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Abstract. Gaussian mixture models (GMM) are widely used for image
segmentation. The bigger the number in the mixture, the higher will be
the data likelihood. Unfortunately, too many GMM components leads
to model overfitting and poor segmentation. Thus, there has been a
growing interest in GMM reduction algorithms that rely on component
fusion while preserving the structure of data. In this work, we present an
algorithm based on a closed-form Cauchy-Schwarz divergence for GMM
reduction. Contrarily to previous GMM reduction techniques which a
single GMM, our approach can lead to multiple small GMMs describ-
ing more accurately the structure of the data. Experiments on image
foreground segmentation demonstrate the effectiveness of our proposed
model compared to state-of-art methods.
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1 Introduction

GMMs are semi-parametric density functions, which are represented as a
weighted sum of Gaussian densities called components. They can practically
approximate any density shape using a finite number of components. They are
very useful for data clustering in particular for image segmentation where they
have demonstrated a good performance [4,5]. Although using too many compo-
nents increases the approximation accuracy, it often results in complex models
which overfit data. To obtain less complex models, two approaches are used.
The first approach (horizontal) generates multiple GMMs with different num-
bers of components, and choose the best one according an information theoretic
criterion (e.g., AIC, BIC) [2,11]. The second approach (vertical), which is the
interest of our work, starts from a GMM with a high number of components and
reduce it to a less complex GMM by iteratively fusing the different components
into Gaussians [8,13].

A simple method to reduce a GMM is to eliminate components that do not
contribute much to the mixture. Alternatively, instead of deleting components
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of the GMM or re-estimating it, one could merge components while preserving
the structure of the data [13]. The idea is to merge similar components that
“belong together” in a clustering sense. Therefore, there is a need to formalize
“component similarity”. Among the used measures, Kullback-Leibler divergence
(KLD) is the most popular [17]. However, there is no closed-form expression for
the KLD between two GMMs [16]. Because of this limitation, several existing
methods use an approximation of the KLD using sampling methods [13,14,17].
However, such approaches can be computationally expensive, especially when the
dimensionality of the data is very high. On the other hand, mixture reduction is
achieved by fusing two components at a time in the GMM into a single Gaussian.
This can end up in the long run to bold components having large variance.
In other words, merging two or more Gaussians is not necessarily a Gaussian-
distributed as in the case, for example, in foreground image segmentation where
both foreground (resp. background) regions are not necessarily Gaussian [3,5].

In this paper, we introduce a new technique for GMM reduction into one
or multiple small GMMs describing the different structures of the data. More
specifically, an initial GMM is reduced iteratively by clustering its components
into separate small GMMs describing the structure of the data in a hierarchical
way. To facilitate components clustering, we use the Cauchy-Schwarz divergence
(CSD) which has a closed-form expression and its computational complexity
varies linearly with the dimension of data. We apply our reduction algorithm
to foreground segmentation in still images, namely in salient object and skin
lesion segmentation. Comparison with state-of-the art methods have shown the
performance of our method.

The rest of this paper is organized as follows: Sect. 2 briefly describes the the-
oretical background of our algorithm. Section 3 presents details of our proposed
method for mixture reduction problem. Section 4 describes experimental results
such as qualitative and quantitative results. We end the paper with a conclusion
and future work perspectives.

2 Background

Given a random vector x ∈ RD, we consider two GMMs with K and M their
respective numbers of mixture components. Let f(x) and g(x) denote respec-
tively their probability density functions (PDF) as follows:

f(x) =
K∑

k=1

πkN (x|μk,Σk), g(x) =
M∑

m=1

ωmN (x|νm,Λm) (1)

where (πk, μk,Σk), k = 1, ...,K are the weights, mean vectors and covariance
matrices of the Gaussians composing mixture f , and (ωm, νm,Λm), m = 1, ...,M ,
are the same parameters composing mixture g. N (x|μk,Σk) and N (x|νm,Λm)
are the multivariate Gaussian distributions.
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The Cauchy-Schwarz divergence is based on the Cauchy-Schwarz inequality
for inner products, and it is formulated between f and g as follows [16]:

CSD(f, g) = − log

⎛

⎝
∫

f(x)g(x)dx√∫
f(x)2dx

∫
g(x)2dx

⎞

⎠ (2)

It is clear that the term inside the parentheses takes its values in the interval
[0, 1] with equality to 1 if and only if f(x) = g(x), such that CSD is always
nonnegative and symmetric. The closed-form expression for CSD of a pair of
GMMs can be derived using the Gaussian multiplication and identities, which
forms the basic building block of (2). We obtain a closed-form expression for the
CSD, which does not depend on x:

CSD(f, g) = − log

(
K∑

k=1

M∑

m=1

πkωmN (μk|νm, (Σk + Λm))

)

+
1
2

log

(
K∑

k=1

K∑

k′=1

πkπk′N (μk|μk′ , (Σk + Σk′))

)

+
1
2

log

(
M∑

m=1

M∑

m′=1

ωmωm′N (νm|νm′ , (Λk + Λm′))

)
(3)

This expression has computational complexity order of O(K2) and not integral
computation is required as in the case of the KLD. Therefore, the CSD is chosen
in this work because it can be computed in closed-form which results in a faster
algorithm.

3 Proposed Mixture Reduction Method

The proposed method, coined CSGMR (Cauchy-Schwarz divergence for Gaus-
sian mixture reduction), is formulated as follows. Let us consider a GMM with
K multivariate Gaussian densities of the form:

f
(
x|Θ)

=
K∑

k=1

πkN (x|μk,Σk), (4)

where μk,Σk represent the mean vector and covariance matrix of the kth com-
ponent, Θ = {πk, μk,Σk}Kk=1 is the set of all mixture parameters, with πk

are the component weights that satisfy the constraints: 0 ≤ πk ≤ 1 and∑K
k=1 πk = 1. Generally, the Expectation-Maximization (EM) algorithm [9]

based on the maximum likelihood estimation (MLE) is used to calculate the
GMM parameters.

Given the mixture f in (4), we wish to find a reduced mixture model g M
having components (M << K) by collapsing the components of f in those of g.
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Note that a similar challenge has been addressed in [5] using finite mixtures of gen-
eralized Gaussians. However, the method is hard to generalize to multiple dimen-
sions of data.

Contrarily to traditional mixture reduction methods which output a single
mixture [8,13,14], our method outputs several mixture models describing differ-
ent clusters in the structure of data with arbitrary dimension. This characteristic
of our method will reveal its importance for clustering problems such as image
segmentation, where data structure comprises several non-Gaussian groups. In
addition, the reduction is carried out without causing a strong deviation from
the structure of the original GMM one according to CSD measure. Suppose that
the density of reduced model is:

g(x|Φ) =
M∑

m=1

ωmpm(x|Ψm), (5)

where pm(x|Ψm) =
∑Km

j=1 πjmN (x|μjm,Σjm), with Ψm = {πjm, μjm,Σim}Km
j=1

and Φ = {ωm,Ψm}Mm=1. The reduction is made in such a way that
M∑

m=1
Km <<

K. Note that when Km = 1, m = 1, ...,M , we are in the classical mixture
reduction scheme where each reduced component in g is a Gaussian, as proposed
in [8,13].

3.1 Proposed Algorithm

Our mixture reduction method is similar to classical agglomerative clustering,
where initial groups are Gaussian components which are iteratively merged into
clusters. Therefore, the input of our algorithm is an initial mixture model f(x|Θ)
having a large number of components, and the output is a reduced (super)
mixture model g(x|Ψ) composed of several small GMMs. For this purpose, we
maintain similarity matrix indicating CSD distances between formed GMMs
(clusters) at each merging iteration.

Let f1, f2, ..., fNc
, with M ≤ Nc ≤ K, be intermediate models resulting

from fusions of initial GMM components. A similarity matrix S of size Nc × Nc

is computed, where Srs = CSD(fr, fs), ∀r �= s and r, s = 1, ..., Nc. At each
iteration of the reduction algorithm, we select the most similar groups to fuse,
thus causing the smallest overall change in the initial mixture structure. More
specifically, let fr and fs be two candidate models to be merged, where Kr

and Ks are their number of components, respectively. To estimate the optimal
number of components of their fusion, we use the Akaike (AIC) criterion [4] that
will search the minimum of the following function:

Krs = argmin
l∈[max(Kr,Ks),...,Kr+Ks]

{
− log(Ψl) + 2λl

}
, (6)

where log(Ψl) is the log-likelihood corresponding to a GMM model with the
number of components l, and Ψl is the MLE estimate. Finally, λl is the number of
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the free parameters in that model. The following script summarizes our reduction
algorithm:

Algorithm 1. Proposed Algorithm: CSGMR
Input: f : mixture of K components
Output: g: mixture of M mixtures (M << K)
1. Initialize the GMM f and number of clusters Nc ← K;
2. Initialize the similarity matrix S;
3. while Nc > M do

* Find the nearest pair of groups (fr, fs) according to S;
* Merge fr and fs into frs and remove fr and fs;
* Estimate the number of components of frs using AIC;
* Update S; Nc ← Nc − 1 ;
end

4. Build the final GMM g by the produced M GMMs.

3.2 Foreground Image Segmentation

We apply the proposed method for foreground segmentation in natural and med-
ical images (see illustration in Fig. 1). First, we generated an initial GMM by
over-segmenting the image into superpixels using the SLIC method [1]. The
superpixel itself is not enough to provide a robust image descriptor for segmen-
tation, since the consistency of its neighborhood is not considered [10]. To take
advantage of the superpixel structure and our method for segmentation, let K be
the number of produced superpixels. We model each superpixel as a multivari-
ate Gaussian with parameters given by the mean vector and covariance matrix
of the RGB color of its composing pixels. We then use our mixture reduction
algorithm to form the foreground and background regions (M = 2).

Fig. 1. Example of foreground segmentation.

To obtain compact regions for our segmentation, we enforce our reduction
algorithm by imposing that two segments Si, and Sj can be merged together only
if they are spatially adjacent. To this end, we construct and maintain a region
adjacency graph G in the clustering process, where the adjacency set of Si is
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denoted by Gi. Since our mixture reduction algorithm can output any number
of clusters, we can tune the segmentation algorithm to produce any number of
desired regions constituting the important structures of the image. For example,
in binary segmentation where the objective is to segmentation the foreground
from background, the output is M = 2.

4 Experiments and Results

We conducted several tests to assess the effectiveness and the usefulness of the
proposed method. First, we compare the effectiveness of the proposed method
against two of the best algorithms in the literature, namely COWA [6] and Run-
nalls [17]. We randomly generate a GMM with 10 components and 4 dimensions
and search for an optimal reduced model comprising 5 components. We also
conducted a binary classification of 20 Gaussians drawn from a sample of 3000
observations. As shown in Table 1, we can see that [17] has the lowest execution
time followed by our method. However, our approach surpasses [17] and [6] in
term of the reduction quality.

Table 1. Mixture simplification results.

Execution time (sec) Classification error

COWA 0.0390 0.0710

Runnalls 0.0048 0.0033

CSGMR 0.0054 0.0027

In order to illustrate the performance of the proposed method for image seg-
mentation, we computed GMMs of different sizes (K = 100, 125, 500) for each

Fig. 2. Result of CSGMR on the ISIC and MSRA10K datasets: Original images (first
column), initial superpixels (second column), reduction with (M = 12 top third column
and M = 6 bottom third column), M = 2 (last column).
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Table 2. Quantitative segmentation performance: (a) for ISIC and (b) for MSRA10K.

(a)

[13] CSGMR
Accuracy 88.9326 97.0047
Precision 84.7651 97.0394
Recall 83.1526 91.9662

(b)

[13] CSGMR
Accuracy 92.9503 98.7359
Precision 94.0669 96.5222
Recall 93.1526 95.9896

image and perform our mixture reduction algorithm. The experiments were per-
formed using two different public datasets: ISIC dataset [15] and MSRA10K
dataset [7]. All experiments were performed without any correction of the images.
The visual results are shown in Fig. 2. In Fig. 2 (column two) with K = 181 and
K = 126, the reduced mixture is, respectively, M = 12 and K = 6 (Fig. 2 column
three). As presented in Fig. 2 (column 3), the foreground and the background are
modeled by a mixture. In order to compare the results of the proposed method

Fig. 3. Visual comparative results: Original images (first column), Ground-truth (sec-
ond column), [12] result (third column) and CSGMR result (last column).
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with [12], we focus our experiment in foreground and background detection i.e.
M = 2 (see Fig. 3, column 3). The evaluation performance between our app-
roach and [12] is conducted with 500 images in each dataset. The metrics used
to quantify the segmentation result are recall, precision, accuracy. Note that
higher values of these metrics indicate better results. The segmented image is
the result of the reduced mixture. We can see that the images are segmented
more correctly by using our proposed method. A quantitative comparative study
between different methods is depicted in Table 2. It represents the average met-
rics for the 500 images selected from each dataset. According to these qualitative
and quantitative results, obtained results with CSGMR are very encouraging and
useful.

5 Conclusion

We have proposed an efficient GMM reduction algorithm based on CSD hierar-
chical clustering. Our method enables to quickly compute a compact version of an
initial GMM to an another GMM constituted of non-Gaussian clusters. Experi-
mental results on the simulated and image segmentation showed the effectiveness
of the proposed technique with in comparison to other techniques. Note that our
model can be extended easily into other exponential family distributions.
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