clustering is mixture
models [11]. The basic idea of a mixture model is to estimate the parameters
of a mixture of distributions that closely represent the data. Gaussian Mixture
Models (GMM) have been used in the industry for many practical applications
for some time now. However, not all data can be represented by Gaussian distri-
butions. For example, proportional data can be better modeled by generalized
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inverted Dirichlet (GID) mixture models [2,3]. The efficiency of the models pre-
sented in these papers motivates us to explore more possibilities with generalized
inverted Dirichlet mixture models.

When it comes to building a mixture model, the method we use to esti-
mate the parameters of the model plays an phenomenal role. The most common
method used is the maximum likelihood estimation (MLE) as in [4]. However,
the MLE based Expectation Maximization (EM) algorithms can get stuck in
global minima which leads to a wrong estimate of the parameters. An alter-
native is using the Bayesian approach [13], but this method is computationally
expensive and convergence is not guaranteed. Variational estimation on the other
hand may be used with a guarantee to converge. In our work we use the varia-
tional estimation method proposed in [10]. This paper also explores the idea of
using a method called component splitting which involves splitting a component
based on a split criteria. This solves the problem of model selection. The added
advantage of this method is that it happens within the variational framework.

It is a well known fact that, given a dataset, not all the features contribute
to the clustering process. This makes feature selection a very important process
in model design. We also incorporate the feature selection process within the
variational learning framework for increased efficiency. One such algorithm is
presented in [5]. The model built this way offers very good flexibility and provides
a better fit to the data. Since both model selection and feature selection are done
within the same algorithm it saves much of the computational time. This is the
approach we use in this paper. We validate the efficiency of our proposed model
with two challenging applications; image and dynamic texture clustering.

The rest of the paper is organized as follows: the statistical model is intro-
duced in Sect. 2, the variational approach is described in Sect. 3, the experimental
results are outlined in Sect. 4 and Sect. 5 concludes the paper.

2 The Mathematical Model

Assume we have a set Y of N random positive vectors, Y = (Y 1,Y 2, ...,Y N )
having D dimensions such that Y i = (Yi1, Yi2, ..., YiD). If we consider each vector
to be drawn from a mixture of M GID distributions, then the probability density
function apropos to the jth component is given by:

p
(
Y i | αj ,βj

)
=

D∏

d=1

Γ
(
αjd + βjd

)

Γ
(
αjd

)
Γ

(
βjd

)
Y

αjd−1
id(

1 +
∑d

l=1 Yil

)γid
(1)

where, α =
(
α1,α2, ...,αM

)
with αj =

(
αj1, αj2, ..., αjD

)
, β =

(
β1,β2, ...,βM

)

with βj =
(
βj1, βj2, ..., βjD

)
and γjd = βjd +αjd −βj(d+1) represent the mixture

parameters of the GID distribution such that, αjd > 0 and βjd > 0. If π =
(π1, π2, ..., πj) indicates the mixing coefficients of the M components then, the
mixture model is given by:

p
(
Y i | π,α,β

)
=

M∑

j=1

πjp
(
Y i | αj ,βj

)
(2)
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It is to be noted that all elements of π must be positive and sum to one. Now,
as proved in [2], we can factorize GID distribution as a product of inverted beta
distribution since it does not change the underlying model. So, Eq. 2 can be
represented as:

p
(X | π, α, β

)
=

N∏

i=1

(
M∑

j=1

πj

D∏

l=1

piBeta

(
Xil | αjl, βjl

)
)

(3)

Where, piBeta

(
Xil | αjl, βjl

)
depends on parameters, αjl and βjl and is given

by:

piBeta

(
Xil | αjl, βjl

)
=

Γ
(
αjl + βjl

)

Γ
(
αjl

)
Γ

(
βjl

)
X

αjl−1
il(

1 + Xil

)αjl+βjl
(4)

with X =
(
X1,X2, ...,XN

)
where Xi =

(
Xi1,Xi2, ...,XiD

)
, Xi1 = Yi1 and

Xil = Yil

1+
∑l−1

k=1 Yik
for l > 1. Next, we construct a latent variable, Z given by

Z = (Z1,Z2, ...,ZN ) with Zi = (Zi1, Zi2, ..., ZiM ) that follows the constraints,
Zijε{0, 1}, and

∑M
j=1 Zij = 1. This is the indicator matrix defined by Zij = 1 if

Xi belongs to component j and 0 if not. Based on this, we can write p(Z | π) =
∏N

i=1

∏M
j=1 π

Zij

j .
Moreover, feature selection is an essential process in a mixture model as

some features in the data do not necessarily have importance in clustering. The
performance of the model is better when these features are removed. In our
work we use the approach proposed in [5] where we approximate the irrelevant
features by considering a distribution over it. Hence, the features follow the
following distribution:

p(Xil | φil, αil, βil, λl, τl) � (
iBeta(Xil | αjl, βjl)

)φil
(
iBeta(Xil | λl, τl)

)1−φil

(5)
Here, φil = 0 if feature l is irrelevant for jth and 1 if relevant. In our case we
consider the irrelevant features to follow an inverted beta distribution iBeta(Xil |
λl, τl). Since φil is a binary latent variable we can write the prior distribution of
φ as:

p
(
φ | ε

)
=

N∏

i=1

D∏

l=1

εφil

l1
ε1−φil

l2
(6)

where, εl1 = p(φil = 1) and εl2 = p(φil = 0) since φil is a Bernoulli variable.
ε = (ε1, ε2, ...εD) represent the probabilities that the features are relevant or
not (i.e. feature saliencies), where εl = (εl1 , εl2) and εl1 + εl2 = 1. In our model,
the irrelevant features are modeled globally and model selection is done locally.
For the local model selection we use the algorithm proposed in [6]. According
to this algorithm, we initially start with two components and then we breakup
the current set of components into two partitions. One is called free components
and the other is called fixed components. The crux of the algorithm is that we
consider the fixed components are already a better fit to the data and we only
estimate the parameters for the remaining free components. For example, if we
take M − s to be the number of fixed components that represents the data very
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well, then we only estimate the parameters for s components to check if they give
a better fit to the data. Let’s say, π∗ = {π∗

j } represents the mixing coefficients
of the fixed components and π = {πj} represents the mixing coefficients of the
free components. These mixing coefficients claims the usual constraint that they
are positive and

∑s
j=1 πj +

∑M
j=s+1 π∗

j = 1. Based on this information we can
write p

(Z | π,π∗) as:

p
(Z | π,π∗) =

N∏

i=1

[
s∏

j=1

π
Zij

j

M∏

j=s+1

π
∗Zij

j

]

(7)

Following [6] we choose a non standard Dirichlet distribution as a prior for π∗
j

which is given by:

p(π∗) = (1 −
s∑

k=1

πk)−M+s
Γ (

∑M
j=s+1 cj)

∏M
j=s+1 Γ (cj)

M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)cj−1 (8)

As a final step, we choose a prior distribution to model the parameters α,β,λ
and τ . Gamma distribution is a perfect choice as GID is also from an exponential
family. Hence, assuming the parameters are independent we define the priors for
the parameters as, p

(
α

)
= G(

α | u,ν
)
, p

(
β

)
= G(

β | p, q
)
, p

(
λ

)
= G(

λ | g,h
)

and p
(
τ
)

= G(
τ | s, t

)
, where G(

x | a, b
)

= ba

Γ
(
a
)xa−1e−bx. All the hyperparam-

eter vectors u,v,p, q, g,h, s and t are positive in the above equations. Summa-
rizing all the unknown variables, we introduce Θ = {Z,α,β,λ, τ ,φ,π∗}. Now,
the joint distribution is given by:

p
(X , Θ | π, ε

)
= p

(X | Z,α,β,λ, τ ,φ
)
p
(
φ | ε

)
p
(
Z | π,π∗)

× p
(
π∗ | π

)
p
(
α

)
p
(
β

)
p
(
λ

)
p
(
τ
)

=
N∏

i=1

M∏

j=1

{
D∏

l=1

[
Γ

(
αjl + βjl

)

Γ
(
αjl

)
Γ

(
βjl

)
X

αjl−1
il(

1 + Xil

)αjl+βjl

]φil

×
[

Γ
(
λl + τl

)

Γ
(
λl

)
Γ

(
τl

)
Xλl−1

il(
1 + Xil

)λl+τl

]1−φil
}Zij

×
N∏

i=1

D∏

l=1

εφil

l1
ε1−φil

l2

×
N∏

i=1

[
s∏

j=1

π
Zij

j

M∏

j=s+1

π
∗Zij

j

]

×
(

1 −
s∑

k=1

πk

)−M+s

× Γ
(∑M

j=s+1 Cj

)

∏M
j=s+1 Γ

(
Cj

)
M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)Cj−1

× ν
ujl

jl

Γ
(
ujl

)α
ujl−1
jl e−νjlαjl × q

pjl

jl

Γ
(
pjl

)β
pjl−1
jl e−qjlβjl

× hgl

l

Γ
(
gl

)λgl−1
jl e−hlλl × tsl

l

Γ
(
sl

)τsl−1
l e−tlτl (9)

Figure 1 shows the graphical model of the dependencies between the different
parameters.
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Fig. 1. Graphical representation of finite GID mixture model with feature selection
and component splitting. The circles denote the random variables and the conditional
dependencies between the variables are indicated by the arcs. The number in the bot-
tom right corner of the platesindicates the dimension of the variables inside

3 Variational Learning

In this section we describe the variational learning approach that we use to
estimate the parameters of the GID mixture model with feature selection and
component splitting. The main drawback of the Bayesian approach is that the
computation of p

(
Θ | X )

is complex and is sometimes intractable. To over-
come this problem, we use the variational approach as proposed in [7] where
we determine the posterior probability by approximating another distribution
Q(

Θ
)
. We can say that two distributions are exactly equal if the Kulllback-

Leibler (KL) divergence between the two distributions is equal to 0. The KL
divergence between Q(

Θ
)

and the true posterior p
(
Θ | X )

can be written as:

KL
(Q || P

)
= −

∫
Q(

Θ
)
ln

(
p
(
Θ | X ,π

)

Q(
Θ

)
)

dΘ = ln p
(X | π

) − L(Q)
(10)

This equation clearly shows that, KL
(Q || P

)
is equal to 0 when the lower bound

L(Q)
=

∫ Q(
Θ

)
ln

(
p
(
X ,Θ|π

)

Q
(
Θ
)

)
dΘ is maximum. Since in our case the parameters

are independent, by using mean field approximation [14] we can factorize Q(
Θ

)

as Q(
Θ

)
=

∏
k Qk

(
Θk

)
. This means, we maximize L(Q)

with respect to each
parameter Qk

(
Θk

)
whose general expression is given by:

Qk

(
Θk

)
=

exp
〈
ln p

(X , Θ
)〉

�=k∫
exp

〈
ln p

(X , Θ
)〉

�=k
dΘ

(11)
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where
〈
.
〉

�=k
is the expectation irrespective of Θk. Based on Eq. 11, we can write

the variational solutions for our model as:

Q(Z)
=

N∏

i=1

[
s∏

j=1

r
Zij

ij

M∏

j=s+1

r
∗Zij

ij

]

, Q(
φ) =

M∏

j=1

D∏

l=1

fφil

il

(
1 − fil

)1−φil (12)

Q(π∗) =(1 −
s∑

k=1

πk)−M+s
Γ (

∑M
j=s+1c

∗
j )

∏M
j=s+1 Γ (c∗

j )

M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)c∗
j −1 (13)

Q(
α

)
=

M∏

j=1

D∏

l=1

G(
αjl | u∗

jl, ν
∗
jl

)
, Q(

β
)

=
M∏

j=1

D∏

l=1

G(
βjl | p∗

jl, q
∗
jl

)
(14)

Q(
λ

)
=

D∏

l=1

G(
λl | g∗

l , h∗
l

)
, Q(

τ
)

=
D∏

l=1

G(
τl | s∗

l , t
∗
l

)
(15)

provided,

rij =
r̃ij

∑s
j=1 r̃ij +

∑M
j=s+1 r̃∗

ij

, r∗
ij =

r̃∗
ij

∑s
j=1 r̃ij +

∑M
j=s+1 r̃∗

ij

(16)

ln r̃ij = ln πj +
D∑

l=1

{
〈
φil

〉
[
R̃jl +

(
αjl − 1

)
ln Xil − (

αjl + βjl

)
ln

(
1 + Xil

)
]

+
〈
1 − φil

〉
[
F̃l +

(
λl − 1

)
ln Xil − (

λl + τ jl

)
ln

(
1 + Xil

)
]}

(17)

ln r̃∗
ij =

〈
ln π∗

j

〉
+

D∑

l=1

{
〈
φil

〉
[
R̃jl +

(
αjl − 1

)
ln Xil − (

αjl + βjl

)
ln

(
1 + Xil

)
]

+
〈
1 − φil

〉
[
F̃l +

(
λl − 1

)
ln Xil − (

λl + τ jl

)
ln

(
1 + Xil

)
]}

(18)

c∗
j =

N∑

i=1

r∗
ij + cj , fil =

f
(φil)
il

f
(φil)
il + f

(1−φil)
il

(19)

f
(φil)
il = exp

{
〈
ln εl1

〉
+

M∑

j=1

〈
Zij

〉
[
R̃jl+

(
αjl−1

)
ln Xil−

(
αjl+βjl

)
ln

(
1+Xil

)
]}

(20)

f
(1−φil)
il = exp

{
〈
ln εl2

〉
+

[
F̃l +

(
λl − 1

)
ln Xil − (

λl + τ l

)
ln

(
1 + Xil

)
]}

(21)
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R̃ = ln
Γ (α + β)
Γ (α)Γ (β)

+ α
[
ψ(α + β) − ψ(α)

]
(
〈
ln α

〉 − ln α)

+ β
[
ψ(α + β) − ψ(β)

]
(
〈
ln β

〉 − lnβ)

+ 0.5α2
[
ψ′(α + β) − ψ′(α)

]〈
(ln α − lnα)2

〉

+ 0.5β
2[

ψ′(α + β) − ψ′(β)
]〈

(ln β − ln β)2
〉

+ αβψ′(α + β)(
〈
ln α

〉 − ln α)(
〈
ln β

〉 − ln β) (22)

F̃ = ln
Γ (λ + τ)
Γ (λ)Γ (τ)

+ λ
[
ψ(λ + τ) − ψ(λ)

]
(
〈
ln λ

〉 − ln λ)

+ τ
[
ψ(λ + τ) − ψ(τ)

]
(
〈
ln τ

〉 − ln τ)

+ 0.5λ
2[

ψ′(λ + τ) − ψ′(τ)
]〈

(ln λ − ln λ)2
〉

+ 0.5τ2
[
ψ′(λ + τ) − ψ′(τ)

]〈
(ln τ − ln τ)2

〉

+ λ τ ψ′(λ + τ)(
〈
ln λ

〉 − ln λ)(
〈
ln τ

〉 − ln τ) (23)

u∗
jl =ujl +

N∑

i=1

〈
Zij

〉〈
φil

〉
αjl

[

ψ
(
αjl + βjl

) − ψ
(
αjl

)

+ βjlψ
′(αjl + βjl

)(〈
ln βjl

〉 − ln βjl

)
]

(24)

ν∗
jl = νjl −

N∑

i=1

〈
Zij

〉〈
φil

〉
ln

Xil

1 + Xil
(25)

Similar to the calculation of u∗
jl and ν∗

jl we can calculate the hyperparame-
ters p∗

jl, q
∗
jl, g

∗
l , h∗

l , s
∗
l and t∗l as well. ψ

(
.
)

and ψ′(.
)

denote the digamma and
trigamma functions, in the equations above. R̃ and F̃ in Eqs. 22 and 23 are
the taylor series approximation of R =

〈
ln Γ (α+β)

Γ (α)Γ (β)

〉
and F =

〈
ln Γ (λ+τ)

Γ (λ)Γ (τ)

〉

since these equations are intractable [2]. The expected values mentioned in the
equations above are given by:

〈
Zij

〉
=

{
rij , for j = 1, ..., s

r∗
ij , for j = s + 1, ...,M

(26)

αjl =
u∗

jl

ν∗
jl

,
〈
ln αjl

〉
= ψ

(
u∗

jl

) − ln ν∗
jl (27)

〈(
lnαjl − ln αjl

)2〉 =
[
ψ

(
u∗

jl

) − ln u∗
jl

]2 + ψ′(u∗
jl

)
(28)

〈
φil

〉
= fil,

〈
1 − φil

〉
= 1 − fil (29)
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〈
π∗

j

〉
=

(

1 −
s∑

k=1

πk

) ∑N
i=1 r∗

ij + cj
∑N

i=1

∑M
k=s+1 r∗

ik + ck

(30)

〈
ln π∗

j

〉
=ln

(
1 −

s∑

k=1

πk

)
+ ψ

( N∑

i=1

r∗
ij + cj

) − ψ
( N∑

i=1

M∑

k=s+1

r∗
ik + ck

)
(31)

We can derive similar equations like in 27 and 28, for β,λ and τ . π∗
j and πj

depend on each other and similarly for εl1 and εl2 . Hence, we equate the lower
bound with respect to πj and εl1 to zero to get:

πj =

(

1 −
M∑

k=s+1

〈
π∗

k

〉
) ∑N

i=1 rij
∑N

i=1

∑s
k=1 rik

, εl1 =
1
N

N∑

i=1

fil (32)

According to our algorithm, the irrelevant features will have lower probabilities
and hence will not be used in the clustering process. These features are elim-
inated in the learning process which increases the efficiency of the clustering
algorithm. The model selection method using component splitting approach on
the other hand follows a unique algorithm where we split a component pertain-
ing to the relevant features into two called the free components. The remaining
components are called the fixed components. We then run the variational algo-
rithm on the free components locally without modifying the fixed components.
At convergence, one of the three things might happen: (1) Both the components
might have significant mixing coefficient and hence the new approximation is
a better fit to the data. So the split is a success and both the components are
retained. The algorithm starts splitting the new set of components from the
beginning again. (2) Only one of the components is retained and the other is
insignificant, i.e. the corresponding mixing coefficient fades out closer to 0. In
this case the split test is a failure and the algorithm moves to split the next
component. (3) The mixing weights of both the new components fades out to 0
which means they are redundant. We do not allow this split as it will lead to an
infinite loop. It is obvious that the data should have more than one component
for this idea to work. So we check this condition first. The algorithm stops when
all the components in the current set fails the splitting test. The efficiency of the
model lies in the fact that the model selection approach is applied only to the
components of the relevant features which saves time.

4 Experimental Results

To evaluate our model we use two challenging datasets; the dynamic tex-
ture dataset (Dyntex) [15] and the Corel 10K dataset1 for image catego-
rization. We compare the results of our proposed variational GID mixture
model (varGIDMM ) with the standard benchmark of Gaussian mixture models
based on maximum likelihood estimation (GMM ) and variational approximation

1 http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx.

http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
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(varGMM ). The initial values of the hyperparameters u, p, g, s and c is set to
1, that of ν and q is set to be 0.09 and that of h and t is set to be 0.06. These
initiations were found to give the best results in our experiments.

4.1 Image Clustering

There has been a huge increase in the amount of images generated in recent
years. With the increase in the volume of images, the need to categorize them
based on analyzed patterns has been on the rise as well. Clustering the images
hence plays a predominant role in categorizing the images. The efficiency of the
use of bag of visual words features [8] is also imminent in recent years. To get the
bag of visual words we first have to extract feature descriptors (scale invariant
feature transform (SIFT) [12], histogram of Gaussians (HOG) [9], Speeded-up
robust features (SURF) [1], etc.) from the images. We then use k-means clus-
tering on the extracted descriptors with the k value indicating the number of
features. The Corel 10K dataset which we choose for our application has about a
100 classes with 100 images per class. We choose 7 image classes from them cor-
responding to “Playing Cards”, “Dolls”, “Steam Tractors”, “Paintings”, “Easter
Eggs”, “Beads” and “Dinosaurs”. Sample images from the dataset are shown in
Fig. 2. It is to be noted that the use of seven categories is ease of representation.
In our case we first extract SIFT feature descriptors from the images as it is
found to give better results and then generate bag of visual words features from
the descriptors. We feed this data as input to our model. The Confusion matrix
pertaining to our model is shown in Fig. 3. Table 1 shows the accuracy of dif-
ferent models compared with ours. It clearly shows that our model outperforms
GMM models by a large margin.

Playing Cards Dolls Steam Tractors Paintings

Easter Eggs Beads Dinosaurs

Fig. 2. Sample images from different categories of Corel 10K dataset
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Fig. 3. Confusion matrix of Corel 10K dataset with varGIDMM

Table 1. Accuracy of different models on Corel 10K dataset

Method Accuracy (%)

varGIDMM 87.41

varGMM 60.42

GMM 57.42

4.2 Dynamic Texture Clustering

Dynamic textures refers to textures in the temporal dimension. For example,
videos of burning fire, turbulence, sea waves, etc. Dynamic textures play an
important role in various applications such as dynamic background subtraction,
video completion, etc. Hence clustering them is of prime importance as well.
In the case of dynamic textures extracting local binary pattern (LBP) features
makes more sense because LBP mainly divides an image into cells and constructs
a histogram of features by comparing each cell with its neighboring cells. In our
experiment we use 4 classes from the DynTex dataset, which are: Flags, Flowers,
Sea and Trees. Examples of the four classes are shown in Fig. 4. We extract LBP
features from each frame of every video in a class. This is used as input to our
model. The confusion matrix indicating the results obtained with our model is
shown in Fig. 5. The accuracy of the different models is shown in Table 2. The
results show that the varGIDMM is better than the GMMmodels. Based on the
number of frames assigned to a particular cluster we can predict to which cluster
the video belongs to.
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Flags Flowers Sea Trees

Fig. 4. Sample snapshots from different categories of DynTex dataset

Fig. 5. Confusion matrix of DynTex dataset with varGIDMM

Table 2. Accuracy of different models on DynTex dataset

Method Accuracy (%)

varGIDMM 86.10

varGMM 84.42

GMM 84.87

5 Conclusion

This article proposed an unsupervised learning approach using GIDMM with
feature selection and model selection. Using component splitting as a model
selection method hand in hand with the feature selection process has proved to
improve the efficiency of our algorithm as indicated by the results. Our model
performed better than the GMM models by a large margin of over 25% in
image categorization. The results with dynamic texture categorization also shows
that our model is significantly better than the standard GMM models. The
performance of the model is encouraging and can be applied to many other
applications such as image segmentation and video categorization.
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Abstract. The utilization of different types of brain images has been
expanding, which makes manually examining each image a labor-
intensive task. This study introduces a brain tumor segmentation method
that uses two parallel U-Net with an asymmetric residual-based deep
convolutional neural network (TPUAR-Net). The proposed method is
customized to segment high and low grade glioblastomas identified from
magnetic resonance imaging (MRI) data. Varieties of these tumors can
appear anywhere in the brain and may have practically any shape, con-
trast, or size. Thus, this study used deep learning techniques based on
adaptive, high-efficiency neural networks in the proposed model struc-
ture. In this paper, several high-performance models based on convo-
lutional neural networks (CNNs) have been examined. The proposed
TPUAR-Net capitalizes on different levels of global and local features in
the upper and lower paths of the proposed model structure. In addition,
the proposed method is configured to use the skip connection between
layers and residual units to accelerate the training and testing processes.
The TPUAR-Net model provides promising segmentation accuracy using
MRI images from the BRATS 2017 database, while its parallelized archi-
tecture considerably improves the execution speed. The results obtained
in terms of Dice, sensitivity, and specificity metrics demonstrate that
TPUAR-Net outperforms other methods and achieves the state-of-the-
art performance for brain tumor segmentation.
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1 Introduction

The American Cancer Society has announced that the number of people with
brain malignancies in the United States alone expanded by 23,880 new instances
and caused an estimated 16,830 deaths in 2018 [1]. While the most recognized
tumors of the cerebrum are gliomas, they can be low-grade, resulting in long
life expectancy, or high-grade, causing short life expectancy [2]. Furthermore,
as announced by the National Brain Tumor Foundation (NBTF), the number
of individuals who die from brain tumors in advanced nations has increase by
300% in recent decades [3,4].

While a few tumors, such as meningiomas, can be segmented relatively effort-
lessly, others, such as glioblastomas and gliomas, are significantly more difficult
to segment. These tumors with edema form expanded tentacle-like structures
that are frequently diffuse and have inadequate contrast, which makes segmen-
tation challenging. Their borders are frequently ill-defined and difficult to differ-
entiate from healthy tissues. Moreover, tumors can appear anyplace in the skull
and can have unique shapes and sizes [5]. The objective of brain tumor segmen-
tation is to identify the area and extent of the tumor regions. The segmentation
is achievable by recognizing areas that differ from ordinary tissues.

In spite of the fact that medical surgery is the most widely recognized form
of brain tumor treatment, manual investigation requires considerable time and
effort by radiologists and different specialists who must identify, localize and
classify tumors from magnetic resonance imaging (MRI) images. MRI images are
rich sources of data for brain tumor treatment and analysis, and they possess a
larger number of characteristics than do other imaging methods [6]. Brain tumor
segmentation from MRI images can greatly enhance diagnosis, treatment, and
growth rate predictions.

The literature includes some deep learning-based segmentation methods that
have been introduced to enhance brain tumor diagnosis. Pereira et al. [7] intro-
duced an automatic brain tumor segmentation system based on a convolutional
neural network (CNN) that used intensity normalization as a preprocessing step.
Later, Pereira et al. in [8] presented a hierarchical study of brain tumor segmen-
tation using a fully convolutional network (FCN) and MRI histograms. In [9],
automatic brain image segmentation was proposed for 2D and 3D MRI patches
using a deep neural network. Xiao et al. [10] proposed a segmentation method
that used a deep learning network-based classification approach. First, a stacked
auto-encoder network was used to extract features from the input; then, image
patches were classified to create a binary image map. Subsequently, a morpho-
logical filter was used to produce the segmented tumor.

Havaei et al. [2] presented a brain tumor segmentation method that used
a CNN. They applied a two-pathway architecture to efficiently train the CNN
using global and local details. Casamitjana et al. [11] proposed a 3D CNN that
combined global and local details from three different architectures. Zhao et al.
[12] combined a fully convolutional neural network with conditional random fields
(CRF) to efficiently segment brain tumors; this model was trained in three stages.
In [13], a fully automatic 2D method based on U-Net with a comprehensive data
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augmentation technique was proposed for brain tumor segmentation. Wang et al.
[14] explored a 3D U-Net network for brain tumor segmentation that included
upsampling and downsampling paths with shortcut connections between them.

In this study, a new network structure called two parallel U-Net with asym-
metric residual-based deep convolutional neural network (TPUAR-Net) is pro-
posed for brain tumor segmentation. It involves two asymmetric parallel paths.
Each path consists of a U-Net and different residuals of a deep convolutional
neural network (DCNN). The proposed structure uses a DCNN with modified
U-Net submodels, residual units, batch normalization, parametric rectified lin-
ear unit (PReLU), and skip connections. The model considers both the local
shape and the context of tumors. The proposed method overcomes the problem
of performing pixel arrangements without considering local label dependencies.

TPUAR-Net uses redesigned U-Net units with residual units to overcome the
vanishing gradient problem. The residual units use different levels of skip connec-
tions to generate different features levels, allowing the network to learn both low-
and high-level features. Parallel paths are used to decrease the processing time,
and they provide good generalization by adding local and global features that
improve the overall model performance. Furthermore, a weighted-loss function
is applied in which the weights are computed in a per image manner.

The remainder of this paper is structured as follows. The structure of the
proposed TPUAR-Net model is shown in Sect. 2. The implementation and per-
formance evaluation phases are demonstrated in Sect. 3. Finally, conclusions and
future work are provided in Sect. 4.

2 TPUAR-Net Architecture

The proposed TPUAR-Net model consists of two parallel paths; each path has
down-sampling and up-sampling units, skip connections, and several residual
units. The outputs of the lower and upper paths are concatenated and input to
the next cascaded path in the network. Figure 1 shows a block diagram of the
proposed TPUAR-Net model. The sequence of processes that occur in the pro-
posed structure are explained in detail in the Simulation Sect. 3. The input to the
proposed model consists of labeled batches from five categories fused together:
enhancing tumor, non-enhancing tumor, edema, necrosis, and everything else,
as shown in Fig. 2.

2.1 Preprocessing

The database used in this study (BRATS 2017) contains 3D MRI volumes with
different spacings in the three dimensions and low isotropic resolution. Segmen-
tation is performed on each 2D image (slice) using different image modalities
(FLAIR, T2, T1, and T1C). Therefore, patches with a size of 128 × 128 were
generated. The patches were centered on the classified pixel. Slices bordered
with 0 pixels were ignored by taking only the interior pixels. Each input was
arranged to contain patches with the four modalities.
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Fig. 1. A block diagram of the proposed TPARU-Net architecture for brain tumor
segmentation.

2.2 Convolutional Layers

The main building block in the proposed TPUAR-Net architecture consists of
convolutional layers. The input to each convolutional layer consists of the output
of the previous layer, and the output feature maps (except for the input to first
convolutional layer) are related to the number of modalities used. The feature
plan calculation Os is given in Eq. 1:

Os = bs +
∑

r

Wsr ∗ Xr, (1)

where Wsr is the subkernel for the input channel, Xr is the rth input channel in
the convolution sequence, and bs is a bias term. A convolutional layer has the
ability to learn the biases and weights of individual features that improve the
data-driven, customized, and task-specific dense feature extractors.

2.3 Residual Blocks

The architecture contains many stacked residual blocks. Each residual block has
a direct connection (skip connection) for propagating information, allowing it to
propagate directly between blocks in both the forward and backward directions,
as shown in Eqs. 2 and 3:
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yl = h(nl) + f(nl,Wl) (2)

nl+1 = f(yl), (3)

where nl is the lth input, nl+1 is the lth output, and f is the residual unit
function. Wl is the set of weights related to the lth residual unit. h(nl) = nl

is known as an attached identity skip connection, and nl+1 = yl when f is an
identity [15].

TPUAR-Net uses two types of residual blocks. The residual blocks contain a
stacked set of different layers, including batch normalization (BN), parametric
rectified linear unit (PReLU), and convolutional layers. Their input is normalized
by BN, and at that point, the PReLU non-linear activation function is connected,
followed by a convolution layer. These layers are then repeated. Furthermore,
the input is added to the output of the last convolution layer, creating a direct
connection between input and output. The residual decoding block (residual
Dec.) adds a convolutional layer in the direct path, as shown in Fig. 1.

2.4 PReLU Layers

The PReLU layer is mostly used for the hidden layers. PReLU is a learned
parametric activation unit that improves the classification accuracy. When α =
0, this layer becomes a ReLU in which the input x and the output y are the
same when input is greater than 0; otherwise, the output is equal to 0. When α
is a learnable parameter, we refer to Eq. 4 as a PReLU operation, which requires
only a small number of parameters [16]:

fy = max(y, 0) + α min(y, 0). (4)

2.5 Loss Function and Regularization

The loss function is characterized as the sum of the cross entropy for all the
pixels in the image. Cross-entropy loss is used to measure the classification model
performance, and it increases as the probability of the predicted label diverges
from the true label as calculated in Eq. 5:

Lce(y, ŷ) = y log(
y

ŷ
) + (1 − y) log(

1 − y

1 − ŷ
), (5)

where Lce(y, ŷ) is the cross entropy error between y (the desired output) and ŷ
(the predicted output) [17].

BN is used to regularize the values provided to the activation function and
omit non-linearities as shown in Eq. 6. BN helps in training TPUAR-Net by
smoothing the optimization plane, creating more stable gradients, faster optima,
and making weight initialization easier due to the increased activation function
viability. The regularization and weighted-loss functions prevent the network
from becoming stuck in local minima and increase the model’s performance:

x̂ =
x − E[x]√

Var[x]
, (6)
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where x̂ represents the normalized activations, x is the layer input, E[x] is the
expected value, and Var[x] is the unbiased variance estimate [18]. Dropout is
another regularization technique that randomly ignores selected neurons during
training and prevents weight updating [8].

Fig. 2. The four MRI modalities are shown: from left to right, these are T1, T2, T1C,
and FLAIR. These four modalities are used as inputs to the network. The last image
shows the ground truth with Necrosis in ( ) color, Enhanced tumor in ( ) color,
Nonenhanced tumor in ( ) color, and Edema in ( ) color. (Color figure online)

3 Simulation Experiments and Evaluation Metrics

The conducted simulation experiments are described in this section, and the
evaluation process was applied using different metrics. The experimental method
was created in Jupiter notebook and utilized the ipython, Tensorflow, and Keras
toolkits. The proposed architecture was coded in Jupiter notebook utilizing the
keras and Tensorflow toolkits. The computer was equipped with an Intel Core
i7 processor running at 3.2 GHz, 24 GB of RAM, and an Ubuntu desktop 64-bit
operating system.

3.1 Simulation Process and Scenario

The calculations and the sequence of the operations can be described as follows:
Fused MRI image from the five different categories of images shown in Fig. 2 were
prepared and provided as input to the model. Next, preprocessing was applied
to reduce noise and enhance the image resolution. The two parallel calculation
paths through the TPUAR-Net model were used to extract both local and global
features from the input image. These features are accumulated and provided as
the input to the remainder of the architecture.

Each of the upper and lower parallel paths contains both upsampling and
downsampling processes with shortcut connections (skip connection) between
them. Two different residual blocks were used in each of the upper and lower
paths. One of the residual blocks is called the residual encoding block (Residual
Enc.), and the other is called the residual decoding block (Residual Dec.). These
blocks are shown on the far left side of Fig. 1.
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Table 1. Distribution of images in the evaluation database.

No. in training set No. in testing set

HG LG HG LG

BRATS 2017 No. of patients 60 40 50 20

3D volume 240 160 200 80

2D image 37200 24800 31000 12400

Total 2D image 62000 43400

A convolutional layer is applied after each residual block. The convolutional
layer has a stride of 2 in the downsampling path. However, a standard convolu-
tional layer is used in the upsampling path followed by an upsampling layer that
duplicates the columns and rows of the data with a factor of 2. Then, the two
parallel paths are merged by a concatenation layer, which takes a list of inputs
with the same shape and returns a concatenation of all the inputs, providing
one path, and a new cascaded path is launched until it reaches the segmented
output. The merging path contains a BN layer connected to a PReLU layer and
followed by a convolutional layer.

In the final stage of the output path, a fully connected layer with the softmax
function is used to perform image classification. In the simulation, the architec-
ture of the proposed model achieved accurate brain tumor segmentation from
MRI images. The model addresses the pixelwise segmentation problem as a sim-
ple type of classification problem.

3.2 Input Dataset

The MRI image database used to evaluate the proposed tumor segmentation
was extracted from the BRATS 2017 MRI database. The database consists of
75 low-grade (LG) and 210 high-grade (HG) patients with FLAIR, T2, T1, and
T1C type MRI modalities. It was not possible to use the entire dataset because
of the patch-per-pixel training strategy, which makes the dataset very large.
Thus, a randomly selected number of patients were used for the training and
testing datasets. The testing dataset was randomly selected from both LG and
HG data. Table 1 lists the specifications for the training and testing databases,
and a sample of the MRI images used in the experiments is shown in Fig. 2.

3.3 Evaluation Metrics

The system executed on the test set, and the predicted output was compared
with the ground truth provided by expert radiologists. The tumor structures are
grouped into 3 diverse tumor areas, largely due to convenient clinical applica-
tions. The tumor districts were characterized as complete tumors (including all
types), core tumors (including all types except “edema”), and enhanced tumor
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Fig. 3. Visual sample results from TPUAR-Net from the axial view. From left to right,
the top row shows the FLAIR modality of an HG tumor, the ground truth, and the
predicted image. The second row from left to right shows the FLAIR modality of an
LG tumor, the ground truth, and the predicted image.

(including “the enhanced” images). We calculated the Dice, sensitivity and speci-
ficity metrics for all the tumor regions as shown in Eqs. 7, 8, and 9, respectively:

Dice =
|P ∩ T |

(|P | + |T |)/2
(7)

Sensitivity =
|P ∩ T |

|T | (8)

Specificity =
|P0 ∩ T0|

|T0| (9)

where P is a positive segmented region and P0 is a negative segmented region.
Similarly, T represents the true ground truth, and T0 represents the negative
ground truth. |P ∩ T | is the intersecting area between P and T [2].

3.4 Accuracy Analysis

Reproductions of these tests were conducted to demonstrate the performance of
the proposed network in fulfilling the tumor segmentation task. A comparison
with different methods found in the literature is shown in Tables 2, 3, and 4.
Clearly, the proposed system is superior to the others in terms of network size,
specificity, sensitivity and Dice metrics. Figure 3 shows an example of the seg-
mentation results. Although the network training time was not considered, the
average testing time per MRI image was measured at 0.08 s.
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Table 2. Dice score comparison of the proposed brain tumor segmentation approach
with various state-of-the-art methods.

Methods Dice score

Complete Core Enhancing

Havaei et al. [2] 0.88 0.79 0.73

Pereira et al. [7] 0.84 0.72 0.62

Pereira et al. [8] 0.85 0.76 0.74

Casamitjana et al. [11] 0.89 0.76 0.63

Zhao et al. [12] 0.87 0.83 0.76

Dong et al. [13] 0.86 0.86 0.65

Wang et al. [14] 0.86 0.76 0.73

Hai et al. [19] 0.85 0.81 0.72

Proposed TPUAR-Net 0.89 0.82 0.79

Table 3. Sensitivity comparison of the proposed brain tumor segmentation approach
against various state-of-the-art methods.

Methods Sensitivity

Complete Core Enhancing

Havaei et al. [2] 0.87 0.79 0.80

Pereira et al. [7] 0.89 0.83 0.81

Pereira et al. [8] 0.92 0.79 0.78

Casamitjana et al. [11] 0.86 0.73 0.66

Zhao et al. [12] 0.83 0.81 0.77

Hai et al. [19] 0.87 0.85 0.82

Proposed TPUAR-Net 0.89 0.84 0.81

Table 4. Specificity comparison of the proposed brain tumor segmentation approach
against various state-of-the-art methods.

Methods Specificity

Complete Core Enhancing

Havaei et al. [2] 0.89 0.79 0.68

Pereira et al. [7] 0.88 0.87 0.74

Pereira et al. [8] 0.80 0.78 0.74

Casamitjana et al. [11] 0.93 0.85 0.74

Zhao et al. [12] 0.92 0.87 0.77

Proposed TPUAR-Net 0.99 0.99 0.99
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4 Conclusions and Future Work

In this paper we presented two parallel U-Net with asymmetric residual-based
deep convolutional neural networks (TPUAR-Nets) for brain tumor segmentation
from MRI images. The TPUAR-Net model offeres several advantages, including
the possibility of considering both local and global features to learn both high-
level and low-level features simultaneously. The deployment of the fully connected
layer, the residual blocks, and the skip connection can overcome the vanishing gra-
dient problem while achieving speed improvements in training and testing. The
proposed tumor segmentation method was evaluated using 2D slices extracted
from the BRATS 2017 dataset using 62000 and 43400 images for training and
testing purposes, respectively. The TPUAR-Net architecture achieved promising
results on the complete, core, and enhancing tumor areas, achieving a maximum
Dice score of 0.89. The superiority of the proposed method stems from combin-
ing the global and local features in the two parallel networks. In future work, we
will focus on improving the current architecture and possibly expanding to a 3D
network architecture to perform 3D brain tumor segmentation.
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Abstract. We have developed a variational learning approach for finite
Scaled Dirichlet mixture model with local model selection framework. By
gradually splitting the components, our model is able to reach conver-
gence as well as obtain the optimal number of clusters. By tackling real
life challenging problems including spam detection and object clustering,
the proposed model’s flexibility and performance are validated.
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1 Introduction

Data analysis is an essential process with influential impact in various decision-
making fields. Emphasis is now increasingly added on the use of images and
videos in advertising campaigns. One of the most widely used techniques is clus-
tering, which originates from statistics and its main goal is assigning similar data
points to the same group [11]. Furthermore, along with the rapid development
of automation, clustering is immensely important for spam detection. In other
words, being able to filter spam automatically could not only reduce frustration,
but also avoid being exposed to harmful content [23].

Among the proposed solutions, finite mixture model approach has shown
its effectiveness with different scopes and applications [5,13,20]. In order to
represent data mathematically, it assumes that data are generated from a set
of components with sub-populations and each instance belongs to one of them,
then the posterior probabilities handle the clustering process [19]. Therefore,
choosing a flexible distribution which could efficiently fit different types of data
c© Springer Nature Switzerland AG 2019
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is decisive to the outcome of the model, and Dirichlet distribution family has
proven to be superior than the well-known Gaussian distribution in terms of
clustering analysis [2,3].

The proposed learning framework is based on variational Bayesian infer-
ence, which focuses on minimizing the difference between the true posterior
distribution and the approximated one by maximizing the lower bound of the
likelihood function with Kullback-Leibler (KL) divergence [12]. This method is
able to both efficiently estimate the parameters and find the optimal number of
components. Furthermore, it also overcomes two critical drawbacks of conven-
tional Bayesian approach: computational intensity of Markov chain Monte Carlo
and Laplace’s approximation [4,14] and challenging convergence estimation [6].
Moreover, Bayesian techniques are already proven more efficient than maximum
likelihood estimation (MLE) since MLE’s convergence could correspond to local
maxima.

Recent works on mixture models based on Scaled Dirichlet distribution have
shown its modeling capabilities [7,21]. Therefore, the variational Bayesian infer-
ence for finite Scaled Dirichlet mixture model is proposed along with component
splitting, a local model selection framework. The main idea is starting from two
components and then gradually adding new components by splitting existing
ones based on a predefined threshold. Several applications have been tested to
validate the performance of proposed algorithm including spam detection and
object clustering.

The rest of the paper is organized as follows. The finite Scaled Dirichlet
mixture model is introduced in Sect. 2. Next, Sect. 3 describes the variational
Bayesian learning process. Then, the experimental results are discussed in Sect. 4.
Finally, the conclusion and some remarks are in Sect. 5.

2 Finite Scaled Dirichlet Mixture Model

Assuming a set of N D-dimensional vectors generated from Scaled Dirichlet
distribution X = (X1, ...,XN ). Then, the vectors follow the probability density
function p (Xi | α,β):

p (Xi | α,β) =
Γ (α+)

∏D
d=1 Γ (αd)

D∏

d=1

βαd

d Xαd−1
id

(
D∑

d=1

βdXid

)α+ (1)

where Γ (·) is the Gamma function, α = (α1, ..., αD), αd > 0 for d = 1, ...,D,

β = (β1, ..., βD), 0 ≤ βd ≤ 1 for d = 1, ...,D,
D∑

d=1

βd = 1, and α+ =
D∑

d=1

αd.

Then, the M-component finite Scaled Dirichlet mixture model (SDMM) is
defined as follows:

p
(
Xi | π,αj ,βj

)
=

M∑

j=1

πjp
(
Xi | αj ,βj

)
(2)
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whereπ = (π1, ..., πM ) is the vector ofmixing coefficientswith respect to each com-
ponent, which are positive and sum to 1. Then, αj and βj denote the distribution’s
parameters with respect to component j. So, the likelihood function is:

p
(X | π,αj ,βj

)
=

N∏

i=1

⎡

⎣
M∑

j=1

πjp
(
Xi | αj ,βj

)
⎤

⎦ (3)

For each vector Xi , a M -dimensional assigning vector Zi = (Zi1, ..., ZiM ),

where Zij ∈ {0, 1},
M∑

j=1

Zij = 1 and Zij = 1 if Xi belongs to component j and 0,

otherwise. The conditional probability Z = (Z1, ...,ZN ) given π is:

p (Z | π) =
N∏

i=1

M∏

j=1

π
Zij

j (4)

So, the conditional probability of data set X with the class labels Z is as
follows:

p (X | Z,α,β) =
N∏

i=1

M∏

j=1

p
(
Xi | αj ,βj

)Zij (5)

Where α = (α1, ...,αM ) and β = (β1, ...,βM ). The estimation of the mixture
parameters and finding the optimal number of components M is a crucial part
of a mixture model. The next section provides details about the variational
Bayesian inference along with component splitting.

3 Variational Learning with Component Splitting

3.1 Parameters Estimation

The use of component splitting is inherited from [8]. First, the mixture com-
ponents are divided into two parts, fixed components and free components.
While the M − s fixed components already provided a reasonable fit for the
data, the model selection process operates on the s free ones. Therfore, the prior
distribution of Z can be rewritten as follows:

p
(Z | π,π∗) =

N∏

i=1

⎡

⎣
s∏

j=1

π
Zij

j

M∏

j=s+1

π
∗Zij

j

⎤

⎦ (6)

where π = {πj} are the mixing coefficients of the free components, π∗ =
{π∗

j } are the mixing coefficients of the fixed ones, and their sum must be 1:
∑s

j=1 πj +
∑M

j=s+1 π∗
j = 1. Considering π∗

j as a random variable, the prediction
for optimal number of components is then computed solely on the free compo-
nents by maximizing the marginal likelihood given {πj} Then, according to [8],
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we have prior distribution for π∗:

p(π∗ | π) =

(

1 −
s∑

k=1

πk

)−M+s
Γ (

∑M
j=s+1 cj)

∏M
j=s+1 Γ (cj)

M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)cj−1

(7)

We choose Gamma and Dirichlet distribution as priors for αjd and βj , respec-
tively:

p (αjd) = G (αjd | ujd, vjd) =
vujd

jd

Γ (ujd)
α
ujd−1
jd e−vjdαjd (8)

p
(
βj

)
= D (βj | hj) =

Γ

(
D∑

d=1

hjd

)

∏D
d=1 Γ (hjd)

D∏

d=1

β
hjd−1
jd (9)

where hj = (hj1, ..., hjD), G(·) and D(·) represent Gamma and Dirichlet distribu-
tions, respectively; {ujd}, {vjd}, and {hjd} are hyperparameters, where ujd > 0,
vjd > 0, and hjd > 0. Therefore

p (α) =
M∏

j=1

D∏

d=1

p (αjd) , p (β) =
M∏

j=1

D∏

d=1

p (βjd) (10)

We have the joint distribution of all the random variables:

p (X , Θ | π) = p (X | Z,α,β) p (Z | π,π∗) p (π∗ | π) p (α) p (β)

=
N∏

i=1

M∏

j=1

⎡

⎢
⎢
⎢
⎣

πj
Γ (α+)

∏D
d=1 Γ (αjd)

D∏

d=1

β
αjd

jd X
αjd−1
id

(
D∑

d=1

βjdXid

)α+

⎤

⎥
⎥
⎥
⎦

Zij

×
N∏

i=1

⎡

⎣
s∏

j=1

π
Zij

j

M∏

j=s+1

π
∗Zij

j

⎤

⎦

×
(

1 −
s∑

k=1

πk

)−M+s

×
Γ
(∑M

j=s+1 cj

)

∏M
j=s+1 Γ (cj)

M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)cj−1

×
M∏

j=1

D∏

d=1

vujd

jd

Γ (ujd)
α
ujd−1
jd e−vjdαjd ×

Γ

(
D∑

d=1

hjd

)

∏D
d=1 Γ (hjd)

D∏

d=1

β
hjd−1
jd (11)

where Θ =
{Z,α,β,π∗} is the set of unknown parameters. The model’s graph-

ical representation is shown in Fig. 1.
The goal is to find the true posterior distribution p (Θ | X ,π) by creating

Q (Θ) as an approximated distribution to it. By applying the KL divergence,
the difference between two distributions is computed as follows

L (Q) = ln p (X | π) − KL (Q || P ) (12)

The maximum value of lower bound L (Q) =
∫

Q (Θ) ln
(

p(X ,Θ|π )
Q(Θ)

)
dΘ is

achieved when the KL divergence is zero. Since the true posterior is intractable,
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Fig. 1. Graphical demonstration of the finite Scaled Dirichlet mixture model with
component splitting. Symbols in circles denote parameters and random variables, arcs
describe the conditional dependencies of the variables, plates shows repetitions, and
the numbers in the lower right corners of the plates explain the quantity of repetitions.

the mean field theory [22] is applied factorize Q (Θ) so that Q (Θ) =
Q (Z) Q (α) Q (β) Q (π∗). The maximization of lower bound L (Q) with respect
to each sub-distribution Qs (Θs) is:

Qs (Θs) =
exp 〈ln p (X , Θ)〉j �=s∫
exp 〈ln p (X , Θ)〉j �=s dΘ

(13)

where 〈·〉j �=s denotes the expectation of the parameters with the exception of
j = s. Then, (13) is used for updating the algorithm to reach convergence:

Q (Z) =
N∏

i=1

⎡

⎣
s∏

j=1

r
Zij

ij

M∏

j=s+1

r
∗Zij

ij

⎤

⎦ (14)

Q(π∗) =

(

1 −
s∑

k=1

πk

)−M+s Γ
(∑M

j=s+1c
∗
j

)

∏M
j=s+1 Γ

(
c∗
j

)

M∏

j=s+1

(
π∗

j

1 − ∑s
k=1 πk

)c∗
j −1

(15)

Q (α) =
M∏

j=1

D∏

d=1

G (
αjd | u∗

jd, v
∗
jd

)
, Q (β) =

M∏

j=1

D∏

d=1

D (
βjd | h∗

jd

)
(16)

where

rij =
r̃ij

∑s
j=1 r̃ij +

∑M
j=s+1 r̃∗

ij

, r∗
ij =

r̃∗
ij

∑s
j=1 r̃ij +

∑M
j=s+1 r̃∗

ij

(17)

r̃ij = exp

{

ln πj + R̃j +
D∑

d=1

[
αjd lnβjd + (αjd − 1) ln Xid

]

−
D∑

d=1

αjd ln

(
D∑

d=1

βjdXid

)}

(18)
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r̃∗
ij = exp

{

〈ln π∗
j 〉 + R̃j +

D∑

d=1

[
αjd ln βjd + (αjd − 1) ln Xid

]

−
D∑

d=1

αjd ln

(
D∑

d=1

βjdXid

)}

(19)

R̃j = ln
Γ

(∑D
d=1 αjd

)
∏D

d=1 Γ (αjd)
+

D∑
d=1

αjd

[
ψ

(
D∑

d=1

αjd

)
− ψ (αjd)

] [
〈ln αjd〉 − ln αjd

]

+
1

2

D∑
d=1

α2
jd

[
ψ′

(
D∑

d=1

αjd

)
− ψ′ (αjd)

]
− 〈

(ln αjd − ln αjd)
2〉

+
1

2

D∑
a=1

D∑
b=1,a�=b

αja αjb

{
ψ′

(
D∑

d=1

αjd

)
(〈ln αja〉 − ln αja) × (〈ln αjb〉 − ln αjb)

}

(20)

c∗
j =

N∑

i=1

r∗
ij + cj , u∗

jd = ujd + ϕjd, v∗
jd = vjd − ϑjd, h∗

jd = hjd + τjd (21)

ϕjd =
N∑

i=1

〈Zij〉αjd

[

ψ

(
D∑

d=1

αjd

)

− ψ (αjd)

+
D∑

d�=s

ψ′
(

D∑

d=1

αjd

)

× αjs (〈ln αjs〉 − ln αjs)

]

(22)

ϑjd =
N∑

i=1

〈Zij〉
[

ln βjd + ln Xid − ln

(
D∑

d=1

βjdXid

)]

(23)

τjd =
N∑

i=1

〈Zij〉

⎡

⎢
⎢
⎢
⎣

αjd − αjdβjd

Xid

D∑

d=1

βjdXid

⎤

⎥
⎥
⎥
⎦

(24)

where ψ (·) and ψ′ (·) denote the digamma and trigamma functions, respectively.
The expectation of the aforementioned equations are

〈Zij〉 = rij , for j = 1, ..., s, 〈Zij〉 = r∗
ij , for j = s + 1, ...,M (25)

αjd = 〈αjd〉 =
ujd

vjd
, 〈ln αjd〉 = ψ

(
ujd

) − ln vjd, βjd = 〈βjd〉 =
hjd

D∑

d=1

hjd

(26)

〈(
ln αjd − ln αjd

)2
〉

=
[
ψ
(
ujd

) − ln ujd

]2
+ ψ′(ujd

)
(27)
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〈
π∗

j

〉
=

(

1 −
s∑

k=1

πk

) ∑N
i=1 r∗

ij + cj

∑M
k=s+1

(∑N
i=1 r∗

ik + ck

) (28)

〈
ln π∗

j

〉
=ln

(
1 −

s∑

k=1

πk

)
+ ψ

( N∑

i=1

r∗
ij + cj

) − ψ
( N∑

i=1

M∑

k=s+1

r∗
ik + ck

)
(29)

The estimation for the free mixing coefficients π is computed from the max-
imization of lower bound L (Q) and the variational updates for Q (Z), Q (π∗),
Q (α), and Q (β). We have the derivative of L (Q) with respect to π after setting
it to zero:

πj =

(

1 −
M∑

k=s+1

〈π∗
k〉
) ∑N

i=1 rij
∑N

i=1

∑s
k=1 rik

(30)

3.2 Model Selection via Component Splitting

First, the algorithm starts with the variational learning without local model
selection where M = 2. If the result has two components, the splitting pro-
cess proceeds; otherwise, the algorithm ends if there is only one component.
When the splitting test is passed, one of the components is split into two free
components. Next, the model with local model selection operates on the free
components while leaving the fixed ones intact. Two common possibilities could
occur after the inference: first, both free components are kept due to their mean-
ingful contribution to fit the data; second, only one component is kept while the
insignificant one is removed. However, when there are some outliers in the data
set, both the free components could end up being redundant, then this particular
split is restored in order to avoid an infinite loop. Then, after each successful
split, the number of components gradually increases until all the split tests fail.

4 Experimental Results

In this section, we discuss the performance of our proposed method (varSDMM)
as compared to MLE-based Gaussian mixture model (GMM), variational Gaus-
sian mixture model (varGMM), variational Dirichlet mixture model (varDMM).
Two challenging real life applications are considered including spam email detec-
tion of both texts as well as images and image categorization consisting of tex-
tures and objects.

4.1 Spam Detection

For the past two decades, e-mail has become an essential means of communica-
tion, especially in the workplace environment. However, e-mails are also one of
the most common target for network-based attacks namely phishing [16]. Spam
emails containing not only texts, but also deceiving images combined with the
evolve of various scam techniques are drawing increasing interest as a challenging
task that needs immediate actions.
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Table 1. Results on Spambase (%) using different models

Method Accuracy Precision Recall False positive rate

varSDMM 85.60 99.61 70.44 0.28

varDMM 83.84 97.23 69.06 1.99

GMM 73.08 73.24 72.75 26.59

varGMM 71.37 69.56 76.01 33.26

SIFT (Scale Invariant Feature transform) [18] is used for preprocessing the
images. Then, all the 128D descriptors of SIFT are grouped into a corpus of
local features. Next, we use K-means to cluster the collection to construct the
visual words vocabulary, in which the centroids are the number of visual words.

The performance of each result is validated using four important measures:
Accuracy ( TP+TN

TP+TN+FP+FN ), Precision ( TP
TP+FP ), Recall ( TP

TP+FN ), False Posi-
tive Rate ( FP

FP+TN ).

Fig. 2. Images from (a) Personal Image Spam, (b) SpamArchive, (c) Princeton, (d)
Personal Image Ham.

4.1.1 Text Spam E-mails Detection
For textual spam e-mail detection, we chose the Spambase data set [10], in which
the histogram of the occurrences of the words is used as a feature. We chose 3626
instances in the data set, half of which was spam and the other half was non-
spam. The results in Table 1 shows that our proposed model outperforms others
in all aspects.

4.1.2 Image Spam E-mails Detection
Three real life image spam data sets were considered: Personal Image Spam (2995
images) [9], SpamArchive Image Spam (3014 images) [9], and Princeton Spam
Image (1063 images)1. One common legitimate (ham) email data set Personal
Image Ham (1650 images) [9] is used for clustering analysis. Sample images from
these data sets are shown in Fig. 2. After several trials, the optimal number
of visual vocabulary is 50. The results shown in Table 2 validates varSDMM’s
performance over other models.
1 http://www.cs.princeton.edu/cass/spam/.

http://www.cs.princeton.edu/cass/spam/
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Table 2. Results on image spam detection using different models

Method Measure (%) Dredze SpamArchive Princeton

varSDMM Accuracy 88.63 86.94 86.18

Precision 96.25 98.98 90.66

Recall 85.71 80.62 72.15

False positive rate 6.06 1.52 4.79

varDMM Accuracy 87.56 80.87 84.11

Precision 94.58 96.74 81.35

Recall 85.61 72.86 71.14

False positive rate 8.91 4.48 11.39

varGMM Accuracy 86.29 81.56 84.37

Precision 89.91 96.95 85.38

Recall 88.68 73.79 72.53

False positive rate 18.06 4.24 8.36

GMM Accuracy 87.26 80.83 84.56

Precision 91.73 95.45 85.86

Recall 88.18 73.86 72.53

False positive rate 14.42 6.42 7.70

4.2 Image Categorization

The task to automatically differentiate random objects has always been fre-
quently discussed in computer vision [1]. Indeed, even similar objects could raise
significant problems due to different angles, surrounding environments, and var-
ious depth of the captured images. Furthermore, recent research works have
addressed related challenging clustering analysis, such as sports activities [12]
and scenes [17]. Thus, two object clustering applications are discussed in this
experiment, and the efficiency of our model is confirmed by comparison with
other novel methods.

Fig. 3. Sample images from ALOT. (a) Macaroni, (b) Corn Flakes, (c) Silver foil, (d)
Banana peel, (e) Mustard seed, (f) Plaster
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Fig. 4. Examples from Caltech. (a) Bikes, (b) Faces, (c) Planes, (d) Camels.

Fig. 5. Sample images from GHIM10K. (a) Boats, (b) Cars, (c) Flowers, (d) Bugs

Table 3. Results on texture and object clustering data sets using different models

Method Accuracy (%)

ALOT Caltech GHIM10K

varSDMM 94.83 83.00 94.25

varDMM 78.83 69.50 83.75

varGMM 76.16 76.00 83.50

GMM 71.50 76.30 83.25

4.2.1 Texture Categorization
In this section, Amsterdam Library of Textures (ALOT), a real life texture data
set, is chosen for testing. We tested 600 images evenly divided into six clusters
from ALOT: Macaroni, Corn Flakes, Silver foil, Banana peel, Mustard seed, and
Plaster; sample images are in Fig. 3. The preprocessing step was similar to that
mentioned in Sect. 4.1 with the optimal value for vocabulary was 50. The results
are presented in Table 3, showing that the proposed model surpasses other novel
approaches by a significant margin.

4.2.2 Object Categorization
In this section, we tested our model with two challenging real life data sets: Cal-
tech256 [15] and GHIM10K2. In other words, we had a 600-image data set from
Caltech256 evenly divided into four classes: Bikes, Faces, Planes, and Camels and
a 400-image data set from GHIM10K whose clusters included Boats, Cars, Flow-
ers, and Bugs with 100 images in each cluster. The objects were captured from
different angles, distances, lighting conditions, and background environments to

2 http://www.ci.gxnu.edu.cn/cbir/dataset.aspx.

http://www.ci.gxnu.edu.cn/cbir/dataset.aspx
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elevate the demand of the challenge. The examples of the datasets are presented
in Figs 4 and 5. The preprocessing step was the same as that described in Sect. 4.1,
and the optimal number of vocabulary was also 50. The accuracy of varSDMM is
compared with other widely used models in Table 3, confirming its flexibility and
capability to efficiently differentiate various objects in different environments.

5 Conclusion

We have proposed a novel model selection framework based on the variational
learning of finite Scaled Dirichlet mixture model by automatically splitting the
components until reaching convergence with the optimal number of clusters.
By replacing the global model selection with a more efficient local one, our
model has proven its capability of handling different challenging problems while
maintaining a steady performance. Future works could be building an online
learning approach for the proposed model.
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cordia University Research Chair Tier 2.
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Abstract. In the field of computer graphics and multimedia, automatic
synthesis of a new set of image sequences from another different set of
image sequences for creating realistic video or animation of some human
activity performed is a research challenge. Traditionally, creating such
animation or similar visual media contents is done manually, which is
a tedious task. Recent advancements in deep learning have made some
promising progress for automating this type of media creation process.
This work is motivated by the idea to synthesize a temporally coherent
sequence of images (e.g., a video) of a person performing some activity
by using a video or set of images of a different person performing a sim-
ilar activity. To achieve that, our approach utilized the cycle-consistent
adversarial network (CycleGAN). We present a new approach for learn-
ing to transfer a human activity from a source domain to a target domain
without using any complicated pose detection or extraction method. Our
objective in this work is to learn a mapping between two consecutive
sequences of images from two domains representing two different activ-
ities and use that mapping to transfer the activity from one domain to
another for synthesizing an entirely new consecutive sequence of images,
which can be combined to make a video of new human activity. We also
present and analyze some qualitative results generated by our method.

Keywords: Image synthesis · Generative adversarial networks

1 Introduction

In the graphics, animation, and media content generation industry, synthesizing
a sequence of temporally coherent images is one of the most frequently used
and significant tasks. Usually, the image synthesis for producing animation or
video is done manually, often by using some of the large selection of software tools
available. However, manual creation of such animations is tedious, expensive and
time-consuming even for the expert animation artists and multimedia content
developers. Recent advancements in the field of Artificial Intelligence (AI) and
Deep Learning (DL) has made some much-needed progress for automating this
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process. Despite a significant amount of work in this area, this is still an active
research problem and has room for many improvements.

As video synthesis is a challenging problem, extensive research studies have
been done over the last few decades for addressing this. Recently, with the
advents of the DL techniques, the research problem has seen a promising new
direction. The early methods used traditional image processing techniques for
modifying existing video footage to create new contents [4]. Our approach uses
machine learning to synthesize new movements of human activity instead of using
straightforward image processing. There are quite a few numbers of works which
used 3D transfer motion for graphics and animation purposes. One such very
recent work utilized DL algorithms to retarget motion into 3D objects without
using any existing data [5]. Our research focuses on generating synthetic move-
ments directly in the 2D space without using any 3D information, which is con-
venient for working with datasets lacking 3D details. Other contemporary works
based on DL techniques have been able to learn information from one image and
transfer them to another image. One such technique, the Generative adversar-
ial networks (GAN) [3] framework has been used for many purposes, including
high-quality image generation with sharp details [4]. With the advancements of
GAN, quite a few novel specialized sub-classes are introduced. CycleGAN [6] is
one of them, which can learn to do arbitrary image-to-image translations using
adversarial training. A very recent work done by Chan et al. made some promis-
ing advancements. They were able to transfers dance performance from a source
video to a novel target with a few minutes of moves from a target subject [2].
They also investigated some techniques for generating images of human subjects
with various new poses in their paper [2]. While their work focuses on extracting
motions as an intermediate step using pose stick figures to transfer them to new
images, in contrast, our work aims toward a more straightforward generation of
sequential images of a new human activity without any such intermediate step
for extracting motion explicitly.

This work is motivated by the ongoing research efforts to generate a complete
synthetic video of a person performing some action from limited or different input
images of that person. The main contribution of our work is to explore the novel
idea of generating temporally coherent image sequences of new human activity
using CycleGAN [6], which is a fairly new class of machine learning algorithm.
In this paper, we present a method based on CycleGAN to learn a mapping
between two consecutive sequences of images from two domains representing two
different activities. Our method uses this unpaired activity-to-activity mapping
to transfer the activity from one domain to another to synthesize a sequence of
images of performing a new activity by a person by using another input video
of the same person performing another different activity. For demonstrating our
method, we present experimental results using the four datasets we created and
a qualitative evaluation of the results.
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2 Models and Algorithms

We have used CycleGAN [6] for implementing our method. CycleGAN is an
extension of the GAN framework, and it trains on two domains of data and learns
from both of the actions. The traditional GAN framework has one network called
the “Generator” for generating image sequences, and another network called the
“Discriminator” for evaluating the generated images [3]. The generator learns to
map from the training dataset to a particular data distribution of interest rep-
resenting the intended movement, while the discriminator distinguishes between
instances from the actual data distribution and results produced by the genera-
tor. The generator’s training objective is to convince the discriminator to pass
the generated images as real ones. Training the discriminator involves presenting
it with image samples from the input dataset until it reaches some level of accu-
racy. The discriminator attempts to distinguish between fake samples produced
by the generator and real ones sampled from the training data, which trains the
generator to create more realistic images.

Fig. 1. The architecture of the model used in our approach is based on the CycleGAN
[6]. It contains two mapping functions G: X → Y and F : Y → X, and associated
adversarial discriminators DY and DX . (b) forward cycle-consistency loss: x → G(x) →
F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y.

CycleGAN, on the other hand, performs unpaired image to image translation
using two generators and two discriminators as illustrated in Fig. 1. The goal of
CycleGAN is to learn mapping functions between two domains X and Y from
given training samples. In our method, the two domains are the two different
input activities, and the frames from the image sequences of the two activities
are the training examples. Each of the two generators converts images from their
own domain to the domain of the other generator. Two functions G: X → Y and
F : Y → X are trained to generate images from one input domain to another
domain. The functions have two associated adversarial discriminators, DY and
DX respectively. DY encourages G to translate X into outputs indistinguish-
able from domain Y , and vice versa for DX . CycleGAN introduces two cycle
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consistency losses to regularize the mapping further. The cycle consistency loss
is based on the intuition that if some data is translated back and forth from
one domain to the other, the process should return to the starting point. We
have used a CycleGAN to train the models to learn two different activities. The
model is trained on two unpaired data set of sequence of temporally coherent
images of two different actions performed by two different subjects. Once trained,
our model can generate new synthetic activity seemingly performed by a person
based on the input activities from two different domains. The CycleGAN used
in our method is implemented using Python with the machine learning libraries,
Keras and Tensorflow.

3 Results and Analysis

We have created our datasets from the publicly available videos from the
image database website shutterstock.com [1]. For simplicity, most of the image
sequences we selected are with a single-colored background. We selected human
subjects performing activities while wearing clothing with different colors to dis-
tinguish between the input activities and generated activities easily. Some of our
experimental results are presented in the next section using two pairs of datasets.

We present some of the experimental results we obtained by applying our
method on videos of two specific categories of human activities, labeled as “walk-
ing” and “dancing”, in Fig. 2. In the result images, the top two rows are input
activities, and the bottom row is the output activity. “Activity 1” is the sequence
of the person we want to generate new activity for. “Activity 2” is the basis for
generating new activity for the person in “Activity 1”. Finally, the “Generated
Activity” is the images from the activity generated by our approach. For each set
of results in Fig. 2, we are presenting some random frames from the full videos
of the activities we generated. From the visible change of color of the clothes
of the subjects in the presented images, the successful synthesis of new human

Fig. 2. Four sets of results obtained by applying CycleGAN for generating human
activities labeled as “Dancing” (a and b) and “Walking” (c and d).

https://www.shutterstock.com/
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activities is evident. These results are presented as the progress of our ongoing
development and proof-of-concept demo of our new method.

We also performed a qualitative evaluation in a survey format on our gener-
ated results. In the study, fifteen (15) independent observers rated the quality
of the generated images on a scale of 1 to 5 for two different types of activities
individually, as well as the overall quality of the synthesized images. We present
the average results of the qualitative evaluations in Table 1 after converted to
percentage scores. Our metric of “success” is the generation of realistic images
judged by the eyes of the independent human observers.

Table 1. Results of qualitative evaluation

Activity domain of synthesized images Walking Dancing Overall quality

Average qualitative score, in percentage 73.3 61.3 68.0

4 Conclusion and Future Works

In this paper, we present a novel method for synthesizing temporally coher-
ent images of new human activity using CycleGAN. As the initial results are
promising, our approach has the potential to be used in the animation and media
content generation industry. This method can be extended to generate labeled
human activities the model is already trained on, e.g., using a short video of a
person performing an activity and be able to generate many possible other activ-
ities performed by the same person. Using our method, multiple learning models
specific to different activity domains can be trained to generate videos of all the
different activities. The limitation of our method is that it works well for large
movements, e.g., walking, jumping, dancing, etc., while it does not work well for
smaller movements, such as hand waving, nodding, etc. Also, the two training
sequences should be unpaired and not too similar. We plan to address these
limitations and potential extensions to our methodology in our future works.
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Abstract. Keyword spotting (KWS) is important in numerous trig-
ger, trigger-command and command and control applications of embed-
ded platforms. However, the embedded platforms used currently in the
fast growing market of the Internet of Things (IoT) and in standalone
systems have still considerable processing power, memory and battery
constraints. In IoT and smart devices applications, speakers are usually
far from the microphone resulting in severe distortions and considerable
amounts of noise and noticeable reverberation. Speech enhancement can
be used as a front-end or pre-processing module to improve the perfor-
mance of the KWS. However, denoisers and dereverberators as front-end
processing modules add to the complexity of the keyword spotting system
and the computing, memory and battery requirements of the embedded
platforms. In this paper, a noise robust keyword spotting engine with
small memory footprint is presented. Multi-condition utterances train-
ing of a deep neural networks model is developed to increase the keyword
spotting noise robustness. A comparative study is conducted to compare
the deep learning approach with Gaussian mixture model. Experimental
results show that deep learning outperforms the Gaussian approach in
both clean and noisy conditions. Moreover, deep learning model trained
using partially noisy data saves the need for using speech enhancement
module or denoiser for front-end processing.

Keywords: Keyword spotting · Phoneme classification ·
Deep learning · Deep belief network · Embedded platform ·
Noisy speech

1 Introduction

Speech recognition is still a complex task and needs powerful computational
engines that do not fit usually into small embedded systems. Therefore, the com-
putation has to take place in the cloud. This means, that every speech utterance
is being sent through the Internet posing serious privacy threats and time delays
and jitters due to the non-deterministic nature of Internet performance. In addi-
tion, the smart small devices such as, locks, lights, A/C or irrigation sprinklers
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do not require the full potential of the modern speech recognition with its natural
language understanding. Yet they require accuracy and fast response. Moreover,
embedded platforms have considerable processing power, memory and battery
constraints. This calls for the need of a smaller and simpler, yet effective technol-
ogy to recognize several commands capable of controlling these small, yet smart
devices. Such technology is known as keyword spotting.

Keyword spotting (KWS) is the process of detecting predefined keywords
in spoken utterances. Continuous Speech Keyword Spotting is the problem of
spotting keywords in recorded conversations, when a small number of instances
of keywords are available in training data [1]. KWS is important in numerous
trigger, trigger-command and command and control applications of embedded
platforms. These applications include, but are not limited to, triggering smart
devices, command and control of domestic appliances, verbal human-robot inter-
action, audio texting and voice dialing for hand-free and wearable devices, tele-
phone routing, call-content analytics and real-time speech analytics for customer
services to name just a few. For example, a keyword spotter can be used to trig-
ger normal operation of an electronic device and terminating sleep, standby or
hibernation mode.

In this paper, a noise robust keyword spotting engine with small footprint is
presented. The remainder of the paper is organized as follows: Sect. 2 introduces
keyword spotting problem and the various standard approaches for tackling it.
Noise robustness of the keyword spotting process is highlighted in Sect. 3 followed
by presenting the proposed keyword spotting engine in Sect. 4. Experimental
results are presented and discussed in Sect. 5. Finally, conclusion and future
directions are summarized in Sect. 6.

2 Keyword Spotting

Keyword spotting methods [2] can be classified into Large Vocabulary Con-
tinuous Speech Recognition (LVCSR)-based keyword spotting, acoustic KWS
and phonetic search KWS and Phonetic search KWS [3]. A LVCSR transcribes
the speech input into text format using Automatic Speech Recognizer (ASR)
and feeds it the KWS module. The recognized text is then processed by Key-
word detection module or Keyword spotting (KWS) engine. This KWS engine
searches the recognized text to determine the existence and the positions of a
specific keywords encoded in a keyword list. In [4], LVCSR keyword spotting
method was tested giving unsatisfactory results of only 61.2% accuracy. Unlike
the LVCSR, the acoustic KWS system does not estimate the whole text of the
audio, yet it uses the same search algorithm. Instead of having one large acoustic
model trained using representative data of the English language, this technique
performs speech recognition based on a small subset of specific words alongside
a general non-keyword model. Having a model for keywords and another for
other words that are usually referred to as “garbage”, the acoustic KWS can
execute its search in one single step [5]. In fact, Google [6] uses a similar method
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to train their trigger word “Okey Google” using Deep Neural Network (DNN).
Instead of having multiple models, they train their neural network using multiple
occurrences of the trigger word with another training set classified as filler [7].

Phonetic search KWS consists of finding the keyword based on their pho-
netic transcript which is performed over two steps. The input represents acous-
tic utterances from a live source such as microphone or microphone array or
recorded audio. The first step performs phoneme decoding that transforms the
audio input to an array of phonemes in contrast of the LVCSR that produces a
list of words. The second consists of a phonetic search calculating the distance
between the produced phonetic sequence from the previous stage with the list
defining the keywords [8]. It is noted that the engine requires a keyword list with
their phonetic description alongside a general phoneme database. The latter is
used by the decoder to produce an estimate of the phoneme sequence present in
the input audio file [7].

The major comparison metrics for the above mentioned KWS techniques
are accuracy, processing time, keyword level flexibility and training data avail-
ability [9]. There is no single best approach with high efficiency for all three
metrics. However, for the work presented in this paper, more emphasis is put
on keyword flexibility as embedded systems are known to be versatile and are
produced in big numbers for different target domains, hence retraining for each
keyword change would make the KWS engine less practical and less desirable. In
addition, the data availability plays an important role as it excludes the acoustic
KWS technique due to the lack of training data. Therefore the phonetic search
based approach is adopted in this paper as our platform for KWS.

3 Noise Resilience in KWS

In IoT and smart devices applications, speakers are usually located far from
the microphone resulting in severe distortions and large amounts of noise and
noticeable reverberation. Moreover, tests for speech recognition engines are usu-
ally carried out in ideal environments within laboratories, hence their accuracy
level is substantially degraded when tested in real world conditions. The differ-
ent noises and disturbances accompanying the highly variant testing environ-
ments create a considerable mismatch between the training and the testing set,
hence the accuracy degradation [10]. The latter mismatch has been the motiva-
tor behind the design of more robust speech engines. Increasing robustness of the
automatic speech recognizer (ASR) can be achieved in the following three levels:
(i) Improving the signal to noise ration (SNR) in the acoustic level by different
speech enhancement approaches [11–13]; (ii) Choosing a parametric represen-
tation that is more robust to noise [14,15] and (iii) Including both the noisy
and clean signal in the modeling stage allowing the new model to recognize the
speech under specific noisy environments [16]. Dealing with the mismatch is a
crucial step in the speech recognition development and its introduction to real
world environments. Most of speech enhancement approaches under a multitude
of assumptions have had limited success [11,17,18].
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Several methods have been used to incorporate noise robustness into the
Deep Neural Network (DNN) training in the speech recognition area [19]. These
methods include multi-condition utterances training, denoising the utterances
before the training and noise estimation incorporated into the network. These
approaches are similar to noise robustness techniques in the traditional Hidden
Markov Model-Gaussian Mixture Modelling (HMM-GMM) engines [20]. The fol-
lowing is a brief description of each method.

– Multi-condition utterances training: Using multi-condition data for
DNN training permits a higher level features learning by the network. These
features are more robust to the noise effect on the overall classification. In this
regard, DNN is considered as nonlinear feature extractor and also a nonlinear
classifier. The lower layers represent discriminative features that are indepen-
dent from the various conditions across the many acoustic conditions existing
in the training data. Hence in multi-condition utterances training data, the
input vector is a combination of the noisy utterances frames. Although the
multi-condition technique is theoretically similar for both GMM and DNN,
they are substantially different. For GMM, a Gaussian mixture directly mod-
els the data, hence the noise introduced variability is captured and modeled.
In discriminative training, noisy features are discarded by the GMM while the
deep neural network extracts helpful information using the nonlinear process-
ing of the layers [20].

– Enhanced features for DNN training: One intuitive solution to noisy
data is to filter out the noise from the speech utterances before the train-
ing stage. Hence, using a speech enhancement technique reduces the noise
effects on the input signal. The classifier learns any flaw introduced by the
enhancement algorithm if the latter is used on both, the testing and training
data. The HMM-GMM version of this technique is called feature space noise
adaptive training [20,21]. The same technique could directly be applied to
the DNN training.

– DNN noise-aware training: The last technique consists of adapting the
model to the environment noise by introducing a noise estimation in the
model itself. The noise model adapts the GMM parameters based on a model
that determines how the clean speech is corrupted. The DNN is informed of
the noise and not adapted to it, therefore this technique is called DNN noise-
aware training. According to [20], multi-condition utterances training is the
best approach for noise robustness, combined with the dropout technique, the
accuracy is improved by 7.5% relative to the best published result in speech
recognition. Therefore, the multi-condition training is adopted in this work
as the DNN approach to achieve noise robustness.

In this paper, A DNN model was trained using large size speech data under
various conditions, encompassing clean speech data and data with stationary
and non-stationary noises. The following section provides more details about
the proposed approach.
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4 Proposed Approach

In order to fulfill the need of the fast growing market of the IoT, the main goal
of this work is to develop a keyword spotting engine that is robust to noisy envi-
ronments and that could also sit on a platform with considerable memory and
processing power constraints. This is accomplished by applying multi-condition
utterances training of the recognizer. The targeted noises are injected into the
training data enabling the model to simulate the noisy environments as it is
trained with the clean and noisy data. Therefore, dismissing the need for a
denoiser as the robustness will be incorporated in the deep learning model. As
mentioned in Sect. 2, the keyword spotting method used here is the phoneme
search based method. Indeed, this approach presents the best combination of
excellent keyword flexibility with the ability to frequently change the list of key-
words as desired and with relative ease. Moreover, it ensures real-time response
and satisfactory accuracy which are most important when it comes to any classi-
fication problem. Finally, the training data for the phoneme search based KWS
is widely available. Figure 1 illustrates the different modules of a KWS engine
based on phoneme search and depicts the data flow and what format the data
takes going from one module to another [3]. The first module being the Mel-
frequency cepstral coefficients (MFCC) pre-processing, takes in the raw speech
signal generating features that represent the most important information of the
speech data. The second module is very crucial as it decodes the speech features
into phonemes producing the input for the next module. Finally, the keyword
mapper module generates the list of detected keywords if they exist in the input
signal [5].

Acoustic utterance

Live audio

Feature Extraction Phoneme ClassifierFeature
vector

Keyword Mapper

Phonetic transcript

Recorded audio

N-best keyword list

Storage 
Unit

Fig. 1. Keyword spotting engine

The scope of the work presented in this paper only focuses on optimizing the
phoneme decoder, in terms of small memory foot-print and faster response time
while maintaining good robustness and accuracy.
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Deep learning performs a pre-training step followed by a network fine-tuning
step based on the standard backpropagation algorithm. The pre-training itself
has been used in two different ways in the literature. The first method is to gen-
erate a new set of features using either restricted Boltzmann machine (RBM) or
Stacked Autoencoder (SdA) from the input training data. The new features are
considered more abstract and are more representative than the original features.
However, for speech recognition, MFCC is considered the standard representa-
tion and is used by most of the speech recognition engines in the market [22]. In
this paper, we use the second method of deep learning which consists of using the
pre-training stage to initialize the weights of the neural networks in preparation
for the next fine-tuning process [23].

The first stage of designing a DNN is the most important part in the training
process. Therefore, choosing the correct pre-training algorithm would greatly
influence the trained network accuracy. For speech recognition, the two main
methods used in the literature are RBM and SdA [22,24]. To ensure that the best
technique is used, both methods have been tested and the results are reported
in the next section.

5 Experimental Results and Discussion

Different experiments have been conducted to assess the proposed approach. The
following subsections summarize data preparation process, experiment setup,
deep neural network tuning, experimental results and discussion.

5.1 Data Preparation

The different parameters of the proposed techniques in the phoneme classification
process are discussed. Starting from the pre-processing features extraction and
ending with the classification task, the reasoning behind the selected scenarios
is presented in the following subsections.

Noise Contamination in the scope of this work, the WSJ database is selected.
In fact, the WSJ is composed of over 82,700 audio files with a sampling frequency
of 100 samples per second. The database offers around 60 million data points.
However, WSJ dataset only contains clean speech. Noise contamination is per-
formed to include noisy data in the training of the DNN. Clean speech data is
contaminated with two types of noises: fan noise as stationary noise sample and
restaurant noise as non-stationary noise sample. Different levels of SNR are used
ranging from −10 dB to 20 dB.

Feature Extraction. The pre-processing stage is important as it is the first step
in the phoneme recognition process, thus any poor choice in the parameters will
propagate and will greatly influence the final classification results. In addition,
to fairly compare the proposed approach using DNN to the HMM/GMM based
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phoneme recognizer, similar feature extraction parameters have to be selected.
Therefore, no changes are made to tune the pre-processing stage parameters.
Instead, the optimal values that produce the best phoneme classification results
for the hybrid HMM/GMM based recognizer are selected. These parameters
are number of MFCC features (13 coefficients plus the differential Δ and the
acceleration ΔΔ coefficients), 10 ms frame size and a 25 ms Hamming window.

Phoneme Classification. Phonemes classification probability output is also
the input to the keyword recognition algorithm, making the phoneme recog-
nition process accuracy crucial to the final keyword detection result. Given the
multitude and sensitivity of parameters to be tuned in the neural networks struc-
ture, cross validation is performed for each of the test scenarios. The selected
parameters for the DNN phoneme classifier are 3, 4 and 5 context padding, 2-
fold cross-validation, 3, 4 and 5 layers, 450, 500, 550 and 600 neurons, adaptive
learning rate with starting value of 0.08 and dropout ratios of 0.2, 0.3 and 0.4.
If the validation error reduction between two consecutive epochs is less than
0.001, the learning rate is scaled by 0.02 during each of the remaining epochs.
Training terminates when the validation error reduction between a number of
consecutive epochs (e.g. 5 epochs) falls below 0.0001. The minimum number of
epoch is selected to be 20, after which scaling can be performed. The number
of epochs in the pre-training stage are selected to be 8, 10 and 12 as RBM and
SdA do not require many epochs to converge.

One of the drawbacks of DNN is the difficulty of selecting the network param-
eters, making the network tuning one of the major steps in any machine learning
application that uses connectionist modeling. Different experiments have been
conducted to tune the neural networks [9]. These experiments are very helpful in
directing us forward. The final network parameters are 4-layers with number of
neurons of 500, 350, 200 and 100 for first, second, third and fourth layer respec-
tively. Dropout ratio is 0.2 and context padding is 4 frames on each side of the
current frame.

5.2 Test Scenarios Results

In the scope of this paper, the reference model is a mono-phone 3-state HMM
for 40 phonemes with the probability distribution on each state being 5 mixture
GMM. For the following tests, the use of noisy data is considered. As previ-
ously mentioned, noisy data are a combination of clean (25%), “Fan” (25%),
“Restaurant” (25%) and Fan convoluted with “Restaurant” contaminated data.
The DNN is tested with both, context dependent (CD) and context independent
(CI) for fair comparison with GMM and to see the impact of context padding
on the testing error of the DNN.

Clean Data Modeling. The first test sets used only the clean data of the WSJ
database for model training.
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– Clean data testing: This test is performed to compare the efficiency of the
DNN based model with the GMM based model to determine if the DNN is
more accurate than GMM for phoneme classification under clean data for
training and testing. This test showed the superiority of the DNN approach
over the GMM with a substantial improvement of 7% in the testing Word
Error Rate (WER). Using context dependent input to the DNN with “4”
frames on each side further improves the accuracy by 4%. This proves that
DNN is better than GMM in the phoneme classification of clean data.

– Noisy data testing: The following test is performed as a reference to prove
that a clean model performs poorly when tested with noisy data. High WER
rate is obtained when using both approaches with noisy data on clean models
(GMM: 65% and DNN: 62%). This is an expected outcome. Still the DNN
model performs slightly better.

Noisy Data Modeling. In this section noisy data is used to model GMM and
DNN models and a conclusion is drawn from comparing their respective results.

– Noisy data testing: The purpose of training noisy models is to improve
the performance of the phoneme decoder when tested under noisy condition,
thus the noisy DNN model. The latter model is then compared to the GMM
model that is also trained with noisy data and the best approach under both
clean and noisy environment is selected to carry the phoneme classification
for the KWS process. The GMM modeled with noisy data has poor perfor-
mance (61% WER) of the as it only decreased the testing error by 4% when
tested with noisy data. On the other hand, DNN efficiently modeled the noisy
training data, as the testing error decreased by 19% for the context indepen-
dent bringing the classification error to 43% which is only 15% away from
the clean model with clean testing data. The Context dependent DNN also
decreased the testing error by 8% which still outperforms the GMM model
by 7%.

– Denoised data testing: The previous tests proved that using a DNN model
with noisy training outperforms the GMM counterpart with the same training
data. But it could be argued that the use of a denoiser could replace the
DNN noisy training. Thus, this test is performed to monitor the behaviour of
the clean model with denoised testing data. The illustrated results in Table 1
prove that using a denoiser prior to feeding the testing data to the clean DNN
model improved the performance by 4%. Whereas the DNN noisy trained
model gives a testing error of 54% which is substantially better considering
that there is no use of a denoiser. Performing the context padding improved
accuracy by an extra 4% when using denoised data. Context dependent noisy
DNN training outperforms the denoised clean model DNN by a considerable
11%. Removing the denoiser from the system and reaching a better accuracy
for noisy data is one of the contributions of this paper. Better performance
under noisy condition only implies that the system will have two models one
for noisy and the other for clean data. Context dependent input features
reduced the testing error considerably in the various above tests. Therefore,
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the rest of the DNN experiments are performed using context padding with
“4” frames on each side of the current frame.

Table 1. GMM vs. DNN WER (%) - Denoised testing

Modeling approach Training data Testing data Testing error

DNN (CI) Clean Denoised 58%

DNN (CD) Clean Denoised 54%

DNN (CI) Noisy Noisy 54%

DNN (CD) Noisy Noisy 43%

– Clean data testing: To prove that the noisy trained DNN noisy model could
be the sole replacement of multiple models without the need for a denoiser,
which is usually expensive to deploy in real world applications, testing the
noisy model in clean conditions and comparing it to GMM is required. A
degradation in the performance of DNN noisy model is observed when com-
pared to the DNN clean model using clean testing. The degradation is about
10% (from 28% to 38% WER) but the noisy model still outperforms the
clean model in noisy conditions by 19%. This is considered as a good com-
promise when it comes to the overall behaviour of the classifier. However, a
better compromise could be reached by increasing the clean data component
currently at 25% in the noisy data set.

Increased Clean Data Ratio. Increasing the clean data ratio in the mixed
training error from 25% to 50% may bring an increase of the testing error under
noisy conditions while it also promises an increase of the performance when
tested with clean data. In fact, the model is less familiar with the noisy data
and more familiar with clean data as the proportions shift toward a half and half
ratio. Table 2 depicts the expected degradation of the noisy DNN model with the
noisy testing data from 43% to 46%. However, the testing error is improved from
38% to 31%. The same test is performed using GMM generating a testing error
of 45% which is quite higher than the DNN. This confirms the superiority of the
DNN over GMM when testing the noisy model with clean data. This presents a
better compromise for both condition.

The above results indicate that using DNN instead of GMM to train the
phoneme classifier model substantially improves the performance of the decoder.
Indeed, using clean data for both testing and training, DNN model outperformed
the GMM-based model by 13% in accuracy. Furthermore, using a mix of noisy
and clean data to model the DNN classifier prove to be a better alternative
than using a denoiser in noisy conditions. It also avoids catastrophic speech
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Table 2. GMM vs. Context-dependent DNN WER (%) for different clean data ratios

Modeling approach Training data Testing data Testing error

GMM (25% Clean) Noisy Clean 45%

DNN (25% Clean) Noisy Noisy 43%

DNN (50% Clean) Noisy Noisy 46%

DNN (25% Clean) Noisy Clean 38%

DNN (50% Clean) Noisy Clean 31%

enhancement, which is the case when the clean data is mistakenly considered as
noisy data, leading the denoiser to disturb the clean utterance and producing
corrupt data that is wrongly classified.

Speed and Memory Consumption. DNNs reach the top of their potential
when they are deep (many layers) and having many neurons per layer [25]. Train-
ing them on a traditional CPU would require very long periods. The high data
transfer latency limits the multi-threading programming making it not suitable
for this situation. Nonetheless, recent parallel neural networks for graphics cards
GPUs have solved the training speed limitation of the DNN [26]. GPU designed
code for classification should be up to two orders of magnitude faster than the
CPU [27]. In our case, only one NVIDIA Tesla GPU was available and has been
used to train the different models needed for this paper. The actual speed up
was not calculated as the CPU took a seemingly very long time to train the
model, which makes the speed up seem very high, as the GPU only takes a
dozen hours to train the model. The DNN training speed is not the only issue
as the decoding of a DNN is also slower than the GMM decoding due to the
high number of float multiplications required for a classification especially for
deep networks. According to [29], using a GMM model on embedded systems is
twice as fast as using a DNN for a speech recognition decoding task. However,
there are a number of techniques that speed up the decoding of DNN to reach
a speed equal to that of GMM. Theses techniques are the following: using fixed
point operations and frame skipping technique [29]. In this paper, none of the
mentioned techniques has been used, but they will be used once the network is
tuned and tested on embedded systems as the decoding speed is also crucial in
real-time embedded applications such as keyword spotting.

Although the DNN decoding process is more complex than the GMM decod-
ing, the memory footprint does not follow the same pattern. Indeed, according
to [29], a DNN model with 1.48 M parameters outperforms the GMM in accuracy,
with a disk size of only 17% of the GMMs. This is considered a major advantage
for deep neural networks as small memory consumption enable smaller embed-
ded platform to be speech enabled. The trained DNN model has been tested on
ArmV7 processor with Ubuntu operating system. The obtained memory foot-
print is 2 MB.
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6 Conclusion

This paper presented a noise resilient keyword spotting engine with small
footprint for embedded platforms. Using DNN mixed data training approach
promised to enhance the system robustness to background noises without the
need for a hardware or a software denoiser. This technique also allows replacing
the two model approach, one for noisy and the other for clean environment, by
a single model with a small penalty in terms of accuracy but with large gain in
terms of less model complexity. The trained DNN model is just a few hundreds
of kilobytes large which is smaller than the GMM model size. The absence of
the denoiser and the noise sensing tool means less memory and less processing
time as only the DNN multiplications are needed to reach a phoneme classifi-
cation with no need for a denoiser. However, the DNN decoding is slower than
GMM decoding which will be rectified when introducing the mentioned speedup
techniques for DNN such as fixed-point operations and frame skipping.

Future work will include testing more noise samples and different levels of
reverberation as audible effects that result from interacting the sound with the
environment. The following step involves developing a small and fast phoneme
mapping algorithm that would be the module taking the phoneme classifier
output and deciding if a keyword is spoken in the given speech utterance.
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Abstract. In recent years, histopathology images have been increas-
ingly used as a diagnostic tool in the medical field. The process of accu-
rately diagnosing a biopsy sample requires significant expertise in the
field, and as such can be time-consuming and is prone to uncertainty
and error. With the advent of digital pathology, using image recogni-
tion systems to highlight problem areas or locate similar images can
aid pathologists in making quick and accurate diagnoses. In this paper,
we specifically consider the encoded local projections (ELP) algorithm,
which has previously shown some success as a tool for classification and
recognition of histopathology images. We build on the success of the
ELP algorithm as a means for image classification and recognition by
proposing a modified algorithm which captures the local frequency infor-
mation of the image. The proposed algorithm estimates local frequencies
by quantifying the changes in multiple projections in local windows of
greyscale images. By doing so we remove the need to store the full projec-
tions, thus significantly reducing the histogram size, and decreasing com-
putation time for image retrieval and classification tasks. Furthermore,
we investigate the effectiveness of applying our method to histopathology
images which have been digitally separated into their hematoxylin and
eosin stain components. The proposed algorithm is tested on the publicly
available invasive ductal carcinoma (IDC) data set. The histograms are
used to train an SVM to classify the data. The experiments showed that
the proposed method outperforms the original ELP algorithm in image
retrieval tasks. On classification tasks, the results are found to be com-
parable to state-of-the-art deep learning methods and better than many
handcrafted features from the literature.
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1 Introduction

Histopathology, the examination of tissue under a microscope to study biological
structures as they relate to disease manifestation, has recently attracted a lot of
interest from the medical imaging research community. With the introduction of
whole slide digital scanners, histopathology slides can now be digitized and stored
in a digital form. As a result, it is now possible to apply computer-aided diagnosis
and image analysis algorithms to the emerging field of digital histopathology [4].
Content-based image retrieval (CBIR) and image classification are two important
components of computer-aided image analysis which we consider in this paper.
In a classification approach, the objective is to classify each image as belonging
to a disease category. Image retrieval involves finding images which share the
same visual characteristics as the query image. The identification and analysis
of similar images can assist pathologists in quickly and accurately obtaining a
diagnosis by providing a baseline for comparison.

As a result of the extremely large size of digital histopathology images, it
is desirable to generate compact image descriptors for both retrieval and clas-
sification tasks. A large number of well-known image descriptors already exist,
however the different requirements of a new application make constant inno-
vation necessary. This becomes particularly important in a field where trained
feature extraction algorithms, such as deep networks, may not always be feasi-
ble. Deep networks require massive volumes of labelled data for optimal train-
ing, yet large (and balanced) data sets are not always available in the medical
field. This is especially true when we consider digital histopathology, as obtain-
ing ground truth annotations is time-consuming and requires expert knowledge.
Handcrafted image descriptors, such as the well-known local binary patterns
(LBP) [6], scale-invariant feature transform (SIFT) [1], and histogram of oriented
gradients (HOG) [3] get around this issue by incorporating expert knowledge
directly into their design without requiring any training data. Such descriptors
and their successors have been quite successful in a range of diverse imaging
applications [12]. More recently, a projection-based histogram descriptor was
proposed in [12] specifically for the application of CBIR and classification of
medical images. The ELP image descriptor has been very successful thus far on
histopathology images, outperforming many well-known handcrafted features,
and even outperforming some deep features generated using a convolutional neu-
ral network (CNN) when applied to medical imaging applications [12].

In this paper we build upon the ELP descriptor, a dense-sampling method
introduced in [12] and propose a frequency-based ELP (F-ELP) descriptor which
captures the local frequency information of the image. Instead of storing entire
projections, as in the ELP method, our proposed method quantifies the number
of changes in each projection and uses this as an estimate of local frequency.
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While the original ELP method results in large histograms, the size of our F-
ELP histograms has linear dependence on the local window size. The compact
nature of our descriptor is desirable from the perspective of both memory usage
for storage of descriptors and computation requirements when applied to image
retrieval and classification type tasks. In addition to the introduction of our novel
histogram representation, we also discuss the use of digital stain separation to
improve the performance of our descriptor.

We test the performance of the proposed F-ELP descriptor on both image
retrieval and image classification tasks. The publicly available invasive ductal
carcinoma (IDC) dataset is used to evaluate the performance of our method and
for comparison to state-of-the-art results from the literature.

2 The Proposed Method

Our proposed method involves two main innovations, which are described in
more detail here. First, we introduce our proposed image descriptor and discuss
how it differs from the ELP descriptor in [12]. We then introduce the idea of
separating the histopathology images into their histochemical stain components
to generate more meaningful image descriptors.

2.1 Frequency-Based ELP (F-ELP)

The ELP image descriptor is a dense-sampling method which encodes the gradi-
ent changes of multiple Radon projections in small local windows of the image.
To maintain some level of robustness to rotation, a dominant angle is deter-
mined for each local neighbourhood using the image gradient. The dominant,
or anchor, angle is then used to anchor the projections in that window so that
the end result does not depend on image orientation. Projection gradients are
encoded using the MinMax [12] method to generate a binary number which is
then used to build a histogram. It should be noted here that in [12] an alternate
method of computing the anchor angle based on the overall Radon sinogram is
initially proposed. However, when applying their method to a pathology data
set, the authors choose to save time by approximating the anchor angle compu-
tation by the median of the image gradient directions. In order to have a fair
comparison, we consider this particular implementation of the ELP descriptor
in this work.

The computation of our proposed F-ELP descriptor follows the same overall
steps as the ELP descriptor, with some modifications along the way to improve
rotational invariance, reduce sensitivity to shifts in the image and reduce redun-
dancy by encoding only the frequency information from each projection. We
describe each step in detail as follows, highlighting where our method differs
from the ELP method.
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Identify Local Windows: The first step is to identify a set of small local win-
dows for processing. Here, our method does not differ at all from the original ELP
method. Since we are interested in finding projections which uniquely describe
the patterns/textures in local neighbourhoods, we only consider regions which
are sufficiently non-homogeneous so as to ensure projections contain something
of interest. We let W denote a local window of size n × n and calculate the
homogeneity, H of each window according to

H = 1 − 1
2nbits

√∑
i

∑
j

(Wij − m)2, (1)

where m denotes the median pixel value of W and nbits is the number of bits
used to encode the image. A threshold is used to eliminate any windows with
high homogeneity.

Determine the Anchor Angle, θ∗: In order for our descriptor to be rotation-
ally invariant, we seek a unique angle in each window by which to “anchor” our
projections. We do so by computing the image gradient, binning the gradient
directions into one degree intervals and selecting θ∗ to be the mode (most fre-
quently occurring) of the gradient directions. Our approach differs just slightly
from the original method, in that we choose to use the mode instead of the
median to find the average angle. We do so as the median is not invariant under
circular shifts (i.e. angular rotations), whereas the mode is, so long as there is
one unique angle which occurs at the highest frequency (i.e. a clearly dominant
direction in the window).

Compute the Projection Along θ∗: As in the ELP method we compute
projections using the Radon transform, which is given by

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ρ − x cos θ − y sin θ)dxdy, (2)

where δ(·) is the Dirac delta function. We extract the projection pθ∗ by taking
the Radon transform along parallel lines ρ for the fixed anchor angle θ∗.

Encode Projections and Create Histogram: It is in the encoding of the
projections where our algorithm differs the most notably from the ELP method.
Instead of encoding the entire gradient of each projection, we quantify the gra-
dient changes in the projection vector and use this to build our histogram. The
benefits of this modification are two-fold. Primarily, we remove the storage over-
head of encoding entire projections, and instead just capture the general trend
(low or high frequency) of the projections along each direction, resulting in much
smaller histograms which still perform very well. Our proposed method also avoids
the use of a binary encoding to capture the projections. This is beneficial as the
binary encoding used by the ELP is very sensitive to small shifts in the projection,
i.e. a change in one binary bit can lead to a very large difference in the resulting
histogram. On the other hand, when the local projection frequency changes, the
resulting change in the F-ELP histogram reflects the size of the frequency change.
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Given a projection vector p of length n and its derivative p′, we compute
the following quantized encoding of the derivative,

q(i) =

⎧⎨
⎩

0 if p′(i) ≤ −T
1 if |p′(i)| < T
2 if p′(i) ≥ T.

(3)

The three levels given in (3) indicate regions where the projection, p, is decreas-
ing, nearly constant (we use a small threshold, T , here to ignore small fluctua-
tions), and increasing, respectively. Next, we count the number of transitions in
q to get our estimate of local frequency which will be an integer value, d which
satisfies 0 ≤ d ≤ n − 2. Once we have d we can increment the histogram h(d).

Fig. 1. Sample histograms generated using the ELP and F-ELP methods with a window
size of n = 9.

Similar to the original ELP descriptor, we obtain more information by com-
puting three additional projections relative to our anchor angle θ∗. These are
equidistant projections, given by Θ = {θ∗, θ∗ + π/4, θ∗ + π/2, θ∗ + 3π/4}. For
each additional angle, the projections are computed and encoded in the same
manner. The final histogram is generated by concatenating all four histograms
into one longer histogram.

Figure 1 shows an example of both the ELP and F-ELP descriptors for two
sample images from the IDC dataset which contain somewhat different textures.
In both cases, the histograms have been normalized according to the L1-norm.
We see that the F-ELP descriptor, although it has less bins, appears to show
a more varied distribution. When looking at the ELP histograms, we observe
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that the distribution is similar for both images, with many bins empty. This
indicates that there is some redundancy in this image representation which we
try to remove using the F-ELP method.

2.2 Digital Stain Separation

Prior to imaging, histology slides are stained to enhance the detail in tissues
and cells. The most common stain protocol used in practice is hematoxylin and
eosin (H&E), where hematoxylin components stain cell nuclei blue, and eosin
stains other structures varying shades of red and pink [11]. The colours which
appear in a slide and the size, shape and frequency at which they appear are
all relevant factors a pathologist might assess when making a diagnosis. For this
reason, we consider separating the input images into two components which give
the amount of each stain at each pixel and computing a descriptor for each
component.

Original H&E Image (a) Hematoxylin Component (a) Eosin Component (a)

Original H&E Image (b) Hematoxylin Component (b) Eosin Component (b)

Fig. 2. Sample images from the IDC dataset showing the hematoxylin and eosin stane
components after applying the stain separation algorithm from [8]. (Color figure online)

A number of methods already exist in the literature for digital stain separa-
tion of H&E slides that perform quite well. Although their intended usage is for
stain normalization to control for variation in stain intensities and colours, these
same methods are suitable for our purposes. In this paper we adopt the method
proposed in [8], an extension of the wedge finding method from [7]. Unlike some
previous methods for stain separation [11], this method does not require any
calibration or knowledge of the exact stain colours, instead it works by using the
available image data to estimate an H&E basis. Given that our image descriptor
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should ultimately be applied to data from multiple sources, this is an impor-
tant feature of the stain separation algorithm. Figure 2 shows two examples of
image patches before and after stain separation is applied. We can see that the
algorithm does a good job of isolating the hematoxylin (blue/purple) compo-
nent from the eosin (pink/red) component, even in regions where both stains
contribute to the overall pixel colour.

Given the resulting stain separated image components, we proceed as
described above to compute our F-ELP image descriptor, simply computing
the F-ELP histogram for each component of the image separately. This results
in two histograms, hH and hE which are concatenated to form the final longer
histogram h = [hH hE ].

3 Dataset and Image Preprocessing

We have used the publicly available IDC data set to test our method in both
image retrieval and image classification. The dataset consists of digitized breast
cancer slides from 162 patients diagnosed with IDC at the University of Penn-
sylvania Hospital and the Cancer Institute of New Jersey [2]. Each slide was
digitized at 40x magnification and downsampled to a resolution of 4µm/pixel.
The supplied data was randomly split into three different subsets of 84 patients
for training, 29 for validation and 49 test cases for final evaluation. The dataset
provides each WSI split into image patches which are 50px× 50px in size. Ground
truth annotation regarding the presence of IDC in each patch was obtained by
manual delineation of cancer regions performed by expert pathologists.

For each image patch, we computed the F-ELP descriptor using the method
described in the previous section. For these experiments we implement the algo-
rithm with a threshold T = 0.08, determined by observation of the data, and
a homogeneity threshold of 1, rejecting only completely homogeneous windows
within each patch. In a future work, it would be beneficial to optimize these
parameters and carry out some form of sensitivity analysis.

Since the image patches are quite small, each patch may not contain the
presence of both hematoxylin and eosin. For better results, we use the entire
whole slide image (WSI) to perform the stain separation and then split the image
back into 50 × 50 patches to compute individual histograms. The stain separation
algorithm we used assumes two stain components (H&E in our case) exist in the
image, however some images are observed to have significant discoloration, such
as large dark blue patches, and the introduction of other colours not caused by
H&E staining. The prevalence of such artefacts negatively impacts the ability of
the stain separation algorithm to provide good results for some patients, so we
remove them by searching for images which have minimal variation in the RGB
channels across the entire image. A total of 686 images were flagged and removed
from the total data set, all of which contain significant artefacts/discoloration.

To evaluate the performance of our method in both image retrieval and clas-
sification tasks we have used the provided test data set consisting of 49 patients
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as our input data. For consistency with previous works we use both the balanced
accuracy (BAC) and F-measure (F1) as performance metrics, which are defined
as follows [2]:

BAC =
Sen + Spc

2
(4)

F1 =
2 · Pr · Rc
Pr + Rc

, (5)

where Sen is sensitivity, Spc is specificity, Pr is precision and Rc, recall.

4 Experimental Results

In this section we present the results of using our proposed F-ELP descriptor
for both image retrieval and classification of the IDC dataset. For each task we
compare our method to relevant methods from the literature.

4.1 Image Retrieval

In order to evaluate the image retrieval performance of our descriptor we imple-
ment the k-Nearest Neighbours (kNN) algorithm in MATLAB with the F-ELP
histograms as inputs. The kNN algorithm searches through the training data
partition and classifies each image based on the class of its k nearest neighbours.
Since there is no exact metric to quantitatively test image retrieval performance,
we evaluate the expressiveness of the ELP-based descriptors for image retrieval
tasks based on the accuracy of classification using kNN. In this work, we test the
kNN algorithm using three different values for k (k = 1, 3 and 5). Four different
distance metrics were used to determine the nearest neighbours, including the
commonly used L1, L2 and cosine distances. We also used the Hutchinson (or
Monge-Kantorovich) distance [9], a metric between two probability measures,
as it is considered to be a good measure of distance between histograms. In
the finite one-dimensional case, the Hutchinson distance can be computed in
linear-time using the method from [10].

Table 1. F1 & BAC results for image retrieval (k = 1) on the IDC dataset

Method L1 L2 Cosine Hutchinson

F1 BAC F1 BAC F1 BAC F1 BAC

ELP9 0.3072 0.5616 0.3728 0.5842 0.2965 0.5594 0.3985 0.5904

ELP9 + SS 0.3004 0.5654 0.4339 0.6167 0.2688 0.5574 0.4527 0.6236

F-ELP9 0.4177 0.6008 0.4179 0.6015 0.4200 0.6022 0.4189 0.6025

F-ELP9 + SS 0.5489 0.6881 0.5486 0.6879 0.5504 0.6891 0.5472 0.6869

F-ELP11 0.3969 0.5865 0.3947 0.5855 0.3954 0.5863 0.3792 0.5774

F-ELP11 + SS 0.5237 0.6707 0.5173 0.6666 0.5185 0.6673 0.5347 0.6784
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Table 2. F1 & BAC results for image retrieval (k = 3) on the IDC dataset

Method L1 L2 Cosine Hutchinson

F1 BAC F1 BAC F1 BAC F1 BAC

ELP9 0.4009 0.6092 0.4837 0.6432 0.3807 0.6015 0.5117 0.6523

ELP9 + SS 0.3662 0.5976 0.5372 0.6743 0.3240 0.5830 0.5609 0.6833

F-ELP9 0.5106 0.6514 0.5100 0.6515 0.5122 0.6526 0.5056 0.6490

F-ELP9 +SS 0.6267 0.7350 0.6251 0.7339 0.6257 0.7345 0.6309 0.7375

F-ELP11 0.5010 0.6420 0.5034 0.6443 0.5043 0.6450 0.4879 0.6355

F-ELP11 + SS 0.6117 0.7223 0.6003 0.7149 0.6053 0.7184 0.6190 0.7279

Table 3. F1 & BAC results for image retrieval (k = 5) on the IDC dataset

Method L1 L2 Cosine Hutchinson

F1 BAC F1 BAC F1 BAC F1 BAC

ELP9 0.4138 0.6159 0.5057 0.6559 0.3904 0.6064 0.5405 0.6699

ELP9 + SS 0.3599 0.5948 0.5563 0.6861 0.3142 0.5786 0.5897 0.7016

F-ELP9 0.5345 0.6659 0.5314 0.6645 0.5364 0.6675 0.5284 0.6629

F-ELP9 +SS 0.6492 0.7505 0.6485 0.7498 0.6474 0.7494 0.6521 0.7519

F-ELP11 0.5294 0.6591 0.5303 0.6603 0.5282 0.6595 0.5155 0.6519

F-ELP11 + SS 0.6381 0.7398 0.6306 0.7349 0.6309 0.7351 0.6427 0.7437

For comparison purposes, we implement the image retrieval algorithm with
both the original ELP descriptor and our F-ELP descriptor as inputs. Both
descriptors are implemented with and without stain separation (SS) of the image
data. The ELP descriptor was designed using a window size of n = 9, which is
what we implement here using code obtained from the authors of [12]. This
results in histograms of length 1024 (without SS) and 2048 (with SS). Since the
F-ELP descriptor is much shorter in length, in addition to n = 9, we also test
a larger window size, n = 11. Even with this larger window size, the maximum
histogram length for the F-ELP is just 80 bins. Tables 1, 2 and 3 summarize
the results of our comparison for the three values of k implemented. For each
method, the best performance across all distance metrics is highlighted in bold.
We observe that as k is increased the F-measure and balanced accuracy improve
for all methods. Based on these results we expect that implementations of the
kNN algorithm with even larger values of k may yield even further improvements
in accuracy measures, however in this work we are primarily concerned with the
comparison between descriptors.

From the above results we observe that for both descriptors, the use of stain
separation to generate histograms improves performance. In particular, we see
a significant improvement in accuracy scores when we apply stain separation to
the F-ELP descriptor. With stain separation, our proposed method significantly



156 A. K. Cheeseman et al.

outperforms the ELP descriptor, all with much shorter histograms. In general, we
find that the choice of distance function used does not seem to have a significant
effect on the performance of the image retrieval algorithm, with accuracy scores
being fairly similar across all distance functions.

4.2 Image Classification

To evaluate image classification performance we used our F-ELP descriptor as
input to train a support vector machine (SVM), a popular classification algo-
rithm. We used the provided training data partition and the fitcsvm function
in MATLAB to train an SVM to classify each image as containing IDC cells or
not. The SVM hyperparameters were optimized using a Bayesian optimization
routine in MATLAB and two kernel functions, linear and Gaussian, were tested.
As in the previous section, we implemented our method with two different win-
dow sizes and with/without stain separation. In Table 4 the classification results
obtained with the optimal hyperparameters are recorded for each implementa-
tion of the F-ELP.

From the results in Table 4 we can see that using stain separation to generate
our descriptor provides a significant improvement in classification performance
for both window sizes that were tested.

Table 4. F1 & BAC results for classification of the IDC dataset using F-ELP with
and without stain separation

Method F1 BAC

F-ELP9 0.4048 0.6174

F-ELP9 + SS 0.7182 0.8076

F-ELP11 0.3385 0.5911

F-ELP11 + SS 0.6715 0.7665

From Table 4 we can also observe that classification performance is signifi-
cantly better when we use the smaller window size. The optimal window size
for a given task is likely determined by a number of factors, including image
magnification and scale of the textures and patterns which are relevant to the
particular classification task at hand. We did not test other window sizes at this
time, however one could perform further testing to determine an optimal window
size for the given application.

We now compare the performance of our best proposed method to the most
recent results from the literature for classification of the IDC data, including
handcrafted features and deep learning approaches. In Table 5 we see that our
F-ELP descriptor outperforms many of the state-of-the-art handcrafted features,
achieving accuracy levels that are more comparable to those of recent deep learn-
ing approaches, such as a CNN from [2] and Alexnet, as implemented in [5].
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Table 5. F1 & BAC results for classification of the IDC dataset

Method F1 BAC

Alexnet, resize [5] 0.7648 0.8468

CNN [2] 0.7180 0.8423

F-ELP9 + SS 0.7182 0.8076

Fuzzy Color Histogram [2] 0.6753 0.7874

RGB Histogram [2] 0.6664 0.7724

Gray Histogram [2] 0.6031 0.7337

JPEG Coefficient Histogram [2] 0.5758 0.7126

M7 Edge Histogram [2] 0.485 0.6979

Nuclear Textural [2] 0.3915 0.6199

LBP [2] 0.3518 0.6048

Nuclear Architectural [2] 0.3472 0.6009

HSV Color Histogram [2] 0.3446 0.6022

Although we do not achieve quite the same accuracy level of deep-learning
approaches at this time, we find these results very encouraging. Using our
F-ELP method with digital stain separation, we are able to achieve comparable
accuracy with a much simpler approach. Our proposed method does not require
any training data to generate the descriptors as they are handcrafted, meaning
that a data set can be encoded using our method fairly quickly.

5 Conclusion

In this paper, we have introduced a new frequency-based descriptor for digital
histopathology images. The proposed descriptor, F-ELP, is a histogram descrip-
tor which estimates directional frequency information from local image patches.
The F-ELP method outperforms its successor, the ELP descriptor, in image
retrieval tasks, while requiring less storage overhead and shorter computation
times due to its compact nature.

When compared to the state-of-the-art from the literature, our method out-
performs a number of popular handcrafted features as an image classifier. We
achieve classification results which are comparable to those of deep-learning
methods. Our method achieves these results with a very compact representation
that does not require large amounts of training data to generate. Our descriptor
is also physically meaningful, being based on estimates of local frequency, and
thus has the potential to be interpreted by medical experts.
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Abstract. Magnetic resonance imaging (MRI) is typically used to detect and
assess therapeutic response in preclinical imaging of patient-derived tumor
xenografts (PDX). The overarching objective of the work is to develop an
automated methodology to detect and segment tumors in PDX for subsequent
analyses. Automated segmentation also has the benefit that it will minimize user
bias. A hybrid method combining fast k-means, morphology, and level set is used
to localize and segment tumor volume from volumetric MR images. Initial
centroids of k-means are selected by local density peak estimation method.
A new variational model is implemented to exploit the region information by
minimizing energy functional in level set. The mask specific initialization
approach is used to create a genuine boundary of level set. Performance of tumor
segmentation is compared with manually segmented image and to established
algorithms. Segmentation results obtained from six metrics are Jaccard score
(>80%), Dice score (>85%), F score (>85%), G-mean (>90%), volume similarity
matrix (>95%) and relative volume error (<8%). The proposed method reliably
localizes and segments PDX tumors and has the potential to facilitate high-
throughput analysis of MR imaging in co-clinical trials involving PDX.

Keywords: Computer aided detection � Magnetic resonance imaging �
Tumor segmentation � Level set

1 Introduction

Computer aided detection and analysis of medical images plays an essential role in co-
clinical imaging research. In particular, Magnetic Resonance Imaging (MRI) of Patient-
Derived Tumor Xenografts (PDX) can be used to detect tumors as well as assess or
predict response to therapy in co-clinical imaging investigations [1]. However, auto-
matic tumor segmentation in small animal MRI is difficult due to the presence of
artifacts, noise and variability within images [2]. The goal of this work is to develop an
automated tumor segmentation method that can be applied to PDX of triple negative
breast cancer to assess response to therapy.
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In past few years, several tumor segmentation techniques have been developed [3]
but no single method has been developed that can suitable for all image types. The
methods typically need user defined constraints for specific type of images such as
T1w, T2w, proton density (PD), diffusion-contrast enhanced (DCE)-MR, diffusion-
weighted imaging (DWI)-MR, and FLAIR images. A surface based [4] approach
including deformable and region based active contour is very useful for tumor seg-
mentation from MRI. Usually, active contours models use energy minimization by
gradient descent approach. The energy minimization converges to local minima and
gives segmentation results. But active contour models may fail due to convergence in
undesirable local minima and produce some erroneous segmentation [5]. Level set
approaches overcome the problem of convergence to an undesirable minima, however,
convergence may be slow due to inadequate initialization. An extension of active
contour and level set methods [6] has been proposed to solve initialization problem.
The segmentation may leak out and region overlapping may occur due to improper
handling of initialization criterion.

Composite or hybrid segmentation [7, 8] is a strategy to segment the tumor with the
permute combination of thresholding, C-means, fuzzy C-means, morphology, active
contour and geometric active contour to segment different anatomical regions of small
animal imaging. But the increase with volume and variability of the data, increases the
complexity of hybrid method, if proper care not taken. This means lower computing
time with higher number of different initialization and parameter needed to tune for
specific segmentation. Thus, hybrid method needs to take care to produce effective and
efficient segmentation results.

To address the limitations described above, we propose a method that is based on
the combination of fast k-means, morphology and modified level set. The local density
peaks search in k-means is used to reduce the time computation of clustering algorithm.
The appropriate use of regularization operation using binary mask generated from
k-means and morphology makes the growth function genuine to start from a true
boundaries in level set. The addition of local mean intensity in region fitting energy
function and modification in second-order central differences of curvature divergence
is solved the problem of convergence towards local minima. This method does not
require weighted coefficients in level set energy function. This method requires a
minimum set of constants and inputs, and runs mostly on homogeneous data.
Homogeneity of the tumor is recognized as low intensity variability, necrotic cores and
high textures similarity within the tumor. We compared the performance of the pro-
posed method to established methodologies such as Fuzzy C means (FCM) and active
contour. Overall, the proposed method performs better than those two comparable
methods in terms of accuracy and error metrics. High similarity metric and low error
metric of proposed method results in very low false positive detection, false negative
detection and spurious lesion generation compare to other methods.

The paper is organized as follows: Sect. 2, describes the proposed method for
tumor segmentation; Sect. 3, describes the results and discussion; Sect. 4, describes the
performance analysis with mathematical metrics and comparison with gold standard
methods. Finally, we conclude our paper in Sect. 5.
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2 Methodology

MR images were acquired on Varian 4.7T MR scanner with 25 slices, 25.6 � 25.6 �
1 mm3, in-plane matrix 128 � 128, TE 60 ms, and TR 1.5 s. K-means algorithm
requires initial seed points of each clusters to start the clustering process. Automatic k
(>1) number of good seed point’s selection is called initialization of cluster centers.
Appropriate initialization reduces the overall computing time in clustering. Initialization
using local density peaks (LDP) [9] searching method leads to very fast convergence
towards means when clusters are separable. Thus, the initial clusters seeds obtained from

LDP searching method is defined as x ið Þji 2 Ildpin

n o
. Here, x is observation obtained from

input image Iin. According to computational geometry, initial seed points found by LDP
[10] have reasonably high local intensity densities information’s. LDP avoid the outliers
due to the high local densities and lying very close to each other’s. Let, k number of
initial cluster centers have selected to compute the distance between each observation xi
to the each cluster centers m1,…, mk, where distance is calculated by the squared
Euclidean distance formulae taken on parameters p.

d xi;mKð Þ ¼
Xp

j¼1
xij � mk
� �2¼ jxij � mk

�j�� ��2 ð1Þ

Then each observation xi is assigned to the k
th cluster that defined mk by minimizing

differences between d(xi,…,mk). Now, all observations xi have to assign to a cluster and
then compute the average of the assigned points x0 kð Þ.

x0 kð Þ ¼ x0i1; x
0
i2; x

0
i3; . . .: ; x

0
ip

n o
ð2Þ

Now, x′(k) has the new cluster centers mk. Repeat above two (Eqs. 1 to 2) steps
until the cluster converges or assignments to the cluster centers are stable. Four clusters
are segmented from gray images and the segmented clusters are stored into separate
binary images BIC1, BIC2, BIC3, and BIC4. Then three times morphological dilation
is applied on BIC1, BIC2, BIC3, and BIC4 to disconnect the weakly connected
components. This morphological separation of tumor to the neighboring similar
structures is directed by distance map between tumor and non-tumor intensity simi-
larity. Sum up all single largest connected component of BIC3 from selected number of
slices (NS) to apply conditional voting. Then conditional voting (>(NS/2-1)) scheme is
applied to find out the tumor location. The same number of morphological erosions is
applied on selected largest 3D connected area to balance morphological opening and
closing. Select the tumor lesion from BIC1, BIC2, BIC3, and BIC4 that overlap the
tumor location. Three times morphological closing on previous/next slice can be
applied if no lesion found on any selected slice. These binary lesions (BI1) are used as
initial mask of level set. Then BI1 tumor lesions is added to generate ‘extreme maxima’
as maximum tumor boundary (BI2).

Level set requires appropriate initialization with stable evaluation curve, it does not
affect much about the information applied to determination the level set function. Re-
initializations of level set is required after first iteration. Although, re-initiation may
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increase computation cost with little increase of numerical inaccuracy. A good signed
partial differential equation (PDE) initialization was appeared in [11] with initial
contour /t x; y; 0ð Þ ¼ /0 xð Þ as:

/t ¼ sign /0ð Þ 1� r/j jð Þ ð3Þ

Where /0 is contour at zero interface that implicitly defined by x �X :f
/0 x; yð Þ ¼ 0g. The Hamilton-Jacobi equations enforces to become zero for highly
irregular level set function. Thus, flexible initialization is very good advantage of level
set method. The initial function /0 x; yð Þ is defined as follows:

/0ðx; yÞ ¼
�d if ðx; yÞ 2 Xin

0 if ðx; yÞ 2 X0

þ d if ðx; yÞ 2 Xout

8<
: ð4Þ

Where X0 represent the level zero boundary and a subset in the image domain X. Xin

and Xout are the inside and outside region of X0, and distance d > 0 is a constant.
According to Eq. 4, an initial contour starts from a specified binary region BI. The
binary image BI obtained from the clustering is considered as the initial level set
function in Eq. 4. Then, a regulation operation is conducted as follows:

/0 x; yð Þ ¼ ðjEdist BIð Þ � Edist 1� BIð ÞjÞ � BI � 0:5ð Þ ð5Þ

Equation 5 means that, if BI = 1 then /0 will be positive and if BI = 0 then /0 will
be negative. This satisfies the preliminary demands of level set. This, simple initial-
ization scheme makes the evolution start from a genuine boundary. For a given image I,
closed curve C, and variable v at position (i, j), the following energy function [5]
minimization is as follows:

ER /n
i; j

� �
¼ k1

Z
in Cð Þ

Iv i; jð Þ � c1j j2dpþ k2

Z
out Cð Þ

Iv i; jð Þ � c2j j2dp ð6Þ

Where, out(C) and in(C) represent the regions outside and inside of contour C
respectively. Two constant c1, and c2 denote the average intensities of inside and
outside of C. The parameters k1, and k2 are constants, and the values k1 = k2 = 1.

Our new variational model uses the region oriented information to find out the
segmentation outline using the energy function E(/) minimization. We defined a
region fitting energy E derived from the Chan and Vese [5] model, and minimized
when the evolution curve C is on the boundaries of the objects. The proposed energy
functional is defined as:

E /n
i; j

� �
¼ ER /n

i; j

� �
þEC /n

i; j

� �
ð7Þ
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The time-based partial derivative @u=@t is estimated by the forward difference.
Thus, level set growth function [12] can be represented by the following forward
differential equation:

/nþ 1
i; j � /n

i; j

dt
¼ E /n

i; j

� �
ð8Þ

Where, dt is the time step and E /n
i; j

� �
is the numerical estimated energy value

from above Eq. 7. Time step dt is given as follows in Eq. 9.

dt ¼ Tc

max E /n
i; j

� �
þ eps

� � ð9Þ

Constant time Tc is set to 0.45 and the constant eps is set to very close to zero (here,
eps is 2.2204e−16). Constant eps is used to avoid denominator value as zero. The

corresponding curvature div r/= r/j jð Þ in the EC /n
i; j

� �
is calculated by

Cd ¼ /pp/
2
q�2/p/q/pq þ/qq/

2
p

/2
p þ/2

qð Þ32� /2
p þ/2

qð Þ12
EC /n

i; j

� �
¼ a� Cd

ð10Þ

Here, a is a small diffusion parameter to control the degree of smoothing of contour
and set to 0.1. The second-order central differences [12] are defined as follows:

/p ¼ /n
iþ 1; j � /n

i�1; j

� �
;/q ¼ /n

i; jþ 1 � /n
i; j�1

� �
/pp ¼ /n

iþ 1; j � 2� /n
i; j þ/n

i�1; j

� �
;/qq ¼ /n

i; jþ 1 � 2� /n
i; j þ/n

i; j�1

� �

/pq ¼
/n
iþ 1; jþ 1 þ/n

i�1; j�1 � /n
i�1; j � /n

iþ 1; j�1

� �
4

ð11Þ

Level set applied using mask BI1 and BI2 to produce R1 and R2 region of every
slice. R2 can be considered only when there are no tumor lesion found on R1. Seg-
mented tumor region is extracted by multiplying binary R1/R2 with the original input
image.

3 Result and Discussion

The automatic segmentation algorithm is applied to 2D multi-slice, T2-weighted MR
images of TNBC PDX. Input MR slices where tumor is present in index three to ten
shown in Fig. 1(A). Four clusters from input image (Fig. 1(A)) using fast k-means is
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Fig. 1. (A) T2 weighted MR slices as input; tumor present in slice index 3 to slice 10. (B) Fast
k-means applied on slice index 3 to 10 from top left to bottom right with number of cluster is
four. Tumor location visible on Yellow and Sky color cluster. (C) Binary image of cluster
number three for tumor location finding on 3D image. (Color figure online)
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shown in Fig. 1(B). After preprocessed by morphological operation, the largest con-
nected area selection of cluster three is shown in Fig. 1(B).

Voting scheme is applied to the Fig. 1(C) to find the tumor location succeded by
morphological operation. The output after finding tumor loaction is shown in Fig. 2.

Now, the largest connected lesion is selected from clusters 2, cluster 3 and cluster 4.
Then the selected lesion is compared with the tumor position. The nearest lesion from
tumor position is considered as binary mask of each MR slice. Final mask for level set
initialization is generated by applying three times morphological dilation on binary
mask. This mask is shown in Fig. 3(A) with yellow contour and in parallel extreme
maxima is generated by summing up all the masked binary images followed by
morphological operation is shown in Fig. 3(B). This extreme maximum is used as the
stopping criteria of level set method. The final segmented results using both mask in
Fig. 3(A) and (B) is shown in Fig. 3(C).

The results give a new direction of automatic 3D segmentation on T2 weighted MR
images. The proposed method also solved the shortcomings of traditional methods. The
method tested on several preclinical MR images and found to be effective as seen
visually from Fig. 3(C). An additional tumor segmentation result is shown in Fig. 4.

Fig. 2. Largest connected area is selected based on voting (>total number of tumor slice in Z
direction/2-1)) on Cluster 3 (yellow) and then morphological erosion is applied to balance
morphological dilation and erosion. (Color figure online)

Fig. 3. (A) Mask initialization generated from different cluster and used in level set. (B) Mask
initialization generated from extreme maxima. (C) Segmented tumor contour shown in green
color within the input image by level set after performing some intermediate steps. (Color figure
online)
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4 Performance Analysis

Quantitative analysis of automatic segmentation needs to be validated by comparing
gold standard or ground truth. The ground truth can be defined by one or more experts
to segment the tumor manually. Six metrics are used to evaluate performance between
proposed segmentation and manual ground truth. Four most popular metrics [13] such
as Dice coefficient, Jaccard coefficient, F score, and G-Mean are applied on 2D images
and average of 2D slice metric is considered as metric value in 3D. Other two metrics
such as volume similarity index and relative volume error are directly applied on 3D
volume data.

Dice coefficient (DC) [13] measure the voxels overlapping between the segmented
binary image and binary ground truth image. The DC ranges from 0 (poor overlapping)
to 1 (perfect overlapping). The DC is referred as follows:

DC ið Þ ¼ 2� TP
ASþGTð Þ ð12Þ

Where, i ranges from 1 to number of slice (NS). TP (also called true positive) is
intersection between binary automatic segmentation (AS) and binary ground truth
(GT). DC of 3D MR images is considered by taking average of DC(i).

Fig. 4. Segmented tumor shown in green contour line. (Color figure online)
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Jaccard coefficient (JC) [13] measures the voxels overlapping between segmented
binary image and binary ground truth images divided by the size of the union of two
labels AS and GT. JC ranges from 0 (poor segmentation) and 1 (perfect segmentation).
JC is referred as follows:

JC ið Þ ¼ AS\GT
AS[GT

ð13Þ

DC and JC of proposed segmentation is shown in Fig. 5 below. Proposed methods give
more than 85% DC and more than 80% JC for most the input images. These com-
parison metrics suggest that proposed segmentation method achieves a robust auto-
matic segmentation tool for segmentation of preclinical MR image for subsequent
quantification and analysis.

F score (FS) [13] is measured by the harmonic average of the precision and recall.
The FS ranges from 0 (poor overlapping) to 1 (perfect overlapping).

FS ið Þ ¼ 2� Precision� Recallð Þ
PrecisionþRecallð Þ ð14Þ

Precision is defined as the fraction of TP to the segmented tumor and Recall is defined
by the fraction of TP to the grand truth (GT).

Fig. 5. (A) Column chart representation of Dice score and (B) column chart representation of
Jaccard coefficient. Both metric compared with manual segmented images. Average values of 2D
segmented slices considered as metric value of each 3D MR images. Dice score is good for most
of the images and gives more than 85% score. Jaccard score gives more than 80% in most of the
cases and these are good indication of good segmentation.

Computer-Aided Tumor Segmentation from T2-Weighted MR Images 167



Precision ¼ TP
AS

and Recall ¼ TP
GT

ð15Þ

G-Mean [14] is the measure by the square root of multiplication between positive class
accuracy and negative class accuracy. The G-Mean ranges from 0 (poor overlapping) to
1 (perfect overlapping).

G�Mean ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþFN

� TN
TN þFP

� 	s
ð16Þ

Where, FP (false positive) is number of voxels falsely segmented as foreground, TN
(true negative) is the number voxels correctly segmented as background, FN (false
negative) is the number of voxels falsely segmented as background.

The performance metrics FS and G-Mean of proposed segmentation is shown in
Fig. 6 below. F score is greater than 85% and G-Means greater than 90% in most of
images. This suggests that proposed method does not generates spurious lesions. FS
and G-Mean greater than 90% shows very minimal over- and under- segmentation.

The volume similarity index (VSI) is measured by one minus absolute difference of
volume to the sum of compared volume. Thus, VSI can be defined by:

VSI ¼ 1� ASV � GTVj j
ASV þGTVð Þ ð17Þ

Where, ASV is automated segmented volume and GTV is the ground truth volume.

Fig. 6. (A) Column chart representation of F score and (B) column chart representation of
G-Mean. Both metric compared with manual segmented images. Average of 2D segmented slices
considered as metric value of each 3D MR images. F score is good for most of the images and
gives more than 85% score. G-Mean gives more than 90% in all cases.
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The relative volume error (RVE) is measured by the ratio of the absolute volume
difference between automated segmentation and ground truth divided by ground truth
volume. Thus, RVE can be defined as:

RVE ¼ CSV � GTVj j
GTV

ð18Þ

The column chart representation of VSI and RVE are shown in Fig. 7. VSI ranges
from 0 (poor segmentation) to 1 (perfect segmentation) and RVE ranges from 0 (perfect
segmentation) and 1 (poor segmentation). VSI and RVE both metric are gives very
good segmentation results. Average RVE is less than 0.10 and average VSI is greater
than 0.95 means proposed method have very low over and under segmentation
problems.

For comparison task, we have chosen two popular segmentation algorithms:
Fuzzy C means (FCM) [8] and active contour [12]. A comparison table of proposed
method with other two comparable methods are shown in Table 1 below.

Fig. 7. (A) Column chart representation of volumetric similarity index and (B) relative volume
error. In most of images volumetric similarity index is greater than 95% and relative volume error
is less than 8%.

Table 1. Comparative study with performance metrics

Method used VSI RVE

Fuzzy C-means [8] 72.1% 27.61%
Active contour [12] 84.2 13.56
Proposed method 97.1% 5.77%
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Our method exhibits great improvement in VSI and RVE performance metrics.
Average VSI above 95% and average RVE below 6% reflect a significant improvement
compared to other two Fuzzy C-means [8] and active contour [12] as shown in Table 1.
Fuzzy C-means [8] and active contour [12] methods have a tendency of over seg-
mentation or under-segmentation of tumor. FCM is sensitive to very little noise and
very small variability of texture. FCM does not provide an effective segmentation due
to the presence of inevitable noise and low variability. The active contour [12] make an
automatic search of minimum energy positions, but sometimes convergence at a local
minimum makes them ineffective segmentation. The active contour also depends on
initialization of function. Fast k-means alone cannot deliver good segmentation with
smooth boundary as well level set alone cannot deliver good segmentation without
proper initialization and energy function adjustment. Thus, the combination of fast
k-means, morphology and level set provides better segmentation. Finding tumor
location and generating mask using fast k-means clustering is used to initialize level set
to overcome imperfect initialization problem. Overall, the proposed method identifies
the location of the tumor, generates a mask of the tumor, and exhibits superior seg-
mentation performance compared to available methodologies.

5 Conclusion

Image segmentation of MR data is an important step in preclinical tumor visualization,
quantification, computer aided analysis, and assessment of response to therapy. The
proposed method achieves very good segmentation results compared to other widely
used segmentation methods. Our method tested on real small animal T2 weighted MR
image and evaluated through similarity metrics and error metric. Those metrics give a
good indication of effectiveness of proposed method for relatively homogeneous (re
T2 W) PDX. Future work will be targeted at more heterogeneous PDX, e.g., those with
enhancing or non-enhancing or necrotic cores. Our goal is to eventually be capable of
handling large data with computationally efficient through optimization.
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Abstract. We present the first fully automated Sit-to-Stand or Stand-
to-Sit (StS) analysis framework for long-term monitoring of patients in
free-living environments using video silhouettes. Our method adopts a
coarse-to-fine time localisation approach, where a deep learning classi-
fier identifies possible StS sequences from silhouettes, and a smart peak
detection stage provides fine localisation based on 3D bounding boxes.
We tested our method on data from real homes of participants and mon-
itored patients undergoing total hip or knee replacement. Our results
show 94.4% overall accuracy in the coarse localisation and an error of
0.026 m/s in the speed of ascent measurement, highlighting important
trends in the recuperation of patients who underwent surgery.

Keywords: Sit-to-Stand · Human motion analysis ·
Long term monitoring

1 Introduction

Novel concepts and technologies like the Internet of Things (IoT) for Ambient
Assisted Living (AAL) or specific health monitoring enable people to live inde-
pendently, to be aided in their recuperation, and improve their quality of life.
Such systems often include multiple sensors and monitoring devices, producing
large amounts of data that need to be analysed and summarised in a few, clini-
cally relevant parameters [22]. The transition from a sitting position to a standing
one (StS1) is one of the most essential movements in daily activities [6], especially
for older patients suffering from musculoskeletal illnesses. StS has been linked
to recurrent falls [4], sedentary behaviour [7] and fall histories [20]. Continuous
monitoring of the StS action over a long period of time can therefore highlight
important trends, particularly for subjects undergoing physical rehabilitation.

To the best of our knowledge, the automatic analysis of StS has not
been attempted for long term monitoring and trend analysis. Some previous
1 In this work, by StS we do in fact mean both ‘Sit-to-Stand’ and ‘Stand-to-Sit’, but

will specify which of the two, if and when necessary.

c© Springer Nature Switzerland AG 2019
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works have focused on automating the Sit-to-Stand clinical test, performed
under supervised conditions and often in the presence of a clinician, e.g. [3].
Shia et al. [16] suggested modelling the physics of the human body during stand-
up transitions by using a motion capture suite. Their method was tested in the
lab on 10 healthy individuals but this approach is clearly impractical for long-
term monitoring. In [9], Galna et al. investigated the suitability of skeleton data
extracted by the Kinect sensor to assess clinically relevant movements, showing
that the StS timing can be accurately captured with errors comparable to the
VICON motion capture system. Their method was applied in the lab on 9 indi-
viduals with Parkinson’s Disease and 10 control subjects. Skeleton data was also
used in [8] to estimate the StS timing by using the vertical displacement of the
head joint and a manual threshold. Their method was tested in the laboratory
for 94 subjects and in participants’ own homes for 20 individuals.

The detection of StS transitions can be seen as an action classification prob-
lem, and a large body of research has investigated the application of deep convo-
lutional neural networks (CNN) for this task, for example [5,17]. However, while
these works enable high accuracy in action classification, they always make use
of RGB or depth data, which is not compatible with the privacy requirements of
home monitoring systems, for instance [2,23]. As already addressed in [13], sil-
houettes constitute a valid alternative form of data that allows action recognition
to be performed whilst respecting privacy requirements.

The aim of this work is to propose a novel approach to continuously mon-
itor StS transitions in the wild and, while addressing privacy issues, to gener-
ate automatic trend analysis. For each StS transition, we measure the speed of
ascent/descent as an indicator of physical function. We installed RGBD cam-
eras (PrimeSense) in participants’ own houses and recorded silhouette video
data from 9 subjects in 4 different habitations, for a minimum period of 4
months, up to 1 year, under the auspices of the SPHERE and HemiSPHERE
projects [10,22]. Two of the participants, aged between 65 and 90, underwent
total hip or knee replacement and we monitored them before and after their
intervention. The remaining 7 participants, aged between 40 and 60, did not
record any particular health condition that could affect their mobility. We show
that our method can identify StS transitions into the wild with 94.4% overall
accuracy and our measurement of the speed of ascent is comparable with the
VICON motion capture gold standard in a supervised setting. Moreover, our
analyses highlight important trends linked to the rehabilitation process, poten-
tially allowing for surgeons to follow the progress of their patients remotely and
anticipate possible complications.

2 Methodology

Monitoring people in their homes poses stringent ethical restrictions on the type
of data that can be recorded, analysed and shared, e.g. prohibiting the use of
RGB data [14,21]. To provide a privacy-compatible monitoring system (based
on a user study [22]), we generate silhouettes and 3D bounding boxes from the
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Fig. 1. Network architecture of the proposed method.

RGB data and discard the raw pixel values immediately thereafter. We deployed
one camera in each house (in the living room) and set it up at a similar height
to have a comparable field of view.

Our proposed pipeline can be divided into three steps: pre-processing of
videos, classification and StS measurement. First, the incoming silhouettes are
cropped at the detected bounding boxes and resized, producing one video per
individual. These videos are subdivided into short clips of 10 seconds each2,
which are then classified with a deep CNN (detailed in Sect. 2.1) into one of
three categories: “Sit-to-Stand”, “Stand-to-Sit” or “Other”. The StS video clips
only are then further analysed to measure the speed of ascent/descent using the
3D bounding boxes, as described in Sect. 2.2.

Contrary to previous works that have focused on StS duration [3,16], our
method measures the speed of ascent/descent, defined as the maximal transfer-
ring velocity of the centre of gravity (CG) between the start and the completion
of the StS movement [15]. The speed of ascent/descent does not depend on a
specific beginning or end of the movement, but rather on the maximum veloc-
ity. Thanks to this property, the speed of ascent/descent shows no significant
difference between the Sit-to-Stand and the Sit-to-Walk movements [12], or the
Stand-to-Sit and the Walk-to-Sit movements, making it a more suitable mea-
surement for free-living monitoring.

2.1 Classification

Inspired by the work from Carreira et al. [5], we built our classifier network using
Inception modules with 3D convolutions, as presented in Fig. 1. It was shown in
our previous work [13] that using very deep networks on silhouette data increases
the computational cost without inducing any advantages. We therefore adopted
a shallow architecture composed of 4 stacks of Inception modules, followed by a
Long Short-Term Memory (LSTM) layer located between the last convolutional
layer and the final fully connected layer. In our experiments, we found that the

2 The frame-rate of the silhouette recorder varied according to different conditions
and produced 10 fps on average.
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use of an LSTM module in addition to the 3D convolution produced the best
results in classification accuracy.

The video sequences recorded from the participants’ homes contained highly
varied data, with video clips of StS transitions only constituting less than 1% of
the whole dataset. To tackle this class imbalance problem [11], we under-sampled
the “Other” class to match the size of the minority classes “Sit-to-Stand” and
“Stand-to-Sit”, sampling new random elements for each epoch. This ensured
a balanced training and prevented the potential loss of useful data from the
“Other” class.

2.2 Speed of Ascent Measurement

The 10-seconds clip classifier provides a coarse time localisation of the StS tran-
sitions. To narrow the exact frame of the transition and measure the speed of
ascent3, we employ data from the 3D bounding boxes, in particular the evolu-
tion in time of the upper edge. Let the 3D bounding box B for the time interval
[tstart, tend] of a clip be B (t) = [x1(t), y1(t), z1(t);x2(t), y2(t), z2(t)], where the
indices 1 and 2 respectively represent the ‘right’, ‘top’, ‘front’, and ‘left’, ‘bot-
tom’, ‘back’ vertices of the 3D box. Let us call y1 ≡ ytop the y component of the
top vertex, and the vertical speed of the subject can then be estimated as:

Vy(t) = ±dytop
dt

, (1)

where the sign is + for “Sit-to-Stand” and − for “Stand-to-Sit” classes. Using
the definition of speed of ascent as the maximum vertical velocity during the
StS movement, we can then compute the speed of ascent VSOA as:

VSOA = max
[tstart, tend]

{Vy(t)} . (2)

It is important to note that the computation of Eq. (2) is only performed on those
clips classified earlier as StS. In fact, its simplicity is built upon the accuracy
of the classifier, which filters out all the other possible movements that might
contain a vertical motion and are not StS transitions. A visualisation of this
computation can be seen in Fig. 2, showing a strong correlation between the
vertical speed of the bounding box and the Sit-to-Stand action.

In order to reduce noise of the 3D bounding boxes, we adopted a Savitzky-
Golay filter (savgol) as implemented in SciPy. The advantage of the savgol
filter is that it replaces each data-point by the least-squares polynomial fit of
its neighbours, allowing noise reduction and a simple analytical derivative of
the polynomial. We used a kernel window size of 11 points and a polynomial of
3rd order. The vertical velocity can then be computed as the ratio between the
filtered ytop and the filtered time vector:

Vy =
savgol(ytop,deriv = 1)

savgol(t,deriv = 1)
(3)

3 Although here we refer to the computation of the speed of ascent, the methodology
applies identically for the speed of descent by simply using the negative sign in Eq. 1.
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Fig. 2. Example computation of the speed of ascent: (top) video frames of a Sit-to-
Stand sequence from the SPHERE data, colour coded with intensity of the vertical
derivative; (bottom) 3D bounding box vertical coordinate and derivative. The maxi-
mum intensity of the vertical speed corresponds to the speed of ascent. (Color figure
online)

3 Experiments

The architecture was built with 4 Inception modules [18], each composed of
a sequence of (1) 3D convolutions, (2) batch normalisation and (3) activation
ReLu, using respectively 16, 32, 64 and 128 filters. The last layer produces a
set of convolutional features which are, once reshaped, 512 dimensional for 25
pseudo-time steps. The resulting features are fed into an LSTM module with
128 units, whose output is then fed into a 3D fully connected layer with softmax
activation. The input comprises video clips of 100 frames, each 100 by 100 pixels,
while the output is a 3 by 1 classifier.

We demonstrate the validity of our algorithm by assessing the StS video
classifier and the speed of ascent/descent computation independently on two
different datasets.

3.1 Physical Rehabilitation Movements Data Set

The UI-PRMD dataset includes skeleton data from typical exercises and move-
ments which are performed by patients during therapy and rehabilitation pro-
grams [19]. It consists of 10 healthy subjects, performing 10 different movements
10 times each, and recorded simultaneously using a Kinect and a VICON (gold
standard) motion-capture system.
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In particular for our work, we extracted the Sit-to-Stand movement from
the dataset and used the VICON motion capture data to validate our proposed
approach. We generated 3D bounding boxes using the extent of Kinect skeleton
joints and we compared the speed of ascent with the one computed using the
centre of gravity (CG) from the VICON data4.

The curves in Fig. 3a show a comparison of the true speed of ascent, com-
puted using the VICON CG (blue curve), and our estimation using the Kinect
head joint (orange). In both cases, the vertical derivative was obtained for all
the StS transitions available (NStS = 100) and averaged to highlight possible
discrepancies, while the time was normalised using the beginning and the end of
the StS transition. The two curves exhibit a very similar pattern, with a maxi-
mum value (i.e. the speed of ascent) which differs by 23.3%. This amplification
of the maximum vertical speed results in a bias error of the speed of ascent of
about 0.026 m/s, or 28.3% of the average measurement. In spite of this bias
error, the correlation between our estimated speed of ascent and the ground
truth is more than 92.8%, as shown in Fig. 3b. While this bias could be miti-
gated by appropriate calibration, the aim of this work is to investigate trends in
the speed of ascent/descent and the high correlation between our measurement
and the ground truth is more than sufficient for its application.

Fig. 3. Comparison of speed of ascent computed with our algorithm using the Kinect
data and the VICON system

3.2 SPHERE Data

The SPHERE project (Sensor Platform for Healthcare in a Residential Envi-
ronment) [22] developed a multi-modal sensing platform aimed to record data
from up to 100 houses in the Bristol (UK) area for healthcare monitoring. Each
house was equipped with a variety of sensors, including RGBD cameras, which
were used to generate human silhouettes and 2D/3D bounding boxes via the
OpenNI API [1], from different communal spaces: living room, kitchen and hall.

4 The CG was estimated using the average of the Left, Right, Anterior and Posterior
Superior Illiac skeletal joints.
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The HEmiSPHERE (Hip and knEe study of SPHERE) project [10] is an UK
National Health Service application of SPHERE sensors within the homes of
patients undergoing a total hip or knee replacement.

In this work, we present data collected from the living room of 4 different
houses, described in Table 1, two belonging to the HEmiSPHERE cohort and two
belonging to the SPHERE one. This subset includes a total of 1,177,082 video
clips, of which 5,645 are StS transitions and the rest belong to the “Other” class.
The videos were manually labelled by the authors using the MuViLab annotator
tool5 and were used for cross-validation as per Table 2. The discrepancy between
the number of Sit-to-Stand and Stand-to-Sit transitions can be explained by the
type of silhouette detector adopted (OpenNI), that was optimised for standing
poses. This increases the chances of detecting a person walking and sitting down
and hence the number of Stand-to-Sit transitions recorded.

Table 1. Description of the data from the 4 houses: 2 cohorts of SPHERE (bottom
two rows) and HemiSPHERE (top two rows).

Id Duration Occup. #Other #Sit-to-Stand #Stand-to-Sit

House A 4 months 2 107404 339 491

House B 3 months 2 266853 1289 2051

House C 9 months 4 416628 297 1054

House D 6 months 1 380552 54 70

(a) Fold 1 (b) Fold 2 (c) Fold 3

Fig. 4. Confusion matrix for each validation fold.

3.3 Classification

Data from homes A, B and C was used to train and validate the network
(described in Sect. 2.1) using a cross-validation strategy, as depicted in Table 2.
Data from House D was left out of this procedure and was only used to generate
the trend plot. Results are presented in Table 2 and show an overall accuracy of
5 Available on GitHub: https://github.com/ale152/muvilab.

https://github.com/ale152/muvilab
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94.8%, 95.0% and 93.5% for the three validation folds, computed by averaging
the accuracy of the three classes. The average accuracy across the three folds is
94.4%. Details of the classification results are presented in Fig. 4, showing the
confusion matrices for each validation fold.

Particular attention must be paid to the false positive scores. The number
of “Other” videos mis-classified as StS was found to be 1.63%, producing 28119
false positive against the 6548 correctly identified StS transitions. While these
values might potentially damage our score, a manual inspection of the false pos-
itives concluded that many of the mis-classification videos are, indeed, visually
similar to StS transitions. This included subjects interacting with the environ-
ment for long periods of time while standing up, raising from the floor, kneeling
while doing exercises or housekeeping chores. Although these movements are not
strictly StS transitions, they still involve a vertical motion that requires physical
effort. As we will show in the next Section, although the presence of these false
detection increases the uncertainty of our measurements, it does not hamper the
calculation of the trend plots.

Table 2. Cross-validation accuracy results, with 94.4% overall average accuracy.

Fold Train Validate Stand-to-Sit Sit-to-Stand Other Overall

1 House C, B House A 97.2% 91.2% 96.0% 94.8%

2 House C, A House B 95.2% 93.2% 96.5% 95.0%

3 House A, B House C 96.7% 86.0% 97.9% 93.5%

Average 94.4%

3.4 Trend Plots

Following the classification, the speed of ascent/descent was computed for all the
video clips detected as StS transitions and it was averaged per week. The result-
ing trend plot, for Fold 2 as an example, is presented for the manually labelled
video clips (Manual trend) in Fig. 5a, and for the automatic labels (Automatic
trend) in Fig. 5b. The reader is reminded that one of the occupiers of this house
underwent a total hip or knee replacement intervention and the surgery day is
marked with a solid black line. Before surgery, the speed of ascent is between
0.35 and 0.45 m/s, which is followed by a sudden drop soon after the opera-
tion. This is due to the pain and the discomfort following the surgery, which
impair the physical ability of the patient and hence their speed of ascent. In
the following weeks, the speed of ascent shows a slow but steady increase with
a slope of around 0.04 m/s per month. Finally, 14 weeks after the surgery, the
speed of ascent reaches a value which is just shy of 0.5 m/s, confirming a full
recovery. The presence of the trend is also corroborated by a high coefficient of
determination R2 = 0.86.

The comparison between the Manual trend and the Automatic trend from
Fig. 5 shows a very similar pattern, with a correlation coefficient between the
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two plots of 0.88. In spite of the higher error bars, due to false positives, the
main characteristic aspects of the plot are preserved, including the drop in the
speed of ascent following the surgery and the full recovery after 14 weeks.

(a) Manual (b) Automatic

Fig. 5. Comparison of speed of ascent trend for Fold 2, extracted from (a) the manually
labelled StS transitions and (b) the video clips automatically labelled as StS. The
correlation between the plots is 0.88.

For comparison, we present Automatic trends generated for House C and D
in Fig. 6, occupied by healthy participants. As expected, no particular trend can
be noticed for these houses, as confirmed by the low coefficients of determination
R2 of −0.21 and −0.45 respectively.

(a) House C (b) House D

Fig. 6. Comparison of speed of ascent trend for House C and D from the SPHERE
cohort.

Although the trend plots presented in this section only refer to the speed of
ascent (i.e. Sit-to-Stand), the trend plot computed using the speed of descent
(i.e. Stand-to-Sit) showed a very similar behaviour and were omitted from this
paper for brevity.

4 Conclusions

The demand of AAL technologies for home monitoring is continuously increasing.
We presented a simple and efficient approach for the detection and analysis of
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StS transitions for home monitoring in completely unsupervised environments.
We implemented and tested our method in 4 different houses, 2 of which were
occupied by patients with total hip or knee replacement. We showed that we
are able to reliably identify StS transitions in video clips of binary silhouettes
and we can confidently measure the speed of ascent for each transition as an
indicator of improving or deteriorating functionality for the StS test. Plots of
the average speed of ascent estimated by our method highlights important trends
in the recovery process of the surgery patients.
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Abstract. We propose a visual object tracker that improves accuracy
while significantly decreasing false alarm rate. This is achieved by a late
fusion scheme that integrates the motion model of particle sampling with
the region proposal network of Mask R-CNN during inference. The qual-
ified bounding boxes selected by the late fusion are fed into the Mask
R-CNN’s head layer for the detection of the tracked object. We refer the
introduced scheme, TAVOT, as target aware visual object tracker since
it is capable of minimizing false detections with the guidance of variable
rate particle sampling initialized by the target region of interest. It is
shown that TAVOT is capable of modeling temporal video content with
a simple motion model thus constitutes a promising video object tracker.
Performance evaluation performed on VOT2016 video sequences demon-
strates that TAVOT 22% increases the success rate, while 73% decreasing
the false alarm rate compared to the baseline Mask R-CNN. Compared
to the top tracker of VOT2016 around 5% increase at the success rate is
reported where intersection over union is greater than 0.5.

Keywords: Visual object tracking · Region proposal network ·
Particle filtering

1 Introduction

Although the recently developed visual object trackers highly robust to scale
changes that yields perfectly localized object bounding boxes, specification of the
tracked object bounding box (BB) among a number of detected BBs constitutes
a challenging problem. The problem becomes harder in video object tracking
where we have several moving objects in the scene. In order to alleviate these
drawbacks, new deep architectures that enable to include the temporal infor-
mation into the tracking model are introduced. These networks mostly propose
enforced solutions to video object tracking with the expense of high computa-
tional load but elimination of the false detections is still an open problem.

There are numerous ways to aggregate temporal information with spatial
information for video processing. One of the most common practice is using
long short term memory (LSTM) along with CNNs. LSTMs use hidden and
cell states to make a prediction for the current video frame using the predic-
tions of previous frames and stores the temporal context into its memory. Cur-
rent practices involve several improvements on RNNs that ConvLSTMs [21] add
c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 186–198, 2019.
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convolutional kernels instead of weight vectors and ST-LSTMs [14] introduce
a new memory mechanism, different from the generic LSTM cells. A different
methodology for spatiotemporal video processing is using 3D-CNNs by stacking
multiple video frames for the input. For instance, two-stream inflated 3D-CNNs
[1] perform fusion on two models designed for processing RGB and optical flow
information for activity recognition. Recently, E3D-LSTMs [23] merged these
two methodologies and added a different type of gating mechanism to provide
self-attention. Yet in the context of object tracking, only few methods use the
RNN based architectures for capturing the temporal information. ROLO pro-
posed in [18] performs single object tracking by placing an LSTM layer on the
top of the YOLO object detector. There are several other works [6,15], which
use the RNN-like architectures for multiple object tracking as well. Still, they all
diverge from being a simple model since the utilities used to capture the temporal
information are complex and an additional training is needed to tune the param-
eters of the sequential layers. In addition, neither of the settings above can be
directly applied on an object tracking objective such that, learning from tracking
datasets are prohibited. In this regard, using other cues as motion information
is a stronger candidate to aggregate temporal information for video processing.
There are also visual object trackers with motion guidance which carries out
online learning for learning the target representations. For example, MDNet [17]
proposes a domain-specific online learning scheme and MGNet [5] extends this
approach by stacking optical flow information on the RGB video frames and
selecting candidate region of interests via a particle filter. Yet, the motion guid-
ance is less reliable comparing variable rate particle sampler (VRPS) that we
are using, seeing that they have increased the number of input channels from 3
to 5 by stacking optical flow channels on the RGB channel. Moreover, MGNet
requires a training from scratch due to the change in the number of input chan-
nels, in contrast to our work which can be trained by using an object detection
dataset with segmentation annotations such as COCO [13].

Differ from the existing models we propose a motion guided deep object track-
ing method referred as Target Aware Visual Object Tracker (TAVOT) based on
Mask R-CNN, a state-of-the-art deep object detector. Inspiring from [7] in which
accuracy of the variable-rate color particle filter is significantly improved by fus-
ing the region proposals of Mask R-CNN and particle proposals, in this work
we adopt the baseline architecture of Mask R-CNN to video object tracking
by including the state transition model of particle filtering into the inference
scheme. TAVOT applies a late fusion on the proposals generated by Mask R-
CNN’s Region Proposal Network (RPN) and VRPS that enables integrating a
simple motion model into the system. The qualified BBs selected by the late
fusion are fed into the Mask R-CNN’s head layer for the detection of the tracked
object. We refer TAVOT as target aware visual object tracker since it is capa-
ble of minimizing false detections with the guidance of VRPS initialized by the
target RoI.

The rest of the paper is organized as follows. Section 2 summarizes the base-
line methods that we used as the object detector and particle sampler. Section 3
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describes the proposed target aware visual object tracker. Experimental results
are reported in Sect. 4 and Sect. 5 presents the conclusions.

2 Theoretical Background

This section presents a brief overview on Mask R-CNN in Sect. 2.1 and variable
rate color particle filter (VRCPF) in Sect. 2.2, where we used as the baseline
models for the proposed tracker.

2.1 Mask R-CNN

Mask R-CNN [8] is a state-of-the-art object detector that simultaneously per-
forms classification and segmentation on the detected objects. It extends its
predecessor, Faster R-CNN [20], by integrating the concept of instance segmen-
tation into the detector that segments the individual objects while detecting
the object bounding boxes. Moreover, Mask R-CNN uses RoIAlign for enhanc-
ing the detection performance, thus we used it as a baseline for the proposed
visual object tracker. Figure 1(a) illustrates pipeline of Mask R-CNN and in the
following we describe the main blocks.

Fig. 1. (a) Mask R-CNN architecture. (b) Architecture of the proposed TAVOT
tracker.

Feature Extraction. ResNet-101 [9] and feature pyramid networks (FPN) [12]
are used for extracting the backbone features from the image, which creates
5 different shaped feature maps with spatial dimensions of 2562, 1282, 642, 322

and 162 after resizing the image to 1024 × 1024 resolution, while preserving the
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Fig. 2. Region Proposal Network of mask R-CNN (blue path), and qualified BB selec-
tion proposed by TAVOT (blue+gray path). (Color figure online)

image’s original aspect ratio by padding zeros. These feature maps, namely, the
backbone feature maps are notated as P2, P3, P4, P5 and P6, respectively.

Region Proposal Network (RPN). RPN generates proposal BBs with their
corresponding objectness scores which are defined as the probability of the
regions containing an object. Figure 2 demonstrates the steps of proposal gen-
eration. First all of the backbone feature maps are fed into the RPN layer by
passing 512 convolutional filters each with 3 × 3 kernel on these feature maps in
order to construct a shared feature map. Using the shared feature map, object-
ness scores and object bounding boxes for each anchor scale and anchor aspect
ratio (0.5, 1, 2) are obtained by employing a binary classifier using SoftMax and
a regression layer, respectively. This process generates the proposed object BBs
collected in a set BRPN , and corresponding objectness scores, pRPN , for 261,888
distinct regions. After that, ArgMax 6000 block selects the 6,000 BBs with the
highest objectness scores and non-maximum suppression (NMS) with an IoU
threshold of 0.7 is applied for selecting less overlapping M region proposals. Fil-
tered object proposal BBs and their corresponding feature maps are transmitted
to the RoIAlign layer in order to create a fixed-size feature map.

RoIAlign. RoIAlign is a transformation applied on the selected backbone fea-
ture map using the BB coordinates collected in the set BRPN , which are denor-
malized to the feature map’s spatial dimension H × W . The motivation behind
using RoIAlign is to create a fixed-size feature map having a spatial dimension
of S × S which can be passed through fully connected layers and to reduce the
misalignment problem between the input and output feature maps which was
occurring in its predecessor, RoIPool [20]. It is shown that RoIAlign improves the
BB localization accuracy [8] and for details about RoIAlign, we refer the readers
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to [10] and [8]. The fixed-size feature map, which S is chosen 7 for the classifi-
cation and 14 for the mask creation branch of the head architecture, is passed
through to gather the final detection and segmentation result, respectively.

Head Architecture. Head architecture is used to obtain the final BB detections
and segmentation results of Mask R-CNN with two separate branches. Note that
both branches report the object class label as well as the corresponding object-
ness score, where RPN only generates BBs classified as an object candidate.
Backbone feature map selection, RoIAlign and head architecture steps of Mask
R-CNN are dependent to the RPN proposal predictions such that classification,
BB regression and segmentation layer results change accordingly.

2.2 Variable Rate Color Particle Filter

Particle filtering employs a set of weighted samples called particles to approxi-
mate the posterior density of the target state. In our notation st = {s1t , s

2
t ..., s

P
t }

and wt = {w1
t , ..., wP

t } respectively denote the set of state vectors of particles
and corresponding weights where the number of particles is P. Each particle
state si

t refers to an object proposal BB thus the set of the BBs proposed by
the particle sampler is denoted by BPS,t = {B1

PS,t, B
2
PS,t..., B

P
PS,t} where Bi

PS,t

denotes the BB proposed by the particle i at time t.

si
t ∼ p(si

t|si
t−1) (1)

where si
t denotes the sampled state vector of particle i at frame t given its

estimation at frame (t − 1).
In our work, we use particle sampler of VRCPF which is formulated in Eq. 1.

The target RoI is initialized in the first frame as in a standard tracking setup.
Let Btar

PS,t denotes the target RoI specified in the form of a BB and m(Btar
PS,t)

denotes a kernel density estimate of the color distribution of the target BB at
time t. Similarly, Bi

PS,t refers to the candidate object BB pointed by the ith
particle where the corresponding kernel density estimate of the color distribu-
tion is m(Bi

PS,t). As in [4], we use Bhattacharya distance d[m(Btar
PS,t),m(Bi

PS,t)]
to measure similarity between the target and candidate distributions. Thus the
likelihood distribution which constitutes observation model of VRCPF is formu-
lated by Eq. 2,

p(yt|si
t) ∝ e−λ(d2[m(Btar

PS,t),m(Bi
PS,t)] (2)

where yt is the observed video frame and λ is a smoothing parameter. Finally
the update rule of particle weights can be formulated as;

wi
t ∝ wi

t−1.p(yt|si
t). (3)

The final state of the tracked object is estimated at each frame as weighted
average of particle states.
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3 TAVOT: The Proposed Visual Object Tracker

Despite the decent object detection performance on individual video frames,
Mask R-CNN is lacking robustness to blur, occlusion and illumination changes as
a visual object tracker. In addition, as a deep detector Mask R-CNN outputs all
detected object BBs hence itself is not able to identify the desired target object of
interest. Choosing the BB with the highest objectness score among Mask R-CNN
predictions causes instabilities in tracking that it mostly results in selecting the
wrong target BB. In this case, adopting Mask R-CNN to a video object tracker
including motion information enables us to deal with such problems. In this
section, we present our proposed method for video object tracking where we
adopt a pre-trained Mask R-CNN to a video object tracker. This is achieved
by integrating a variable rate color particle sampler into the region proposal
generation stage that guides a late fusion mechanism during inference as shown
in Fig. 1(b). The steps for the proposed scheme that yields the final visual object
tracker, TAVOT, are explained in the following.

Proposal Generation by TAVOT RPN. All processing steps up to gener-
ation of BBs and corresponding objectness scores for 261888 distinct regions
are exactly the same as the original Mask R-CNN (Fig. 2). We activate the late
fusion for the rest of the proposal generation scheme. Main drawback of the
described NMS scheme in RPN is a BB having the highest objectness score
may not be the one that provides the best object localization. Therefore during
the inference there may not be any detected object at the output of the head
layer or a badly localized object may be detected. This happens since RoIAlign
layer of the deep object detector is very sensitive to small localization shifts. In
order to alleviate this drawback, we do not use the original NMS during the BB
proposal creation, instead among 261888 BBs with objectness scores proposed
by RPN, top-N bounding boxes with the highest objectness scores are selected
without checking their overlapping ratio. Let BRPNLF

denotes the set of selected
N proposal BBs that we fed into the late fusion block. VRCPF learns the initial
target object appearance model with one positive sample specified by the initial
RoI at the first frame of tracking. Then, the particle sampler samples P object
proposals BPS = {B1

PS , B2
PS ..., BP

PS} from the state transition distribution for-
mulated by Eq. 1 and assigns the corresponding particle weights w. Note that
the time variable t is dropped to simplify the notation. Particle weights imply
the probability of a sampled BB to contain a target object or not thus can be
interpreted as the objectness scores of the BBs.

Late Fusion. The particle sampler enforces localization of the proposed BBs
around the target object of interest with its state transition model and RPN
has a great ability of generating object instances with high confidence scores. In
this regard, uniting these two proposal generators improves the localization of
the target object of interest while reducing the false detection rate. Therefore
we formulate a late fusion scheme to get benefit from both proposal generators.
Let BP denotes the union of two sets, BRPNLF

and BPS , and it is obtained by
appending BPS on BRPNLF

. For any RPN bounding box having an IoU over γ
with PS BBs or vice versa, Eq. 4 identifies the qualified BBs of BP ;
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Ij =

⎧
⎪⎨

⎪⎩

1 if β(Bj
P ,BN :(P+N−1)

P ) > γ and 0 ≤ j < N

1 if β(Bj
P ,B0:(N−1)

P ) > γ and N ≤ j < P + N

0 otherwise
(4)

where j denotes the integer indexes of the BBs ranged between 0 and P +N − 1
and Ij = 1 shows that Bj

P to be used in the next step as a qualified BB. β is
the operator that calculates the maximum IoU between a BB and a set of BBs
and γ is the IoU threshold.

Then in order to retrieve the set of K qualified BBs, BQual, a multiplication
is performed between I and BP as in Eq. 5,

BQual = I � BP (5)

where � is the element-wise multiplication operation. BQual is then transmitted
to the RoIAlign layer which is used for creating a fixed-size feature map. Note
that K varies from frame to frame since the number of detected object BBs as
well as their overlapping ratios would differ.

Regression and Classification. Feature maps describing BQual at the end of
RoIAlign layer are being used for retrieving TAVOT predictions by using the
head architecture of Mask R-CNN with a small but important modification. In
particular, knowing that the target of interest is initialized at the first frame, we
perform BB classification and regression for only the known object class label.
This enables TAVOT not to provide any output in case the tracked output has a
different object class label. Note that the tracked object class label information
is not being used in RPN or late fusion schemes since they apply a two class
classification.

Mask R-CNN’s RoIAlign and head architecture are sensitive to the small
perturbations in BB locations that the detection results, specifically the object-
ness score of a RoI being an object, can be drastically changed even with a small
change depending on the RoI locations provided by RoIAlign. In fact this is a
common problem in deep object detectors arising mainly from interpolations.
Target aware nature of TAVOT alleviates this problem by providing more RoIs
with different sizes and aspect ratios with particle sampling. For instance as it is
reported at Fig. 3(a), the target RoI is classified by Mask R-CNN as a kite with
objectness score 0.91 but none of the RoIs are classified as person. However the
target RoI is detected as person by TAVOT even though the assigned object-
ness score for person is as low as 0.48 (Fig. 3(b)). This clearly indicates that
Mask R-CNN is vulnerable to the position changes and in order to overcome
this problem, RPN has to be supported by qualified particles for boosting head
architecture. Furthermore, target aware nature of TAVOT enables us to track
person with such a low objectness score since 0.48 is the highest score for the
class person.
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4 Test Results

The proposed visual tracker is evaluated on commonly used benchmarking
dataset VOT2016 and performance reported compared to the top trackers of
VOT2016 benchmarking. We used 36 of the VOT2016 [11] videos that include
object classes learned by the released model of Mask R-CNN trained on COCO
dataset [13] which consists of 118,287 video frames from 80 categories. We modi-
fied the code available at https://github.com/matterport/Mask RCNN to inter-
fere RPN proposals and head architecture. Experiments and evaluations are
conducted with Intel Core i7 4790 CPU 3.6 GHz and GeForce GTX TITAN
X GPU. Tracking performance is reported by success rate which is the ratio
of the number of successfully tracked frames over total number of frames in a
video sequence for a given IoU threshold where IoU is defined as the area of
intersection over union between ground truth and the tracker result. Also we
have evaluated accuracy and robustness that measures the average IoU calcu-
lated over all successfully tracked video frames and how many times the tracker
drifts off the target, respectively. Besides false alarm rate is reported for each
video sequences to demonstrate the improvement achieved by TAVOT in mini-
mizing false detection rate. While performing these experiments, we set P = 400,
N = 1, 000 and γ = 0.3.

19.0-etik 19.0-etik

(a)

person-0.48person-0.48

(b)

Fig. 3. Bolt 1, frame no: 321. (a) Target tracked by Mask R-CNN. (b) Target tracked
by TAVOT.

Overall tracking performance of TAVOT compared to the top trackers of
VOT2016, CCOT [3], DDC [11], DNT [2], EBT [24], MLDF [22], SRBT [11],
SSAT [19] and TCNN [16], is reported at Fig. 6 and Table 1 in terms of success
rate and accuracy/robustness. Performance improvement on VOT2016 dataset
achieved by TAVOT compared to SSAT, the top tracker, is 1% for accuracy,
while it is 2% for success rate at IoU-th = 0.5. Also it is shown in Fig. 6, all
other trackers are lacking of localization thus the tracking accuracy significantly
decreases at higher IoU-th values, while our method TAVOT is much more robust
at high IoU thresholds (Performance increment at IoU-th = 0.6 is about 6%)
because of the improved localization accuracy. It is also observed that we have

https://github.com/matterport/Mask_RCNN
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better performance in terms of accuracy but poor robustness which indicates
that miss detection rate is high. We also compared our proposed tracker with
Mask R-CNN and report that the accuracy increases about 5%, while robustness
decreases 27% that clearly demonstrate the improvement gained by including the
temporal model of VRCPF sampler into the visual object tracking (Fig. 4).
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Fig. 4. Success rates achieved by TAVOT on VOT2016 compared to the state of the
art trackers and Mask R-CNN.

We have also evaluated performance of TAVOT according to the five
attributes labeled in VOT2016 as illumination change, motion change, size
change, occlusion and camera motion. Table 2 reports our performance compared
to the top four trackers of VOT2016 benchmarking and Mask R-CNN. TAVOT
provides higher success rates particularly for illumination and size change where
the improvement is 13% and 6% compared to the best tracker, respectively. This
is mainly because TAVOT keeps tracking in case of occlusion by using motion
model of particle sampler where deep detectors fail to track under blur and
abrupt illumination changes.

Table 1. Accuracy and robustness achieved by TAVOT on VOT2016 dataset compared
to the top trackers.

Tracker Accuracy Robustness Tracker Accuracy Robustness

TAVOT 0.605 0.307 CCOT 0.553 0.263

Mask R-CNN 0.556 0.572 MLDF 0.551 0.179

SSAT 0.594 0.169 SRBT 0.524 0.395

TCNN 0.590 0.164 DNT 0.521 0.311

DDC 0.570 0.320 EBT 0.444 0.398
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Table 2. Attribute based success rates achieved by TAVOT and the top four trackers
on VOT2016 dataset. (IoU-th = 0.5).

Attribute TAVOT Mask RCNN SSAT TCNN MLDF CCOT

Illumination change 0.702 0.369 0.550 0.568 0.538 0.350

Occlusion 0.554 0.304 0.523 0.552 0.494 0.441

Motion change 0.565 0.343 0.516 0.531 0.404 0.353

Camera motion 0.609 0.384 0.605 0.600 0.522 0.437

Size change 0.610 0.391 0.550 0.547 0.476 0.393

In order to visually demonstrate the improvement achieved by TAVOT, in
Fig. 5 we illustrate some tracking results that allow us to compare TAVOT with
Mask R-CNN. Figure 5(a) clearly shows that TAVOT provides better localization
under blur where the blurred parts of object of interest are tracked with BBs
provided by the particle sampler. Figure 5(b) shows three video frames where
Mask R-CNN does not track any object but TAVOT does. This is mainly because
RPN does not fed an accurate object BB proposal to Mask R-CNN. However
TAVOT provides accurate results, this is because either the particle sampler
generates better BBs at aspect ratios differ from the anchors or target aware
decision maker at the head layer of TAVOT can classify the object of interest.
Interested readers can access to the tracking results at https://mspritu.github.
io/research/tavot.

Fig. 5. Tracked object BB by mask R-CNN (blue), GT (red-dashed) and TAVOT
(magenta). (a) iceskater2, motocross1, car1 (frame no:13,62,257), (b) gymnastics3,
handball2, motocross1 (frame no:17,306,85). (Color figure online)

https://mspritu.github.io/research/tavot
https://mspritu.github.io/research/tavot
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Fig. 6. Basketball, frame no:35. (a) Proposal BBs generated by RPN (green), the
tracked object BBs (blue) by Mask R-CNN. (b) Proposal BBs after late fusion (green),
the tracked object BB (magenta) by TAVOT. (c) False alarm ratios of Mask R-CNN
and TAVOT obtained on VOT2016 videos. (Color figure online)

Since high false alarm rate is a common problem of deep detectors we report
the false alarm rate for each video sequence at Fig. 6(c). False alarm rate of Mask
R-CNN significantly higher than TAVOT because the introduced late fusion
scheme reduces the false alarms by eliminating unqualified proposals. Figure 6(a)
visually illustrates the false alarms where Mask R-CNN estimates 38 object BBs
using BBs proposed by RPN where 37 of them are false detection, TAVOT tracks
the target object without any false alarm in Fig. 6(b). We couldn’t report false
alarm rates for the state-of-the-art methods used for success rate comparison
because this information is not available.

5 Conclusion

This work aims to improve the tracking accuracy of visual object tracking by
including a simple motion model that inserts the temporal information of video
into the scheme. To achieve this, we proposed a visual object tracker which uses
a late fusion scheme for merging region proposal network and particle sampling.
We demonstrated that the late fusion scheme guides the detection results such
by eliminating the disqualifying proposals based on the motion model of particle
sampling. We observed a reduction for both the miss detection and false detection
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rates that yields a higher tracking accuracy. Numerical results demonstrate that
since TAVOT uses more proposals with aspect ratios differ from RPN anchors,
this assists the head architecture to assign the correct class label.
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Abstract. This paper provides initial results on developing a deep neu-
ral network-based system for driver distraction detection which is opera-
tional at daytime as well as nightime. Unlike other existing methods that
rely on only RGB images for daytime detection, the proposed system
consists of two operating modes. The daytime mode uses a convolutional
neural network to classify drivers’ states based on their body poses in
RGB images. The nighttime mode classifies Near Infrared images using a
different neural network-based model and trained under different circum-
stances. To the best of our knowledge, this is the first work that explicitly
addresses driver behavior detection at night using end-to-end convolu-
tional neural networks. With initial experimental results, we empirically
demonstrate that, with a relatively modest model complexity, the pro-
posed system achieves high performance on driver distraction detection
for both modes. Furthermore, we discuss the feasibility of developing a
system with a small footprint and design structure but accurate enough
to be deployed on a memory-restricted computing platform environment.

Keywords: Driver distraction · Deep learning · Nighttime driving

1 Introduction

Driving distraction represents a significant source of driving risks, and many
governments are taking legal steps to mitigate this situation. However, distrac-
tion detection of drivers through human inspection (through law enforcement)
is time-consuming and inefficient. The automotive industry has been developing
in-vehicle distraction detection and alert systems through computer vision meth-
ods and machine learning methods for several years. The research work in this
area can be categorized into two areas. In the first category, researchers work
on designing features that can effectively represent drivers’ distraction states.
Through computer vision methods and with cameras facing drivers, these sys-
tems extract features to analyze drivers’ physiological changes, such as the per-
centage of eye closure [1], eyelid activity [2], and head movements [3]. These fea-
tures are then combined with diverse machine learning classification algorithms,
such as Support Vector Machine (SVM), Artificial Neural Networks (ANNs), and
c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 199–207, 2019.
https://doi.org/10.1007/978-3-030-27272-2_17
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Random Forest, to form classification systems. In the other category of studies,
representation learning is employed and frequently achieves high accuracy for
distraction detection [4–7]. In some of these deep learning-based systems, RGB
images are collected through cameras facing drivers and classified by convolu-
tional neural networks (CNN) according to drivers’ body poses. In the system
proposed in [8], a CNN detects the positions of phones in RGB images then
infers whether drivers are distracted based on the positions of the phones with
respect to the drivers’ heads.

One major drawback for most computer vision-based existing methods is
that they only work during daytime since they require RGB images as inputs for
classification or phone detection. However, luminance condition at night limits
the collection of RGB images. One system that addresses distraction detection
but does not rely on visible light is in [9]. This system works on Near Infrared
(NIR) images; after the localization of a driver’s face in an image, features from
image patches around his/her ears are extracted for image classification. Inspired
by this work, we propose to detect drivers’ distraction at nighttime based on in-
vehicle NIR images of drivers’ side views.

In this paper, we explore a driver distraction detection system that works
at both daytime and nighttime by two modes, respectively. To the best of our
knowledge, this is the first work on an end-to-end method for driver distraction
detection at nighttime. In each mode, a camera collects corresponding images
and sends them to a CNN for classification. A light sensor in this system detects
the light condition in the vehicle and enables this system to switch between two
modes when necessary. More than just detecting whether a driver is distracted,
the proposed system also detects the distraction activity that driver is performing
for further more targeted assistance or alerts. We evaluate our approach on
an image data set of distracted driving collected in a simulator environment
with different drivers. Three distraction activities are included in this data set:
talking on a cell phone, texting on a cell phone, and interacting with a (Global
Positioning System) GPS device [10]. We demonstrate that the proposed system
detects driver distraction with a high performance on both modes, 95.98% of
images of daytime are classified correctly while 92.24% of images of nighttime
are classified correctly.

The rest of this paper is organized as follows. The proposed approach is
detailed in Sect. 2. In Sect. 3, a description of our data set, experimental setup
and fine-tuning approaches are described. Analysis of our results is in Sect. 4 and
finally the conclusion is presented in Sect. 5.

2 Proposed Approach

To handle distraction detection in both daytime and nighttime, we propose using
two detection modes: an RGB mode and an NIR mode. The RGB mode is
activated in daytime and uses images collected from an RGB camera to identify
distraction. The NIR mode, on the other hand, is activated in nighttime and
uses an NIR camera. In each mode, the system identifies distraction by passing
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the images captured from the camera to a CNN classifier. To know which mode
to activate at any given time, the system uses a light sensor to estimate the in-
vehicle luminance. If the luminance is above a certain threshold, the RGB mode
is triggered. Otherwise, the NIR mode is activated. Figure 1 shows a schematic
of the proposed system.

CNN
result

RGB Mode
Normal
Talking
Texting
Using GPS

CNN
result

NIR Mode
Normal
Talking
Texting
Using GPS

Light sensor

Daytime

Nighttime

LUX

Fig. 1. A schematic representation of the proposed system.

We approach driver distraction detection as a 4-class classification problem,
one class for “normal driving” and 3 classes for various distraction activities.
The detection system receives an image Ii at every time stamp i then classifies
it according to the driver body pose in it, and results in a probability distribution

Acti = [Acti1, Acti2, . . . , Acti4], (1)

where Actij represents the probability that at time point i the driver is perform-
ing a distraction activity j. Moreover,

∑4
j=1 Actij = 1 since Acti is a probability

distribution. In other words, the classifier models the conditional probability

Actij = P (Actj |Ii). (2)

Our system employs end-to-end CNNs as image classifiers. There are usually
four kinds of layers in a CNN: input layers, convolutional layers, pooling layers,
and fully connected layers. An input layer is an image Ii (charactered by its
height and width) with several channels, and in some literature, the number of
channels is also referred to as the depth. The first convolutional layer implements
a convolution operation on the image with a convolution kernel of size height×
width×depth. During the forward pass computation, the network convolves each
kernel across the input image and computes dot products between elements of the
kernel and the input patch at every position. Here the kernel is a 3-dimensional
tensor, and the dot product is calculated on all input channels. The result of con-
volution operations with one kernel is a 2-dimensional feature map that gives
the responses of that kernel at every spatial position. The resulting feature map
should pass a nonlinear activation layer to form a nonlinear activation map.
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With several different kernels, the convolutional layer will produce several dif-
ferent feature maps. Then, in next layer, these feature maps are stacked and
treated as channels in input images. After a nonlinear activation layer, there is
usually a pooling layer which aims at reducing the dimensions of the feature
map. Two common pooling layers are the max-pooling layer and the average-
pooling layer. After a stack of several convolutional layers and pooling layers,
there are several fully connected layers which achieve the final classification or
regression.

In convolutional layers, the elements in kernels correspond to weights in a
MultiLayer Perceptron (MLP) and are parameters to be trained, while the sizes
of kernel and stride should be chosen by cross-validation. The local connectivity
and weights sharing in convolutional layers decreases the number of weights
significantly; hence, it is possible to use several kernels in one layer. The training
of CNN is based on error back propagation and the Stochastic Gradient Descent
method [11]. In a regression task, for an input image Ii with corresponding label
ŷi, the forward process sends the image into the network and produces an output

yi = fΘ(Ii), (3)

where f is the function implemented by the network, and Θ denotes its parameter
set. A error function will measure the difference between the ground truth label
ŷi and the output yi, and a popular error function is the mean squared error
over N samples

error =
1
N

N∑

i=1

(ŷi − yi)2. (4)

Using the chain rule in error back propagation, the gradient of the error to
each weight ∂error

∂Θ can be calculated. The weight update process performs the
following iteration

Θt = Θt−1 − η
∂error

∂Θ
, (5)

where η is the step length in the Stochastic Gradient Descent. For a classification
task, we can form a label as a one-hot vector in which every element represents
the probability that the image belongs to that class.

3 Data Collection and Experimental Setup

In this section, we describe the data collection process and present the experi-
mental setup to evaluate the performance of the proposed system.

3.1 Data Collection

To evaluate the proposed system, we collected an image data set of several dis-
traction activities in a driving simulator. A camera is located at the right frontal
side of drivers to capture a complete view of drivers’ upper body movements.
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Fig. 2. Images sample from a simulator environment. The first row shows images taken
at daytime, the second row shows images taken at nighttime. The first column repre-
sents images of normal driving, and the rest columns represent talking, texting, and
programming GPS while driving, respectively.

Images were collected on 14 participants of different ages, genders, and ethnici-
ties. Before experiments, each participant was asked to drive the simulator for a
short time to get familiar with the experimental environment. Then, each driver
was instructed to perform the following driving activities: normal/safe driving,
driving while typing messages with his/her right hand, driving while talking on
a cell phone, and driving while operating a device near the gear stick of the
simulator to mimic programming a GPS device. Images were extracted from a
video stream of 5 frames per second. With this low frame rate, images of adjacent
time stamps present different body poses. Figure 2 gives some sample images of
different activities. The number of images for each class is given in Table 1.

Table 1. Number of samples in image data sets.

Class Daytime Nighttime

Normal driving 2800 2800

Talking while driving 5513 5600

Texting while driving 5600 5570

Operating GPS while driving 2800 2800

3.2 Experimental Settings

The kernal part of this work is to train CNN classifiers for detection, and we
explored and compared several CNNs that were proposed for Imagenet compe-
tition [12]. Since a potential future direction is to deploy this system on a small
portable computing platform, we selected four CNNs (ResNet18, ResNet34,
ResNet50, and SqueezeNet) with relatively small sizes but powerful represen-
tation abilities. The last fully connected layer in the original ResNet models was
replaced by two fully connected layers of 128 and 4 nodes, respectively. We also
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added a dropout layer between feature extraction layers and fully connected lay-
ers to reduce overfitting. For the SqueezeNet model, we added these three new
layers after the last pooling layer.

All models that were pretrained on ImageNet dataset were retrained with an
Adam optimizer with a learning rate of 1e-4 and a batch size of 32 [13]. Each
model was trained on images of 10 drivers and tested on the other 4 drivers, we
run these experiments with 10 different random driver combinations and report
average values in the results. The performances of all models are measured based
on their classification accuracy.

4 Results and Analysis

4.1 Experimental Results for Both Modes

Table 2 shows the performances achieved by different models under different
modes. The sizes of models are also shown in this table.

Table 2. Testing accuracy of 4 different models.

Models Params (MB) Mode

RGBM NIRM

SqueezeNet 5 83.05 ± 5.66 77.21 ± 6.97

ResNet18 45 92.37 ± 6.10 92.24 ± 4.42

ResNet34 83 95.98 ± 3.64 90.33 ± 5.27

ResNet50 98 94.43 ± 4.55 90.36 ± 3.73

As can been seen in the third column, SqueezeNet achieves an accuracy of
83.05% on RGB Mode with a model size of 5 MB while ResNet18, which has
a more sophisticated structure and a large model size, achieves an accuracy of
92.37% on RGB Mode. As the model size increases to 83 MB, ResNet34 gives an
accuracy of 95.98%. However, a further increment of model size does not always
lead to a better performance, as the accuracy by ResNet50 is 1.55% less than
the one by ResNet34 on the RGB Mode.

The confusion matrices of testing results on RGB Mode by SqueezeNet and
ResNet34 are shown in Fig. 3. In testing results for SqueezeNet, many samples
of normal driving and driving while texting are mis-classified as driving while
talking, and the class of driving while talking has the best accuracy. In testing
results by ResNet34, detecting driving while texting is the most difficult task,
and more than half of mis-classified samples are classified as talking, as body
positions in images of these two classes are similar to each other.

Even in day time, the luminance of in-vehicle environments varies frequently
on different time and weather conditions. To explore the performance of the
detection system (trained on images from similar luminance conditions) under
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Fig. 3. Confusion matrix of testing results by SqueezeNet and ResNet34 model on
RGB Mode.

Fig. 4. Testing performances with different brightness adjustment factors.

changing luminance conditions, we adjust the brightness of testing images to
simulate different luminance conditions. Figure 4 presents testing performances
with different brightness adjustment factors. A brightness adjustment factor of
1 means images are not changed, while a factor that is larger than 1 means the
brightness of images is increased. There is a clear trend that, if the brightness
of images is increased, the system can maintain its performance and the testing
accuracy fluctuates around the one achieved on not adjusted images. On the
other side, if images are changed to dark, the performance drops obviously and
darker images lead to worse accuracy (from 0.8156 by a brightness adjustment
factor of 1 to 0.7268 by a brightness adjustment factor of 0.5). These results show
that, the limitation that image data are collected under the same luminance hin-
ders the system from generalizing to different brightness conditions and further
work is required to mitigate this negative effect.

The forth column of Table 2 shows that, on NIR Mode, SqueezeNet achieves
the worst accuracy while ResNet18 achieves the best accuracy which is 92.24%.
Large models do not lead to better testing performance under night mode. The
confusion matrices of testing results on NIR Mode by SqueezeNet and ResNet50
are shown in Fig. 5. In testing results by SqueezeNet, like on RGB Mode, many
samples of normal driving and driving while texting are mis-classified as driv-
ing while talking, and the class of driving while talking has the best accuracy.
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Fig. 5. Confusion matrix of testing results by SqueezeNet and ResNet50 model on NIR
Mode.

By contrast, we can see from the testing results by ResNet50, detecting driv-
ing while talking becomes the most difficult task, and more than half of mis-
classified samples are classified as texting, as body poses in images of these two
classes are similar. Another interesting phenomenon is that the proportion of
mis-classification of normal driving and driving while using GPS is the same.
Moreover, for both classes, 8% of samples are mis-classified.

4.2 Discussion

These results show that, for both modes, the accuracy achieved by SqueezeNet
is not enough for a real-time distraction detection. Using ResNet, on the other
hand, we achieved a high accuracy of 90%. However, in terms of computational
complexity, the speed of inferences by SqueezeNet (with the smallest model size)
on Raspberry Pi is about 1 frame per second. This speed is insufficient for the
design of an adequate real-time detection system. Thus, all these models are
not suitable to be deployed on embedded processors, such as Raspberry Pi. The
future work will tackle two aspects: improving accuracy and improving inference
speed. The results in this work have shown that these two objectives cannot
be achieved simultaneously. One promising direction is to design a better CNN
structure that is specific for driver distraction detection.

5 Conclusion

In this paper, we proposed a driver distraction detection system which works
at both daytime and nighttime. Several adjusted versions of well-known image
classification networks are trained. The testing results show that the proposed
system classifies images on nighttime mode with an accuracy of 92.24% and clas-
sifies images on daytime mode with an accuracy of 95.98%. We also explored the
possibility of deploying deep learning models on small computing platforms and
found that developing a specific network structure with a small model size (but
with a better representation ability) is critical for a real-time distraction detec-
tion system. Moreover, for both modes, more work should be focused towards
identifying the differences between talking and texting while driving.
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Abstract. There has been a growing interest in leveraging state of the
art deep learning techniques for tracking objects in recent years. Most
of this work focuses on using redundant appearance models for predict-
ing object tracklets for the next frame. Moreover, not much work has
been done to explore the sequence learning properties of Long Short
Term Memory (LSTM) Neural Networks for object tracking in video
sequences. In this work we propose a novel LSTM tracker, Key-Track,
which effectively learns the spatial and temporal behavior of pedestrians
after analyzing movement patterns of human key-points provided to it
by OpenPose [3]. We train Key-Track on single person sequences that
we curated from the Duke Multi-target Multi-Camera (Duke-MTMC)
[26] dataset and scale it to track multiple people at run-time, further
testing its scalability. We report our results on the Duke-MTMC dataset
for different time-series sequence lengths we feed to Key-Track and find
three as the optimum time-step sequence length producing the highest
Average Overlap Score (AOS). We further present our qualitative anal-
ysis on these different time-series sequence lengths producing different
results depending on the type of video sequence. The total observed
size of Key-Track is under 1 megabytes which paves its way into mobile
devices for the purpose of tracking in real-time.

Keywords: LSTM · OpenPose · Multi-object tracking

1 Introduction

Visual object tracking poses an interesting challenge in the Computer Vision
community. It is commonly required in domains like autonomous vehicles [2,13],
surveillance systems, and robot navigation. Object tracking is broadly performed
either as detection-free tracking (DFT) or detection-based tracking (DBT) [17].
Real-world scenarios are often comprised of challenging characteristics such as
occlusion, illumination variation, target deformation, and background clutter

This research was supported by the National Science Foundation (NSF) under Award
No. 1831795.

c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 208–219, 2019.
https://doi.org/10.1007/978-3-030-27272-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27272-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-27272-2_18


Key-Track 209

[22]. To improve robustness against these types of scenarios trackers have recently
adopted many of the deep learning techniques used in other vision tasks such
as object detection and classification [6] where they achieve human-like or even
beyond-human accuracy in their respective domain [29], albeit at high compu-
tational cost. When working on a domain with real-time constraints, such as
surveillance or autonomous driving, it is necessary to balance these computa-
tional loads with real-time constraints. Unfortunately many of the deep trackers
evaluated on the MOT benchmark [20] and other multi-object benchmarks are
unable to achieve real-time throughput (FPS) and latency due to their reliance
on large Convolution neural networks (CNNs) [1]. More recent works have begun
to explore hybrid networks that combine CNNs with recurrent elements such as
LSTM and GRU cells to reduce computational overhead and improve perfor-
mance [5,12,22].

With the growing interest in deep learning, more recent works like [4,10,11,14]
use Convolution Neural Network (CNN) based appearance model to track
objects. The task of tracking inherently has a strong temporal component,
which is very costly to implement in CNNs. This has prompted interest in other
solutions using recurrent neural networks (RNN). Some works like [9,10,22,28]
use Long Short Term Memory (LSTM) but overload them with unnecessary
background noise, increasing model complexity without significantly improving
accuracy. These shortcomings have prompted us to explore more compact fea-
ture representations that prioritize the spatio-temporal characteristics of track-
ing targets. In this work we focus specifically on pose keypoints as a means of
understanding and predicting the movement of human targets over time.

We propose a hybrid tracking by detection framework Key-Track, that employs
OpenPose (explained in Sect. 3.1) for human key-point detection and an LSTM
for future frame prediction in surveillance systems. The key idea here is to use
only prominent human key-points instead of the whole appearance model to
understand movement behaviors and patterns in humans using LSTM. We do
this by training our LSTM model on different kinds of movement patterns indi-
vidually (single object) and then scale it to multiple objects at run time with
the help of batching. Our results show that our model scales well as we only use
key-point information for predictions, improving the scalability of the system
as the number of tracking targets increases. Furthermore the LSTM layer can
be trained on single target examples, but evaluated on multi-object scenarios of
varying complexity simply by batching. We achieve this training and evaluation
paradigm via the following contributions:

• Training on single object and testing on multiple objects by scaling the LSTM
with effective batching

• Curation of a single-object dataset for training by introducing a Data wran-
gling technique and associating keypoint/feature information per object to
their ground truth

• Lightweight tracker model less than a size of 1 MB capable for deployment
over edge
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2 Related Work

In this section we will discuss some prior work done using LSTMs for tracking
and some other applications.

2.1 LSTM for Tracking

Early works in object tracking, such as [25], relied on Kalman Filters to try and
stabilise predictions of object movement but they are not very reliable as they do
not account for any historic patterns for their predictions.Some early works that
incorporated LSTM for application in tracking like [19] demonstrate promising
results. Works like [7] also confirms their effectiveness in understanding patterns
in data. Recently, works like [4,22] employed LSTM for the purpose of track-
ing. [22] uses the YOLOv1 object detection framework for generating labeled
bounding boxes as well as a reduce image feature map of 4096 × 1 features.
These 4k features are appended to the bounding box dimensions and passed to
an LSTM layer for predicting the position of the bounding in future frames. The
large feature map is necessary for providing context about the object beyond
its mere position and scale, but also contains a large amount of irrelevant fea-
tures that increase computational overhead while also degrading overall tracker
accuracy. A similar work [28] uses a 500-dimensional feature vector with VGG-
16 as the feature detector rendering merely 1 Hz of FPS. Another method uses
an online object tracking strategy [21] that implements LSTM inspired from
Bayesian Filtering idea which makes data association, state updates and initi-
ation and termination of tracks and train their model on a synthetic dataset.
The authors end up with a model which learns to track and gives good real time
performance on the expense of accuracy. Furthermore, another Detection based
tracking approach [9] uses Faster RCNN in the backend as an object detector
along with an RNN for tacking the targets. The RNN is less capable of address-
ing the long-term dependencies in lengthy video sequences. Further, the work
focuses on a single object tracking mechanism rather than a Multi-object.

2.2 LSTM for Pattern Recognition

Recent works like [15,24] have demonstrated the effectiveness of LSTMs on
understanding patterns from unstructured data. Authors in [16] employed
LSTMs for understanding texts and putting it to semantic context. On sim-
ilar lines in [31] the authors improved the character recognition properties of
CNNs by adding a recurrent layer in their model structure. Similarly in [23]
LSTMs were used to predict end points in the Chinese language. Authors in
[18] used LSTMs to model human motion detection to predict time dependent
motion representation for human poses. All these aforementioned developments
signify the importance to explore the role of LSTMs in understanding human
behavior and leverage its pattern recognition properties.



Key-Track 211

3 Background

In this section we are going to briefly discuss the front-end detection framework
and the dataset we used.

3.1 OpenPose Framework

Human pose estimation frameworks can also be effectively used as human (pedes-
trian) detectors in applications such as pedestrian tracking. One such framework
is OpenPose [3] which provides fast, accurate pose estimations that scales inde-
pendently of the number of poses to estimate in a scene. It is more capable of
realizing real-time performance when compared to other pose estimation frame-
works. It is built upon the VGG-19 classification network [30] and convolution
blocks to calculate predict body keypoints and their part affinity fields (PAF)
in order to generate a pose estimate. To overcome associating maps of differ-
ent people among one another, the PAFs preserve both location and orientation
information across the region of support of the limb. The authors in [3] demon-
strate their state of the art results on the recent key-point detection datasets. We
leverage the robust spatio-temporal information encapsulated in the keypoints
and PAFs as inputs to our tracking model.

3.2 Duke Dataset (DukeMTMC)

Ergys et al. [26] introduce a new large scale dataset (possibly the largest) for
multi-object tracking in multiple cameras called Duke-MTMC. Figure 1 shows
the 8 camera angles from the dataset and the environment settings. It has 2834
different people annotated across 8 different cameras with total video footage of
1 h 25 min per camera recorded at about 60 frames per second (FPS) inside the
Duke University Campus between lectures when the foot traffic is expected to be
the highest. The camera resolution is high (1080p) with a total of about 2 million
frames which have around 1800 self occlusion scenarios and semi-automatically
generated object bounding boxes. People carry different kinds of accessories like
backpacks, umbrellas, bags and bicycles. The movements are also irregular, some
abrupt, slow, non-linear posing many challenges to the tracking algorithm. Such
properties emulate perfect real world surveillance scenarios that we want for our
model testing.

Fig. 1. Eight different camera angles from the dataset
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4 Approach

In the following section, first we introduce our system architecture and its com-
ponents,then we talk about the training method followed by the Data wrangling
technique for dataset curation. Finally we talk about the scalabilty aspect of
LSTM and Multi-Object tracking.

Key-point information per object

54 

Xt LSTM

Fully 
ConnectedLSTMMulti-Person Dataset Preprocessing blockPreprocessing block

OpenPose Data WranglingOpenPose Data Wrangling

+

Fig. 2. Overview of the system architecture pipeline depicting blocks and flow of data

4.1 Architecture

Our framework, like DeepCC [27], starts with detection generated in the form
of person keypoints through OpenPose [3]. A pre-processing framework, shown
in Fig. 2 and described below in Sect. 4.2, re-identifies and isolates the keypoints
for individual tracking targets. These keypoints, consisting of the the X and Y
coordinates as well as confidence for 18 different body parts are then aggregated
across frames and passed into a LSTM as seen in Fig. 2. The LSTM layer then
uses these keypoints from frames N to N + timesteps to predict the keypoint
values for the next frame. This prediction is then passed to a fully connected
which transforms the predicted keypoints to a bounding box prediction. The
advantage of basing an LSTM tracking system on keypoint detections is that
they provide ample context about an object that can be used to understand its
motion, while also keeping the overall model size down. Whereas other works
like ROLO and Re3 [12] utilize deep features to represent the spatial context
of an a object resulting in large model sizes (100 MB+) and training times, our
trained LSTM model can achieve comparable performance with a much smaller
model (<1 MB).

4.2 Data Preprocessing

Scenes in the Duke MTMC [26] dataset generally contain multiple tracking tar-
gets in any given frame. Since the scope of our work is to improve the back-end
tracking of these objects, we utilize data wrangling techniques to isolate individ-
uals and their keypoints within the camera sequences. To achieve this we localise
the object present in the frame by matching the object’s keypoints generated
by OpenPose framework to the ground truth provided by the dataset. The data
wrangling technique can generate nearly 2700 individual object sequences (the
maximum objects present in the dataset) improving model generalization.
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For the purpose of evaluation on the Duke MTMC dataset we choose a starting
frame from the labeled dataset and an end frame to prepare a continuous video
sequence. Every new object appearing in the scene is assigned its own index in
the 3D tensor (Fig. 4) with its respective keypoint-feature vector for that image
frame. This is necessary to maintain its trajectory and movement properties
in the subsequent frames. If an object moves out of the screen, the rest of the
sequence is padded with zeros. Similarly the entire index is padded with zeros to
denote no object is present or if the object is yet to enter the scene. Hence, we
try to maintain exclusivity for however many objects enter or exit throughout
the sequences.

4.3 Training Method

We use the OpenPose [3] detection for each object in each frame. A 54-
dimensional feature vector consisting of keypoint positions and confidences is
then fed to the LSTM. The keypoints are pixel values and represent different
parts of the body of the person. Keypoints are of the format (x1, y1, c1, ..., x18,
y18, c18) where x and y denote the location of the keypoint with respect to the
image and c denotes confidence of the detection. These keypoints are then fed
to the LSTM cell at every time step. As seen in Fig. 3, the vector is fed at each
time step and the prediction for the final time step is then mapped to (x, y, w, h)
using a fully connected layer. The fully connected layer behaves like a decoder
where x, y denote centroid of the object and w and h denote the height and
width of bounding box. Training on the centroid makes the input to the LSTM
less susceptible to abrupt bounding box changes. The LSTM is trained on root
mean square error where B refers to the bounding box values (x, y, w, h)

LMSE = 1/n
n∑

i=1

||Btarget −Bpred||2 (1)

LSTM LSTM LSTM

Y0 Y1 Y2

t=1 t=2t=0

x

y

w

h

Final
prediction

frame 1 frame 2 frame 3

Fig. 3. Training instance for a single iteration
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4.4 Scalability

We are able to scale our trained model to run inference on multi-object scenarios
with an arbitrary number of targets via batching. Batching in the deep learning
context functions in a similar fashion to SIMT operation, in that each data lane
in the batch shares the same set of weights and operations, but is otherwise
independent of the other inferences. In this way, we can train our model on a
single object, and dynamically scale the number of objects we are tracking by
dynamically adjusting the batch size of inference. Figure 4 shows the shape of
the tensor we feed to the LSTM layer. By carefully observing the scene we adjust
the maximum batch size depending on maximum objects to be tracked.

LSTMLSTM

O
b

je
ct

s

Frames

O
b

je
ct

s

Frames

Frames

+

Batch

Fig. 4. The figure shows the scalability aspect of the approach. The input tensor is of
shape [objects, numframes, features] while the output is [objects, frames, boundingbox]

5 Experimental Setup

The dataset we used consists of a total of 64 video sequences curated from the
Data Wrangling technique explained in Sect. 4.2. Of the over 5 million frames
available in the dataset, 41,268 frames were randomly selected for training. Eval-
uation was done on an additional 14400 frames for single-object tracking and
3600 frames for multi-object tracking. We use Pandas 0.24 for data wrangling and
PyTorch 1.0 for training and testing. Experiments are carried out on NVIDIA
Titan V with 12 GB memory. Other libraries used are Numpy and OpenCV 4.0.
The source code of the tracker with the trained models have been made available
online.1

5.1 Results

We evaluated our model on 24 randomly selected single object sequences covering
a diverse set of tracking scenarios. Accuracy was measured using the Average
overlap score (AOS)[8] while varying our input time series over 3, 6, 8, and 10
input frames, per iteration. The AOS can be calculated using the Intersection
1 Project page: https://github.com/TeCSAR-UNCC/key-track.

https://github.com/TeCSAR-UNCC/key-track
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Fig. 5. Step comparison and average overlap score per sequence (C:CameraID,
Obj:ObjectID)

over Union (IoU) method. It is a ratio of the area of overlap between the predicted
bounding box and the ground-truth bounding box and the area of union. An IoU
score of 50% or more is considered a successful detection. Figure 5 shows that
a 3-step input series performed the best, with a 78% overlap of the predicted
bounding box with the ground truth box. Figure 6(a) shows the impact of input
sequence length on AOS averaged over all 24 sequences. We found that there
was only a weak correlation between the length of the input time series and the
resulting accuracy.
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Fig. 6. Step comparison with average AOS in single-object sequences
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To better understand why this was the case, we examined the testing set
of videos and classified them based on the video characteristics mentioned in
Table 1. The abnormal motion classification describes scenarios with non-linear
tracks and abrupt motion change. Such scenarios are naturally favored by hav-
ing higher number time steps. This tends to be the case as the LSTM main-
tains a higher degree of historical information over time resulting in better
predictions, thus exploiting the fundamental LSTM capabilities. Similarly scale
changes include scenarios like moving away or closer to the Camera or bounding
box deformations. Here an input sequence length of 3 performs best. By adjust-
ing our input time series length, we can easily adapt our model to a wide range
of scenario complexities.

Table 1. Preferred input time series length based on video characteristics

Motion type Slight abnormal motion Abnormal motion Scale change Linear

Time-steps 3 6,8 3 6

Number of sequences 13 4 3 4

To evaluate our model on Multi-Object sequences, we employed a technique
using data wrangling to study and report different metrics for Scalability. We
curated an entirely new test set of 32 single object sequences and concatenated
these sequences to simulate a scene with 32 objects per frame. This allowed us
to test the effect of scaling on inference time. As shown in Fig. 7(a) we vary
batch size, corresponding to the number of objects present in scene. Here we
considered a sequence of 2343 frames. It can be seen from the graph that an
exponential increase in batch size has linear effect on inference time making the
model robust to any scale.
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Fig. 7. Scalability test showing the effect of varying objects in scene with respect to
inference time and frame rate
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A similar comparison was done to test the throughput in terms of FPS. As
shown in Fig. 7(b), the FPS decreases to certain extent as computation increases,
still keeping the overall FPS for offline tracking comparatively high and stable.
The number of objects in a scene has no impact on the accuracy of our tracker,
since all objects are tracked individually, and simply batched as inputs to the
tracker.

6 Conclusion and Future Work

This work presents a novel approach for Multi-object tracking for Surveillance
cameras without compromising much on throughput and maintaining the accu-
racy of detections irrespective of the number of objects to be tracked, showcasing
the pattern learning property of LSTM for object tracking. Sequences with vary-
ing complexities were successfully tracked using different time-steps. We do see
further opportunities to enhance the performance of the system by predicting
many more future frames for a better predictive analysis. This would essentially
mean being detached from the heavily reliable detection framework and also
could result in better tracking accuracy over long-term sequences. While we’ve
succeeded in keeping the model size less than 1 MB, making it super lightweight,
we envisage to deploy the system over edge for real time inference for various
applications.
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Abstract. In this paper, we present a novel approach called KPTransfer
for improving modeling performance for keypoint detection deep neural
networks via domain transfer between different keypoint subsets. This
approach is motivated by the notion that rich contextual knowledge
can be transferred between different keypoint subsets representing sep-
arate domains. In particular, the proposed method takes into account
various keypoint subsets/domains by sequentially adding and removing
keypoints. Contextual knowledge is transferred between two separate
domains via domain transfer. Experiments to demonstrate the efficacy of
the proposed KPTransfer approach were performed for the task of human
pose estimation on the MPII dataset, with comparisons against random
initialization and frozen weight extraction configurations. Experimental
results demonstrate the efficacy of performing domain transfer between
two different joint subsets resulting in a PCKh improvement of up to 1.1
over random initialization on joints such as wrists and knee in certain
joint splits with an overall PCKh improvement of 0.5. Domain trans-
fer from a different set of joints not only results in improved accuracy
but also results in faster convergence because of mutual co-adaptations
of weights resulting from the contextual knowledge of the pose from a
different set of joints.

Keywords: Domain transfer · Pose estimation ·
Convolutional neural networks

1 Introduction

In any keypoint estimation problem, the location of a particular keypoint
holds contextual information about the location of another. In pose estimation,
for example, the position of the elbows and wrists are naturally constrained,
being part of the same limb. Deep keypoint estimation algorithms take advan-
tage of this fact by learning different keypoint locations simultaneously. For
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instance, deep pose estimation algorithms predict human joint locations together
[3,14,17,22] or use a two-pipeline framework for body part detection and asso-
ciation [18,20]. However, domain transfer between keypoints remains an unex-
plored area. We hypothesize that domain transfer can be used for utilizing the
contextual relationships between keypoint locations for improving convergence
and generalization. Since a large number of keypoint detection datasets [1,13,15]
are available which differ in keypoint location annotations, one obvious question
arises: Can domain transfer between separate keypoint sets help in improving
generalization performance and convergence?

In this paper, we introduce a novel approach termed KPTransfer for perform-
ing domain transfer between keypoint subsets representing separate domains. We
apply our approach on the problem of 2D human pose estimation. However, our
approach is completely task and model agnostic and can be used to evaluate
domain transfer using any deep pose estimation model in any other keypoint
detection problem such as facial landmark detection and 3D pose estimation.
We use the stacked hourglass pose estimation network [17] to demonstrate that
contextual cues can be transferred between different sets of human joints through
transfer learning to improve convergence and performance.

We perform domain transfer with the help of transfer learning and compare
it with frozen weights and random initialization settings. Concretely, for domain
transfer, a pose estimation network is first trained on a subset of total joints, after
which, a second, bigger network is trained on a different subset of joints, half of
which is initialized by the weights of the previous network. Two more settings are
investigated: random weight initialization and frozen weights. Random weight
initialization is done by initializing all the weights of the second, bigger network
randomly. In the frozen weights setting, the second, bigger network is trained
after freezing/not updating the weights of the first network. The three settings
are illustrated in Fig. 1. We compare the three settings with four different subset
splits of human joints (Fig. 2) of the MPII dataset [1] and demonstrate that
the transfer learning setting results in improved generalization performance and
faster convergence.

The paper begins by detailing background information related to domain
transfer, pose estimation, and the basis for our approach are discussed briefly
in Sect. 2. The Methodology, Sect. 3, describes the pose estimation network
employed for the experiments, the experimental settings and training details.
The results and discussion forms Sect. 4 with Sect. 5 concluding the paper.

2 Background

Domain transfer utilizes information in one domain to help learn tasks in another
domain. The two domains involved may represent separate datasets [7], classes
in the same dataset [26] or different data modalities [9,11,28]. Effectiveness of
domain transfer techniques has been tested in various problems like image classi-
fication [26], object detection [12] and semantic segmentation [5]. Transfer learn-
ing [26] and knowledge distillation [10,27] are two popular ways of performing
domain transfer. Yosinki et al. [26] demonstrate that performing transfer learning
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(a) Transfer learning

(b) Frozen weights

(c) Random initialization

Fig. 1. The figure shows the three experimental configurations used. (a) The transfer
learning configuration wherein the two-stack hourglass trained on the subset S1 of
joints is used to transfer knowledge to the subset S2 through transfer learning. (b)
The frozen weights configuration which is similar to (a), the difference being that the
weights of the two-stack hourglass trained on the subset S1 of joints are frozen. (c) The
random initialization configuration where four stacked hourglass units, initialized with
random weights are trained on the subset S2 of joints.

by initializing first n layers of a base network with weights learned on approxi-
mately half of Imagenet [8] classes with the remaining layers randomly initialized
improves generalization performance on the other half of Imagenet classes. Hin-
ton et al. [10] introduced knowledge distillation by producing soft probability
distribution over targets by modifying the softmax function and introducing
an objective function consisting of those soft targets to train a student network.
Techniques such as using weight regularizers to make weights of source and target
domain networks similar [19] and adversarial learning [16,24] are also employed
for domain transfer.
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With the advent of deep networks, there has been a significant progress in the
field of human pose estimation. Toshev et al. [21] was among one of the earliest
works incorporating deep neural networks (DNN) for pose estimation. Heatmap
based pose estimation [3,6,17,22] is the most widely used pose estimation tech-
nique. In heatmap based methods, joint heatmaps, equal to the number of joint
locations present in the images are generated. Each heatmap represents a two
dimensional probability distribution where each heatmap pixel represents the
probability with which a joint is present in a particular pixel location. Interme-
diate supervision is commonly used in heatmap based methods, wherein loss is
calculated at subsequent stages of the pose estimation network to refine heatmap
predictions. Regression based approaches [2,4,21] are also prevalent in human
pose estimation literature, however, their limitation is that the regression func-
tion is often sub-optimal. The work presented in this paper makes use of a
heatmap based approach [17].

Domain transfer between separate keypoints subsets in deep human pose
estimation is an unexplored avenue. Multimodal pose transfer methods exist in
pose estimation literature. Zhao et al. [28] predict human pose from RF signals
by transferring visual knowledge from an RGB images based pose estimation
model [3] in a multimodal setting. Yang et al. [24] perform adversarial learn-
ing to transfer knowledge between annotated 3D human pose datasets and 2D
in-the-wild images. Zhou et al. [29] use a weakly supervised approach and pro-
pose a geometric constrained to regularize depth predictions from 2D in-the-wild
images. Zhang et al. [27] use knowledge distillation [10] to transfer knowledge
from a teacher pose estimation network to a smaller network. In contrast, we
are concerned with the task of domain transfer between separate body key-
point/joint subsets. Human body joints possess information about the location
of one another through various constraints imposed by the overall body pose
and structure. We present an approach to transfer rich contextual information
between human body joints. Our work differs from approaches such as [26] in
the way that instead of splitting a dataset based on classes, we have used subsets
of human joint locations as separate domains and demonstrate that contextual
knowledge can be transferred from one domain to the other using transfer learn-
ing. Our approach can be readily extended to other keypoint estimation problems
such as facial landmark detection and 3D human pose estimation.

3 Methodology

In this section, the stacked hourglass network, experimental approach and train-
ing details are discussed. The MPII [1] dataset is used in the experiments which
consists of around 28k training images and 11k testing images annotated with
16 body joints. Since the experiments involve evaluation on subsets of 16 anno-
tated joints, a validation set of 3000 images is used for evaluation since the test
annotations are not public.
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(a) This split is done to determine the knowl-
edge transfer between the central body joints
and limb joints.

(b) Here we include the elbow in our subset
S1.

(c) We include both elbows and knees in our
joint subset S1 and determine the accuracy
on wrists,hips and ankles in the subset S2.

(d) We now include ankles and wrists in sub-
set S1 and determine the performance on el-
bows and knees

Fig. 2. The joint subsets S1 and S2 used in the experiments shown as S1 → S2.
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Table 1. The subsets considered for experiments

Subset S1 Subset S2

(a) Head, Neck, Shoulders, Pelvis, Thorax, Hip Knees, Ankles, Wrists, Elbows

(b) Head, Neck, Shoulders, Elbows, Hip Knees, Ankles, Wrists, Pelvis, Thorax

(c) Head, Neck, Shoulders, Elbows, Knees Wrist, Ankles, Hip, Pelvis, Thorax

(d) Knees, Ankles, Wrists, Elbows Head, Neck, Elbows, Knee, Pelvis, Thorax

3.1 Stacked Hourglass Network

Being the backbone of many state-of-the-art pose estimation algorithms [14,23]
on the MPII dataset [1], the stacked hourglass network [17] is used in our experi-
ments. The hourglass architecture consists of repeated bottom-up and top-down
processing in order to utilize features at various scales. Convolution and max
pooling layers bring down the input resolution from 64 × 64 pixels to 4 × 4 pix-
els. After downsampling to a resolution of 4× 4 pixels, the features are upsampled
with nearest neighbour upsampling and are combined with features of the same
resolution. Several hourglass units are stacked together such that the output
of one hourglass unit serves an input to the next hourglass unit. Intermediate
supervision is applied such that mean squared loss is evaluated between the pre-
dicted heatmaps and ground truth heatmaps and gradients are back-propagated
at every hourglass unit. The output of the network is a set of heatmaps equal to
the number of joints with each pixel in the heatmap representing the probability
with which the joint is present at that point.

3.2 Experiments

Domain transfer in keypoint estimation in performed by splitting the dataset
joints into two subsets, S1 and S2 containing the same number of joints/keypoints.
Both the subsets represent two separate domains. Note that S1 ∩ S2 may or may
not be an empty set, such that the two domains differ in atleast one keypoint loca-
tion. Domain transfer is experimentally determined using three different config-
urations illustrated in Fig. 1. The network performance is evaluated on the joint
subset S2 using the three experiment configurations discussed below:

Transfer Learning. Since we are interested in determining the domain trans-
fer from domain to another, a two-stack hourglass network initially trained on
the subset S1 of joints is jointly trained in conjugation with another two-stack
hourglass network on the subset S2 of joints (Fig. 1(a)). The joint training is
done such that supervision is performed for all the four hourglass units.

Frozen Weights. This configuration is similar to transfer learning except that
the weights of the first two-stack hourglass network trained on the subset S1 of
joints are frozen. Another two-stack hourglass network is trained on the remain-
ing subset of eight joints S2 such that the features obtained from the frozen
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network are used as an input for the network trained on subset S2 (Fig. 1(b)).
The loss is calculated only for the last two hourglass units. This is done to avoid
the possibility of mutual co-adaptation of weights between the two domains.

Fig. 3. The figure shows the comparison between the convergence rates of validation
accuracy in case of transfer learning and random weight initialization. An important
observation is that the convergence and accuracy obtained are complementary to each
other such that in split (a) where there is no significant improvement in accuracy, the
convergence between random initialization and transfer learning comparable. But, the
opposite is observed in split (d), where both convergence and accuracy achieved is
better than random initialization.

Random Initialization. A stacked hourglass network with four hourglass units
with weights initialized randomly is trained on the subset S2 of joints (Fig. 1(c)).

The performance of the three configurations are evaluated with four different
splits of subsets S1 of joints and corresponding subset S2 (split (a)–(d)) listed in
the Table 1. Since, a very large number of subsets are possible, the joint subsets
are chosen such that the result of knowledge transfer between adjacent limb
joints when compared to random initialization can be evaluated as shown in
Fig. 2. Note that all the three configurations have roughly the same number of
parameters. The goal of the experiments is not to improve the state-of-the-art
pose estimation benchmark, but to evaluate keypoint domain transfer.
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3.3 Training Details

The input image resolution for the network is 256 × 256 pixels and the heatmap
resolution is 64 × 64 pixels. For all the experiments, rmsprop optimizer is used.
The learning rate is divided by 5 each time the accuracy plateaus. Early stop-
ping is implemented such that the model is said to be converged if there is no
improvement in validation accuracy in 10 epochs with each epoch consisting of
8000 iterations. Data augmentation is carried out with .75 − 1.25 scale augmen-
tation and +/− 30◦ of rotation augmentation. The training is carried on an
NVIDIA Geforce Titan X GPU.

4 Results

The PCKh metric [1] is used to evaluate pose estimation performance. A joint
is correctly predicted if the distance between the ground truth and predicted
joint location is less than half the length of the head segment. The PCKh values
for the joint subset S2 corresponding to the four joint subset splits with respect
to the three experiment configurations i.e., transfer learning, frozen weights and
random weight initialization is shown in Tables 2, 3, 4 and 5 respectively. Note
that the pelvis and thorax torso joints are not considered in average
PCKh computation since, being at the centre of the body, they are almost
perfectly localized in all scenarios and just increase the average values. Figure 3
show the validation accuracy vs epochs curves comparisons between random
initialization and transfer learning configurations. Apparently, transfer learning
from pre-learned weights from other joints not only helps in achieving better
accuracy values but also results in much faster convergence when compared to
random initialization. The accuracy values shown in the validation accuracy vs
epochs plots (Fig. 3) use the PCK metric [25].

Table 2. PCKh comparison for joint split a

Configuration Elbow Wrist Knee Ankle Average

Transfer learning 87.9 84.2 82.9 80.6 83.9

Frozen weights 74.7 56 72.7 66.8 67.5

Random initialization 87.9 83.9 83.4 80.5 83.9

Table 3. PCKh comparison for joint split b

Configuration Wrist Knee Ankle Average

Transfer learning 84.1 84.5 81.5 83.4

Frozen weights 69.7 73.0 62.6 68.43

Random initialization 83.6 85 81.6 83.4
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Table 4. PCKh comparison for joint split c

Configuration Wrist Hip Ankle Average

Transfer learning 84 87.1 80.1 83.7

Frozen weights 71.2 83.7 69.9 74.9

Random initialization 82.9 87.0 79.7 83.2

4.1 Discussion

A number of interesting observations can be made:

1. Firstly, it can be observed from the splits (a)–(d) that features transferred
from frozen weights of one domain i.e., subset S1 do not achieve good accuracy
on the second domain i.e subset S2, when compared to random initialization
and transfer learning. This is because, in the frozen weights configuration,
since the loss is not computed on the first two hourglass units, there is no
mutual co-adaptation of weights between the two domains.

2. From Table 2, in the case of split (a), it can be seen that transfer learning
from torso joints improves accuracy on the wrists when compared to ran-
dom initialization (83.9 vs 84.2), but does not have a considerable impact on
the other limb joints. However, as elbows (split (b)) and ankles (split (c))
are included in subset S1, we find that the performance on joints such as
wrist (Table 3 and 4) and ankle (Table 4) becomes much better, such that, in
split (c) the average PCKh over all joints (83.7) becomes better than random
initialization (83.2). The effectiveness of domain transfer is further demon-
strated in split (d) where wrists and ankles present in domain S1 provide
contextual knowledge to domain S2. From Table 5, a higher average PCKh
value (89.8) for transfer learning demonstrates the success of keypoint-wise
domain transfer. The weights learned from one domain co-adapt with the
other domain.

Table 5. PCKh comparison for joint split d

Configuration Head Elbow Knee Average

Transfer learning 96.8 88.3 84.4 89.8

Frozen weights 91.1 87.9 82.9 87.3

Random initialization 97.1 87.9 83.3 89.4

3. From Fig. 3 it is observed that the convergence and performance is comple-
mentary; i.e., in case of split (a) where, domain transfer does not result in
any significant accuracy improvement, the convergence between random ini-
tialization and transfer learning configurations is comparable (Fig. 3a). On
the other hand, in case of split (d), where domain transfer performs better
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than random initialization, the convergence of transfer learning case is much
better when compared to random initialization (Fig. 3d). Whereas, in the two
other cases the convergence is “between” the two extreme situations of split
(a) and (d). This is the result of the mutual co-adaptation of the network
weights in learning adjacent limb joints. This shows that the weights learned
on the one domain helps in better initialization of the cost function of the
other domain which leads to faster convergence.

5 Conclusion

This paper introduces the KPTransfer approach for evaluating keypoint subset-
wise domain transfer. We demonstrate that knowledge can be transferred
between keypoint subsets in pose estimation such that the contextual cues
present across domains helps in better generalization and faster convergence.
This work also opens the door for cross-dataset domain transfer in keypoint esti-
mation. Future work include: (1) Determining the exact joint subsets/domain
between which domain transfer is most effective. (2) Extending this work to
other problems like facial landmark detection and 3D human pose estimation.
(3) Evaluation of the proposed keypoint domain transfer strategy with other
pose estimation networks.
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Abstract. Segmentation of skin lesions is a crucial task in detecting and
diagnosing melanoma cancer. Incidence of melanoma skin cancer which
is the most deadly form of skin cancer has been on steady increase. Early
detection of the melanoma cancer is necessary to improve the survival
rate of the patients. Segmentation is an important task in analysing skin
lesion images. Skin lesion segmentation has come with some challenges
such as low contrast and fine grained nature of skin lesions. This has
necessitated the need for automated analysis and segmentation of skin
lesions using state-of-the-arts techniques. In this paper, a deep learning
model has been adapted for the segmentation of skin lesions. This work
demonstrates the segmentation of skin lesions using fully convolutional
networks (FCNs) that train skin lesion images from end-to-end using
only the images pixels and disease ground truth labels as inputs. The
fully convolutional network adapted is based on U-Net architecture. The
model is enhanced by employing multi-stage segmentation approach with
batch normalisation and data augmentation. Performance metrics such
as dice coefficient, accuracy, sensitivity and specificity were used for eval-
uating the performance of the model. Experimental results show that the
proposed model achieved better performance compared with the other
state-of-the arts methods for skin lesion image segmentation with a dice
coefficient of 90% and sensitivity of 96%.

Keywords: Melanoma · Skin lesions · Deep learning · Segmentation ·
FCNs · U-Net

1 Introduction

Melanoma is a form of skin cancer with a very high mortality rate. Early detec-
tion of melanoma in dermoscopy images has been shown to significantly increase
the survival rate [1]. Segmentation is an important task in analyzing skin lesion
images. Over the years computing techniques have been applied to carry out this
task. Accurate recognition of melanoma is challenging and difficult due to some
notable reasons. Firstly, there is always low contrast between lesions and the skin.
c© Springer Nature Switzerland AG 2019
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Secondly, there is close visual similarity between melanoma and non-melanoma
lesions [1]. Thirdly, artifacts presence such as presence of hair, reflections, air and
oil bubbles [2] on these images also contributes to the challenges. Thus, there is
a need for a reliable system that can perform proper and accurate analysis of
skin lesions images for lesion segmentation.

The need for more reliable and accurate system towards melanoma detection
has led to the application of state-of-the-arts methods such as deep learning tech-
niques for segmentation of skin lesions images. Some of these methods have not
been efficient due to their tendency to over-or under-segment the lesions most
especially when the lesions images have low contrast, characterize with artifacts
or inhomogeneous textures [3]. In this work, fully convolutional networks (FCNs)
based on U-Net architecture is explored for the segmentation of skin lesions. This
architecture has been enhanced by adapting standard and rich-feature models
for image classification tasks into fully convolutional networks for segmentation
purpose. The proposed model is made up of an encoder network followed by a
decoder network. In this case, the encoder adapts a pre-trained classification net-
work of Visual Geometry Group (VGG) network followed by a decoder network.
The decoder maps the low resolution discriminative features from the encoder to
higher and full input resolution features [4,5]. The up-sampling networks in the
decoding phase reduce the number of the parameters for training the networks
thereby minimizing the training time and refining the networks for better per-
formance. The proposed Fully convolutional networks (FCNs) model trains skin
lesion images in an end-to-end manner using image pixels and disease ground
truth labels as inputs [4]. The proposed FCN model uses a multi-stage segmen-
tation approach to overcome the challenges of low contrast and fuzzy boundaries
composing of early stage learning of coarse appearance and localisation informa-
tion and late stage learning of the features of lesion boundaries [3]. The proposed
model is also improved with batch normalization.

This model was evaluated on skin lesions image dataset of ISIC 2018 and
it was noted that the enhanced U-NET architecture outperforms some existing
models. The performance of the model was evaluated using metrics such as dice
coefficient, accuracy, sensitivity and specificity.

2 Related Works

In the last decade, some research works have been particularly carried out in the
segmentation process of skin lesion analysis using state-of-the arts techniques.
Recently, some models of deep learning have been used for image segmentation.
Chen et al. [6] carried out investigation on the segmentation of skin lesions using
different U-Net models based on three architectures that used different ensemble
strategies such as weighted average, unweighted average and hierarchical average.
A U-Net-GAN based architecture comprising generator and discriminator was
proposed by Xu et al. [7] for skin lesions segmentation. The system used further
post processing technique such as binary holes filling and removing of artifacts
and small objects to improve the final output. Venkatesh et al. [8] proposed a
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methodology for automatic skin lesion region segmentation based on U-Net and
residual network. Krashenyi et al. extended a U-Net network architecture by
adding dilated convolutions to the central segment known as bottleneck block [9].
The encoder of the model was built of the blocks that have a structure of stacked
convolutional layers. Most of these U-Net models have become huge in size and
will require more computing resources to perform efficiently.

Badrinarayanan et al. [10] applied deep fully convolutional neural network
architecture for semantic pixel-wise segmentation on images. The architecture
termed SegNet consists of an encoder network, a corresponding decoder net-
work followed by a pixel-wise classification layer. Jafari et al. [11] performed
preprocessing of input image to reduce noisy artifacts and then applied deep
convolutional neural network (CNN). The model combined both local and global
contextual information and outputted a label for each pixel to produce segmen-
tation mask. A fully convolutional network(FCN) based on U-Net to identify
cell nuclei in certain images was proposed by Bartolome et al. [12]. It is a mod-
ified U-Net architecture that retained feature maps from the encoding phase
and transferred them to the decoding phase. Generative Adversarial Networks
(GANs) was used for data augmentation in an image segmentation process [13]
and Convolutional-DE convolutional Neural Networks (CDNNs) was later used
to automatically generate lesion segmentation mask from dermoscopic images.

Al-masni et al. [14] applied a modified Fusion Net which consists of three
modules of encoder, decoder and bridge on skin lesion segmentation. The sys-
tem produced result with low sensitivity score. A Deep learning framework con-
sisting of two fully-convolutional residual networks (FCRN) that simultaneously
produced segmentation result was developed by Li et al. [1]. A Full Resolu-
tion Convolution Network (FrCN) method which can learn high-level features
and improve segmentation performance was developed by Yuming et al. [15].
Nasr-Esfahani et al. proposed a Dense Fully Convolutional Network (DFCN) for
segmentation of lesion regions in non-dermoscopic images [15]. The system was
not actually tested on dermoscopic images that require dealing with much noise.

Three boundary enhancement block (BEB) and a pooling pyramid embedded
the general VGG16 network [16] to build a network architecture for segmentation
process. The system yielded an average Jaccard index of 0.769. A system based
on two coupled modules which trained end-to-end over the augmented dataset of
clinical cases was presented [17] for image segmentation. The modules included
an FCN that was used to provide a pixel-wise segmentation for the images and
a Region-Proposal Network (RPN) that specified elliptical regions over a low-
resolution segmentation map. The system gave three different output loss of
pixel-wise loss of the FCN, the loss of RPN predictor and the classification loss
of the RPN simultaneously which may reduce the accuracy.

Mask R-CNN model with ResNet50 backbone architecture that was pre
trained on COCO datasets for Lesion Boundary Segmentation was proposed by
Yang et al. [18] for skin lesion segmentation. Another version of Mask R-CNN
model which extended Faster R-CNN by adding FCN for predicting object masks
was applied by Moutselos et al. [19]. Lastly, transposed convolutional layers that
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increased spatial resolution and reduced the number of channels by half to up-
sample feature maps was used in [20] for image segmentation.

Most of the methods discussed above employed large number of trainable
parameter. This increased their complexity and consequently made them in-
efficient with tendency to perform over-or under-segmentation of skin lesions
with low contrast. They also consume lot of computational resources such as
processor time and memory. Our proposed framework is designed to be efficient
both in terms of memory and computational time during inference. The sys-
tem will through its multi-stage approach apply smaller number of trainable
parameters than other competing architectures.

3 Methods and Techniques

3.1 Fully Convolutional Networks (FCN) for Skin Lesion
Segmentation

In this work, a contemporary classification network of VGG net has been adapted
into fully convolutional networks. The normal process of learning in classification
task is transferred into segmentation task by fine-tuning. The system operates
by learning and mapping skin lesion image from pixels to pixels in an end-to-
end manner. The supervised end-to-end training of the FCN produces pixel-
wise prediction. Both learning and inference are performed on the skin lesions
image input by the feed forward and back propagation networks of the FCN
simultaneously. The up-sampling layers gives pixel wise prediction while learning
takes place at the down-sampling (pooling)stage. The segmentation networks
usually have 2 paths:

Downsampling path: This is the encoder stage and it captures and interprets
semantic and contextual information of skin lesions image for model learning.
The encoder is adapted from the VGG classification network by replacing the
last two layers with full convolutional layers. The convolution layers perform
features extraction from the input image through the downsampling path. The
pooling layers also reduce the resolution of the image feature maps by two times.

Upsampling path: This is the decoder stage. This path recovers spatial infor-
mation for output prediction. The decoder works on the discriminative features
with lower resolution learnt from the encoder. The up-sampling layer increases
and recovers the resolution of feature map. This is followed by a softmax clas-
sifier that predicts pixel-wise labels for an output. The output has the same
resolution as the input image.

The general layout of the FCN segmentation method is illustrated with Fig. 1
below.

3.2 The Proposed U-Net Based FCN Model

The proposed model in this research work is a fully convolutional network (FCN)
based on U-Net architecture. It was trained on a set of skin lesion images
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Fig. 1. General architecture of a fully convolutional networks for skin lesion
segmentation

and ground truth labels. The model is not only computationally inexpensive,
but also achieved outstanding results on the dermoscopic dataset. The model
was designed using a highly optimized deep network architecture for accuracy
and speed for segmentation task. This was done by adopting multi-stage app-
roach to segmentation. It also applies batch processing and data augmentation.
Using multistage networks for segmentation allowed us to design faster and more
portable models for each task in the segmentation process.

The proposed model shown by Fig. 1 accepts skin lesion image as input and
produces a segmented image as the output. At the input section, resizing and
resampling of the images takes place in the repository as shown in Fig. 1. This
is sent into the encoding phase and then to the decoder phase. Learning and
training take place through the model from the input section. Validation also
takes place simultaneously. The model is mainly categorised into encoder and
decoder stages. The segmentation output is finally produced through the pixel-
wise mapping that takes place during the training process.

The encoder stage is composed of four set of convolution layers composing
32, 64, 128 and 256 channels respectively as shown in Fig. 2. Each of the layers
applies Rectified Linear Units (ReLU) activation function and a pooling(max-
pooling) layer. Features extraction is carried out at each stage of the convolution
layer with the pooling layer reducing the resolution of the feature maps. The
decoder part is also made up of four convolution layers that matches the four
convolution layers in the encoding part directly. It also makes use of the ReLU
activation function at each layer. The model further got enhanced by using a
robust up-sampling layer that adopts 3 by 3 convolutional layers which increases
the feature size during the decoding phase. The decoder network up-samples
and also convolutes its input feature maps using the memorized max-pooling
indices from the corresponding encoder feature maps. The system concatenates
and merges the encoder feature maps to the up-sampled feature maps from the
decoder at every stage. This architecture has the capacity that allows the decoder
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at each stage to learn back relevant features that were lost when pooled in the
encoder through concatenation connections.

The system uses refinement techniques such as batch normalization and data
augmentation to improve the performance. Data augmentation is required to
increase the amount of our training image data set for better performance. The
system applied elastic deformations through random displacements for augment-
ing data. Batch Normalization is introduced in the input and convolutional layers
to alleviate over-fitting. Batch Normalization makes training more resilient to
the parameter scale. During training, the layer keeps track of statistics for each
input variable and use them to standardize the data. The statistics used to per-
form the standardization, e.g. the mean and standard deviation of each variable,
are updated for each mini batch and a running average is maintained. Batch nor-
malisation also improves the performance and stability of the fully convolutional
networks by allowing the model to use much higher learning rates. Finally, the
rectified linear unit (ReLU) employed in the convolutional layers also accelerates
training.

4 Experimental Results and Analysis

4.1 DataSet

The dataset used in this work comes from the ISIC Dermoscopic Archive. The
ISIC Archive contains over 13,000 dermoscopic images, which were collected from
leading clinical centers internationally and acquired from a variety of devices
within each center. The training images are set of 2000 images for both the
training and the ground truth respectively. The input data are dermoscopic
lesion images in JPEG format while the ground truth are mask image provided
for training and used internally for scoring validation and test phases data using
several techniques. Ground truth segmentations are normally generated through
fully-automated algorithm, reviewed and accepted by a human expert or manual
polygon tracing by a human expert. The dataset samples are shown in Fig. 3.

4.2 Performance Evaluation

The performance of the U-Net model was evaluated on ISIC dataset comprising
of 2000 image sets. The results displayed as shown in Table 1. The dice coefficient
performs similarity measure between the predicted output and expected output.
The improved U-Net model gives the dice coefficient of 90% which is higher. This
shows higher similarity between the predicted results and the expected results in
the improved U-Net model as shown. The resultant segmentation accuracy was
also assessed by comparing the automatically obtained melanoma-detected areas
with the manual version. The results of the test segmentation were compared
with the ground truth as displayed in Fig. 4. The results of the proposed UNET
model was compared with some recently developed methods as shown in Table 2.

Evaluation was also done using Dice’s coefficient and some other metrics,
which are calculated as:
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Fig. 2. Architectural diagram for the proposed U-Net model

Dice Similarity Coefficient: It measures the similarity or overlap between
the ground truth and the automatic segmentation. It is defined as

DSC =
2TP

FP + 2TP + FN
(1)
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Fig. 3. A sample skin lesions image data set and the corresponding ground truth

Sensitivity: It measures the proportion of those who test posi-
tive(diagnosed) for the disease among those who actually have the disease.

Sensitivity =
TP

TP + FN
(2)

Specificity: This is the proportion of healthy patients known not to have
the disease, who will test negative for it among those who actually do not have
the disease.

Specificity =
TN

TN + FP
(3)

Accuracy: It measures the proportion of true results (both true positives
and true negatives) among the total number of cases examined.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Where FP is the number of false positive pixels, FN is the number of false
negative pixels, TP is the number of true positive pixels and TN is the number
of true negative pixels.

The evaluation results shows that the proposed model when compared against
some recently used techniques presents better performance. Each of the images
was compared with the corresponding ground truth segmentation using the dice
similarity coefficient as shown in Fig. 5. Table 2 shows that the proposed model
outperforms the other state-of-the-art techniques. The performance is calculated
in percentage against 1. The results show the dice coefficient of 90% which
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Table 1. Performance evaluation of the improved FCN U-NET model

Performance
metrics

Dice
coefficient

Jaccard
index

Positive predictive
value

Sensitivity

FCN U-Net
based model

90 83 96 96

Table 2. Lesion segmentation performances based on average jaccard index

State-of-the-arts techniques Average jaccard index

DeepLabV3+MaskRCNN [20] 79.58

FCN-RPN [17] 79.9

MaskRcnn2 [22] 82.0

Proposed FCN U-Net based model 83

Epoch

Fig. 4. A curve showing increase in dice coefficient rate of the proposed model

indicates high similarity between the ground truth labels and the segmentation
output of the proposed model. This can also be seen when compared the images
in Fig. 5. This can also be inferred from Fig. 4 showing the curve for the dice
coefficient.
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Fig. 5. The 5 melanoma image segmentation sample results from the FCN U-NET
based model. The first row shows the lesion images that was segmented; the second row
displays segmentation experts’ manual segmentation known as ground truth mask while
the third row shows the predicted mask of the test image.

5 Conclusion

This work performed analysis and segmentation of skin lesion images using the
FCN UNET-based segmentation methods. This work shows that the proposed
enhanced U-Net model outperforms some of the existing model with little dif-
ference in average jaccard index. This is due to the robust architecture adapted
by the FCN U-Net based model. The proposed model also performed well with
small image data set. Ensemble methods of the improved U-Net model with
some other state-of-the arts techniques will be worked on in the future.
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Abstract. Age Estimation plays a significant role in many real-world
applications. Age estimation is a process of determining the exact age
or age group of a person depending on his biometric features. Recent
research demonstrates that the deeply learned features for age estima-
tion from large-scale data result in significant improvement of the age
estimation performance for facial images. This paper propose a Convo-
lutional Neural Network (CNN) - approach using Bayesian Optimization
for facial age estimation. Bayesian Optimization is applied to minimize
the classification error on the validation set for CNN model. Extensive
experiments are done for evaluating Deep Learning using Bayesian Opti-
mization (DLOB) on three datasets: MORPH, FG-NET and FERET.
The results show that using Bayesian Optimization for CNN outper-
forms the state of the arts on FG-NET and FERET datasets with a
Mean Absolute Error (MAE) of 2.88 and 1.3, and achieves comparable
results compared to the most of the state-of-the-art methods on MORPH
dataset with a 3.01 MAE.

Keywords: Age estimation · Feature learning ·
Convolutional Neural Networks · Bayesian optimization

1 Introduction

Facial images of humans contain rich information around personal characteris-
tics, comprising emotional identity, age, expression, gender, etc. Generally, human
images can be taken as a complex signal which covers a number of facial attributes
such as skin color and geometric facial feature. These facial attributes play a criti-
cal role in real applications for facial image analysis. The estimated attributes from
face image in such applications can deduce additional system reactions. Particu-
larly, age is further significant surrounded by these attributes [1].

Age estimation is a significant task in facial image classification. It plays
an important role in numerous applications such as multimedia communication,
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security control, surveillance and human computer interaction. Age estimation
is the procedure of determining the person’s age depending on his biometric
features by computers [2]. The major aim of age estimation is to estimate age
closely to appearance age as possible.

Machine learning algorithms are rarely parameter-free: parameters control-
ling the rate of learning or the capacity of the underlying model must often
be specified. These parameters are frequently considered annoyances, making it
interesting to develop machine learning algorithms with fewer of them.

Another good solution is to optimize such parameters as a procedure to be
automated. Specifically, viewing such tuning as optimizing an unknown black-
box function and appeal algorithms developed for such problems. Bayesian opti-
mization [3] is a good choice, which outperforms other state of the art global
optimization algorithms on many challenging optimization benchmark functions
[4]. The parameters of the machine learning algorithms that control the capacity
and learning rate of the underlying model must be identified. These parameters
are frequently considered annoyances, making it interesting to develop machine
learning algorithms with fewer of them.

In this paper, Bayesian Optimization is used to improve the performance of
age estimation. The variables that required to be optimized are specified firstly.
These selected variables are the parameters of the network architecture, as well
as options of the training algorithm. Then the objective function is defined,
which receipts the values of these specified variables as inputs. This function
specifies the training options and network architecture, training the network on
training set and validating it on the test set. Then the Bayesian Optimization is
performed with several objectives by minimizing the classification error on the
validation set.

2 Literature Review and Related Works

2.1 Deep Learning

Deep learning is a class of machine learning techniques, in a way that several
layers of information processing stages are exploited in hierarchical architectures
for pattern classification and for representation or feature learning. It lies in the
connections of numerous research areas, including graphical modeling, neural
networks, signal processing, pattern recognition, and optimization. Deep learn-
ing’s basic concept is created from research of artificial neural network [5].

Convolutional Neural Networks (CNNs) are one of the most important deep
learning approaches whose multiple layers are trained in a robust manner [6].
A CNN in convolutional layers convolve the whole image by exploiting different
kernels as well as the intermediate feature maps, generating various feature maps,
CNN in general is a hierarchical neural network, where its convolutional layers
alternate with pooling layers [7]. The Pooling layer follows the convolutional
layer and it minimizes the feature maps’ dimensions and network parameters.
Due to taking computations of neighboring pixels into account, these layers are
translation invariant [6]. Fully-connected layer follows the last pooling layer in
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the network. There are numerous fully connected layers which convert the 2D
feature maps into a 1D feature vector, for additional feature representation.
Fully-connected layers achieve like a traditional neural network and consist of
about 90% of the parameters in a CNN [6].

Recently, deep learning algorithms have been applied by a number of
researchers to face related tasks like face verification, gender identification and
age estimation. A Deep ID structure is proposed to extract discriminative fea-
tures from the face for face verification process [8]. To improve the Deep ID
algorithm, a verification constraint is added in loss function to obtain better
performance [9]. For detecting landmark points of the face, a cascaded Deep
ConvNets structure is proposed [10]. Also [11] proposed a new algorithm to
detect landmark points, which named deep multi-task learning algorithm.

A new framework is built for age feature extraction which is based on the
deep learning model. CNN is used to estimate ages [12]. Comparing to previous
models, feature maps resulted from different layers are used as an alternative of
using a feature extracted from the top layer. Furthermore, the proposed scheme
incorporates the manifold learning algorithm. This significantly increases the
performance. From the other hand, the deep learned aging pattern (DLA) is
used to evaluate different classification and regression schemes for age estima-
tion. Experimental results evaluated on two datasets indicate that the approach
is better than the state-of the-art significantly. A framework for age estima-
tion based on deep learning is proposed. Transfer learning is used due to the
lack of labeled images. Due to the ordered labels in age estimation, a new loss
function for age classification is defined through distance loss addition to cross-
entropy loss for relationships description between labels. Results obtained prove
the excellent algorithm performance against the state-of- the-art methods [13].

A robust and a fast age modeling algorithm is used with the deep learning to
propose age estimation system. They indicate that the local regressors perfor-
mance for most groups are better than the global regressor. Samples are firstly
classified into overlapping age groups. Local regressors estimates the apparent
age for each group. The outputs are used for the final estimate. The system is
evaluated on the ChaLearn Looking at People 2016 – Apparent Age Estimation
challenge dataset, and results in 3.85 MAE on the test set [14]. The largest public
IMDB-WIKI dataset with gender and age labels is introduced by [15]. VGG-16
architecture for convolutional neural networks is used which are pre-trained on
ImageNet dataset. A robust face alignment is done. They study the perceived age
by other humans and the apparent age estimation. The methods are evaluated
on standard benchmarks and results achieve state-of-the-art for both apparent
and real age estimation.

Both final label encoding and the structure innovation are explored [16]. For
the performance evaluation, a novel hierarchical aggregation is proposed based
on deep network to study features of aging and their encoding method is applied
to transmit the discrete aging labels to a possibility label, this allows the CNN
to conduct a classification task rather than regression task. Their deep aging
feature can capture both global and local cues in aging. Experimental results of
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Algorithm: Bayesian Optimization

1: for n= 1,2,..., do
2: select new xn+1 by optimizing acquisition function α
xn+1 = argmaxα(x; Dn)
3: query objective function to obtain yn+1

4: augment data Dn+1 = Dn(xn+1, yn+1)
5: update statistical model
6: end for

age prediction on the FG-NET and the MORPH-II databases indicate that the
proposed deep aging feature outperforms state-of-the-art aging features.

2.2 Bayesian Optimization

Bayesian optimization concerned in finding the minimum of a function f(x) as
in other kinds of optimization on some bounded set X. It builds a probabilistic
model for f(x) and this model is exploited to give decisions about where will
be the next evaluation of the function in X, while integrating out uncertainty.
The fundamental philosophy is to utilize all of the available information from
previous evaluations of f(x) and not only rely on Hessian Approximations and
local gradient. This results in a technique that can gain the minimum of difficult
non-convex functions with proportion to little evaluations, at the cost of carrying
out more computation to decide which the next point to try. Once evaluations
of f(x) are costly to accomplish—as is the situation when it needs training a
machine learning algorithm—consequently it is easy to warrant some additional
computation to make better decisions. For more overview of the Bayesian opti-
mization and a review of previous work, refer to [17]. Mathematically, in view of
the problem of discovering a global maximizer (or minimizer) of an unrecognized
objective function f

X∗ = argmaxxεXf(x) (1)

Where X is selected design area of interest; within global optimization, X is
frequently a compact subset of Rd nevertheless the framework of Bayesian opti-
mization can be stratified to more unusual search spaces that encompass con-
ditional or categorical inputs, or even combinatorial search areas with various
categorical inputs [18].

When performing Bayesian optimization, there are two main selections that
must be made. Firstly a prior over functions must be selected that prompt
assumptions about the function needed to be optimized. Gaussian process prior,
is flexible and tractable. Then an acquisition function must be chosen. This
function is used to build a utility function from the model posterior, letting us
to determine which the next point to be evaluated is [19].
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2.2.1 Gaussian Processes
The Gaussian Process (GP) is an appropriate and strength-full on the functions
before distribution, the functions will be taken here to the form f : X −→ R
The GP is described by the characteristics or quality which is limited in size of N
points

{
xn ∈ X

}N

n=1
Persuade of a multifarious Gaussian distributed on Rn. The

nth of these points is occupied to be operated value f(xn), and the properties
of elegant marginalization for the Gaussian distribution permit us to calculate
conditionals and marginals in closed form [19]. The properties and support of the
distribution that resulted on functions are specified by a positive definite covari-
ance function and a mean function.The properties and support of the resulting
distribution on functions are specified by a mean function m : X −→ R and
a positive definite covariance function K : X × X −→ R. For an overview of
Gaussian processes, refer to [20]. The predictive covariance and mean under a
GP can be respectively stated as:

μ(x; {xn, yn}, θ) = K(X,x)T K(X,X)−1(y − m(X)) (2)
∑

(x, x
′
; {xn, yn}, θ) = K(x, x

′
) − K(X,x)T K(X,X)−1K(X,x

′
) (3)

At this point K(X,x) is the vector of N-dimensional column of cross-
covariances amongst x and the set X. The NχN matrix K(X,X) is the Gram
matrix aimed at the set X [21].

2.2.2 Acquisition Functions for Bayesian Optimization
Assuming that the function f(x) is drawn from a Gaussian process prior besides
that the observations are formed with

{
xn, yn

}N

n=1
, where yn ∼ N(f(xn, v)

and v is the variance of noise announced into the observations of the function.
These data and prior produce a posterior over functions; the acquisition function,
which we symbolize by a : X −→ R+, defines which point in X should be evalu-
ated next through a proxy optimization xnext = argmaxxa(x), where numerous
diverse functions have been proposed. Generally, these acquisition functions rely
on the GP hyperparameters as well as the previous observations; this depen-
dence is denoted as σ(x;

{
xn, yn

}
, θ). There are a number of popular options

of acquisition function. Under the Gaussian process prior, these functions rely
on the model solely over predictive variance function μ(x;

{
xn, yn

}
, θ) and its

predictive mean function σ2(x;
{
xn, yn

}
, θ)). In the proceeding, the best current

value is denoted as xbest = argminxn
f(xn) as well as the cumulative distribution

function of the standard normal as Φ
(
.
)

[19].
Acquisition Function specifies the non-negative predictable refinement

through the best observed objective value previously (symbolized fbest)

EI
(
x|D)

=
∫ ∞

fbest

(
y − fbest

)
p
(
y|x,D

)
dy (4)

While Gaussian is the predictive distribution p
(
y|x,D

)
, EI

(
x
)

has an appro-
priate closed form. A perfect Bayesian treatment of EI comprises integrating
through parameters of the probabilistic regression model.
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Fig. 1. Framework for the proposed system.

3 Bayesian Optimization with Deep Learning

In order to train CNN, the CNN architecture and options of the training algo-
rithm must be specified firstly. The process of choosing and tuning these parame-
ters is difficult and take long time. The algorithm of Bayesian Optimization (BO)
is compatible to optimize internal parameters of regression and classification
models. BO algorithm can be used to optimize functions that are discontinuous,
non-differentiable, and time-consuming to evaluate. It maintains a Gaussian pro-
cess model internally of the objective function. This objective functions is used
to evaluate training this model. Bayesian optimization is applied to deep learning
to find optimal training options and network parameters for CNNs. Figure 1 dis-
plays the framework of our proposed system, starting by preprocessing images,
which includes Face detection, Face alignment and Data augmentation. Then
BO uses the preprocessed data for training and testing through the CNN. This
obtained in a number of results (n) which equals to the number of objectives
that specified in the BO. Finally the best result that has been obtained from
these n results is selected as the final result. The following steps present the
details of the proposed system.

To apply Bayesian Optimization with deep learning there are some steps to
follow:

1. Dataset Preprocessing for Network Training.
2. Specify the variables to be optimized using Bayesian optimization.
3. Define the objective function and the network architecture.
4. Perform Bayesian optimization.
5. Load the best network.
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3.1 Dataset Preprocessing

At the beginning, all the images are aligned. For the alignment stage, the input
coordinates which are the facial landmarks are used to warp and transform the
image to an output coordinate space. The alignment depends on the position of
the two eyes for all images. The alignment is done for MORPH only and failed
for FG-NET and FERET datasets. After the face alignment, a face detection
process is done using face++ Detector [22] to extract the face only without
hair and other features that could be a noise. The MORPH dataset has three
images the original image, aligned image, and detected image respectively. While
the FG-NET and FERET datasets have two images the original image and the
detected one. Finally all the detected faces are resized to 32 × 32 to fit the
network for training. Except for MORPH dataset, the data have been resized to
110 × 110. Also, data augmentation is done for FG-NET and FERET dataset,
because the data are limited. Data augmentation is used to acquire more data,
by making minor alterations to the existing dataset. These minor changes are
such as translations or flips or rotations. The augmented data is used for training
to improve the results of deep learning.

Table 1. Selected variables for optimization.

Network depth Momentum Initial learn rate L2 regularization

[1–3] [0.8–0.95] [1e-3 1e-1] [1e-10 1e-2]

3.2 Select Variables for Optimization

The variables selected to be optimized are: The Network Depth, Momentum,
Initial Learn Rate, and L2 Regularization as shown in Table 1. The Network
depth controls the depth of the network. L2 regularization strength is used to
prevent over-fitting. L2 is one of the most common types of regularization for
Deep learning, that help in reducing overfitting to improve the results. Batch
normalization and data augmentation also help regularize the network. The best
initial learning rate can depend on the data and the network used. These vari-
ables are the parameters of the network architecture as well as options of the
training algorithm.

3.3 Objective Function for Optimization

The objective function is defined. Its inputs are the values of the optimization
variables that illustrates in Table 1 as well as the training and testing data. This
function states the network architecture that will be used for training and spec-
ifies the training options. Our Network consists of six convolution layers, which
depends on Network variable of Bayesian. Then training and validating this net-
work is involved in this objective function. For every time that the training is
done, the objective function saves the trained network to disk.
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3.4 Bayesian Optimization

Bayesian optimization is performed, which minimizes the classification error on
the validation set. The objective function trains a convolutional neural network
and returns the classification error on the validation set. It uses the error rate
to choose the best model. The final selected model is tested on the test set to
estimate the MAE. The maximum number of objective function evaluations is
specified by 25, and the maximum total optimization time is set to eight hours
for FG-NET and FERET datasets. All networks are trained on a single GPU
(NIVIDIA GeForce 840M) with 2 GB RAM.

3.5 Final Network Evaluation

To evaluate the final network, the best network has been loaded and evaluated
on the test set to obtain the MAE result.

4 Results and Discussions

Performance of Bayesian optimization with deep learning was evaluated by test-
ing its ability to estimate ages.

4.1 Datasets

Three facial benchmark datasets are used is this experiment. MORPH [23] is the
most commonly used benchmark dataset for deep learning in age estimation. It is
a group of mugshot images, containing metadata for race, date of birth, gender,
and date of acquisition. It consists of 55K facial images which ranges from 16 to
76 for 13,000 subjects. FG-NET [24] is the second benchmark dataset for facial
age estimation. It contains 1002 images with ages between 0–69. Nevertheless
over 50% of the subjects are aged between 0 and 13. FERET [25] dataset is used
by many researchers for age estimation. It consists of 2366 facial images of 994
subjects. The age range is between 10 and 70.

4.2 Evaluation Metrics

Mean Absolute Error:
This paper uses MAE to evaluate the performance of the age estimation model.
MAE is used to measure the error between the groundtruth and predicted age,
which is computed as in Eq. (5). Where y and y′ mean predicted and ground-
truth age value, respectively, and N indicates the number of the testing samples

ε =
1
N

N∑

i=1

| y′
i − yi | (5)
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4.3 Results Comparisons

For evaluation on the MORPH dataset, according to the settings in selected pre-
vious works on age estimation [26–28], this paper randomly take 54,362 samples
of ages from 16 to 66. Then these selected samples are split into two groups: 80%
of the samples used for training the network and the 20% for testing. For these
two sets, there is no overlapping. This paper repeat five runs independently, and
the performance of the five runs has been averaged to obtain the final perfor-
mance evaluation during experiments. The quantitative results is summarized
in Table 2. We compare DLOB with other deep learning models for age estima-
tion. Since the experiments done on the MORPH dataset and the same setting
is followed in this paper for data partition, a direct comparison of the MAE of
DLOB with the ones resulted by these deep learner can be done. As displayed in
this table, DLOB achieves comparable results compared to most of the current
state-of-the-art results with 3.01 MAE.

Table 2. Comparison of maes with different state-of-the-art approaches on the morph
dataset.

Deep learning-based methods MAE

OR-CNN [27] 3.34

MR-CNN [27] 3.27

DEX [15] 3.25

GoogLeNet [29] 3.13

Ranking-CNN (without pretraining) [30] 3.03

Ranking-CNN [30] 2.96

Proposed 3.01

For FG-NET leave one person out (LOPO) is employed for evaluation proto-
col as in previous works. This paper selected facial images of one person randomly
for testing purpose, and the facial images of the remaining subjects for training.
This procedure is repeated for 82 folds to evaluate BO. Eventually the average
of the 82 folds results is approved as the final age estimation results. The quan-
titative results is summarized in Table 3. As shown in the table, DLOB achieves
superior results compared to all the current state-of-the-arts. And this is the
first time that a MAE error below 3.0 is obtained on FG-NET dataset.

For FERET dataset a 10-Fold cross-validation is performed as in [32]. Specif-
ically, the whole dataset is divided into ten folds with equal size for each fold.
Nine folds are used for training and the remaining fold for testing. This process
is repeated ten times and the final age estimation result is the average of the ten
results. The quantitative results is summarized in Table 4. As presented in the
table, DLOB achieves superior results compared to all the previous state-of-the-
art results on FERET. Note that, it is the only paper used deep learning with
FERET and has a MAE error below 2.0 on FERET dataset.
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Table 3. Comparison of maes with different state-of-the-art approaches on the
FG-NET dataset.

Deep learning-based methods MAE

DEX [15] 4.63

Ranking-CNN [30] 4.13

GA-DFL [31] 3.93

DRFs [32] 3.85

ODL + OHRanker [32] 3.89

ODL [32] 3.71

Proposed 2.88

Table 4. Comparison of maes with different state-of-the-art approaches on the
FG-NET dataset.

Deep learning-based methods MAE

MAP [33] 4.87

HAP [34] 3.02

MAR [35] 3.0

Proposed 1.3

5 Conclusions and Future Work

In this paper Bayesian optimization is applied to deep learning for the first time
in age estimation field. It is used to select the optimal training options and
network parameters for CNNs. The experimental results show that Bayesian
Optimization with deep learning obtains better results compared with the state-
of-the-arts, using the FG-NET and FERET datasets with a MAE of 2.88 and
1.3 respectively. Furthermore, achieves comparable results to the state-of-the-
art methods on MORPH dataset with MAE of 3.01. Future works involve using
images with larger size and pre-trained the network in WIKI-datasets before
applying the DLOB on the benchmarks datasets. Also to ensemble this classifier
with other CNNs classifiers that obtains good results to improve the performance
of age estimation system.
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Abstract. Automatic analysis of facial beauty has become an emerging
research topic in recent years and has fascinated many researchers. One of the
key challenges of facial attractiveness prediction is to obtain accurate and dis-
criminative face representation. This study provides a new framework to analyze
the attractiveness of female faces using transfer learning methodology as well
as stacking ensemble model. Specifically, a pre-trained Convolutional Neural
Network (CNN) originally trained on relatively similar datasets for face
recognition task, namely Ms-Celeb-1M and VGGFace2, is utilized to acquire
high-level and robust features of female face images. This is followed by
leveraging a stacking ensemble model which combines the predictions of sev-
eral base models to predict the attractiveness of a face. Extensive experiments
conducted on SCUT-FBP and SCUT-FBP 5500 benchmark datasets, confirm
the strong robustness of the proposed approach. Interestingly, prediction cor-
relations of 0.89 and 0.91 are achieved by our new method for SCUT-FBP and
SCUT-FBP5500 datasets, respectively. This would indicate significant advan-
tages over the other state-of-the-art work. Moreover, our successful results
would certainly support the efficacy of transfer learning when applying deep
learning techniques to compute facial attractiveness.

Keywords: Facial beauty analysis � Stacking ensemble model � VGGFace2

1 Introduction

The importance of facial beauty has become more evident in recent years, and people
tend to spend a considerable amount of money and time on plastic aesthetic surgeries and
cosmetic products to attain more attractive faces [1–3]. Facial beauty topic has attracted
the attention of researchers from several fields, such as computer science as well as
medical and human sciences [1, 2]. With the rapid development of machine learning
techniques, there is a great interest in analyzing facial attractiveness objectively. The
secrets of facial beauty give researchers an incentive to develop computational algo-
rithms to measure facial attractiveness from face images and their characteristics.

Automatic analysis of facial beauty has many applications, some are related to
aesthetic plastic surgery and orthodontics, facial make-up synthesis/recommendation,
recommendation systems in social networks and facial image beatification [1–4]. It is
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noteworthy that the discriminative face representation is considered as one of the
essential problem of facial attractiveness prediction. The face representations presented
in the existing works fall into three categories including feature-based, holistic as well
as hybrid techniques [2]. With the help of these approaches, the most useful data from a
huge amount of information provided by face images can be extracted. In order to
represent a face, feature-based approach encompasses a wide range of features, namely
geometric, color, texture as well as other local structural features [2]. The widespread
use of feature-based approach can be observed in existing works. In particular, geo-
metric features are the most significantly used features in face attractiveness research
studies. Nevertheless, it should be noted that accurate manual localization of prominent
facial landmarks is essential for the extraction of geometric features. This would def-
initely result in more manual involvement. Even though in some research studies
landmarks were chosen automatically, some landmark coordinates needed to be
manually adjusted when the coordinates were not accurate. Moreover, their experi-
mental results indicate that the shallow predictors with these heuristic hand-crafted
features would definitely impose restrictions on the attractiveness prediction perfor-
mance, to some extent. Furthermore, holistic techniques are employed by researchers
where features are extracted from the whole face [1, 2]. The keystone of holistic
techniques is that the appearance information of faces is automatically acquired without
any manual effort [2]. Additionally, hybrid representation which integrates the afore-
mentioned features (i.e. feature-based and holistic) is expected to enhance the perfor-
mance of facial beauty analysis.

Recently, Convolutional Neural Networks (CNNs) have proven to be a powerful
tool for facial attractiveness computation task [5–12]. With the help of deep learning
methods, especially CNNs, high-level features of face images are automatically
extracted instead of traditional geometric features. This would definitely alleviate the
problem of manual intervention. In fact, up-to-date deep learning methods (CNNs)
possess the ability to extract hierarchical and high-level features which are of para-
mount importance for tasks which involve analyzing human faces. Considering that our
training data are not extensive, transfer learning methodology would definitely be of
significant help in overcoming this challenge. Transfer learning would certainly be a
feasible solution when researchers are provided with insufficient ground truth. In this
paper, we develop a new framework which has advantages in learning accurate and
discriminative face representation to assess face attractiveness. This study employs a
very deep architecture pre-trained on large-sized face datasets, as a feature extractor.
Interestingly, deep features learned by the pre-trained CNN, are mapped to an attrac-
tiveness score using a stacked ensemble model, which is also a combination of different
regression models.

There are two innovative points which have made our proposed method successful.
First, the state-of-the-art deep learning-based feature extractor, namely ResNet-50 first
trained on MS-Celeb-1M dataset and then fine-tuned on VGGFace2 dataset (hereinafter
“VGGFace2_ft (ResNet)”), is employed to acquire high-level and robust features of
facial images. It is worth mentioning that in an attempt to reduce the difference between
the source task and target task (our task) in transfer learning scheme, this study exploits
a very deep architecture (with 50 layers) which is pre-trained on massive face datasets
spanning 10 M and 3.31 M face images, respectively. This is the first time to employ a
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very deep CNN pre-trained on massive face datasets merely as a feature extractor in
facial attractiveness computation task. Second, inspired by the fact that the performance
of an ensemble framework combining multiple models would certainly be superior to
that of individual ones, a stacking ensemble model is considered in this paper. Said
differently, this study reinforces the importance of stacking ensemble model on CNN
features.

The remainder of this paper is organized as follows. Related works are presented in
Sect. 2. Section 3 presents transfer learning, feature extraction as well as regression
technique which are leveraged in this study. In Sect. 4, the face image datasets
employed in the tests and the evaluation of the method are introduced and also the
experimental results are analyzed and discussed. Finally, Sect. 5 concludes the paper
by summarizing the main findings and perspectives on future works.

2 Related Work

Previous facial attractiveness research studies demonstrate that both face representa-
tions and prediction models are of key importance for automatic analysis of facial
beauty. Geometric features have been extensively used in facial beauty research
studies. Besides geometric features [6, 13–15], other handcrafted features, namely
texture [6, 16], skin smoothness indicators [13, 14] as well as color [13, 14] have been
utilized in some existing work. Furthermore, some researchers have assessed facial
beauty using holistic descriptors such as Eigen faces [13]. Afterwards, these low-level
features have been fed to traditional machine learning algorithms to construct a face
attractiveness predictor. It is worth noting that both regression and classification
techniques can be applied to the facial beauty analysis task.

Interestingly, state-of-the-art deep learning techniques have recently achieved great
success in analyzing facial attractiveness owing to the fact that high-level and dis-
criminative features learned from these techniques are of great value for face analysis.
The work of Xie et al. [6] developed a CNN with six convolutional layers for facial
beauty prediction, and their successful results indicate a good correlation between the
human scores and the predictor outputs. The authors in [7] attempted to build a six-
layer CNN model using a cascaded fine-tuning methodology. They employed several
face input channels, namely face image, detail layer image as well as lighting layer
image to enhance the performance of facial beauty predictor. Compared with the work
of [6], they witnessed a higher performance. Furthermore, a psychologically inspired
convolutional neural network utilized by Xu et al. [8].

Additionally, transfer learning scheme has proven to be significantly useful when
applying deep learning techniques to the facial beauty prediction task. A very deep
convolutional residual network (ResNet [17]) pre-trained on ImageNet dataset [18] has
been utilized by Fan et al. [5]. Interestingly, the ideas of label distribution learning
(LDL) and feature fusion have enriched their work. They have succeeded in achieving
extremely successful results. Very recently, three CNN models pre-trained on the
ImageNet dataset have been employed by Liang et al. [9] Furthermore, a VGG-Face
model as well as Bayesian ridge regression technique have been used by Xu et al. [10]
to assess facial beauty. Deep features have been extracted using a pre-trained CNN
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model for face recognition, namely the VGG-Face (VGG-16 Network) [19]. Moreover,
ResNet-18 architecture has been utilized in the work of [11] where the network is
divided into two branches for regression and classification tasks.

3 Automatic Analysis of Facial Attractiveness

Our approach includes two major steps. In the first step, female face images are fed into
the pre-trained CNN, i.e. VGGFace2_ft (ResNet). This pre-trained CNN on two face
datasets (i.e. MS-Celeb-1M [20] as well as VGGFace2 [21] datasets with 10 M and
3.31 M face images, respectively), performs as a feature extractor. Following this, the
extracted features are passed to a stacking ensemble model. The main framework of our
method is shown in Fig. 1.

It is notable that in Fig. 1(b), “PL”, “PS” and “PR” indicate predictions of Lasso,
SVR (linear) and Ridge regression methods, respectively. Additionally, “k” denotes the
number of folds in the cross validation scheme.

3.1 Transfer Learning and Deep Feature Extraction

Convolutional Neural Networks have been extensively used by researchers in recent
years to create robust computational systems. Two different ways have been presented
in recent works to exploit the power of CNNs. In the first method, the training can be

Fig. 1. (a) Framework of our method. (b) Framework of the stacking ensemble model.
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performed using a large set of data. Furthermore, the transfer of learning using pre-
trained networks has been introduced as the second approach. Therefore, when there
are insufficient data to train CNNs from scratch, transfer learning would certainly
provide an effective solution. Moreover, transfer learning can be an ideal solution to
obviate the need for extensive computational and memory resources by transferring
information acquired from the pre-trained CNNs. It is noteworthy that we adapt one of
the most popular CNN architectures (i.e. ResNet) to our task through transfer learning.
Residual Network developed by Kaiming He et al. [17] was the winner of ILSVRC
2015 classification task. Residual Network is composed of several residual blocks
which provide shortcut connections between layers. These shortcut connections will
equip researchers with substantially deep networks.

It should be noted that there are two different scenarios for the transfer learning
process [22, 23]. In the first scenario, The CNN is leveraged as a fixed feature extractor.
In fact, deep features can be extracted after eliminating the output layer. The following
scenario involves fine-tuning the weights of the pre-trained network which can be
accomplished by continuing backpropagation.

It is noteworthy that the first scenario is employed in this paper. This is because our
dataset is small and similar to original dataset. Since our training data is small, it would
not be a good idea to fine-tune the CNN (with 50 layers) owing to overfitting concerns.
Moreover, our data is similar to the original data, as a result of which higher-level
features in the pre-trained CNN would definitely be relevant to our face dataset. Said
differently, weights from a face recognition task would certainly encode features
specific to the face which are of great value for face attractiveness computation task. It
should be noted that the feedforward phase of the VGGFace2_ft (ResNet-50) is per-
formed only once to extract facial features.

As mentioned before, the training of CNNs requires a large set of images, while
facial attractiveness computation task is struggling with the scarcity of sufficient
training data. Therefore, transfer learning methodology is employed in this paper to
alleviate this problem. It is worth mentioning that in order to reduce the difference
between source domain and target domain in a transfer learning scheme, this study is
equipped with a 50-layer ResNet pre-trained on massive face datasets, i.e. MS-Celeb-
1M dataset [20] (including 10 M face images) and VGG-Face2 [21] (spanning 3.31 M
face images). In this study the pre-trained ResNet performs as a feature extractor, and
the features can be extracted from different layers by experiment.

We fuse semantically rich features from “pool5/7�7_s1” (i.e. global average pooling
layer before the output layer of ResNet50) and features from “conv5_1_3�3/bn” layer
(i.e. convolutional layer 5_1 followed by batch normalization). Interestingly, interme-
diate layers would certainly encompass features that are less specific to the original
dataset utilized to train the CNN. Since the extracted features are high-dimensional,
Principal Component Analysis (PCA) is employed for dimensionality reduction.
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3.2 Stacking Ensemble Model

Stacking is a general procedure that involves combining multiple predictive models via
a meta-model [24–26]. The first-level learners are created by employing different
learning algorithms. First, the original training set is utilized to train first-level base
models. Afterwards, the outputs of multiple predictive models (base models) are
merged so that they can be considered as input features for the second-level model
(meta-model). This means that a new dataset is generated for training the second-level
model, where the outputs of the first-level learners and the original labels constitute
input features and labels, respectively. Furthermore, in the training process of stacking,
a cross-validation scheme is employed to avoid overfitting. Said differently, training
examples which are leveraged to generate the new dataset for meta-learner should be
eliminated from the training instances for the first-level base models [26].

As illustrated in Fig. 1(b), the training phase of stacking can be described as
follows:

Step 1. Split the total training set into two disjointed parts, namely validation and
training folds.
Step 2. Train every first-level base model (i.e. linear SVR, Ridge and Lasso) on the
training fold and test them on validation fold.
Step 3. Employ predictions on validation fold as input features and also targets
(original labels) as outputs to train the second-level learner called meta-model
(RBF-SVR here).
Step 4. Repeat steps 1-3 iteratively so that the entire training data can be leveraged
to make out-of-fold predictions.

In this study, three popular regression algorithms have been selected in the first
level of the stacking model, namely Support Vector Regression (SVR) [27, 28], Lasso
[29] as well as Ridge regression [30]. Moreover, SVR with a Radial Basis Function
(RBF) kernel is considered as a meta-regressor (see Fig. 1(b)). Lasso regression
technique is formulated as the following:

min
x

y� Xxk k22 þ a: xk k1 ð1Þ

where y 2 Rn denotes the average scores (the ground-truth score labels) for n faces, and
X 2 Rn�d is the feature matrix (each row of this matrix represents a single face) [31].
Moreover, x denotes the model weights to be optimized. The objective is to minimize
the above equation where the first term quantifies how the model fits the training data,
and the regularization term (a: xk k1) is used to prevent model from overfitting. It
should be noted that Lasso applies the L1 norm of x, while Ridge applies the L2 norm
of x. Therefore, Lasso and Ridge are also referred to as applying L1 and L2 regu-
larization, respectively. The strength of the regularization term can be controlled by a.

Given the set of n training data xi; yið Þ; 1� i� nf g, where xi 2 Rm denotes the m
extracted features and yi 2 R is the ground-truth score label for the ith face. The aim of
support vector regression (SVR) algorithm is to solve the following optimization
problem:
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minw;b;n;n�
1
2

wk k2 þC
Xn

i¼1
ni þ n�i
� � ð2Þ

subject to

yi � w; xih i � b� eþ ni

w; xih iþ b� yi � eþ n�i

n�i ; ni � 0; i ¼ 1; 2; . . .; n

where w is the weight vector and b is the bias. Moreover, :; :h i denotes the dot product.
Slack variables (n�i ; ni) are introduced to measure the deviation of training data from
e-insensitive zone. Furthermore, C is the regularization parameter which determines the
trade-off between the model complexity and the empirical error. It should be noted that
for nonlinear regression problems, a nonlinear function is used to map the input
training data to a higher dimensional space in which a linear model can be learned and
solved.

4 Experimental Results

4.1 Experimental Setup and Dataset Description

The Caffe framework [32] is utilized to extract deep features using a publically available
pre-trained CNNmodel for face recognition task (i.e. a ResNet-50 model trained on MS-
Celeb-1M and then fine-tuned on VGGFace2 dataset) [33]. Moreover, Scikit-learn [34]
and MLxtend [35] libraries in Python are used to implement regression techniques. The
hyper-parameter a, which controls the strength of the regularization, is set to 1 and 0.1
for linear Ridge and Lasso regression techniques, respectively. Moreover, K = 5 is
selected in the ensemble model.

To assess the performance of our proposed method, female face images of two
benchmark datasets, namely SCUT-FBP [6] and SCUT-FBP5500 [9], have been uti-
lized in this study. The former includes only female facial images. Approximately 70
human raters were asked to assign attractiveness scores to 500 images of Asian female
faces. The latter recently introduced by Liang et al. [9] contains 5500 facial images of
different gender and races. This dataset is composed of four subsets including Asian
(2000 females and 2000 males) as well as Caucasian (750 females and 750 males). In
this study, only female faces are used. These face images were labelled by 60 human
raters. It is noteworthy that in both datasets, each facial image was rated with integer
numbers ranging from 1 to 5, which means “1” is most unattractive and “5” is
extremely attractive. It should be noted that the ground truth is the average scores for
each facial image.

To evaluate our predictor model, a 5-fold cross validation technique is performed
where 80% of the facial images are randomly selected as the training set, and the
remaining 20% of face images as the testing set. Furthermore, three prediction metrics,
i.e. Pearson Correlation (PC), Root Mean Squared Error (RMSE) and Mean Absolute
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Error (MAE), are employed to assess the efficacy of the automatic rater. Pearson
Correlation of (x1; x2; . . .; xn) and y1; y2; . . .; ynð Þ is defined as [3]:

rx;y ¼
Pn

i¼1 xi � �xð Þ yi � �yð Þ
Pn

i¼1 xi � �xð Þ2 Pn
i¼1 yi � �yð Þ2

h i1
2

ð3Þ

where x1; x2; . . .; xn are the ground-truth scores (the average ratings) and y1; y2; . . .; yn
are the predicted scores. Additionally, �x and �y denote the mean values of ðx1; x2; . . .; xnÞ
and y1; y2; . . .; ynð Þ, respectively. Moreover, “r” ranges from −1 to 1, where 1, 0 and −1
represent the strongest positive linear correlation, no correlation and the strongest
negative linear correlation, respectively. Moreover, Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) are given by:

MAE ¼ 1
n

Xn

i¼1
yi � xij j ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
yi � xið Þ2

r
ð5Þ

Interestingly, higher values of Pearson correlation as well as smaller errors would
certainly be derived from more accurate predictions.

4.2 Experiments on the SCUT-FBP Dataset

After face cropping, RGB facial images (224 � 224) are fed into the pre-trained CNN
model to extract features from “pool5/7�7_s1” (i.e. layer before the output layer) and
“conv5_1_3�3/bn” layers (i.e. convolutional layer 5_1 followed by batch normaliza-
tion). Table 1 indicates the performance of individual layers as well as their fusion
using the SCUT-FBP dataset. In comparison with pooling layer, superior results are
achieved by conv5_1. This is because lower layers encompass features that are less
specific to the original dataset utilized to train the CNN. Furthermore, it can be
observed that feature fusion would lead to a higher performance. As a result, a con-
catenated vector of these two types of features is generated, following which Principal
Component Analysis (PCA) is employed to reduce the vector’s dimensionality. In this
study, the number of face images in training set is also considered as the dimension of
feature vector.

Table 1. Performance of individual layers as well as their fusion.

Dataset Layer (type, name) PC MAE RMSE

SCUT-FBP Average pooling “pool5/7�7_s1” 0.8719 0.2573 0.3348
Conv + BN “conv5_1_3�3/bn” 0.8762 0.2494 0.3245
Combined 0.8898 0.2409 0.3105
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Information in Table 2 would definitely enable us to obtain deeper insights into
performance differences among different models for facial beauty prediction. The
results of 5-fold cross validation in terms of PC, MAE and RMSE are indicated in
Table 2. It can be observed that the stacked ensemble model outperforms other
regression methods (with the highest average Pearson Correlation of 0.8898). These
experimental results can also support the fact that the performance of the ensemble
model which combines multiple predictive models would certainly be superior to that
of individual ones.

Table 2. Comparison of different models, in terms of PC, MAE and RMSE using 5-fold cross
validation, on the SCUT-FBP dataset.

PC 1 2 3 4 5 Average

SVR 0.8642 0.8737 0.8714 0.9023 0.8688 0.8761
Ridge 0.8579 0.8647 0.8649 0.8958 0.8641 0.8695
Lasso 0.8832 0.8836 0.8596 0.9042 0.8617 0.8785
Stacked 0.8993 0.8906 0.8758 0.9062 0.8768 0.8898
MAE 1 2 3 4 5 Average

SVR 0.2503 0.2752 0.2611 0.2281 0.2593 0.2548
Ridge 0.2561 0.2864 0.2721 0.2314 0.2663 0.2625
Lasso 0.2382 0.2621 0.2654 0.2213 0.2696 0.2513
Stacked 0.2231 0.2544 0.2487 0.2314 0.2471 0.2409
RMSE 1 2 3 4 5 Average

SVR 0.3205 0.3404 0.3274 0.3040 0.3363 0.3257
Ridge 0.3267 0.3545 0.3388 0.3089 0.3447 0.3347
Lasso 0.3035 0.3239 0.3392 0.3153 0.3430 0.3250
Stacked 0.2811 0.3143 0.3217 0.3094 0.3260 0.3105

Fig. 2. Comparison of the face attractiveness prediction among ground-truth (G-T), SVR and
the proposed stacked model. For each image, ground truth label, predicted score of our proposed
stacked model and that of SVR are shown from left to right.
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We randomly selected four facial images of the SCUT-FBP benchmark dataset with
different levels of beauty. It is noteworthy that the beauty scores range in [1, 5], where
beauty score “5” means most attractive. As shown in Fig. 2, it is easy to find that the
predicted scores by our proposed method for these face images are highly correlated
with the ground truth from human raters. Moreover, the predicted scores of the stacked
model is closer to the ground truth scores than those of SVR.

Comparison with the State of the Art on the SCUT-FBP Benchmark Dataset
In order to demonstrate the robustness of our method, the results achieved by our
approach are compared with other state-of-the-art methods on the SCUT-FBP bench-
mark dataset. A summary of the beauty prediction methods as well as their accuracy in
existing works in terms of PC, MAE and RMSE are presented in Table 3. It is note-
worthy that figures for MAE, RMSE or PC have not been reported by researchers in [6,
8, 11, 12, 16], as a result of which they are denoted with “−” in Table 3. Low-level
features have been utilized by the first four works (the first four rows). It is interesting
to know that the CNN-based methods have attained a superb performance, among
which our model performs the best. It is noteworthy that deeper architectures could
extract more discriminative features from face images to some extent.

It can be observed that the prediction accuracy derived from extracted CNN fea-
tures by our method is significantly higher than those achieved from handcrafted
features [6, 15]. It is noticeable that CNN features’ superiority over geometric features
is more evident, especially when comparing our results with those reported in [15].
Moreover, experimental results indicate that our method achieves the highest corre-
lation of 0.8898, minimum MAE of 0.2409 and RMSE of 0.3105 among all the
methods in Table 3. Our work gains benefit from transfer learning methodology as well
as stacking ensemble model. In fact, the 50-layer ResNet (very deep architecture) pre-
trained on about 13 million face images would definitely be capable of extracting more
discriminative facial features.

Table 3. Performance comparison with the related state-of-the-art works on SCUT-FBP dataset.

Method PC MAE RMSE

Geometric features + SVR [6] 0.6080 0.4021 0.5316
Hybrid features (geometric, Gabor) + Gaussian Regression
[6]

0.6482 0.3931 0.5149

Geometric features + Stacking ensemble model [15] 0.693 0.334 0.452
LBP/HOG/Gabor features + structural label distribution
learning [16]

– 0.3015 0.4076

Six-layer CNN [6] 0.8187 – –

Region aware scattering CNN-based features + SVR [12] 0.83 – –

PI-CNN [8] 0.87 – –

CRNet [11] 0.8723 – –

VGG-face + Bayesian ridge regression [10] 0.8570 0.2595 0.3397
VGGFace2_ft (ResNet) + Stacking ensemble model 0.8898 0.2409 0.3105
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4.3 Experiments on the SCUT-FBP5500 Dataset

In this section, two subsets of different races of the SCUT-FBP5500, namely Asian and
Caucasian female faces (with 2000 and 750 face images, respectively), are employed to
conduct further experiments. Table 4 shows the results of 5-fold cross validation for
both categories (Asian and Caucasian) and two models (SVR and stacked) in terms of
PC, MAE and RMSE. Compared with SVR, better results are achieved by the
ensemble model (the average Pearson Correlation of 0.9141 and 0.9112 for Asian and
Caucasian females, respectively). It is noteworthy that similar results are achieved
using 10-fold cross validation technique.

Moreover, experimental results on these two categories indicate that a significantly
higher performance can be achieved using deep CNN features compared with geo-
metric features (see Tables 5 and 6). This would mean that low-level geometric fea-
tures are not sufficiently discriminative. Said differently, relatively poor results have
been reported in the work of [9] for geometric features owing to the insufficient facial
representation ability related to attractiveness. In fact, two main reasons why our
method achieves a significant improvement over the other methods in Tables 5 and 6,
are more-aesthetics-aware face representations and the utilization of stacking ensemble
model which is capable of combining the predictions of the different learners to make
the final attractiveness prediction.

Table 4. Comparison of two models (SVR vs. Stacked), in terms of PC, MAE and RMSE using
5-fold cross validation for both Asian and Caucasian females in the SCUT-FBP5500 dataset.

PC 1 2 3 4 5 Average

Asian (SVR) 0.8944 0.8859 0.8989 0.8958 0.9040 0.8958
Asian (Stacked) 0.9054 0.9017 0.9196 0.9190 0.9248 0.9141
Caucasian (SVR) 0.9039 0.9018 0.9031 0.8995 0.9148 0.9046
Caucasian (Stacked) 0.9067 0.9152 0.9093 0.9098 0.9151 0.9112
MAE 1 2 3 4 5 Average

Asian (SVR) 0.2496 0.2558 0.2513 0.2497 0.2374 0.2488
Asian (Stacked) 0.2252 0.2280 0.2187 0.2149 0.2113 0.2196
Caucasian (SVR) 0.2418 0.2425 0.2443 0.2361 0.2302 0.2390
Caucasian (Stacked) 0.2322 0.2255 0.2365 0.2281 0.2299 0.2304
RMSE 1 2 3 4 5 Average

Asian (SVR) 0.3206 0.3259 0.3208 0.3203 0.3104 0.3196
Asian (Stacked) 0.2991 0.2995 0.2852 0.2827 0.2812 0.2895
Caucasian (SVR) 0.3111 0.3072 0.3168 0.3133 0.2817 0.3060
Caucasian (Stacked) 0.3063 0.2877 0.3029 0.2972 0.2815 0.2951
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5 Conclusion

To sum up, this paper describes an attractiveness computational model using a pre-
trained CNN as a feature extractor. It can be concluded that transfer learning, which
would definitely be a more time-saving and more effective strategy than training CNN
from scratch, can be employed to extract high-level and robust features for facial
attractiveness modeling. Furthermore, our superb experimental results demonstrate that
it is worthwhile combining multiple regression algorithms using a stacking model for
facial beauty assessment task. Remarkable results are obtained using a very deep CNN
pre-trained on large-sized face datasets (i.e. MS-Celeb-1M as well as VGGFace2
datasets). It is important to note that using a deep architecture which is pre-trained on
two datasets, spanning a wide range of face images, is of great benefit to facial beauty
analysis task owing to the fact that the difference between the source task and target
task (our task) will be considerably diminished. Since facial expressions and non-
permanent features such as makeup exert a significant influence on attractiveness of a
face, extending computer analysis of human beauty to these factors will be our next
step. Another direction of our future work is to investigate 3D face attractiveness
computation task which is of paramount importance for some applications especially
for supporting aesthetic plastic surgery.

Table 5. Beauty prediction using geometric and deep CNN features as well as different models
for Asian females in the SCUT-FBP5500 dataset.

Method PC MAE RMSE

Geometric features + LR [9] 0.6771 0.402 0.5246
Geometric features + GR [9] 0.7057 0.387 0.5057
Geometric features + SVR [9] 0.7008 0.3876 0.5089
VGGFace2_ft (ResNet) + SVR 0.8958 0.2488 0.3196
VGGFace2_ft (ResNet) + Stacking ensemble model 0.9141 0.2196 0.2895

Table 6. Beauty prediction using geometric and deep CNN features as well as different models
for Caucasian females in the SCUT-FBP5500 dataset.

Method PC MAE RMSE

Geometric features + LR [9] 0.6809 0.3986 0.5239
Geometric features + GR [9] 0.7263 0.3862 0.4908
Geometric features + SVR [9] 0.7093 0.4001 0.5087
VGGFace2_ft (ResNet) + SVR 0.9046 0.2390 0.3060
VGGFace2_ft (ResNet) + Stacking ensemble model 0.9112 0.2304 0.2951
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Abstract. Under the impact of global climate changes and human activ-
ities, harmful algae blooms (HABs) have become a growing concern due
to negative impacts on water related industries, such as tourism, fish-
ing and safe water supply. Many jurisdictions have introduced specific
water quality regulations to protect public health and safety. Therefore
reliable and cost effective methods of quantifying the type and concen-
tration of algae cells has become critical for ensuring successful water
management. In this work we present an innovative system to automat-
ically classify multiple types of algae by combining standard morpholog-
ical features with their multi-wavelength signals. To accomplish this we
use a custom-designed microscopy imaging system which is configured to
image water samples at two fluorescent wavelengths and seven absorp-
tion wavelengths using discrete-wavelength high-powered light emitting
diodes (LEDs). We investigate the effectiveness of automatic classifica-
tion using a deep residual convolutional neural network and achieve a
classification accuracy of 96% in an experiment conducted with six dif-
ferent algae types. This high level of accuracy was achieved using a deep
residual convolutional neural network that learns the optimal combina-
tion of spectral and morphological features. These findings illustrate the
possibility of leveraging a unique fingerprint of algae cell (i.e. spectral
wavelengths and morphological features) to automatically distinguish
different algae types. Our work herein demonstrates that, when coupled
with multi-band fluorescence microscopy, machine learning algorithms
can potentially be used as a robust and cost-effective tool for identifying
and enumerating algae cells.

Keywords: Algae · Neural networks · Microscopy ·
Image classification · Multispectral imaging · Supervised learning

c© Springer Nature Switzerland AG 2019
F. Karray et al. (Eds.): ICIAR 2019, LNCS 11663, pp. 269–280, 2019.
https://doi.org/10.1007/978-3-030-27272-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27272-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-27272-2_23


270 J. L. Deglint et al.

1 Introduction

As a result from eutrophication and climate change, harmful algae blooms
(HABs) are increasing in frequency, magnitude and duration all around the
globe [9]. For instance, Lake Erie, one of the great fresh water lakes in North
America had severe blooms in 2011 [10] and 2014 [15]. The 2014 HAB in the
Western Basin of Lake Erie resulted in a three-day tap water ban in Toledo,
Ohio, affecting approximately half a million people [16]. As seen in Fig. 1, the
2011 bloom was primarily Microcystis aeruginosa, a toxic producing type of
cyanobacteria [1]. Cyanobacteria can be extremely dangerous for humans and
animals, as for example, swallowing Microcystis can have serious side effects
such as abdominal pain, diarrhea, vomiting, blistered mouths, dry coughs, and
headaches. In addition, Anabaena, another common cyanobacteria, can produce
lethal neurotoxins called anatoxin-a which has shown to cause death by progres-
sive respiratory paralysis [6].

One toxin produced by Microcystis, called microcystin-LR, is strictly regu-
lated by the World Health Organization (WHO) as it is lethal for humans [12].
In Canada, the maximum acceptable concentration (MAC) for the cyanobacteria
toxin microcystin-LR in drinking water is 0.0015 mg/L (1.5 μg/L) [3,8]. There-
fore monitoring of water quality for different cyanobacteria and other micro-algae
is essential for the proper management of any water body [4]. The preserva-
tion and maintenance of our water directly affects marine wildlife, as well as
the recreational, fishing and tourism industries, and most importantly drinking

Fig. 1. The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua
satellite showing Lake Erie on October 9, 2011. The bloom was primarily Microcystis
Aeruginosa, according to the Great Lakes Environmental Research Laboratory, which
is a common type of cyanobacteria [1].
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Fig. 2. The SAMSON system is divided into four steps. First, water samples (Sect. 2.1)
are imaged using the hardware system (Sect. 2.2). This imaging data is then prepro-
cessed (Sect. 3.1), and each organism is then segmented and cropped (Sect. 3.2). Finally
a deep residual learning-based image classification method is used to classify the algae
type (Sect. 3.3).

water treatments plants that ensure clean drinking water is distributed to the
population.

The standard method of identifying and enumerating microalgae consists of
three main steps which are: (1) sample preparation, (2) classification, and (3)
enumerating. This current method of manual identification and enumeration by a
taxonomist via a microscope is time consuming and can be tedious. Furthermore,
each taxonomist requires specialised training and extensive experience to classify
algae adequately [4]. Unfortunately the current method of algae identification is
quickly becoming unsustainable as algae blooms are increasing in frequency and
intensity around the world.

To tackle this challenge, this paper explores and investigates an alterna-
tive method for the potential use of on-site water monitoring via the introduc-
tion of novel computer vision and deep learning techniques into the Spectral
Absorption-fluorescence Microscopy System for ON-site-imaging (SAMSON)
imaging system presented by Deglint et al. [5]. The proposed method presented
here extends the capabilities of the SAMSON system presented in [5]. This pro-
posed method is shown in Fig. 2 and is broken into four steps. First a water sam-
ple containing algae (Sect. 2.1) is imaged using the hardware system (Sect. 2.2).
Together these two steps, preparing the water sample and imaging it, make up
the data collection component (Sect. 2). Once having acquired the data, it can
now be processed and analysed (Sect. 3). This can be broken into image pre-
processing (Sect. 3.1), image segmentation (Sect. 3.2), and finally a novel deep
residual learning-based image classification (Sect. 3.3).

2 Data Collection

The data collection requires two steps. First, pure algae samples must be pre-
pared (Sect. 2.1) and then a given algae type must be imaged using the SAMSON
system (Sect. 2.2) in order to build up database of algae images.

2.1 Algae Samples

The two algae groups focused on in this research were the Chlorophyta phylum
(green algae) and the Cyanophyta phylum (blue-green algae). Certain pigments
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are contained in both phyla groups, such as chlorophyll-a and chlorophyll-b.
However, blue-green algae are known to contain certain types of pigments that
green algae do not contain, such as C-Phycoerythrin (CPE), C-Phycocyanin
(CPC) and Allophycocyanin (APC). This difference in pigmentation will gener-
ate unique data which will be used for classification since these pigments occupy
different parts of the electromagnetic spectrum and are known to absorb and
fluoresce light differently [2].

The six pure samples of algae purchased from the Canadian Phycological
Culture Centre (CPCC) were:

I. Cyanophyta (blue-green algae or cyanobacteria)
1. Microcystis aeruginosa (CPCC 300)
2. Anabaena flos-aquae (CPCC 067)
3. Pseudanabaena tremula (CPCC 471)

II. Chlorophyta (green algae)
4. Scenedesmus obliquus (CPCC 005)
5. Scenedesmus quadricauda (CPCC 158)
6. Ankistrodesmus falcatus (CPCC 366)

Microcystis aeruginosa and Anabaena flos-aquae where chosen as they are
common culprits for producing toxins in a harmful algae bloom. Pseudanabaena
tremula was chosen since it is filamentous type of algae, just like Anabaena flos-
aquae and therefore may be difficult to distinguish the two types from each
other.

2.2 Imaging System

The SAMSON system [5] was used to capture multispectral images of each algae
type. This involved pipetting a subsample of a water sample containing a pure
type of algae onto a standard 1” × 3” slide, then placing a coverslip over the
subsample, and then placing this prepared slide into the hardware system to be
imaged. A 3D render of SAMSON can be seen in Fig. 3. This 3D model houses
the scientific camera, the optics required to focus and capture the light, a slide
holder for the water sample, as well as LEDs and a custom printed circuit board
(PCB) to control the LEDs.

For this research study the hardware system was configured to collect two
fluorescent images and seven absorption images, however SAMSON can be con-
figured for a variety of different wavelength combinations. The nine LEDs chosen
to image the six previously mentioned algae samples are:

I. Fluorescent LED wavelengths
1. 385 nm (ultraviolet)
2. 405 nm (ultraviolet)
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Fig. 3. The SAMSON hardware system, initially presented by Deglint et al. [5] is used
to collect multispectral images of water samples containing algae. In this work the
authors collect two fluorescent images and seven absorption images. The user places
the water sample slide in the slide window. Then using custom software the user can
view a live image of the sample and adjust the focus of the image using the focusing
knob.

II. Absorption LED wavelengths:
1. 465 nm (blue)
2. 500 nm (cyan)
3. 520 nm (green)
4. 595 nm (amber)
5. 620 nm (red-orange)
6. 635 nm (red)
7. 660 nm (deep-red)

3 Data Analysis

Having collected all the data it must now be preprocessed (Sect. 3.1), and then
each organism in each multispectral image must be segmented and cropped
(Sect. 3.2). Finally this new data can be used to construct a deep residual
learning-based image classification system for classifying algae type (Sect. 3.3).
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Fig. 4. Using flat field correction (Sect. 3.1), the raw image (left) from the hardware
system is corrected (right). The result of flat field correction makes the task of image
segmentation (Sect. 3.2) much easier.

3.1 Imaging Preprocessing

The first step in cleaning and preparing the data for a machine learning algo-
rithm is to remove any background illumination inconsistencies, which can be
accomplished by a method known as flat field correction [11]. Flat field correction
can be mathematically described as

IC =
IR − ID
IF − ID

(1)

where IR is the raw image, ID is an image captured with no light source, that
is a dark image, IF is a image with no sample and only the light source and
IC is the corrected image. In Fig. 4, the raw image IR can be seen on the left
and the corrected image IC can be seen on the right. From Fig. 4 (left) one can
observe the non-uniformity of the light as there is a noticeable bright spot in the
centre. After flat-field correction, as in Fig. 4 (right), the corrected image has a
complete uniform background. The other major benefit of flat-field correction
is that is removes any other background artefacts, such as dust or impurities
on the optical elements or camera sensor. This flat-field correction was applied
to each absorption wavelength image for a given set of multi-band fluorescence
absorption images.

3.2 Imaging Segmentation and Cropping

Given a corrected image the next challenge is to separate the background from
the foreground as the algae samples are considered to be foreground objects.
Therefore a binary classifier was defined to classify each pixel into either the
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Fig. 5. The preprocessed image (left) can be used to find an optimal threshold between
the foreground objects (algae) and the background. This threshold generates the seg-
mented image (right) which can be used to locate and crop certain organisms. In
this example the algae (red) have been segmented from the background. (Color figure
online)

foreground class, Cf or the background class, Cb. The decision boundary of this
classifier, θ, was learned by implementing Otsu’s method [13], where the inter-
class variability of the image is maximised, which simultaneously minimises the
intra-class variability. For any given pixel x the class, C(x), was determined by:

C(x) =

{
Cf if f(x) > θ

Cb otherwise
(2)

where f(x) is the pixel intensity at pixel x. As seen in Fig. 5 (left) each pixel
in IC is passed through the classifier, which results in the algae samples being
segmented, as seen in Fig. 5 (right).

Once all the organisms in a given multispectral image are segmented, each
foreground group of pixels in the image were extracted and cropped to a fixed
size. A sample cropped region of interest for each of the six species can be seen
in Fig. 6. One initial observation is that all three of the green algae species have
a much larger fluorescence signal at 385 nm and 405 nm compared to the blue-
green algae, which matches results presented by Poryvkina et al. findings [14].
This difference in fluorescent intensity is due to the difference in pigmentation
between each phylum, as previously discussed in Sect. 2.1.

Each cropped image was then resized to a fixed dimension as required for
input to the deep convolutional neural network. For example, Microcystis aerug-
inosa will appear larger than in the original image and the Anabaena flos-aquae
will appear smaller. This step results in the images losing their relative scale
information, potentially discarding useful information when classifying these
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Fig. 6. Six algae types were imaged at two fluorescent wavelengths (385 nm and 405 nm)
as well as seven absorption wavelengths (465 nm, 500 nm, 520 nm, 595 nm, 620 nm,
635 nm, and 660 nm). Three of these algae are from the Cyanophyta phylum (blue-
green algae) and the remaining three are from the Chlorophyta (green algae) phylum.
These images are the result of segmenting and cropping the raw images from the
hardware system.

different organisms. Therefore this a potential limitation of the existing method,
but is required for the current neural network architecture.

The distribution of how many cropped and resized images for each algae
class can be seen in Fig. 7. The total number of multispectral images were 4541,
that is, each of these 4541 images are composed of nine sub-images, two of
which are fluorescence based, and seven which are absorption based. This set of
images makes up the available data to now train and test a deep neural network
classifier.

3.3 Deep Residual Learning-Based Classification

The automatic classification of different types of algae was achieved via deep
learning, which has been demonstrated in recent years to provide state-of-the-art
performance across a wide variety of applications. In particular, we leverage the
concept of deep convolutional neural networks, a type of deep neural network in
the realm of deep learning that has been demonstrated to be particularly effective
for visual perception and understanding. Here, we construct a custom 18-layer
deep residual convolutional neural network that takes the cropped multi-spectral
image data as input, and outputs the predicted algae type. A deep residual
network architecture [7] was leveraged for its modeling capacity with the only
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Fig. 7. A total of 4541 segmented and cropped multispectral images were generated
from the raw image collected from the imaging system. The class distribution of six
types of algae can be seen above.

modification of the input and output dimensions to match the input size of the
multispectral image as well as to match the number of output classes.

Due to the relatively small amount of data available, we leverage transfer
learning when training this deep residual convolutional neural network, where
the network is first trained on a larger dataset from a different domain prior
to being finetuned for the task at hand. This enables the network to build a
strong model for characterizing image properties before being trained specifically
to differentiate between different algae types. More specifically, the deep resid-
ual convolutional neural network is first trained using the ImageNet dataset,
a dataset of 1000 image classes containing over 14 million images. After this
training process, the network was fine-tuned with 70% of our available data.
Using the remaining 30% of the available data to test the performance of the
constructed network, it was found that the custom deep residual convolutional
neural network was able to achieve a classification accuracy of 96%.

A confusion matrix, as seen in Fig. 8, was created to get a more nuanced
understanding of the performance of the constructed deep residual convolutional
neural network. On the vertical axis of the confusion matrix we can see the true
algae type for a given sample, while on the horizontal axis we see the predicted
algae type. For example, for CPCC 005 (Scenedesmus obliquus), 99% was clas-
sified correctly as CPCC 005, while 1% was classified as CPCC 300 (Microcys-
tis aeruginosa). Therefore the two highest performing classes were CPCC 005
(Scenedesmus obliquus) and CPCC 300 (Microcystis aeruginosa) each having a
classification accuracy of 99%. The lowest classification accuracy was CPCC 067
(Anabaena flos-aquae), as 3% were miss-classified as CPCC 366 (Ankistrodesmus
falcatus), 3% were miss-classified as CPCC 300 (Microcystis aeruginosa), and
3% were miss-classified as CPCC 471 (Pseudanabaena tremula). This high per-
formance demonstrates the potential use of such a system such as SAMSON for
on-site use of algae identification.
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Fig. 8. The confusion matrix is used to investigate the performance of the constructed
deep residual convolutional neural network when classifying six types of algae. The
overall classification accuracy of the constructed network is 96%. The highest perform-
ing classes were Scenedesmus obliquus (CPCC 005) and Microcystis aeruginosa (CPCC
300).

4 Conclusions

The current method to manually determine which types of algae are present
in an harmful algae bloom is time-consuming and relatively costly. Therefore
a cost-effective on-site tool that can quickly and accurately identify different
types of algae and bacteria in a water sample is highly desired. By using the
SAMSON system for data collection and a deep residual convolutional neural
network, we were able to achieve an accuracy of 96% when classifying six different
types of algae, either from the blue-green phylum or the green algae phylum.
This end-to-end approach allows a multispectral image to be input to the deep
learning model and the corresponding type of algae is identified. Furthermore,
the main advantage of this method is that the neural network learns the optimal
combination of spectral and spatial features. These initial results show that
using a combination of fluorescence and absorption spectral data, along with
the morphological data is a potentially effective method for on-site identification
and monitoring of algae in a water body.
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Abstract. A novel random field computational adaptive optics
(R-CAO) framework is proposed to jointly correct for optical aberra-
tions and speckle noise issues in optical coherence microscopy (OCM)
and thus overcome the depth-of-field limitation in OCM imaging. The
performance of the R-CAO approach is validated using OCM tomograms
acquired from a standard USAF target and a phantom comprised of
1µm diameter microspheres embedded in agar gel. The R-CAO recon-
structed OCM tomograms show reduced optical aberrations and speckle
noise over the entire depth of imaging compared to the existing state-
of-the-art computational adaptive optics algorithms such as the regu-
larized maximum likelihood computational adaptive optics (RML-CAO)
method. The reconstructed images using the proposed R-CAO frame-
work show the usefulness of this method for the quality enhancement of
OCM imaging over different imaging depths.

Keywords: Computational adaptive optics ·
Optical coherence microscopy · Random field

1 Introduction

In optical coherence microscopy (OCM) [3], a recognized issue is the presence
of optical aberrations, which lead to overall image quality degradations, par-
ticularly in out-of-focus regions. Different types of optical aberrations can be
generated by both the optical design of the OCM system and the structure of
the imaged object [1].

Overall, optical aberrations degrade the OCM image contrast and resolution
and the effect is more pronounced with distance away from the focal plane.
Speckle noise is another issue that causes degradation of the overall image quality
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in OCM tomograms and therefore hinders the correct visualization and proper
identification of micro-structures in the imaged sample.

The technology of adaptive optics (AO) has emerged as a successful approach
for the aim of aberration compensation in optical imaging systems including
the OCM imaging [9,16,22]. Combining OCM with AO technology for optical
aberration correction leads to the improved lateral resolution, smaller speckle
size and higher SNR in OCM images [1,10].

However, combining OCM with AO increases the complexity of the opti-
cal design and hardware, the physical size, as well as the overall cost of the
AO-OCM system and in most cases limits the transmitted spectral bandwidth,
which degrades the OCM system’s axial resolution. It also limits the OCM scan-
ning speed in case of on-line aberration correction optimization during the OCM
imaging. Computational adaptive optics (CAO) is a relatively new approach for
correction of optical aberrations that takes advantage of computational meth-
ods to compensate for the optical aberrations in OCM images. Since CAO is
independent on the OCM hardware, it can be integrated in to any type of OCM
imaging system. Furthermore, the CAO approach provides a number of advan-
tages, such as significantly lower cost and compact design of the imaging system
and possibly faster correction of the optical aberrations compared to the conven-
tional adaptive optics technology. The integration of CAO with OCM can solve
the depth-of-field limitation issue in OCM imaging using numerical methods.

Most of the previously published CAO methods are based on estimation of a
phase correction term through either solving of an optimization problem [1,8,21]
or by using various sub-aperture correlation approaches [4]. Therefore, the per-
formance of those approaches is highly dependent on the correct estimation of
the phase term that is sensitive to the sample motion as well as OCM system
fluctuations [15]. In addition, most of the previously proposed CAO methods
only account for the isotropic optical aberrations in OCM systems that have
low NA [4] and therefore the optical aberrations over all imaging depths can be
corrected using a spatially invariant phase correction term. A recent publica-
tion expanded upon the sub-aperture based CAO to correct for the out-of-focus
anisotropic optical aberrations in an OCM imaging with high NA [5]. Decon-
volution based CAO methods were also utilized to compensate for the system-
related aberrations in OCM imaging by characterizing the aberration function
of the OCM system [2,7,13,19]. Interferometric synthetic aperture microscopy
(ISAM) [11,12] was recently proposed as a technique that takes advantage of
inverse scattering modeling to reconstruct OCM images with less out-of-focus
blurring caused by optical aberrations, and provides the same lateral resolution
throughout the whole scanning range. A combination of ISAM and CAO was
recently proposed for high-speed OCM imaging with sub-cellular resolution [8].

In this paper, we introduce a novel random field CAO (R-CAO) frame-
work for OCM imaging to simultaneously correct for optical aberrations and
reduce speckle noise using a unified computational framework. Two different
experiments using a standard USAF resolution target and a phantom comprised
of 1µm diameter microspheres embedded in agar gel were performed to show
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the ability of proposed R-CAO framework in reconstructing OCM images with
reduced optical aberrations and speckle noise. The paper is organized as follows.
Section 2 provides a detailed description of the proposed R-CAO framework.
Section 2.2 presents the experimental setup and provides a discussion on the
experimental results for the two experiments performed. Section 3 presents the
conclusions and a description of future work.

2 Methodology

2.1 Random Field Computational Adaptive Optics Framework

As a typical framework for the OCM imaging, the construction of an OCM image
can be formulated using a forward problem,

A = D(V,H) × N, (1)

where A = F [Mk], with F denoting the Fourier transform and Mk denoting the
OCM acquisition in k-space domain. In this formulation, D(.) models the overall
OCM imaging degradation where it is a function of OCM optical aberration,
H, as well as the aberration-corrected, noise-compensated OCM tomogram, V .
In this work, the optical aberrations H are initially modeled using a general
Gaussian function. In the formulation of Eq. (1), N denotes the multiplicative
speckle noise that inherently exist in all types of OCM imaging.

Based on the forward model of Eq. (1), the aberration-corrected, noise-
compensated OCM tomogram, V , can be calculated through solving an inverse
problem,

V̂ = D−1(A,H). (2)

Here, the proposed R-CAO framework employs a maximum a posteriori
(MAP) strategy to solve the inverse problem of Eq. (2) and find a true esti-
mation of aberration-corrected, noise-compensated OCM tomogram V ,

V̂ = argmax
V ′

P (V |A), (3)

where, P (V |A) is a posterior probability that defines the probability of
aberration-corrected, noise-compensated OCM tomogram, V , given an OCM
acquisition, A. The proposed R-CAO framework takes advantage of the graph-
ical theory concept [18] such that it assumes a graphical model for both the
aberration-corrected, noise-compensated OCM tomogram, V , as well as the
OCM acquisition, A, and with the graph nodes defining the different locations of
the OCM tomograms. Using such a graphical modeling, the posterior probability,
P (V |A), can be represented as,

P (V |A) =
1

Z(A)
exp(−E(V,A)), (4)
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where, Z is a normalization term, referred to as a partition function in the CRF
literature [6] and E(.) represents an energy function of the following form,

E(V,A) =
n∑

i=1

ψu(vi, A) +
∑

lεL

ψp(vl, A), (5)

which is defined over the random fields for the aberration-corrected, noise-
compensated OCM tomogram, V , as well as OCM acquisition, A, and with,
i, referring to each location in the assumed graph. In the proposed R-CAO
framework, the energy function, E(.), encodes the direct relationships that exist
between the OCM acquisition, ai, and aberration-corrected, noise-compensated
OCM tomogram, vi, at each location i in the graph and using a distance based
unary potential function ψu(.),

ψu(vi, A) =
1

σ
√

2π
exp

(
(log(ai) − ∑

log(D(vi,H))2

2ϕ2

)
. (6)

According to the formulation of Eq. 6, the designed unary potential function
aims to enforce the data fidelity by obtaining the best estimate of aberration-
corrected, noise-compensated OCM tomogram, vi, at each single node, i, and
with respect to the whole OCM acquisition, A. In the formulation of Eq. 6, ϕ
is a control parameter which controls the effect the designed distance based
weighting function in the unary term. Here, the logarithmic domain is used
to transform the multiplicative speckle noise to an additive noise term that is
common in forward modeling formulation. Furthermore, the energy function,
E(.), also models the interaction relationships between each pair of nodes vi

and vj regarding to the OCM acquisition, A, using a pairwise potential function
ψp(.) defined over a specific clique structure L,

ψp(vl∈L, A) = exp

(
‖Ni − Nj‖2

σcl

)
(vi − vj); L = {i, j}, (7)

where, Ni and Nj respectively denote to specified neighborhood coordinates
centered around the ith and jth locations of the defined graphs for the OCM
tomograms and they are utilized to compute a weighting exponential function
for assessing the similarity of two nodes vi and vj in a defined neighborhood.
Here, σcl is the standard deviation that controls the effect of pairwise potential
function, ψp(.), for a specific clique structure L.

The particular features of the incorporated pairwise potential function of
Eq. (7) that results in a strong performance of the proposed R-CAO framework
in terms of jointly compensating for the optical aberrations and speckle noise
issues is mentioned here. First, the designed pairwise potential function, ψp(.)
utilizes a set of nodes to assess the nodes similarity which leads to the better
robustness of the proposed R-CAO framework in the presence of speckle noise
and artifacts. Second, the designed pairwise potential of Eq. (7) takes advantage
of a recently proposed stochastic clique structure within a fully-connected ran-
dom field modeling (SF-CRF) [14]. Using the SF-CRF modeling enforces higher
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probability to the pairs of nodes that are closer in the defined random field than
pairs of nodes that are farther apart and therefore it helps in better preserva-
tion of image boundaries and edges in the final estimate of aberration-corrected,
noise-compensated OCM tomogram, V .

To calculate the best estimate of aberration-corrected, noise-compensated
OCM tomogram, V , the proposed R-CAO framework takes advantage of an
approximation of graph cuts optimization method [20] to iteratively solve the
MAP problem of Eq. (3) with the optimal solution obtained by minimizing the
energy function E(.) in Eq. (5),

V t+1 = V t − ρ
∇E(V,A)

∇V
, (8)

where, V t+1 and V t are the solutions at iterations t + 1 and t, ∇E(V,A)
∇V is the

energy gradient, and ρ is the learning rate.

2.2 Experimental Setup

All OCM images were acquired with a high-speed, ultrahigh resolution spectral
domain OCM system. The system has a compact fiber optic design and is pow-
ered by a supercontinuum laser (SUPER K, NKT Photonics) with a spectrum
centered at λc = 780 nm, and spectral bandwidth of �λ = 250 nm. The detection
end of the OCM system consists of a high resolution commercial spectrometer
(Wasatch Photonics) interfaced with a CCD camera (Piranha HS8K, Teledyne
DALSA) with 8192 pixels to acquire interference fringes at 34 kHz data acquisi-
tion rate. The imaging probe of the system is comprised of an achromat collima-
tor lens (f = 10 mm), a pair of galvanometric scanners (Cambridge Technolo-
gies), a beam expander (2 ahromat doublets with f = 40 mm and f = 80 mm)
and a microscope objective (Nikon NIR APO 40X/0.8).

Using such an optical design, the ultrahigh resolution spectral domain OCM
system provides 1.3µm axial resolution in free space. Because the entrance aper-
ture of the microscope objective is partially under-filled, the measured lateral
resolution in free space is ∼1µm, which is larger than the theoretical resolution
of the objective. All test samples were imaged with 750µW optical power inci-
dent on the sample’s surface. The system’s SNR is 98 dB near the zero delay
with roll-off of 12 dB over a scanning range of 1.2 mm.

To apply the proposed R-CAO framework, the aberration function H of the
OCM imaging system needs to be characterized. In the proposed R-CAO frame-
work, the aberration function H is modeled using a generalized Gaussian func-
tion where its standard deviation is characterized using imaging of a standard
USAF resolution target and with the same OCM system. A chosen zoomed-in
region of the OCM image of the USAF resolution target that includes three
horizontal bars of group 6, element 2 is shown in Fig. 1(A).
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3 Experimental Results

The performance of proposed R-CAO framework was tested using two differ-
ent experiments that take advantage of (1) a standard USAF resolution target,
and (2) a phantom comprised of 1µm diameter microspheres embedded in agar
gel. For all experiments, the results were compared to the extended version of
the state of the art maximum likelihood approach [2], called regularized maxi-
mum likelihood computational adaptive optics (RML-CAO) method which takes
advantage of Tikhonov regularization [17] to control the effect of speckle noise in
reconstruction of RML-CAO OCM tomogram. All methods were implemented
in embedded C++ code in MATLAB (The MathWorks, Inc.) and tested on an
AMD Athlon II X3 3.10 GHz machine with 12 GB of RAM.

3.1 Experiment 1: Standard USAF Resolution Target

To test the performance of the proposed R-CAO using the standard USAF res-
olution target, the optical aberration function, H, was characterized using the
USAF resolution target of Fig. 1(A) and incorporated to the modeling of R-CAO
framework. The reconstructed aberration-corrected, noise-compensated resolu-
tion target image using the R-CAO framework is shown in Fig. 1(C). The pro-
posed R-CAO framework was tested using different number of iterations where
the optimal result was achieved using 30 iterations. For comparison, the state of
the art RML-CAO was also applied to the same USAF resolution target image
of Fig. 1(A) and the reconstructed image is shown in Fig. 1(B). To have a fair
comparison between the results, the number of iterations was set the same for
both the RML-CAO method and the proposed R-CAO framework.

Results in Fig. 1 show that the optical aberrations were successfully compen-
sated in the R-CAO tomogram (Fig. 1(C)) such that the width of all horizontal
bars are the same and they are within the same distance from each other com-
pared to the original OCM image in Fig. 1(A). Furthermore, the reconstructed
resolution target images using both RML-CAO method as shown in Fig. 1(B) as
well as proposed R-CAO framework as shown in Fig. 1(C) show that the speckle
noise was greatly reduced compared to the original OCM image in Fig. 1(A).

An intensity plot measured across the bars of the USAF resolution target at
a location marked with the white lines in Figs. 1(A–C) is presented in Fig. 1(D).
The intensity plots show smoother as well as more narrow width curves with
using of both RML-CAO method and the R-CAO framework as can been seen
by comparing of the red intensity plot with the blue and black plots in Fig. 1(D).
However, the intensity plot related to the proposed R-CAO (black intensity plot)
is much narrower compared to the original intensity plot (red intensity plot)
that shows superior performance of the proposed R-CAO in optical aberrations
compensation compared to the tested RML-CAO method.

For quantitative comparison of the 2 approaches, SNR values were calculated
for all images in Figs. 1(A–C). The image SNR for the original OCM-USAF
image was measured to be 14.7 dB, while the SNR for the RML-CAO and
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Fig. 1. (A) Out-of-focus, enface OCM image of USAF resolution target, group 6, ele-
ment 2. (B) Same image processed with RML-CAO and (c) with R-CAO. (D) Intensity
plots obtained from the images at the locations marked with the white lines.

R-CAO images was 15.3 dB and 18.6 dB respectively as shows the significant
SNR improvement using the proposed R-CAO framework.

3.2 Experiment 2: Microspheres

To demonstrate the efficacy of the proposed R-CAO for producing nearly
aberration-free OCM images, a phantom composed of 1µm diameter polystyrene
microspheres embedded in agar gel was imaged using the ultrahigh resolution spec-
tral domain OCM system. A volumetric (512 × 512) OCM image was acquired
from the microspheres phantom and the dispersion in the OCM images was com-
pensated numerically up to the 9th order. The proposed R-CAO framework was
used to calculate the final estimate of R-CAO phantom tomogram and with incor-
poration of the optimized aberration function H in to the framework of R-CAO.
The proposed R-CAO framework was tested using a different number of iterations
and optimal results were achieved using 25 iterations. The results were compared
to the reconstructed image using the tested RML-CAO method where the same
number of iterations was used to ensure a fair comparison between the results.
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Fig. 2. (A) Cross-sectional OCM image of a gel phantom with embedded 1µm
polystyrene microspheres. (B) Same image produced with the RML-CAO and (C)
R-CAO. White rectangles mark regions of interest (ROI above, at and below the focal
plane). (D, G, J) Magnified copies of the marked ROIs in the original image, (E, H, K)
RML-CAO image and (F, I, L) R-CAO image. (M) Intensity profiles measured along
the white lines in images D, E and F, acquired from a location above the focal plane.
(N) Intensity profiles measured along the white lines in images J, K and L, acquired
from a location below the focal plane. (Color figure online)

Figure 2 shows a cross-sectional OCM image of the microspheres phantom
(A) and the same image produced with RML-CAO (B) and the proposed
R-CAO (C). Regions of interest (ROI) containing a few microspheres were
selected for locations 110µm above, approximately at and 120µm below the
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focal plane in each image and marked with the white line rectangles. Magnified
copies of the ROIs are presented in Fig. 2 for locations above (D–F), approxi-
mately at (G–I) and below the focal plane (J–L).

Overall, the reconstructed cross-sectional phantom images using both RML-
CAO method and proposed R-CAO framework significantly compensate for the
speckle noise. Images of the individual microspheres from ROIs above and below
the focal plane appear blurred in the original OCM image, while the micro-
spheres appear of smaller size, with sharp boundaries, almost round shape and
of significantly higher contrast in the ROIs produced with using of the proposed
R-CAO framework as shown in Figs. 2(F, L) as compared to the RML-CAO
images in Figs. 2(E, K). While RML-CAO corrects for the optical aberrations to
a certain degree, as observed by the shape of the microspheres in the resulting
image, the microspheres still appeared blurred compared to the sharp, aberra-
tion corrected microspheres in the images produced using the proposed R-CAO
framework. Furthermore, the RML-CAO method introduced significant unde-
sired pixelation effect that can be observed around the microspheres compared
to the proposed R-CAO framework.

The improvement of the lateral OCM resolution is demonstrated in Fig. 2(M)
and Fig. 2(N), where intensity profiles are presented for locations across a cho-
sen microsphere, shown by white horizontal lines in images of Figs. 2(D–F) and
(J–L) from original (red color intensity plots) and the OCM images produced
using RML-CAO (blue color intensity plots) and proposed R-CAO (black color
intensity plots). The intensity profiles in Fig. 2(M) and Fig. 2(N) clearly show
the better compensation of out-of-focus aberrations using the proposed R-CAO
framework such that for example, the two microspheres in Fig. 2(J) can be easily
distinguished form each other in the result of Fig. 2(L) after optical aberrations
compensation using the R-CAO while this separation is impossible using the
result of RML-CAO as shown in Fig. 2(K). The black color plot in Fig. 2(N)
which is related to the result of R-CAO framework confirms this interpretation
as the black color intensity plot shows the existence of two microspheres by
showing an intensity plot with two distinguished peaks.

To better demonstrate the performance of proposed R-CAO framework in
using of microsphere phantom imaging, the enface images acquired from the
microspheres phantom are also shown in Fig. 3(A) at the focal plane and in
Fig. 3(G) at 300µm below the focal plane. The reconstructed enface phantom
images with RML-CAO and R-CAO are respectively shown in Figs. 3(B, C) at
focal plane and Figs. 3(H, I) at 300µm below the focal plane.

ROIs containing a few microspheres were selected from those images (loca-
tions marked with the white line rectangles). Magnified versions of the ROIs
are presented in Figs. 3(D–F) (focal plane) and Figs. 3(J–L) (at 300µm below
the focal plane). The original OCM tomogram acquired at 300µm below the
focal plane in Fig. 3(J) shows low reflective spots of larger size compared to
the physical size of the microspheres, while the OCM image acquired close to
the focal plane as shown in Fig. 3(D) shows high reflective spots of smaller size
corresponding to the microspheres. The images in Figs. 3(F, L) produced with
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Fig. 3. Enface OCM image of polystyrene microspheres acquired at (A) the focal plane.
Same region produced with the (B) RML-CAO method and (C) R-CAO framework
with white rectangles marking ROIs. Enface OCM image of microspheres (G) acquired
∼300µ below the focal plane. Same region produced with the (H) RML-CAO method
and (I) R-CAO framework. (D–F) Magnified images of the ROIs at the focal plane and
(J–L) at ∼300µ below the focal plane.

R-CAO show better improvement in the shape and contrast for the microsphere
images acquired at both near the focal plane and also at a depth of 300µm
below the focal plane and compared to the images in Figs. 3(E, K) produced with
tested RML-CAO. Again, both of the RML-CAO method and R-CAO framework
could reduce the speckle noise compared to the original images in Figs. 3(D, J),
while the optical aberrations is better compensated using the proposed R-CAO
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framework and compared to the tested RML-CAO method while the RML-CAO
method also results in some undesired pixelation artifact in reconstructed images
of Figs. 3(E, K).

For all of the above experiments, a computation time analysis was performed
to assess the computational efficiency of the proposed R-CAO method compared
to the tested RML-CAO method, when the acquired time shows that the tested
RML-CAO is in average 1.2 times faster than the proposed R-CAO method.

4 Conclusion

In conclusion, we proposed a novel random field computational adaptive optics
framework (R-CAO) for the compensation of out-of-focus aberrations in OCM
imaging. Our results showed that the R-CAO framework outperforms current
state-of-the-art methods such as the regularized maximum likelihood compu-
tational adaptive optics (RML-CAO), as it results in higher image SNR and
more image contrast. Our proposed R-CAO framework also has the advantage
of reducing speckle noise simultaneously with the aberration correction. The pro-
posed joint compensation framework has also the potential of compensating for
the other OCM imaging issues such as motion artifact that can be incorporated
in to the designed compensation algorithm and possibly improve the quality of
in-vivo OCM imaging. Testing and evaluation of other methods for estimating of
the overall OCM aberration function and motion correction is left for the future
work.
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Abstract. Ovarian cancer is one of the pathologies with the worst prog-
nostic in adult women and it has a very difficult early diagnosis. Clini-
cal evaluation of gynaecological ultrasound images is performed visually,
and it is dependent on the experience of the medical doctor. Besides the
dependency on the specialists, the malignancy of specific types of ovar-
ian tumors cannot be asserted until their surgical removal. This work
explores the use of ultrasound data for the segmentation of the ovary
and the ovarian follicles, using two different convolutional neural net-
works, a fully connected residual network and a U-Net, with a binary
and multi-class approach. Five different types of ultrasound data (from
beam-formed radio-frequency to brightness mode) were used as input.
The best performance was obtained using B-mode, for both ovary and
follicles segmentation. No significant differences were found between the
two convolutional neural networks. The use of the multi-class approach
was beneficial as it provided the model information on the spatial rela-
tion between follicles and the ovary. This study demonstrates the suit-
ability of combining convolutional neural networks with beam-formed
radio-frequency data and with brightness mode data for segmentation
of ovarian structures. Future steps involve the processing of pathological
data and investigation of biomarkers of pathological ovaries.

Keywords: B-mode ultrasound data · Beam-formed ultrasound data ·
Image segmentation · Neuronal networks · Ovarian cancer

1 Introduction

Ovarian cancer (OC) is one of the pathologies with the worst prognostic in adult
women. This is a silent and fast progressing disease and in more than a half of the
patients, the disease is only found in advanced stages. The majority of ovarian
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cancers grows as cystic masses. Once these cysts rupture or leak, cancer cells can
easily spread into the pelvic cavity affecting healthy tissues. Ovarian cysts and
follicles are encapsulated collections of fluid and tissue, differing from each other
because follicles contain a microscopic oocyte, while cysts may contain tissue
not relevant for reproduction purposes or cancerous tissue [8].

Currently, the clinical evaluation of gynaecological ultrasound (US) images is
performed visually, on brightness mode (B-mode) images, and it is dependent on
the experience of the physician. In this type of US images, follicles are represented
as smooth, hypoechogenic oval-shapped structures. Ovaries, on the other hand,
present higher echogenicity which translates into an increased texture content.
According to Rauh-Hain et al. [17], most ovarian masses detected by B-mode
US screening are benign, corresponding to false-positives. Moreover, it is also
known that, independently on the expertise of the specialists, there are specific
type of ovarian masses that cannot be diagnosed with certainty until surgery is
performed.

False-positives and uncertainty of diagnosis can then lead to unnecessary
oophorectomys which have long term impact on both women’s fertility and hor-
monal balance. Thus, research for computer-aided methods that can provide a
second opinion to gynaecologists is recommended.

State-of-the-art methods within the field of gynaecologial US, are typically
applied for large follicle detection and make use of classical image processing
analysis. Potocnik et al. [16] reported, in 2012, a survey on follicle detection
methods on ovarian US images and most of the approaches are based on texture
analysis, thresholding, region growing and knowledge-based methods [4,10,19].
There were also some initial tests using cellular neural networks and support vec-
tor machines [13]. Major limitations of all these methods lay on the dependency
on the feature’s selection process, these only detect large and single follicles, do
not consider the stroma for assessment and are dependent on the signal-to-noise
ratio.

More recently, in 2017, Isah et al. [11] presented a work based on the extrac-
tion of geometric and texture features. The features that are best suited to the
problem were selected by a Particle Swarm Optimization algorithm and were fed
into a Multilayer Perceptron Artificial Neural Network, achieving an accuracy of
98.3% for follicle detection. Despite the good accuracy, the result is for follicle-
wise detection, meaning that these consider the number and not the area of the
follicles present in the ovary. Lastly, a 3D method based on wavelet transforms,
adaptive multiscale search, and recursive convexity-based region splitting has
been investigated for follicle selection [4]. Reported results are qualitative and
applied to a limited dataset (30 images).

As for deep-learning approaches, to the best knowledge of the authors,
there has been only one publication for follicle segmentation in US images.
Wanderley et al. [7] showed the ability of a fully convolutional neural network
to learn features to distinguish ovarian structures, achieving a mean DICE score
of 0.677 for the segmentation of the stroma and of 0.784 for the follicles.
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Regarding the type of images used in the state-of-the-art, only B-mode has
been investigated for segmentation of the ovarian structures. However, the type of
information that can be extracted from B-mode data is limited due the extensive
post-processing it suffers. Alternatively, beam-formed radio-frequency (BRF) is
a raw type of data from which both structural (lower-frequency) and textural
(higher-frequency) information can be extracted from. The higher-frequency con-
tent of US images has been reported to be important for texture characterization
problems [1,3,5,15].

The main contribution of this paper is to investigate the influence of using
different types of US data, ranging from raw BRF data to B-mode images, in the
performance of two convolutional neural networks (CNN) for the segmentation
of follicles and ovary.

For this evaluation, two different CNNs, a U-Net and a fully connected resid-
ual network (FCRN), were implemented. These networks were trained using
both a binary and a multi-class approach. The performance of both CNNs for
the different combination of types of data and number of classes was evaluated
and compared.

2 Methods

In this section, the dataset used in this work, which is based on the BRF data,
is detailed, as well as the ground-truth (GT) for the binary and multi-class
approaches. The two CNNs used (U-Net and FCRN) are presented, plus the loss
function used for the networks’ training.

2.1 Dataset

The dataset used in this work was based on the 107 original BRF transvaginal
US images of the ovary. These images were acquired at Centro Hospitalar de São
João, with consent of the patients, while these attended first time appointment
for reproductive treatment planning. Each image contains one ovary with sin-
gle or multiple follicles. The original BRF data was directly acquired using an
Ultrasonix SonixTouch Q+, equipped with an EC9-5/10 endovaginal microcon-
vex transducer (frequency range 9–5 MHz). The lateral and axial image resolu-
tion of these BRF images was of 0.046 mm and [0.0097, 0.017] mm, respectively,
its original image dimensions are 192 × [2000, 6200] px. The axial dimension of
these images is variable due to the different scanning depths selected.

Five different types of images were extracted from the original BRF data,
namely, rawBRF, rawIQ, filteredIQ, B-mode and B-mode&BRF. RawBRF was
obtained by computing the absolute value of the original BRF data and normal-
izing the obtained intensity to a range of [0, 255]. RawIQ data was attained by
storing the magnitude and phase information obtained after quadrature signal
demodulation, as a 3D array with two channels. FilteredIQ data was obtained
after filtering both magnitude and phase channels of rawIQ with a Hamming
window. Also in this case, a 3D array with two channels, was created using
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the filtered magnitude and filtered phase data. B-mode data was obtained after
applying envelope detection and log compression to the filteredIQ data [2]. The
parameters used during image acquisition were used during the data conversion
processes. B-mode&BRF data was obtained by resizing the B-mode and the
rawBRF images into the same spatial dimensions and concatenating the two, in
a 3D array, with two channels.

The five different types of images were all resized to 512 × 512, to normalize
the resolution of the CNNs input data. Moreover, resizing of the BRF data,
along the depth direction, is a decimation step, used in the conversion of BRF
to B-mode.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Example of (a) B-mode; (b) ground-truth of (a) with follicles represented in
white and stroma in grey; (c–f) intensity profiles along the central line of the: (c)
original BRF; (d) rawIQ (magnitude and phase); (e) filteredIQ (magnitude and phase)
and (f) B-mode images.

Figure 1a represents a linear B-mode image (reconstructed from the original
BRF data) and Fig. 1b represents the corresponding GT image. GT contours
of ovaries and follicles were drawn by a medical expert on the scan-converted
B-mode images and mapped afterwards to the linear space, as represented in
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Fig. 1b. Each pixel of the image is categorized as follicle, stroma and surround-
ing tissue, which was used for the multi-class approach. GT for binary ovary
approach was produced with the union of the area of the follicles and stroma.

Five different datasets were constructed with the different types of data.
For each, dataset division was as follows: 92 images were used for 5-fold cross-
validation and 15 for test. Due to the uneven division of the number of images
for 5-fold cross-validation, three of the folds were composed by 74 images for
training and 18 for validation and the other two folds were composed by 73
images for training and 19 for validation.

2.2 Convolutional Neural Networks

In this section, the two CNNs, namely the U-Net [18] and a FCRN, used for
the segmentation of follicles and ovary are presented. Figure 2 illustrates both
architectures. U-Net was used due to its known good performance networks for
segmentation of biomedical images [18], while FCRN was used for comparison
purposes. The use of FCRN allows also to assess the variability of results pro-
duced when increasing the depth of the network and when including the residual
learning scheme.

Fig. 2. Graphical representation of U-Net and FCRN network.

U-Net. The U-Net [18] has a contracting path, composed by five steps,
whose output is then passed to an expanding path, composed by four steps.
At each downsample (d)/upsample (u) step (s), the computed feature map
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is ys = fd|u,s(xs), where xs is initial map of the step, and f represents two
sequences of convolution, batch normalization and rectified linear unit (ReLU).
In d and u occurs, respectively, the augmentation and reduction of the number
of features. Between the steps of the contracting path it is applied max-pooling
with a 2 × 2 kernel and stride of 2, while between the steps of the expanding
path takes place a 2D transposed convolution with a scale factor of 2.

FCRN. The FCRN is an 2D adaptation of the V-Net [14] and re-uses the resid-
ual learning scheme of ResNet [9], since this learning scheme has been reported
to address the gradient degradation problem [20] and has been proven to fasten
the convergence [9].

At each downsample (d)/upsample (u) step (s), the computed feature map
is ys = xs + fd|u,s(xs), where xs is the initial map of the step (i.e., xs = ys−1)
and f are sequences of convolution, batch normalization and ReLU.

The depth of the network (6 levels) was selected to allow for efficient rep-
resentation of the segmentation problem through construction of hierarchical
rules.

The convolutions performed in both CNNs use optimal zero-padding to pre-
serve the image spatial size. The features obtained in each contracting step are
concatenated with the features obtained after each expanding step via a skip-
connection approach (as described in Fig. 2), allowing in this way the preserva-
tion of high resolution details for finer segmentation results.

To obtain the output of the last step (for each CNN) a convolution is per-
formed, with a 1 × 1 kernel and stride of 1, and applied the softmax functions,
resulting in a 512 × 512 image with two (i.e. follicle and non-follicle) or three
(i.e. follicle, stroma and other) channels.

Hyper-parameters and Loss Function. The hyper-parameters used in these
networks were: a batch size of 4 images and a maximum number of 100 epochs;
an initial learning rate of 0.001, using the Adam (Adaptive Moment Estimation)
optimizer [12]; the learning rate was decreased by a factor of 4 every time the
validation loss did not improve; training was stopped when the validation loss
stopped improving for 20 epochs.

The loss function used during the training phase was the Cross-Entropy loss,
as presented below:

CE =
∑

i

C∑

j=1

tij log(sij) (1)

where i corresponds to an image pixel, C is the number of classes of the output,
tij is the pixel’s ground-truth value for that class and sij is the pixel’s output
probability score for that class.

U-Net and FCRN were trained using a binary and a multi-class approach.
In the binary approach, the GT was binarized to represent the structure of
interest (e.g. follicle) versus the other structures (e.g. stroma and surrounding
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tissue). In the multi-class approach, the model was optimized for the three classes
simultaneously (as in Fig. 1b).

This code was implemented in Python 3.6.6 using Pytorch 0.4.1.

3 Results

This section presents experiments for the segmentation of follicles and ovary
using the two different CNNs, FCRN and U-Net, and the different types of data
(rawBRF, rawIQ, filteredIQ, B-mode and B-mode&BRF).

During test, a binary prediction, for follicles and ovary structures, was
obtained by applying a threshold of 0.5 to the final pixel-wise probability maps.
In the multi-class approach, ovary segmentation prediction was obtained by
adding the probability maps of the follicle and of the stroma classes and thresh-
olded afterwards.

For the evaluation of the performance of the trained models, test results
were compared against the GT using the DICE score [6]. Models’ performance
analysis was performed considering the mean DICE scores of the images in the
test-set, across the 5 folds of cross-validation.

A paired two tailed t-test analysis was used for comparing the performance
of the different models, being the null hypothesis that the mean performance of
the compared models was equal. The alpha level for all tests was set at 0.05.

Figure 3 illustrates the best and worse DICE performance for follicle and
ovary segmentation, using the binary and the multi-class approach. The best
and worst results here presented were obtained after performing the median
DICE score per test image of the 5 cross-validation folds. The prediction image
presented is the one that corresponds to the median.

The best performance is obtained for models that included B-mode images as
input, while the worst performance is produced by models that use non-filtered
versions of the data (rawBRF or rawIQ). The follicle segmentation with higher
DICE scores were both obtained using the FCRN, while the ovary segmentation
with higher DICE scores were obtained using the U-Net. The worst performance
cases, for ovary and follicle segmentation, were all obtained with the U-Net.

Figure 4 presents the bar plots with the mean DICE scores of the images in
the test-set, across the 5 cross-validation folds.

Statistical differences obtained for the binary segmentation of the follicles are
presented in Table 1. Significant differences were found when comparing filtered
data (B-mode, B-mode&BRF and filteredIQ) with rawBRF and rawIQ data.
Similar results are found when comparing performance of multi-class follicle
segmentation models, as shown in Table 2.

Table 3 shows that significant differences were found, for ovarian binary seg-
mentation, when comparing the performance of the B-mode&BRF model, using
the U-Net and models that use the U-Net as segmentation model but do not use
B-mode as input data (i.e. rawBRF, rawIQ and filteredIQ). Significant differ-
ences are also found when comparing the performance of the U-Net method using
B-mode versus B-mode&BRF data. As for the comparison between multi-class
models that segment the ovary, no significant difference were found.
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Table 1. p-value found for comparison between binary follicle segmentation models
(alpha level was set at 0.05). Bold identifies the rejected null hypothesis cases.

BRF rawIQ filteredIQ B-mode& BRF B-mode

FCRN UNet FCRN UNet FCRN UNet FCRN UNet FCRN UNet

BRF FCRN - 0.963 0.423 0.321 0.052 0.02 0.002 0.013 0.001 0.02

UNet - 0.492 0.157 0.015 0.002 0 0.002 0.001 0.003

rawIQ FCRN - 0.142 0.046 0.03 0.01 0.02 0.007 0.031

UNet - 0.149 0.055 0.005 0.034 0.006 0.048

filteredIQ FCRN - 0.639 0.193 0.491 0.08 0.597

UNet - 0.315 0.706 0.06 0.907

B-mode&BRF FCRN - 0.491 0.216 0.309

UNet - 0.166 0.697

B-mode FCRN - 0.051

UNet -

Table 2. p-value found for comparison between multi-class follicle segmentation models
(alpha level was set at 0.05). Bold identifies the rejected null hypothesis cases.

BRF rawIQ filteredIQ B-mode& BRF B-mode

FCRN UNet FCRN UNet FCRN UNet FCRN UNet FCRN UNet

BRF FCRN - 0.22 0.966 0.467 0.001 0.007 0.001 0.004 0.001 0.003

UNet - 0.242 0.84 0 0.004 0.001 0.002 0.004 0.004

rawIQ FCRN - 0.258 0.001 0.005 0.001 0.004 0.001 0.003

UNet - 0.01 0.007 0.012 0.012 0.011 0.01

filteredIQ FCRN - 0.903 0.968 0.681 0.492 0.254

UNet - 0.9 0.568 0.627 0.172

B-mode&BRF FCRN - 0.667 0.573 0.269

UNet - 0.908 0.169

B-mode FCRN - 0.421

UNet -

Table 3. p-value found for comparison between binary ovary segmentation models
(alpha level was set at 0.05). Bold identifies the rejected null hypothesis cases.

BRF rawIQ filteredIQ B-mode& BRF B-mode

FCRN UNet FCRN UNet FCRN UNet FCRN UNet FCRN UNet

BRF FCRN - 0.33 0.38 0.299 0.647 0.363 0.547 0.213 0.185 0.806

UNet - 0.596 0.952 0.206 0.68 0.237 0.026 0.124 0.305

rawIQ FCRN - 0.581 0.425 0.682 0.331 0.209 0.198 0.887

UNet - 0.182 0.67 0.202 0.008 0.107 0.237

filteredIQ FCRN - 0.174 0.965 0.147 0.209 0.582

UNet - 0.235 0.004 0.056 0.135

B-mode&BRF FCRN - 0.274 0.276 0.652

UNet - 0.448 0.002

B-mode FCRN - 0.297

UNet -
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Fig. 3. DICE score for comparison between GT and segmentation results (true posi-
tives, false positives and false negatives are represented in yellow, red and green, respec-
tively). Left column represents the four best DICE performance and the right column
represents the four worst DICE performance; (a, b, e, f) represent results obtained using
the binary approach while (c, d, g, h) represent results obtained using the multi-class
approach. (a, b, c, d) correspond to follicle segmentation and (e, f, g, h) correspond to
ovary segmentation. (Color figure online)

Also, no statistical differences were found when comparing the two CNNs
independently on the type of input data. On the other hand, significant differ-
ences were found when comparing the performance of binary versus multi-class
models for the ovary segmentation, when using the U-Net models trained on
rawBRF, filteredIQ and B-mode data. For the follicle segmentation, a signifi-
cant difference was obtained when comparing binary and multi-class models for
B-mode data.
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Fig. 4. Mean DICE scores of follicle (left) and ovary (right) segmentation results for
each model on the test set.

4 Discussion

This work shows an extensive performance comparison of two different CNNs,
trained and tested on different types of US data (ranging from rawBRF to
B-mode data), for binary and multi-class problems.

One of the major research questions of the proposed paper regards the use
of five different types of images extracted from the original BRF data. Due to
such specifications, no other dataset containing these type of data was publicly
available, limiting the evaluation of the developed methods on different data.

The qualitative results, shown in Fig. 3, demonstrate that the models trained
with rawBRF or rawIQ data are not robust to noise in the unfiltered data. These
results also indicate that B-mode and B-mode&BRF data are better for both
follicle and ovary segmentation.

Significant differences found between follicle segmentation models that use
B-mode data against the models that use unfiltered data (rawBRF and rawIQ)
demonstrate that unfiltered data is not adequate for follicle segmentation. Lower
performance of these models can be justified by the lower signal-to-noise ratio in
follicles and by the reduced texture information, when compared to the stroma
tissue. Unlike for follicle segmentation, no significant difference was found for
ovary segmentation indicating that, in this case, the high-frequency content of
unfiltered data helps the model to better characterize the ovarian structure.

Significant differences found for the different binary U-Net approaches, indi-
cate that unless using B-mode&BRF data, it is challenging for the network to
identify the spatial context of the ovarian region. This is likely to occur due to
the small kernel sizes or the reduced depth of the U-Net.

The significant differences found when comparing binary against multi-class
U-Net based models, for both ovary and of follicle segmentation, show that the
optimization of the loss function, when following a multi-class approach, allow
the U-Net model to better understand the spatial correlation between follicle
and ovary.
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These results show also that, despite the two different architectures used,
no significant differences were found between these. Such results indicate that
higher complexity of FCRN is an expensive solution that does entails improved
performance.

5 Conclusion

The presented work extensively analyses the use of different types of ultrasound
data (from beam-formed radio-frequency to B-mode data) as the input of distinct
neural networks to solve the segmentation of follicles and ovary.

Results show that the best type of images for the segmentation of follicles
is filtered ultrasound data, namely filtered IQ, B-mode and B-mode combined
with beam-formed radio-frequency data.

As for ovary segmentation, all the different types of data used in this work
produce similar results, indicating that noise reduction filters do not lead to an
improvement of performance.

This work shows also that, when using U-Net, it may be beneficial to optimize
the model with a multi-class ground-truth. Depth, along with kernel size, may
also play an important role in ensuring the spatial context that the model can
learn.

Despite, segmentation results obtained using beam-formed radio-frequency
data also produce relatively accurate segmentation of the follicles and ovary.
These results consolidate the assumption that beam-formed radio-frequency data
contains detailed textural and structural information, and its high-frequency
and fine-resolution information can be explored for segmentation and classifica-
tion problems. To further benefit from the original beam-formed radio-frequency
data, methods tailored for signal processing should be considered.

Future steps include the increasing of the dataset size, access to pathological
data (benign and malignant ovarian cysts) and exploitation of the potential of
ultrasound data for image classification regarding their malignancy.
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Abstract. The incidence of severely atypical melanocytic lesions
(SAML) has been increasing year after year. Early detection of SAML
by skin surveillance followed by biopsy and treatment may improve sur-
vival and reduce the burden on health care systems. Discovery radiomics
can be used to analyze a variety of quantitative features present in pig-
mented lesions that determine which lesions demonstrate enough atypi-
cal changes to pursue medical attention. This study utilizes a novel deep
residual group convolutional radiomic sequencer to assess SAML. The
discovery radiomic sequencer was evaluated against over 18,000 dermo-
scopic images of different atypical nevi to achieve a sensitivity of 90%
and specificity of 83%. Furthermore, the radiomic sequences produced
using the novel deep residual group convolutional radiomic sequencer
are visualized and analyzed via t-SNE analysis.

Keywords: Radiomics · Melanoma ·
Deep residual group convolutional radiomic sequencers

1 Introduction

Over the past few decades the incidence of severely atypical melanocytic lesions
(SAML) has increased, causing a significant burden on patients and financial
costs to the healthcare system. Early recognition of abnormal lesions followed
by appropriate investigation and treatment may improve patient progress and
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survival. Radiomics [3] can be used as screening of atypical pigmented lesions by
analyzing quantitative features and characteristics seen in SAML and searching
for those lesions identified as appearing abnormal.

Radiomics involves the high-throughput extraction and analysis of large
amounts of quantitative features from medical imaging data to characterize
tumor phenotype quantitatively. This framework is largely driven by quantita-
tive imaging systems personalized for cancer decision support. By making per-
sonalized hand-held instruments and utilizing radiomics with proven efficacy,
accuracy, and wide availability, individuals can be assessed and ranked by risk
level. Traditional radiomics practice use quantitative features to identify the dif-
ference between healthy and abnormal malignant lesions. These can be limiting
as they rely on traditional hand-engineered methods for characterizing texture
and shape in skin lesions. The recent use of discovery radiomics in literature
[1,2,4,6,7] ameliorates upon hand-engineered radiomic features by discovering a
wider array of features directly from the wealth of collected skin lesion imaging
data.

Discovery radiomics forgoes the notion of predefined feature models and dis-
covers customized radiomics feature models learned from a corpus of available
imaging data, thus, demonstrating an improved characterization of unique can-
cer phenotype for different forms of cancer. Highly unique characteristics are
captured beyond what current predefined feature models are capable of.

The discovery framework consists of the following steps, as illustrated in
Fig. 1. First, a wealth of standardized medical data from patients is first amassed
and fed into the radiomics sequencer discovery engine where tailored radiomic
sequencer is constructed based on the large amount of radiomic features discov-
ered. These features capture unique characteristics and traits of tumors. Second,
a new patient captures a medical image of the intended tumor and the discovery
radiomics sequencer is then used to extract a wealth of rich imaging-based fea-
tures from the medical imaging data of the new patient case for comprehensive,
custom quantification of the tumor phenotype.

This study presents a novel deep residual group convolutional radiomic
sequencer for the purpose of detecting SAML from skin imaging data. Tradi-
tional approaches which differ from the discovery radiomics approach involves
hand-engineered features [12,13], skin lesion modelling [14], and computer-aided
diagnosis using dermatology metrics which include asymmetry, border, color,
and dermoscopic structure [15–17]. Although a recent study demonstrated an
Inception-v3 deep convolutional neural network architecture achieving an accu-
racy of 72.1 ± 0.9% when discriminating between benign, malignant, and non-
neoplastic lesions via dermatologist-labeled clinical images [8], the goal of this
study is to detect severely atypical melanocytic lesions. This new deep residual
group convolutional radiomic sequencer design leads to the creation of more dis-
criminative, quantitative radiomic sequences, and can become a powerful tool
to assist all medical professionals in improving atypical lesion identification and
diagnosis.
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The paper is organized as follows. First, Sect. 2 provides an overview of the
general dermal discovery radiomics pipeline for SAML screening, as well and
a detailed description of the design of the proposed deep residual group con-
volutional radiomic sequencer. Section 3 presents the experimental setup and
experimental results using a large corpus of dermoscopic images are discussed.
Finally, conclusions are presented in Sect. 4.

Fig. 1. The general dermal discovery radiomics pipeline for SAML screening. A
radiomic sequencer (in this study, a deep residual group convolutional radiomic
sequencer) is discovered via a radiomic sequencer discovery process using the wealth
of skin imaging data available. The discovered radiomic sequencer can then be used to
produce a radiomic sequence given an input skin image from a new patient.

2 Methodology

In this section, we will first discuss the general dermal discovery radiomics
pipeline for SAML screening being presented in this study. Next, we will go into
detail the design strategy for the proposed deep residual group convolutional
radiomic sequencer.

2.1 Dermal Discovery Radiomics for SAML Screening

Unlike traditional approaches where predefined features are based on factors
such as texture and color, dermal discovery radiomics directly obtains learned
bio-marker features. The benefit of this approach is the gathering of intrinsic
features that are not well-characterized by traditional approaches or not noticed
by clinicians. The general pathway for atypical pigmented lesion evaluation by
dermal discovery radiomics is shown in Fig. 1 which was inspired by the over-
all architectural layout of [18]. A comprehensive and quantitative characteri-
zation of skin phenotypes associated with SAML was built within a radiomic
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Fig. 2. Architecture of the deep residual group convolutional radiomic sequencer that is
discovered via a radiomic sequencer discovery process using the wealth of skin imaging
data available. Leveraging grouped convolutions within the sequencer enables greater
radiomic feature diversity, while residual connections to enable deeper embeddings for
highly discriminative radiomic features.

sequencer discovery process to construct a custom radiomic sequencer that cap-
tured large numbers of pigmented lesion traits and characteristics. When a new
case is reviewed, the sequencer extracts the features unique to this lesion to
create a customized radiomic sequence. Such sequencing allows for customized
quantification of each lesion.

Table 1. Detailed configuration of the deep residual group convolutional radiomic
sequencer.

Type Output size Configuration

gconv(2) 112 × 112 7 × 7, 64, stride 2

pool 56 × 56 3 × 3 maxpool, stride 2

gconv(2) 56 × 56 [(1 × 1, 64) (3 × 3, 64) (1 × 1, 256)] × 3

gconv(2) 28 × 28 [(1 × 1, 128) (3 × 3, 128) (1 × 1, 512)] × 8

gconv(2) 14 × 14 [(1 × 1, 256) (3 × 3, 256) (1 × 1, 1024)] × 36

gconv(2) 7 × 7 [(1 × 1, 512) (3 × 3, 512) (1 × 1, 2048)] × 3

FC 4096-d

2.2 Radiomic Sequencer Design

The radiomic sequencer introduced in this study is a custom deep residual group
convolutional radiomic sequencer which sequences a total of 4096 quantitative
radiomic features to characterize SAML. Figure 2 provides a graphical illustra-
tion of the overall radiomic sequencer design, with Table 1 outline the specific
configuration of each component of the general architecture. The proposed deep
residual group convolutional radiomic sequencer is characterized by two key
traits: (i) grouped convolutions, and (ii) residual connections.
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Grouped Convolutions. First, the proposed radiomic sequencer leverages the
concept of grouped convolutions (as indicated by gconv(n) in Table 1, where n is
the number of groups), where the components in the sequencer are divided into
groups, with convolutions performed on the various channel groups separately.
The use of grouped convolutions within the presented radiomic sequencer enables
greater radiomic feature diversity and improved characterization performance.
Such improvements are made while reducing the number of parameters needed
to achieve the same level of accuracy in the case where grouped convolutions
are not used. In addition, the use of two convolutional groups provide strong
sensitivity and specificity measurements.

Residual Connections. Second, residual connections were leveraged in the
proposed radiomic sequencer. For this study, residual connections were placed
between each grouped convolution block after the pooling layer. The use of resid-
ual connections allows us to construct a deeper radiomic sequencer, and as such
enables deeper feature embeddings to be discovered during the radiomic squencer
discovery process. The ability to learn deeper feature embeddings results in the
sequencer being able to produce highly discriminative radiomic features with
strong tumor characterization capacity.

2.3 Radiomic Sequencer Discovery

The proposed deep residual group convolutional radiomic sequencer was discov-
ered using a wealth of dermoscopic images via an iterative optimization strat-
egy. More specifically, we leverage the Adam optimization strategy [10] to opti-
mize a cross entropy loss function to discover the sequencer over 100 epochs,
with batch size set as 6 and the adaptive learning rate decayed by 0.1 after
every 25 epochs. Furthermore, we initialize the deep residual group convolu-
tional radiomics sequencer using the Xavier weight initialization procedure [11]
prior to the radiomic sequencer discovery process.

3 Results and Discussion

In this study, we evaluate the efficacy of the deep residual group convolutional
radiomic sequencer for SAML detection from a large collection of dermoscopic
images. First, we will discuss the data and evaluation setup, followed by a dis-
cussion of the experimental results both quantitatively and qualitatively.

3.1 Data

The efficacy of the presented deep residual group convolutional radiomic
sequencer was evaluated against a collection set of 18,248 dermoscopic images
of different atypical nevi. Figure 3 shows examples of dermoscopic images from
the collected set spanning a spectrum of cases. Collected dermoscopic images
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Fig. 3. Example dermoscopic images from the corpus of images used in this study.

like those shown in Figs. 1 and 3 were captured, after obtained written consent
from patients referred for surgical management of SAML. The surgical proce-
dure had been previously determined and discussed with the patient prior to
being reviewed at a surgical center. The radiomic assessment on the dermoscopic
images were done retrospectively and the results were benchmarked against clin-
ical diagnosis and histopathology reports.

3.2 Evaluation Setup

The efficacy of the presented sequencer was evaluated by a random selection of
563 dermoscopic images for testing, comprised of 259 benign pigmented lesions
and 264 malignant skin lesions. The radiomic sequencer produced was then fed
into a fully-connected feed-forward neural network with three layers (200, 500
and 200 neurons, respectively) and an output layer with 2 neurons (for predicting
malignant and benign). To quantitatively evaluate the performance of the pre-
sented sequencer, both sensitivity and specificity are computed across the entire
collection of test dermoscopic images given that it is important to understand
both the ability to correctly identify malignant lesions as well as avoid too many
false positives.

Sensitivity is denoted by:

Sensitivity =
TP

TP + FN

and specificity is denoted by:

Specificity =
TN

TN + FP

where true positive (TP), false negative (FP), true negative (TN), and false
positive (FP) correspond to the classification or misclassification of SAML.
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3.3 Sensitivity and Specificity Analysis

The sensitivity and specificity results are shown in Table 2, alongside compar-
isons with previous studies by Shafiee et al. [7] and Wells et al. [5] showing quan-
titative evaluation of the efficacy of the proposed discovered radiomic sequencer.
The sensitivity and specificity achieved with our deep residual group convolu-
tional radiomic sequencer is 90% and 83%, respectively. In comparison, the study
performed by Shafiee et al. [7] using a dataset of 9000 clinical images achieved a
sensitivity and specificity of 90% and 73%. In the study by Wells et al. [5], it was
found that dermatologists achieved a sensitivity and specificity of 80% and 43%,
respectively, while MelaFind, a non-invasive high-based tool used for skin cancer
screening, achieved a sensitivity of 96% and specificity of 8%. Although MelaFind
achieved a higher sensitivity than the presented radiomic sequencer, MelaFind
compromises specificity significantly. Furthermore, we are able to achieve a 10%
increase in specificity when compared to the study by Shafiee et al. [7].

3.4 t-SNE Analysis

To visualize and analyze the efficacy of the radiomic sequencer, we project the
4096-dimensional radiomic sequences of each lesion in the test set generated
by the presented radiomic sequencer into a two-dimensional feature space using
t-Distributed Stochastic Neighbor Embedding (t-SNE) [9] analysis. T-SNE is
a technique used for dimensionality reduction particularly for high-dimensional
datasets. T-SNE captures local structure of high-dimensional data while also
showing global structure in a single map by giving each data point a two dimen-
sional map. Distances between each data point is proportional to the similarity
of that lesion.

Table 2. Results of presented deep residual group convolutional (DRGC) radiomic
sequencer in comparison to previous studies.

Study Sensitivity Specificity

DRGC sequencer 90% 83%

Shafiee et al. [7] 90% 73%

Dermatologist (Wells et al. [5]) 80% 43%

MelaFind (Wells et al. [5]) 96% 8%

In Fig. 4, we visualize the projected two-dimensional representations of the
radiomic sequences in a two-dimensional feature space. Each lesion is symbol-
ized as a point in representation space, with yellow indicating malignancy and
purple indicating benign. It can be observed that the radiomic sequences gen-
erated using the proposed radiomic sequencer for malignant lesions are well-
separated from the radiomic sequences for benign lesions. Some benign lesions
were sequenced via the radiomic sequencer similarly to malignant lesions as some
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benign data points are interspersed within the malignant data point cluster of
the t-SNE visualization. The interspersed benign data points within the t-SNE
visualization supports the finding in Table 2 where the DRGC sequencer has a
more challenging time identifying benign lesions as indicated with a specificity
of 83% compared to the sensitivity of 90%.

Fig. 4. A 2D visualization of the 4096 radiomic sequences extracted from the deep
residual group convolutional radiomic sequencer using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [9]. Each point represents a lesion, where, yellow represents
malignant and purple represents benign. The distance between each lesion is propor-
tional to the similarity of that lesion. (Color figure online)

4 Conclusion

In this work we presented a discovery radiomics approach using a deep residual
group convolutional radiomic sequencer for detecting atypical pigmented lesions
for SAML. Given the above analysis using t-SNE as well as the aforementioned
sensitivity and specificity results, it can be observed that the presented deep
residual group convolutional radiomic sequencer can achieve superior perfor-
mance when analyzing atypical pigmented lesions for SAML based on dermo-
scopic imaging data. The deep residual group convolutional radiomic sequencer
presented demonstrates the efficacy of making this deep residual group convolu-
tional radiomic sequencer a promising tool for early skin cancer screening.
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Abstract. Computer-Aided Diagnosis systems have been used as second
readers in the medical imaging diagnostic process. In this study, we aim to
identify cases that are hard to diagnose and lead to interpretation variability
among medical experts. We propose a combination of image features and
advanced machine learning classifiers to predict the degree of malignancy and
determine the level of diagnostic difficulty by looking where these classifiers
collectively fail. Using the NIH/NCI Lung Image Database Consortium (LIDC)
dataset and four ensemble learning algorithms (bagging, random forest, Ada-
Boost, and a heterogeneous ensemble with decision trees, support vector
machines, and k-nearest neighbors), our results show that we can not only detect
difficult cases, but we are also able to identify what imaging characteristics or
features make these cases hard to diagnostically interpret.

Keywords: Ensemble learning � Computer-Aided Diagnosis �
Diagnostic complexity

1 Introduction

In the radiology domain, Computer-Aided Diagnosis (CADx) systems have been
proposed to assist radiologists in the diagnostic interpretation of different anatomical
structures, such as lung [1], breast [2], and colon [3]. In general, there are two cate-
gories of approaches for developing CADx systems.

The traditional way involves extracting image features and then building classifi-
cation models on image feature data. For example, by extracting mammogram features
and implementing logistic regression as well as support vector machines (SVM) algo-
rithms, Jing et al. [4] reported significant improvement in diagnosis accuracy. Kaya and
Can [5] proposed a weighted-rule based method for malignancy prediction and
achieved 82.52% classification accuracy. Goncalves et al. [6] used k-nearest neighbors
(k-NN) and SVM to compute the malignancy likelihood of lung nodules with a per-
formance of 0.96 for area under the receiver operator characteristic (AUC). Riely et al.
[7] designed a selective iterative classification (SIC) approach for lung nodule
classification.

The modern way employs deep learning approaches that diagnostically categorize
the images without the need for using image features. Recently, Causey et al. [8]
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implemented deep learning convolutional neural networks (CNN) to predict lung
nodule malignancy and achieved high accuracy for nodule malignancy classification
with an AUC of 0.99. Liu et al. [9] proposed a multi-task deep learning framework
with a novel margin ranking loss to investigate the relatedness between lung nodule
classification and attribute score regression and achieved 93.9% classification accuracy.
Hoo-Chang et al. [10] implemented deep convolutional neural networks to perform
thoracic-abdominal lymph node detection and interstitial lung disease classification.

While all these studies focus on improving the prediction performance, only a few
studies explored the factors (such as a case difficulty) affecting the performance of the
classifiers for diagnostic interpretation. Analyzing the human observers, Lin et al. [11]
proposed a content-boosted collaborative filtering (CBCF) to predict the difficulty level
for each trainee in the radiology training system. Similarly, Wang et al. [12] developed
a user model that predicted the likelihood of a trainee missing an abnormal location.

Rather than looking at the human observer level of expertise, other studies,
including our previous work, focused on the use of image content to automatically
detect when and why classifiers fail in predicting certain cases. Zamacona et al. [13]
used decision tree to predict the malignancy ratings and differentiated easy and hard
cases by applying a threshold value based on the distribution of the case error variance.
Affenit et al. [14] proposed a new label set weighting approach to combine the experts’
interpretations and their variability, as well as a SIC approach that was based on
conformal prediction. Berglin et al. [15] defined the hardest cases by aggregating
results from five different SIC techniques and identifying those that were above a
threshold of difficulty.

Since our goal is not only to improve the malignancy prediction, but also to
understand what makes a case difficult to interpret, we will focus on the first category
of CADx systems. We introduce the concept of the “difficulty” of a case when col-
lectively ensembles of classifiers fail to categorize the case based on its image content.
Building upon our previous work [13], besides detecting the difficult cases, we propose
to further determine the characteristics of the diagnostically difficult cases. We show
our proof-of-concept in the context of the lung nodule diagnosis in Computed
Tomography images, but the same approach can be applied to other anatomical
structures and medical imaging modalities.

2 Methodology

2.1 The Lung Image Database Consortium (LIDC) Data and Low-Level
Image Feature Extraction

The NIH/NCI Lung Image Database Consortium (LIDC) dataset [16] is a collection of
Computed Tomography (CT) scans annotated by four different radiologists. Each
radiologist provided nodule contours and ratings across nine semantic characteristics:
calcification, internal structure, lobulation, malignancy, margin, sphericity, spiculation,
subtlety, and texture. In this study, we focus on the prediction of the degree of
malignancy ratings (1: highly unlikely; 2: moderately; 3: indeterminate; 4: moderately
suspicious; 5: highly suspicious) and consider 829 nodules that have been annotated by
all four radiologists.
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From each image that contains a nodule, we extracted 64 low-level image features
[17] shown in Table 1, that can be divided into four different categories: shape, size,
intensity and texture. Figure 1 illustrates the feature extraction step and the rest of the
CADx system as a way to identify hard cases.

Table 1. Image features, SD stands for standard deviation and BG for background

Shape Features Size Features Intensity

Circularity Area Min Intensity
Roughness Convex Area Max Intensity
Elongation Perimeter Mean Intensity
Compactness Convex Perimeter SD Intensity
Eccentricity Equivalent Diameter Min Intensity BG
Solidity Major Axis Length Max Intensity BG
Extent Minor Axis Length Mean Intensity BG
Radial Distance SD SD Intensity BG

Intensity Difference
Texture Features
11 Haralick features calculated from co-occurrence matrices
(Contrast, Correlation, Entropy, Energy, Homogeneity,
3rd Order Moment, Inverse Variance, Sum Average, Variance,
Cluster Tendency, Maximum Probability)
24 Gabor features are mean and standard deviation of 12
different Gabor images (orientation = 0°, 45°, 90°, 135° and
frequency = 0.3, 0.4, 0.5)
5 Markov Random Fields (MRF) features are means of 4
different response images (orientation = 0°, 45°, 90°, 135°),
along with the variance response image

Fig. 1. An overview of the methodology
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2.2 Data Preprocessing

Given the low number of cases for the second and fourth rating, we rescaled the
malignancy by assigning ratings 1 and 2 to class 1 and ratings 4 and 5 to class 3, and
rating 3 forming its own class 2. Furthermore, if the ratings for the same nodule varied
among the radiologists, we considered the consensus label, the mode of four ratings, for
the corresponding nodule when training and testing the CADx system.

We used 10-fold cross validation for testing and training. In this case, each instance
is guaranteed one chance to be tested in a testing set.

2.3 Identifying Difficult Cases Through Ensemble Learning

Classification approaches range from single classifiers to ensemble of classifiers that are
more robust, stable, and generalize well on complex data. Sometimes, no matter which
type of algorithm is used, a case cannot be classified correctly based on its image
content. For these situations, we introduce the concept of difficulty/complexity/hardness
of a case to denote that a certain pattern cannot be learned from the image data even
though the classification approach has been optimized with respect to the given data. In
our current implementation, the classification approach is based on four ensembles of
classifiers: bagging with decision trees (DT) [18], a heterogeneous ensemble based on a
set of algorithms including decision trees, support vector machine (SVM) and k-nearest
neighbors (k-NN), random forest [19], and AdaBoost with stump trees [20].

Bagging is a method for generating multiple versions of a prediction and using
these to get an aggregated predictor. The multiple versions are formed by making
bootstrapping of the training set and using these as new training sets to build different
models. When predicting a class, the aggregated predictor does a plurality among the
results of the models. Decision tree is our base classifier in Bagging. We implemented
10-fold cross validation method on the training sets and found the optimal number of
trees that leads to the minimum cross validation error. The criteria of choosing the
number of trees in Bagging is finding the knee point in the plot of relationship of
number of trees to error. For the parameters in each decision tree, we let them grow
fairly on each sampled data set, with no pruning. In our paper, the number of trees
across ten training sets varies from eight to thirteen. The principle of Bagging algorithm
is presented as follows:

Nj ¼ # k;u x; £kð Þ ¼ jf g

uA xð Þ ¼ argmaxjNj ð1Þ

Where £k is a sequence of learning sets, u is a single predictor, u x; £kð Þ predicts a class
j 2 1; . . .; Jf g and uA is a Bagging predictor.

The way heterogenous ensemble combines its base classifiers’ result is the same as
Bagging, a type of homogenous ensemble. We aggregated the results of base classifiers
by voting. However, a heterogenous ensemble classifier is constructed by various
algorithms as its base classifiers. In our paper, we used three base classifiers to build the
heterogenous ensemble model: decision tree, SVM and k-NN.
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Instead of using a single decision tree, the random forest algorithm creates a set of
decision trees to improve the classification accuracy and assigns a prediction label by
using a majority vote. There are two parameters in Random Forest Algorithm: the
number of trees and the number of features per split. We chose the optimal parameter
combination that leads to the minimum out of bag (OOB) error on the training sets.

The AdaBoost algorithm of Freund and Schapire was the first practical boosting
algorithm. Adaboost, short for Adaptive Boosting, uses the conjunction of the weak
learning algorithms to create a strong classifier. The output of the weak learners is
combined into a weighted sum that represents the final output of the boosted classifier.
An AdaBoost model can be formulated as follows:

H xð Þ ¼
XT

t¼1
atht xð Þ ð2Þ

Where H xð Þ represents the final ensemble model, and ht xð Þ represents the hypothesis
generated by the tth base classifier. at is the weight assigned to the tth base classifier. In
order to find the number of iterations in Adaboost, we further separate a validation set
from each training set. We chose the number of iterations that has the minimum
difference between training accuracy and validation accuracy. In our paper, the number
of iterations is 200.

A case is considered difficult if it is collectively misclassified by all ensembles as
part of the testing set.

3 Results

3.1 Classification Accuracy and Distribution of Easy Versus Hard Cases

Tables 2 and 3 compared the mean values of 15 features that are significantly different
between the easy cases and hard cases by performing the Welch’s t-test, an unpaired
t-test typically applied when two populations have unequal variances or sample sizes.

Table 2. Significant texture features

Features: mean values Hard cases Easy cases P-value

Gabor Mean 1_1 62.93 67.07 0.05
Gabor Mean 2_1 48.45 53.46 0.03
Gabor SD 2_1 50.27 52.63 0.02
Gabor Mean 3_1 76.97 82.58 0.00
Contrast 64390.11 117896.03 0.00
Energy 0.00 0.00 0.00
Homogeneity 0.04 0.04 0.02
3rd Order Moment 3079755 10715780 0.00
Sum Average 488.41 553.33 0.00
Variance 105622.20 171999.10 0.00
Cluster Tendency 360990.20 575137.90 0.00
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Table 4 shows the classification accuracy using 95% confidence interval (CI) given
the 10 testing sets from the 10-fold cross-validation. Figure 2 shows the class distri-
bution of identified difficult cases. If we only use one classifier, the random forest
algorithm gives the least number of misclassified cases (288); while when we use two
classifiers, the combination of random forest and bagging gives the least number of
overlapped misclassified cases (156). For three classifiers, the combination of Ada-
Boost, random forest and bagging produces the least number of overlapped misclas-
sified cases (119); when all four ensembles are used, the approach results in having 92
hard cases and 737 easy cases. Furthermore, we can see from Fig. 2 that class 2
(“indeterminate”) is the majority class for difficult cases.

Table 3. Significant intensity features

Features: mean values Hard cases Easy cases P-value

Max Intensity 1016.87 1269.09 0.00
Mean Intensity 561.65 652.63 0.01
SD Intensity 289.55 355.60 0.00
Intensity Difference 350.45 395.68 0.01

Table 4. Classification results on testing sets

Methods (Classifiers) Accuracy (95% CI)

Random forest 64.65% ± 2.6%
Heterogeneous ensemble (DT, SVM & k-NN) 62.60% ± 3.0%
AdaBoost (Stump Trees) 62.31% ± 2.9%
Bagging (Decision Trees) 60.03% ± 3.5%

Fig. 2. Class distribution of identified difficult cases using different number of classifiers
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3.2 Significant Features for Difficulty Identification

Using the Welch’s t-test, we found that 15 out of the 64 features had significant mean
differences between easy cases and hard cases at a 0.05 significance level. From
Tables 2 and 3, we can see that difficult cases have significantly smaller mean intensity
feature values and, with the exception of homogeneity, lower mean texture feature
values. The features in Table 3 represent the maximum, mean and standard deviation of
intensity values for those pixels within the boundary of the nodule. Intensity difference
is the value of difference between the highest intensity pixel value and the lowest
intensity pixel value. In Table 2, Gabor features were represented as ‘Gabor Mean/SD
x_y’ format, where x represents four orientations (0°, 45°, 90°, and 135°) and y
represents three frequencies (0.3, 0.4 and 0.5). Gabor mean 1_1, Garbor mean 2_1,
Garbor mean 3_1 and Garbor SD 2_1 have the orientation and the frequency combi-
nation (45° and 0.4), (90° and 0.4), (135° and 0.4) and (90° and 0.4) respectively.

Smaller mean intensity feature values indicate the need to preprocess the images
before their annotation and image feature extraction. In particular, contrast enhance-
ment can improve the visual quality of the image and therefore, reduce the potential
noise in the labeling of the image data as well as bringing the image data within the
same intensity window. To illustrate the intensity differences between easy and hard
cases, we present several examples of easy cases and hard cases in Table 5.

When comparing the results with previous works for classifying lung nodules and
identifying hard cases, our method, with 88.90% testing accuracy, significantly out-
performs the SIC approaches [7, 13] with 57.40% and 81.17% testing accuracies
respectively.

Table 5. Examples of hard vs. easy cases

Hard Cases

Mean Intensity 461.09 591.88 535.43 

Easy Cases

Mean Intensity 674.58 859.35 819.38 
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4 Conclusions

In this study, we proposed ensemble learning algorithms to automatically identify
difficult cases when predicting degree of malignancy based on image data. Our results
show that not only we can detect these difficult cases, but also, we can differentiate the
image characteristics between the difficult and easy cases.

The results of this work can help with the resource allocation problem by assigning
more experts to a case only if it is a hard case to diagnose. Our findings also emphasize
the need for contrast enhancement and data normalization when building CADx
systems.

One limitation of this study is the lack of ground truth for validating the easy/hard
classification. Future work will investigate measure of radiologist variation as a means
of distinguishing easy/hard and compare to our predicted results.
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Abstract. Pneumothorax (collapsed lung or dropped lung) is an urgent
situation and can be life-threatening. It is mostly diagnosed by chest
X-ray images. Detecting Pneumothorax on chest X-ray images is chal-
lenging, as it requires the expertise of radiologists. Such expertise is
time-consuming and expensive to obtain. The recent release of big med-
ical image datasets with labels enabled the Deep Neural Network to
be trained to detect diseases autonomously. As the trend moves on, it
is expected to foresee more and more medical image big dataset will
appear. However, the major limitation is that these datasets have differ-
ent labels and settings. The know-how to transfer the knowledge learnt
from one Deep Neural Network to another, i.e. Deep Transfer Learning,
is becoming more and more important. In this study, we explored the
use of Deep Transfer Learning to detect Pneumothorax from chest X-ray
images. We proposed a model architecture tCheXNet, a Deep Neural
Network with 122 layers. Other than training from scratch, we used a
training strategy to transfer knowledge learnt in CheXNet to tCheXNet.
In our experiments, tCheXNet achieved 10% better in ROC comparing
to CheXNet on a testing set which is verified by three board-certified
radiologists, in which the training time was only 10 epochs. The source
code is available in https://github.com/antoniosehk/tCheXNet.

Keywords: Deep Learning · Transfer Learning · Medical Images ·
Chest X-rays · Pneumothorax

1 Introduction

Pneumothorax (collapsed lung or dropped lung) [1,2] refers to the entry of air
into the pleural space, i.e. the space between the lungs and chest wall [2]. It is
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an urgent situation [1] and can be life-threatening emergency [2]. Pneumothorax
is mostly diagnosed by chest X-ray images [2]. Figure 1 provides a graphical
illustration of Pneumothorax, where (a) refers to a patient with no finding and
(b) refers to a patient with Pneumothorax. Detecting Pneumothorax on chest
X-ray images is challenging, as expertise of radiologists is required [3]. It is time-
consuming and expensive to train a qualified radiologist. As a delayed diagnosis
can cause harm to patients [3], it is important for the development of computer-
aided detection approaches.

Recently, increasing studies [3] reported that researchers use Deep Learning
[4] to detect diseases on chest X-ray images, and one [5] reported to achieve
radiologist-level detection of pneumonia in chest X-ray image. In essence, Deep
Learning refers to the use of Deep Neural Networks (DNN), defined as artificial
neuron networks with at least 3 hidden layers [6]). Its success is built upon the
advent of fast graphics processing units (GPU), and the availability of large
amount of labeled data [4].

The driving force behind the emergence of these medical image Deep Neural
Network can be attributed to the recent release of several big medical image
datasets [7–9] with labels. For example, CheXpert [8] is a dataset that is recently
released, containing 224,316 chest radiographs of 65,240 patients. There are 14
categories (observations) labeled with each of the chest radiographs, where one
chest radiograph can be associated with multiple observations. As the trend
moves on, there will be more and more big medical image datasets. However,
the major limitation is that these datasets have different labels and settings.
The know-how to transfer the knowledge learnt from one Deep Neural Network
to another, i.e. Deep Transfer Learning [10,11], is becoming more and more
important.

In this study, we explored the use of Deep Transfer Learning [10,11] to detect
Pneumothorax [1,2] from chest X-ray images. We proposed a model architecture
tCheXNet, a Deep Neural Network with 122 layers. Other than training from
scratch, we used a training strategy to transfer knowledge learnt in CheXNet [5]
to tCheXNet. Experimental results demonstrated that tCheXNet achieved 10%
better in ROC comparing to CheXNet on a testing set verified by three board-
certified radiologists using only a training time of 10 epochs. To our knowledge,
it is the first systematic study to detect Pneumothorax on chest X-ray images
using Deep Transfer Learning.

2 Methodology

2.1 Problem Definition

The detection task of Pneumothorax [1,2] from a frontal-view chest radiograph
(or chest X-ray) image is defined as follows. Given a frontal-view chest X-ray
image xi, the output is a binary variable yi ∈ {0, 1}, where 0 and 1 represents the
absence and presence of Pneumothorax [1,2] in the X-ray image xi respectively.
From the point of view in machine learning, 0 represents the negative (−ve)
classes, i.e. the chest X-ray images with the absence of Pneumothorax [1,2],
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Fig. 1. An overview of the detection of Pneumothorax [1,2] on chest X-Ray images.
Given a chest X-ray image, it is then inputted to a deep convolutional neural network.
A real value between 0 and 1 inclusively is outputted. A threshold, such as 0.5, can
be applied to assign a class label to the real-valued output to determine if there is
Pneumothorax on the chest X-ray image. Absence of Pneumothorax is represented
by negative (−ve) class, and presence of Pneumothorax is represented by positive
(+ve) class. For illustration, two chest X-ray images were extracted from the validation
set in CheXpert [8]. (a) is from the study 1 of patient64544, with the filename as
view1 frontal.jpg. No finding was observed. (b) is from the study 1 of patient64547,
with the filename as view1 frontal.jpg. Pneumothorax was observed. The observations
were verified by three board-certified radiologists [8].

and 1 represents the positive (+ve) classes, i.e. the chest X-ray images with the
absence of Pneumothorax [1,2]. Figure 1 provides a graphical illustration.

Let Strain = {(xi, yi)}Ni=1 be a set of N training samples. Given Strain, the
learning task is to learn a function f : X → Y , such that

E(x,y)∼D[L(f(x); y)] (1)

is minimized, where D is the data distribution over X × Y , x ∈ X, y ∈ Y and
L(z; y) is a loss function that measures the loss if we predict y as z. Equation 1
represents the generalization error of a learnt function.

As it is a binary classification problem, the binary entropy function was
adopted as the loss function. Following [5], class weights were considered.

L(f(xi); yi) = −[w+yilog2(f(xi)) + w−(1 − yi)log2(1 − f(xi))] (2)

where w+ is the ratio of positive classes among all training samples, and w− is
the ratio of negative classes among all training samples.

w+ =
P

P + N
(3)
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w− =
N

P + N
(4)

where, among all training samples, P is the number of positive classes, and N
is the number of negative classes.

(a) CheXNet, constructed based on DenseNet-121
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connected
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Classification 
Layer
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(b) tCheXNet, constructed based on CheXNet
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Fig. 2. An overview of the deep convolutional neural network models investigated in
this study. (a) CheXNet [5] is a 121-layer convolutional neural network, constructed
based on DenseNet-121 [12], that inputs a chest X-ray image and outputs the prob-
ability of pneumonia along with 13 other thoracic diseases including Pneumothorax.
(b) tCheXNet, a model proposed by us, is a 122-layer convolutional neural network,
constructed based on CheXNet [5], that inputs a chest X-ray image and outputs the
probability of Pneumothorax.

2.2 Model Architecture

Two deep convolutional neural network models are investigated in this study.
Figure 2 provides a graphical illustration. The first model, as shown in Fig. 2(a),
is denoted as CheXNet [5]. it is a 121-layer convolutional neural network, con-
structed based on DenseNet-121 [12], that inputs a chest X-ray image and out-
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puts the probability of pneumonia along with 13 other thoracic diseases includ-
ing Pneumothorax. CheXNet [5] achieved radiologist-level disease detection par-
ticularly in the detection of pneumonia. It is thus the state-of-the-art model
architecture.

The second model, as shown in Fig. 2(b), is denoted as tCheXNet, a model
proposed by us. It is a 122-layer convolutional neural network, constructed based
on CheXNet [5], that inputs a chest X-ray image and outputs the probability
of Pneumothorax. Its first 120 layers are identical to those of CheXNet [5].
Two layers are then added on top, a fully-connected layer with 512 ReLu units,
followed by a classification layer with 1 sigmoid unit. Hence, there are in total
122 layers in tCheXNet.

2.3 Training Strategy - Deep Transfer Learning

In order not to train tCheXNet, with 122 layers, from scratch, we developed
a training strategy based on transfer learning. First. the model parameters of
CheXNet [5] is used in the initialization of tCheXNet. Second, these model
parameters are then locked in the training stage by setting the corresponding
layers as non-trainable. Only the newly added layers are allowed to be trained. In
other words, tCheXNet is pre-trained with the model parameters from CheXNet
and those model parameters will remain in the training stage. The training strat-
egy is summarized in Algorithm 1.

Algorithm 1. train-tCheXNet
Input: a set of training samples Strain, initialized model parameter θCheXNet, epochs

Output: a model parameter θtCheXNet

configure a model m as CheXNet

initialize m with θCheXNet

set layers in m as non-trainable

remove the last layer from m

configure the model m as tCheXNet by adding two new layers

set the two new layers as trainable

set θm as the model parameters of m

for 1 to epochs do

backprop-optimize(Strain, m, θm)

end for

θtCheXNet = θm
return θtCheXNet

3 Experiments and Results

3.1 Dataset Preparation

In this study, we prepared training dataset, validation dataset and testing dataset
to conduct experiments. A summary is provided in Table 1.
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Training. The training set contains a total of 94,482 chest X-ray images, where
13,911 of them belong to the +ve class, and 80,571 of them belong to the −ve
class. These chest X-ray images were obtained from the training set of CheXpert
[8], selecting only the frontal chest X-ray.

Validation. The validation set contains a total of 23,620 chest X-ray images,
where 2,869 of them belong to the +ve class, and 20,751 of them belong to
the −ve class. These chest X-ray images were obtained from the training set of
CheXpert [8], selecting only the frontal chest X-ray.

Testing. The testing set contains a total of 202 chest X-ray images, where
7 of them belong to the +ve class, and 195 of them belong to the −ve class.
These chest X-ray images were obtained from the validation set of CheXpert [8],
selecting only the frontal chest X-ray. It should be noted that the validation set
of CheXpert [8] was verified by three board-certified radiologists.

Table 1. A summary of the datasets used in this study. The chest X-ray images were
obtained and preprocessed from CheXpert [8]. The dataset has two classes: Negative
(−ve) class and Positive (+ve) class, where the +ve class represents a presence of the
Pneumothorax, and the −ve class represents an absence of the Pneumothorax.

Positive (+ve) Negative (−ve) Total

Training 13,911 80,571 94,482

Validation 2,869 20,751 23,620

Testing 7 195 202

3.2 Data Preprocessing

While the testing set is validated by three board-certified radiologists, there are
uncertainty entries (zeros and blanks), in addition to certain entries (positive
ones and negative ones) in the training set and validation set. We followed the
preprocessing procedure mentioned in [8] so that the entries with negative ones
and zeros were considered to be negative (−ve) classes. The blank entries were
also considered to be negative (−ve) classes. Only the entries with positive ones
were consider to be (+ve) classes. All images were also preprocessed using the
procedure mentioned in [12].

3.3 Experiments

tCheXNet was trained on the training set. Model selection was done using the
validation set. The model with the lowest validation loss were selected. They
were then evaluated on the testing set. Following [5,8], the performance of the
models was evaluated by the area under the receiver operating characteristic
curve (ROC) to enable the comparison over a range of prediction thresholds.
CheXNet [5] was also evaluated on the same testing set.
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3.4 Implementation and Parameter Setting

To build tCheXNet and re-implement CheXNet [5], the latest version (v2.2.4)
of the deep learning library Keras (http://keras.io/) with Tensorflow backend
[13] was adopted. The model weights of CheXNet was obtained from the link
(https://github.com/brucechou1983/CheXNet-Keras). The number of training
epochs and batch size were 10 and 16 respectively. Adam optimizer [14] was
used in training. All parameters were set default unless further specified. Also,
ROC was computed using the latest version (v0.20.3) of the machine learning
library scikit-learn [15] with default parameter setting. All experiments were run
on a computer with 8.0 GB DDR4 RAM, a Celeron G3900-2.80 GHz CPU (2
Cores) and two GTX 1070 Ti Graphics card. These settings were used in all
experiments unless further specified. The source code is available in https://
github.com/antoniosehk/tCheXNet.

Fig. 3. A comparison of the prediction performance between CheXNet [5] and
tCheXNet in terms of the area under the receiver operating characteristic (ROC) curve.

3.5 Results

Figure 3 shows the comparative results on the area under the ROC curve in
the testing set. We observe that tChexNet obtained a higher ROC score (10%
better) comparing to that obatained by CheXNet [5] in the testing set.

http://keras.io/
https://github.com/brucechou1983/CheXNet-Keras
https://github.com/antoniosehk/tCheXNet
https://github.com/antoniosehk/tCheXNet
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4 Conclusion

In this study, we proposed tCheXNet, a model architecture with 122 layers based
on CheXNet [5], to detect Pneumothorax from chest X-ray images. We used a
training strategy based on Deep Transfer Learning such that these 122 layers
need not be trained from scratch by reusing and locking the model parameters
from CheXNet [5]. Experimental resutls have demonstrated tChexNet, trained
by our proposed strategy, obtained a 10% higher ROC on the detection of Pneu-
mothorax from chest X-ray images, comparing to that obtained by CheXNet
[5]. This study is made possible by a recent release of a large amount of labeled
chest X-ray images in CheXpert [8]. Future extension of this work includes inves-
tigating if the training strategies work for observations in chest X-ray images in
addition to Pneumothorax.
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Abstract. Diabetic Retinopathy (DR) is a leading cause of blindness in
working age adults. DR lesions can be challenging to identify in fundus
images, and automatic DR detection systems can offer strong clinical
value. Of the publicly available labeled datasets for DR, the Indian Dia-
betic Retinopathy Image Dataset (IDRiD) presents retinal fundus images
with pixel-level annotations of four distinct lesions: microaneurysms,
hemorrhages, soft exudates and hard exudates. We utilize the HEDNet
edge detector to solve a semantic segmentation task on this dataset, and
then propose an end-to-end system for pixel-level segmentation of DR
lesions by incorporating HEDNet into a Conditional Generative Adver-
sarial Network (cGAN). We design a loss function that adds adversarial
loss to segmentation loss. Our experiments show that the addition of the
adversarial loss improves the lesion segmentation performance over the
baseline.

Keywords: Conditional generative adversarial networks ·
Deep learning · Segmentation · Medical image analysis

1 Introduction

Diabetic Retinopathy (DR) is an eye disease caused by damage to the retinal
blood vessels of diabetic patients. Since the disease is relatively asymptomatic
until the patient experiences loss of vision, physicians recommend regular screen-
ings for diabetic patients. Analysis of high resolution fundus images obtained
during the screening requires considerable time and effort by trained clinicians,
as lesions can be hard to detect.

While the diagnosis of the disease ultimately requires a physician, automated
detection of DR lesions can improve patient outcomes. Recent developments in
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machine learning and computer vision that enable accurate classification and
localization are well suited to the DR detection task. Of particular interest are
pixel level annotations of DR lesions that suggest to physicians where in the
image the lesions should be. Automated detection methods save time and can
reduce uncertainty in DR diagnosis.

The datasets available for DR strongly influence development of automated
detection algorithms. Publicly available datasets for DR, such as Messidor [1],
DRIVE [2], STARE [3] and DIARETDB [4], contain annotations of the whole
image or of sub-regions of the image. Unfortunately, detection algorithms built
from these datasets tend to make image level or patch level predictions, which
by design has limited utility to a clinician who needs to explain the underly-
ing factors leading to the diagnosis. A system capable of accurate pixel-level
segmentation is more explainable and provides better value to clinicians.

In this work, we use the Indian Diabetic Retinopathy Image Dataset (IDRiD)
[5]. To the best of our knowledge, IDRiD is the first public database for DR con-
taining pixel level annotations of four typical DR lesions: microaneurysms (MA),
hemorrhages (HE), hard exudates (EX), and soft exudates (SE). Physicians
assess combinations of these lesions to diagnose various grades of DR (Fig. 1).

Fig. 1. Color fundus photograph containing different retinal lesions associated with
diabetic retinopathy. Enlarged parts illustrating presence of Microaneurysms, Soft Exu-
dates, Hemorrhages and Hard Exudates.

Our method uses the Holistically-Nested Edge Detection (HEDNet) network
[7] to compute a segmentation map from a fundus image. To enhance HEDNet
segmentation performance, we incorporate this model into a conditional Gen-
erative Adversarial Network (GAN) with a standard PatchGAN discriminator.
Our method is end-to-end, and we show that the addition of adversarial loss can
improve the lesion segmentation performance of diabetic retinopathy images.
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2 Related Work

2.1 HEDNet in Semantic Segmentation

Semantic Segmentation is an image-to-image translation method that aims to
identify regions and structures in an input image. These methods solve pixel-
level classification problems, where the classes are pre-defined. For example,
semantic segmentation of street view images produces classes like person, vehicle,
building, etc. The result of such segmentation is fine-grained and thus contains
more information about the scene than both simple classification and bounding
box detection. In the context of the IDRiD dataset for DR, each pixel can be
annotated as one of four lesion types or healthy.

Holistically-Nested Edge Detection (HEDNet) [7] is a state-of-art algorithm
proposed to solve image-to-image problems with a deep convolutional neural
network. Unlike traditional edge detectors, HEDNet can generate semantically
meaningful edge maps that identify object contours. Experiments on Berkeley
Segmentation Dataset show that HEDNet performs much better than tradi-
tional edge detection algorithms like Canny edge detection, and it also outper-
forms patch-based edge detection algorithms in terms of speed and accuracy [7].
Although it is originally proposed to solve edge detection for natural images, we
show that HEDNet is capable of solving the segmentation problem as well.

Considering the effectiveness of HEDNet for edge detection and semantically
meaningful contour maps, we choose to base our work on top of this architecture.
We show that HEDNet is capable of solving the segmentation problem on the
IDRiD dataset.

2.2 GAN in Semantic Segmentation

Classification algorithms, such as those for semantic segmentation, perform well
when the task has a clearly defined objective. In practice, however, the objective
function used often incorporates hidden assumptions that can be overly simplis-
tic. For instance, the classification setting might assume that each pixel belongs
to precisely one class, but in reality, a pixel could represent presence of both
soft exudates (which occur in the Nerve Fiber Layer of the Retina) and hard
exudates (which occur deeper in the retina). When we think about labeling these
pixels, the multi-class setting breaks down. Therefore, in semantic segmentation
tasks, the objective can be challenging to define because we need to consider all
possible assumptions and we may not know in advance what they are.

Semantic segmentation tasks have been framed as adversarial generative
modeling problems [15,16], where the generative model’s objective function is
learned. For instance, in the area of medical image processing, Splenomegaly
Segmentation Network (SSNet) [22] utilizes conditional generative adversarial
networks (cGAN) [23] to solve the spleen volume estimation problem, and the
work shows significant improvement over the baseline on a medical dataset con-
taining 60 MRI images.
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While we use HEDNet to solve a straight-forward classification problem with
the pixel-wise ground truth labels from IDRiD, we can also evaluate how realistic
the HEDNet annotations are. Therefore, we present semantic segmentation on
IDRiD as a generative modeling task, and we train HEDNet to both classify
pixels correctly and generate realistic segmentation maps of typical DR lesions.

3 Methodology

In this section we start by showing how we preprocess the retinal images, then
we explain how we use an image-to-image network to segment DR lesions and
how we combine the GAN loss to further refine the segmentation results. An
overview of our model structure is shown in Fig. 2.

Fig. 2. Main framework of conditional generative adversarial network

3.1 Preprocessing Steps

Before we feed the raw images into our network, we consider using illumination
correction and contrast enhancement techniques on the retinal images for better
image enhancement.

Brightness Balance. Since the dataset is sampled from different lesions and
tissues, there might exist some inconsistency in the brightness of the whole
dataset. To avoid the imbalance of brightness among different images, we force
each training and test image to have an average pixel intensity equal to the
average pixel intensity of the training set.
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Contrast Enhancement. Contrast enhancement ensures the pixel intensities
cover a wide range of values, which can make details more readily apparent.
We applied CLAHE (Contrast Limited Adaptive Histogram Equalization) for
contrast enhancement. CLAHE affects small regions of the image instead of
the entire image [24], and it can have significantly better performance than the
regular histogram equalization.

Denoising. In practical situations, intrinsic and extrinsic conditions related to
capture of the image result in different kinds of noise, and denoising is a funda-
mental challenge in image processing. Here we assume that the images contain
Gaussian white noise, and apply the Non-local Means Denoising algorithm [25].
Additionally, we apply a bilateral filter the the image, which replaces the inten-
sity of each pixel with a weighted average of intensity values from nearby pixels,
thus preserving edge information while the noise is minimized.

3.2 Image to Image Network

The image to image network for segmentation we use is HEDNet [7]. HEDNet
builds on VGGNet [19] by adding side outputs to the last convolutional layer
in each stage and by removing the last stage and all fully connected layers.
The VGGNet structure is initialized with weights pre-trained on ImageNet and
then fine tuned. The side outputs are fused together via a trainable weighted-
fusion layer; since each output corresponds to a different stage of VGGNet, the
fusion enables a multi-scale representation of the output. This fully convolutional
architecture allows HEDNet to maintain both high level information and low
level details.

All side outputs from HEDNet are concatenated, and therefore each stage of
the network contributes to the final pixel-wise binary cross-entropy (BCE) loss.
This is known as deep supervision in the sense that each stage can be interpreted
as an individual network output solving the learning task at a specific scales.
Experiments have shown that with only the fusion layer loss, a large amount of
edge information is lost on high level side outputs.

Diabetic Retinopathy lesions typically make up a very small proportion of a
diseased fundus image and do not exist for images of healthy eyes. As a result,
the ground truth is highly imbalanced. We use a class-balancing weight β, which
differentiates cross-entropy loss for positive and negative samples:

Lossweight BCE = −(β · ylogp + (1 − y)log(1 − p)) (1)

where y is the binary indicator 0 or 1 and p is the predicted probability of
observation of the positive class.
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3.3 GAN Loss

Inspired by Splennomegaly Segmentation Network (SSNet) [22], we find that the
variations in both size and shape of the lesions from the Diabetic Retinopathy
can introduce a large number of false positive and false negative labelings, and
conditional GAN [23] is an effective approach to improve generalization ability.
The generator of SSNet is a Global Convolutional Network (GCN), which is
inherently an image-to-image fully convolutional network with a large receptive
field. Since we want to output an image of the same size with the input image,
here we need an equivalent kernel size, therefore we propose to use HEDNet to
replace the GCN for diabetic retinopathy.

Furthermore, a conditional GAN is used to discriminate the output, whose
architecture is the same as infoGAN [26]. The discriminator utilizes the frame-
work of PatchGAN [27], where the input image is split into smaller patches, and
each small image patch is applied with a cross entropy loss to decide whether
that patch is fake or real. The input to the discriminator is the concatenation
of the original image patch and the corresponding segmentation output from
the generator, which is a 4-channel tensor. Therefore, we can see that the dis-
criminator learns the joint distribution of the input and the segmentation map
conditioned on the input.

3.4 Loss Function

The final generator loss term is a weighted average of binary cross-entropy loss
and GAN loss:

Lossgenerator = Lossweighted BCE + λ · LossGAN (2)

thus the goal of the network is to produce good segmentation with respect to
ground truth as well as to make segmentation consistent such that the segmenta-
tion result seems real to the discriminator. Therefore, it is used to further refine
the segmentation results.

4 Experiments

4.1 Datasets

We use the dataset from IDRiD challenge [5]. This sub-challenge can be divided
in four different tasks, which are lesion segmentation of Microaneurysms (MA),
Soft Exudates (SE), Hard Exudates (EX) and Hemorrhages (HE). Of the 54
training set images and 27 test set images, not all images contain all four lesion
types. Table 1 shows the percent of images in the train and test sets respectively
assigned to each of the four classes. We randomly divided the training set into
training set with 80% images and validation set with 20% images. Each image
has resolution of 4288 × 2848.
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Table 1. Structure of IDRiD dataset. Percentages show amount of images containing
the given lesion type.

Type Dataset

Training set
images

Testing set
images

Total pathological
images

Microaneurysms (MA) 54 (100%) 27 (100%) 81 (100%)

Soft exudates (SE) 26 (48%) 14 (52%) 40 (49%)

Hard exudates (EX) 54 (100%) 27 (100%) 81 (100%)

Hemorrhages (HE) 53 (98%) 27 (100%) 80 (99%)

4.2 Implementation Details

Hyperparameters. We use a pixel value in [0, 1] for each lesion image and
ground truth segmentation. We use a patch size of 128 for the SE, EX and HE
models and patch size of 64 for the MA model. We set the weight β in BCE
loss to 10 to balance the positive and negative labels. We set the weight of
the GAN loss λ = 0.01, as in SSNet. We use SGD as our optimizer for both
HEDNet and the discriminator with an initial learning rate of 0.001 in both
cases. For HEDNet, we decay the learning rate by 10% every 200 epochs. For
the discriminator model, we decay the learning rate by 10% every 100 epochs.
The momentum factor of the optimizer is 0.9. In addition, we apply L-2 weight
decay with a rate of 0.0005. The training and validation batch size is 4 and the
testing batch size is 1. For all experiments, the model is trained for 5000 epochs.

Preprocessing. For contrast enhancement, we apply the CLAHE technique
with tiles of 8 × 8 pixels and a default contrast limit of 40. For denoising, we
apply the Non-local Means Denoising algorithm with a filter strength of 10. We
also normalize each channel of the lesion image to a mean of 0.485, 0.456, 0.406
and standard deviation of 0.229, 0.224, 0.225.

Data Augmentation. During training, we randomly crop each image to 512 ×
512 pixels, and randomly rotate each image using a maximum angle of 20◦.

4.3 Performance Evaluation Metrics

We use several performance metrics for evaluation, including Average Precision
Score (AP), F-1 score and Precision-Recall Curve (PRC). All the 3 metrics reflect
the precision and recall performance of the model on binary segmentation tasks
from different perspectives. We compute the score of AP and F-1, and plot the
PRC for each model on all the entire testing set. The evaluation is implemented
using scikit-learn functions.
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Table 2. Average precision on the test dataset on four lesions

Model AP

UNET HEDNet HEDNet + cGAN

Microaneurysms (MA) 41.84% 44.03% 43.92%

Soft exudates (SE) 42.22% 43.07% 48.39%

Hard exudates (EX) 79.05% 83.98% 84.05%

Hemorrhages (HE) 41.93% 45.69% 48.12%

Table 3. F-1 score on the test dataset on four lesions

F-1 score Model

UNET HEDNet HEDNet + cGAN

Microaneurysms (MA) 41.76% 39.81% 42.98%

Soft exudates (SE) 27.88% 40.12% 43.98%

Hard exudates (EX) 69.90% 68.94% 69.08%

Hemorrhages (HE) 44.97% 45.00% 45.76%

Fig. 3. Precision-Recall curves for four models
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Fig. 4. Top: an example test set image presenting all four lesion types. Bottom: seg-
mentation maps. Each row, from top to bottom, shows lesion types: MA, SE, EX and
HE. Each column, from left to right, contains segmentation maps of ground truth,
HEDNet output, and HEDNet + cGAN output, respectively.

4.4 Experimental Results

Quantitative Results. We compare three models: UNET, HEDNet and HED-
Net with cGAN. UNET, which was originally proposed for biomedical image
segmentation [8], is a standard and widely used model [9–11]. Results show
that our HEDNet+cGAN model improves over both HEDNet and UNET. HED-
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Net+CGAN improves average precision of SE, HE and EX segmentations, and
it improves the F1 score for MA, SE and HE. The average precision and F-1
scores are shown in Tables 2 and 3 respectively. The results show that the model
performs best on hard exudates, where it achieves the highest scores for both AP
and F-1 score. This can be explained by the pathological features of EX lesions.
Hard Exudates are small shiny white or yellowish white deposits deep to the reti-
nal vessels with sharp margins, which leads to high contrast in the images. We
do not see an obvious improvement on MA segmentation from the experimental
results, which is also related to pathological features of MA. Compared to other 3
types of lesions, microaneurysms are very small, lower contrast and share higher
similarity to blood vessels, which can confuse the model to certain extent. The
nearly consistent improvements of the HEDNet+cGAN model over the HEDNet
model on all 4 lesion types for both evaluation metrics demonstrates the model
strength under the cGAN framework.

Qualitative Results. Figure 3 presents the qualitative results of a comparison
between 2 frameworks by plotting the Precision-Recall curves. The ground truth
segmentation is in the second column, and the segmentation results of HEDNet
and cGAN are in the last two columns. From the results, EX shows the best
performance. The other 3 lesion types do not have as good results as EX, but the
segmentation result of cGAN framework is much closer to the ground truth than
HEDNet only, which is consistent with the quantitative results. Figure 4 shows
an example of the original lesion image from the test set and three segmentation
maps for each of the four lesion types.

5 Conclusion

In this paper we have presented a method to improve the lesion segmentation
performance on retinal images. We propose to use HEDNet to segment lesions
in retinal images and, then, retinal image and segmentation pairs are fed to a
PatchGAN discriminator that is trained to distinguish between ground truth
pairs and predicted ones. The HEDNet segmentation model is then trained to
both minimize a segmentation loss and to maximize the discriminator classifica-
tion loss.

By using this approach, we show that it is possible to improve average pre-
cision on all lesion segmentation tasks. In particular, the AP of SE and HE
segmentation improves by 5.3 and 3.1% points when using conditional GANs
over using HEDNet alone. In the future we want to evaluate if this framework is
able to improve the performance in combination with other segmentation mod-
els.
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Abstract. We propose a novel machine learning based methodology for
detection and annotation of areas in Whole Slide lung Images (WSI) that
are affected by lung cancer. Contrary to the trend of processing WSIs
in small overlapping patches to generate a heat-map, we use a much
larger patch with no overlap, aiming at capturing more of the context
in each patch. As these larger patches are less likely to completely fall
into one of the cancer/co-cancer classes, we use a pixel-level image seg-
mentation approach consisting of a custom Fully Convolutional Neural
Networks (FCNN). As opposed to the trend of using very deep neural
networks, we carefully design a small FCNN, while avoiding the train-
able upsampling layers, in order to cope with small training data and
inaccurate region-based labeling of WSIs. We show that such an efficient
architecture achieves better accuracy compared to the heat-map based
approach. Apart from the descent results of our small network, this study
shows that FCNNs are capable of learning region-based human labeling
of biomedical images that sometimes does not correspond to a texture
or a bounded object as a whole, but is more like drawing a line around
a region containing a scattered number of small malignant tissues.

Keywords: Biomedical image analysis · Lung cancer detection ·
Deep neural networks · Fully Convolutional Neural Networks

1 Introduction

Lung cancer is the cancer with the highest rate of fatalities for both men and
women. In 2017, more than 160000 Americans died of the lung cancer [2] and
as such, the development of tools and approaches for accurate diagnosis of the
patients could save lives of many. One of the essential steps in early diagnosis
and treatment of Lung cancer is expert evaluation of microscopic histopathol-
ogy slides, to determine the types and sub-types of lung cancer, which in turn
defines the type of treatment. Histopathology imaging can also provide insights
about the probability of the survival of the patient [13]. However, the evalua-
tion of biopsy tissues by experts is a time-consuming process. This motivates
c© Springer Nature Switzerland AG 2019
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the integration of computer aided approaches in the workflow of pathologists,
to expedite the diagnosis process of lung cancer [4]. This is made possible by
the advent of digital Whole Slide Imaging (WSI), which involves scanning of
the glass histology slides of biopsy tissues to capture a gigapixel digital image.
Figure 1 shows a sample segment of a WSI containing cancer tissues. Once appro-
priate tools and algorithms are created for systematic analyzing such gigantic
sized images, automated analysis of WSIs provides more efficiency and accuracy
to the workflow of an expert pathologists.

Fig. 1. A segment of a lung WSI with polygons annotating regions containing lung
cancer tissues (175 um). Note that the annotations are a little loose in the sense that
some of the areas containing normal tissues are also included in the polygon.

In this paper, we explore the use of a powerful neural network architecture
for detection of areas in WSIs that contain cancer tissues. This task is a chal-
lenging one, because of small amount of available training data, the huge size of
WSIs (millions of pixels) and inaccuracies in labeling of the training data. More
specifically the architecture we use is a light Fully convolutional Neural Network
that is designed with special care to deal with these challenges.

1.1 Related Work

Conventional approaches for detection of malignant tissues in histopathology
images includes the use of hand-crafted features such as histogram, grey-level
co-occurrence matrix and grey-level run-length matrix along with conventional
classifiers such as Support Vector Machines that are applied for automatic detec-
tion of breast and oral cancers [10]. In recent years, with the advent of efficient
training techniques for deep neural networks, a number of end-to-end learning
methodologies are introduced for analysis (feature extraction and classification)
of biomedical image. The majority of these approaches employ a particular deep
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Fig. 2. Few examples of 1024 × 1024 pixel patches from Lung WSIs. First row shows
examples of patches that are annotated as normal tissues by the expert pathologist
and the second row shows examples of patches that are marked as containing cancer.

learning architecture called Convolutional Neural Networks (CNN) [6]. when
enough training material is available, CNNs are shown to be powerful in cre-
ating rich features for all kinds of computer vision problems. Usually, multiple
layers of CNNs are stacked together and followed by a fully connected neural
network whose role is to perform the final classification using CNN features.

In [7], a method is proposed to apply a very powerful CNN based classifier
(Inception [12]) to aid breast cancer metastasis detection in whole slide images.
The approach is based on classifying small overlapping 100 × 100 pixel patches
of WSI using the CNN network to generate a heatmap from which final classifi-
cation is made by application of a global threshold. The authors show that their
method yields state-of-the-art sensitivity in detecting small patches of tumor,
while reducing the false negative rate to a quarter of a pathologist and less than
half of the previous best result. This heatmap based approach is applied in [5]
for the case of Lung cancer annotation. The authors performed a comprehensive
evaluation of application of several well-known CNN based classifier in classifying
small 256 × 256 patches of WSIs and shown the potential of CNNs for detecting
cancer regions. In [3], to localize and classify sub-types of lung cancer (small-cell,
non-small lung squamous cell and non-small cell lung adenocarcinoma).

1.2 Contributions

In this paper we conduct an exploratory research aiming at improving the per-
formance of Lung cancer annotation in WSI images using an architecture that
is usually used for pixel-level classification (semantic segmentation) of images
(rather than the whole patch classification used in [7]). The reason we opted for
this approach is that as opposed to the heatmap based approaches [7] that use
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patches as small as 100 × 100 pixels, we wanted to use a larger patch-size (1024 ×
1024) so that it would be possible to take larger contexts into account. One intu-
ition behind this choice is that even for human eye, detecting an object is easier
when the whole object is seen in a wider view, compared to a zoomed-in view
that captures only parts of a bigger object. However, when using a larger patch
size, the corresponding annotations may now include both normal and cancer
tissues and thus the whole-patch classification approaches as in [7] cannot be
used anymore and thus the pixel-level semantic segmentation would be a more
appropriate choice. The architecture we employ is a custom Fully Convolutional
Neural Network (FCNN) [8]. FCNNs are shown to be powerful in end-to-end
classification of every pixel of an image into one of the target object classes
(when provided with enough training data with accurate pixel-level labels).

The challenge in application of FCNNs in annotation of Lung WSIs is the
occasional lack of direct correspondence between training labels and actual pat-
terns in WSIs. On one hand, the manual labels drawn around cancer regions
are not precise at pixel level (Fig. 1) in the way a FCNN requires. This is a
big challenge by itself and is studied to some extent in other domains, using
semi-supervised training approaches [9]. On the other hand, sometimes it is
hard to find pixel level evidence of cancer in all the pixels annotated as can-
cer regions. These regions usually do not correspond to an actual object with
clear boundaries, as it is usual in photographic images. For instance, a car has
clear boundaries and a distinct color in an image; but it is hard to draw a hard
boundary around a region containing cancer tissues. Sometimes, a whole region
is labeled as cancer tissues because a number of malignant cells are observed in
that region, while the surrounding patterns look similar to the patterns seen in
other regions annotated as non-cancer. This can be seen in the bottom row of
Fig. 2 that contains few patches from regions entirely marked as cancer tissue. As
such, the application of FCNN for finding the areas in WSI that are labeled as
cancer regions, is more like aiming at learning the way of thinking of the expert
pathologist rather than detection of objects with clear boundaries and specific
textures, as is usual in semantic image segmentation tasks.

Aiming at dealing with these challenges, we design a custom FCNN net-
work, by dropping the trainable upsampling convolutional filters and generating
a coarse 32 × 32 pixels classification map using only convolutional and pooling
layers. We avoid the use of very deep architectures to avoid over-fitting to the
small training set we have and also to have shorter training time. The resulting
network is almost 10 times smaller than the famous very deep networks that
are usually employed (using transfer learning) and achieves better classification
accuracy than the baseline heatmap based approach that makes use of the very
deep inception v3 [7]. This shows the power of our small coarse pixel-level FCNNs
in learning to annotate, even when the labels do not have a clear correspondence
with the textures and boundaries in the images.
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2 Context Aware Fully Convolutional Neural Network

The architecture we use to annotate cancer regions in Lung WSIs is inspired by
the FCNN architecture introduced in [8] for pixel level semantic segmentation of
images. The FCNN in [8] extends on some of the well-known network architec-
tures like VGG network [11] that use a very deep Convolutional Neural Network
(CNN) for feature extraction, followed by a fully connected neural network that
performs image level classification. In the FCNN, the fully connected layer of
the classifier is dropped and replaced by few more layers of CNNs to achieve
coarse pixel level classification map. Subsequently, several deconvolution layers
(upsampling and convolutional filters) are used to attain pixel level classifica-
tion. The training is performed end-to-end, at pixel level to assign each pixel in
the image to one of the available classes.

Fig. 3. The three FCNN architectures we use for annotation of lung cancer: small-
FCN32, small-FCN16 and small-FCN512.

For the task of Lung Cancer annotation in WSI, we design a significantly
smaller network shown in Fig. 3. The choice of smaller network is because of
the nature of problem we are dealing with (Sect. 1.2) and also the much smaller
training data we have (to lower the risk of over-fitting to the small training
dataset). We have used 4 × 4 convolutional filters to increase the receptive field
at different level, because we are aiming at labeling regions of WSIs rather than
finding of the exact boundaries of objects.

We evaluate 3 alternatives shown in Fig. 3 by taking final output at different
points in the network: Small-FCN-32 does not even use the upsampling decon-
volution filters and generates the final 1024 × 1024 mask by simple repetition
of values at each pixel. Small-FCN-16 goes even at a coarser level with an addi-
tional pooling layer, aiming at achieving region based labeling of human eyes.
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Finally, in order to compare the ability of the trainable upsample in region-based
labeling, we use small-FCN-512, which uses trainable deconvolution layers to get
the mask at 512 × 512 resolution. Table 1 shows that all the networks we use
are at least 30 times smaller than the well-known DNN architectures that are
considered the state-of-the-art and are used in most of the current biomedical
imaging DNN based approaches [6]. For training of these three architectures we
use the spatial loss function defined as sum of cross-entropy loss function at each
pixel.

Table 1. Number of parameters in different DNN architectures.

Architecture Parameters Architecture Parameters

small-FCN-16 182K VGG 138M

small-FCN-32 182K AlexNet 61M

small-FCN-512 253K Inception-v1 7M

ResNet-50 25.5M Inception-v3 20M

It is noteworthy that we use a 1024 × 1024 patch-size but immediately down-
sample the patch by a factor of 2. Consequently, the input to the FCNN is of
size 512 × 512. As such, we capture a larger context while avoiding the extra
computational complexity of processing 1024 × 1024 images.

3 Experiments

In this section we present details about training and testing of the proposed
architecture. We use data provided by [5] that consists of 200 WSIs obtained by
scanning histological slides stained by Hematoxyin and Eosin (H&E). All sam-
ples were digitized using the same Olympus VS120 scanner with 20x objective
magnification. Experienced pathologists have manually annotated the cancer
regions on tissue level for each WSI.

For training of our network, we sample 1024 × 1024 patches from 150 of these
WSIs, and use Adam optimizer [1] with a decaying learning rate that starts with
1e-4, to optimize the weights of these networks. We use a batch size equal to 10
for training on an NVIDIA Pascal GPU and the network starts to converge after
about 2 hours of training. Figure 4, shows an example annotation generated by
small-FCN-32. It can be seen that this small network is capable of predicting
regions in WSI annotated as cancer regions by expert pathologists. There are
also small regions in bottom left corner of the segment, where the generated
annotation does not match the ground truth.

For a formal evaluation of the resulting annotations we use the remaining 50
WSIs as our test set and use Dice coefficient as the performance metric:

2TP
2TP + FN + FP

(1)
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Fig. 4. A large segment of a Lung WSI in which cancer regions are marked by poly-
gons around them. The prediction of our smallFCN-32 architecture is shown as green
highlights overlaid on the original WSI. (Color figure online)

where TP indicates number of True Positives pixels, FP is the number of False
Positives and FN is the number of False negatives. We compare our results to
those of the heatmap based approach that was introduced in [7] for detection
and localization of breast cancer metastases and was applied in [5] to the case of
Lung cancer. For the baseline heatmap based approach we use Inception v3 [12]
architecture on 256 × 256 pixels patches to generate the heatmap and apply a
threshold of 0.5, with an overlap of 128 pixels between adjacent patches. The
results are presented in Table 2. It can be seen that our small-FCN-32 achieves
better results compared to the heatmap based approach [5].

Table 2. Test set performance for different approaches.

Approach Patch size Overlap Average dice coef.

small-FCN-16 1024 × 1024 - 69.95

small-FCN-32 1024 × 1024 - 71.24

small-FCN-512 1024 × 1024 - 69.88

ImagenetFCN 1024 × 1024 - 73.54

Heatmap based [5] 256 × 256 128 67.45

4 Conclusions

In this research we introduced a new approach for annotation of cancer regions
in Lung WSIs that rather than classifying small patches from the WSI as a
whole, aims at classifying each pixel in larger patches using image segmentation
methods. We introduced three custom FCNNs that are at least 30 times smaller
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than the well-known deep learning architectures. We showed that such efficient
architecture is indeed capable of annotating Lung WSIs similar to an expert
pathologist annotates cancer regions. Moreover, it outperformed the heat-map
based approach that relies on a very deep neural network with much more com-
putations. In this paper we focused on exploring the use of small FCNN archi-
tectures for lung cancer annotation and these results were achieved without any
pre-processing and standardization of WSIs, that are shown helpful in improving
the performance of machine learning based histopathology image analysis.
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Abstract. One of the most common exams done in hospitals is the chest
radiograph. From results of this exam, many illnesses can be diagnosed
such as Pneumonia, which is deadliest illness for children. The main
objective of this work is to propose a convolutional neural network model
that performs the diagnosis of pneumonia through chest radiographs.
The model’s proposed architecture is automatically generated through
optimization of hyperparameters. Generated models were trained and
validated with an image base of chest radiographs presenting cases of
viral and bacterial pneumonia. The best architecture found resulted in
an accuracy of 95.3% and an AUC of 94% for diagnosing pneumonia,
while the best architecture for the classification of type of pneumonia
attained an accuracy of 83.1% and AUC of 80%.

Keywords: Pneumonia · Chest radiography · Deep neural network ·
Diagnosis

1 Introduction

About 450 million people are affected by pneumonia every year, resulting in
approximately 4 million deaths [1]. In 2015, pneumonia accounted for 15% of the
deaths of children under the age of 5, which made it the most deadly infectious
disease in children [2]. In addition, pneumonia is estimated to cause over 11
million deaths by 2030 [3].

The most common types of pneumonia are those caused by bacteria or
viruses. This disease can be treated more effectively if its method of transmis-
sion is quickly and correctly determined. To assist in the diagnosis of pneumonia,
patients undergo an imaging exam called the chest radiograph, also known as
chest X-ray (CXR). The product of this exam is a visual representation of the
internal state of the patient’s chest.

The chest X-ray is the most common type of radiological examination, which
results in a high amount of images being generated each day. With an automatic
method of detecting pneumonia, radiologists can be offered an objective second
c© Springer Nature Switzerland AG 2019
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opinion to accelerate the diagnosis process. Since CXRs are images, this renders
the process suitable for automation through the use of Deep Learning, which is
an area of machine learning that is based on abstracting complex information
through deep processing layers.

A model that makes use of Deep Learning has the ability to automatically
distinguish features and classify images. This technique is already widely studied
for use in the medical field for the diagnosis of diseases that can be diagnosed by
the use of visual information such as images or volumes. As an example, Deep
Learning has been applied in the detection of glaucoma [4], brain tumors [5] and
skin cancer [6].

The main issue with using Deep Learning models is finding a suitable archi-
tecture for the problem being tackled. Complex architectures are robust and can
be used for many problems but require long hours of training and significant
computing power to be employed, while simple architectures might not possess
the robustness needed to give accurate results. This problem can be explored
through the use of hyper-parameter optimization [11].

Therefore, this work aims to present an automatic method to detect pneu-
monia through chest radiography by means of automatically generated deep
convolutional networks (CNNs). In addition, the technique will also be applied
in order to try to differentiate whether the patient is afflicted by bacterial or
viral pneumonia. Several other authors have tackled this problem with vary-
ing degrees of success. Oliveira et al. [7] made use of different combinations
of wavelets and achieved an AUC of 97% on a small base of 20 test images.
More recently, Rajpurker et al. [8] and Kermany et al. [9] both used different
CNN architectures to automatically extract features and classify images. They
achieved AUCs of 76.8% and 96.8% respectively on different image bases.

This paper is organized as followed: Sect. 1 presents the proposed methodol-
ogy use in detail. Experimental results along with tables and graphs are presented
in Sect. 2.4. Section 3.2 concludes this paper with final considerations and future
work.

2 Proposed Methodology

Two different convolutional neural network models will be generated by following
the flowchart in Fig. 1. The first model will be able to diagnose pneumonia from
a chest X-ray scan while the second will be able to differentiate whether the type
of pneumonia is bacterial or viral through the same scan.

2.1 Dataset

The dataset used to measure the performance of the proposed methodology was
initially collected and labeled by [9]. It presents 5,232 chest X-rays from rou-
tine exams done on children, where 3,883 (2,538 bacterial and 1,345 viral) were
labeled as presenting pneumonia and 1,349 as normal. A patient may possess
more than image in the dataset and the X-rays are stored in JPEG format with
varying resolutions.
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Fig. 1. Diagnosis and classification methodology flowchart.

To avoid biased and therefore invalid classifications, the author separated
624 images with no patients in common with the training set as the testing set.
From these images, 234 of them are classified as normal and 390 as afflicted with
pneumonia (242 bacterial and 148 viral). This is also the testing set used in this
work.

2.2 Pre-processing

As mentioned, the images in the dataset come in varying resolutions and were
even saved in a three-dimensional color scheme, despite the content of the image
being in grayscale. To correct this, all of the images were redimensioned to a
300 × 300 pixel resolution and saved in a one-dimensional format to reduce the
computational effort required for convolutional neural network training.

2.3 CNN Architecture Optimization

To solve the problem of finding an efficient architecture, a search space was
defined. Each element in this space corresponds to a CNN architecture, which
includes continuous parameters (number of neurons in each layer) and discrete
ones (filter size, dropout rate, optimizer function and amount of each type of
layer). A model’s accuracy achieved with the testing set is the value to be opti-
mized to as close to 100% as possible.

The optimization function used for this search was the Tree-structured
Parzen Estimator (TPE), which is the algorithm that presented the best results
in the study of hyper-optimization algorithms performed in a study by Bergstra
et al. [11].

This search space is delimited in such a way that the encountered architec-
tures require a lower need of computational processing. This was done in order
to search for highly specialized models for each problem that can be easily used
in computers or mobile devices with reduced computational power. The search
space can be seen in Table 1.
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Table 1. Defined search space. The filter size was chosen between the options of 3 ×
3 and 5 × 5 pixels

Parameter Minimum value Maximum value

Amount of
convolutional layers

1 7

Amount of fully
connected layers

1 4

Amount of pooling
layers

1 7

Dropout percentage 25% 75%

Amount of neurons in
FC layer 1

512 2048

Amount of neurons in
FC layer 2–4

64 512

Amount of neurons in
convolutional layers
1–4

16 64

Amount of neurons in
convolutional layers
5–7

32 128

2.4 Training and Evaluation of Architectures

Training sessions were performed by evaluating at least 50 different CNN archi-
tectures in each session. The sessions were divided into two classes: One to find
models that could detect pneumonia between healthy or normal radiographs;
and the other to find models that classified pathological radiographs between
bacterial and viral pneumonia.

The training set was divided into training and validation sets, where the val-
idation set was passed through the model at the end of each epoch. The training
and validation bases were also completely identical throughout a specific session,
this fact allows for a fair comparison between the results of the architectures in
a given session.

Each architecture was trained for 100 epochs, where an epoch was defined
as the application of all images in the training set on the model. After the 100
epochs, the model then receives the testing set where its accuracy is calculated
and fed into the TPE algorithm to perform the search through the search space.
A training session lasted for about 40 h in total for pneumonia diagnosis models
and about 30 h for pneumonia classification models.
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3 Experimental Results

3.1 Evaluation Metrics

All of the evaluation metrics for this work are derived from True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) values. These
metrics are Sensitivity (SN), Specificity (SP), Accuracy (ACC) and the Area
Under Curve (AUC). SN is the rate of which a model detects a disease while it
is present, while SP is the rate of which a model estimates the non-presence of
a disease where it isn’t present.

A Receiver Operating Characteristic (ROC) curve is a visual representation
of the relationship between the True Positive Rate and False Positive Rate. From
this curve, the aforementioned AUC value can be derived. This value represents
how well a model is distinguishing between different classes, where a value closer
to 1 suggests more accurate classifications while a value closer to 0.5 the opposite.

3.2 Results

For the diagnosis of pneumonia, the best performing model achieved an AUC of
95.3% while for the classification of type of pneumonia, the best model attained
a much lower 83.1% on each respective testing set. Table 2 shows the values of
the other evaluation metrics.

The accuracy and sensitivity values for the diagnosis model were very high,
while the specificity rate was moderate. These values show that the model is
better at detecting pneumonia than detecting normal radiographies. Meanwhile,
the values achieved by the classification model were relatively low, showing that
it presented difficulties in identifying the differences between bacterial and viral
pneumonia. This is due to how subtle the differences of these diseases are on a
CXR scan.

Table 2. Results from the best generated models

Problem type ACC AUC SN SP

Diagnosis of pneumonia 95.3% 94% 99.7% 88%

Classification of pneumonia type 83.1% 80% 91.3% 69.6%

Figure 2 shows the how the best diagnosis model found behaved during its
training. As it can be seen, the model quickly stabilizes at around 20 epochs
of training aside from a spike at the 80 epoch mark. This spike is most likely
caused by untrained neurons in the dropout layer and would stabilize with fur-
ther training.

For the classification of pneumonia type model, Fig. 3 demonstrates how it
performed during its training session. It is noticeable that the model started to
quickly overfit due to how training and validation values constantly distanced
itself. This shows that the model is completely unsuitable to handle this type of
problem so further hyperparamenter search sessions should be explored.



358 G. G. B. Sousa et al.

Fig. 2. Accuracy and error by epoch curves for the best model found for the diagnosis
of pneumonia.

Fig. 3. Accuracy and error by epoch curves for the best model found for the classifi-
cation of bacterial or viral pneumonia.

Tables 3 and 4 show the architectures and amount of trainable parameters of
the best models found for each problem studied in this work.

Table 5 shows a comparison between similar works with the previously men-
tioned evaluation metric and the amount of hyperparameters the particular
model used. Kermany et al. [9] was the creator of the dataset used for this work
while Rajpurkar et al. [8] used the ChestX-ray14 [10] dataset for the training
and evaluation of their model. This dataset contains 112,120 X-ray images with
only 1,353 of them being labeled as presenting pneumonia. The labels of this
dataset were automatically generated through natural language processing with
an accuracy of 88.9% for the pneumonia label. This uncertainty in the labeling
of radiographs can result in very inaccurate classifications and may be one of
the reasons behind the author’s low AUC.

For diagnosis, our model exceeded results obtained by Kermany et al. in
terms of ACC and SN, and achieved only slightly lower values for the other
metrics except for the amount of hyperparameters used. Our model necessitates
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Table 3. Architecture of the best model found for diagnosis

Layer type Input Filter

size

Activation

function

Output Amount of

parameters

Convolutional 1 300 × 300 × 1 3 × 3 ReLU 150 × 150 × 16 160

Pooling 1 150 × 150 × 16 3 × 3 74 × 74 × 16 0

Pooling 2 74 × 74 × 16 3 × 3 ReLU 37 × 37 × 32 4640

Pooling 2 37 × 37 × 32 3 × 3 18 × 18 × 32 0

Convolutional 3 18 × 18 × 32 3 × 3 ReLU 9 × 9 × 16 4624

Pooling 3 9 × 9 × 16 3 × 3 4 × 4 × 16 0

Convolutional 4 4 × 4 × 16 3 × 3 ReLU 2 × 2 × 128 18560

Fully connected 1 512 ReLU 512 262656

Fully connected 2 512 ReLU 512 262656

Fully connected 3 512 ReLU 256 131328

Fully connected 4 256 ReLU 128 32896

Fully connected 5 128 Sigmoid 2 258

Table 4. Architecture of the best model found for classification

Layer type Input Filter

size

Activation

function

Output Amount of

parameters

Convolutional 1 300 × 300 × 1 5 × 5 ReLU 150 × 150 × 16 160

Pooling 1 150 × 150 × 16 3 × 3 74 × 74 × 16 0

Convolutional 2 74 × 74 × 16 3 × 3 ReLU 37 × 37 × × 64 9280

Convolutional 3 37 × 37 × 64 3 × 3 ReLU 19 × 19 × 32 18464

Pooling 2 19 × 19 × 32 3 × 3 9 × 9 × 32 0

Convolutional 4 9 × 9 × 32 3 × 3 ReLU 5 × 5 × 128 36992

Pooling 3 5 × 5 × 128 3 × 3 2 × 2 × 128 0

Fully connected 1 512 ReLU 1024 525312

Fully connected 2 1024 ReLU 64 65600

Fully connected 3 64 ReLU 512 33280

Fully connected 4 512 ReLU 512 262656

Fully connected 5 512 Sigmoid 2 1026

a drastically lower amount of hyperparameters compared to the dataset’s creator.
This fact shows that the creation of simpler, highly specialized models for specific
problems is feasible and increases the amount of computing devices that can
make use of such models.

4 Conclusion and Future Works

Diagnosing diseases through chest X-rays is a common practice in hospitals. This
work presented techniques to accelerate diagnosis for pneumonia. The technique
used in this work was deep learning, which is a technique frequently used for
image classification and recognition in the literature. One of the main prob-
lems of using this is finding a suitable classification architecture, thus this work
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Table 5. Comparison of results

Problem type Author Amount of

X-rays with

pneumonia

ACC AUC SN SP Amount of

hyperparameters

Diagnosis Kermany et al. [9] 3,883 92.8% 96.8% 93.2% 90.1% 23 million

Rajpurkar et al. [8] 1,353 - 76.8% - - 0.8 million

Proposed methodology 3,883 95.3% 94% 99.7% 88% 0.77 million

Classification Kermany et al. [9] 3,883 90.7% 94% 88.6% 90.9% 23 million

Proposed methodology 3,883 83.1% 80% 91.3% 69.6% 0.52 million

presented a method to automatically generate and test different convolutional
neural network models.

The results were very satisfactory for the diagnosis of the disease, surpassing
the accuracy and sensitivity of the dataset’s creator while presenting a compa-
rably lower necessity of computational power. This last fact renders the model
more applicable in suboptimal situations. For the classification of whether the
pathology was caused by bacteria or virus, the simple models failed to present
acceptable levels of classification due to their differences being considerably more
subtle in chest radiographs.

For future works, exploring the usage of segmentated lungs from X-rays to
accelerate and ease the feature extraction process should be done while also
expanding the repertoire of possible generated model architectures, including
more complex techniques such as transition layers. Different search space opti-
mization algorithms similar to TPE should also be studied and applied in order
to determine if there are better options in literature.
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Abstract. Diabetic Retinopathy is the leading cause of blindness in
the working-age population of the world. The main aim of this paper
is to improve the accuracy of Diabetic Retinopathy detection by imple-
menting a shadow removal and color correction step as a preprocess-
ing stage from eye fundus images. For this, we rely on recent findings
indicating that application of image dehazing on the inverted intensity
domain amounts to illumination compensation. Inspired by this work,
we propose a Shadow Removal Layer that allows us to learn the pre-
processing function for a particular task. We show that learning the
pre-processing function improves the performance of the network on the
Diabetic Retinopathy detection task.

Keywords: Retinal image preprocessing ·
Diabetic retinopathy detection · Color balancing

1 Introduction

Diabetic Retinopathy (DR) is an eye disease that affects more than 25% of the
estimated 425 worldwide diabetic patients [1]. Consequently, DR is a leading
cause of blindness in the working-age population of the world and, therefore,
screening all diabetic patients is of paramount importance. With the growth in
the prevalence of diabetes, the burden on ophthalmologists to screen the entire
diabetic population also grows. For these reasons, a system capable of detecting
DR is becoming increasingly important.

Screening for DR in the US and UK relies mainly on the right interpretation
of a digital retinal image to recognize pathological features. Prompt acknowl-
edgement and treatment of this pathology can save sight, and for this reason
much research has been devoted in recent years to the design of machine learn-
ing pipelines that can help in its correct diagnosis. Unfortunately, lesions that
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Fig. 1. Example of an eye fundus image. Left: unprocessed retinal image. Right:
illumination-compensation by shadow removal.

characterize early stages of this disease are subtle, and when improperly illumi-
nated by a fundus camera in acquisition time they can be confounded with other
non-harmful signs of similar appearance.

A reasonable approach to deal with this problem is to improve the quality of
the image by obtaining a shadow free version of the image. Although this step
can be performed in a manual way [2–4], it may be preferable to learn the prepro-
cessing function with minimal intervention, directly from the data. We propose
to do so by implementing a U-net architecture [5], which is the convolutional
neural network architecture of choice for biomedical image segmentation.

2 Related Work

The pre-processing of retinal images has been proposed in several papers before.
One of the first proposed techniques for improving the visual appearance of this
kind of data was introduced in [2]. The authors estimated an illumination field
by first removing foreground pixels and then fitting a Gaussian model to the
background. Similarly, the technique proposed in [6] relies on Laplace interpola-
tion and a multiplicative model of illumination to remove its impact. In [7], an
image formation model involving scattering and background illumination was
proposed and inverted to retrieve well-illuminated images. A different model,
based on cataracts formation, was used in [8] to reduce blurriness and improve
contrast. Also recently, the authors of [4] introduce a luminosity correction tech-
nique with a focus on avoiding the creation of visual artifacts on regions of the
image that were initially well-illuminated. It is important to stress that all these
methods are designed and applied on retinal images in a static manner. This
means that any subsequent automatic image understanding task for diagnostic
purposes remains isolated from the pre-processing stage.

In this paper, we follow previous observations from [3,9] that fog/haze
removal can be interpreted as illumination compensation when applied to
inverted intensities on retinal images, as shown in Fig. 1. The standard model
used to describe hazy images is given by the haze imaging equation [10–13]:
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Fig. 2. Pipeline of the proposed method. A segmentation CNN is used to estimate the
transmission map t(x). Then, the input image I(x) and t(x) are provided to a Shadow
Removal Layer that outputs the normalized image J(x). Finally, J(x) is given as input
to a classifier CNN that outputs if the image has Diabetic Retinopathy or not. Both
CNNs can be trained to minimize the classification error.

I(x) = J(x)t(x) + A(1 − t(x)). (1)

Therefore, haze removal involves estimating the transmission map t (depth map),
soft matting for its refinement, estimating the atmospheric light A and recovering
the scene radiance J . While we also aim to apply the above model, in contrast
with previous techniques our goal in this paper is to automatically learn to
estimate these unknowns in such a way that they are optimal for the downstream
task of diabetic retinopathy detection, which will be simultaneously solved.

3 Method

Pre-processing the images to have more consistent illumination and colors across
the dataset can help improve the performance of DR detection. In this paper, we
aim to remove shadows from eye fundus images by dehazing the inverted image
[3]. Dehazing methods require the estimation of the transmission map t using
heuristics that may not be optimal. To overcome this issue, we pose the problem
of transmission map estimation as an optimization problem, and propose to
learn the function that maps an eye fundus image to a transmission map t(x)
by minimizing a classification error. This allows us to optimize the transmission
map estimation for a particular classification task.

3.1 Shadow Removal Layer

In order to accomplish this, we develop a Shadow Removal Layer. This layer uses
an estimated transmission map t(x) and an input image I(x) and outputs a pre-
processed image J(x), with shadows removed. This layer applies the following
equation:

J(x) = 1 − (
(1 − I(x)) − A

t(x)
+ A). (2)
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Fig. 3. Average depth map computed manually from the entire dataset of eye fundus
images, used as additional supervision to the transmission map.

We can assume that A = 1 if we white balance the images before applying the
illumination estimation function as shown in [3]. The equation then reduces to
I(x)/t(x) i.e. simply dividing the input image intensities with the transmission
map. In this work, we use a Segmentation Convolutional Neural Network (CNN)
to learn the function t(x).

The problem is that we do not have the ground-truth data to train the seg-
mentation model t(x). To solve this issue, we derive the training signal from a
classification CNN that learns to detect DR from J(x). Therefore, the segmenta-
tion CNN learns to output the transmission map that minimizes the classification
CNN error. This is possible as Eq. 2 is differentiable, and the training signal can
flow to the segmentation CNN’s parameters. The entire architecture is shown in
Fig. 2.

3.2 Transmission Map Supervision

For the transmission map estimation model to be able to learn something close
to the depth map of the image, we add a term to the loss. On top of the classi-
fication loss we minimize the mean squared error between t(x) and a reference
transmission map M . This reference transmission map is obtained by computing
the depth maps for each image in the dataset manually as per the Dark Channel
Prior theory [14] and taking an average over all the depth maps, as shown in
Fig. 3. The objective of the network is hence modified to decrease the difference
between the manually computed reference depth map and the learned depth
map. The new loss function is:

J(x, θc, θs) = L(x, θc, θs) + MSE(x, θs), (3)

where L is the classification loss, θc are the classification network’s parameters
and θs are the segmentation network’s parameters. In this paper we used Binary
Cross-Entropy as the classification loss L.
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4 Experiments

4.1 Implementation Details

We used a network inspired by U-Net as the segmentation CNN that estimates
the transmission map t(x) and a pre-trained Inception v3 network as the classifi-
cation network. The eye fundus images are resized to 512 × 512 and provided to
the U-Net. The pre-processed images that are given to the Inception v3 network
are also 512 × 512. To accomodate for the larger input image size, we remove
the last layer of the Inception v3 network and add a global average pooling layer
followed by a Fully-Connected layer with a single output.

The two models are trained using the Adam optimizer with a learning rate
of 2 × 10−4. The training process consists of 2 phases:

1. Fitting: Here, the parameters of the Inception network are frozen and the
U-net alone is trained;

2. Fine-tuning: Here, the layers of the Inception network are made trainable and
thus fine tuned along with the U-net parameters

Both fitting and fine-tuning are performed for 100 epochs each with a batch-size
of 4.

4.2 Dataset

The Messidor dataset [15] is a collection of eye fundus images of healthy
and unhealthy patients. It consists of 1200 eye fundus color numerical images
acquired by 3 ophthalmologic departments. The image sizes are 1440 × 960,
2240× 1488 or 2304× 1536 pixels. The retinopathy grade has been provided by
medical experts, where a grade of 0 corresponds to healthy and grades 1,2 and
3 correspond to unhealthy.

The training data consists of 949 images, 441 healthy and 508 unhealthy, and
the test data consists of 238 images, 106 healthy and 132 unhealthy. The images
in both training an test set are distributed equally among the 3 opthalmologic
departments.

The images are center cropped and resized. Each image corresponds to 4
images, the original image, a randomly rotated image by an angle in the range
of 230◦, and the horizontally flipped version of both.

Table 1. Our shadow removal layer improves the classification accuracy over the
baseline.

Results Test accuracy

Inception V3 89.50%

U-Net+Shadow Removal+Inception v3 90.34%
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4.3 Results

We trained the classifier on the original dataset for the task of DR detection and
obtained 89.50% accuracy. Our pre-processing method achieves a test accuracy
of 90.34% after fine-tuning, as shown in Table 1, giving an improvement 0.84%
in the test set over the baseline. Our model converges better than the baseline
and also improves the detection.

Fig. 4. Transmission map learned by the U-Net and corresponding output of the
Shadow Removal Layer.

Furthermore, we can visually inspect the estimated transmission maps t(x).
As shown in Fig. 4, we can verify that the U-Net was able to output valid
transmission maps, different from the mean transmission map M . Moreover,
the images produced by the Shadow Removal Layer have similar illumination,
indicating that the learned pre-processing step is effectively removing shadows
from the eye fundus images.

5 Conclusion and Future Work

In this paper we proposed a method to learn how to pre-process eye fundus
images for the task of DR detection. We draw inspiration from haze/shadow
removal methods and devise a methodology to train a segmentation CNN to
estimate the transmission map of the input eye fundus image. Then, we apply
a Shadow Removal Layer to pre-process the input image and then provide that
image to a classifier. The entire system can be trained to minimize the classifi-
cation error.

We show that, by learning to pre-process eye fundus images to a particular
task, the performance of DR detection is improved. As future work, we plan to
verify if the learned pre-processing function is useful for other retinal tasks, such
as vessel segmentation.
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Abstract. While microscopic analysis of histopathological slides is gen-
erally considered as the gold standard method for performing cancer
diagnosis and grading, the current method for analysis is extremely time
consuming and labour intensive as it requires pathologists to visually
inspect tissue samples in a detailed fashion for the presence of cancer.
As such, there has been significant recent interest in computer aided
diagnosis systems for analysing histopathological slides for cancer grad-
ing to aid pathologists to perform cancer diagnosis and grading in a
more efficient, accurate, and consistent manner. In this work, we inves-
tigate and explore a deep triple-stream residual network (TriResNet)
architecture for the purpose of tile-level histopathology grading, which is
the critical first step to computer-aided whole-slide histopathology grad-
ing. In particular, the design mentality behind the proposed TriResNet
network architecture is to facilitate for the learning of a more diverse
set of quantitative features to better characterize the complex tissue
characteristics found in histopathology samples. Experimental results
on two widely-used computer-aided histopathology benchmark datasets
(CAMELYON16 dataset and Invasive Ductal Carcinoma (IDC) dataset)
demonstrated that the proposed TriResNet network architecture was
able to achieve noticeably improved accuracies when compared with two
other state-of-the-art deep convolutional neural network architectures
for histopathology grading. Based on these promising results, the hope
is that the proposed TriResNet network architecture could become a
useful tool to aiding pathologists increase the consistency, speed, and
accuracy of the histopathology grading process.

Keywords: Deep neural network · Histopathology grading ·
Residual learning
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Fig. 1. An overview of the deep learning-driven computer-aided whole slide image
(WSI) histopathology grading pipeline. In the first stage, tiles from the WSI are
extracted and tile-level histopathology grading is performed using a deep convolutional
neural network (CNN). In the second stage, the histopathology gradings for all tiles in
the WSI are combined to create a malignancy probability heatmap. Features are then
extracted from this heatmap, and are used to generate a final WSI-level grading. In
this paper, we focus on improving tile-level histopathology grading using the proposed
TriResNet network architecture.

1 Introduction

The microscopic analysis of hematoxylin and eosin (H&E) stained histopatho-
logical slides is generally considered as the gold standard method for diagnosing
and grading cancers [10,18]. However, the current method for performing such an
analysis requires the manual visual inspection of human pathologists, and as such
can be limiting in several aspects. First of all, histopathological diagnosis and
grading via manual visual inspection relies on the qualitative analysis of images
from a microscope by a human pathologist, and as such can suffer from high
inter-observer and intra-observer variability, particularly with the lack of stan-
dardization in the diagnosis and grading process. Second, the visual inspection
of histopathological slides is an extremely time-consuming and labor intensive
process, especially considering the large volume of slides that a typical pathol-
ogist must analyze, with each slide containing millions of cells [2,9,27]. These
issues associated with the current method for performing histopathological diag-
nosis and grading are problematic in developed countries, but are far greater
in developing countries where there is a severe lack of trained pathologists [5].
As such, there has been significant recent interest in computer aided diagnosis
systems for analysing histopathological slides for cancer grading to aid patholo-
gists to perform cancer diagnosis and grading in a more efficient, accurate, and
consistent manner.
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Amongst the different strategies proposed for the purpose of computer aided
histopathology grading, one of the most promising recent developments has been
the leveraging of machine learning for building computational predictive mod-
els learnt directly from the wealth of histopathological slides. Earlier methods
that leveraged machine learning for computer aided histopathology grading uti-
lized human-engineered quantitative features extracted from a histopathological
image, followed by the application of a machine learning-driven classification
model on these extracted features [3,4,8,13,23,26]. For example, [26] utilized
tissue texture features by performing cell segmentation and calculating nuclei
density and position as extracted features to be fed into a quadratic classi-
fier. Other approaches have utilized a heterogeneous mix of human-engineered
features ranging from simple features such as hue, saturation, and intensity to
more complex features such as texture-based features (e.g., Haralick features and
Gabor features) as well as graph-based features, followed by the application of
support vector machines on these extracted features [8]. However, such earlier
methods that leverage human-engineered features have been limited in their per-
formance due to the significant difficulties for human experts to manually design
a comprehensive set of features that can comprehensively capture the complex
tissue characteristics exhibited in histopathological slides. Therefore, methods
that can learn a comprehensive set of important quantitative features for dis-
criminating between benign and cancerous tissue directly from histopathological
slides themselves is highly desired.

In recent years, the concept of deep learning [19] has revolutionized the area of
computer-aided histopathology diagnosis and grading by automatically learning
discriminative quantitative features from the wealth of available histopathologi-
cal images in a direct manner, rather than being constrained by the limitations of
human-engineered features. In particular, a type of deep neural network known
as deep convolutional neural networks (CNN), which demonstrated state-of-the-
art performance on visual perception compared to other machine learning algo-
rithms [17], has been leveraged for computer-aided histopathology grading to
great success [20–22,28,31]. These deep learning-driven computer-aided whole
slide image (WSI) histopathology grading approaches tend to share the same
general pipeline. More specifically, the vast size of whole slide image make them
computational intractable to be processed by a deep convolutional neural net-
work in a single inference pass, as is commonly performed in general image
classification where the images are significantly smaller in size.

To handle this size and complexity issue, these approaches breaks the task
of WSI histopathology grading into two main stages (an overview of this two-
stage approach is illustrated in Fig. 1). In the first stage, tissue image tiles are
extracted from the WSI after preprocessing is used to reduce the irrelevant white
space in the slide. A CNN trained to perform tile-level tissue grading is then used
to grade each of the individual tiles extracted over the entire WSI. In the second
stage, the histopathology gradings for all tiles in the WSI are then combined
together to create a malignancy probability heatmap, and from this heatmap a
number of WSI-level geometrical and morphological features are then extracted.
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These extracted WSI-level features are then used by a machine learning classi-
fication model to generate the final WSI-level histopathology grading. As such,
improvements to either of these two stages would yield benefits for the over-
all WSI histopathology grading processing. In this paper, we place our focus
on improving the first stage of the computer-aided WSI histopathology grading
pipeline by improving the performance of the tile-level tissue grading process
through the introduction of an improved CNN network architecture.

The key contribution of this paper is the introduction of a novel deep triple-
stream residual network (TriResNet) architecture for the purpose of improved
tile-level histopathology grading. The proposed TriResNet architecture incorpo-
rates three different streams comprised of a deep stack of residual blocks, with
the underlying motivation that, through careful training, each residual stream
will learn a different set of quantitative features for better characterizing different
aspects of the complex tissue characteristics captured in histopathology images
than what can be achieved by a single-stream network. A multi-stage targeted
training procedure is also introduced to overcome the difficulty of training such a
large network architecture as well as better encouraging feature diversity within
the network.

2 Deep Triple-Stream Residual Network

The proposed deep triple-stream residual network (TriResNet) architecture is
designed based on the idea of extracting a more diverse set of discriminative
quantitative features for better characterizing the diverse and complex tissue
characteristics exhibited in histopathological images. A more detailed description
of the proposed network architecture as well as the multi-stage targeted training
policy used to train this network is provided below.

2.1 Network Architecture

The underlying goal behind the design of the proposed TriResNet network archi-
tecture is to better learn a larger, more diverse set of quantitative features for
characterizing complex and varied tissue characteristics exhibited in histopathol-
ogy images. To achieve this goal, we leverage the notion of residual learning first
proposed in [12], which has not only demonstrated state-of-the-art performance
for a wide variety of applications such as general image recognition [12], but has
been recognized in research literature for its terrific ability to perform well both
for feature extraction and fine-tuning [16].

The strategy we leverage in the proposed TriResNet network to encourage
greater feature diversity is to incorporate multiple streams of residual blocks,
with the underlying premise being that each of these independent streams,
when trained appropriately, will be able to capture different nuances within
the tissue characteristics in histopathology images. More specifically, as shown
in Fig. 2, the proposed TriResNet architecture comprises of three separate resid-
ual streams consisting of deep stacks of residual blocks for a total of 34 layers in
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Fig. 2. Deep triple-stream residual network (TriResNet) architecture. An input layer
feeds three separate residual streams, which each residual stream composed of a deep
stack of residual blocks with a total of 34 layers. Each of these residual streams extract
different sets of quantitative features, which are then fed into a concatenation layer,
followed by two fully connected layers that result in a final grading prediction of the
input histopathological image tile as being either malignant or benign tissue.

each stream, with each stream made up of a different set of learned weights to
capture diverse feature sets. To explicitly encourage feature diversity of individ-
ual residual streams and learn to capture different tissue nuances amongst the
streams, each residual stream undergoes pre-training exposure to different data
collections, which will be described in detail in Sect. 2.2 where the multi-stage
targeted training policy is outlined.

The features of the last residual blocks in each of the three residual streams
within the proposed TriResNet architecture are combined in a concatenation
layer, which is then fed into a 16-neuron fully connected layer, followed by a
ReLU layer, which then feeds into a final fully connected layer where the number
of neurons is equal to the number tissue grades to provide the final prediction
output.

2.2 Multi-stage Targeted Training Policy

One of the challenges with leveraging the proposed TriResNet architecture for
tile-level histopathology grading is that training such a complex network is
extremely difficult because of the large number of parameters within this net-
work (which makes converging to an appropriate solution quite challenging given
this large parameter size) as well as the dangers of over-fitting. In order to tackle
the aforementioned problem, we leverage a multi-stage targeted training policy
consisting of the following three main stages:
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1. Targeted pre-training of individual residual streams.
2. Targeted training of fully connected network layers.
3. End-to-end fine-tuning of the full network.

Targeted Pre-training of Individual Residual Streams. As the first stage
of the training policy, each of the three residual streams are pre-trained inde-
pendently by freezing the weights of the other residual streams, and augment-
ing a proxy fully connected output layer to the particular residual stream we
wish to pre-train. This ensures that only one particular residual stream will be
pre-trained at a time, leaving the other residual streams unaffected during the
individual pre-training processes. Given our goal is to encourage diverse feature
learning to better model the diverse tissue characteristics in histopathology, we
utilize a stochastic pre-training policy for each of the residual streams via their
individual proxy fully connected output layers such that the individual streams
are exposed to different random batches of tissue tiles during the pre-training
process. This ensures that each residual stream will converge to a different set
of weights, and thus will be capable of capturing a diverse set of quantitative
features compared to the other residual streams during inference. To speed up
the pre-training process, each residual stream was initialized with pre-trained
weights based on the ImageNet Challenge Dataset [7]. This pre-training process
is repeated for each of the residual streams, and the proxy layers are removed
at the end of the pre-training processes.

Targeted Training of Fully Connected Network Layers. After the tar-
geted training of individual residual streams, we now focus on the targeted train-
ing of the fully connected network layers. The rationale behind this is that,
because the random initialization of these layers, there is strong potential for
convergence issues if the entire network architecture is trained end-to-end at
this point. By freezing the weights of the individual residual streams while the
fully connected layers begin to learn, we allow the fully connected layers to con-
verge to a good set of weights without the convergence issues associated with
training the entire network at this point. Furthermore, because backpropaga-
tion is performed only on the fully connected layers, the time to convergence is
greatly accelerated.

End-to-End Fine-Tuning of the Full Network. After the fully-connected
layers in the network have been trained using the targeted training process, the
entire network undergoes an end-to-end fine-tuning process to further improve
the performance of the full network architecture. In this part of the training
process, we backpropogate the gradient though the entire network, including
each of the three residual streams and the fully connected layers as a whole, thus
optimizing the weights of the entire network. This is done at a lower learning
rate that is a factor of 10 times lower than the initial learning rate. This end-
to-end fine-tuning phase also encourages the individual residual streams to work
cohesively together as a complete network architecture.
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Fig. 3. An example of a whole slide image from the CAMELYON16 dataset, showing
the large amount of irrelevant background in white.

3 Experiments

To study the efficacy of the proposed TriResNet network for the purpose of tile-
level histopathology grading, we performed a series of experiments using two
widely-used histopathological image benchmark datasets. The details of these
datasets as well as the experimental setup are presented below.

3.1 Data

We investigate two publicly-available histopathological image benchmark
datasets: (i) CAMELYON16 [1] dataset, and (ii) Invasive Ductal Carcinoma
(IDC) [6,14] dataset.

CAMELYON16 Dataset. The CAMELYON16 dataset contains lymph node
tissues of breast cancer patients, with the goal being to find metastasis of breast
cancer. CAMELYON16 consists of 400 whole slide images (WSI) divided into
270 for training and 160 for testing. Ground truth is provided by a mask corre-
sponding to each slide, which is an image with pixel level annotation indicating
the cancerous regions. Both the mask and the WSI are very high resolution
(100,000 × 200,000 pixels), with a single file being about 5 gigabytes. These are
stored in a multi-resolution format, meaning that each file contains the high res-
olution image, as well as down sampled versions to a minimum size of about 512
× 1024. An example WSI from the CAMELYON16 dataset is shown in Fig. 3.

Due to the large size of the high resolution WSI slides making it difficult
to handle and even perform simple operations on the slides in a direct manner,
OpenSlide [11] is used to read in subsections of the WSI at a lower resolution.

Preprocessing. Because of the large size of the WSIs, the background is seg-
mented from the actual tissue to greatly reduce the computational requirements
in dealing with the histopathological images. This is accomplished in this paper
using the preprocessing approach described in [31]:
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Fig. 4. Examples of tissue image tiles from the CAMELYON16 (left) and IDC (right)
datasets showing benign and malignant tissues. These tissue image tiles are extracted
at the highest magnification (40x), with a size of 224×224 pixels.

1. Read in WSI at resolution about 3072 × 7168 pixels, and convert from RGB
to HSV.

2. Use Otsu’s algorithm [24] to separate the background from foreground, then
take the union of the result with the H and S channels to generate a tissue
mask.

Dataset Generation. In many circumstances, 270 images would be considered
too few data points to train a CNN. However, due to the fact that we have pixel-
level annotations and very high resolution images, a much larger training dataset
can be generated from subsections of the original WSI slides and the labels from
the pixel-level annotations, using a similar approach as in previous research
literature [30,31]. More specifically, we create a dataset of 224 × 224 sized tissue
image tiles at the highest magnification available, as past research literature has
shown that it is most useful to look at the WSIs at the highest magnification [22,
31]. Example tissue image tiles obtained from the CAMELYON16 dataset are
shown in Fig. 4(left).

Class Imbalance. Given that the WSIs contain far more benign than malignant
tissue, this can lead to a significant data imbalance problem when training CNNs.
Therefore, we oversample the malignant class to create a balanced dataset of half
malignant and half benign tiles.

To generate the dataset, we alternate sampling between malignant and benign
tissue. In the case of malignant tissue, we select a malignant slide and sample
from the region indicated by the malignancy mask. In the case of benign tissue,
because malignant slides also contain benign tissue, we select any slide, and
make sure that the area we sample in is inside the tissue mask and but not in
the malignancy mask.
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In both cases the malignancy mask is down-sampled to be the same magni-
fication as the tissue mask, and sampling is done at this magnification. These
points are then converted to the highest magnification, and we read in the tile
at this level. No color normalization is used because it proved to be ineffective
in other research [22].

Invasive Ductal Carcinoma (IDC) Dataset. The Invasive Ductal Carci-
noma (IDC) dataset [6,14] is generated from 162 whole slide images of breast
cancer, scanned at 40x magnification. From these slides, 198,738 images were
sampled of size 50 × 50 pixels, with 78,786 of these images containing IDC.
Because of the small size of these images, they were resized to the minimum
acceptable size for the network during training (197 × 197), as is done in previ-
ous literature. The dataset is already in the format of a standard image classifi-
cation dataset, so no special preprocessing is needed. Example tissue image tiles
from the IDC dataset are shown in Fig. 4(right).

3.2 Experimental Setup

In this paper, we compare the proposed TriResNet network to two state-of-the-
art deep convolutional neural networks in order to gauge its performance for the
purpose of tile-level histopathology grading. Details of these experiments are
shown below.

Test-Train-Validation Split
The CAMELYON16 dataset was split between by WSI into 80% for train-

ing and 20% for validation, and the independent test set given by the CAME-
LYON16 competition was used for testing and evaluation. For each of the WSIs
we extracted malignant and benign tiles, balancing the number of benign and
malignant samples, as described above. For the IDC dataset, a split of 70%
training, 15% for validation, and 15% for test set was used.

Tested Deep Convolutional Neural Networks
To evaluate and compare the performance of the proposed TriResNet, we

compare it to two state-of-the-art deep convolutional neural networks: (i) Liu et
al. [22], and (ii) Li et al. [21]. We optimized the performance for the two tested
networks to the best of our abilities for high histopathology grading performance
on the two datasets.

– Liu et al. [22]: This state-of-the-art network architecture based on Inception-
v3 [29] was shown to achieve state-of-the-art performance on the CAME-
LYON16 histopathology competition [22]. Because of this network’s demon-
strated impressive performance in computer-aided histopathology diagnosis,
this network is a good choice for comparing the overall performance of the
proposed TriResNet network to.

– Li et al. [21]: This state-of-the-art network architecture based on ResNet-
34 [12] is compared with the proposed TriResNet as it was shown to provide
state-of-the-art performance on histopathology grading [21,28]. Furthermore,
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it was compared with the proposed TriResNet also to get a clearer idea of
the benefits of a triple-stream network architecture in capture more diverse
features for improved performance when compared to a single-stream network
architecture. The network has the same number of residual blocks and layers
as a single residual stream of TriResNet, thus making the comparison more
direct in terms of potential benefits.

All tested networks are implemented using PyTorch [25], and were initialized
with pre-trained weights on the ImageNet Challenge Dataset [7] to improve the
speed of convergence. The Adam optimizer [15] was used for training. Data aug-
mentation was relatively standard, with random flips, rotations, and brightness
transformations.

Performance Metrics
For both the CAMELYON16 and IDC datasets, we evaluated the perfor-

mance of each tested network on their ability to grade tissue image tiles as either
malignant or benign. For each network and dataset we evaluated the following
three performance metrics on the test set:

1. sensitivity = TP/(TP + FN)
2. specificity = TN/(TN + FP )
3. accuracy = (TP + TN)/(TP + TN + FP + FN).

4 Results and Discussion

Tables 1 and 2 show the grading performance (in terms of accuracy, sensitivity,
and specificity) of the tested networks for the test sets of the CAMELYON16
dataset and the IDC dataset, respectively. A number of interesting observations
can be made from the quantitative results. First of all, it can be clearly seen
that for both benchmark datasets, the proposed TriResNet network achieved
improved overall accuracy compared to both the tested networks.

When compared to [22], the proposed TriResNet achieves higher overall accu-
racy on both datasets, with an increase of 1.8% and 1.7% for the CAMELYON16
dataset and the IDC dataset, respectively. Since this network has been demon-
strated to provide strong performance in histopathology image grading [22] as
well as general image classification problems [29], this demonstrates that the
proposed TriResNet can be a very effective network for histopathology grading.

The comparison with [21] demonstrates that a multi-stream network archi-
tecture clearly has merits compared to a single-stream network architecture for
histopathology grading in terms of capturing a more diverse and discriminative
set of quantitative features for characterizing tissue complexities in histopathol-
ogy images, with the accuracy of the proposed TriResNet being higher by 3.6%
and 1.2% on the CAMELYON16 and IDC datasets, respectively.

It can also be observed that the proposed TriResNet achieved higher sensi-
tivity and specificity compared to the other tested networks for the IDC dataset,
which illustrates the efficacy of the proposed network. Furthermore, what is par-
ticularly interesting to note is, while achieving lower specificity compared to
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the other tested networks, the increase in sensitivity achieved by the proposed
TriResNet is quite pronounced for the CAMELYON16 dataset, where the sensi-
tivity achieved by the proposed TriResNet network is 6.3% and 9.1% compared
to [22] and [21], respectively. The higher sensitivity achieved by the proposed
TriResNet network is particularly important for the case of histopathology grad-
ing, as it is more important to identify all instances of malignancy than to have
a very low number of false positives, because of the risks associated with missed
malignant tissues leading to patients not being treated for malignant cancer.

Rather than simply discuss the strengths of the proposed TriResNet network
for the purpose of tile-level histopathology grading, we also study the limitations
of its abilities by looking at some example tissue image tiles that are incorrectly
graded by the proposed TriResNet, as shown in Fig. 5. It can be observed that
both the proposed TriResNet as well as [21] have some systematic difficulties
grading in certain circumstances. For example, one repeated issue experienced
by both TriResNet and [21] was the difficulty associated with grading when
there was a large amount of adipose tissue. In addition to this, the networks
experienced difficulties when the color of the tissue is different from what is
considered the norm; for example, as more malignant tissues tend to look more
purple, the networks falsely used this as an indication of malignancy in some
benign tissues. Greater diversity of tissues and stains used during training of the
networks should alleviate these issues. Finally, it is important to note that while
the proposed TriResNet network achieves very strong performance compared to
the other tested networks, it is also noticeably larger in terms of network size
compared to the other networks, although for clinical purposes accuracy is in
general more important than inference speed.

Table 1. Comparison of tested networks on tile-level grading for the test set of the
CAMELYON16 dataset. Numbers shown indicate test set performance, and best per-
formance for each category is highlighted in bold

Network Accuracy Sensitivity Specificity

[22] 85.3% 75.9% 95.9%

[21] 83.5% 73.1% 96.5%

TriResNet 87.1% 82.2% 91.2%

Table 2. Comparison of tested networks on tile-level grading for the test set of the
IDC dataset. Numbers shown indicate test set performance, and best performance for
each category is highlighted in bold

Network Accuracy Sensitivity Specificity

[22] 89.2% 91.4% 83.1%

[21] 89.7% 92.3% 82.9%

TriResNet 90.9% 93.1% 85.1%
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Fig. 5. Examples of tissue image tiles that were misclassified by both TriResNet
and [21]. The top row shows examples that are actually benign tissue, but were falsely
considered malignant, and the bottom set shows malignant tissue that was considered
benign.

5 Conclusion and Future Work

In this paper, we introduced a deep triple-stream residual network (TriResNet)
architecture designed to better learn more diverse and discriminative features
for characterizing complex tissue characteristics, and thus provide improved tile-
level histopathology grading. Experimental results across two widely-used bench-
mark datasets demonstrated the efficacy of the proposed TriResNet in achieving
increased accuracy when compared to two state-of-the-art networks. The promis-
ing results achieved using the proposed TriResNet network indicate that such
a network could be a useful tool to aid pathologists in improving the consis-
tency, accuracy, and speed of analyzing large volumes of whole histopathology
slides containing millions of cells. In the future, we hope to leverage improved
data augmentation strategies to handle some issues experienced by the proposed
TriResNet network associated with staining diversity, as well as more compre-
hensive testing and evaluation with a larger variety of histopathology image data.
Furthermore, a more comprehensive and fundamental trade-off analysis between
the number of streams within the network and the level of performance achieved
would be quite useful to better understand network design.
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Abstract. This paper addresses the challenging task of moving mes-
enchymal stem cell segmentation in digital time-lapse microscopy
sequences. A convolutional neural network (CNN) based pipeline is devel-
oped to segment cells automatically. To accommodate the data in its
unique nature, an efficient binarization enhancement policy is proposed
to increase the tracing performance. Furthermore, to work with datasets
with inadequate and inaccurate ground truth, a compensation algorithm
is developed to enrich the annotation automatically, and thus ensure the
training quality of the model. Experiments show that our model sur-
passed the state-of-the-art. Result of our model measured by SEG score
is 0.818.

Keywords: Cell segmentation · Binarization · Compensation ·
Inadequate label · CNN

1 Introduction

Mesenchymal stem cells (MSCs) is a heterogeneous subset of stromal stem cells
that distributed in adult tissues [4]. MSCs can differentiate into mesodermal
lineage cells (e.g. bone, fat cells) and has differentiate potential for endodermic
and neuroectodermic cells (e.g. neuron, lung cells). MSCs participate in many
elemental biological processes, including immune response and disease spread-
ing [19], where cell categorization, division and tracking is the key to achieve
reliable and quantitative analysis [18]. Usually, meaningful messages can only
be extracted from large amount of monitor data due to the high complexity of
biological processes [21]. Traditionally, it requires time consuming human labor
to examine the captured image, posing problems in generating quantitative and
reproducible result. Hence it is urgent to develop accurate automated cell track-
ing systems that can automatically detect cell boundaries and track cell move-
ments over time, providing information about their velocities and trajectories,
and detecting cell-lineage changes as a result of cell division or cell death. Sev-
eral methods have been proposed in the literature achieving decent results [12],
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but all have to rely on good-sized training sets. When only a small amount of
training data is available, such as the dataset considered in this paper [3], the
problem becomes more difficult to solve since inadequate training of the model
may easily lead to overfitting [7].

Recognizing MSCs out of detected image is a challenging task. Usually, MSCs
are high fluence and deformable cells with weak features. It requires a sensitive
model for detecting each target cell, and at the same time, maintaining high
accuracy under a high noise condition [2]. To balance between sensitivity and
accuracy, we design a specialized model based on convolutional neural networks
(CNN) and special processing techniques.

It is well known that CNNs have rapidly improved the accuracy and seman-
tic segmentation quality by sensitively analyzing features extracted from input
images. Some works has shown their potential in medical image analysis such as
classifying breast cancer [20] and segmenting lungs for chest X-Rays [13].

The advances in CNN encouraged researchers to develop more powerful net-
works, such as R-CNN [6] in 2014, Fast/Faster R-CNN [5,15], Fully Convolu-
tional Network (FCN) [10] in 2015. These models provided concepts and solu-
tions for semantic segmentation, image recognition, and object localization. In
2015, based on FCN, U-Net has been specially designed for medical images and
used for producing state-of-the-art result for ISBI cell tracking challenge [16].
Extended and optimized from Faster R-CNN, Mask R-CNN was proposed in
2017 and outperformed other models in object detection and semantic segmen-
tation [8].

In this paper, the task of cell segmentation is tackled, with potential applica-
tion in cell tracking, following the experiment requirements set out by ISBI cell
tracking competition. From the point of view of machine learning, the challenges
this task are:

(1) Small dataset size: the MSCs dataset only contains 96 annotated images for
both training and testing;

(2) Ground truth (GT) annotations are inadequate and inaccurate;
(3) The images are noisy and low-contrast, with vague object (cell) boundaries.

To deal with these problems, we design a cell segmentation model including the
following key components:

(1) Binarization enhanced pre-processing method.
(2) Ground truth compensation algorithm for improving inaccurate annotations.
(3) BEM-RCNN to segment high-fluid deformable targets.

2 Methods

2.1 Binarization Enhancement and Image Pre-processing

The dataset we focus on is split into two subsets for training and testing purposes,
each contains 48 manually annotated images. Each annotation stands for a MSC.
Figure 1 shows some instances from this dataset. As described above, there are
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several intrinsic difficulties in training a model based on this dataset, because
the frames are low in signal to noise ratio, low in contrast between cells and
background and including high fluid deformable cells. What is more, the size of
the dataset is far from enough for training of a reasonable deep CNN model such
as Inception or ResNet [17].

Fig. 1. Image and ground truth masks from the first sequence (a) and the second
sequence (b) of Fluo-C2DH-MSC. The resolution is 992 × 832 pixels for of sequence 1
and 1200 × 782 pixels for sequence 2.

To obtain sufficient data for training a robust model, we use a binarization
enhancement (BE) method to augment the training set. All the instances are
pre-processed by different thresholds based on the normalised images. A pixel’s
value V is set to 1 when it is larger than the threshold, otherwise it is set to 0
as:

V =

{
1, if V ≥ threshold
0, otherwise

(1)

For each image, the applied thresholds are 0.155, 0.175, 0.195 and 0.210. The
binarized images are saved as additional training samples and fed into the model
together with the original training data, using the same annotation. Thus, the
binarization process increases the amount of data by 400%.

Moreover, we randomly crop the images to 512 × 512 pixels before each train-
ing epoch, along with some common augmentation methods including rotation,
translation, scaling, flipping, shearing and blurring. Note that the ground truth
are converted into the corresponding shape for augmented training data. The
pre-processing pipeline is shown in Fig. 2.

2.2 Ground Truth Compensation

In this dataset, some ground truth masks do not cover all targets in the scope.
When training on a large scale dataset, few inaccurate labels may not severely
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Fig. 2. Pipeline of pre-processing. The first row shows a part of real dataset frame
provided, using different threshold to generate four sets of data files. The second row
applies several augmentation methods randomly onto the cropped frame.

affect the detection result. However, with a small training set, the detection
quality of the trained model may be largely influenced by inaccurate ground
truth. The dataset includes 2 sets of annotation masks, a set of tracking masks
that includes all cells in a relatively low accuracy, and a set of segmentation
masks that provides more accurate labels for a proportion of cells in the dataset.
Taking the advantage of this dual annotation, a ground truth compensation
method is proposed here to sidestep the issue of inaccurate annotation.

Fig. 3. Less-labeled ground truth compensation pipeline. The input image (A) is has a
fully annotated inaccurate tracking masks (B1) and accurately but partially annotated
segment masks (B2). Our algorithm extracted masks from both sets (C1 and C2),
taking all segment masks and compensate the targets without a mask with tracking
masks. The compensated masks include information from both tracking masks and
segment masks (D).

As shown in Fig. 3, each training example has 2 set of labels. When the seg-
mentation masks are inadequate, tracking masks will replenish the missing anno-
tations. When masks are available for a cell in both tracking and segmentation
ground truth, the segmentation mask will be used. All the chosen annotation are
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merged to one file for training. In such a way, it is guaranteed that each cell has
a annotation mask, and if both annotations are available, the one with the best
quality is used. The resulting annotation masks are referred to as compensated
annotation.

2.3 Cell Identification Network

We propose a automatic cell identification and segmentation method that
employs deep neuron network, namely BEM-RCNN. The architecture of the
network is illustrated in Fig. 4, which is adapted the Mask R-CNN. A CNN (e.g.
ResNet), pre-trained on MS-COCO data, is used to extract feature map for input
images. Then, pre-set candidate bounding boxes, i.e. candidate Region of Interest
(RoI), are distributed for each anchor point in the map, called a Region Proposal
Network (RPN). Then the candidate RoIs are distinguished into foreground and
background, to screen out some false RoIs. In the next stage, features are refined
by RoIAlign [8], corresponding to the feature map and the RoIs. Finally, fixed
size feature maps are put into the mask head to classify RoIs, perform bounding
box regression and generate mask inside each RoI in parallel. To draw a mask
for a RoI with semantic sense, the mask branch employs a Feature Pyramid Net-
work (FPN) [9] as its backbone. RoI classification and bounding box regression
are performed by a full connected network.

Fig. 4. The architecture of cell identification network. The input image is mapped into
a feature map by CNN. The Region of Interest (RoI) is generated by Region Proposal
Network (RPN). On the RoIs, box regression, classification and mask generation are
operated for final results.
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Formally, the multi-task loss L has been defined as (2)

L = Lcls + Lbox + Lmask (2)

In which Lcls can be divided into Lrpn cls for RPN classify loss and Lmask cls

for mask classify loss. As it shows in (3), Lrpn cls stands for classification loss
between GT and predicted bounding box generated by RPN network. Lmask cls

is loss for GT and predicted masks. both loss are calculated by cross-entropy.M
and N are the quantity of classes, yrpn cls, ymask cls are GT class for RPN and
masks.prpn cls, pmask cls are logits predicted by RPN and mask head.

Lcls = Lrpn cls + Lmask cls

= −
M∑
a=1

yrpn cls,a log(prpn cls,a) −
N∑
b=1

ymask cls,b log(pmask cls,b)
(3)

Similarly, Lbox consists Lrpn box and Lmask box. Both represents the loss for
bounding boxes generted by RPN and mask head. it is calculated by smooth l1
loss [15]. Calculation of Lrpn box is shown in (4), where yrpn box is GT bounding
box, prpn box is predicted box.

Lrpn box =

{
0.5 × (yrpn box − prpn box)2, if |yrpn box − prpn box| < 1
|yrpn box − prpn box| − 0.5, otherwise

(4)

Finally, Lmask is the average binary cross-entropy for each pixel in predicted
mask as (5) shows.

Lmask = − 1
n

∑
n

(ymask,n log(pmask,n) + (1 − ymask,n) log(1 − pmask,n)) (5)

Note that n is the number of pixels in the predicted mask, ymask,nis the ground
truth pixel value, pmask,n is the predicted pixel value.

3 Experiments and Evaluation

3.1 Dataset

As mentioned, the dataset being considered in this research is Fluo-C2DH-MSC
from ISBI cell tracking challenge, consisting of time sequential recordings of rat
MSCs on a flat polyacrylamide substrate. The dataset is split into training and
validation sets at a ratio of 4:1.

3.2 Network Training

All the images are randomly cropped to the same size of 512 × 512 before each
epoch of training. For each image, there are 512 RoIs [9], and the ratio between
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positive and negative RoIs is 1:3. A positive RoI must have a Intersection over
Union (IoU) value for at least 0.5. Otherwise, the RoI will be considered as
negative. Masks are defined on positive RoIs only. The model is trained on a
Nvdia RTX 2070 GPU. The learning rate is 0.001, with a weight decay of 0.0001
and the momentum is 0.9. The network converges after 200 epochs of training.

3.3 Results

Figure 5 shows an example image with its groundtruth, masks generated by our
BEM-RCNN model and masks generated without binarize enhancement and
GT compensation steps. As it can be observed, the proposed method (BEM-
RCNN) can detect and draw masks accurately for each target. We evaluate the
segmentation result by SEG benchmark, which based on the Jaccard similarity
index [14]. Table 1 shows our BEM-RCNN yeilds superior performance to other
methods proposed on ISBI cell tracking challenge [11].

Fig. 5. A cell image from validation set (A); the ground truth from the dataset (B);
our proposed BEM-RCNN model (C); model without binarize enhancement and GT
compensation (D).

Table 1. SEG performance of models.

Models SEG score

Model without enhancement and compensation 0.075

KTH-SE 0.590

FR-Fa-GE 0.617

BGU-IL 0.645

BEM-RCNN (ours) 0.818

GT compensation also shows a positive effect on increasing robustness of
the model. The number of successfully segmented cell is shown in Table 2. The
proposed model tracked 98.1% of target cells, comparing with 79.9% of targets
detected by model trained without GT compensation.
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Table 2. Model comparison on valid segmented cells.

Ground truth BEM-RCNN (ours) Model without compensation

Cell count 517 507 (98.1%) 413 (79.9%)

3.4 Discussions

In semantic segmentation computer vision tasks Mask R-CNN has achieved
state-of-the-art [8]. In this paper, we presented our BE-MRCNN trained on a
very small dataset, targets on detecting high fluid stem cells from low quality
images. The model proposed includes better data augmentation method, and
GT compensating algorithm, which has been proved to boost the performance
of our model. In the future, we will specific the model more carefully and expand
it to more datasets then compare with the result of other models.

4 Conclusion

This paper proposed BEM-RCNN model to segment moving mesenchymal stem
cells, including an effective binarization enhancement for small dataset with
low quality iamges and a GT compensation algorithm for inadequately labeled
ground truth. The backbone of our model is Mask R-CNN. The segmentation
result shows our model has a superior performance comparing with the state of
the art.

Acknowledgements. The authors thank the IEEE International Symposium on
Biomedical Imaging 2019 (ISBI19) cell tracking challenge [1] for providing the datasets
aiding the development of this work.
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generation and selection. arXiv preprint arXiv:1705.03386 (2017)
3. Amat, F., et al.: Fast, accurate reconstruction of cell lineages from large-scale

fluorescence microscopy data. Nat. Methods 11(9), 951 (2014)
4. Caplan, A.I.: Mesenchymal stem cells. J. Orthop. Res. 9(5), 641–650 (1991)
5. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer

Vision (ICCV), pp. 1440–1448 (2015)
6. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for

accurate object detection and semantic segmentation. In: Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp.
580–587 (2014)

7. Hawkins, D.M.: The problem of overfitting. J. Chem. Inform. Comput. Sci. 44(1),
1–12 (2004)

8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

http://celltrackingchallenge.net/
http://arxiv.org/abs/1705.03386


BEM-RCNN Segmentation 391

9. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3431–3440 (2015)
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Abstract. This paper presents a novel fusion of low-level approaches
for dimensionality reduction into an effective approach for high-level
objects in neuromorphic camera data called Inceptive Event Time-
Surfaces (IETS). IETSs overcome several limitations of conventional
time-surfaces by increasing robustness to noise, promoting spatial consis-
tency, and improving the temporal localization of (moving) edges. Com-
bining IETS with transfer learning improves state-of-the-art performance
on the challenging problem of object classification utilizing event camera
data.

Keywords: Object classification · Dynamic vision ·
Neuromorphic vision · Dimensionality reduction

1 Introduction

A standard image sensor is comprised of an array of Active Pixel Sensors (APS).
Each APS circuit reports the pixel intensity of the image formed at the focal
plane by cycling between a period of integration (wherein photons are collected
and counted by each pixel detector) and a readout period (where digital counts
are combined from all pixels to form a single frame). Motion detected and esti-
mated across frames has useful applications in computer vision tasks. Unfortu-
nately, detecting fast moving objects can be challenging due to the limitations
of the integration and read out circuit. Object motion that is too fast relative to
the integration period induces blurring and other artifacts. Additionally, since
all pixels have a single exposure setting, parts of the scene may be underexposed
while other parts are saturated. Both of these issues degrade the image quality
of the captured video frames, reducing our ability to detect or recognize objects
by their shapes or their motions. While high-speed cameras with very fast frame
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rates can resolve blur issues, they are expensive, consume lots of power, generate
large amounts of data, and require adjusting exposure settings.

Event-based cameras were engineered to overcome these limitations of the
APS circuitry found on conventional framing cameras. As described below, these
neuromorphically inspired cameras can operate at extremely high temporal res-
olution (>800 kHz), low latency (20 ms), wide dynamic range (>120 dB), and
low power (30 mW). They report only changes in the pixel intensity, requiring
a new set of techniques to perform basic image processing and computer vision
tasks—examples include optical flow [3,8], feature extraction [4,12,13], gesture
recognition [2,11], and object recognition [5,14].

“Time-surface” is one such technique with proven usefulness in pattern recog-
nition by encoding the event-time as an intensity [10]. However, time-surfaces
are sensitive to noise and to multiple events corresponding to the same image
edge with some latency when the intensity changes are large. Both have an
effect on time-surfaces similar to the ways that blurring affects APS data. An
improved time-surface technique called Filtered Surface of Active Events (FSAE)
[1] was introduced in a corner detection and tracking algorithm. FSAE yields an
improved time-surface by only utilizing the initial event of a series—effectively
removing events corresponding to the same edge. Yet, while FSAE is shown to
be very effective for representing simple features such as corners, object classifi-
cation tasks deal with significantly more complex objects.

In this work, we propose IETS, aimed at extracting noise-robust, low-latency
features that correspond to complex object edge contours over a temporal win-
dow. IETS extends FSAE to achieve higher object recognition accuracy while
removing over 70% of FSAE events. We verify the effectiveness of our object
classification framework on multiple datasets.

1.1 Event Cameras

Each event-based camera pixel operates asynchronously with no notion of frame
rate across the focal plane. Instead of a fixed integration time, pixels generate
events only when the rate of detected photons varies above or below a predefined
threshold. A log-based threshold gives the event camera an extreme dynamic
range. If the scene is changing slowly, the sensor naturally compresses the data
since few events are generated. In contrast, fast moving objects trigger events
almost instantaneously—allowing object tracking within microseconds. Example
event generation for a single pixel is illustrated in Fig. 1(a).

In a Prophesee Asynchronous Time-based Image Sensor, used in N-CARS
[17], each event comprises a row, column, time, and polarity. Row and column
are the pixel coordinates. The time entry records when the change was detected
in microseconds, and the polarity is a binary value indicating if the intensity
increased or decreased.

Event camera data is often noisy and requires filtering for many applica-
tions. Previous algorithms rely on the assumption that when a pixel is triggered,
neighboring pixels are also activated [7,15] and large intensity changes generate
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Fig. 1. Event generation. (a) On a per pixel level, intensity variations trigger events at
each log-scaled level crossing. The first event in a series of consecutive events is called
an inceptive event. (b) Time-Surface generation in the presence of noise.

multiple events at a single pixel. These assumptions motivate the use of spatial-
temporal density as a way to isolate valid events from noise, but this approach
fails when motion is slow (i.e. sparse valid events are removed as noise) and when
noise is high (i.e. dense noise mislabeled as real events).

1.2 N-CARS Dataset

The N-CARS dataset is a large, real-world, event-based, public dataset for car
classification. It is composed of 12,336 car samples and 11,693 non-cars samples
(background). The camera was mounted behind the windshield of a car and gives
a view similar to what the driver would see. Each sample contains exactly 100
milliseconds of data with 500 to 59,249 events per sample.

Figure 2 shows a sequence from N-CARS; each point in the three dimensional
cube (2D space, 1D time) represents a reported event. Object velocity can be
inferred when this cube is viewed from the time-space plane (Fig. 2(a)), while
the object shape is better identifiable from the 2D space plane (Fig. 2(b)). Spiral
patterns near the rear wheel of the car highlight high-speed rotational motion—a
challenging set of relevant features to preserve during dimensionality reduction.

2 Related Works

Object classification from event data is an active area of research. There are
a number of applications that require feature extraction from the raw event
detection camera data in order to carry out classification tasks. Time-surface is
a technique used as an intermediary step to feature extraction by reducing the
spatial-temporal structure in Fig. 2 to a two dimensional image representation.
More specifically, let E denote a set comprised of events generated by an event
detection camera sensor of frame size M × N :

E(x, y) = {(ti, pi)}Ii=1, (1)
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where x ∈ [1, ..., N ] and y ∈ [1, ...,M ] represent the pixel coordinates in the
frame; pi ∈ {−1, 1} is the event polarity; and ti is the time of the event in
microseconds. Additionally, let T be an ordered set of event times for a single
pixel (x, y) with polarity p be defined as:

T (x, y, p) = {ei ∈ E | pi = p}. (2)

Then the time-surface for each pixel (x, y) with polarity p is defined as [10]:

T S{T}(x, y, p) = mean{T (x, y, p)} =
1

| T |
∑

(ti,pi)∈T (x,y,p)

ti. (3)

Variations to time-surface can be implemented by replacing the “mean” operator
in (3) with minimum, maximum, median, etc.

(a) (b)

Fig. 2. N-CARS dataset example. (a) 3D plot of event data colored by time. (Blue/old
to green/new). (b) Same data viewed under different orientation. (Color figure online)

Time-surface has been used successfully in object recognition tasks. For
example, Hierarchy of Time-Surfaces (HOTS) [10] utilized straightforward time-
surfaces for feature generation, but it did not attempt to limit the impact of
noise directly, instead relying on clustering. While this method performed well
on simple shapes like numbers and letters, it does not extend well to more
complex-shaped objects with wider variations (like cars).

The Histograms of Averaged Time-Surfaces (HATS) algorithm [17] localizes
the motion vector representation for a specific region of the sensor (cell) using
a region-based time-surface. This improved robustness to noise by averaging
across the reported times of the events within each cell. A major disadvantage
to HATS is the loss of fine spatial features, which is exacerbated by the low
sensor resolution of current event cameras.

FSAE is a method to directly improve time-surface by eliminating redundant
events [1]. The FSAE filter is defined as:

FSAE(x, y, p) = {ti ∈ T (x, y, p) | (ti − ti−1) > τ−}, (4)
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where τ− is a pre-defined threshold. Intuitively, events occurring in succession
typically correspond to the same edge, and so redundant events can be eliminated
by discarding events that are not temporally separated from prior events.

3 Proposed Method: Inceptive Event Time-Surfaces

To advance object classification using event data, we propose a novel concept
called Inceptive Event Time-Surfaces (IETS). IETS is an extension of FSAE
aimed at improving dimensionality reduction and noise robustness. IETS retains
features critical to object classification (i.e. corners and edges) by fitting time-
surfaces to a subset of events. Unlike previous approaches that focused on gener-
ating handcrafted features from noisy event data, IETS uses deep convolutional
neural networks (CNNs) to learn features from time-surface images with less
noise. As demonstrated by the experiments using the N-CARS, IETS combined
with CNNs achieves a new state-of-the-art in classification performance.

We begin by the observation that a single log-intensity change often trigger
multiple events in temporal sequence. As shown by Fig. 1(a), the first event indi-
cates an “arrival” of an edge, which we refer to as an “inceptive event” (IE).
Intuitively, IEs describe the shape of the moving object within the scene. On
the other hand, the subsequent events correspond to the magnitude of the log-
intensity change, which we refer to as “scaling events.” As such, edge magnitude
as indicated by successive scaling events do not necessarily describe the edge
shape well. The comparison between inceptive and scaling events in Fig. 1(a)
make this clear. While scaling events are more useful for intensity-based infer-
ences, the effect the latency (relative to the edge arrival) has on the time-surface
is similar to image blur. Furthermore, scaling events are subject to degradation
by two hardware designs: a low-pass filter and a regulated “refractory period”—
a period of time after an event trigger that a pixel must wait before triggering
again (due to the limitations of read out and reset circuits).

Object detection tasks require a clear representation of the object boundaries
that define the shape of the object-of-interest. Recall (2). To successfully filter
events prior to time-surface generation, we propose the following:

IE(x, y, p) = {ti ∈ T (x, y, p)|(ti − ti−1) > τ− ∧ (ti+1 − ti) < τ+}, (5)

where τ+ and τ− are predefined threshold parameters. One may notice that by
comparing (5) to (4) that IE ⊂ FSAE , meaning there are necessarily fewer
IEs than FSAE events. The proposed IET S is then defined as a time surface
constructed from IE :

IET S(x, y, p) = TS{IE}(x, y, p). (6)

We propose to carry out the object classification by training a CNN on
IETS surfaces. There are three input image channels to the proposed CNN.
First two input channels are IETS surfaces of both polarities: IET S(x, y,+1)
and IET S(x, y,−1), which are mapped to images of 8-bit intensity values.
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The third input channel is generated based on a simple count of unfiltered events
(i.e. E(x, y)) at each pixel. This channel can improve machine learning by acting
as a weight for the other channels. All channels are scaled from 0 to 1, and pixels
with no events in the entire dataset are set to zero. With τ− = τ+ = 12 ms, IETS
removes over 85% of events in N-CARS. Discriminating noise from real events
can be challenging, degrading time-surfaces significantly. Figure 1(b) highlights
the effectiveness of IETS in removing noise while accurately fitting the time-
surface, compared to other methods.

Due to the extremely sparse number of events (<1 k) in some N-CARS
datasets, likely captured during periods of little camera or target motion, IETS
filtering occasionally makes object identification even more challenging. For that
reason, if a pixel does not contain an IE, the mean time of all events for that
pixel is used in its place. Although this reintroduces noise to each image, the
overall classification accuracy on N-CARS improved by over 12% when mean
event time for non-IE data was appended. Additional data, even if very noisy, is
preferred when using deep neural networks. Figure 3 highlights how effectively
IETS can reduce dimensionality while at the same time removing noisy events.

(a) (b) (c)

Fig. 3. Time-Surface Visualization. (a) Noisy 2D time-surface (bottom) compiled from
∼17k events represented as a 3D mesh (above) (b) Same visualization constructed
from subset of ∼8k FSAE events. (c) Same visualization constructed from subset of
∼3k IETS events. IETS shows significantly less noise in time-surface, representing
meaningful image features better than the unfiltered sensor events or FSAE events.

Previous event-based features [6,10] are limited in the same way as many
custom-designed descriptors. Leveraging CNNs to learn optimal features is typi-
cally a superior approach over custom-designed features. Of course, deep convo-
lutional neural networks currently require millions of labeled images—something
that does not yet exist for event cameras. Since no vast archive of labeled event
camera data exist, IETS images are generated in a way that makes them opti-
mal to utilize transfer feature learning from millions of real-world images via
GoogLeNet [9,18]. IETS is highly parallelizable and quick to train since transfer
learning converges rapidly. IETS generates images at the full resolution of the
event camera. This means resolution, which is typically poor for event cameras,
is not lost prior to classification as with algorithms employing cells.
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IETS has excellent performance as all events in a given time window
are processed simultaneously—removing the requirement to iterate over each
event. Additionally, a non-optimal implementation of IETS processed over 100k
events/sec, significantly faster than real-time requirements.

4 Experiments

Each N-CARS sample was processed into an image using IETS. Examples from
IETS processing are shown in Fig. 4. Algorithm evaluation was accomplished via
the standard metrics of accuracy rate and Area Under Curve (AUC).

(a) (b) (c)

Fig. 4. (a) Example input to CNN is two IETSs (positive/negative polarity) and the
event count per pixel (shown here as RGB). Examples from N-CARS dataset that were
(b) correctly and (c) incorrectly labeled as ‘cars’.

The maximum score was produced after augmenting the training data by
using IETS images that had also been flipped. The maximum accuracy score
obtained by IETS was 0.973. Comparison to other state-of-the-art algorithms is
shown in Table 1, and is a considerable improvement over the HATS published
score of 0.902. AUC also improved from 0.945 to 0.997. To ensure performance
gains were not entirely from replacing the Support Vector Machine (SVM) with
a CNN, HATS features were used to train the same GoogLeNet architecture.
These results are also included Table 1 as HATS/CNN. Additionally, to show
the improvement IETS offers in generating a time-surface, FSAE images were
used to train the architecture and are also included for comparison.

Table 1. Classification results on N-CARS.

Algorithm H-First HOTS Gabor HATS HATS FSAE IETS

Classifier SNN SVM SNN SVM CNN CNN CNN

Accuracy 0.561 0.624 0.789 0.902 0.929 0.961 0.976

AUC 0.408 0.568 0.735 0.945 0.984 0.993 0.997
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To further test the results from IETS, an IniVation Davis Dynamic Vision
Sensor (DVS) 240C was used to collect cars driving near the University of Day-
ton. This dataset was significantly different in the fact targets were acquired
using a camera from a different manufacturer, at a further range, images were
uncropped, and the camera was stationary. The vehicles collected were side on
as shown in Fig. 5. Seven datasets were recorded with durations ranging from
2.76 to 8.30 s—resulting in 5,236 samples. Using four datasets for training and
three for testing resulted in a classification accuracy of 0.9951 and AUC score of
0.9999. Although the dataset proved less challenging, the results indicate that
supplementing with additional variation in sensor models, viewing angles, and
camera positions will allow the algorithm to extend to more general use cases.

Fig. 5. Three IETS images generated from data collected near the University of Dayton
used for additional testing. Data included multiple cars, buses, and trucks.

5 Conclusion and Future Work

Overall, there are a wide range of future applications for event-based sensors
due to their speed, size, low memory requirements, and high dynamic range.
This paper presents an algorithm that improves state-of-the-art performance
for object classification of cars. As classification rates near 100% for the N-
CARS, the lack of large labeled datasets will limit advancement in this area.
Multiple simulators now exist for generating synthetic data [13,16], which have
been used successfully in several papers for testing. Although these simulators
may be useful in the short term, real-world data is always preferred as noise,
calibration, and manufacturing defects are challenging to reliably simulate.

Two limitations of IETS should be addressed with future work. First, IETS
relies on the fact that edges triggering events rarely generate large, overlapping
time-surfaces within 100 ms. This may not be true for all scenarios. For example,
a spinning fan, pulsing light, or very fast moving object would generate over-
lapping surfaces and likely limit the utility of IETS in these cases. The IETS
algorithm currently averages overlapping surfaces, but this is not optimal as
these unique signatures are undetectable to a standard camera. Second, after
the time-surfaces are generated from IEs, no effort is made to recover data origi-
nally filtered as noise. A two-stage filter design will help recover events and allow
for a broader application of the algorithm.
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Abstract. Hand gesture recognition have become versatile in numer-
ous applications. In particular, the automotive industry has benefited
from their deployment, and human-machine interface designers are using
them to improve driver safety and comfort. In this paper, we investigate
expanding the product segment of one of America’s top three automak-
ers through deep learning to provide an increased driver convenience
and comfort with the application of dynamic hand gesture recognition
for vehicle self parking. We adapt the architecture of the end-to-end solu-
tion to expand the state of the art video classifier from a single image as
input (fed by monocular camera) to a multiview 360 feed, offered by a
six cameras module. Finally, we optimize the proposed solution to work
on a limited resource embedded platform that is used by automakers for
vehicle-based features, without sacrificing the accuracy robustness and
real time functionality of the system.

Keywords: Gesture recognition · Car parking · Deep learning

1 Introduction

Automotive gesture recognition market size is estimated to reach USD 13.6 bil-
lion by 2024 according to a new research report by Global Market Insights, Inc
[5]. The application of gesture recognition to advanced driver assistance systems
can improve driving safety to some degree. The driver can use gestures to control
various functions of the car or to modify various parameters of the car, hence
pay more attention to reducing road accidents.

The automotive industry is now looking for the future of the driver-less park-
ing systems. There are several device-based solutions for vehicle self-parking that
are offered by automakers nowadays:

– Remote-controlled Solutions: A button on the vehicle display key activates
the remote-controlled parking function from outside the car. This procedure
is monitored by Park Distance Control (PDC), the Parking assistant and the
Surround View sensors.

c© Springer Nature Switzerland AG 2019
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– Smartphone Controlled Solutions: Using a mobile app, the driver can auto-
matically park his vehicle in and out of a parking spot without being behind
the wheel.

– Smartwatch Controlled Solutions: The parking operation is triggered by a
configurable wave gesture that is recognized by the smart watch and trans-
mitted to the vehicle over wireless connection. The transmitted hand gesture
gives the vehicle the signal to initiate the parking operation.

Although the device-based solutions for vehicle driver-less parking systems
stated above seem promising and are already available in the market for end
users, these systems, whether the remote-based or smartwatch-controlled, rep-
resents the following disadvantages:

– Device dependant: the presented solutions require an additional hardware to
be fully functional (e.g. smart key fob, smart watch). Therefore, any damage
to the device (e.g. caused by water, low battery) or unfavorable conditions
(e.g. rain or snowy weather) will render the feature unusable.

– User experience/convenience: Even though the above mentioned systems use
a very common human-machine interaction medium (touch screen), it still
presents an inconvenience to the user as it requires an intermediary medium
between the user and the car.

2 Multiview Vision-Based Hand Gesture Recognition
for Vehicle Self Parking

The proposed vision-based multiview gesture recognition for self parking system
consists of two main modules: person detection and frames extraction module
and gesture recognition module. The input stream is a multiview 360◦ feed,
offered by a six cameras system. The person detection module performs the
detection of all subjects present in the six frames video input. The resulted
frames are then passed to a dynamic hand gesture classification module which

Fig. 1. Proposed multiview hand gesture recognition system overview
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finally decides whether to initiate the parking operation or not. The overall
architecture of the end-to-end system is shown in Fig. 1. For capturing 360◦

video frames, many hardware solutions exists on the market, and our choice was
the HexCamera (e-CAM30 HEXCUTX2) from e-con systems1 which consists
of a multiple camera solution for NVIDIA Jeson TX1/TX2 developer kit. The
setup consists of six cameras with 3.4MP each and an adaptor board to interface
with the J22 connector on the Jetson. The camera can stream 720p (HD) and
1080p (Full HD) at 30 fps in uncompressed YUV422 Format.

2.1 Person Detection and Frames Extraction Module

This module is the first core component of our end-to-end system. As mentioned
in the previous section, the output of the multiview camera is a six frames stream
representing 360 degree view. One of the main challenges, is to adapt the output
of the multiview camera to the hand gesture recognition module presented in
Sect. 2.2. Our dynamic hand gesture classifier was trained on video frames of size
176 × 100 where every video consists of one single subject performing the hand
gesture. Given that the multiview camera output may contain multiple subjects
in crowded environments (e.g. parking lot), the first step the person detection
and frames extraction module performs, is the detection of all subjects present
in the six frames video input. This module detects all the persons present in the
360 camera view feed, calculates the bounding box coordinates and finally crops
over every 30 frames (required input length for the gesture recognition module)
and saves separate image files for every subject. Once this step is complete, the
resulted frames are passed to the 3D-CNN network to perform the hand gesture
recognition. It’s important to note that the authentication of the car’s owner is
out of the scope of this work, which means any subject performing one of the
two gestures (Swiping Hand Left and Swiping Hand Right) would trigger the
parking operation.

The person detection module uses an underlying object detection library.
We evaluated two object detection tools that were released recently using the
convolutional neural networks: Faster R-CNN and YOLO. We chose these tools
because YOLO allows to get the best results on VOC20072 data and VOC20123

and Faster R-CNN is one of the most used CNN methods so far. The evaluation
details are not covered in this paper, but one of the main differences between
YOLO and Faster R-CNN is the computation time, YOLO allows to have a
detection of 37 frames per second for an image of 445 × 445 × 3 while Faster R-
CNN allows you to have only 5 frames per second. Hence, in our final system we
used YOLOv3 as the object detection library and limited the object detection
to only one class: Person. The implemented algorithm continuously captures
30 frames (expected sequence length by the dynamic classification model) at

1 https://www.e-consystems.com/multiple-csi-cameras-for-nvidia-jetson-tx2.asp,
accessed: 01/29/2019.

2 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/, last accessed: 02/20/2019.
3 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/, last accessed: 02/20/2019.

https://www.e-consystems.com/multiple-csi-cameras-for-nvidia-jetson-tx2.asp
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12 frames/s and passes them to the YOLO based person detector. The latter,
only looks at the first frame of the 30 frames input and detects all the persons
present, calculates the bounding boxes and finally crops all of the 30 frames
based on the respective boxes coordinates. The cropped videos are then saved
in memory to be passed one at a time to the gesture recognition module.

2.2 Dynamic Hand Gesture Recognition Module

The hand gesture recognition module represents the second core component of
our end-to-end system after the person detection module. It encompasses mainly
our dynamic hand gesture classifier which details will be presented in the next
section. Once the persons detection and cropping step is complete and the output
frames are extracted, we resize them to match the dimensions of the expected
input video by the 3D-CNN classifier, in our case with height × width × frames
equal to 176 × 100 × 30. Then, we pass every input (consisting of 30 frames
with the format shown in Fig. 2) to the hand gesture recognition network for
classification. The output of this module can be one of the three classes: Swiping
Hand Left (Park IN), Swiping Hand Down (Park OUT) or Doing Other Things
(ignored by the system). Once one of the relevant classes (Park IN or Park OUT)
is detected, the algorithm drops the rest of the input cropped videos and trigger
the corresponding parking action.

Fig. 2. Sample cropped persons images: Left image shows a detected person performing
the “Swiping Hand Left” gesture (used as Park IN trigger). Right image shows a
detected person not performing any hand gesture.

3 Proposed 3D-CNN Dynamic Hand Gesture Classifier

Hand gesture recognition can be treated as a multiclass classification problem
that maps an input video sequence to one of the three classes our model has
learned: C1 = Swiping Hand Left (Park In), C2 = Swiping Hand Down (Park
Out) and C3 = Doing Other Things. The experimental results presented in
Sect. 3.1 will serve to evaluate the performance of the proposed gesture model,
and to compare it with the state of the art method applied to this paper’s use
case. In this section, we present the machine learning methodology we followed in
order to build the dynamic hand gesture classifier. First, the deep neural network
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architecture and training process are presented. Then, the different experiments
leading to the tuning of the hand-gesture classification network are described.
Finally, the different test scenarios conducted while assessing the classifier as
well as their corresponding results are reported.

3.1 Training Dataset

The 20BN-JESTER dataset consists of a large collection of densely-labeled
video sequences taken by a static camera (webcam or laptop camera) that show
humans performing pre-defined hand gestures. This dataset was collected thanks
to a large number of crowd workers and made available by the German com-
pany TwentyBN [9] as free of charge for academic research. In this database, we
find a total of 148092 video sequences. The data was provided as a big archive
containing directories numbered from 1 to 148092. Each folder corresponds to
one video clip (single gesture) and contains JPEG images that were extracted
at 12 fps having a height of 100 px and variable widths. The length of sequences
differs from one sequence to another. The dataset groups together 27 classes that
represent the different hand gestures, namely: Swiping Hand Left, Swiping Hand
Down, Rolling Hand Forward, Doing Other Things, No Gestures, etc. In each
class, the hand gesture is performed by participants that represent a generalized
distribution of different gender, age, skin color, and with different speeds. The
latter, makes this dataset one of the largest data collections available to build
a robust deep learning-based gesture classifiers. A study of our dataset revealed
that the hand can produce a great diversity of gestures. However, it is extremely
difficult to recognize all the possible configurations of the hand from its projec-
tion in an image. Indeed, according to the orientation of the hand in relation to
the camera, some parts of the hand can be hidden. It is then necessary to con-
sider an appropriate subset of gestures related to our application. In our work,
the goal is to recognize three dynamic hand gestures for parking in and parking
out actions as well as other gestures (including no gesture). The two gestures
that we want to recognize are: Swiping Hand Left (Park In trigger action) and
Swiping Hand Down (Park Out trigger action). We considered these two ges-
tures because they are among the most used in human-human interaction and
will be perfectly adapted to a natural man-car interaction. Furthermore, among
other possible gestures available from 20BN-Jester dataset, the high neural dis-
criminability (i.e. decodability) between the two chosen gestures contributed in
giving us the best model performance during our experiments.

Due to the fact that video sequences from 20BN-JESTER dataset have dif-
ferent length (variable number of frames), the first step in our data preparation
phase is to sub-sample every video down to 30 frames. So a 31-frames video and
a 45-frames video will both be reduced to 30 frames, with the 45-frames video
essentially being fast-forwarded. The decision to fix the sequence length to 30
was made after the inspection of the 20BN-JESTER dataset which is mostly
composed of videos with a length that varies from 27 to 46 frames. Also, a data
cleaning step was performed to limit samples to only videos having a duration
greater than the sequence lengths, therefore discarding all shorter videos (e.g.
28 frames).
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Data Splitting. For the context of our work, our model is trained to classify
three gestures: Park In (Swiping Hand Left), Park Out (Swiping Hand Down)
and Doing Other Things (which covers other possible gestures including no ges-
ture). For that purpose, we used 20BN-JESTER dataset to extract a subset
of data containing all videos for the aforementioned three classes. We divided
our dataset into 3 subsets: training (Dtrain), validation (Dvalid) and evaluation
(Deval), the latter two being generally smaller than the first. It is through the
ratio (Training: 75%, Validation: 12.5%, Testing: 12.5%) that we can ensure the
capacity of the model to generalize well and avoid overfitting. Our training data
set consists of 2601 video sequences for the Park In gesture (Swiping Hand Left),
2641 videos for the Park Out gesture (Swiping Hand Down) and 8601 videos for
“Doing Other Things”. The latter class has more than 3 time the number of
video sequence to represent real life scenarios, as most gestures do not belong to
the first two classes.

There are many machine learning methods in the literature that work well
on temporal classification tasks as encountered in our dynamic hand gestures
classifier. After a review of many of these methods and reported results, we
limited our experiments to the following learning algorithms: 3D Convolutional
Neural Networks and Long-term Recurrent Convolutional Networks.

4 3D-CNN Dynamic Hand Gesture Classifier

A 2D CNN is composed of convolution layer(s), Pooling layer(s) and finally fully
connected Layer(s). The fully connected layer(s) are often used as the network
output. Usually, a convolution layer is followed by an activation function and
then a pooling layer, this sequence can be repeated several times up to the fully
connected layer to form a convolution network that is often denoted under the
CONVNET notation. It is also common to use more than one fully connected
layer before the output of the network. On the other hand, 3D-CNN applies a
third dimensional filter to the dataset and the filter moves 3-directions (x, y, z) to
learn the low-level feature representations. Their output shape is a 3-dimensional
volume space such as cube.

Our model will therefore consists of 8 convolution layers, 5 layers of max-
pooling, 2 fully connected layers and finally a softmax output layer. Figure 3
shows the final 3D-CNN architecture of our gesture model for classifying 3 dif-
ferent types of dynamic hand gestures.

To determine the optimal architecture and parameters of our gesture model
(number of convolution layers, number of neurons per layer, number of max-
pooling layers, etc.), many models with different configurations have been trained
on the dataset presented in Sect. 3.1. The results obtained from those experi-
ments have helped us determine the best model architecture that produced the
highest performance for our use case. One of the drawbacks of DNN is the dif-
ficulty to select the network hyper-parameters which makes the network tuning
one of the major phases in a connectionist modeling based machine learning
application.
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Fig. 3. Our final model architecture: 3D ConvNet network for dynamic hand gesture
recognition

4.1 Network Training

The purpose of our classification is to decide whether a video contains one of the
two relevant gestures for our use case: Swiping Hand Left (Parking in) or Swiping
Hand Down (Parking out). To resolve this problem, training the classifier was
performed using a subset of labeled RGB images from 20BN-Jester dataset as
previously detailed in Sect. 3.1. For the implementation of the training algorithm,
we used Keras, an open source neural network library written in Python and
TensorFlow as backend, all running on a NVIDIA GPU with 16GB of RAM.

The input to the 3D-CNN network is 30 frames from the training dataset
of a given dynamic hand gesture reshaped to (176 × 100 × 3) size. We used
the back-propagation algorithm to adjust the networks weights and ReLu as
the activation function, with a batch size of 6 (experimented with higher values
of batch size to speedup training but rapidly hit the memory limit). Also, a
dropout of 0.5 was used between the two fully connected layers which helped
avoid overfitting. We compute the validation error (aka. loss) after each epoch
with an early stopping patience value set to 5, to stop the training once the
validation error stops decreasing for 5 consecutive epochs. Training our classifier
took ∼11 h and went through a total of 10 epochs. Figure 4 shows the loss and
accuracy curves for validation and training when the network is being trained.

(a) Loss (b) Accuracy

Fig. 4. Training and validation curves v.s. training epochs (3D-CNN)
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Our trained 3D-CNN gesture classifier is considered as a good fit model
based on the obtained loss/accuracy curves. We can see that our model did not
experience a blatant case of overfitting. Validation loss reached its lowest value
of 0.074 at the fifth epoch where the validation accuracy was at 0.977. Whereas,
training loss continued decreasing to reach a minimum of 0.039 at the tenth
epoch with a training accuracy of 0.989.

5 LRCN Dynamic Hand Gesture Classifier

This model proposed by Jeff Donahue in 2016 represents a Long-term Recurrent
Convolutional Network (LRCN) which combines a deep hierarchical visual fea-
ture extractor (such as a CNN) with an LSTM model that can learn to recognize
and synthesize temporal dynamics for tasks involving sequential data, visual, lin-
guistic, or otherwise [2]. The reported state-of-the art results in this paper on
three vision problems (activity recognition, image description and video descrip-
tion) made Long-term Recurrent Convolutional Network one of the approaches
we considered to solve our problem of dynamic hand gesture recognition. The
steps of the LRCN model training are detailed in the following sections. CNNs
have been proved powerful in image related tasks like computer vision, image
classification, object detection etc. LSTMs are used in modelling tasks related
to sequence-based predictions. LSTMs are widely used in NLP related tasks like
machine translation, sentence classification and generation. LRCN, also known
as CNN-LSTM model was specifically designed for sequence prediction problems
with spatial inputs, like images or videos. We trained an LRCN network on the
same gesture dataset used for training our 3D-CNN model by feeding 30 input
frames representing one hand gesture to a feature extractor layer (CNN) and
combine it with LSTMs to support the sequence prediction.

5.1 Network Training

The training of the LRCN classifier was performed using the same computer
specifications (GPU, RAM, etc,) used for training the 3D-CNN classifier and
on the same training/validation dataset. We used the Adam optimizer with a
learning rate of 1e−5, decay of 1e−6 and applied a dropout of 0.5 before the
LSTM layer for dimensionality reduction. The total duration of the training
using a batch size of 6 was ∼36 h which is more than 3 times longer than the
training duration of the 3D-CNN classifier due the much slower training speed
of LSTMs [1]. It went through a total of 37 epochs before the model started to
converge. We examined the training and validation curves, shown in Fig. 5, when
the network is being trained and we observed that the validation loss stopped
decreasing after the 23th epoch to reach a minimum of 0.248 at the 32th epoch
and then started increasing again until the early stopping mechanism triggered
to stop the training 5 epochs later. In comparison with the 3D-CNN classifier
training, where a much lower validation loss of 0.074 was reached in much shorter
amount of time. At the same time, validation accuracy reached a maximum of
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0.927 at the 36th epoch compared to 0.977 for 3D-CNN. Based on the LRCN
training data analysis, the obtained model can be considered as a good fit model
since no remarkable overfitting symptoms are observed.

(a) Loss (b) Accuracy

Fig. 5. Training and validation curves v.s. training epochs (LRCN)

It’s still difficult at this stage to draw conclusions about the model that
allows the best performance on our task of dynamic hand gesture recognition.
Therefore, in the following section, we will present our evaluation results of both
models tested on our evaluation dataset.

6 Experimental Results and Discussion

This section is devoted to the presentation of the experimental results relating
to the two models introduced in Sects. 3 and 5, namely the 3D-CNN model and
the LRCN model. As mentioned earlier, one of the most important motivations
behind the introduction of these two models is their generalisation capacity
in comparison with other approaches in literature. The experiments therefore
were carried out on dynamic hand gesture recognition task using our evaluation
dataset presented in Table 1. In addition, the experimental results presented in
this section will also serve to evaluate the performances of the two model, and
to compare the proposed 3D-CNN model to the state of the art on the issue
studied. Table 1 shows the performance of two different classifiers on each class.
The results shows that the 3D-CNN classifier is dominating LRCN on the three
classes (Swiping Hand Left, Swiping Hand Down and Doing Other Things). The
performance of the two classifiers is similar on the average precision, especially
for the Swiping Hand Left and Swiping Hand Down classes, than that on recall
and F1-measure. Furthermore, the table also shows that while the LRCN clas-
sifier achieved a high precision for Swiping Hand Left and Swiping Hand Down
classes that is comparable to that of the 3D-CNN, we notice on the other hand
a relatively poor recall on the same two classes; which means the LRCN system
classifies more samples into Doing Other Things, hence the high recall value for
the latter class and poor precision. Now going back to our use case in this project:
a gesture recognition self parking system, both metrics, precision and recall, are
important; we would like to achieve a high precision on the Swiping Hand Left
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(Park In) and Swiping Hand Down (Park Out) classes, but most importantly a
high recall value to give a better user experience to the driver using the system
while avoiding cases where the driver need to repeat the hand gesture many
times to trigger the parking action. The confusion matrices on the validation set
can be seen below in Fig. 6, the overall accuracy of the LRCN classifier is 0.8544
whereas that of our 3D-CNN classifier is at 0.9502. The confusion matrix for
LRCN shows clearly that many samples of Swiping Hand Left and Swiping Hand
Down are classified as Doing Other Things, hence the poor recall noticed earlier.
As expected, the LRCN model performed poorer that 3D-CNN. The proposed
explanation is that he position of the hand in each of the 30 frames will differ
from sample to sample, which leads to feeding the LSTM with different positions
of the hand in the respective indexes of the 30 frames. This could confuse the
LSTM which is reflected in the the number of false negatives.

Table 1. Per class performance comparison between LRCN and 3D-CNN

Class LRCN 3D-CNN (ours)

Precision Recall F1-Measure Precision Recall F1-Measure

Swiping Hand Left (Park In) 0.96 0.83 0.89 0.99 0.93 0.96

Swiping Hand Down (Park Out) 0.94 0.80 0.86 0.99 0.93 0.96

Doing Other Things 0.73 0.94 0.82 0.88 0.99 0.93

Average 0.88 0.85 0.86 0.95 0.95 0.95

7 Transfer Learning and Final Model Fine-Tuning

One of the big challenges in machine learning applications is that training data
can be slightly different from the real-world data faced by the algorithm. Hence,
the performance of the end-to-end system once faced with real data may not
be at the desired level. We noticed that the trained 3D-CNN classifier did not
perform well when tested live. Two main factors had a major impact on the
performance of our system:

– Driver to Camera Distance: The closer the driver is to the multiview camera,
the higher is the accuracy of the system. A camera distance within a range
of [60 cm, 110 cm] produced the best performance. Whereas, in the real-world
scenario, the car driver would have a distance of at least 2 m from the car to
trigger the auto parking.

– Height of the Multiview Camera System: We noticed also during our end-to-
end testing of the system that the camera system needs to be at a certain
height (slightly lower than the user) in order to achieve the best system
performance and accuracy. Once we place the multiview camera at the same
level or slightly higher than the user, gesture detection accuracy starts to
degrade.
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(a) LRCN gesture classifier (b) 3D CNN Gesture Classifier (ours)

Fig. 6. Confusion matrices for both LRCN and 3D CNN hand gesture classifiers

The previous observations can be explained by the nature of the 20BN-Jester
dataset we used to train our gesture model. In fact, most of the video samples
in 20BN-Jester dataset are taken using a laptop or desktop computer webcam
placed at a relatively close distance (50 to 100 cm) and slightly lower level from
the user. Hence, the sensitivity of our end model to those factors. In order to
overcome these limitations, enhance the system performance and end user expe-
rience, we fine-tuned our model using transfer learning techniques. The following
section would describe the contingency steps that were taken to overcome the
aforementioned challenges.

7.1 Transfer Learning: Dataset Augmentation

A dataset containing generalized gesture videos that are relevant to our use
case of autonomous parking was not available. Therefore, we collected a second
dataset in our lab and used data augmentation techniques to generate more
data samples. The created dataset consists of a reasonable amount of videos
where many subjects performed the Swiping Hand Left and Swiping Hand Down
gestures at variable distance from the camera system and at different setup
heights. On the background of the user, we placed a green screen that enabled
us to use the Chroma Keying technique (a.k.a. green screen keying, used for
decades in film studios by placing human characters in otherworldly situations
without them having to leave the studio) to create new videos using parking
lot backgrounds, reflecting the real-world scenario of parking situations, and
various other backgrounds for data augmentation purpose. Figure 7 shows the
process we followed to generate the new dataset using Chroma Keying. The
early layers of the 3D-CNN network already trained with the 20BN-Jester large
dataset can extract generic features, so we used methods that further tunes a
pre-trained model. Given the relatively small dataset (220 videos) compared
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Fig. 7. Data generation using Chroma Keying

to the 20BN-Jester dataset, we did only fine-tune the last layer of our 3D-
CNN which enhanced significantly the classification performance. The evaluation
metric for live tests was empirical and based on the automaker satisfaction of the
performance. After the dataset augmentation, the automaker reported a twice
as good performance.

8 Conclusion

Our main motivation for this paper was to eliminate the intermediate medium
between the car and the driver to offer a friendly user interface for the self-park
feature. To achieve the aforementioned attribute, we solely rely on a vision-
based gesture recognition solution. For simplicity, the developed feature has two
commands, represented by two hand gestures “swiping hand left” and “swiping
hand down”. As a first step to recognize the hand gesture, the solution requires a
person detection algorithm at the front of the pipeline. YOLO paired with a six-
camera based sensor offers a pre-processing module that detects and identifies
all instances of “persons” in the 360 view of the vehicle. Each of the identified
objects (person present within the vehicle field of view), is then processed by a
3D-CNN classifier. The latter is a multi-class classification, which maps the first
hand gesture (swiping hand left) to the park-in command and the second hand
gesture (swiping hand down) to the park-out command. A third class (garbage
model) is necessary to capture any gesture that doesn’t fall in the aforemen-
tioned buckets. We achieve an accuracy of 95.02% with the selected 3D-CNN,
while alternatives such as LRCN, performed at a maximum accuracy of 85.44%.
The reported results were based on experiments ran in a lab environment. Once
tested in a real world setting, we noticed a significant drop in accuracy, due to
the varying distance and height of the user with respect to the camera. This
is expected, as all of the training dataset consists of laptop/webcam collected
videos which implies a limited range of distance and height of the person per-
forming the gesture. To overcome this limitation of our training data, we decide
to leverage transfer learning and collect custom made data that would general-
ize our model on different backgrounds, distances and heights of the classified
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subject. This end-to-end solution is developed as the vehicle for a host. Hence,
multiple optimization techniques are applied to ensure the resulting model would
operate in real-time on an embedded platform (NVIDIA Jetson TX2): less than
2 s of processing for one hand gesture command, which is considered as a suc-
cessful real-time implementation.
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Abstract. Due to the lack of thermal image datasets, a new dataset has
been acquired for proposed a super-resolution approach using a Deep
Convolution Neural Network schema. In order to achieve this image
enhancement process, a new thermal images dataset is used. Different
experiments have been carried out, firstly, the proposed architecture has
been trained using only images of the visible spectrum, and later it has
been trained with images of the thermal spectrum, the results showed
that with the network trained with thermal images, better results are
obtained in the process of enhancing the images, maintaining the image
details and perspective. The thermal dataset is available at http://www.
cidis.espol.edu.ec/es/dataset.

Keywords: Thermal infrared images · Thermal cameras ·
Image enhancement · Convolutional neural networks

1 Introduction

The electromagnetic spectrum, as shown in Fig. 1, can be split up into several
regions, such as the visible spectrum, ultraviolet, X-ray, infrared, radar, radio,
among others. The infrared region can be additionally divided into the near
(NIR: near-infrared), short (SWIR: short-wavelength infrared), middle (MWIR:
mid-wavelength infrared), long (LWIR: long-wavelength infrared) and far (FIR:
far-infrared) spectral bands, where the long-wavelength infrared is also known
as thermal. All objects emit infrared radiation by themselves, independently of
any external energy source, and depending on their temperature they emit a
different wavelength in the long wavelength infrared spectrum (i.e., thermal).
Thermal cameras capture information in this long wavelength spectral band;
they are passive sensors that capture infrared radiation emitted by all objects
with a temperature above absolute zero [8], thus it can provide valuable extra
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Fig. 1. Electromagnetic spectrum with sub-divided infrared spectrum

information to the visible one (e.g., RGB camera). In particularly, those appli-
cations that can be affected by poor lighting conditions, for instance in security
and object recognition, where nothing can be captured in total darkness. Con-
trariwise, thermal cameras are not affected by this lack of illumination. As shown
in Fig. 2 thermal images are represented as grayscale images, with dark pixels
for cold spots and the whites one for hot spots.

In recent years, infrared imaging field has grown considerably; nowadays,
there is a large set of infrared cameras available in the market (e.g, Flir1, Axis2,
among others) with different technical specifications and costs. Innovative use
of infrared imaging technology can therefore play an important role in many
applications, such as medicine [16], military [9], objects or materials recognition
[3], among others, as well as detection, tracking, and recognition of humans, or
even applied for Vegetation Index Estimation [17].

Depending of the thermal camera’s specifications, the cost can vary between
$ 200.00 and more than $ 20000.00; the latter one has better resolution and
higher frame rate. On the contrary, cheap existing thermal cameras have res-
olution smaller than commercial RGB cameras. This lack of resolution, at a
moderate price, is a big limitation when thermal cameras need to be used for
general purpose solutions. Hence, a possibility to overcome this limitation could
be based on the development of new algorithms that allow to increase image
resolution. This possibility has been largely exploited in the visible spectrum
domain, where different super-resolution approaches have been proposed from a
conventional interpolation (e.g., [7,10,18]). Recently, novel deep learning based
approaches have been introduced with large improvements in performance (e.g.,
[5,11,15,19]). Hence, inspired on those approaches, some contributions have been
proposed in the literature to tackle this challenging limitation of thermal imag-
ing; most of these approaches are deep learning based (e.g., [4,13]).

1 https://www.flir.com.
2 https://www.axis.com.

https://www.flir.com
https://www.axis.com
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Fig. 2. Thermal image capture with a Tau2 Camera

One of the most relevant approaches for image enhancement has been pre-
sented in SRCNN [5]; the approach is based on a convolutional neural network
(CNN), where the architecture is trained to learn how to get a high-resolution
image from an image with a lower resolution. The authors explored the perfor-
mance by using different color space representations. They conclude that the
best option is obtained by using the Y-channel from the YCbCr color space.
The main limitation of their contribution is related with the training time. The
approach, named “Accelerating the Super-Resolution Convolutional Neural Net-
work” [6], from the same authors of the previous work, proposes accelerating and
compacting their SRCNN structure for faster and better super resolution (SR).
The authors introduce a deconvolution layer at the end of the network and adopt
smaller filter size but more mapping layers. Yamanaka et al. [19] propose a CNN
based approach referred to as “Deep CNN with Residual Net, Skip Connection
and Network in Network” (DCSCN) for visible spectrum image super-resolution.
According to the authors, this approach has a computation complexity of at least
10 time smaller that state of the art (e.g. VDSR [11], RED [15] and DRCN [12]).
Like in the SRCNN in DCSCN the given images are converted to the YCbCr
color space and only the Y-channel is considered. All these approaches have been
proposed for images enhancement from the visible spectrum.

A CNN based approach for enhancing thermal images has been introduced
by Choi et al. in [4], inspired by the proposal in [5]. The authors in [4] com-
pare the accuracy of a network trained in different image spectrum to find the
best representation of thermal enhancement. They conclude that a grayscale
trained network provided better enhancement than the MWIR-based network
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Fig. 3. Proposed convolutional neural network architecture

for thermal image enhancement. On the other hand, Lee et al. [13] also pro-
pose a convolutional neural network based on image enhancement for thermal
images. The authors evaluate four RGB-based domains, namely, gray, lightness,
intensity and V (from HSV color space) with a residual-learning technique. The
approach improves the performance of enhancement and speed of convergence.
The authors conclude that the V representation is the best one for enhancing
thermal images. In [14] the authors proposed a parallelized 1× 1 CNNs, named
Network in Network to perform image enhancement with a low computational
cost; also in [14], uses this technique for image reconstruction.

In most of the previous approaches thermal images have not been considered
during the training stage, although intended for thermal image enhancement.
They propose to train their CNN based approaches using images from the visible
spectrum at different color space representations. On the contrary to all of them,
in the current work thermal images are considered for training the proposed CNN
architecture. The current work has two main contributions, the first one is the
thermal image dataset acquisition used for training and validation. The second
is proposed a CNN model designed for thermal spectrum images. The second
one is to propose a CNN model designed for thermal spectrum images. Through
this paper, terms “thermal images enhancement” and “images super resolution”
will be indistinctly used.

The rest of the paper is organized as follows. Section 2 details the collected
dataset and describe the approach proposed to enhance thermal images. Exper-
imental results are presented in Sect. 3; and finally, Sect. 4 summarize main con-
tributions of current work.

2 Proposed Approach

In the current work a deep CNN architecture with a residual net and dense
connections are proposed. The network uses a thermal dataset to perform a
super-resolution to maintain image details.

The architecture, presented in Fig. 3, has a part of the architecture dedicated
to obtain the high level characteristics of the image, and another part, to perform
the reconstitution of the image. All layers have dropouts and use parametric
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Fig. 4. Training process design of two datasets, using the proposal architecture, to
generate two models for validation process.

ReLU as activator (preventing from learning a large negative bias term and
getting better performance). Additionally, based on the work of [19], the image
generated by bicubic interpolation has been used to enhance the output of the
network.

This architecture is used for obtaining thermal image SR. On the contrary
to the state-of-the-art approaches, where CNN based architectures are trained
with visible spectrum images and used with thermal images. In this work the
network is trained with thermal images in order to obtain better results. The
latter hypothesis is validated by training the networks twice, one with visible
images and one with thermal images. This training process results in two models
(see Fig. 4), which are finally validated with thermal images. More details are
given below.

3 Experiments Results

In this section, the dataset acquisition and preparation for training and testing
are explained. Then the network setup information is provided, and finally the
comparison of the two models are depicted.

3.1 Datasets for Training and Testing

As mention above the current work the architecture presented is trained twice,
one with visible and other with thermal images. In this section the two datasets
used for these training processes are detailed.

Due to the fact that there are not enough thermal image datasets, and the
few ones available are in low resolution, a new dataset of 101 thermal images
was generated (Fig. 5). This dataset was acquired using a TAU23 thermal camera

3 https://www.flir.com/products/tau-2/.

https://www.flir.com/products/tau-2/
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with a 13 mm lens (45◦ HFOV) in a resolution of 640× 512, with a depth of 8
bits and save it in PNG format. These images were acquired in indoors and
outdoors environments, in the morning, day and night; they contain objects and
people. Controller GUI software of TAU2 camera with the default value was
used. In order to increase the variety of images, this dataset was enlarged with
98 + 40 thermal images from a public dataset4, acquired with a FLIR T640 using
a 41 mm lens with 640× 480 resolution. After merging all the images in these
three datasets a total of 231 thermal images is obtained for training and testing.
All these images were mixed, then 215 were randomly selected for training,
18 randomly selected for testing and the remainder 6 for validation (named as
Thermal6). On the other hand, for training the visible model, the BSDS300 [1]
is used for training, SET14 [20] for testing and SET5 [2] for validation. Note, as
shown in Fig. 4, that the thermal images validation set is used to evaluate both
models.

In order to increase the number of training images, a data augmentation
process is performed, rotating and flipping from top to bottom, from left to
right all images. The quality and resolution of the images is maintained getting
a total of 1720 and 2400 images for thermal and visible respectively.

3.2 Training

The proposed architecture, has been training using a dense network, also, uses
the image generated by bicubic interpolation to improve image details, also the
layers for feature extractor uses dropout and ReLU operations, also a learning
rate of 0.002 is applied to the model, and uses MSE as a loss function to measure
the difference between the ground truth and the output. The model uses Adam
Optimizer, which is an adaptive learning rate method, which means, it computes
individual learning rates for different parameters. Its name is derived from adap-
tive moment estimation, and the reason it’s called that is because Adam uses
estimations of first and second moments of gradient to adapt the learning rate
for each weight of the neural network. Each epoch train with a batch of 100000
patches for a total of 63 epochs. Mean Squared Error (MSE) between the ground
truth and output is used as a basic loss value.

As presented above, in order to evaluate the proposed approach, the same
architecture was trained with the two different datasets, the 1720 thermal images
were split up into 48× 48 patches with 25 pixels overlapping of adjacent patches,
having a total batch of 185760. The 2400 visible images also were split up into
48× 48 patches with 25 pixels overlapping, having a batch of 108000 (note that
although there are more visible than thermal images the number of thermal
patches is larger since thermal images have larger resolution.

The patches obtained above are used as ground truth, while the input patches
are obtained by resizing them to half their original resolution. In the current work
there is not noise added to the input.

4 https://sites.google.com/view/multispectral/dde.

https://sites.google.com/view/multispectral/dde
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Fig. 5. Acquired thermal image dataset, with 640× 512 resolution, using a Tau2 ther-
mal camera.

The training is performed in Windows Server 2012, with a dual 2.50 GHz
CPU E5-2640, using one GPU K20m of 4 GB. Each training consumes approxi-
mately 5 GB of RAM and takes approximately 25 h. This architecture is imple-
mented using Tensorflow and Python.

3.3 Results

A fair comparison between the two models trained using the same infrastructure
with the same number of batches per epochs and hyper parameters were used.

As show in Fig. 4, two models have been trained with the different dataset,
each trained network was validated with a set of six thermal images (Thermal6)
and five RGB images (SET5), obtaining a Visible Based Model and a Thermal
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Based Model. Table 1 shows that with Thermal6, the thermal trained model
shown a PSNR average value higher than the PSNR average value obtained
with the Visible trained model. Also, it shows that SET5 got better PSNR
values on visible model than thermal model. A qualitative comparison can be
appreciated in Fig. 6, where the SR images obtained with the two models, as
well as the images with the bicubic interpolation, are depicted. Additionally in
this figure the ground truth is presented (values in brackets correspond to the
average PSNR presented in Table 1).

Fig. 6. Enhanced images (twice the original resolution) obtained with different
approaches.

Table 1. Average result of PSNR with proposed architecture

Dataset Scale Bicubic based model Visible based model Thermal

Thermal6 ×2 39.59 40.88 41.24

×3 37.68 39.14 39.62

×4 34.98 37.17 37.85

SET5 ×2 33.64 37.69 37.46

×3 30.37 34.01 33.74

×4 28.41 31.69 31.25
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4 Conclusions

In the current work, the usage of the proposal network has been considered
to obtain thermal image SR. Two models have been obtained by training the
same network with two different datasets in order to seek for the best options
when thermal images are considered. The experimental results indicate that the
network model trained with thermal image dataset is better than using visible
image dataset. As an additional contribution a thermal image dataset has been
acquired, which is publicly available. As a future work, new CNN architecture
will be designed specifically intended for thermal images. Additionally, training
the model using a dataset obtained from the combination of different domains
(e.g., Y-channel, V-Brightness, Gray and Thermal) will be considered.
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Abstract. Ultrasound imaging systems are invaluable tools used in
applications ranging from medical diagnostics to non-destructive testing.
The concept of row-column imaging using row-column-addressed arrays
has received a lot of attention recently for 3-D ultrasound imaging. How-
ever, it suffers from a few intrinsic limitations: data sparsity, speckle
noise, and a spatially varying point spread function. These limitations
cannot be addressed by transducer design alone. In this research, we
propose PL-UIS, a compensated ultrasound imaging system that com-
bines physical modeling with data-driven spatially varying point spread
function learning within a random field framework to address the limita-
tions of row-column ultrasound imaging. Experimental results using the
proposed ultrasound imaging system show the effectiveness of our pro-
posed PL-UIS system compared to state-of-the-art compensated ultra-
sound imaging systems.

Keywords: Ultrasound imaging ·
Non-stationary point spread function · Conditional random fields ·
Point spread function learning

1 Introduction

Ultrasound imaging is a valuable tool in many areas ranging from medical image
diagnostics to non-destructive testing. Conventional 2-D ultrasound is widely
used, but the lack of anatomy and orientation information makes viewing 3-D
anatomic structures difficult as clinicians and technicians must mentally imagine
the volume with planar 2-D images; capturing 3-D volumes circumvents this.
3-D volumes are also valuable to material scientists as they can more accurately
infer material properties from volumetric data [1].

There are two main ways to acquire 3-D ultrasound images: mechanical move-
ment of transducers, or using 2-D array transducers [2]. 2-D arrays are preferred
c© Springer Nature Switzerland AG 2019
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since mechanically moving a transducer can introduce unwanted artifacts and
increase image acquisition time. A fully addressed 2-D N ×N array requires N2

connections and poses a challenge in terms of addressing these connections and
handling the large amount of data needed; so a few 2-D array simplification meth-
ods have been proposed. One method that received a lot of attention recently is
row-column imaging using row-column-addressed arrays [3,5,7–11,23].

Originally proposed in [6], the row-column imaging method consists of two
sets of orthogonally positioned 1-D array; one set responsible for transmit beam-
forming, the other for receive beamforming. This method reduces the required
number of connections to N + N , making it much more practical. Despite its
promise to enabling practical, operational 3-D ultrasound imaging, the row-
column imaging method still suffers from a few intrinsic limitations: (i) data
is inherently sparse, images suffer from speckle noise, and (ii) the point spread
function (PSF) of the system - the response of the imaging system to a point
source - is spatially varying to a great degree. There is a steadily growing body
of research that is attempting to address some of the row-column limitations
through transducer design [5,7,9,25], but improved transducer design alone can-
not fully address these inherent limitations.

A complimentary approach for addressing the inherent limitations of row-
column imaging is the notion of computationally compensated ultrasound imag-
ing. Computationally compensated row-column systems were first proposed
in [10], where leveraging physical models within a random field based framework
was used to address the limitations of the row-column method. This work has
been extended to higher order random fields to better preserve edges [11]. Both of
these systems leveraged the commonly accepted Tuphlome-Stephanisshen model
for spatial impulse response [24] to account for the spatially varying PSF. How-
ever, a closer study of the PSF done in [11] revealed notable differences between
the PSF derived using a physical model such as the Tuphlome-Stephanisshen
model and that of the PSF for a row-column ultrasound imaging system. Fur-
thermore, different configurations of row-column ultrasound imaging systems can
result in noticeably different spatially varying PSFs, making it difficult to lever-
age the same physical model across different imaging systems. This leads us to
the motivation behind this work: instead of relying purely on a physical model,
we propose a data-driven approach to learning the PSF within the framework of
a computationally compensated row-column ultrasound imaging system. This is
the basis of PL-UIS, the proposed compensated row-column ultrasound imaging
system in this work.

The rest of the paper is organized as follows. Section 2 outlines the the-
ory and methodology behind the proposed PL-UIS system. Section 3 describes
experimental setup and presents the experimental results. Finally, conclusions
are drawn in Sect. 4.

2 Methodology

The proposed compensated row-column ultrasound imaging system with data-
driven point spread function learning (which we will refer to as PL-UIS) has two
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steps: (i) characterization, and (ii) compensation. The characterization step uses
a set of models that describe the ultrasound imaging system. This includes an
image formation model, a noise model, and a point spread function model (which
in the proposed PL-UIS system is learned); all of which aim to address some of
the limitations of the underlying ultrasound imaging system. The compensation
step unifies these models in a random field framework that aims to reconstruct
ultrasound images while compensating for the limitations of the system. We will
look at both steps in more detail here.

2.1 Characterization

The characterization step uses three models to describe the ultrasound imaging
system: an image formation model, a noise model, and a point spread func-
tion model. Respectively, each will address data sparsity, speckle noise, and the
spatially varying point spread function of ultrasound imaging systems. In the
proposed PL-UIS system, we introduce a novel spatially varying PSF learning
approach to obtain an improved characterization than what can be achieved
using existing physical models.

Image Formation Model. An observed ultrasound RF image gr can be math-
ematically described as:

gr(x, y, z) = M(x, y, z)[f(x, y, z) ∗ h(x, y, z) + u(x, y, z)] (1)

where M(x, y, z) is the sampling function that determines where measurements
take place, f(x, y, z) is the tissue reflectivity function, h(x, y, z) is the spatially
dependant point spread function of the ultrasound imaging system, ‘∗’ is the con-
volution operator, u(x, y, z) is the noise component taking into account measure-
ment noise as well as physical phenomenon not accounted for by the convolution
model [10], and x, y, z are the Cartesian coordinates of the imaged space.

Noise Model. Speckle noise affects all scans from coherent imaging modalities.
It is a result of the interfering echoes of transmitted waveforms emanating from
the heterogeneities of the studied object. Previous work in literature has shown
that the Fisher-Tippett model [12] provides the best fit for speckle noise in
envelope detected observed image. The Fisher Tippett distribution is given by:

p(I(x, y, z)) = 2 exp
[
(2I(x, y, z) − ln 2σ2) − exp [2I(x, y, z) − ln 2σ2]

]
, (2)

where I(x, y, z) is the pixel intensity and σ is the standard deviation.

Point Spread Function. For ultrasound imaging systems, the PSF is spatially
variable. This is due to the nature of sound waves: sound pressure weakens as
it moves, creating a varying beam profile [4]. Previous work characterized and
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accounted for this when compensating for the ultrasound imaging system using
physical models. More specifically, past systems leveraged a PSF derived base
on the Tuphlome-Stephanisshen model for spatial impulse response, which was
further derived in [15] for the pulse-echo case. However, as stated earlier in
the paper, this physical model has notable deviations from the PSF for row-
column ultrasound imaging systems. It is also difficult to leverage this same
physical model across different imaging systems with different setups. Driven to
address these fundamental limitations of using purely a physical model for the
PSF, we introduce a data-driven approach for PSF learning to obtain a more
representative PSF for the underlying row-column ultrasound imaging system.

The proposed data-driven PSF learning method extends upon the approach
introduced in Pan et al. [26] to enable the learning of spatially variable PSFs
found in row-column imaging systems, and can be described as follows. To find
the optimal spatially varying PSF based on the underlying acquisition at hand,
the PSF learning method alternates between two processes: (i) estimating the
latent tissue reflectivity function f(x, y, z)

min
f

||f(x, y, z) ∗ h(x, y, z) − g(x, y, z)||22+λR(f(x, y, z)), (3)

and (ii) estimating the spatially varying PSF h(x, y, z),

min
h

||f(x, y, z) ∗ h(x, y, z) − g(x, y, z)||22+γ||h(x, y, z)||22, (4)

where R(f(x, y, z)) is a regularized prior on tissue reflectivity magnitude and
gradient, λ and γ are constraints for the PSF and latent tissue reflectivity func-
tion.

To minimize Eq. 3, an auxiliary variable a(x, y, z) with respect to f(x, y, z) is
introduced as well as v(x, y, z) corresponding to the tissue reflectivity gradient.
With these two variables, the objective function is re-written as:

min
f,a,v

||f(x, y, z) ∗ h(x, y, z) − g(x, y, z)||22+η||f(x, y, z) − a(x, y, z)||22
+μ||∇f(x, y, z) − v(x, y, z)||22+λ(σ||a(x, y, z)||0+||v(x, y, z)||0), (5)

Here σ is a weight that balances the regularized priors, η and μ are penalty
parameters. The values of a(x, y, z) and v(x, y, z) are first initialized to zeros,
and in each iteration, the latent tissue reflectivity function is obtained by solving

min
f

||f(x, y, z) ∗ h(x, y, z) − g(x, y, z)||22+η||f(x, y, z) − a(x, y, z)||22
+μ||∇f(x, y, z) − v(x, y, z)||22, (6)

Given f(x, y, z), a(x, y, z) and v(x, y, z) are then computed separately by

min
a

η||f(x, y, z) − a(x, y, z)||22+λσ||a(x, y, z)||0, (7)

min
v

μ||∇f(x, y, z) − v(x, y, z)||22+λ||v(x, y, z)||0. (8)



Compensated Row-Column Ultrasound Imaging Systems 433

Algorithm 1. Solving (5)

Input: g and h
f ← g, η ← 2λσ
repeat

solve for a using (7)
μ ← 2λ
repeat

solve for v using (8)
solve for f using (6)
μ ← 2μ

until μ > μmax

η ← 2η
until η > ηmax

Output: Intermediate latent tissue reflectivity f

The main steps for solving for the latent tissue reflectivity function can be
summarized through the following algorithm:

Given f(x, y, z), (4) becomes a least squares minimization problem. The spa-
tially varying PSF can be estimated by:

min
h

||∇f(x, y, z) ∗ h(x, y, z) − ∇g(x, y, z)||22+γ||h(x, y, z)||22. (9)

As such, the algorithm for learning the spatially varying PSF can be sum-
marized as:

Algorithm 2. Spatially Varying PSF Learning

Input: g
initialize h using coarse-to-fine process
for i = 1 → 5

solve for f using Algorithm 1
solve for h using (9)
λ ← max{λ/1.1, 1e−4}

endfor
Output: PSF h and intermediate latent tissue reflectivity function f

Given the aforementioned spatially varying PSF learning approach, we now
can address data sparsity through incorporating the image formation model,
account for speckle noise through the noise model, and learn the spatially varying
PSF using the proposed data-driven algorithm. All three models are used in a
unified compensation framework that will be described in the next section.

2.2 Compensation

The compensation stage leverages the models defined in the characterization
stage to find a solution for the inverse problem of Eq. 1. This is essentially an
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image reconstruction problem, where we are given a sampled observed noisy
image and need to find an estimate of the ideal image. We formulate the image
reconstruction problem as a Maximum a Posteriori (MAP) problem, where we
wish to maximize the posterior distribution P (F |G):

F ∗ = argmin
F

{E(F,G,Cr)}. (10)

where F ∗ denotes the MAP solution, F̄ denotes the possible result set, and G
denotes the observation.

To model P (F |G), we can leveraging the notion of conditional random fields
(CRFs). This gives us the flexibility of modeling the conditional probability
without specifying a prior model, but instead with a set of potential functions
ψ(·) [14]. The general form for CRFs is:

P (F |G) =
1

Z(G)
exp ( − ψ(F,G)) (11)

where Z is the partition function.
The potential function ψ(·) is a combination of unary and pairwise potential

functions:

ψ(F,G) =
n∑

i=1

ψu(fi, G) +
∑
c∈C

ψp(fc, G) (12)

C here is a clique structure for each node. With this framework, neighbours
in a clique structure are considered with the same degree of certainty, which
isn’t the case when dealing with incomplete or sparse data. This necessitates the
addition of a layer that takes into account the degree of uncertainty, which is
what multilayered conditional random fields (MCRF) accounts for. Equation 11
can be rewritten as:

P (F |Cr,G) =
1

Z(G)
exp ( − ψ(F |Cr,G)) (13)

where Cr is the uncertainty layer, a zero-to-one plane that indicates where mea-
surements exist, with Cr = 0 where readings are available.

The unary potential function ψu plays the role of the data driven function. It
incorporates the observation into the random field model as well as taking into
account the spatially varying PSF. Since we believe the ideal image is degraded
according to the noise model shown in Eq. 2, the unary potential function is
formulated after the Fisher Tippett distribution:

ψu(fi, G, Cri) =
1− Cr

σ
exp

(
− α

logG − logH(fi)

σ

)
. exp

(
− logG − logH(fi)

σ

)
(14)

where alpha determines how much contribution the unary potential has, H(.)
is the function that takes into account factors pertaining to the imaging system
like PSF and sensor noise.

The pairwise potential function ψp is a spatially driven function, incorpo-
rating spatial information within a local clique structure into the random field
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model. The potential function in the proposed system consists of two penalty
terms: the first penalizes pixels that are farther away (since it’s less likely they
belong to the same label) referred to as spatial proximity penalty wsp, the sec-
ond penalizes pixels with different intensities (outlining tissue transitions more
clearly) referred to as the first order variation penalty wfov. ψp is formulated as:

ψp(fc, G) = exp(−β|fi − fj |w(gi, gj)), (15)

where β determines how much contribution the pairwise potential has, w is the
combined penalty function consisting of the spatial proximity penalty:

wsp(i, j) = exp (
−dE(i, j)

2σ2
sp

), (16)

and the first order variation penalty:

wfov(gi, gj) = exp (−||gi − gj ||
2σ2

fov

) (17)

with σsp and σfov being control factors setting the strength of the corresponding
penalty function, and dE(i, j) is the Euclidian distance between nodes i and j.

Now that the potential functions are defined, an energy function driving the
MAP problem can be set up as:

E(F,G,Cr) =
n∑

i=1

ψu(fi, G,Cri) +
∑
c∈C

ψp(fc, G). (18)

With this energy function, the MAP problem in (10) can be rewritten as:

F ∗ = argmin
F

{E(F,G,Cr)}. (19)

To solve the MAP problem, gradient descent algorithm is used.

3 Results

To evaluate our proposed PL-UIS system, we compared the performance of our
PL-UIS system with previously proposed row-column imaging systems in litera-
ture, including the original compensated row-column ultrasound imaging system
CRC-UIS [10], the edge-guided compensated system EG-CRCUIS [11], a base-
line row-column system [7], a system that uses integrated apodization to correct
for some of the row-column limitation through transducer design [5], and a fully
addressed 2-D array. In this section, we will outline the experimental setup,
metrics used to evaluate the performance, visual evaluation, and quantitative
evaluation.
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3.1 Experimental Setup

In this work, Field II MATLAB Toolkit [15] was used for simulation of row-
column ultrasound imaging systems. This includes phantom generation as well
as ultrasound beamforming. More specifically, the ultrasound imaging systems
were implemented with 32 × 32 2-D addressing. Center frequency was set at 6
MHz, F-number on receive was set at 4. Attenuation was not applied.

Two phantoms were tested in this work, shown in Fig. 1. The first phantom
is a series of 4 cysts with decreasing diameter, each placed 10 mm apart. The
bottom two cysts are placed at 5 mm and 10 mm off the center axis. The second
phantom is an L shape made up of three 6 mm by 6 mm squares. To ensure
fully developed speckle during the simulation, 500,000 scatterers were set in the
scanning region.

Fig. 1. Phantoms tested in this study. The phantom in (a) consists of four cysts of
decreasing size, with the bottom two offset away from the middle axis. The phantom
in (b) is a homogeneous ‘L’ shape.

3.2 Metrics for Comparison

For the purpose of our implementation, we use peak signal-to-noise ratio (PSNR)
to provide a quality measure based on the power of the ideal and reconstructed
image, expected number of looks (ENL) to provide a measure of speckle removal
(as it give a measure of statistical fluctuations), and coefficient of correlation
(CoC) to provide a measure of edge preservation. All metrics are used in accor-
dance to recent literature definitions [10,11,16–22].

3.3 Quantitative Evaluation

Quantitative results for the first phantom are summarized in Table 1. The pro-
posed PL-UIS outperforms all other methods in reconstructing the phantom
across all metrics, achieving higher ENL and CoC and thus indicating better
speckle removal and edge preservation. All compensated systems show higher
performance in these metrics when compared against the baseline RC as well as
the integrated apodization systems.
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Table 1. Quantitative results for the first phantom

System PSNR ENL CoC

PL-UIS (proposed) 22.1649 3.5466 0.37784

EG-CRCUIS [11] 20.2834 1.1456 0.30495

CRC-UIS [10] 20.2541 1.5587 0.34094

Baseline RC [7] 18.6101 2.2711 0.2234

Integrated apodization [23] 18.7266 0.49454 0.33837

Fully addressed 2-D array 16.8628 2.9858 0.21104

Quantitative results for the second phantom are summarized in Table 2. The
proposed PL-UIS once again outperforms the other tested row-column imaging
systems in terms of PSNR and CoC, indicating better reconstruction and edge
preservation. CRC-UIS performs the highest in ENL indicating better speckle
removal.

Table 2. Quantitative results for the second phantom

System PSNR ENL CoC

PL-UIS (proposed) 15.0724 35.0585 0.21247

EG-CRCUIS [11] 14.3523 80.6775 0.19492

CRC-UIS [10] 12.4017 89.5186 0.17279

Baseline RC [7] 10.6971 1.473 0.13585

Integrated apodizzation [23] 11.1029 5.9159 0.16998

Fully addressed 2-D array 12.9316 5.9159 0.18795

3.4 Visual Evaluation

Reconstruction of the first phantom is shown in Fig. 2, with a closer look at the
cysts in Fig. 3. The results of PL-UIS are remarkably close to the phantom, with
sharp edges and homogeneous regions that reflect the underlying phantom. The
top cysts loses some of its round shape when compared to other compensated
systems, which may be due to the data-driven nature of the PSF estimation,
the other cysts retain their shape better than other systems. The sizes of the
cysts are most consistent in PL-UIS. This is particularly noticeable in all three
compensated systems with the top and bottom cysts that are farthest from the
line of focus, which is indicative of the value of variable PSF compensation.

Reconstruction of the second phantom is shown in Fig. 4. PL-UIS shows
a significant improvement over its predecessors, particularly when compared
with CRC-UIS. While visually it looks like a better reconstruction of the phan-
tom when compared with the uncompensated row-column systems, the fully
addressed array still retains the closest shape, particularly with the corners;
though speckle is still an issue.
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Fig. 2. First phantom visual assessment of the proposed PL-UIS system (top left) as
opposed to other systems in literature. The PL-UIS reconstruction is shown in (a), the
EG-CRCUIS reconstruction [11] is shown in (b), CRC-UIS [10] is shown in (c), baseline
RC [7] is shown in (d), integrated apodization [5] system is shown in (e), and the fully
addressed 2-D array is shown in (f). All scans are shown at a dynamic range of 40 dB.

Fig. 3. A closer look at the reconstruction of the first phantom across all tested imaging
systems.
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Fig. 4. Second phantom visual assessment of the PL-UIS (top left) as opposed to other
systems in literature. The PL-UIS reconstruction is shown in (a), the EG-CRCUIS
reconstruction [11] is shown in (b), CRC-UIS [10] is shown in (c), baseline RC [7] is
shown in (d), integrated apodization [5] system is shown in (e), and the fully addressed
2-D array is shown in (f). All scans are shown at a dynamic range of 40 dB.

4 Conclusion

In this work, we proposed PL-UIS, a compensated row-column ultrasound imag-
ing based on a unified multilayered random field framework that combines phys-
ical models as well as a data-driven approach for spatially varying point spread
function learning. The proposed PL-UIS system was tested against other row-
column imaging systems - both compensated and uncompensated - from liter-
ature, with promising results that demonstrate the value of introducing data-
driven approaches to improve the characterization of row-column imaging sys-
tems to enhance compensation capabilities.

Future work includes incorporating higher order random fields, as the inte-
gration of additional energy potentials for improved image quality.
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Abstract. Plane wave ultrasound imaging has helped to achieve high frame
rate ultrasound, however the data required to achieve frames rates over 1000 fps
remains challenging to handle, as the transfer of large amounts of data represents
a bottleneck for image reconstruction. This paper presents a novel method of
using a fully convolutional encoder-decoder deep neural network to interpolate
pre-beamformed raw RF data from ultrasound transducer elements. The network
is trained on in vivo human carotid data, then tested on both carotid data and a
standard ultrasound phantom. The neural network outputs are compared to linear
interpolation and the proposed method captures more meaningful patterns in the
signal; the output channels are then combined with the non-interpolated chan-
nels and beamformed to form an image, showing not only significant
improvement in mean-squared error compared to the alternatives, but also 10–
15 dB reduction in grating lobe artifacts. The proposed method has implications
for current ultrasound research directions, with applications to real-time high
frame rate ultrasound and 3D ultrasound imaging.

Keywords: Convolutional neural network � Channel interpolation �
Ultrasound � Plane wave imaging � Encoder-decoder

1 Introduction

Ultrasound is a conventional medical imaging modality that sees widespread popularity
due to its ease-of-use, noninvasive nature, relative affordability and ability to image
both tissue and blood flow. Traditionally, ultrasound imaging is performed in the
brightness mode (B-mode) where ultrasonic waves are iteratively emitted from trans-
ducer elements focused in a beam or line, then the reflected signals are read back to
form the image line by line. In recent years, new developments in the ultrasound
transmit and receive framework have led to the emergence of plane wave imaging,
where ultrasonic waves are transmitted through a broad planar wave front, as opposed
to line by line. As the wave propagates, it insonifies the entire imaging view and the
subsequent reflections, or echoes, are then detected and beamformed to reconstruct a
complete image for each transmission event [1, 2]. Because of this ability to transmit
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and receive one plane wave instead of many lines, as few as one transmission is
required for an image reconstruction and so it has become a strong enabler for high
frame rate ultrasound (HiFRUS).

A frame rate increase for a real-time imaging modality such as ultrasound naturally
comes with additional data transfer requirements and computation costs as there are
many more frames to be processed and reconstructed independently - upwards of
10 GB/s of data is collected and processed for plane wave ultrasound at over 1000
frames per second [3]. While the computing challenges of plane wave ultrasound have
been addressed in previous works such as [4], these methods are still bottlenecked by
the amount of data transferrable per second for real-time imaging. Without addressing
the amount of data transferred, the framerate of plane wave imaging on conventional
hardware remains constricted – few works aim to reduce the amount of data gathered
despite the restrictions posed by the data bottlenecking. Compressive sensing has been
applied to tackle and reduce the samples collected, but it uses a slower, iterative
approach unsuited for HiFRUS and required additional hardware implementation at the
front-end [5]. Another work that attempts to use neural networks to address the data
intake is [6]; however, their framework is limited to B-mode acquisitions through the
construction of their neural network. Another earlier work that applies neural networks
and tries to reduce channel count is [7], but their network is a post-processing technique
without in vivo validation.

This paper aims to present a novel approach to reducing the data transfer
requirements from the ultrasound probe by half through deep learning interpolation,
with a the additional possibility of reducing the probe’s physical channel count. By
noting that there exist redundancies in the raw radiofrequency (RF) data from the
transducer channels from the geometric properties of wave reflection, we hypothesize
salient features form when the RF data is stacked channel-wise to form an image, even
when some channels are taken away. Because of its effectiveness in similar interpo-
lation tasks, we propose a convolutional encoder-decoder neural network model to be
trained on in vivo data in order to first learn an encoded representation of the types of
the features that exist across channels and then to interpolate missing channels. By
splitting the interleaving channels of a 128-channel count probe into input and output
pairs for neural network training, our goal is to examine the performance of such a
neural network model for both accurate interpolation and image reconstruction.

2 Background Considerations

2.1 Transducer Channel Redundancy

The physical principles underlying pulse-echo ultrasound image formation lends cre-
dence to the idea that some of the information in each channel, acquired by a single
transducer element on the probe, contain shared information between channels that can
be leveraged. Figure 1 shows a model with three transducer elements receiving the
reflected signal from a point source – after a plane wave is transmitted from the
transducers, the lowermost transducer receives the reflected signal first as it is geo-
metrically the closest to the point source and the uppermost transducer receives the
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reflected signal last. This is the fundamental principle behind delay-and-sum beam-
forming for image formation as the total receive and transmit delay is calculated and the
channel data is summed. Because the lower, middle, and upper channels are all
receiving information from the same source at different times, the information of the
middle channel can be inferred from the information for the two neighboring channels.

By noting that there is a salient structure to the reflected echoes across channels,
feature extraction type of techniques can potentially be applied through treating the
signals from the channels as an n � m image, where n is the number of samples per
channel and m is the number of channels. The expected types of features include lines
or arcs appearing across several RF channels. The core idea is that if the middle
channel were missing, the neighboring channels can potentially be used to interpolate
or reconstruct the missing information through the detected features.

2.2 Convolutional Neural Networks

The convolutional neural network (CNN) is a popular tool in the machine learning and
pattern recognition fields that has seen much recent success for feature extraction and
more [8, 9]. While classic neural networks learn dense connections between individual
neurons, CNNs instead learn small convolutional kernels which are applied to images
while still creating nonlinearity through the activation function. When trained on
images, the kernels will often start learning edge detector types of patterns [9], and,
when combined with pooling and upsampling layers, can be used sequentially to form
an encoder-decoder architecture [10].

The encoder-decoder deep learning architecture has shown results in literature in
other fields where the input and the output have similar spatial characteristics, such as
image inpainting or denoising [11]. With a deep learning approach, the ideal is for the
encoder to learn a representation of the source in terms of its trained features and the
decoder to interpret the representation in a sensible fashion. This is the motivation for
attempting this approach on ultrasound RF data stacked to form an image; the encoder

Fig. 1. A simple representation of the physical principles behind plane wave pulse-echo
imaging. The transducer elements first emit a plane wave transmission which is reflected by the
object of interest. The same transducers receive the reflected waves and convert the acoustic
signal into an electrical signal.
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learns the geometric features unique to the pulse-echo reflections across channels and
the decoder learns to interpret the feature space representation to interpolate the
channels that are removed.

3 Neural Network Model

3.1 Architecture

In determining the architecture for the neural network to be used for RF data inter-
polation, key design considerations included the number of channels that the convo-
lutional kernels needed to capture and how each layer downsamples the representation.
The chosen neural network structure used for this paper is depicted in Fig. 2. The first
and last layers used a larger kernel size of (6, 6) to try to better encapsulate the
expected, curved, geometrical features. While many convolutional encoder-decoder
networks use max pooling layers after the convolutional layers, Springenberg et al. has
shown in [12] that stride based encoder-decoder structures perform at a comparable
level to pooling and upsampling layers without the need to discard information. The
neural network structure includes the zero-padding and cropping layers at the start and
end of the sequence of layers to transform the data to a clean multiple of 2 as each
convolutional layer uses a stride length of 2 in the RF data direction. Additionally, the
stride length in the channel direction is 1 – no reduction is performed in the channel-
wise direction. Each convolutional layer uses a ReLU activation function to introduce
nonlinearity, while the recombination layer required to regenerate the image uses a
standard choice of hyperbolic tangent activation function. Because ultrasound is a real-
time imaging modality, the total number of layers was limited to minimize the addi-
tional computational complexity required for an implementation.

Fig. 2. The encoder-decoder sequential convolutional neural network used for RF data
interpolation, with 4 encoding layers and 4 deconvolutional layers. The number of kernels for
each encoding layer in order is 18, 24, 36, 48, with the reverse holding for the de-convolutional
layers. The input is an image of 64 channels by 500 samples of RF data, as is the output.
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3.2 Training and Testing

A total of 2093 instances of in vivo human carotid 0° plane wave ultrasound was
acquired using an L14-5 linear probe on a SonixTouch (Analogic Ultrasound, Peabody,
MA, USA) scanner, with an attached data acquisition board configured for plane wave
imaging, from fifteen volunteers over several sessions. Each acquisition contained 128
channels of 3000 samples of RF data from the transducer elements – the center fre-
quency for the RF data was at 5 MHz and the data was acquired at a 40 MHz sampling
rate. The odd numbered channels are kept as set of training inputs, and the even
numbered channels are left as the training. After examining the frequency spectrum, the
fast-time data of each channel was then maximally down-sampled 2x to 1500 samples
per channel without aliasing and then the middle 500 samples (imaging depths of
19 mm to 38 mm) were selected for the neural network input and output. The first 500
samples (0 to 19 mm depth) and last 500 samples (38 to 58 mm depth) were unused as
they tended to have values in the large and small extremes respectively. Additionally,
the geometry of the problem stretches with the distance from the probe, leading to
slightly different feature sets at different depths, further motivating limiting the selec-
tion from the RF data. The data was then split into 1893 examples for training, with an
initial 80-20 validation split for model selection, and 200 examples set aside for testing.

The neural network, training, and testing were programmed in Python 3.6.8 using
keras with TensorFlow 1.12.0 [13] as the backend and GPU acceleration on an
Nvidia GTX 1080 (Nvidia Corporation, Santa Clara, CA, USA). Because the raw data

Fig. 3. The proposed pathway from the raw RF data to the final image is shown. After the data
is collected from the 128 channel transducer, the samples from the even-numbered channels are
discarded, leaving data from half the channels as an input to the trained CNN. The CNN is
applied and outputs the interpolated channels (green), which are inserted between original odd-
numbered channels. The reformed 128 channel RF data then goes through standard ultrasound
image formation (analytic signal conversion, beamforming, and envelope detection) (Color figure
online)
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from the probe has inherent signed 12-bit resolution, the data was normalized by a
factor of 2048 to bring the values to the range of –1 to 1 before training. The con-
volutional neural network was trained for 1500 epochs with a batch size of 128 using
the Adam optimization algorithm (lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsi-
lon = 1e–7) and mean-squared error as the loss function. After training, the algorithm
converged to an MSE loss of around 0.01 on the training data and evaluated to a loss of
0.02 on the unseen testing data. The experiments followed the system as shown in
Fig. 3 to evaluate the actual performance of the CNN interpolator. To characterize the
behavior of the neural network on a known ultrasound phantom, the network was also
applied to RF channel data collected from a Multi-Purpose Multi-Tissue Ultrasound
Phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA) to
compare the faithfulness of reconstruction from both interpolated and non-interpolated
channels. The interpolated RF channels were also compared to the original channels to
see if the structure was captured as expected.

4 Results

4.1 Improvement of Reconstructed Images

Figure 4 shows a few 128 � 256 reconstructed images based on RF data from a Multi-
Purpose Multi-Tissue Ultrasound Phantom that was set apart from the training and
testing data sets. The image reconstructed using all 128 original channels is shown in
Fig. 4a, while b, c, and d show the reconstructions based on the 64 odd-numbered
channels without interpolation, 128 channels with linearly interpolated interleaved
channels, and 128 channels interpolated with the novel method with no retraining or
fine tuning, respectively. The reconstruction was performed using a rudimentary

Fig. 4. 128 � 256 reconstructed images of 19.25 mm by 39 mm window using, (a) full 128
channels, (b) 64 channels without interpolation, MSE = 0.0026, (c) 128 channel reconstruction
with half interleaved linear interpolated, MSE = 0.0016, (d) 128 channel reconstruction with half
interleaved neural network interpolated, MSE = 0.0009. Images displayed on the same logarithm
scale for a 40 dB range. Yellow arrows highlight areas with grating lobe artifacts. (Color figure
online)
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beamformer based on [2] and [4] without advanced apodization or image compounding
techniques, and the image is approximately 19.25 mm (axial, top to bottom) by 39 mm
(lateral, side to side) in its physical representation. After beamforming, each image was
then scaled to the pixel of maximum magnitude and displayed on a log dB scale. The
proposed method shows over 50% reduced mean-squared error (calculated before log
scaling) on the phantom compared to linear interpolation. It can also be clearly seen
that the proposed reconstruction visibly reduces the grating lobes (yellow arrows on
Fig. 4), artifacts that arise from the beamforming process in ultrasound due to additive
interference when the element pitch is larger than the acoustic wavelength, compared to
the other methods.

4.2 Grating Lobe Suppression

Figure 5 takes a slice of the image along the shown line of point sources in the
ultrasound phantom to compare the severity of the grating lobe artifacts – the image
reconstructed with the channels from the encoder-decoder interpolation shows a 10–
15 dB improvement in grating lobe magnitude, comparable to the reconstructions from
the full 128 channels (–30 to –35 dB on far left of Fig. 5), over the reconstructions
from linearly interpolated and 64-channel non-interpolated data (–15 to –20 dB on far
left of Fig. 5). For the neural network-based reconstruction, the level of the grating
lobes along the slice is comparable to the image beamformed from the original 128-
channel data.

4.3 Accuracy of RF Channel Data

In addition to post-beamformed image-based comparisons, the interpolated RF data
was also compared to their corresponding original channels as well as the results from
linear interpolation. Figure 6 shows a single channel of RF data taken from the set
aside in vivo test data, with a window displaying the first 100 samples in additional

Fig. 5. A slice (axial position shown on left in yellow) taken from the same phantom as in Fig. 4
with dB values on the right. The neural network output and original 128-channel data show 10–
15 dB lower grating lobe behavior on the left and right sides of the phantom. (Color figure
online)
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detail. Visually, the figure shows for this channel that the neural network interpolation
follows the pattern of the original RF data more closely than linear interpolation,
particularly in the first 100 samples examined (imaging depths of 19.25 mm to
23.1 mm).

5 Discussion

From our results, images reconstructed from encoder-decoder interpolated RF channels
show visual improvement in clarity and grating lobe reduction while only using
information from half the transducer channels. Based on the RF channel comparison,
the neural network appears successful in capturing features with smaller magnitude in
the RF data, which may play a role in the reduction of the grating lobes. Despite the
convolutional neural network being trained only on human carotid data for a small set
of depths, the performance of the network evaluated on the phantom lends credence to
the idea that the network is indeed capturing the geometric details. Current directions
involve applying the network on RF data at all depths using a single, related, network
architecture; however, training different networks for different depths, with possible
time gain compensation applied, is another approach with physical justifications.

Although the convolutional encoder-decoder network demonstrates viability, there
remain many improvements that can be made. There may be benefit in training with
simulated RF data through randomly generated examples in order to capture the most
geometric variation. Transfer learning can also be applied to the network to potentially
better characterize the network for imaging different areas of the body; however, in
general the neural network relies more on the acquisition setup (transducer pitch,
imaging frequency) than on the type of input data. A further avenue for improvement
would be to increase the number of plane wave transmission angles used for the image

Fig. 6. Comparison of neural network output (top blue) to linear interpolation (bottom blue) for
data from a single transducer for an in vivo example overlaid with the true RF data (red). Scaled
sample values are plotted on the y-axis against sample number on the x-axis. The first hundred
samples are expanded in the bottom right (Euclidean distance of 0.074 and 0.137 respectively)
(Color figure online)
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and perform compounding for a higher spatial resolution. While improvements can still
be made, there are also positive implications for 50% channel reduction, such as
transmitting with more elements and receiving with fewer. 3D ultrasound is another
area where interpolation merits investigation, as the data transfer required for real-time
high frame rate images increases by over an order of magnitude – the presented
framework is easily generalizable to the case with a 2D transducer.

6 Conclusion

Our results have demonstrated a functional convolutional neural network architecture
for RF channel interpolation with good performance both in vivo and in vitro. The data
carried between RF channels has enough redundancy for a deep learning approach to
learn the appropriate features across the channels. The viability of using interpolated
channels for plane wave ultrasound image reconstruction has important implications for
future work, whether in reducing the physical hardware by removing channels or
simply cutting the data transferring in half. As ultrasonics moves more towards real-
time 3D imaging, the ability to faithfully reconstruct images based on interpolated data
has even more relevance.
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Abstract. Color flow imaging is a biomedical ultrasound modality used to
visualize blood flow dynamics in the blood vessels, which are correlated with
cardiovascular function and pathology. This is however done through a pulsed
echo sensing mechanism and thus flow measurements can be corrupted by
aliasing artefacts, hindering its application. While various methods have
attempted to address these artefacts, there is still demand for a robust and
flexible solution, particularly at the stage of identifying the aliased regions in the
imaging view. In this paper, we investigate the application of convolutional
neural networks to segment aliased regions in color flow images due to their
strength in translation-invariant learning of complex features. Relevant ultra-
sound features including phase shifts, speckle images and optical flow were
generated from ultrasound data obtained from anthropomorphic flow models.
The investigated neural networks all showed strong performance in terms of
precision, recall and intersection over union while revealing the important
ultrasound features that improved detection. This study paves the way for
sophisticated dealiasing algorithms in color flow imaging.

Keywords: Ultrasound imaging � Color flow imaging �
Convolutional neural networks � Deep learning � Cardiovascular �
Doppler � Aliasing

1 Introduction

Color flow imaging (CFI) [1], a modality of biomedical ultrasound, is a color coded
method for visualization of flow in vivo using Doppler principles. It has long been used
as a diagnostic tool for conditions such as stenosis and monitoring plaque formation by
detecting abnormal flow such as jets, turbulence and flow reversal [1, 2]. Moreover,
CFI can be integrated with recent innovations such as high frame rate ultrasound and
vector doppler [3] to analyze highly transient phenomena [4] and allow quantitative
analysis [5].

One of the limitations in CFI is the presence of aliasing artefacts [6] due to the
underlying pulsed echo sensing mechanism. Aliasing corrupts measurements of fast
flow and this in turn hinders the analysis of complex hemodynamics. Aliasing is
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especially problematic when imaging vortices in the heart [7] and jetting in conditions
of stenosis [8], where it makes the visualization of flow very challenging, thereby
impacting diagnosis. Consequentially, it is imperative that aliasing artefacts are elim-
inated in order to study complex flow using CFI.

To address aliasing artefacts in CFI, a common approach is to segment the aliased
region, then correct it by phase unwrapping to achieve smooth flow [9]. To this end,
Shahin et al. [10] employed a fuzzy logic approach to identify aliased regions based on
velocity and spatial information while Muth et al. [11] developed an unsupervised
method with region growing segmentation followed by the optimization of a flow
continuity criteria. These methods have succeeded in stationary scenarios, but seg-
mentation failed in conditions of complex flow and low signal-to-noise ratio: partic-
ularly the scenarios where aliasing is most impactful. Alternatively, a staggered
transmission sequence can be used but this can complicate ultrasound processing
downstream such as clutter filtering [12]. Consequentially, a robust method to segment
aliasing is needed as a basis for reliable dealiasing algorithms.

On the other hand, robust segmentation may be achieved using Convolutional
Neural Networks (CNN). Indeed, Long et al. [13] demonstrated that fully convolutional
neural networks can be used for semantic segmentation on a variety of datasets. More
specifically, one class of CNN architectures known as encoder-decoders [14] have
particularly excelled in this area. This comes from the architecture’s ability to extract
and combine translation-invariant patterns at multiple scales then refining them to
achieve high resolution segmentation. This is appropriate for aliasing artefacts, which
can form complex patterns with varying sizes and orientations. Consequentially, we
hypothesize that an encoder-decoder can learn to segment aliasing artefacts in Color
Flow images.

In this paper, we investigate the applicability of the encoder-decoder architecture
for aliasing segmentation in CFI. To our knowledge, this is the first application of
CNNs towards a robust segmentation of aliasing in CFI. Therefore, this investigation
involved two stages: First, different relevant ultrasound processing steps were imple-
mented. These were then compared on a custom encoder-decoder architecture tuned for
a blood flow-related application. We shall report the most effective processing pipeline
and experimental evidence that the encoder-decoder can segment aliasing in a carotid
bifurcation model. The findings of this study will pave the way for more compre-
hensive deep-learning methods to eliminate aliasing in CFI.

2 Methodology

2.1 Strategic Overview

To meet the objectives of this study effectively, our approach to deep learning must be
guided by the mechanisms underlying Aliasing. Namely, aliasing occurs when flow is
too fast such that it exceeds the Nyquist limit, resulting in a wrap around, and showing
up as inconsistent flow regions in the CFI. For example, obstruction at the carotid
bifurcation (see Fig. 1a) leads to a flow jet where velocities are so high that the body of
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the jet phase wraps, suggesting incorrectly that flow is going the opposite direction (see
Fig. 1b). The desired segmentation (see Fig. 1c) should therefore determine the pixels
affected by this corruption.

But while aliasing is predominantly a CFI issue, other imaging modes may com-
pliment the CFI and allow more effective deep learning. Accordingly, we devised three
approaches involving different combinations of three ultrasound image modes. The
following subsections will detail the relevant imaging modes, how our CNN model was
designed and how the model was trained and tested.

2.2 Imaging Modes and Configurations

Three Imaging Modes Were Investigated.

Color Flow Images. One of the most obvious markers for aliasing is the presence of
sharp boundaries indicating flow inconsistency, therefore CFIs are crucial inputs for
aliasing segmentation. CFI can be produced from beamformed ultrasound data using
lag-one autocorrelation, after filtering to remove clutter (tissue).

Speckle Images. Recent dealiasing algorithms [15] have made use of speckle patterns
(see Fig. 2b): interference of reflections from multiple scatterers in the flow region that

Fig. 1. Illustration of aliasing in CFI: (a) CFI with aliasing in the jet. (b) flow profile across the
white line in (a) corrupted by aliasing. (c) desired segmentation of aliasing artefacts.

Fig. 2. Imaging modes used in this study: (a) speckle image and (b) Optical flow angle using
Flownet2.0.
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can be tracked to indicate flow motion. Speckle images can be produced from beam-
formed data through clutter filtering, envelope detection and log compression.

Optical Flow Angle. Motivated by the relevance of interframe motion of speckle
patterns to aliasing segmentation, we investigated a direct approach by incorporating
speckle-based optical flow as an imaging mode. While many methods exist for optical
flow, we chose Flownet2.0 [16] for its performance and ability to connect with the rest
of the deep learning module, allowing global optimization. Training Flownet2.0 in
ultrasound images was beyond our scope and, thus, the weights were obtained from the
original contribution [16]. Initial results showed the magnitude of flow predicted by
Flownet2.0 was of low quality so only the optical flow angle (see Fig. 2b) was used.

Dataset Configuration. As per the overview, the three imaging modes relevant to
aliasing were then combined to form three combinations (see Table 1) for testing. Since
aliasing is primarily a CFI problem, all tested combinations included the CFI. To
investigate the role of speckle motion in the aliasing problem, two further combinations
were considered. One combination included two time-consecutive speckle images with
the encoder-decoder expected to extract the relevant features. The final combination
instead included the optical flow angle derived by Flownet2.0.

2.3 Network Architecture

Motivation. Having determined the relevant inputs, a custom encoder-decoder
architecture was designed specifically for this study. Traditional encoder-decoder
architectures such as SegNet [14] typically come with many layers. On the other hand,
multiple dataset configurations had to be compared in this study, therefore the training
time had to be fast. Consequentially, we devised a relatively more compact encoder-
decoder for rapid training and testing.

Network Design. Figure 2 illustrates the general architecture of the neural network.
First, a set of three convolutional layers + max pooling (depicted as blue + orange)
were employed to extract translation-invariant features at three scales. This was then
followed by another convolutional layer to process the features at that scale. Finally,
three deconvolutional layers (depicted as green) were used to increase the resolution of
segmentation. The number of layers and kernel sizes were chosen to produce an

Table 1. Imaging mode combinations investigated in this study

Imaging mode
combination

Channel
count

Description

CFI 1 Normalized CFI only
CFI + speckle
imaging

3 Normalized CFI; speckle image at the current frame;
speckle image at a previous frame

CFI + optical
flow angle

2 Normalized CFI; optical flow angle derived from
flownet2.0
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effective receptive field of 34 � 34, which was appropriate as the vessels used in this
study were around 40 pixels wide. The filter number was increased throughout the
encoder to match the increasingly complex patterns being encoded.

To match the three dataset configurations with different channel inputs, three
encoder-decoder models were constructed where the filter number in the whole net-
work was proportional to the number of input features in the combination to match the
increased complexity that comes with processing more channels, denotes as i in Fig. 3.

2.4 Experimental Data Generation and Training Parameters

Imaging Setup. To acquire the datasets, we utilized our research imaging platform
[17]. The scanner (SonixTouch; Analogic Ultrasound, Peabody, MA, USA), combined
with a custom acquisition board [17] and a L14-5 linear array transducer (Analogic
Ultrasound), was configured for high frame rate ultrasound imaging and used in this
study with the same imaging parameters (Imaging frequency = 5 MHz, emission
type = plane wave, pulse duration = 3 cycles, transmission angle = −10° and pulse
repetition frequency = 3333 Hz).

Training Set. We utilized our novel in vitro flow model fabrication process [18, 19] to
generate data. For training, we required a dataset that contains flow with aliasing but in
a variety of orientations and formations. To that end, the training datasets was acquired
using the spiral model [18] (see Fig. 4a), which contains flow in all directions within
the imaging view and was therefore expected to improve the generalizability of
learning. Flow was chosen to be constant at 3 ml/s, to produce aliasing with at most
one cycle (see Fig. 4b).

To increase the variety of aliasing artefacts, the original series for training was also
down sampled by a factor of 2 along the imaging time axis, effectively reducing the
PRF and producing more prominent aliasing. Data augmentation (horizontal and ver-
tical flipping, rotation <180  , scales: 25%–300%) was also applied to produce different

Fig. 3. An illustration of the simple encoder-decoder neural network architecture used. All
layers were activated by a REctified Linear Unit (RELU) except the last layer which was
activated by sigmoid activation layer. The number of filters in each layer was proportional to the
number of channels, i = 1, 2, 3 depending on the dataset used
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patterns of aliasing. The training set ultimately contained 7000 samples where each
sample was a 400 � 368 image at 0.1 mm/pixel.

Test Set. To produce the test set, the same imaging setup was used to image a second
model, an anthropomorphic wall-less carotid bifurcation model based on the work by
Chee et al. [19] (see Fig. 4c). This model possesses flow in a clinically relevant setting,
with jets that are often aliased during imaging (see Fig. 4d) and is sufficiently distinct
from the training set. Flow was configured to an anthropomorphic pulsatile waveform
at 72 beats/min with peak flow at 5 ml/s to ensure the occurrence of aliasing artefacts
but with no more than one cycle.

Training Parameters. To account for the effects of randomization in model training,
30 instance models were trained for each feature combination using an Adam Opti-
mizer with default parameters using random initializations, for 5 epochs with a batch
size of 8. Binary cross-entropy was the chosen loss as pixels could be segmented into
one of two classes. For training and evaluation, the ground truths for the training and
testing sets were generated manually.

3 Results

3.1 Aliasing Segmentation Successfully Achieved on the Test Set

The first observation in this study was that all methods provided segmentation results
matching the ground truth. To illustrate the achieved segmentation, a sample at systole
near the jet region in the carotid bifurcation model where aliasing is most prominent is
shown in Fig. 5 for a random model from each method with errors color coded. Errors
were most prevalent at the boundaries of the aliasing artefacts, but the network largely
matched the aliasing boundaries.

Fig. 4. Ultrasound scans of the flow models used in this study. (a) spiral model US brightness
mode image, (b) spiral model normalized CFI map, (c) carotid bifurcation model US brightness
mode image and (d) carotid bifurcation model normalized CFI map.
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3.2 CFI + Optical Flow Angle Method Scored Highest in All Evaluation
Metrics

The average performance of the three methods across thirty models was evaluated on
the carotid bifurcation using precision, recall and Intersection-over-Union (IoU). The
mean and standard deviations are shown in Table 2. While all three models had an
average IoU at 90% or greater, the performance for the CFI + Optical Flow Angle was
the highest across all metrics, with IoUs reaching 96%. Interestingly, the CFI + Blood
speckle images method’s performance was rather comparable to the CFI only method
in all metrics, albeit with reduced variance in the precision.

4 Discussion

4.1 Summary of Contributions

In this study, we have presented a consistent Doppler aliasing detection framework by
employing a convolutional neural network with encoder-decoder structure. This is the
first time that has been done using CNNs. The achieved segmentation can be further
combined with existing aliasing correction methods to achieve robust performance
dealiasing for CFI. Furthermore, we were able to identify the features relevant to this
problem by applying the same architecture to different feature sets.

Fig. 5. Results of the three methods applied on the testing sets at systole. (a) CFI only.
(b) CFI + speckle imaging. (c) CFI + optical flow angle. Segmentation matching the ground
truth was achieved in all cases.

Table 2. Evaluation of 30 models for each of the three experiments on the carotid bifurcation
model in terms of mean metrics ± standard deviation. The CFI + optical flow angle method
scored the highest.

Imaging mode combination Precision (%) Recall (%) IoU (%)

CFI 88 ± 9 91 ± 6 90 ± 4
CFI + speckle imaging 91 ± 4 90 ± 6 91 ± 3
CFI + optical flow angle 94 ± 6 94 ± 3 94 ± 3
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4.2 The Encoder-Decoder Can Learn Aliasing Segmentation from CFI
and Optical Flow Angles

The encoder-decoder model was able to achieve strong segmentation in this study by
only utilizing the information in the CFI. This suggests that the encoder-decoder was
able to identify spatial features in CFI that correspond to aliasing and that the CFI itself
can be sed to predict aliasing with good reliability. This is plausible for single cycle
aliasing in the absence of turbulence as was the case in the carotid bifurcation model.
These findings are also consistent with the success of the region growing-based seg-
mentation of aliasing artifacts in CFI maps [11].

More interestingly, the encoder-decoder was able to extract the interaction between
the CFI and optical flow angle for aliasing segmentation, achieving the highest eval-
uation metrics using the two imaging modes. This confirms the relevance of speckle
motion to the problem of aliasing as previous studies have shown [15] and that con-
volutional layers are able to utilize this information when presented as optical flow.

Interestingly, this increased performance was not achieved by incorporating the
speckle images as additional channels to our encoder-decoder. This may be attributed
to the increased complexity of the problem when expecting the network to derive inter-
frame variations from the speckle images. In particular, the encoder-decoder structure
used here might have been too simple for the problem of optical flow extraction.
Flownet2.0 [16] includes difference layers between the consecutive frames along with
skip connections for refinement, making it more suitable for optical flow extraction
than the simple encoder-decoder model. This probably explains the superior perfor-
mance of the CFI + optical flow angle method.

4.3 Future Work: Beyond Single Cycle Aliasing

The limitations of this study emerge from the relative simplicity of the aliasing artefacts
included in this study, whereas aliasing may include multiple cycles and sharp pressure
gradients may naturally exist without aliasing. One potential solution is to incorporate
higher order aliasing artefacts in the training and testing sets, with the expectation that
the neural network model would be able to learn the more complex problem. Alter-
natively, an iterative method may be explored where aliasing artefacts are segmented,
and phase unwrapped one cycle at a time until no more aliasing artefacts are found.

5 Conclusions

Aliasing is a pressing issue in flow estimation using Doppler techniques, particularly in
conditions such as stenosis when flow reaches high speeds or in cardiac imaging where
a reduced PRF may be necessary. With the novel aliasing segmentation techniques
developed here, single cycle aliasing artefacts may be corrected to extend the range of
measurable flow speeds; this approach readily extends to more advanced Doppler
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techniques such as vector flow imaging. Finally, as the first application of CNN’s to
aliasing in biomedical ultrasound, this study paves the way for more sophisticated
methods capable of addressing more complex aliasing situations using deep learning,
by highlighting the relevant ultrasound features and neural network design principles.
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Abstract. Ultrasound elastography estimates the mechanical proper-
ties of the tissue from two Radio-Frequency (RF) frames collected before
and after tissue deformation due to an external or internal force. This
work focuses on strain imaging in quasi-static elastography, where the
tissue undergoes slow deformations and strain images are estimated as a
surrogate for elasticity modulus. The quality of the strain image depends
heavily on the underlying deformation, and even the best strain estima-
tion algorithms cannot estimate a good strain image if the underlying
deformation is not suitable. Herein, we introduce a new method for track-
ing the RF frames and selecting automatically the best possible pair. We
achieve this by decomposing the axial displacement image into a lin-
ear combination of principal components (which are calculated offline)
multiplied by their corresponding weights. We then use the calculated
weights as the input feature vector to a multi-layer perceptron (MLP)
classifier. The output is a binary decision, either 1 which refers to good
frames, or 0 which refers to bad frames. Our MLP model is trained on
in-vivo dataset and tested on different datasets of both in-vivo and phan-
tom data. Results show that by using our technique, we would be able to
achieve higher quality strain images compared to the traditional methods
of picking up pairs that are 1, 2 or 3 frames apart. The training phase of
our algorithm is computationally expensive and takes few hours, but it
is only done once. The testing phase chooses the optimal pair of frames
in only 1.9 ms.

Keywords: Ultrasound elastography · Frame selection ·
Multi-Layer Perceptron (MLP) classifier · Neural networks ·
Principal component analysis (PCA)

1 Introduction

Ultrasound elastography is a branch of tissue characterization that aims to
determine the stiffness of the tissue. Elastography has a significant potential
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in improving both detection and guiding surgical treatment of cancer tumors
since tumors have higher stiffness values compared to the surrounding tissue [1].
Elastography can be broadly divided into dynamic and quasi-static elastogra-
phy [2], where the former deals with faster deformations in the tissue such that
dynamics of motion should be considered. In this paper, we focus on quasi-static
elastography, and in particular, quasi-static strain imaging where the final goal
is to estimate strain images. In quasi-static elastography, tissue deformations are
slow and therefore motion dynamics can be ignored.

In spite of the wide range of applications that quasi-static elastography has,
it is highly user-dependent, which has hindered its widespread use. A pure axial
compression yields higher quality strain images compared to a compression that
has both in-plane and out-of-plane displacements. Therefore, the user needs to
be highly skilled in axially deforming the tissue. Even for highly skilled users,
some organs are hard to reach and the probe needs to be held in angles and
directions that make imaging yet more challenging. Therefore, it has become
crucial to develop a method for selecting the frames that result in strain images
of high quality.

In order to make the strain image quality independent of the experience the
user has in applying purely axial compression, Hiltawsky et al. [3] developed
a freehand applicator that can apply purely axial force regardless of the user’s
experience. The transducer could be put on a fixed surface moving vertically in
the range of 1 to 2 mm.

Jiang et al. [4] worked on frame selection by defining a quality metric for per-
formance assessment and maximizing it. This metric depends on the normalized
cross correlation (NCC) between Radio-Frequency (RF) frames and the NCC
between their corresponding strain images.

Another approach by Foroughi et al. [5] used an external tracker that gives
complete information about the location of the RF frame at the time of being
produced, where frames collected from the same plane are selected. Among the
selected frames, they only chose some of them according to a defined cost function
that maximized axial compression.

Although the previously mentioned approaches showed an improvement over
the traditional way of picking up RF frames while maintaining a fixed gap
between them, they also have some drawbacks, such as the need for an external
mechanical applicator [3] or an external tracking device [5]. Other approaches
such as [4] need to calculate the strain before determining whether the pair of
frames is good or not, so we can’t use it in real-time applications, especially
when we have a search range for finding good frames.

Herein, we introduce a novel real-time method for determining good RF
frames used to obtain high-quality strain images, without the need of any exter-
nal hardware. In the training phase, we calculate a set of principal components
for quasi-static elastography. In the test phase, we develop a fast technique to
find any compression as a weighted sum of those principal components. We then
develop a Multi-Layer Perceptron (MLP) Neural Network to classify each pair
of RF data as suitable or unsuitable for elastography.
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2 Methodology

Let two RF frames I1 and I2 be collected before and after some deformation in
the tissue. Our goal is to determine whether or not they are suitable for strain
estimation. However, developing a classifier that takes the RF frames as an input
and outputs a binary decision is not practical, as the number of samples in each
RF frame is approximately one million, and therefore, a large network with a
powerful GPU is required [6,7]. To solve the problem, we calculate N principal
components that describe the axial displacement as the tissue deforms. These
principal components are represented by b1 to bN . Figure 1 shows some of these
principal components learned from real experiments. We then calculate a coarse
estimation of the axial displacement that occurred to the pixels between the
two frames using Dynamic Programming (DP) [8], where we only get an integer
value of the axial displacement. Due to the computational complexity of DP, we
don’t run it on the whole RF image, it is only run on a very small number of RF
lines to get their displacement. After that we decompose the displacement into
a linear weighted combination of the principal components that we computed
offline. The resulting weight vector corresponds in a one-to-one relationship with
the displacement image, but it has a lower dimensionality, which means that we
can use it as the input to a multi-layer perceptron (MLP) classifier.

2.1 Feature Extraction

Let the dimensions of each of the RF frames I1 and I2 be m × l, where m refers
to the number of samples in an RF line and l is the number of RF lines. We
start by choosing p equidistant RF lines (where p � l), then we run DP to get
their integer displacement values, resulting in K estimates (where K= m × p).
We then form a K-dimensional vector c that has the displacement estimates of
only a few sparse points out of the total m × l that we have in the RF image. In
the next step, we form the matrix A such that

A =

⎡
⎢⎢⎢⎣

b1(q1) b2(q1) b3(q1) . . . bN (q1)
b1(q2) b2(q2) b3(q2) . . . bN (q2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

b1(qK) b2(qK) b3(qK) . . . bN (qK)

⎤
⎥⎥⎥⎦ (1)

where q1 to qK refer to the 2D coordinates of our K sparse points chosen along
the p RF lines. We then solve the optimization equation below:

ŵ = arg min
w

||Aw–c|| (2)

This means that the linear combination of the N principal components multiplied
by the weight vector w = (w1, . . . , wN )T would result in the displacement image
with the minimum sum-of-squared error. Algorithm 1 summarizes the procedure
for feature extraction.
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Fig. 1. Principal components of in-plane axial displacement learned from both in-vivo
and phantom experiments. Top row represent desirable axial deformation principal
components.

Algorithm 1
1: procedure
2: Choose p equidistant RF lines
3: Run DP to get the integer axial displacement of the p RF lines
4: Solve Eq. 2 to get the vector w
5: Pass the vector w as input to the MLP classifier
6: end procedure

2.2 Training the MLP Classifier

We train an MPL classifier that takes the weight vector as the input feature
vector, and outputs a binary decision whether the displacement is purely axial
or not. Figure 2 shows the architecture of the used MLP model, which consists
of an input layer, two hidden layers and an output layer. Our model is relatively
simple due to having a low-dimensional input vector. The training is done by
minimizing the mis-classification error using the cross-entropy loss function, and
backpropagation is used to calculate the gradients. The applied optimization
technique is the Adam optimizer [9] with a learning rate of 1e−3. The MLP
code is written in Python using Keras [10].

2.3 Data Collection

PCA Model. For our training data, we collected 3,163 RF frames from 3 dif-
ferent CIRS phantoms (Norfolk, VA), namely Models 040GSE, 039 and 059 at
different locations at Concordia University’s PERFORM Centre using a 12R
Alpinion (Bothell, WA) ultrasound machine with an L3-12H high density lin-
ear array probe. The center frequency is 8.5 MHz and the sampling frequency
is 40 MHz. We allowed both in-plane and out-of-plane motion during collect-
ing the data, where the probe could move in the 6 degrees of freedom (DOF).
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Fig. 2. The architecture of the MLP binary classifier. The network has two hidden
layers and is fully connected.

In addition, we have access to 420 RF frames collected from 4 patients undergo-
ing liver ablation, where testing is done on only one of them. The choice of the
number of principal components was made so as to represent the displacement
image in a simpler form while keeping most of the variance of the data. We chose
N=12 which captures 95% of the variance present in the original data using only
a 12-dimensional feature vector.

MLP Classifier. We trained our model using 1,012 pairs of frames from the
in-vivo liver data through different combinations where each frame is paired
with the nearest 16 frames forming 16 different pairs. We used 80% of the data
for training and 20% for validation. Testing was done on a completely different
dataset to ensure generalization. It is important to note that the ground truth
(i.e. high or low quality strain image) was obtained by Abdelrahman Zayed
through manual inspection of the strain image obtained using the Global Ultra-
sound Elastography technique [11]. The criteria for labelling the output as a
good strain image were visual clarity and the ability to distinguish the inclusion
from the surrounding tissue.

3 Results

We set p = 5 RF lines as trials showed us that choosing a value for p more than
5 would not improve the quality of the strain image [12]. The number of hidden
units in the MLP classifier is a hyperparameter that is chosen in a way so as to
have the highest accuracy on the validation data. The first and second hidden
layers contain 64 and 32 hidden units respectively with a Rectified Linear Unit
(ReLU) as the activation function. The output layer has two neurons with a
softmax activation function.
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For the PCA model, the unoptimized MATLAB code takes 5 hours to train
the model, but it is only done once. During test time, extracting the features for
two very large RF images of size 2304 × 384 using the procedure in Algorithm1
takes 262 ms on a 7th generation 3.4 GHz Intel core i7. As for the MLP classifier,
training takes 5.57 s after extracting the features from all the training dataset.
For testing, our model takes only 1.9 ms to choose the best frame by searching
in a window composed of the nearest 16 frames (8 frames before and 8 frames
after the desired frame), assuming that feature extraction is already done for the
test dataset.

Our model is tested on both tissue-mimicking phantom data and in-vivo liver
data. In order to be able to accurately measure the improvement in the quality
of the strain image, we use two quality metrics which are the signal to noise ratio
(SNR) and contrast to noise ratio (CNR) [13], calculated as follows:

CNR =
C

N
=

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
(3)

where s̄t and σ2
t are the strain average and variance of the target window (as

shown in Figs. 3 and 5), s̄b and σ2
b are the strain average and variance of the

background window respectively. We use the background window for SNR cal-
culation (i.e. s̄= s̄b and σ =σb). The background window is chosen in uniform
areas. For the target window, we selected a window that lies completely inside
the inclusion to show the contrast.

3.1 Phantom Results

We used data acquired from the CIRS elastography phantom Model 059 at a
center frequency of 10 MHz and sampling frequency of 40 MHz using the 12R
Alpinion E-Cube ultrasound machine. Figure 3 shows the B-mode image as well
as the axial strain images calculated using both our method and the fixed skip
frame pairing. Figure 4 shows the SNR and CNR of the axial strain images cal-
culated from the same experiment. It is clear that our automatic frame selection
substantially outperforms simply skipping one, two or three frames. Table 1 sum-
marizes the data in Fig. 4 by computing the average and standard deviation of
the SNR and CNR.

3.2 In-vivo data

Our in-vivo results were obtained from one patient undergoing open surgical
radio frequency thermal ablation for primary or secondary liver cancers. The data
was acquired at Johns Hopkins Hospital, with full details of the data collection
protocol outlined in [14]. Figure 5 shows the B-mode image as well as the axial
strain images using both our method and the fixed skip frame pairing. Table 2
shows the average and standard deviation of the SNR and CNR of the axial
strain images computed from the same experiment. As observed in the phantom
experiment, automatic frames selection substantially improves the quality of the
strain images.
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(a) B-mode (b) Strain from Skip 1 method

(c) Strain from Skip 2 method (d) Strain from Skip 3 method

(e) Strain from our method

Fig. 3. The B-mode ultrasound and axial strain image for the phantom experiment.
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Fig. 4. A comparison between the SNR and CNR of the automatic frame selection and
the fixed skip frame pairing for the phantom experiment. Rows 1 to 3 show the results
for skipping 1 to 3 frames respectively.
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(a) B-mode (b) Strain from Skip 1 method

(c) Strain from Skip 2 method (d) Strain from Skip 3 method

(e) Strain from our method

Fig. 5. The B-mode ultrasound and axial strain image for the in-vivo experiment.

Table 1. A comparison between SNR and CNR of the automatic frame selection and
the fixed skip frame pairing for the phantom experiment. The numbers for each method
show average± standard deviation.

Method used SNR CNR

Skip 1 12.27± 13.31 10.11± 11.36

Skip 2 3.54± 11.78 3.80± 8.92

Skip 3 5.24± 7.45 6.34± 9.09

Our method 22.15±0.79 19.77±0.9
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Table 2. A comparison between the SNR and CNR of the automatic frame selection
and the fixed skip frame pairing for the in-vivo experiment. The numbers for each
method show average± standard deviation.

Method used SNR CNR

Skip 1 13.87± 6.23 12.92± 5.21

Skip 2 13.60± 7.11 5.30± 20.68

Skip 3 13.54± 8.74 11.05± 8.52

Our method 21.25±2.23 17.12±3.22

4 Conclusion

In this work, we presented a novel approach for real-time automatic selection
of pairs of RF frames used to calculate the axial strain image. Our method is
easy to use as it does not require any additional hardware. In addition, it is very
computationally efficient and runs in less than 2 ms, and as such, can be used to
test many pairs of RF frames in a short amount of time. Given that ultrasound
frame rate is very high, and that there exist many combinations of two frames,
this low computational complexity is of paramount practical importance. Our
method can be used commercially where for each input RF frame, we choose the
best possible frame to be paired with it among the collected frames.
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Abstract. Blood flow visualization is a challenging task in the presence of
tissue motion. Conventional clutter filtering techniques perform poorly since
blood and tissue clutter echoes share similar spectral characteristics. Thus,
unsuppressed tissue clutter produces flashing artefacts in ultrasound color flow
images. Eigen-based filtering was recently introduced and has shown good
clutter rejection performance; however, there is yet no standard approach to
robustly determine the eigen components corresponding to tissue clutter. To
address this issue, we propose a novel 3D clustering based singular value
decomposition (SVD) clutter filtering method. The proposed technique makes
use of three key spatiotemporal statistics: singular value magnitude, spatial
correlation and the mean Doppler frequency of singular vectors to adaptively
determine the clutter and noise clusters and their corresponding eigen rank to
achieve maximal clutter and noise suppression. To test the clutter rejection
performance of the proposed filter, high frame rate plane wave data was
acquired in-vivo from a subject’s common carotid artery and jugular vein region
induced with extrinsic tissue motion (voluntary probe motion). The flow
detection efficacy of the clustering based SVD filter was statistically evaluated
and compared with current eigen rank estimation methods using the receiver
operating characteristic (ROC) analysis. Results show that the clustering based
SVD filter yielded the highest area under the ROC curve (0.9082) in comparison
with other eigen rank estimation methods, signifying its improved flow detection
capability.

Keywords: Clustering � Unsupervised learning � Ultrasound imaging �
Doppler imaging � Singular Value Decomposition

1 Introduction

Blood flow detection in ultrasound (US) imaging is a challenging task in certain clinical
scenarios e.g., slow-flow detection and assessing blood flow with fast tissue motion.
Tissue clutter is a significant source of artefacts in ultrasound imaging which hampers
blood flow detection since the backscattering strength of tissue can be 40 to 100 dB
stronger than blood due to its relatively high acoustic impedance mismatch [1]. Tissue
motion being slower than blood exhibits slow temporal variation compared to the fast
fluctuations of the blood flow signal [2]. Therefore, high-pass temporal filtering is
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necessary to remove the low frequency tissue clutter and in turn preserve the blood
flow signal. Clutter filtering remains a key challenge for accurate flow visualization
especially when tissue and blood echoes similar spectral characteristics in some sce-
narios which correspond to important US imaging applications. Such as, slow flow
detection becomes very difficult in microvascular networks of tumors which is nec-
essary for cancer diagnosis [3], while imaging flow in presence of fast vessel wall
pulsations is a major issue in cardiac imaging [4]. Due to fast myocardial tissue motion
and small vessel diameters, acquisition of Doppler flow measurements from the
coronary arteries becomes very difficult and this combination also results in flashing
artefacts due to inadequate clutter suppression [5].

Conventional high-pass clutter filtering methods like the Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR) filters which work on the temporal
dimension only, fail to sufficiently differentiate between blood flow and tissue motion
when their Doppler frequency spectrums overlap significantly. Whereas, an eigen-
based clutter filter builds a spatiotemporal vector basis adapted to both blood and tissue
signals which offers a much better discrimination capability between them [6]. Eigen
filtering benefits from the high temporal sampling rates offered by high frame rate
(HFR) plane wave imaging [7]. Singular value decomposition (SVD) of ultrasonic RF
data generates singular values whose magnitude distribution aids in detection and
removal of the higher energy containing tissue signal. SVD also results in singular
vectors which provide both spatial and temporal information that can be used to dis-
tinguish and eliminate tissue clutter from the blood signal [8].

A drawback however in the SVD filter implementation is that there is yet no
standard approach to determine the eigen components corresponding to tissue clutter.
Various methods have been reported in the literature to achieve clutter rank selection in
eigen-based filtering. Each of these methods have limitations of its own. Arnal et al.
developed a singular value threshold (SVT) estimator based on the spatial similarity
matrix (SSM) of singular vectors [9]. Yu and Cobbold proposed a Hankel-SVD for-
mulation which selects clutter rank based on mean frequency of singular values [10].
Kruse and Ferrara reported a fixed eigen rank cut-off for clutter based on the strength of
the eigenvalues [11]. The performance of all these estimators highly depend on the
quality of the local data statistics. Whereas, identifying the boundaries of tissue and
blood spatial correlation squares in the SSM technique is not always possible since
blood correlation can represent an elliptic shape instead of a definite square. The
Hankel-SVD approach requires a hand-tuned cut-off frequency to be defined which
faces issue where blood and tissue spectra overlap. It can also become difficult to
compute the correct eigen rank cut-off based on the singular value strength especially
for larger ensemble size [12]. Hence, there is a clear motivation to develop a robust and
fully automated clutter rank estimator which makes use of all the spatial and temporal
metrics to remove tissue signal efficiently. Clustering is a powerful machine learning
tool for grouping data points. There are various established clustering algorithms that
have been used for biomedical image segmentation [13, 14]. Moubark et al. used K-
means clustering for classifying and eliminating tissue clutter based on its energy from
ultrasound image [15].
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In this paper, a novel 3D clustering based SVD clutter filtering framework is
proposed to cluster the eigen-components by leveraging on three key spatiotemporal
statistics: singular value magnitude distribution, spatial correlation and the mean
Doppler frequency of singular vectors. The information from these parameters is
combined in 3D to visualize the spatiotemporal distribution of the data points. Our
guiding hypothesis is that since tissue and blood signals have different spatiotemporal
characteristics, a clustering algorithm can leverage on these distinctive properties to
adaptively identify and suppress eigen components corresponding to clutter, and in turn
improve blood flow detection performance. Since the data involved is unlabeled, an
unsupervised learning algorithm K-means is applied which adaptively determines the
tissue cluster and its corresponding rank to achieve maximal clutter suppression.
Moreover, this paper statistically compared the flow detection performance of the
proposed 3D clustering based SVD filter with the current clutter rank estimation
methods using receiver operating characteristic (ROC) analyses [16].

2 Methodology

The theoretical principles behind Auto SVD Clutter Filtering Using 3D Clustering are
explained in steps in this section of the paper.

2.1 Ultrasound Doppler Signal Components

The ultrasound Doppler flow signal is composed of the sum of three components: tissue
clutter, blood and thermal/electronic noise. A typical post-beamformed ultrasound raw
data matrix is represented as a time series of 2D images. Mathematically, the raw data
matrix is a three-dimensional complex variable s(x, z, t) of size (Nz, Nx, Nt), where one
dimension is time t and the other two are spatial dimensions x (lateral) and z (depth).

2.2 Singular Value Decomposition

The raw data cineloop s(x, z, t) is reshaped to a spatiotemporal Casorati matrix [17]
which reorders the data into a 2D space-time matrix S of size (Nz � Nx, Nt). SVD is
performed on the Casorati matrix S which yields the product of the following three
matrices:

S ¼ UDV� ð1Þ

Where matrices U and V are unitary matrices with dimensions (Nz � Nx, Nz � Nx)
and (Nt, Nt) respectively.

* stands for the conjugate transpose and D is a diagonal matrix
of size (Nz � Nx, Nt) with diagonal values kk sorted in a descending order of magni-
tude. S is decomposed into eigen-components kk and each component consists of U and
V vectors scaled by D. The rows of matrix S contain the raw spatial information, while
its columns represent the time dimension. Thus, the SVD of S results in the singular
vectors of U that provide spatial information while singular vectors of V represent the
temporal information in S.
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2.3 Extraction of Image Statistics

Singular Value Magnitude. Tissue structures generally appear much brighter than
blood scatterers in ultrasound images. The difference in energy of the tissue and blood
signals can be seen in the singular value distribution curve as shown in Fig. 1(a).

Spatial Correlation. In ultrasound imaging, it has been widely observed experi-
mentally that tissue has a much higher spatial coherence relative to blood since it is far
less deformable then the blood scatterers which have low viscosity and elasticity
compared to the tissue [4]. This underlying difference in spatial distribution is lever-
aged by computing the spatial correlation of the first spatial singular vector U1 (typi-
cally representative of tissue clutter) with the spatial singular vectors Ukj jk 2 ½1;Nt�.

C ¼
XNt

k¼1

U1j j � U1

�� ��� � � Ukj j � Uk

�� ��� �
r1 � rk

ð2Þ

Where Uk stands for the mean and rk is the standard deviation of Uk indexes. C is
the spatial correlation vector of size (1, Nt) which reveals the high spatial coherence of
low-order singular vectors corresponding to tissue and low spatial correlation of high-
order singular vectors typically corresponding to blood as shown in Fig. 1(b).

Mean Doppler Frequency. Tissue clutter being relatively slower than blood, exhibits
low frequency motion compared to the high frequency flow of blood scatterers. To
make use of the temporal difference between the blood and tissue signal, the mean
Doppler frequency is calculated for each individual temporal (right) singular vector Vk

using the following lag-one autocorrelation based estimator:

R̂k ¼
XNt�1

i¼1
V�
k ið Þ � Vk iþ 1ð Þ ð3Þ

Fig. 1. (a) Singular values kk of matrix D expressed in dB, (b) Spatial correlation curve
(correlation of the first singular vector U1 with left singular vectors |Uk| k 2 [1, Nt]), (c) Mean
Doppler frequency estimation curve of the right singular vectors, for a plane wave HFR Doppler
acquisition on an in-vivo carotid region.
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f̂k ¼ PRF
2p

� arctan
imag R̂k

� �
real R̂k

� �
 !

ð4Þ

Where f̂ k is the mean Doppler frequency estimate for the kth temporal singular
vector Vk. PRF stands for the pulse repetition frequency which is the number of pulses
fired by the ultrasound transducer per second. Mean Doppler frequency estimation
curve of the right singular vectors is shown in Fig. 1(c).

2.4 3D Clustering Based Clutter Filtering

K-means clustering (Lloyd’s algorithm) [18] is applied on the three-dimensional data
formed from the image statistics. Each of the three statistics were computed from the
SVD of five consecutive frame blocks, where each frame block contains a sequence of
100 frames. Cluster centroids were initialized using the K-means++ algorithm [19]. K-
means iteratively calculates the squared Euclidean distance between the data points and
cluster centroids to allocate each point to the closest cluster. The centroids are
recomputed in each iteration by evaluating the mean of all points in that centroid’s
cluster until the centroid positions do not change and the algorithm converges to an
optimal result. Number of clusters were pre-defined as three, where each cluster rep-
resents one of tissue, blood and noise component. The cluster with the highest mean
singular value magnitude and spatial correlation and the lowest mean Doppler fre-
quency is classified as tissue clutter. The eigen components corresponding to the tissue
cluster points are then set to zero for clutter removal.

2.5 In-Vivo Experimental Setup

For in-vivo data acquisition, our lab’s research purpose ultrasound scanning platform
was used [20]. A 192-element linear array transducer (SL1543; Esaote, Genova, Italy)
probe configured for plane wave imaging was placed on a subject’s neck to image the
common carotid artery (CCA) and jugular vein (JV) in short-axis view. Extrinsic tissue
motion was induced in the dataset by voluntary probe motion to test the efficacy of the
clutter filtering methods. High frame rate (HFR) raw data acquisition was performed at
5 MHz imaging frequency at a PRF of 6 kHz. HFR Doppler acquisition was done
using a steering angle of −10° and interleaved B-mode firings were done using 30
angles (ranging from −15 to 15° (excluding 0°) with 1° incremental steps), resulting in
an effective PRF of 3 kHz. In total 7800 frames were acquired in 2.6 s. Details of
imaging parameters for the experiment can be seen in [20].

2.6 Tissue and Flow Region Identification

The acquired HFR data is beamformed to generate B-mode images (2D spatial map
which represents ultrasound echoes as bright dots) [21]. The boundaries between the
flow and tissue region were demarcated on the cross-sectional B-mode image of the
carotid and vein for ROC analysis. MATLAB’s built-in contour tool was used for
selecting the regions of interest. As shown in Fig. 2, the carotid flow region (red dashed
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circle) and jugular vein flow region (blue dashed circle) is selected as the hypoechoic
B-mode pixels inside the vessel walls, while the tissue region are all the B-mode pixels
outside the flow region.

2.7 Computation of ROC Curves

Pixel values corresponding to the identified tissue and flow regions were extracted from
the post-filtered power Doppler maps of each clutter rank estimation method. Two
statistical parameters were then computed for different power Doppler thresholds
(swept in 0.2 dB increments from 0 to 100 dB): true positive rate (TPR) and the false
alarm rate (FAR). The TPR or sensitivity was defined as the percentage of flow pixels
with post-filtered Doppler power higher than the threshold value, while the FAR (1-
Specificity) was defined as the percentage of tissue pixels with post-filtered Doppler
power higher than the threshold value. The ROC curves for each filter were plotted
with their respective TPR against the corresponding FAR.

3 Results

3.1 K-means Clustering Yields Distinct Clusters

K-means clustered the data (convergence time: 17 ms) into discrete groups as shown in
Fig. 3(a). Cluster 3 (blue) has the highest mean singular value magnitude and spatial
correlation, and at the same time, the lowest mean Doppler frequency among all. These
are typical properties of signals originating from tissues and hence cluster 3 can be
identified as clutter. Cluster 1 (gray) has the least spatial correlation with high fre-
quency content; both distinct features of noise. Upon identifying these two clusters,
Cluster 2 (red) can therefore be confidently attributed to signals from blood flow.

Fig. 2. Cross-sectional view of the Common Carotid Artery (CCA) flow region (red dashed
circle) and Jugular Vein (JV) flow region (blue dashed circle), in the ultrasound B-mode image
(Color figure online)
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3.2 Adaptive Eigen Rank Estimates for Clutter and Blood Achieved
Using Clustering

Different eigen-based clutter filtering methods were implemented on the same in vivo
dataset for comparison. Spatial Similarity Matrix (SSM) [12] and the singular value
curve turning point (SVTP) [22] generated fixed singular value thresholds for removing
clutter as shown by their respective dashed lines in Fig. 3(b). On the other hand, K-
means clustering based SVD generates clutter rank adaptively and identifies blood
eigen components that are interspersed between thresholds determined by the SSM and
SVTP estimation approaches.

3.3 K-means Clustering Based SVD Achieves Strong Flow Detection
and Noise Suppression

K-means based clutter filtering strongly distinguished between flow and tissue regions
at the systolic phase of the cardiac cycle in presence of strong tissue motion caused by
both vessel wall pulsations and extrinsic probe motion. Figure 4 shows the post-filtered
power Doppler maps corresponding to different clutter filtering methods which include
the K-means based SVD filter [Fig. 4(a)], SVTP filter [Fig. 4(b)] and the SSM filter
[Fig. 4(c)] (with noise suppression). All power maps are rendered with a fixed dynamic
range (30 dB). Figure 4(a) shows strong flow detection in the carotid and vein region
for the K-means based SVD filter with limited false coloring seen in the vessel wall
pixels. Figure 4(b) and (c) demonstrates that the SVTP and SSM filter achieved similar
performance to the K-means filter in terms of flow identification. Another evident
finding is that the SVTP and the SSM filter power maps both show parallel noise

Fig. 3. (a) K-means clustering performed on the 3D distribution of image statistics acquired
from in-vivo common carotid artery and jugular vein data at systolic phase of the cardiac cycle.
(b) Singular value thresholds (shown in dashed lines) corresponding to tissue clutter computed by
the following eigen rank estimators: Spatial Similarity Matrix (SSM) and Singular Value Turning
Point (SVTP). Red bars represent the singular values identified as part of the blood flow signal by
the K-means based SVD filter, while the blue bars represent the singular values identified
adaptively as tissue clutter. (Color figure online)
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streaks increasing in intensity with depth. However, the noise streak is significantly
suppressed in the K-means based SVD filter [Fig. 4(a)] since the eigen components
related to the noise cluster were removed.

3.4 Improved ROC Performance Gained by K-means Clustering
Based SVD Filter

The improved flow detection efficacy of the K-means based SVD filter is substantiated
by its high ROC performance as shown in Fig. 5. The area under the ROC curve
(AUC) quantifies the diagnostic performance in ROC analysis. The higher the AUC
value is the better the detection performance [16]. At systole, where tissue motion is the
strongest due to strong vessel wall pulsations, the ROC curve of K-means based SVD
filter yielded the largest AUC value (0.9082) in comparison to the other filters.

Fig. 4. Post-filtered power Doppler maps of (a) K-means clustering based SVD filter (b) SVTP
filter (c) SSM filter, overlaid on the CCA and JV cross-sectional B-mode image. Enhanced flow
detection and noise suppression achieved by the K-means clustering based SVD filter in
comparison to all other filters at systolic phase of the cardiac cycle. Dynamic range was kept the
same for all the images at 30 dB. (Color figure online)
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4 Discussion

This paper presents a novel framework for 3D clustering based automatic SVD clutter
filtering to address the challenge of adaptively determining the eigen rank corre-
sponding to tissue clutter in the presence of vessel wall pulsations and extrinsic tissue
motion. The proposed method combines the spatiotemporal information from the three
image statistics: singular value magnitude, spatial correlation and the mean Doppler
frequency which allows enhanced clutter, blood and noise detection through K-means
clustering as demonstrated in Fig. 3(a). Our findings in Fig. 3(b) showed that K-means
clustering based SVD adaptively determines the eigen components corresponding to
clutter and blood unlike other eigen rank estimation techniques which selects a fixed
singular value threshold for tissue clutter. Such adaptive clutter removal enables the K-
means clustering based SVD filter to achieve improved flow detection as demonstrated
in Fig. 4(a). Removal of the noise cluster enabled significant suppression of noise
streaks as evident from the power Doppler map of K-means based SVD in Fig. 4(a)
compared to Fig. 4(b) and (c). The vessel wall artefact in the power Doppler maps of
Fig. 4(b) and (c) resulted from angled (−10°) plane wave insonification at right angle to
the vessel walls were well-suppressed in the K-means based SVD power map in Fig. 4
(a). Our experimental results are statistically substantiated by the better ROC perfor-
mance of the K-means based SVD technique as shown by its ROC curve with the
highest AUC value (0.9082) in Fig. 5. A direct continuation of this work can be to
apply this framework in a block-wise fashion [23] in which SVD is performed on local
spatially overlapped segments of the image, rather than applying it globally on the
entire image data. This approach can allow more localized extraction of image statistics
for clustering which can lead to robust clutter reduction and potent flow visualization in
many challenging clinical imaging scenarios.

Fig. 5. K-means clustering based SVD filter achieved the highest flow detection ROC
performance compared to SSM and SVTP filters.
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5 Limitations

K-means is sensitive to the initial starting positions of cluster centroids. Since the initial
cluster center is randomly selected from the data, K-means may produce different
results on multiple runs [24]. Use of an appropriate cluster initialization technique and
repeating K-means can help achieve consistent clustering accuracy [25]. An alternative
to K-means is the implementation of deep learning architecture for clustering; deep
convolutional networks have demonstrated improved filtering of tissue signal from the
ultrasound microbubble signal in comparison to other iterative methods [26]. Lastly,
CPU-based K-means suffers from a poor convergence time. Such issue can be over-
come by parallelized implementation of K-means on a GPU that can speed up the
algorithm up to a hundred times faster than CPU-based implementation [27].

6 Conclusion

This paper has shown the potential merit of K-means clustering based automatic SVD
clutter filtering in achieving adaptive clutter and noise suppression and in turn
improved flow detection performance in comparison with existing eigen rank estima-
tion methods. The impact of this work is on the automated as well as adaptive (in
contrast to a fixed cutoff) selection of eigen-components corresponding to tissue clutter,
blood and noise.
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