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Abstract. In this paper, we study the minimum power partial cover
problem (MinPowerPartCov). Suppose X is a set of points and S is a set
of sensors on the plane, each sensor can adjust its power, the covering
range of a sensor s with power p(s) is a disk centered at s which has
radius r(s) satisfying p(s) = c ·r(s)α. Given an integer k ≤ |X|, the Min-
PowerPartCov problem is to determine the power assignment on each
sensor such that at least k points are covered and the total power con-
sumption is the minimum. We present an approximation algorithm with
approximation ratio 3α, using a local ratio method, which coincides with
the best known ratio for the minimum power (full) cover problem. Com-
pared with the paper [9] which studies the MinPowerPartCov problem
for α = 2, our ratio improves their ratio from 12 + ε to 9.

Keywords: Power · Partial cover · Approximation algorithm ·
Local ratio

1 Introduction

With the rapid development of wireless sensor networks (WSNs), intensive stud-
ies on WSNs have emerged, especially on the coverage problem. In a coverage
problem, the most basic requirement is to keep all points under monitoring. In a
typical WSN, the service area of a sensor is a disk centered at the sensor whose
radius is determined by the power of the sensor. A typical relation between the
power p(s) of sensor s and the radius r(s) of its service area is

p(s) = c · r(s)α, (1)

where c and α ≥ 1 are some constants (α is usually called the attenuation facor).
So, the greater power a sensor possesses, the larger service it can provide. In other
words, the consumption of energy and the quality of service are two conflicting
factors. The question is how to balance these two conflicting factors by adjusting
power at the sensors so that the desired service can be accomplished using the
minimum total power. This question is motivated by the intention to extend the
lifetime of WSN under limited energy supply, and we call it the minimum power
coverage problem (MinPowerCov).
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In the real world, it is often too costly to satisfy the covering requirement
of every point. So, it is beneficial to study the minimum power partial coverage
problem (MinPowerPartCov), in which it is sufficient to cover at least k (instead
of all) points. The problem is motivated by the purpose of further saving energy
while keeping an acceptable quality of service.

The MinPowerPartCov problem can be viewed as a special case of the min-
imum weight partial set cover problem (MinWPSC). Given a set E of elements,
a collection of sets S, a weight function w : S �→ IR+, and an integer k ≤ |E|,
the MinWPSC problem is to find the minimum weight sub-collection of sets
F ⊆ S such that at least k elements are covered by F , i.e., |⋃S∈F S| ≥ k and
w(F) =

∑
S∈F w(S) is minimum. Notice that in a MinPowerParCov problem,

the power at a sensor can be discretized by assuming that there is a point on
the boundary of the disk supported by the assigned power. We call such a disk
as a canonical disk. So, if we associate with each sensor |X| canonical disks,
where X is the set of points, each disk corresponds to the set of points contained
in it, and the weight of the disk equals the power supporting the disk which
is determined by Eq. (1), then the MinPowerParCov problem is reduced to the
MinWPSC problem.

It is known that the MinWPSC problem has an f -approximation [2], where
f is the maximum frequency of an element, that is, the maximum number of
sets containing a common element. For the MinWPSC problem obtained by
the above reduction from a MinPowerParCov problem, f equals the number of
sensors, which is too large to be a good approximation factor. So, the main
purpose of this paper is to explore geometric properties of the MinPowerParCov
problem to obtain a better approximation.

1.1 Related Works

The minimum weight set cover problem (MinWSC) is a classic combinatorial
problem. It is well-known that MinSC admits approximation ratio H(Δ) [7,14],
where H(Δ) = 1+ 1

2 + ...+ 1
Δ is the Harmonic number and Δ denotes the size of

the largest set. It is also known that a simple LP-rounding algorithm can achieve
an approximation ratio of f , where f is the maximum number of sets containing
a common element (see for example Chapter 12 of the book [23]).

For the minimum weight partial set cover problem (MinWPSC), Slav́ık [21]
obtained an H(min{�k�,Δ})-approximation using a greedy strategy, Bar-Yehuda
[2] obtained an f -approximation using local ratio method, Gandhi [10] also
obtained f approximation using a primal-dual method. Very recently, Inamdar
et al. [13] designed an LP-rounding algorithm, obtaining approximation ratio
2β + 2, where β is the integrality gap for the natural linear program of the
minimum weight (full) set cover problem.

For the geometric minimum weight set cover problem, much better approx-
imation factors can be achieved. Using a partition and shifting method,
Hochbaum et al. [12] obtained a PTAS for the minimum unit disk cover problem
in which the disks are uniform and there are no prefixed locations for the disks.
For the minimum disk cover problem in which disks may have different sizes,
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Mustafa et al. [15] designed a PTAS using a local search method. This PTAS
was generalized by Roy et al. [20] to non-piercing regions including pseudo-disks.
These are results for the cardinality version of the geometric set cover problem.
Considering weight, Varadarajan [22] presented a clever quasi-uniform sampling
technique, which was improved by Chan et al. [8], yielding a constant approxima-
tion for the minimum weight disk cover problem. This constant approximation
was generalized by Bansal et al. [4] for the minimum weight disk multi-cover
problem in which every point has to be covered multiple times. Using a sepa-
rator framework, Mustafa et al. [16] obtained a quasi-PTAS for the minimum
weight disk cover problem.

To our knowledge, there are two papers studying the geometric minimum
partial set cover problem. The first paper is [10], in which Gandhi et al. pre-
sented a PTAS for the minimum (cardinality) partial unit disk cover problem
using a partition and shifting method. Notice that this result only works for
the case when the centers of the disks are not prefixed. Another paper is due
to Inamdar et al. [13], in which a (2β + 2)-approximation was obtained for the
general minimum weight partial set cover problem, where β is the integrality gap
of the natural linear program for the minimum weight (full) set cover problem.
As a consequence, for those geometric set cover problems (including the disk
cover problem) in which β is a constant, the approximation ratio for the partial
version is also a constant (but the constant is large).

Recently, there are a lot of works studying the minimum power multi-cover
problem (MinPowerMC), in which every point p is associated with a covering
requirement crp, and the goal is to find a power assignment with the minimum
total power such that every point p is covered by at least crp disks. Let crmax be
the maximum number of times that a point requires to be covered. Using a local
ratio method, Bar-Yehuda et al. [3] presented a 3α · crmax-approximation algo-
rithm. The dependence on crmax was removed by Bhowmick et al. [5], achieving
an approximation ratio of 4 · (27

√
2)α. This result was further generalized to any

metric space in [6], the approximation ratio is at most 2 · (16 · 9)α. For the mini-
mum power (single) cover problem, the best known ratio is 3α (as a consequence
of [3] and the fact crmax = 1 in this case).

There is only one paper [9] studying the minimum power partial (single)
cover problem (MinPowerPartCov), and the study is on the special case when
α = 2. The approximation ratio obtained in [9] is (12+ε), where ε is an arbitrary
constant greater than zero, by a reduction to a prize-collecting coverage problem.

1.2 Contribution

In this paper, we show that the MinPowerPartCov problem can be approximated
within factor 3α, which coincides with the best known ratio for the MinPower-
Cov problem (the full version of the minimum power coverage problem). When
applied to the case when α = 2, our ratio is 9, which is better than 12 + ε
obtained in [9].

Our algorithm is inspired by the local ratio method used in [3] to study the
MinPowerCov problem. New ideas have to be explored to surmount the difficulty.
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2 The Problem and a Preprocessing

The problem studied in this paper is formally defined as follows.

Definition 1 (Minimum Power Partial Cover (MinPowerPartCov)).
Suppose X is a set of n points and S is a set of m sensors on the plane, k is an
integer satisfying 0 ≤ k ≤ n. A point x ∈ X is covered by a sensor s ∈ S with
power p(s) if x belongs to the disk supported by p(s), that is x ∈ Disk(s, r(s)),
where Disk(s, r(s)) is the disk centered at s whose radius r(s) is determined by
p(s) through equation p(s) = c · r(s)α. A point is covered by a power assignment
p : S �→ IR+ if it is covered by some disk supported by p. The goal of MinPower-
PartCov is to find a power assignment p covering at least k points such that the
total power

∑
s∈S p(s) is as small as possible.

In an optimal solution, we may assume that for any sensor s, there is at
least one point that is on the boundary of the disk Disk(s, p(s)), since otherwise
we may reduce p(s) to cover the same set of points, resulting in a lower power.
Therefore, at most mn disks need to be considered. We denote the set of such
disks by D. In the following, denote by (X,D, k) an instance of the MinPow-
erPartCov problem, and use opt(X,D, k) to denote the optimal power for the
instance (X,D, k). To simplify the notation, we use D to represent both a disk
in D and the set of points covered by D, and use r(D) and p(D) to denote the
radius and the power of disk D, where p(D) = c · r(D)α. For a set of disks D,
we shall use C(D) =

⋃
D∈D D to denote the set of points covered by D.

In order to control the approximation factor of our algorithm, we need a
preprocessing step: guessing the maximum power of a sensor (or equivalently,
the radius of a maximum disk) in an optimal solution. Suppose Dmax ∈ D is
the guessed disk. Denote by D≤r(Dmax) the subset of disks of D whose radii
are no greater than the radius of Dmax (excluding Dmax), and denote by (X \
Dmax,D≤r(Dmax), k − |Dmax|) the residual instance after guessing Dmax. The
following lemma is obvious.

Lemma 1. Suppose Dmax is the correctly guessed disk with the maximum power
in an optimal solution of instance (X,D, k). Then

opt(X,D, k) = opt(X \ Dmax,D≤r(Dmax), k − |Dmax|) + p(Dmax).

3 A Local Ratio Algorithm

In this section, we first present an algorithm for the MinPowerPartCov problem
on the instance (X \ Dmax,D≤r(Dmax), k − |Dmax|). And then show how to make
use of it to find a power assignment for the original MinPowerPartCov problem.
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3.1 Algorithm After the Preprocessing

For simplicity of notation in this section, we still use (X,D, k) to denote the
residual instance, assuming that every disk in D has radius at most r(Dmax).

The algorithm consists of three steps.
(i) In the first step, a local ratio method is employed to find a minimal partial

cover D̄, that is, D̄ covers at least k points, while for any disk D ∈ D̄, the number
of points covered by D̄ − {D} is strictly less than k.

(ii) Before going into the second step, remove a disk Drmv from D̄ which is
chosen in the last call of the local ratio method in the first step. Then, in the
second step, a maximal independent set of disks I ⊆ D̄ \ {Drmv} is computed
in a greedy manner, that is, disks in I are mutually disjoint, while any disk
D ∈ D̄ \ {Drmv} which is not picked into I intersects some disk in I.

(iii) In the third step, every disk in I has its radius enlarged three times.
Such set of disks together with {Dmax,Drmv} are the output of the algorithm.

The first step is accomplished by Algorithm 1, in which the MinPowerPartCov
instance (X,D, k) is viewed as an instance of the minimum weight partial set
cover problem, where X serves as the set of elements to be covered, D serves
as the collection of sets, and the weight of each D ∈ D is p(D). The local
ratio method was first proposed by Bar-Yehuda and Even in [1]. The idea is
to recursively peel off a special weight from the original weight. If the problem
with the special weight admits an α-approximation, then one can assemble an
α-approximate solution for the problem with respect to the original weight. In
this paper, the special weight peeled off in each iteration (denoted by p̄) is
proportional to the number of uncovered points of a disk, and then the disks of
residual weight zero are put into D̄.

Algorithm 1. LR(X,D, p, k).
Input: A set of points X, a set of disks D, a weight function p : D �→ IR+, a covering
requirement k.
Output: A minimal subset of disks D̄ covering at least k points.

1: If k = 0, then return D̄ ← ∅
2: γ ← minD∈D p(D)/|X ∩ D|
3: p̄(D) ← γ · |X ∩ D| for each D ∈ D
4: p(D) ← p(D) − p̄(D) for each D ∈ D
5: D=0 ← {D ∈ D : p(D) = 0}
6: X ← X \ C(D=0), D ← D \ D=0, k ← max{0, k − |C(D=0)|}
7: D̄′ ← LR(X, D, p, k)
8: Let D̄=0 be a minimal subset of D=0 such that D̄′ ∪ D̄=0 covers at least k points.
9: Return D̄ ← D̄′ ∪ D̄=0

Algorithm 1 is in fact a function which will be recursively called. In the
algorithm, after peeling off a special weight p̄, we use D=0 to denote the set of
disks with residual weight p− p̄ being zero. Since taking disks of zero cost seems
to be a free meal, we take all of them temporarily and consider the residual
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instance, the goal of which is to satisfy the residual covering requirement using
the residual disks. Line 6 of the algorithm is to construct the residual instance.
Having found a minimal solution D̄′ to the residual instance, the algorithm adds
a minimal subset of disks of D=0, denoted as D̄=0, into D̄′ to cover at least k
points. This step is to guarantee that the resulting set of disks D̄ is minimal,
which is very crucial to the control of the approximation factor.

Suppose the function LR is called t + 1 times. Denote by D̄(i), p(i), p̄(i) etc.
those objects at the end of the i-th calling of function LR. Then we have the
following relations.

(i) X(0) = X, D(0) = D, p(0) = p, and k(0) = k.
(ii) For i = 1, . . . , t,

γ(i) = min{p(i−1)(D)/|X(i−1) ∩ D|} for each D ∈ D(i−1)

p̄(i)(D) = γ(i) · |X(i−1) ∩ D| for each D ∈ D(i−1) (2)

p(i)(D) = p(i−1)(D) − p̄(i)(D) for each D ∈ D(i−1) (3)

D(i)
=0 = {D ∈ D(i−1) : p(i)(D) = 0}

X(i) = X(i−1) \ C(D(i)
=0)

D(i) = D(i−1) \ D(i)
=0

k(i) = max{0, k(i−1) − |C(i−1)(D(i)
=0)|} (4)

Here C(i−1)(D(i)
=0) = C(D(i)

=0) ∩ X(i−1). As a consequence of the above relations,

k(i) = max{0, k − |C(
i⋃

j=1

D(j)
=0)|}. (5)

It should be noticed that in expressions (4) and (5), except for i = t, the value
of k(i) equals the second term.

(iii) k(t) = 0, D̄(t+1) = ∅. And for i = t, t − 1, . . . , 1,

D̄(i) = D̄(i+1) ∪ D̄(i)
=0.

As a consequence

D̄(i) =
t⋃

j=i

D̄(j)
=0 ⊆

t⋃

j=i

D(j)
=0. (6)

The above relation can be illustrated by the following figure.

Remark 1. If a disk D has its weight reduced to zero in the i-th call of LR, that
is, if p(i−1)(D) > 0 and p(i)(D) = 0, then D does not play roles in the deeper
calls of LR. In this case, we may view p(j)(D) = p̄(j)(D) = 0 for any j with
i + 1 ≤ j ≤ t. By such a point of view, for any 0 ≤ i ≤ t, we may extend the
definition of functions p(i) and p̄(i) on any disk D ∈ D.
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Fig. 1. Illustration for the structure of D̄(i).

Lemma 2. For any i = 1, . . . , t + 1, the set D̄(i) is a minimal set of disks
covering k(i−1) points of X(i−1).

Proof. We prove the lemma by a backward induction on i. The base step when
i = t + 1 is obvious, since k(t) = 0 and D̄(t+1) = ∅.

For the induction step, suppose i ≤ t and D̄(i+1) is a minimal set of disks
covering k(i) points of X(i). By expression (4) and the remark below it, we have

k(i−1) = k(i) + |C(i−1)(D(i)
=0)|. (7)

So D̄(i+1)∪D(i)
=0 can cover k(i−1) elements of X(i−1), which implies that a minimal

subset D̄(i)
=0 ⊆ D(i)

=0 exists such that D̄(i+1) ∪ D̄(i)
=0 can cover k(i−1) elements of

X(i−1) (Fig. 1).
What remains to show is that D̄(i+1) ∪ D̄(i)

=0 is minimal. By line 8 of Algo-
rithm1, no disk in D̄(i)

=0 can be removed without violating the covering require-
ment k(i−1). For any disk D ∈ D̄(i+1), by the minimality of D̄(i+1), we have
|C(i)(D̄(i+1)\{D})| < k(i). Then by (7), we have |C(i−1)

(
(D̄(i+1)\{D})∪D̄(i)

=0

)| <

k(i−1). The minimality of D̄(i) is proved. �

The second step is realized by Algorithm 2. Given a set of disks D, Algo-
rithm2 finds a maximal independent set of disks by recursively choosing the
disk with the maximum radius and deleting those disks intersecting it.

Algorithm 2. IS(D).
Input: A set of disks D.
Output: A maximal independent set of disks I.
1: I ← ∅
2: while D 
= ∅ do
3: D′ ← argmaxD∈D r(D)
4: I ← I ∪ {D′}
5: N ← the set of disks of D that intersect D′

6: D ← D \ N
7: end while
8: Return I
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Algorithm 3 combines the above two algorithms to compute a feasible solution
M to the residual instance. We use c(D) and r(D) to denote the center and
the radius of disk D, respectively. So, Disk(c(D), 3r(D)) represents the disk
with center c(D) and radius 3r(D) (which a disk obtained from D by enlarging
its radius by three times). Notice that M is not a subset of D. Before calling
Algorithm 2, a disk Drmv is deleted from D̄, where Drmv belongs to the set of
disks added in the deepest call of LR. This is to control the approximation ratio
which will be clear in the latter proofs.

Algorithm 3. Cov(X,D, k)
Input: A residual instance (X, D, k).
Output: a set of disks M covering at least k points.

1: D̄ ← LR(X, D, k)

2: Drmv ← an arbitrary disk in D̄(t)
=0 where t is the last call of LR

3: I ← IS(D̄ \ {Drmv})
4: M ← {Disk(c(D), 3r(D)) : D ∈ I} ∪ {Drmv}
5: Return M

The next theorem shows that Algorithm 3 computes a feasible solution to the
residual instance.

Theorem 1. The set of disks M computed by Algorithm3 covers at least k
points.

Proof. The set of disks in D̄ computed in line 1 of the algorithm cover at least
k points. For any point x which is covered by D̄, if x is covered by Drmv or any
disk in I, then it is also covered by M. Otherwise, x is covered by a disk D which
is removed in line 6 of Algorithm2. This disk D is removed because it intersects
a disk D′ ∈ I. Because of the greedy choice of disk D′ in line 3 of Algorithm 2,
we have r(D) ≤ r(D′). Hence d(x, c(D′)) ≤ d(x, c(D))+d(c(D), c(D′)) ≤ r(D)+
(r(D) + r(D′)) ≤ 3r(D′), where d(·, ·) denotes the Euclidean distance. So, x is
covered by disk(c(D′), 3r(D′)) ∈ M. �

The following lemma is a key lemma towards the analysis of the approxima-
tion ratio.

Lemma 3. Suppose D∗ is an optimal solution for (X,D, k). Then the indepen-
dent set of disks I output by Algorithm2 satisfies p(I) ≤ p(D∗).

Proof. We prove
p(i)(I) ≤ p(i)(D∗) (8)

by a backward induction on i = t, t − 1, . . . , 0. Since p(0) = p, what is required
by the lemma is exactly p(0)(I) ≤ p(0)(D∗).

For the base step, we have p(t)(I) = 0 because every disk D ∈ I ⊆ D̄(1)

belongs to some D̄(j)
=0 (by (6)) and thus p(t)(D) = 0. So (8) holds for i = t.
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For the induction step, suppose (8) is true for some i ≤ t. We are going to
prove

p(i−1)(I) ≤ p(i−1)(D∗). (9)

By (3), inequality (9) is equivalent with

p(i)(I) + p̄(i)(I) ≤ p(i)(D∗) + p̄(i)(D∗).

Combining this with the induction hypothesis, it suffices to prove

p̄(i)(I) ≤ p̄(i)(D∗). (10)

By (6) and Remark 1,

for any disk D ∈ D̄(1) \ D̄(i),we have p̄(i)(D) = 0. (11)

Combining this with (2) and the fact I ⊆ D̄(1), we have

p̄(i)(I) =
∑

D∈I
p̄(i)(D) =

∑

D∈I∩D̄(i)

γ(i) · |X(i−1) ∩ D|

=
∑

x∈X(i−1)

γ(i) · |{D ∈ I ∩ D̄(i) : x ∈ D}|.

Since no disks in I can intersect, we have
∑

x∈X(i−1)

|{D ∈ I ∩ D̄(i) : x ∈ D}| = |X(i−1) ∩ C(I ∩ D̄(i))|.

Since Drmv �∈ I, we have I∩D̄(i) ⊆ D̄(i)\{Drmv}. Combining this with Lemma2
and the observation that Drmv ∈ D̄(t)

=0 ⊆ D̄(i), we have

|X(i−1) ∩ C(I ∩ D̄(i))| < k(i−1).

Hence,
p̄(i)(I) ≤ γ(i)k(i−1) (12)

On the other hand, because of (11),

p̄(i)(D∗) =
∑

D∈D∗
p̄(i)(D) =

∑

D∈D∗\
(
D̄(1)\D̄(i)

)
γ(i) · |X(i−1) ∩ D|.

Combining the facts

|C(D∗)| ≥ k

D̄(1) \ D̄(i) ⊆
i−1⋃

j=1

D(j)
=0 by (6), and

k(i−1) = max{0, k − |C(
i−1⋃

j=1

D(j)
=0)|} by (5),
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we have
∑

D∈D∗\
(
D̄(1)\D̄(i)

)
|X(i−1) ∩ D| ≥ |X(i−1) ∩ C(D∗ \ (D̄(1) \ D̄(i)

)
)|

≥
∣
∣
∣
∣
∣
∣
X(i−1) ∩ C

⎛

⎝D∗ \
i−1⋃

j=1

D(j)
=0

⎞

⎠

∣
∣
∣
∣
∣
∣
≥ k(i−1).

Hence,
p̄(i)(D∗) ≥ γ(i)k(i−1). (13)

Then inequality (10) follows from (12) and (13), and the lemma is proved. �

The next theorem estimates the approximation effect of Algorithm 3.

Theorem 2. Suppose C∗ is an optimal solution on instance (X,D, p, k), and M
is the output of Algorithm3. Then

p(M) ≤ 3αp(C∗) + p(Drmv).

Proof. For each disk D ∈ M \ {Drmv}, it comes from a disk D′ ∈ I by
expanding the radius by three times. Hence by (1), p(D) = 3αp(D′). So
p(M) ≤ 3αp(I) + p(Drmv), and the theorem follows from Lemma 3. �

By Theorem 2, the approximate effect is related with p(Drmv). The reason
why we should guess a disk Dmax with the largest radius in an optimal solution
is now clear: to control the term p(Drmv) to be not too large. The algorithm
combining the guessing technique is presented as follows.

3.2 The Whole Algorithm

Algorithm 4 is the whole algorithm for the MinPowerPartCov problem. It first
guesses a disk Dmax with the maximum radius in an optimal solution, takes it,
and then uses Algorithm 3 on the residual instance. For a guessed disk D, the
residual instance consists of all those disks D≤r(D) whose radii are no larger
than r(D) (excluding D itself), and the goal is to cover the remaining elements
X \ D beyond the remaining covering requirement max{0, k − |D|}. The weight
function, denoted as pD, is determined by (1). If for a guessed disk D, Algorithm 3
does not return a feasible solution, then we regard the solution to have cost ∞.
Algorithm 4 returns the best solution among all the guesses.
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Algorithm 4. MinPowerPartCov(X,D, k, p)
Input: A set of points X, a set of sensors S, a covering requirement k.
Output: A power assignment p to cover at least k points.

1: Construct the set D of canonical disks, determine the weight of each disk by (1).
2: for D ∈ D do
3: MD ← Cov(X \ D, D≤r(D), pD,max{0, k − |D|})
4: FD ← MD ∪ {D}
5: end for
6: ˜D ← argminD∈D{p(FD)}
7: Return the power assignment corresponding to F

˜D

Theorem 3. Algorithm4 is an 3α-approximation algorithm for the MinPower-
PartCov problem.

Proof. Suppose Dmax is the disk with the maximum radius in an optimal solu-
tion. By Theorem 2 and the fact p(Dmax,rmv) ≤ p(Dmax), we have

p(FDmax) = p(MDmax) + p(Dmax) ≤ 3αp(C∗
Dmax

) + 2p(Dmax)

≤ 3α
(
p(C∗

Dmax
) + p(Dmax)

)
= 3αopt,

where opt is the optimal power. Since the set F
˜D computed by Algorithm 4

satisfies p(F
˜D) ≤ p(FDmax), the theorem is proved. �

4 Conclusion

In this paper, we presented an approximation algorithm for the minimum power
partial cover problem achieving approximation ratio 3α, using a local ratio
method. This ratio improves the ratio of (12 + ε) in [9], and matches the best
known ratio for the minimum power (full) cover problem in [3].

Recently, there are a lot of studies on the minimum power multi-cover prob-
lem [5,6]. A problem which deserves to be explored is the minimum power partial
multi-cover problem (adding partial covering requirement). According to current
studies on the minimum partial set multi-cover problem [17–19], it seems that
studying the combination of multi-cover and partial cover in a general setting is
very difficult. An interesting question is whether geometry can make the situa-
tion better?
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