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Abstract. In this paper we combine the Schwartz-Zippel theorem with
statistical inference theory and develop a new probabilistic algorithm
instead of deterministic algorithms for geometry theorem proving. Our
work includes an improved algorithm for estimating the upper bounds
in the pseudo-remainder, and three selection criteria for statistical
populations.
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1 Introduction

The common approaches of automated geometric theorem proving can be divided
into three categories: algebraic methods, vector methods and search methods
based on deductive database. Algebraic methods can be classified into two types,
symbolic computation type which includes Wu’s method [1,2], Gröbner bases
method [3,4], resultant elimination method [5], etc.), and numerical computation
type which includes the single-instance numerical verification method [6], and
parallel numerical verification method [7,8,21,22]. All methods mentioned above
belong to deterministic algorithms which will always get deterministic results if
calculated by correct steps. However, when it comes to complicated problems,
the complexity of deterministic algorithms can be very high which will seriously
affect the efficiency of problem-solving. Thus, “probabilistic” algorithms (also
called “non-deterministic” algorithms) are proposed which perform efficiently
within a short time. Probabilistic algorithms have a wide range of applications
in the field of computer algebra, such as prime number judgment and solving
the largest invariant factor, etc. Probabilistic algorithms have two significant
features: the algorithms are executed within the specified time and returning
the computational results; the computational results may be incorrect but can
control them within a small scope of 0. So the key question is that can we adopt
a fast probabilistic algorithm instead of deterministic algorithms to improve the
efficiency of geometric theorem proving?
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The answer is affirmative. In 1997, Carrá et al. [10] developed a probabilistic
algorithm based on Schwartz-Zippel theorem [9] and Wu’s method to prove con-
structive geometric theorems (see [1,2] for the definition) by verifying a num-
ber of random instances, the probability of incorrect result is also provided.
They combined the bounds of the exponent of a polynomial in the radical of
an ideal given by Brownawell and Kollar [11,12] with the bounds of the degree
of Wu-Ritt’s characteristic sets given by Gallo and Mishra [13,14] to estimate
the upper bound about the total degree of the pseudo-remainder. The follow-
ing is their research result. If a constructive geometric theorem (see Sect. 2) is
constructed by C points and P circles or straight lines, then the bound calcu-
lated by their algorithm is D = c · 2C

3
3C

3
CC2

where c is a constant. Select N
instances randomly from J where the J is a set of 2D different real number,
then the probability that the result is correct is larger than 1 − 2−N if the N
instances all satisfy the geometric theorem. Unfortunately, this enormous bound
D led Carrá et al. to fail to implement their algorithm on a computer. Besides,
the extended characteristic sets and the pseudo-remainder are needed to be cal-
culated if instance meets the degenerative conditions, which will increase the
complexity of their algorithm inevitably.

Tulone et al. [15] proposed a probabilistic test for the vanishing of radical
expression, and soon they developed the Core Library which was designed as
a general C++ package and support the Exact Geometric Computation app-
roach to robust algorithms. In 2001, they developed a geometry theorem prover
based on probabilistic algorithm and the Core Library [16]. Their result can be
summarized as follows.

Theorem 1. Suppose g(u, x) is the polynomial about the conclusion of a con-
structive geometric theorem with deg(g) = d, and G(u) be any of the 2r radical
expressions derived from g(u, x) after eliminating dependent variables. If the the-
orem is constructed by k steps of ruler and compass constructions and g(u, x)
contains t terms, then r degu(G) ≤ td2r85k holds. Select the independent vari-
ables from J randomly, where J is a set formed by td2c+2r85k(c ≥ 1) real num-
bers, if the geometric theorem is false, then the probability that and the instance
satisfies the theorem is at most 2−c. �

The above bound is much better, but when it comes to the class of non-linear
constructive geometric theorems, the efficiency is still not satisfied. To refine the
probabilistic algorithm of geometric theorems proving, we have improved the
algorithm in this paper for estimating the upper bounds about the degrees of the
pseudo-remainder in each independent variable, proposed three selection criteria
for statistical population and apply two checking methods to verify instances,
and designed a combined probabilistic checking model for mechanical geometry
theorem proving on the basis of statistical error analysis and significance test.

This paper is organized as follows. In Sect. 2 we introduce the methods for
representation of geometric theorems and related concepts of irreducible ascend-
ing sets. In Sect. 3 we give an improved algorithm to estimate the upper bounds of
the pseudo-remainder. In Sect. 4 we introduce two checking methods for instances
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verification and propose a new probabilistic algorithm for geometry theorem
proving based on Schwartz-Zippel Theorem with three selection criteria for sta-
tistical population. In Sect. 5 we discuss the statistical error analysis and signif-
icance test.

2 Algebraic Representation of Geometry Theorems

It is well known that geometric theorems can be expressed as certain relations of
algebraic equations using coordinates. For a large class of elementary geometric
theorems, we can translate them into simple quadratic algebraic equations by
adopting an appropriate coordinate system. A theorem is called a constructive
geometric theorem if it is constructed according to some construction rules (e.g.
ruler and compass constructions).

For a constructive geometric theorem, we can translate its hypotheses into a
set of multivariate polynomial equations H : {fi(u1, u2, . . . , um, x1, x2, . . . , xn) =
0, i = 1, 2, . . . , n} and its conclusion is also a multivariate polynomial equation G:
g(u1, u2, . . . , um, x1, x2, . . . , xn) = 0 where u1, u2, . . . , um are independent vari-
ables (or parameters) and x1, x2, . . . , xn are dependent variables, f1, f2, . . . , fn
and g are quadratic equations (i.e., the degree of each variable in each polynomial
is not bigger than 2) in Q(u1, u2, . . . , um)[x1, x2, ..., xn].

In what follows we use abbreviation u = u1, u2, . . . , um, x = x1, x2, . . . , xn,
Q[u] denotes Q[u1, u2, . . . , um] and Q(u)[x] the polynomial ring of x1, x2, . . . , xn

over the field of rational expressions Q(u1, u2, . . . , um).
A Maple package (EPSILON) developed by Wang in [17] can be used to

translate a geometric theorem into algebraic form automatically by invoking the
commands of Load and Algebraic in its submodule GEOTHER. The prepara-
tory work is to formalize a geometric theorem as Theorem (H,G,X) where H
is the hypotheses, G is the conclusion, and X is the set of dependent variables.

In general, the hypotheses H can be simplified into an equivalent ascending
set (triangular form) by applying Wu-Ritt’s algorithm, see [18–20]. Furthermore,
based on the ascending set, following we will give the definition of irreducible
ascending set as it plays an important role in this paper.

Definition 1. If each polynomial fi in an ascending set is irreducible in the ring
Q(u)[x1, x2, . . . , xi]/(f1, f2, . . . , fi−1), then we’ll call it an irreducible ascending
set (IAS):

IAS

⎧
⎪⎪⎨

⎪⎪⎩

f1(u, x1) = 0;
f2(u, x1, x2) = 0;
...

fn(u, x1, x2, . . . , xn) = 0.

(1)

In order to describe the algebraic feature of the class of constructive geometric
theorems as well as the linear class clearly, here we use the i-th element D i

f in
the n + m-length array Df to denote the degree of f in the i-th variable where
f ∈ Qn(u)[x], and mf = max{D i

f , 1 ≤ i ≤ m + n}. Define Qj(D) as a set of
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specific polynomials and Di denotes the i-th element in the n+m-length array
D, for any f ∈ Qj(u)[x1, x2, . . . , xj ], if f satisfies formula (2), then f ∈ Qj(D).

Qj(D) = {f ∈ Qj |D i
f ≤ Di, j = 1, 2, . . . ,m + j} (2)

For any constructive geometric theorem, each fi in formula (1) satisfies either
Dm+i

fi
= 1,mfi ≤ 2 (suppose that there are l polynomials satisfy this condition,

then n
2 ≤ l ≤ n will always hold) or Dm+i

fi
= 2,mfi ≤ 4. If every polynomial fi

satisfies Dm+i
fi

= 1, then we call it a constructive geometric theorem of linear
class.

3 Estimating the Degree Bounds
for the Pseudo-remainder

Our goal in this section is to establish an algorithm of estimating the upper
bounds of the degrees of the pseudo-remainder. We need the following result.

Theorem 2. Let the i-th element Di
gj in the (m+j)-length array Dgj denote the

degree of gj(u)[x1, x2, . . . , xj ], in the i-th variable, then for any j-stage irreducible
branch �j of formula (1), there exists a non-zero polynomial I on �j and

gj−1(u)[x1, x2, . . . , xj−1] ∈ Qj−1(D
m+j
fj

Dgj + Dm+j
fj

Dm+j
gj Dfj ),

such that

I(u)[x1, x2, . . . , xj ] · gj(u)[x1, x2, . . . , xj ] = gj−1(u)[x1, x2, . . . , xj−1] (3)

holds on �j, and gj ≡ 0 on �j if and only if gj−1 ≡ 0. ��
We refer the reader to the original paper [5] for the proof of this theorem.

According to Theorem 2 and the n triangular polynomials in (1), we adopt
inductive reasoning to deduce the following theorem.

Theorem 3. Let the i-th element Di
g in the (m+n)-length array Dg denote the

degree of the i-th variable in the conclusion of a geometric theorem g(u)[x], then
for any n-stage irreducible branch � of IAS (i.e., formula (1)) derived from its
hypotheses, there exists a non-zero polynomial I on � and R ∈ Q0(D0), such
that

I(u)[x] · g(u)[x] = R[u] (4)

holds on �, and g ≡ 0 on � if and only if R ≡ 0.

Proof. According to Theorem 2, for any n-stage irreducible branch �n of IAS
(hypotheses) and conclusion g(u)[x] of a given constructive geometric theo-
rem, there exist a non-zero polynomial In on �n and gn−1(u)[x1, x2, ..., xn−1] ∈
Qn−1(Dm+n

fn
Dg + Dm+n

fn
Dm+n

g Dfn), such that

In(u)[x] · · · g(u)[x] = gn−1(u)[x1, x2, . . . , xn−1]
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holds on �n, and g ≡ 0 on �n if and only if gn−1 ≡ 0. Similarly, repeat applying
Theorem 2 to eliminate the last i dependent variables, for any (n − i + 1)-stage
irreducible branch �n−i+1 of IAS, there exists In−i and

gn−i(u)[x1, . . . , xn−i] ∈ Qn−i(D
m+n−i+1
fn−i+1

Dgn−i+1 + Dm+n−i+1
fn−i+1

Dm+n−i+1
gn−i+1 Dfn−i+1),

such that

gn−i = In−ign−i+1 = In−iIn−i+1gn−i+1 = . . .

= In−iIn−i+1 · · · In−1gn−1 = In−iIn−i+1 · · · Ing

holds on �n−i+1, and gn−i+1 ≡ 0 on �n−i+1 if and only if gn−i ≡ 0. Let i = n,
i.e., have finished eliminating all the dependent variables, then for any 1-stage
irreducible branch �1 of IAS, there exists a non-zero polynomial I1 and

g0[u] ∈ Q0(Dm+1
f1

Dg1 + Dm+1
f1

Dm+1
g1 Df1) = Q0(D0),

such that

g0 = I1g1 = I1I2g2 = . . . = I1I2 · · · Ing

holds on �1, and g1 ≡ 0 on �1 if and only if g0 ≡ 0. Set R = g0 and I =
I1I2 · · · In, then Ig = R holds. According to Theorem 2 and the recursive process
of I and R, g ≡ 0 on � if and only if R ≡ 0 holds. ��

By Theorem 3 and the whole process of its proof, we can design the following
algorithm to estimate the degrees of the polynomial R in every independent
variables.

Algorithm 1. Estimate the upper bounds of the degrees of R in every inde-
pendent variables.

Input: g, IAS, ux = [u1, u2, . . . , um, x1, x2, . . . , xn].
Output: An array D where the first m elements are the upper bounds of the

degrees of R in every independent variables.

degreebounds:=proc(g, IAS, ux)
n:=nops(IAS): m:=nops(ux)-n:
D:=[seq(degree(G, op(i, ux)), i=1.. m+n)]:
for i from n to 1 by -1 do
FI:= IAS[i]: dFI:=[seq(degree(FI,op(j, ux)), j=1...m+n)]:
D:=dFI[m+i]*D + dFI[m+i]*D[m+i]*dFI:

end do:
return D:

end proc:
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By Theorem 3 and Algorithm 1, we have the following corollary.

Corollary 1. If there are l(n2 ≤ l ≤ n) polynomials in the irreducible ascending
set IAS of a constructive geometric theorem satisfy deg(fi, xi) = 1, mfi ≤ 2 and
n−l polynomials satisfy deg(fi, xi) = 2, mfi ≤ 4, then deg(R, ui) ≤ 2 ·3l10n−l ≤
2 · 30n/2(i = 1, 2, ...,m) and T deg(R) ≤ 2m · 3l · 10n−l ≤ 2m · 30n/2 hold, i.e.,
the upper bound of the degree of R in each independent variable is not bigger
than 2 · 30n/2 and the upper bound of the total degree of R is not bigger than
2m · 30n/2. Furthermore, if limited to the linear class, then the bounds can still
be improved to T deg(R) ≤ 2m · 3n and deg(R, ui) ≤ 2 · 3n(i = 1, 2, . . . ,m).

Proof. We first prove the conclusion that deg(gn−t, ui) ≤ 2 · 3l
′
10t−l′ (i =

1, 2, . . . ,m) holds for 1 ≤ t ∧ t ≤ n where gn−t is derived by eliminating the
last t dependent variables in g and l′ denotes the number of polynomials that
satisfy Dm+i

fi
= 1 in the last t polynomials of IAS. We use mathematical induc-

tion to prove the above conclusion.
When h = 1, i.e., we can eliminate the last independent variable xn with fn,

then gn−1 ∈ Qn−1(Dm+n
fn

Dg + Dm+n
fn

Dm+n
g Dfn) holds according to Theorem 2.

If Dm+n
fn

= 1, then l′ = 1, Dj
fn

≤ 2(j = 1, 2, . . . , m+n) holds. Since Dm
g ≤ 2, then

Di
gn−1

≤ Dm+n
fn

· max
1≤j≤m

(Dj
g)+Dm+n

fn
· max
1≤j≤m

(Dj
g) · max

1≤j≤m
(Dj

f1
) = 1 · 2+1 · 2 · 2 =

2 · 3l
′ · 101−l′ holds where 1 ≤ i ≤ m, i.e., the conclusion holds. On the other

hand, if Dm+n
fn

= 2, then l′ = 0,Dj
fn

≤ 4(j = 1, 2, . . . ,m) holds. Similarly, the
conclusion holds. Suppose that when h = t(1 ≤ t < n) the conclusion holds,
following we will prove when h = t + 1 the conclusion also holds. According to
Theorem 3, after eliminating xn−t with fn−t, gn−t−1 ∈ Qn−t−1(Dm+n−t

fn−t
Dgn−t

+

Dm+n−t
fn−t

Dm+n−t
gn−t

Dfn−t
) holds obviously. If Dm+n−t

fn−t
= 1, then l′ = l′+1,Dj

fn−t
≤

2(j = 1, 2, ·,m) holds. Since h = t the conclusion holds, then we have Di
gn−t

≤
2 · 3l

′−110t−l′−1(i = 1, 2, ·,m) holds, now we can derive the upper bound of
gn−t−1 as follows, D i

gn−t−1
≤ Dm+n−t

fn−t
· max
1≤j≤m

(Dj
gn−t

)+Dm+n−t
fn−t

· max
1≤j≤m

(D j
gn−t

) ·
max

1≤j≤m
(D j

fn−t
) = 1 ·2 ·3l′−110t−l′−1+1 ·3l′−110t−l′−1 ·2 = 2 ·3l′ ·10t+1−l′ , by this

the conclusion holds obviously. If deg(fn−t, xn−t) = 2, then l′ = l′,Dm+n−t
fn−t

=

2,D j
fn−t

≤ 4(j = 1, 2, ·,m) holds, similarly, the conclusion also holds. That
is, we have proven that the conclusion will also hold for h = t + 1 if h = t
the conclusion holds. By mathematical induction, the above conclusion holds for
1 ≤ t ∧ t ≤ n. By Theorem 3, after eliminating all the dependent variables we will
obtain a polynomial g0 where g0 = R. If there are l polynomials in IAS satisfy
deg(fi, xi) = 1, then claims that deg(R, ui) ≤ 2 · 3l10n−l(i = 1, 2, ·,m) holds
obviously by the above conclusion. Since there are m independent variables in
R and their degrees are not bigger than 2 · 3l10n−l, so T deg(R) ≤ 2m · 3l10n−l

holds. Moreover, if limited to the linear class, i.e., every polynomials in IAS
satisfy deg(fi, xi) = 1, so l = n. Substitute l = n into deg(R, ui) ≤ 2·3l10n−l(i =
1, 2, . . . ,m), the conclusion deg(R, ui) ≤ 2 ·3n(i = 1, 2, ...,m) holds immediately,
similarly, T deg(R) ≤ 2m · 3n also holds, i.e., Corollary 1 holds. ��
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Corollary 1 shows that, if the IAS of a constructive geometric theorem con-
tains n polynomials, then the upper bound of the degree of R in each independent
variable is at most B = 2 · 3l10n−l. The bound can be improved to 2 · 3n if lim-
ited to the linear class. For constructive geometric theorems, l always satisfies
n
2 ≤ l ≤ n, so the bound can generalized as deg(R, ui) ≤ 2 · 30n/2. That is, for
a constrictive geometric theorem, its bounds B1 satisfy B1 ≤ 2 · 30n/2, and for
the linear class, the bounds B2 can be improved to B2 ≤ 2 · 3n.

4 Probabilistic Estimates of Truth and Selection Criteria
For statistical Population

Many geometric theorems can be transformed into the following form of conjunct
logic relationship:

(∀u, x)[(f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0) ⇒ (g = 0)] (5)

Thus, if a geometric theorem is true, then we can claim that remainder R
(obtained in Theorem 3) is identically zero. It is certain that we can prove a
theorem by calculating R from IAS and g according to Theorem 3 and then
checking whether R ≡ 0 holds. We can also avoid calculating R directly via esti-
mating the degrees of R by using Corollary 1. Then the key question is how to
judge whether an instance satisfies the geometric theorem. Two kinds of checking
methods are given in [6].

Checking Method 1: Numerical checking method, which uses a specific numer-
ical instance to check whether R ≡ 0 holds. By Theorem 3, g ≡ 0 on � if and
only if R ≡ 0, i.e., for any ũ = ũ1, ũ2, . . . , ũm and x̃ = x̃1, x̃2, . . . , x̃n satisfy for-
mula (1), if I(ũ)[x̃] �= 0, then g(ũ)[x̃] = 0 holds generically. The following steps
show the checking process: (1)Select a numerical instance ũ = ũ1, ũ2, . . . , ũm

randomly from the statistical population; (2) Substitute ũ into the IAS, solve
all the numerical solutions of the dependent variables x̃ = x̃1, x̃2, . . . , x̃n; (3)
Substitute ũ and x̃ into the conclusion polynomial g, if g(ũ)[x̃] = 0, then claims
R[ũ] = 0, i.e., this instance satisfies the geometric theorem; if the dependent vari-
ables cannot be determined, which indicates that I(ũ)[x̃] = 0 holds, according to
formula (4), R[ũ] = 0 still holds. (4) If the instance does not satisfy g(ũ)[x̃] = 0,
i.e., g(ũ)[x̃] = 0 does not hold, then claims that R is not identically zero, i.e.,
the geometric theorem is not true absolutely.

Checking Method 2: Successive pseudo division checking method which means
that do not solve the numerical solutions about the dependent variables after
substituting ũ into the IAS but calculates R according to the instantiated IAS
and g by formula (4) by using successive pseudo division algorithm. If R = 0,
then claims that this instance satisfies the geometric theorem and the geomet-
ric theorem is true generically, else claims that the geometric theorem is false
absolutely.
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Remark. More rigorously, a geometric theorem may be expressed as the fol-
lowing conjunct logic relationship with non-degenerate conditions.

(∀u, x)[(f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0,Δ1,Δ2, . . . ,Δk) ⇒ (g = 0)], (6)

where Δ1,Δ2, . . . ,Δk denote the algebraic form of non-degenerate cases. Non-
degenerate cases can be divided into two kinds: Δ �= 0 and Δ > 0. Almost
all prover now available can only deal with the first kind non-degenerate cases,
following we also discuss the first kind of non-degenerate cases only.

As the results obtained by probabilistic algorithms are not always true, it is
very essential to make probabilistic algorithms more reliable by providing the
probability that the result is true (or false).

Randomization procedure is an essential part of our probabilistic algorithm,
which means that instances should be randomly selected from the statistical pop-
ulation while checking. If a random instance does not match with the theorem,
then the program will terminate and return the running result that the theorem
is false, and the probability that the result is incorrect is 0. If N instances all
match with the theorem, then the program will return a running result that the
theorem is true. If R is not identically zero and all the N random instances are
the zeros of R, then the running result will be incorrect. Can we control and
obtain the upper bound of the probability that the result is incorrect? To solve
this problem, we first introduce the famous Schwartz-Zippel Theorem proposed
by Schwartz in 1980 [9] by which the upper bound of the number of the zeros of
a nonzero polynomial in a specific sets can be determined.

Theorem 4. Suppose that G ∈ F [x1, x2, ..., xn] and G is not identically zero.
Let G1 be the standard simplified form of G and d1 be the degree of G1 in x1, G2

be the coefficient of xd
1 in G1. Then, inductively, let di be the degree of Gi in xi

and Gi+1 be the coefficient of xdi
i in Gi where 1 ≤ i ≤ n.For any xi(1 ≤ i ≤ n),

if xi ∈ Ii (here, Ii ⊂ F and |Ii| < di), then in the set I1 × I2 × . . . × In, G has
at most

|I1 × I2 × . . . × In|
(

d1
|I1| +

d2
|I2| + . . . +

dn
|In|

)

(7)

zeros. ��
The following corollary is obtained immediately from Schwartz-Zippel Theorem.

Corollary 2. Suppose that G ∈ Q[x1, x2, . . . , xn] and G is not identically zero.
If x1, x2, . . . , xn are picked randomly from I where I ⊂ Q, then the probability
that G is not identically zero in at most d

|I| , here d denotes the total degree of G

and |I| < d. ��
Together with Algorithm 1, Schwartz-Zippel Theorem enables us to estimate

the upper bound of the probability that the result is incorrect. In the rest of
this section, we will propose three selection criteria for statistical population
according to the Schwartz-Zippel Theorem and Corollary 2.
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The First Selection Criterion. Select c × m × di distinct positive integers to
form a finite set Ui, e.g., Ui = (1, 2, . . . , cmdi) where c is a positive integer and
i = 1, 2, . . . , m. Then an instance (called individual in statistical terminology)
is formed by selecting an element from each Ui. Statistical population S1 is
made up of all the instances, i.e., S1 = U1 × U2 × . . . × Um, then the statistical
population size # S1 equal to the number of instances (individuals), i.e., # S1 =
cmmm

∏m
i=1 di. If R is not identically zero, then according to Theorem4 we have:

|U1 × U2 × . . . × Um|
(

d1
|U1| +

d2
|U2| + . . . +

dm
|Um|

)

= (cm)m
m∏

i=1

di ·
(

d1
cmd1

+
d2

cmd2
+ . . . +

dm
cmdm

)

= cm−1mm
m∏

i=1

di (8)

By formula (8), we can claim that the number of instances in S1 that are zeros
of R is at most cm−1mm

∏m
i=1 di. Therefore, the probability that the instance

ũ = ũ1, ũ2, . . . , ũm selected randomly from S1 satisfies R[ũ] = 0 can be deduced
as follows:

Prob1(R[ũ] = 0|R �= 0) ≤ cm−1mm
∏m

i=1 di
# S1

=
cm−1mm

∏m
i=1 di

cmmm
∏m

i=1 di
= c−1 (9)

That is, if a geometric theorem is not true, then the probability that R[ũ] = 0
is at most c−1, where ũ = ũ1, ũ2, . . . , ũm is an instance selected randomly from
the statistical population S1.

The Second Selection Criterion. Let D =
m∑

i=1

di where d1, d2, . . . , dm are

calculated by Algorithm, it is easy to see that the total degree of R in all the
independent variables is at most D. Select cD distinct positive integers to form
a finite set U , e.g., U = (1, 2, . . . , cD) where c is also a positive integer. Similarly,
we obtain the statistical population: S2 = U × U × . . . × U

︸ ︷︷ ︸
the number of U is m

, and its size # S2

as following:

# S2 = cmDm = cm(
m∑

i=1

di)
m = cmmm(

m∑

i=1

di / m)m = cmmm(d)m (10)

Repeat m times that select an element from U randomly can form an random
instance ũ = ũ1, ũ2, . . . , ũm, if R is not identically zero, then the probability that
R[ũ] = 0 satisfies the following formula:

Prob2(R[ũ] = 0|R �= 0) ≤ D

# U
=

D

cD
= c−1 (11)

according to Corollary 2, which implies that, if a geometric theorem is not true,
then the probability that R[ũ] = 0 is at most c−1, where ũ is an instance selected
randomly from the statistical population S2.
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The Third Selection Criterion. As indicated in Corollary 1, if the IAS of
a geometric theorem contains n polynomials, then the upper bounds satisfy
deg(R, ui) ≤ 2 · 3l10n−l ≤ 2 · 30n/2(i = 1, 2, . . . ,m). In other words, if the IAS is
too difficult to calculate, then the upper bounds can still be estimated quickly in

accordance with Corollary 1. Let di = 2 ·30n/2 and D =
m∑

i=1

di = 2m ·30n/2, then

the statistical population S3 can be obtained in accordance with Corollary 2
and its size as following:

# S3 = cmDm = cm(2m · 30n/2)m = 2mcmmm30nm/2 (12)

Similarly, the probability that R[ũ] = 0 is at most c−1 if the geometric
theorem is false and ũ is selected randomly from S3, i.e.,

Prob3(R[ũ] = 0|R �= 0) ≤ c−1.

5 Statistical Error Analysis and Significance Test

In this section, we compare the three selection criteria for statistical population,
and then discuss statistical error analysis and significance test of our method. We
have seen that all three selection criteria satisfy Prob(R[ũ] = 0|R �= 0) ≤ c−1,
which means that, if a geometric theorem is false, then the probability of the
checking result that theorem is true is at most c−1. Their main differences lie in
the value ranges of the instances and the statistical populations sizes.

If the statistical population is collected by the first selection criterion, then
the statistical population size is # S1 = cm · mm

∏m
i=1 di. The second selection

criterion can determine S2 and # S2 = cmmm(d)m. And therefore,

P =
# S1
# S2

=
cmmm

∏m
i=1 di

cmmm(d)m
=

d1d2 . . . dm

(
m∑

i=1

di / m)m
≤ 1 (13)

where m, c, di(1 ≤ i ≤ m) are all positive integers. By formula (13)shows that
adopting the first selection criterion to collect statistical population will more
precise than the second one. Moreover, the complexity of the algorithm will
decrease with the refined statistical population and more compact value ranges
of instances, thus to avoid data-overrun error caused by the limited precision
of computation and achieve our goal that to prove geometric theorems fast and
accurately.

After simplifying H into IAS, the upper bounds of the degrees of R in the
independent variables can be estimated by Algorithm 1. However, for some high-
complexity geometric theorems, such as the Five-Circles Theorem and Miquel’s
Theorem, H will be very complicated which will inevitably lead to wasting lots
of time and consuming large amounts of memory in the process of simplifying
H into IAS, and this will contrary to our original intention that design a proba-
bilistic algorithm with high efficiency to prove geometric theorems. Can we avoid
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calculating the IAS before instantiation if the geometric theorem is very compli-
cated? To achieve this is easy by the Corollary 1 and it is also the reason why we
propose the third selection criterion to collect the statistical population. That
is, for some high-complexity geometric theorems, in the circumstance that data-
overrun error will not occur during the whole actual operation, we can avoid
calculating the irreducible ascending set before instantiation, and estimate the
upper bounds crudely by Corollary 1 instead of Algorithm 1, thus to avoid failing
to get the running result within the specified time or program interruption for
out of memory.

The core content of mathematical statistics is the study of the relationship
between statistical population and sample, and statistical inference is to infer
statistical population in accordance with sample. In general, statistical inference
can be divided into two categories: parameter estimation and significance test.
The main researched in this paper belongs to inferring statistical population by
sample which involves significance test only. We refer the reader to [23] for the
general concept and terminology of significant test.

Statistical significance test is a common method of statistical inference whose
principle judge whether there exists significant difference between the statistical
population and the null hypothesis H0 by the sample information. Its essence
is the “small probability theory” and logic approach of the “reductio ad absur-
dum”. First of all, define the null hypothesis H0, and then calculate the probabil-
ity that H0 holds base on the sample information by the corresponding statistical
methods. If the probability is small enough (i.e., less than the significance level
a = 0.01), then judge that H0 does not hold and reject the null hypothesis.
Otherwise, accept the null hypothesis.

Statistical significance test involves two types of errors: Type I error and
type II error. Type I error is the incorrect rejection of a true null hypothesis and
type II error is the failure to reject a false null hypothesis. Unlike many statistical
problem, the major research problem in this paper involves Type I error only
and Type II error will not exist. If a geometric theorem is false and a counter
example is found successfully, then the program will terminate and return the
running result that the theorem is false absolutely, and the probability that the
result is incorrect is 0. If N random instances all match the theorem, then the
program will reject the null hypothesis and return the running result that the
theorem is true. In this case, Type I error will occur unluckily. In view of this, we
use the statistical significance test which has no relationship with type II error
to control the probability that the occurrence of Type I error.

6 Conclusions

In this paper we presented a new probabilistic algorithm for automated geometry
theorem proving which combined the Schwartz-Zippel theorem with statistical
inference theory. Our main work includes an improved algorithm for estimating
the upper bounds of the pseudo-remainder and three selection criteria for sta-
tistical populations. We have implemented the prover with Maple and verified
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the performance with experiments. Due to the page limit of this paper, more
results on the experiment results and the prover implementation detail will be
published in forthcoming papers.
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