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Abstract. Since its inception, curves and surfaces have been the prin-
cipal means of representation of observed geometry in computer vision.
In many practical applications, one’s knowledge of the shapes of real-
life objects is obtained through discrete measurements, which are subse-
quently converted into their continuous counterparts through the process
of either curve or surface fitting, depending on the object dimensional-
ity. Unfortunately, the measurement noise due to environmental effects,
operator errors and/or hardware limitations makes the fitting problem a
challenging one, requiring its solutions to possess a substantial degree of
robustness. Moreover, in the case of surface fitting, the use of relatively
complex fitting mechanisms might be disadvantageous due to their typi-
cally higher computational requirements, which could, in turn, create an
implementation bottleneck due to the high dimensionality of the data.
Accordingly, in this work, we propose a unified approach to fitting of
smooth geometric manifolds, such as curves and surfaces, to point clouds.
The proposed method is based on a level-set formulation, which leads to
a simple and computationally efficient algorithm, the practical value of
which is demonstrated through a series of examples.

Keywords: Surface fitting · Point clouds · Level-set functions ·
Total-variation

1 Introduction

The problem of fitting of smooth geometric manifolds, such as spatial curves and
surfaces, to finite sets of Euclidean points is unarguably one of the classical prob-
lems of image processing and computer vision. Such sets of points, commonly
referred to as point clouds, are typically acquired by means of range/depth sen-
sors to provide a raw description of the shape and geometry of scanned objects.
Due to their irregular and noisy nature, however, point clouds are rarely used
by higher level algorithms and visualization software. Instead, the latter “pre-
fer” to process continuous representations of observed geometries, which are
derived from point clouds through the process of curve/surface fitting. Virtual
and augmented reality, reverse engineering, and medical imaging are only a few
examples of application areas, where such fitting problems routinely arise [1].
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Moreover, the recent advance in digital scanning technologies has resulted in a
widespread proliferation of a variety of new depth/range scanning devices, which
often present unexplored challenges from the viewpoint of curve/surface fitting.
To cope with these challenges, a broad spectrum of fitting methodologies has
been so far proposed [2], which generally differ in their ability to withstand the
effects of noise and scarce sampling as well as to effectively deal with non-trivial
topologies [3].

The current arsenal of methods for curve/surface fitting is vast, suggesting a
variety of possible taxonomies. A particular way to classify such methods could
be based on their property of being either explicit or implicit [4]. In the explicit
formulation, it is standard to represent surfaces by means of triangulated meshes
obtained based on Voronoi diagrams [5] or Delaunay triangulation [6]. In their
core, such methods are based on systematically connecting the points of a cloud
until a predefined completeness criterion is met. Under weak noise conditions and
in the absence of considerable gaps between data points, explicit representations
are known to provide satisfactory and useful results. Unfortunately, their quality
degrades quickly when the aforementioned assumptions start to fail.

In implicit representation, curves and surfaces are typically defined by means
of either the indicator functions of closed subsets of IRd or the level sets of
Lipschitz-continuous functions [3,7]. Thus, for instance, the fitting procedure in
[8] utilized the zero level-set of a distance function, in which case it was also possi-
ble to determine the topological types of reconstructed surfaces. While promising
in many respects, however, the method lacked in geometric accuracy. In [9], the
same group of authors introduced an accurate surface model for unorganized
point data. Unfortunately, this work provided little evidence on the performance
of the proposed method in the case of incomplete and irregularly sampled data
[10]. A method called Poisson Surface Reconstruction was introduced in [11]
based on the observation that the normal field of the boundary of a solid can be
interpreted as the gradient of the indicator function of a surface, which can, in
turn, be used to model this surface in an implicit manner. Further modifications
of this method were described in [12], including its adjustments to the case of
sparse point clouds and improvements of computational efficiency. An interesting
method exploiting the underlying geometric structure of point clouds in combi-
nation with a convex formulation of image segmentation was described in [3].
The method has been shown to perform reliably under a variety of conditions,
including scenarios with incomplete/scarce data and complex topologies. Yet,
to achieve such performance, one requires to possess prior information in the
form of point normals, which might not always be available. Finally, a surface
fitting formulation based on the concept of function approximation by means
of Radial Basis Functions (RBF) was reported in [13]. In addition to its other
merits, the method was also shown to be computationally efficient, which makes
it particularly valuable when dealing with large data sets [14].

The level-set framework, in which curves and surfaces are defined in terms of
the level-set of Lipschitz-continuous functions, offers a number of critical advan-
tages, among which are the simplicity of parameterization and the ability to deal
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with relatively complex topologies in an easy and straightforward manner. The
practical implementation of such methods in the context of curve/surface fit-
ting, however, may be rather challenging, thereby risking to put these methods
in disadvantage with respect to other techniques. Accordingly, the main pur-
pose of this work is to introduce a level-set based formulation of the problem
of curve/surface fitting which offers two important advantages. First, the for-
mulation is independent of the problem dimensionality, and it can be applied in
the cases of curve and surface fitting with virtually no adjustments. Second, the
formulation leads to a particularly simple and computationally efficient solution,
which allows its application in both time-critical and data-extensive scenarios.

The rest of this paper is organized as follows. Sections 2 and 3 provide a formal
description of the fitting problem and its solution, respectively. Experimental
results with 2D and 3D point clouds are presented in Sect. 4, followed by a
discussion and conclusions in Sect. 5.

2 Problem Formulation

Let φ : IRd → IR be a Lipschitz-continuous function (with d = 2 and d = 3
corresponding to the cases of curve and surface fitting, respectively), whose zero
level set

Γ =
{
r ∈ IRd | φ(r) = 0

}

will be used to model the geometric manifold of interest (i.e., either a curve or a
surface). In particular, in what follows, the level-set function φ(r) will be defined
to be the signed distance function (SDF) of the zero level-set Γ of φ. Such SDF
is given by the unique solution of Eikonal equation

{
|∇φ(r)| = 1, ∀r ∈ IRd

φ(r) = 0, ∀r ∈ Γ
,

with ∇φ standing for the gradient of φ and |∇φ(r)| being its magnitude at r.
By the nature of its definition, the value φ(r) of an SDF φ returns the distance

between r and the zero-level set Γ . Thus, given a set of N points {ri}N
i=1, the

average cumulative distance between the point cloud and Γ can be computed as

D(φ) =
1
N

N∑
i=1

|φ(ri)|, (1)

where the absolute value is used to cancel out the effect of the sign of φ (which
we assume to have negative values inside Γ ). Clearly, the closer the points ri to
Γ , the lower the value of D(φ). Consequently, the fitting problem at hand can
be formulated as a minimization problem in φ, whose optimal solution returns
the minimum possible value of D(φ).

An obvious flaw of the above approach consist in its proneness to the “curse
of dimensionality”. Indeed, in an attempt to minimize D(φ), the optimization
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is likely to result in a solution with an excessively variable, fluctuating Γ which
might contradict the physical nature of the object represented by the point cloud.
Such situations are particularly frequent in the case of noisy and/or incomplete
(scarce) measurements, which necessitates the use of regularization. To this end,
it has been proven effective to penalize the area of Γ , which (owing to the co-
area formula), amounts to requiring the SDF φ to be a function of bounded
variation (BV) [19]. Such functions are known to have relatively small values of
their total-variation (TV) semi-norms defined as

‖φ‖TV =
∫

r∈IRd

|∇φ(r)| dr. (2)

Subsequently, to guarantee the zero level-set Γ (and, hence, the resulting mani-
fold) has a plausible configuration, the minimization of D(φ) should be restricted
to the functions with relatively small values of TV semi-norms, which leads to
an optimization problem of the form

min
φ

{D(φ) + λ‖φ‖TV} , (3)

where λ > 0 is a user-defined regularization constant. Denoting the cost func-
tional in (3) by E(φ), namely E(φ) := D(φ)+λ‖φ‖TV, its (local) minimizers φ∗

are characterized by the Euler-Lagrange condition

δE(φ∗)
δφ

= 0, (4)

with δE/δφ being the first variational derivative of E(φ). A particularly simple
and computationally efficient solution to the above equation is detailed in the
following section.

3 Proposed Solution

A solution to the Euler-Lagrange equation (4) can be found as a stationary point
of the gradient flow given by [15]

∂φ

∂t
= −δE(φ)

δφ
, (5)

where t > 0 is an artificial time that can be thought of as a continuous equivalent
of an iteration index. Thus, to implement the gradient flow, the first variational
derivative δE/δφ needs to be computed first. To this end, one can first redefine
D(φ) as

D(φ) =
1
N

N∑
i=1

|φ(ri)| =
1
N

N∑
i=1

∫
|φ(r)| δ(r − ri) dr =

∫
|φ(r)| gN (r) dr
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with

gN (r) =
1
N

N∑
i=1

δ(r − ri)

and δ(r) be the standard Dirac delta function. In this case, the first variational
derivative of D(φ) can be shown to have the form of

δD(φ)
δφ

= sign(φ) · gN ,

where we have adopted the sign function, sign(x), as a practical approximation of
the first-order derivative of |x|. On the other hand, the first variational derivative
of ‖φ‖TV is well known to be equal to −div(∇φ/|∇φ|), with div standing for the
operator of divergence. Therefore, combining the two results leads to

δE(φ)
δφ

= sign(φ) · gN − λ div(∇φ/|∇φ|), (6)

and, subsequently, to the gradient flow of the form

∂φ

∂t
= λ div(∇φ/|∇φ|) − sign(φ) · gN . (7)

The next step is to discretize (7), to which end we take advantage of a semi-
implicit approach to produce

φt+Δt − φt

Δt
= λ div(∇φt+Δt/|∇φt+Δt|) − sign(φt) · gN ,

where φt and φt+Δt denote the values of φ at times t and t + Δt, respectively.
Thus, rearranging the terms in the above numerical approximation, one obtains

φt+Δt − (λΔt) div(∇φt+Δt/|∇φt+Δt|) = φt − Δt sign(φt) · gN . (8)

To conclude the derivations, we recall that any real subdifferentiable func-
tional F : X → IR with a monotone subdifferential (where X is the Banach space
to which φ is supposed to belong, such as the space of BV functions in our case)
can be associated with its proximal map proxF : X → X defined as [16]

proxF (ψ) = arg inf
φ∈X

{
1
2
‖φ − ψ‖22 + F (φ)

}
. (9)

In the special case when F (φ) = τ‖φ‖TV, with some τ > 0, one has

proxτ‖·‖TV
(ψ) = arg inf

φ∈X

{
1
2
‖φ − ψ‖22 + τ‖φ‖TV

}
, (10)

which is always well-defined due to the strict convexity of its associated cost
functional. Although this operator does not admit a closed-form definition, there
are a number of numerical procedures that can be used to compute proxτ‖·‖TV

in
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a computationally efficient manner [17,18]. It is worthwhile noting that, in the
context of image processing, finding efficient numerical methods for computation
of proxτ‖·‖TV

dates back to the seminal work in [19] that pioneered the field of
TV-denoising.

Now, having the proximal map (10) defined, it can be shown that the update
equation in (8) can be alternatively defined as

φt+Δt = prox(λΔt)‖·‖TV
{φt − Δt sign(φt) · gN} . (11)

Consequently, starting from some initial curve/surface Γ associated with φ0 =
φt=0, an optimal solution to the problem of curve/surface fitting in the sense
of minimum cumulative distance can be computed as a stationary point of the
sequence of fixed-point iterations (i.e., recursive re-substitutions) produced by

φ �→ Tλ,Δt{φ}, (12)

where Tλ,Δt : X → X stands for the composition of the proximal map
prox(λΔt)‖·‖TV

with the simple non-linear map defined by I − Δtsign(·) · gN .
In practice, we replace gN with its smooth approximation gN,σ obtained via
spatial convolution with a normalized, isotropic Gaussian kernel Gσ of standard
deviation σ, viz.

gN,σ(r) = (gN ∗ Gσ) (r) =
1
N

N∑
i=1

Gσ(r − ri), ∀r ∈ IRd.

In practice, such sums can be computed efficiently, e.g., by first uniformly quan-
tizing the values of ri to the vertices of a (sufficiently dense) rectangular lattice,
and then performing the summation in the domain of a discrete Fourier trans-
form (DFT), followed by an inverse Fourier transformation.

It is interesting to notice that the map x �→ x − Δt sign(x)a, with 0 ≤ a ≤ 1,
is neither linear nor monotone, and, what is more important, it does not preserve
the sign of x. Thus, applying this map to an SDF φ may, in general, forfeit the
fundamental property of such φ to have values of opposite signs on both sides of
its zero-level set. To avoid this undesirable effect, it has proven useful to replace
the above map by soft thresholding SΔtgN,σ

(x) := max(|x| − Δt gN,σ, 0) · sign(x)
which, similarly to the former, reduces the positive values of φ, while increasing
the negative values of φ by Δt gN,σ. (In some sense, both maps try to “shorten the
distance” to points ri, which are represented by the “peaks” of gN,σ.) However,
SΔtgN,σ

provides the additional advantage of continuity, while keeping the sign
of its argument intact.

In practical computations, we used Δt ∈ (0, 1], while adapting σ recursively
according to σ �→ βσ, starting with some initial σ > 0 and a predefined 0.9 <
β < 1. In this case, the proposed numerical scheme acquires the flavor of a
multi-grid method. Particularly, in the beginning of iterations (when σ is still
relatively large) the intermediate solutions are predominantly effected by a rough
collective configuration of the data points as a cloud, while becoming more and
more responsive to the individual forces of each point ri towards convergence.



Fitting Smooth Manifolds to Point Clouds in a Level Set Formulation 145

To summarize, the final algorithm can be described by the pseudo-code shown
below.

Data: {ri}N
i=1 , φ0, λ,Δt, σ, β, #iterations

i = 1;
φ = φ0;
while i ≤ #iterations do

gN,σ(r) ← (1/N)
∑N

i=1 Gσ(r − ri);
φ ← Tλ,Δt{φ};
φ ← ReDist(φ);
σ ← β σ;
i ← i + 1

end
Result: φ∗ = φ;
Note that, for any value of Δt, SΔtgN,σ

is guaranteed to be a contraction,
which, in conjunction with the contractiveness of the proximal map, suggests
that the sequence of solutions produced by φ �→ Tλ,Δt{φ} always converges to
a stationary point. However, for any given φ, its corresponding Tλ,Δt{φ} does
not yield an SDF, in general. For this reason, the above pseudo-code has been
augmented with the procedure of redistancing ReDist, which effectively replaces
a given φ ∈ X with an SDF that has a zero-level set Γ identical to that of φ1.
Even thought such mapping may not always be contractive, from the practical
point of view, the proposed algorithm has never failed to converge in a relatively
small number of iterators (see below), under broad experimental conditions.

4 Experimental Results

The proposed method has been tested on a dataset of both 2D and 3D artificial
point clouds. In the course of evaluations, the algorithm’s performance was tested
under a variety of different experimental conditions, as defined by various levels
of measurement noise, the presence of skewness in the distribution of {ri}N

i=1

and various fractions of data points assumed to be missing.
In our experiments, the original geometric manifolds (i.e., curves and sur-

faces) were used as the mean values around which the cloud points ri had then
been randomly distributed. To this end, we used a centered uniform distribution
in conjunction with an offset to emulate the effect of asymmetric sampling. In
all the experiments, φ0 was computed by fast matching initiated at the bound-
ary of the convex hull of its associated data cloud. The values of λ,Δt, σ, and
β were set to be equal to 100, 0.95, 0.03, and 0.99, respectively. All coding and
simulations were performed in MATLAB (Mathworks Inc, version R2018b).

In the case of symmetric sampling in 2D (i.e., when the number of planar
data points is approximately equal on both sides of the original curve), some
representative results obtained using the proposed method are shown in Fig. 1,

1 As mentioned earlier, in numerical computations, redistancing is usually performed
by means of fast marching [20].
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Fig. 1. Results applying the proposed algorithm to 2D “noisy” point clouds. (a) optimal
solution after 10 iterations, (b) optimal solution after 30 iterations. The blue and red
colors correspond to the initial and final solutions, respectively. (Color figure online)

Fig. 2. Results analogous to Fig. 1 obtained in the case of asymmetric data sampling.

with Fig. 2 showing analogous results for the case of asymmetric sampling. One
can see that, in all the cases, the proposed algorithm has managed to converge
to the expected shapes just in a few tens of iterations.

To quantitatively evaluate the proposed algorithm, a distance between the
original and fitted manifolds has been computed. In each case, the distance was
defined to be the average distance between the points on the fitted manifold and
its continuous counterpart. To facilitate the computation of the distances, the
original manifolds were chosen to be
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– a circle (radius 50), an oval (max radius 50, axis ratio 1:0.5), and a square
(side length 100), in the case of d = 2,

– a sphere (radius 50) and an ellipsoid (max radius 50, axis ratio 1:1:0.5), in
the case of d = 3.

The conditions of asymmetric sampling were emulated by sub-sampling the data
points on one size of a given manifold by a factor of 2. Moreover, the data points
were further subjected to random removals of their localized subsets to imitate
the effects of “holes”. Finally, all data points were contaminated by additive
Gaussian noise with different values of its standard deviation σn.

Table 1. Empirical mean cumulative errors (average ± 1 standard deviation)

Circle Oval Square Sphere Ellipsoid

Number of points N 50 50 50 1200 1200

σn = 0.03 R/L 1.93 ± 0.81 1.85 ± 1.04 3.41 ± 2.81 3.68 ± 0.86 2.61 ± 0.92

σN = 0.10 R/L 3.48 ± 1.65 3.19 ± 1.75 5.69 ± 4.24 4.55 ± 0.96 3.21 ± 1.05

Table 1 summarizes the results of present quantitative analysis, showing the
values of mean cumulative distance for different types of manifolds as well as
the values of N and σn. Each entry in Table 1 has been computed as an average
of 10 independent trials. As expected, the noisy scenarios with higher extents
of skewness and incompletion in measurements results in higher values of the
errors. A relative increase of the error can also be observed in the case of square,
due to the non-smoothness of its shape. Overall, however, the proposed method
demonstrated a stable and reasonably accurate performance. A sample results
of surface and curve fitting is shown in Fig. 3.

Fig. 3. Results of fitting the sphere surface and the square curves.



148 H. Soleimani et al.

5 Conclusion

In this paper, a simple numerical method for fitting closed curves and surfaces of
various topologies to points clouds has been presented. The proposed numerical
solution was based on implicit discretization, which allows using substantially
larger time steps Δt (as opposed to explicit schemes), thus improving the rate
of convergence. Moreover, the proposed formulation is parameter-free, offering
the same unified algorithmic structure in both 2D and 3D settings.
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