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Abstract. Background subtraction plays an important role in many
video-based applications such as video surveillance and object detection.
As such, it has drawn much attention in the computer vision research
community. Utilizing a Gaussian mixture model (GMM) has especially
shown merit in solving this problem. However, a GMM is not ideal for
modeling asymmetrical data. Another challenge we face when applying
mixture models is the correct identification of the right number of mix-
ture components to model the data at hand. Hence, in this paper, we
propose a new infinite mathematical model based on asymmetric Gaus-
sian mixture models. We also present a novel background subtraction
approach based on the proposed infinite asymmetric Gaussian mixture
(IAGM) model with a non-parametric learning algorithm. We test our
proposed model on the challenging Change Detection dataset. Our eval-
uations show comparable to superior results with other methods in the
literature.
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1 Introduction

Background subtraction is an active area of research in computer vision [1,2].
It is performed by using a reference image that contains only the background
without any moving objects then subtracting the new frame from this image and
thresholding to obtain the foreground [3]. Hence, it mainly involves the automatic
segmentation of foreground regions in video sequences from the background [4].
This has many consequent applications such as in video surveillance [5], object
detection [6], and anomaly detection [7].

Gaussian mixture models (GMM) is a commonly deployed approach that
has been proposed for statistical modeling of foreground [8,9]. However, GMMs
are not necessarily the ideal model since the background and foreground pixels
are not always distributed according to a Gaussian distribution [10]. Hence, we
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investigate the employment of the asymmetric Gaussian mixture (AGM) which
has two variance parameters for the left and right sides of each of the mixture
components [11].

Parameter learning is one of the challenges required for the use of mixture
models. A variety of algorithms may be deployed to achieve this purpose. For
instance, the expectation maximization algorithm for the maximum likelihood
method is one of the famous learning approaches [12]. Nonetheless, this determin-
istic approach suffers from several drawbacks that include over-fitting and high
dependency on initialization [8,9]. This compromises the efficiency of the learn-
ing algorithm and negatively impacts the accuracy of the model. The author in
[13] recently studied Bayesian learning of AGM. Such sampling-based approaches
include the Markov Chain Monte Carlo (MCMC) introduces prior and posterior
distributions in order to address the over-fitting issues whereby the dependency
between the mixture parameters and mixture components is eradicated [14,15].

In this paper, we propose a novel mathematical model by extending the AGM
to the infinity [16]. This addresses another important challenge that arises when
applying mixture models; choosing the correct number of mixture components.
We use the Dirichlet process [17,18] for precise allocation of the observations in
and determining the number of components for the proposed model, the infi-
nite asymmetric Gaussian mixture (IAGM). We apply a hierarchical Bayesian
learning approach for the proposed model.

The contributions of this paper are then summarized as: (i) proposal and
derivation of the IAGM model; (ii) hierarchical Bayesian learning of the IAGM
model; (iii) testing and evaluation of the IAGM model for the background sub-
traction application. The rest of this paper is organized as follows. In Sect. 2, we
outline the IAGM model and present a complete learning algorithm. We evaluate
our proposed model for the background subtraction application and compare it
to three other models in Sect. 3. Finally, we conclude the paper in Sect. 4.

2 Infinite Asymmetric Gaussian Mixture Model

2.1 Mathematical Model

A finite AGM model is denoted by:

p
(X | Θ

)
=

N∏

i=1

M∑

j=1

pjp
(
Xi | ξj

)
(1)

where X = (X1, . . . , XN ) is the N observations dataset, each observation
Xi = (Xi1, . . . , XiD) could be represented as D-dimensional random variable.
M ≥ 1 is the number of mixture components, Θ = (p1, ..., pM , ξ1, . . . , ξM ) defines
the complete set of parameters fully characterizing the mixture model where
�p = (p1, . . . , pM ) is the mixing weights which must be positive and sum to one,
and ξj is the set of parameters of mixture component j.
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The asymmetric Gaussian density for each component, p
(
Xi | ξj

)
, is then

given by:

p
(
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(Sljk
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2 + (Srjk
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2
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⎧
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⎩
exp
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(Xik−μjk)

2
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]
if Xik<μjk

exp
[ − Srjk

(Xik−μjk)
2

2

]
if Xik ≥ μjk

(2)
where ξj = (μj , Slj , Srj

) is the parameter set for the asymmetric Gaussian distri-
bution with μj = (μj1 , . . . , μjd

), Slj = (Slj1 , . . . , Sljd
) and Srj

= (Srj1 , . . . , Srjd
).

μjk, Sljk
and Srjk

are the mean, the left precision and the right precision of the
kth dimensional distribution. In this paper, we assume independence so that the
covariance matrix of Xi is diagonal matrix. This assumption allows us to avoid
costly computation during deployment.

We introduce the latent indicator variable Z = (Z1, . . . , ZN ), Zi for each
observation Xi to indicate which component it belongs to. Zi = (Zi1, . . . , ZiM )
where hidden label Zij is assigned as 1 if Xi belongs to component j otherwise
will be set to 0. The likelihood function is then defined by:

p
(X | Z,Θ

)
=

N∏

i=1

p
(
Xi | ξj

)Zij (3)

Given the mixing weights �p with pj = Zij = 1, for j = 1, . . . , M , Z is given a
Multinomial prior:

p
(
Z | �p

)
= Multi (−→p ) =

M∏

j=1

p
nj

j (4)

where nj is the number of observations that are associated with component j.
The mixing weights are considered to follow a symmetric Dirichlet distribution
with a concentration parameter α/M :

p
(
�p | α

) ∼ Dirichlet(
α

M
, ...,

α

M
) =

Γ (α)
Γ ( α

M )M

M∏

j=1

p
α
M −1
j (5)

We then integrate out the mixing weights �p to obtain the prior of Z:

p
(
Z | α

)
=

∫
p
(
Z | �p

)
p
(
�p | α

)
d�p =

Γ (α)
Γ (N + α)

M∏

j=1

Γ ( α
M + nj)
Γ ( α

M )
(6)

The conditional prior for a single indicator is then denoted by:

p(Zij = 1 | α,Z−i) =
n−i,j + α

M

N − 1 + α
(7)

Where the subscript −i defines all indexes except i, Z−i = (Z1, . . . ,
Zi−1, Zi+1, . . . , ZN ), N−i,j is the number of observations excluding Xi in com-
ponent j.
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Next, we extend the model to infinity by updating the posteriors of indicators
in Eq. (7) with M → ∞:

p
(
Zij = 1 | α,Z−i

)
=

{
n−i,j

N−1+α , if n−i,j > 0
α

N−1+α , if n−i,j = 0
(8)

where n−i,j > 0 occurs only when component j is represented. Thus, an obser-
vation Xi is associated with an existing component by a certain probability
proportional to the number of observations already allocated to this compo-
nent; while a new (when unrepresented) component is proportional to α and N .
Given the conditional priors in Eq. (7), the conditional posteriors are obtained
by multiplying the priors with Eq. (3) resulting in:

p(Zij = 1 | ...) =

{ n−i,j

N−1+α

∏d
k=1 p

(
Xik | ξjk

)
, if n−i,j > 0

α
N−1+α

∫
p
(
Xi | ξj

)
p
(
ξj | λ, r, βl, βr, wl, wr)dξj , if n−i,j = 0

(9)

where the hyperparameter α is defined by an inverse Gamma prior with shape
parameter a and mean b chosen as follows:

p
(
α−1

) ∝ α− 3
2 exp(− 1

2α
) (10)

Given the likelihood of α in Eq. (6), the posterior is then:

p
(
α | M,N

) ∝ α
M−3

2 exp(− 1
2α )Γ (α)

Γ (N + α)
(11)

The conditional posterior for α depends only on number of observations, N ,
and the number of components, M . The logarithmic representation of posteriors
is log-concave, so we can sample α by using the Adaptive Rejection Sampling
(ARS) method [19].

2.2 Bayesian Learning

In this section, we describe an MCMC-based approach for learning the proposed
IAGM model as shown in Fig. 1. The means of the component μjk are given
Gaussian priors with hyperparameters λ and r as follows:

p
(
μjk | λ, r

) ∼ N (λ, r−1) . (12)

where the mean, λ, and precision, r, hyperparameters are common to all com-
ponents in a specific dimension. λ is given Gaussian priors with mean e and
variance f , and r is given Gaussian priors and inverse Gamma priors with shape
parameter g and mean parameter h respectively:

p
(
λ
) ∼ N (e, f) (13)

p
(
r
) ∼ Γ (g, h) (14)
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Fig. 1. Graphical model representation of the IAGM model. The random variables are
in circles, and the model parameters in squares. The number mentioned in the right
upper corner of the plates indicates the number of repetition of the contained random
variables. The arcs describe the conditional dependencies between variables.

where e and f will be μy and σ2
y, the mean and variance of the observations

which are used for the parameters of the Gaussian priors. The Gamma priors
use constant values 1 as shape g and σ2

y as mean h to represent.
The conditional posterior distribution for the mean μjk is then computed by

multiplying the likelihood from Eq. (3) by the prior Eq. (12) as follows:

p
(
μjk | Xk, Sljk

, Srjk , λ, r
) ∝ N (

Sljk

∑n
i:Xik<μjk

Xik + srjk

∑n
i:Xik≥μjk

Xik + rλ

r + psljk
+ (nj − p)srjk

,

1

r + psljk
+ (nj − p)srjk )

(15)

Where Xk is the kth dimensional observation allocated to component j. nj is the
count of Xk and p is the count of Xk which are less than μjk.

∑
i:Xik<μjk

Xik and
∑n

i:Xik≥μjk
Xik are the sums of the observations which are less than and greater
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than μjk respectively. For the hyperparmeters λ and r, we use hyperposteriors
to update parameters. Equation (12) plays the role of the likelihood function.
As such, we combine Eq. (12), Eq. (13) and Eq. (14) to obtain the following
posteriors:

p
(
λ | μ1k, . . . , μMk, r

) ∝ N (
μyσ−2

y + r
∑M

j=1 μjk

σ−2
y + Mr

,
1

σ−2
y + Mr

) (16)

p
(
r | μ1k, . . . , μMk, λ

) ∝ Γ (M + 1,
M + 1

σ2
y +

∑M
j=1(μjk

− λ)2
) (17)

The component precision Sljk
and Srjk

are given Gamma priors with common
hyperparameters β and w−1 as follows:

p
(
Sljk

| β,w
) ∼ Γ (β,w−1), p

(
Srjk

| β,w
) ∼ Γ (β,w−1) (18)

where β is given inverse Gamma priors with shape parameter s and mean param-
eter t, and w is given Gamma priors with shape parameters u and v:

p
(
β−1

) ∼ Γ (s, t) (19)

p
(
w

) ∼ Γ (u, v) (20)

Where we set both of mean and shape parameters of hyperprior β as constant
value 1, and mean and shape parameters of hyperprior w are defined as 1 and
σ2

y respectively. The conditional posterior distribution for left precision Sljk
and

right precision Srjk
are obtained by multiplying the likelihood from Eq. (3) by

the prior Eq. (18) as follows:

p
(
Sljk

| Xk, μjk, Srjk
, β, w

) ∝ (S− 1
2

ljk
+ S

− 1
2

ljk
)S

β
2 −1

ljk

exp
[ −

Sljk

∑n
i:Xik<μjk

(xik − μjk)2

2
− wβSljk

2
] (21)

Random samples of posteriors can be drawn by using the MCMC method. In
our work, we use Metropolis−Hastings algorithm to sample precision parameters.
For the hyperparameters β and w, the equation Eq. (18) plays the role of the
likelihood function. Combining Eq. (12), Eq. (19), and Eq. (20), we obtain the
following posteriors:

p
(
βl | Sl1k

, . . . , SlMk
, wl) ∝ Γ (

βl

2
)−M exp(− 1

2βl
)(

βl

2
)

Mβl−3
2

M∏

j=1

(wlSljk
)

βl
2 exp(−βlwlsljk

2
)

(22)

p
(
wl | Sl1k

, . . . , SlMk
, βl) ∝ Γ (Mβl + 1,

Mβl + 1

σ−2
y + βl

∑M
j=1 Sljk

) (23)
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where we only show the left side of β and w parameters with similar posteriors
for the right side parameters. The posterior distribution of precision β is not a
standard form, but its logarithmic posterior is log-concave. Therefore, we can
sample from the distribution for log(β) using ARS technique and transform the
resultant to get values for β.

The proposed complete algorithm can be summarized by the following:

Algorithm 1. IAGM algorithm
1: procedure
2: initialize assignments and parameters
3: loop:
4: Update mixture parameters μj , Sljk and Srjk from posteriors in Eq. (15) and

Eq. (21).
5: Update hyperparameters λ, r, β, w and Dirichlet process concentration param-

eter α from posteriors in Eq. (16), (17), (22), (23) and (11).
6: Update the indicators conditioned on the other indicators and the hyperparam-

eters from Eq. (9).
7: The convergence criteria is reached when the difference of the current value of

joint posteriors and the previous value is less than 10−4. Otherwise, repeat above
procedures until convergence.

3 Experimental Setup

3.1 Background Subtraction Application

In this section, we employ the proposed IAGM model for video background sub-
traction with a pixel-level evaluation approach as in [8]. The background sub-
traction methodology starts off by constructing the model using the proposed
IAGM model. After applying the learning algorithm for the model, we discrimi-
nate between the mixture components for the representation of foreground and
background pixels for each of the new input frames.

Assume that each video frame has P number pixels such that �X =
(X1, . . . ,XP ) then each pixel X is assigned as a foreground or background pixel
according to the trained IAGM model p

(X | Θ
)

=
∏N

i=1

∑M
j=1 pjp

(
Xi | ξj

)
.

Components that occurs frequently, i.e. high p value, and with a low standard
deviation S− 1

2 ) are modeled as the background.

Accordingly, the value of pj/(||S− 1
2

lj
|| + ||S− 1

2
rj ||) is used to order the mixture

components, where pj is the mixing weight for component j, ||S− 1
2

lj
|| and ||S− 1

2
rj ||

are the respective norms of left and right standard deviations of the j component
[8]. The first B number of components are chosen to model the background, with
B estimated as:

B = arg minb

b∑

j=1

pj > T (24)
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where T is a measure of the minimum proportion of the data that represents
the background in the scene, and the rest of the components are defined as
foreground components.

3.2 Results and Discussion

We apply the proposed algorithm to the Change Detection dataset [20]. The
dataset consists of six categories with a total of 31 videos totaling 90,000 frames.
Each of the categories (baseline, dynamic background, camera jitter, shadows,
intermittent object motion, and thermal) contains around 4 to 6 different videos
sequences from low-resolution IP cameras.

In this paper, we have selected five videos from the Change Detection dataset
to evaluate our proposed methodology. We initialize the IAGM by incrementally
increasing the threshold multiple times and choosing the optimum parameter
setting. We adopt the threshold factor T = 0.9 in our method. We set the max-
imum component number for the algorithm as 9 and the standard deviation
factor K = 2. Evaluations of the proposed IAGM can be observed in the con-
fusion matrices in Fig. 2. Moreover, Fig. 3 show visual results of our proposed
method on samples frames in the Library and Street Light video sequences.

Fig. 2. Confusion matrices of the proposed method employed for background subtrac-
tion on the boulevard (top left), abandoned box (top center), street light (top right),
sofa (bottom left), and library (bottom right) videos where FG denotes the foreground
and BG denotes the background.

We also compare our results with three other methods from the literature.
These include the Gaussian mixture model-based background subtraction algo-
rithms by Sauffer et al. [8] and Zivkovic [9] as well as the finite asymmetric
Gaussian mixture model by Elguebaly et al. [3]. We evaluate the performance of
the algorithms in terms of the recall and the precision metrics. These are defined
respectively as Recall = TP/(TP +FN) and precision = TP/(TP +FP ) where
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Fig. 3. A sample frame from Street Light (left) and Library (right) video sequences
and the detected foreground object respectively.

Table 1. Experimental results for the background subtraction application.

Stauffer et al. [8] Zivkovic [9] Elguebaly et al. [3] IAGM (proposed)

Boulevard

Recall 83.21% 79.77% 79.54% 84.72%

Precision 40.02% 43.79% 61.13% 55.80%

Abandoned Box

Recall 45.74% 45.64% 45.18% 81.53%

Precision 65.52% 62.14% 67.41% 56.23%

Street Light

Recall 32.25% 33.94% 30.33% 57.41%

Precision 89.16% 92.47% 97.56% 99.99%

Sofa

Recall 51.62% 51.41% 59.90% 53.56%

Precision 85.92% 89.25% 92.52% 93.41%

Library

Recall 28.00% 28.68% 31.33% 94.74%

Precision 84.76% 81.76% 94.66% 86.52%

TP is the number of true positive foreground pixels, FN is the number of false
negatives, and FP is the number of false positives. The results can be seen in
Table 1.

As can be observed in Table 1, the proposed IAGM model mostly outperforms
the other methodologies in terms of the recall metric, while achieving comparable
precision results. For instance, IAGM attains better recall results for the Street
Light video sequence with a near perfect precision. This clearly demonstrates
the effectiveness of our proposed model and approach.

In particular, our approach detects more foreground pixels; most of which are
clustered correctly. This ensures comparable precision results compared with the
other algorithms. Our method does not remarkably improve the precision metric
due to the sensitivity of the proposed method to the change in environments.
With higher number of detected foreground pixels, our approach shows signifi-
cant improvement in the recall metric. This improvement is especially distinct
for the Library video.
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These improvements are due to the nature of the IAGM model that is capable
of accurately capturing the asymmetry of the observations. This higher flexibil-
ity of asymmetric Gaussian distribution allows the incorporation of the different
shape distributions of objects. Furthermore, the extension to the infinite mixture
using the Dirichlet process with a stick-breaking construction increases adapt-
ability of the proposed model. Hence, we addressed both the parameter learning
and the mixture component number determination challenges. These advantages
provide a more efficient model for background subtraction.

4 Conclusion

We propose a new infinite mixture model, IAGM, that is capable of modeling the
asymmetry of data in contrast to the traditionally deployed GMM. Moreover, we
address the challenges of parameter learning and choosing the right number of
components through the employment of Bayesian learning and extension of the
AGM model to infinity. Furthermore, we demonstrate the efficiency of our model
by utilizing it for the background subtraction application. Our achieved results
are comparable to three different methods in terms of precision, and superior in
terms of the recall metric. Finally, our future plan considers Variational Inference
to improve learning speed.
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